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Abstract Post-quantum cryptography aims to design cryptosystems that can be 
deployed on traditional computers and resist attacks from quantum computers, which 
are widely expected to break the currently deployed public-key cryptography solu-
tions in the upcoming decades. Providing effective hardware support is crucial to 
ensuring a wide adoption of post-quantum cryptography solutions, and it is one of 
the requirements set by the USA’s National Institute of Standards and Technology 
within its ongoing standardization process. This research delivers a configurable 
FPGA-based hardware architecture to support BIKE, a post-quantum QC-MDPC 
code-based key encapsulation mechanism. The proposed architecture is configurable 
through a set of architectural and code parameters, which make it efficient, providing 
good performance while using the resources available on FPGAs effectively, flexi-
ble, allowing to support different large QC-MDPC codes defined by the designers 
of the cryptosystem, and scalable, targeting the whole Xilinx Artix-7 FPGA family. 
Two separate modules target the cryptographic functionality of the client and server 
nodes of the quantum-resistant key exchange, respectively, and a complexity-based 
heuristic that leverages the knowledge of the time and space complexity of the config-
urable hardware components steers the design space exploration to identify their best 
parameterization. The proposed architecture outperforms the state-of-the-art refer-
ence software that exploits the Intel AVX2 extension and runs on a desktop-class 
CPU by 1.77 and 1.98 times, respectively, for AES-128- and AES-192-equivalent 
security instances of BIKE, and it provides a speedup of more than six times com-
pared to the fastest reference state-of-the-art hardware architecture, which targets the 
same FPGA family. 
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1 Introduction 

Public-key cryptography (PKC) allows sending encrypted messages over an insecure 
channel without sharing a secret key, and it has traditionally been a critical component 
of secure communication protocols such as TLS and SSH. Quantum computing is, 
however, expected to break the traditional PKC solutions [ 5, 10, 30] in the upcoming 
decades, making it mandatory to design new security solutions that can also resist 
attacks carried out by quantum computers. 

Post-quantum cryptography (PQC) aims to design cryptosystems that can be 
deployed on traditional computers and are based on problems that are computa-
tionally hard also for quantum computers, other than traditional ones, thus being 
able to resist both traditional and quantum attacks. 

The USA’s National Institute of Standards and Technology (NIST) is currently 
undertaking a standardization process to define new standards for PQC. Starting 
from 82 submissions in 2017, it selected as standards four schemes that can be split 
into key encapsulation mechanisms (KEMs), which are meant to share secret keys 
confidentially, and digital signatures, which guarantee the authenticity and integrity 
of a message to the recipient. 

All four schemes selected as standards are lattice-based ones [ 22, 26], i.e., based 
on the shortest vector problem (SVP), which requires searching for the non-zero 
vector of a lattice having minimum norm and that is considered NP-hard for both 
traditional and quantum computers [ 27]. 

NIST claimed, therefore, the need to diversify its portfolio of PQC solutions and 
expects to select one more KEM among the three remaining code-based ones, i.e., 
BIKE, Classic McEliece, and HQC. Code-based cryptography dates back to the 
McEliece cryptosystem, introduced in 1978 and based on the difficulty of decoding 
a generic linear code [ 21], which is recognized as an NP-hard problem. Code-based 
cryptosystems in NIST’s PQC standardization process are compared in Figs. 1 and 2, 
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Fig. 1 Size in bytes of the public key and ciphertext of the KEMs advancing to the fourth round 
of the NIST PQC standardization process [ 24]
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Fig. 2 Performance of NIST Round 4 KEMs on a x86-64 CPU, considering a 2000 cycles/byte 
transmission cost [ 25] 

respectively,accordingtotheirpublickeyandciphertextsizes,whichshowhowClassic 
McEliece has a huge public key, in the order of millions of bits, and software perfor-
mance, which highlights BIKE as the best performing scheme when also considering 
the cost of transmitting the public keys and ciphertexts between the communicating 
nodes. 

