
Chapter 14 
Karl Popper on Deduction 

Thomas Piecha 

Abstract We outline Karl Popper’s theory of deduction, which he developed in 
the 1940s. In his theory it is assumed that a consequence relation is given or 
otherwise constructed by postulation. Logical operations, which may be available in 
this consequence relation, are then characterized by means of relational definitions, 
and logical operators are introduced as names for these operations by means of 
inferential definitions. Using logically structured sentences thus introduced, the 
inference laws for them are immediately obtained from the inferential definitions. 
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14.1 Introduction 

Karl Popper published his theory of deductive logic in a series of six articles between 
1947 and 1949: 

1. “Logic without Assumptions” (Popper 1947a), 
2. “New Foundations for Logic” (Popper 1947b), 
3. “Functional Logic without Axioms or Primitive Rules of Inference” (Popper 

1947c,d), 
4. “On the Theory of Deduction, Part I. Derivation and its Generalizations” (Popper 

1948a,b), 
5. “On the Theory of Deduction, Part II. The Definitions of Classical and Intuition-

ist Negation” (Popper 1948c,d), 
6. “The Trivialization of Mathematical Logic” (Popper 1949). 
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These articles are reprinted in The Logical Writings of Karl Popper (Binder, 
Piecha, and Schroeder-Heister 2022b), which also contains further published arti-
cles, unpublished manuscripts, contemporary reviews and Popper’s correspondence 
on deductive logic. For an extensive presentation and discussion of his theory we 
refer to the first chapter of that book (Binder, Piecha, and Schroeder-Heister 2022a), 
on which this paper is mainly based. Further detailed investigations of Popper’s 
theory are Lejewski (1974), Schroeder-Heister (1984), Schroeder-Heister (2006), 
Binder and Piecha (2017), Moriconi (2019), and Binder and Piecha (2021). 

In Sect. 14.2 we describe Popper’s structural framework for defining logical 
constants in a metalanguage restricted to positive logic with propositional quan-
tification. In Sect. 14.3 we sketch Popper’s general theory of deduction, which is 
the theory of “structural” rules (to use Gentzen’s terminology) without taking into 
account the internal deductive form or power of sentences, and in Sect. 14.4 we 
discuss Popper’s special theory of deduction, which deals with logical constants, 
their inferential definability and logical laws. In the final Sect. 14.5 we summarize 
the central aspects of Popper’s theory and highlight its differences with respect to 
Tarski’s approach to logical consequence. 

Although we can cover only the main aspects of Popper’s approach to logic 
here, it should be mentioned that he also obtained important concepts and results 
in logic first or, in some cases, independently of contemporary logicians. Examples 
are his consideration of the tonk-like connective “the opponent of a statement” (cf. 
Sect. 14.4.2), which trivializes logical systems containing it, the characterization 
of implication by means of Peirce’s rule, the proposal of a dual-intuitionistic 
logic (formulated and investigated by his student Cohen in 1953), the discussion 
of conservative and non-conservative language extensions (cf. Sect. 14.4.2), the 
perhaps first formulation of a bi-intuitionistic logic after (and most probably without 
knowledge of) Moisil (1942), the idea of combining logics, his analysis of logicality 
(cf. Sect. 14.4.2), the axiomatic characterization of the substitution operation in his 
theory of quantification (cf. Sect. 14.4.5), and his results on several non-classical 
negations. 

We note that Popper uses the terms “deduction”, “derivation”, and “inference” 
mostly synonymously, and likewise the terms “deducible”, “derivable”, “follows 
from” and “is a consequence of”, and that we speak of theories of deduction 
where Popper would speak of theories of derivation or inference. Moreover, we 
use the terms “sentence” and “statement” mostly synonymously, while Popper has 
a preference for “statement”. In order to avoid any misunderstanding from the 
beginning, we also note that rules of derivation are not rules in a calculus understood 
as a proof system. Popper does not develop a calculus in this sense, and what he calls 
rules of derivation are metalinguistically formulated statements about a deducibility 
relation.
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14.2 The Structural Framework 

For propositional logic, Popper considers pairs .(L; a1, . . . , an/b) of an object lan-
guage . L containing statements .a1, . . . , an, b together with a deducibility relation . /
on . L, which today we would call a finite consequence relation in Tarski’s sense. 