BIKE is a post-quantum code-based KEM using quasi-cyclic moderate-density 
parity-check (QC-MDPC) codes. These codes are employed in a scheme similar to 
the well-studied Neiderreiter one, which dates back to the early 1980s. Compared to 
traditional Niederreiter schemes, whose underlying binary Goppa codes must have 
sizes in the order of millions of bits to provide quantum resistance, BIKE achieves 
a significantly smaller public key, in the order of tens of thousands of bits, through 
its usage of QC-MDPC codes. 

Given the complexity of PQC cryptosystems such as BIKE in terms of memory 
requirements and software performance, providing effective hardware support will 
be paramount to ensuring a wide adoption and effective deployment of post-quantum 
security solutions across the computing continuum ranging from embedded devices 
at the edge to HPC [ 1]. Indeed, with ever more private, sensitive, and critical data 
collected and processed in a variety of scenarios, it is mandatory to design computing 
platforms that not only provide optimal performance for the target applications [ 13, 
33, 34] and the energy and power efficiency required by the specific use case [35] 
but also guarantee the security of the users’ data. 

Implementations of BIKE from the literature encompass software, hardware, and 
hardware-software ones. However, all of them suffer from different drawbacks [ 16]. 
Software implementations [ 3, 7, 8], including those targeting desktop-class Intel 
CPUs with support for AVX2 instructions and running at more than 4 GHz [ 2], 
provide poor performance, whereas hardware ones are custom-tailored to specific 
target platforms [ 28, 29].
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This research delivers a configurable FPGA-based hardware architecture to sup-
port BIKE through two modules dedicated the client- and server-side functionalities 
of the key exchange. The proposed architecture aims to improve performance over 
the existing state-of-the-art software and hardware implementations of BIKE, and 
it is configurable through architectural and code parameters that, through a single 
parametric design, allow for using the resources available on FPGAs effectively, 
supporting different large QC-MDPC codes, and targeting the whole Xilinx Artix-7 
FPGA family. 

2 Components for QC-MDPC Code-Based Cryptography 

The hardware components implementing binary polynomial inversion [ 17], binary 
polynomial multiplication [ 4], and Black-Gray-Flip (BGF) decoding [ 31], i.e., the 
three most complex operations employed within the BIKE cryptosystem, were specif-
ically designed in a parametric way to exploit parallelism as desired according to 
the performance requirements and the area constraints given by the target platform. 
Their designs, meant for FPGA targets, are suitable not only for accelerating the 
BIKE post-quantum KEM but more in general for other applications making use of 
large binary polynomials and QC-MDPC codes. 

Dense-dense binary polynomial multiplication The dense-dense binary polyno-
mial multiplier [ 32] performs the multiplication between two large polynomials in 
.Z2[x]/(x p + 1), with degree . p in the order of tens of thousands, through a hybrid 
architecture that mixes the Karatsuba and Comba algorithms [ 9, 20]. 

Applying a configurable number of iterations of the Karatsuba algorithm reduces 
the number of smaller partial products compared to schoolbook multiplication. Each 
iteration can either compute its three partial products in parallel, on separate internal 
multipliers, or sequentially, on a shared one. The multipliers employed to compute 
such partial products either have a Karatsuba architecture themselves or a Comba-
based one. At the end of Karatsuba’s recursive application, the Comba formula is 
indeed leveraged to perform the actual computation of the partial products since the 
size of the operands after the recursive application of the Karatsuba algorithm is 
still too large to fit into a combinational multiplier. Comba multiplication schedules 
efficiently the computation of such partial products on a combinational component 
that performs the carry-less multiplication between two .BW -bit digits, where . BW
corresponds to the datapath bandwidth. 

Selecting the number of Karatsuba recursions, whether each computes its partial 
products sequentially or concurrently, and the datapath bandwidth allows for explor-
ing a variety of performance-area trade-offs. 

Binary polynomial exponentiation The exponentiation at the power of . k of a poly-
nomial . f (x) in .Z2[x]/(x p + 1), where . k and . p are coprime as in QC-MDPC codes
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employed by BIKE, corresponds to a permutation in which each .i-th bit of the 
operand . f (x) corresponds to the .((i · k) mod p)-th bit of the result .g(x). 

The exponentiation component [ 17] implements a two-stage architecture. The 
first one includes a.p-bit memory and outputs. E bits per cycle, while the second one 
contains.E .p-bit memories, each receiving a bit from the first stage and writing it in 
the corresponding position. Finally, the contents of the second-stage memories are 
XORed to produce the actual result of the exponentiation. As an optimization, the 
usage of lookup tables pre-computed at design time avoids the computation of the 
bit start addresses and address increments required to obtain the positions of bits in 
the result polynomial. 

The .E number of result bits computed per clock cycle, which determines the 
execution time and area of the exponentiation component, can be selected at design 
time with any value between . 1 and . p. 

Binary polynomial inversion The binary polynomial inversion component [17] imple-
ments a Fermat-based algorithm that computes, by iterating binary polynomial 
multiplications and exponentiations, the multiplicative inverse of a polynomial in 
.Z2[x]/(x p + 1), which is the most time-consuming operation in BIKE’s key gener-
ation primitive [ 19]. 

The multiplications and exponentiations are carried out on dense-represented 
operands by two separate parametric components, i.e., the dense-dense binary poly-
nomial multiplication and binary exponentiation components described previously. 
The two types of operations are computed on their dedicated components by schedul-
ing them in a pipelined fashion, executing independent multiplications and exponen-
tiations concurrently and thus minimizing the execution time of the overall inversion 
operation. 

The dense-dense binary polynomial multiplication and binary polynomial expo-
nentiation components are configurable in their code and architectural parameters, 
and finding an optimal performance-area trade-off for the inversion one requires bal-
ancing their resource utilization and execution time. 

Black-Gray-Flip decoding The decoding component implements the BGF decod-
ing algorithm [ 11], a variant of the baseline QC-MDPC bit-flipping decoding algo-
rithm. The BGF algorithm iterates the computation of two multiplications, performed 
respectively in the integer and binary domains, between a dense polynomial operand 
and a sparse one [ 31]. The two dense-sparse multiplications are performed concur-
rently in a pipelined fashion, and the number of the bits computed in parallel in both 
is configurable by the designer [ 4]. 

The multiplication between a sparse polynomial .s(x) with Hamming weight . v, 
i.e., . v coefficients set to 1, and a dense one .d(x) corresponds to the addition of . v
copies of .d(x) each shifted by the position of the corresponding . 1 in .s(x). In the  
binary domain case, the addition corresponds to XOR, and the result polynomial 
has binary coefficients, i.e., either 0 or 1. On the contrary, in the integer domain 
case, it corresponds to integer arithmetic addition, and the result’s coefficients are 
thus integer values comprised between 0 and. v. The two integer- and binary-domain
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Fig. 3 Baseline architecture of the sparse-dense multiplication components 

multiplications are performed by separate components, each dedicated specifically 
to one of them, but both implement a similar architecture. 

The baseline architecture, depicted in Fig. 3, stores in a BRAM mem-
ory (Operand.Mem) the dense operand polynomial and in a flip-flop-based regis-
ter (Shift.Reg) the position of a bit set to 1 in the sparse one. The content of 
Operand.Mem is shifted according to the value stored in ShiftReg and accumulated 
in the result polynomial BRAM memory (Result.Mem) according to the addition 
operation specific to the implemented arithmetic. In Fig. 3, .W corresponds to the 
number of polynomial coefficients read and written per clock cycle, .K refers to the 
bit length of the coefficients of the result polynomial, and .A refers to the width of 
read and write addresses. 