In contradistinction to modern approaches to logic that start by defining a formal 
object language, Popper’s approach does not presuppose any knowledge about the 
form or syntactic structure of the object language . L under consideration and is 
in principle applicable both to formal and natural languages. For example, the 
conjunction of two statements a and b of the object language need not have any 
particular syntactic form like “. a ∧ b” or “.a and b”. An object language may well 
be formally specified by an inductive definition, and Popper himself considers such 
languages. But it is not required, and Popper considers any sort of language, formal 
or non-formal, provided we know what it means that a sentence of the language 
follows from other sentences. 

Popper’s approach is based on the concept of deducibility (or “derivability”). It 
is the only undefined notion as far as propositional logic is concerned (this includes 
modal logic, which is also discussed by Popper). An operation of substitution 
is added for the treatment of first-order logic (Popper uses the terms “theory 
of quantification” or “quantification theory” instead of “first-order logic”; cf. 
Sect. 14.4.5). Deducibility is a relation, written with the slash . /, that ranges over the 
object language and holds between finitely many premises .a1, . . . , an (for .n ≥ 0) 
and exactly one conclusion b. In ./-notation, Popper writes 

. a1, . . . , an/b

to express that the statement b can be deduced from the statements .a1, . . . , an. The  
case .n = 0, in which no premises occur, was not yet considered in Popper (1947b). 
It was added later in Popper (1948a), where the so-called D-notation is introduced. 
In this notation, .D(a1, a2, . . . , an) stands for .a2, . . . , an/a1, and the special case 
.D(a1) corresponds to . /a1, meaning that . a1 is deducible without premises. 

When Popper defines logical operations inferentially, this is carried out in a 
metalanguage, whose basic relation is deducibility . /, and not in a syntactically 
specified object language. As a general example, let us consider a two-place logical 
operation . ◦, which we call “connection” and which can stand for any operation such 
as conjunction or implication, or mutatis mutandis for operations of other arities 
such as negation or quantification. Then Popper relies on relational definitions of 
the form 

. c is a connection of a and b if and only if R(c, a, b)

and on inferential definitions of the form 

.c//a ◦ b if and only if R(c, a, b),
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where . // stands for interdeducibility (or “mutual deducibility”, to use Popper’s 
term; cf. Sect. 14.3). In most cases the defining condition .R(c, a, b) has the form 
of a rule, which is described in terms of deducibility . /, metalinguistic conjunction, 
metalinguistic implication and metalinguistic universal quantification. Popper does 
not specify exactly the means of expression allowed in a defining condition, but 
from all contexts it is clear that positive logic is sufficient. 

We use the following symbolic notation for metalinguistic expressions, which is 
similar to Popper’s: 

Symbol .→ . ↔ .& . (a)

Meaning if-then if and only if and for all a 

The universal quantifier .(a) ranges over statements a of the object language. Since 
equivalence is definable in terms of conjunction and implication, the fundamental 
logical operations used in the metalanguage to define arbitrary propositional 
logical operations of the object language are conjunction, implication and universal 
quantification (over statements). Metalinguistic disjunction could be added, but, 
as Popper notes, it is only needed to define modal operations (which we do not 
consider in this exposition). In Popper’s theory of quantification (cf. Sect. 14.4.5) 
metalinguistic existential and universal quantification over statements and variables 
is used, for which we do not use symbols, however. 

Due to the fact that only positive logic is permitted in the defining condition of 
an operation, the existence of this operation can never imply that the metalanguage 
is inconsistent. The trivial deducibility relation, which holds for all arguments, 
validates any defining condition . R and therefore falsifies the negation of it, which 
means that not every metalinguistic statement is true. Trivialization of the object 
language does not imply trivialization of the metalanguage. That is, in any nonempty 
object language with a trivial deducibility relation (that is, .a1, . . . , an/b holds for 
any .a1, . . . , an, b), every defining condition . R for a logical operation is satisfied. 
This will become relevant in the discussion of the logical constant “the opponent of 
a statement” (opp) in Sect. 14.4.2. 

For certain expressions of the metalanguage Popper uses a special vocabulary. 
Statements of the form 

. a1, . . . , an/b

are also called absolute rules of derivation, and statements of the form 

. a1, . . . , an/b → c1, . . . , cm/d

and iterated versions thereof are also called conditional rules of derivation or 
just rules of derivation. We emphasize again that rules of derivation are not rules 
in a calculus or proof system, but metalinguistically formulated statements about
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the deducibility relation. However, due to their specific form they can be read 
as descriptions of rules, as they tell us that from certain deducibility statements 
we may pass over to another deducibility statement. Thus we follow Popper in 
using the term “rule” to speak about such metalinguistic expressions. This means 
in particular that we will often speak of .R(c, a, b) as “defining rules” instead of 
“defining conditions”, even if they cannot be translated immediately into rules of 
some object language. 