The computation of the overall sparse-dense multiplication can be parallelized, 
reducing execution time at the cost of additional area, by instantiating multiple 
shift-and-accumulate modules. Up to . v of such modules can be implemented to 
perform the shift-and-accumulate operation after feeding them different values 
of positions of bits set to 1 in the sparse operand. The overall product of the 
multiplication will finally be obtained as the sum of the result polynomials from 
each of the instantiated shift-and-accumulate modules. 

Sparse-dense binary polynomial multiplication The sparse-dense binary polynomial 
multiplier [ 4] is employed within all three KEM primitives of BIKE, i.e., key genera-
tion, encapsulation, and decapsulation, and it is designed with the same architecture 
as the one employed by the binary dense-sparse multiplier instantiated in the BGF 
decoding module. Its parallelism is similarly configurable by selecting the number 
of shift-and-accumulate operations to compute concurrently, which can be any value 
between 1 and. v, where . v is the Hamming weight of the dense operand polynomial.
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Fig. 4 Top-level architecture of the BIKE client and server cores 

Other components The SHA-3 component [ 14] implements the SHA3-384 crypto-
graphic hash function [ 12]. It computes the 384-bit digest of the SHA3-384 cryp-
tographic function of the input message according to an architecture similar to the 
high-speed core detailed in [ 6], which was modified to support the standard SHA-3 
cryptographic hash functions in place of pre-standard Keccak functions. 

The pseudorandom number generation (PRNG) component [ 14] performs the 
generation of a pseudorandom sequence of bits with fixed Hamming weight by 
using an internal SHAKE256 module, which implements an architecture similar to 
the SHA-3 component, albeit producing a variable-length output according to the 
needs of the surrounding pseudorandom generation logic. The SHAKE256 module 
expands a seed obtained from a TRNG [ 18] into a digest output that is broken up into 
(.log2 p)-bit chunks, each possibly representing the position of a bit set to 1 within 
a .p-bit vector, and the extracted values are evaluated to discard the values which 
have been generated previously, avoiding cancellations and therefore enabling the 
generation of a vector with the desired Hamming weight. Moreover, values larger 
than or equal to . p are discarded, providing a uniform distribution of bits set to 1 
within the random-generated bit vector. 

3 Client-Server BIKE Architecture 

Two separate cores target the cryptographic functionality of the client and server 
nodes of the BIKE key exchange, respectively. The client and server cores, whose 
architecture is depicted in Fig. 4, make use of the configurable binary polynomial 
arithmetic and BGF decoding components, the SHA-3 core, and the pseudorandom
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number generator that were previously described, and contain additional BRAM-
based memories to store the large binary polynomials [ 15]. 

The Client core is composed of two main modules, Keygen and Decaps, 
devoted to the key generation and decapsulation of BIKE, respectively [ 14]. The 
Keygen module performs three subsequent hardware operations, namely pseudo-
random number generation (executed by the PRNG component), binary polyno-
mial inversion (Inv), and binary polynomial multiplication (Mul). Similarly, the 
Decaps module executes a sequence of four hardware operations, namely binary 
polynomial multiplication (Mul), BGF decoding (Dec), computation of SHA-3 hash 
digest (SHA3), and pseudorandom number generation (PRNG). The PRNG and Mul 
components are notably shared between the Keygen and Decaps modules to min-
imize duplicate hardware resources. 

The Server core only includes the Encaps module [ 14], devoted to the encap-
sulation primitive of BIKE, which requires performing a sequence of three hardware 
operations, namely pseudorandom number generation (PRNG), binary polynomial 
multiplication (Mul), and computation of the SHA-3 hash function (SHA3). 

The optimal parameterization, which maximizes performance within the available 
FPGA resources, of the configurable components, i.e., binary polynomial arithmetic 
and BGF decoding ones, is identified by using a complexity-based heuristic that 
leverages the knowledge of such parametric components’ time and space complexity 
to steer the design space exploration. The execution time is selected as a proxy for the 
time complexity, while the space complexity is modeled by the number of occupied 
BRAM memory blocks since the design is dominated by BRAM usage due to the 
large polynomials and the exploited parallelism. 

4 Experimental Evaluation 

The experimental evaluation aims to gauge the performance and resource utilization 
improvements of the proposed FPGA-based architectures compared to state-of-the-
art software, hardware-software, and hardware implementations. 

Experimental setup The proposed components were described in SystemVerilog and 
then implemented in Xilinx Vivado 2020.2 targeting Xilinx Artix-7 FPGAs, which 
were selected as the target platform since they are the de-facto standard in research, 
due to their wide availability and best price-performance ratio among FPGAs, and 
they were chosen as the hardware target by NIST, to avoid differences due to FPGA 
technologies and ASIC technology nodes. RTL synthesis and implementation were 
carried out targeting a 91 MHz clock frequency, i.e., an 11ns clock period. 

The proposed architectures were validated from the functional point of view, both 
through post-implementation simulation, on Artix-7 35, Artix-7 50, and Artix-7 200 
FPGAs, and through prototype execution on a Digilent Nexys 4 DDR board, which 
features an Artix-7 100 FPGA. In each case, the results from the executions of 10000
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key generations, encapsulations, and decapsulations on the proposed architectures 
were compared with the corresponding outputs of software execution. 

Reference implementations The experimental evaluation was carried out against 
state-of-the-art software, hardware-software, and hardware implementations of the 
BIKE post-quantum KEM. 

The additional Intel AVX2-optimized software implementation of BIKE [ 2] was  
selected as the software reference. It provides a constant-time execution on Intel 
x86-64 CPUs that support the Intel AVX2 instruction set extension, i.e., CPUs from 
the Intel Haswell generation and later ones. Within the experimental evaluation, it 
was executed on an Intel Core i5-10310U CPU, a desktop-class 64-bit processor 
implementing the x86-64 ISA and providing support for the Intel AVX2 extension, 
running at a clock frequency up to 4.4 GHz. Moreover, the PC mounting the Intel 
CPU ran the Ubuntu 20.04.3 LTS operating system. 

The solution proposed in [ 23], which makes use of HLS-generated accelera-
tors, each implementing a BIKE primitive, was selected as the hardware-software 
reference. Three different combinations of KEM primitives implemented in hard-
ware, depending on the available FPGA resources, with the remaining ones exe-
cuted instead in software on the CPU, allow targeting three chips from the Xilinx 
Zynq-7000 heterogeneous SoC family, which feature ARM CPUs coupled with pro-
grammable FPGA logic equivalent to the Artix-7 one. 

The official FPGA-based hardware implementation [ 28] was instead selected 
as the state-of-the-art hardware reference. The proposed design, targeting Xilinx 
FPGAs and described in SystemVerilog, delivers a unified architecture that imple-
ments the whole BIKE KEM and executes it in constant time. The authors provide 
three instances ranging from a lightweight one that minimizes resource utilization 
up to mid-range and high-performance ones. 

Area results The area of the proposed architecture is evaluated according to its uti-
lization of the FPGA resources available on the target chips. Table 1 details the 
look-up tables (LUT), flip-flops (FF), and block RAM (BRAM) blocks occupied by 
the client and server instances. The proposed architecture’s smallest client and server 

Table 1 Area results, expressed in terms of LUT, FF, and BRAM resources, and execution times, 
in milliseconds, for the proposed client and server cores 

Core Equivalent 
security 

Lightweight High-performance 

Resources Exec. 
time 

Resources Exec. 
time 

LUT FF BRAM LUT FF BRAM 

Client AES-128 31792 17805 43.5 5.71 126510 51492 357 0.58 

AES-192 31411 20181 45.5 19.27 124891 53067 360 1.71 

Server AES-128 19804 11401 30 0.03 91422 46208 275.5 0.03 

AES-192 19979 12282 28 0.08 72725 37795 235.5 0.06
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Table 2 Execution times, in milliseconds, for the state-of-the-art and proposed implementations. 
Legend: LW lightweight, MR mid-range, HP high-performance instances 