So far, the deducibility relation . / has only been defined by saying that it ranges 
over an object language . L. The next step consists in providing what Popper calls a 
basis for this relation. A basis is a complete and independent set of rules, formulated 
in the metalanguage, that axiomatizes the deducibility relation . /. Completeness is 
here defined with respect to Popper’s notion of absolute validity, which is similar 
to the notion of validity obtained by allowing only structural rules of inference. 
Popper’s idea seems to be that even if we abstract away from any concrete logical 
system (containing a specific set of logical constants) under consideration, we still 
have a rudimentary residuum of deduction consisting of structural inferences, like 
the inference from a statement a to the statement a. 

Popper mainly uses two alternative bases, called Basis I and Basis II, which also 
occur in different versions. In another approach, Popper (1947c) uses an extended 
definition of conjunction, called basic definition (DB2), to ensure reflexivity and 
transitivity of . / as well as exchangeability of premises. However, (DB2) corresponds 
to the defective Basis II of Popper (1947b), and is therefore just as problematic. We 
do not consider this approach here (it is discussed in Binder et al. 2022b, § 4.6). 

Our presentation is based on the following version of Basis I that can be found 
in Popper (1947b) as well (cf. also Bernays 1965). It is given by a generalized 
reflexivity principle (Rg) together with a generalized transitivity principle (Tg): 

.a1, . . . , an/ai (1 ≤ i ≤ n), . (Rg) 
⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

a1, . . . , an/b1 

& a1, . . . , an/b2 
... 

... 
& a1, . . . , an/bm 

⎫ 
⎪⎪⎪⎬ 

⎪⎪⎪⎭ 
→ (b1, . . . , bm/c → a1, . . . , an/c). (Tg) 

The principle (Tg) is a schematic rule, so its content cannot be expressed directly 
by means of a single formula of the metalanguage. Popper tried to improve on 
this by searching for a replacement of (Tg) that could be expressed directly in his 
metalanguage. However, this led to other problems due to the defective Basis II and 
the problematic basic definition (DB2) mentioned above (cf. Binder et al. 2022a, 
§ 4.6).  

The fact that (Tg) is parametrized by a natural number actually applies not only 
to the multiplicity of premises by m, but also to the multiplicity n of sentences 
on the left side of . / within both (Rg) and (Tg). This could have been overcome 
easily by adopting a notation for finite sets of statements corresponding to contexts 
.𝚪,Δ, . . . in Gentzen sequents, where the multiplicity m of premises can be modelled
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by conjunctively understood sets of sentences on the right hand side of . /, as in the  
multiple premises the left hand side of . / (that is, .a1, . . . , an) is always the same. 
Obviously, Popper did not want to enlarge the formalized part of his metalanguage 
by such additional means of expression, insisting on the fact that deducibility . / is 
the only primitive concept of the metalanguage, at least for propositional logic. 

14.3 The General Theory of Deduction 

Popper distinguishes between a general and a special theory of deduction. The 
general theory does not refer to any logical signs of the object language. It studies 
properties of statements and relations on statements that can be defined using only 
the deducibility relation. One such relation is relative demonstrability 

. a1, . . . , an ⊢ b1, . . . , bm,

which is defined by the following rule: 

. (c)(d1) . . . (dk)((b1, d1, . . . , dk/c & . . . & bm, d1, . . . , dk/c) →
a1, . . . , an, d1, . . . , dk/c).

It can be interpreted as derivability of the disjunction of .b1, . . . , bm from the 
conjunction of .a1, . . . , an. This interpretation is justified by the fact that for object 
languages containing conjunction . ∧ and disjunction . ∨ one can show the following: 

. a1, . . . , an ⊢ b1, . . . , bm ↔ a1 ∧ . . . ∧ an ⊢ b1 ∨ . . . ∨ bm.

The concept of relative demonstrability gives thus an interpretation of Gentzen’s 
(1935a, b) sequents. Object languages without conjunction or disjunction are not 
excluded, however. 

Since for all .a1, . . . , an, b we have .a1, . . . , an/b ↔ a1, . . . , an ⊢ b, one can 
replace . / by . ⊢ in all formulas of the metalanguage. Note that, conversely, . ⊢ can only 
be replaced by . / if . ⊢ has exactly one succedent b. We will make use of relative 
demonstrability in Sects. 14.4.3 and 14.4.4. 