Equivalent 
security 

Ref. 
SW [ 2] 

Ref. HW/SW [ 23] Ref. HW [ 28] Proposed 

AVX2 LW MR HP LW MR HP LW HP 

AES-128 1.08 617.31 482.48 288.18 11.13 6.36 3.69 5.74 0.61 

AES-192 3.51 .− .− .− 37.10 19.71 11.69 19.35 1.77 

cores fit in Artix-7 50 and 35 FPGAs, respectively, while the largest instances target 
Artix-7 200 chips, i.e., the highest-end chips of the FPGA family. 

The experimental results demonstrate how the proposed cryptographic cores can 
scale across a range of FPGA chips. Moreover, they show that BRAM memories are 
the most used resources, relatively to the ones available on the target chip, on the 
larger Artix-7 200 FPGAs, while instances targeting the smaller chips are bounded 
by the LUT utilization. The proposed architectures usually employ a large fraction 
of the available look-up tables while requiring a more limited amount of flip-flops. 

Performance results Performance is measured by the execution time of the BIKE 
KEM primitives on the client and server sides of the key exchange. Table 1 lists the 
execution times, expressed in milliseconds, for the client and server instances of 
the proposed architecture, while Table 2 compares the aggregate execution times of 
BIKE between the state-of-the-art and proposed solutions. 

The experimental results highlight significant improvements over the considered 
state-of-the-art references. The latency of the BIKE KEM can be reduced by almost 
two times, in the AES-192-equivalent use case, compared to the AVX2-optimized 
software execution, and the smaller proposed instances outperform even the mid-
range state-of-the-art FPGA-based instances. Finally, the best-performing proposed 
architectures outperform the high-performance state-of-the-art ones by more than 
six times, as also shown in Fig. 5, which compares the execution time, broken down 
in the three KEM primitives, between the FPGA-based architectures. 

5 Conclusions 

This research presented a configurable FPGA-based hardware architecture that 
implements the BIKE QC-MDPC code-based cryptosystem, aiming to improve per-
formance over the existing state-of-the-art software and hardware solutions. 

The proposed architecture provides effective FPGA-based hardware support for 
QC-MDPC codes suitable to post-quantum cryptography applications. Configurable 
code and architectural parameters allow using a single design to support different 
QC-MDPC codes underlying the PQC cryptosystems and to target any FPGA chip 
from the Xilinx Artix-7 family. Hence, different performance-area trade-offs can be 
explored through the parametric configurability to satisfy the performance require-
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Fig. 5 Execution times of BIKE with AES-128-equivalent security. Legend: LW lightweight, MR 
mid-range, HP high-performance instances 

ments and area constraints set for the overall system that integrates BIKE hardware 
support. Two modules support the KEM primitives to be executed on the client and 
server nodes of the key exchange, respectively, and a complexity-based heuristic 
steers the design space exploration to identify the best parameterization of the con-
figurable hardware components by leveraging the knowledge of their time and space 
complexity. 

The experimental evaluation of the proposed architecture highlighted significant 
improvements over the state-of-the-art software, hardware-software, and hardware 
implementations of BIKE from the literature. On the one hand, compared to the refer-
ence software implementation, which exploits the Intel AVX2 extension on desktop-
class CPUs, AES-128- and AES-192-equivalent security instances of the proposed 
architecture provide performance speedups of 1.77. × and 1.98. ×, respectively. On the 
other hand, the proposed FPGA-based BIKE architecture also outperforms the other 
hardware implementations available from literature, including both HLS-generated 
and human-designed ones, and provides a speedup over the fastest state-of-the-art 
FPGA-based instance of more than six times. 
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