Relative demonstrability comprises further defined relations, also considered by 
Popper, as special cases. Namely complementarity (for .n = 0), demonstrability (for 
.n = 0 and .m = 1), contradictoriness (for .m = 0) and refutability (for .n = 1 and 
.m = 0). 

Another useful relation is mutual deducibility (or interdeducibility) .a//b, which 
can be defined directly with deducibility: 

. a//b ↔ (a/b & b/a),

or by using relative demonstrability: .a//b ↔ (a ⊢ b & b ⊢ a).



14 Karl Popper on Deduction 307

14.4 The Special Theory of Deduction 

The general theory of deduction was purely structural (in Gentzen’s terminology) 
and based solely on the deducibility of statements without regard for their individual 
form and their individual deductive power. The subject of Popper’s special theory 
of derivation are relations between statements, which are logically complex or 
have a specific deductive power, and their components. The components are not 
necessarily subsentences, but sentences that are deductively related to the original 
sentence in a certain way, such as sentences a and b which are deductively related 
to a conjunction c of a and b, even if  c does not syntactically contain a and b. 
Furthermore, the special theory of derivation deals with the logical laws emerging 
therefrom. It is based on the relational definitions of logical operations and the 
inferential definitions of logical operators. 

14.4.1 Definitions of Logical Constants 

Logical constants are characterized in terms of the role they play with respect to 
the deducibility relation . /. Such characterizations proceed by what Popper calls 
inferential definitions. A sign of an object language . L is a logical constant (Popper 
speaks of formative signs) if and only if it can be defined by an inferential definition. 
According to Popper (1947a, p. 286), “inferential definitions [. . .] are characterized 
by the fact that they define a formative sign by its logical force which is defined, in 
turn, by a definition in terms of inference (i.e., of ‘/’).” 

We use . ◦ again to represent an arbitrary two-place logical operation called 
“connection” with . R as its defining condition (“rule”), which is used in the relational 
definition 

. c is a connection of a and b ↔ R(c, a, b)

and in the inferential definition 

.c//a ◦ b ↔ R(c, a, b). (D ◦) 

As already mentioned, .R(c, a, b) is an expression of the metalanguage containing 
as relations the deducibility relation . /, and maybe defined relations like relative 
demonstrability . ⊢, which can always be eliminated in a given logical argument, 
however. 

The relational definition makes no special assumption about the object language. 
It just singles out connections c of a and b if they are available in the object 
language (otherwise there simply is no connection of a and b). The inferential 
definition, however, requires existence and uniqueness, which means that it is based 
on the presupposition that there is exactly one connection c of a and b in the
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object language considered. Here “uniqueness requirement” and “exactly one” is 
understood modulo interdeducibility. That is, there is a connection c of a and b, 
and all other connections . c' of a and b are interdeducible with c: .c//c'. Note that 
in any case, every . c' interdeducible with a connection c of a and b is itself a 
connection of a and b. This follows from the fact that according to the general 
theory of deduction, we have substitutivity of interdeducibles, which means that all 
our inferential concepts and results are invariant with respect to interdeducibility. 
Popper is fully aware of these existence and uniqueness requirements. 

The inferential definition (D ◦) can be viewed as an explicit definition of a 
connective . ◦. (D ◦) conservatively introduces into a language a sign for a new 
operator . ◦, which is eliminable following the standard procedures used for the 
introduction and elimination of function symbols or definite descriptions. It should 
be noted, however, that (D ◦) is a definition of a metalinguistic function which 
associates with any a and b their connection .a ◦ b, which is unique up to 
interdeducibility, so .a◦b essentially denotes an equivalence class of objectlinguistic 
sentences, none of which must have a special form. However, once we have reached 
that stage, we can, of course, introduce into our object language sentences of the 
form “.a◦b”, where . ◦ is now an objectlinguistic operator in the usual sense, and take 
it to be the objectlinguistic representative of .a ◦ b (understood metalinguistically). 
Viewed that way, (D ◦) can be used to introduce a logical operator into a suitable 
object language, provided the connection operation as a relation between (not 
further specified) sentences is available. 

In fact, we can even devise a formal object language in the usual way and lay 
down the rules .R(a ◦ b, a, b) for all a and b. In that case a connection .a ◦ b of a 
and b with certain inferential properties always exists by stipulation. However, when 
proceeding in that manner, we must be aware (and Popper is) that such a stipulation 
may have undesired consequences up to the generation of inconsistencies. In any 
case, for (D ◦) to hold, we still must make sure that uniqueness is satisfied. If this is 
the case, we can proceed with the rule 

.R(a ◦ b, a, b) (C ◦) 

as the characterizing rule, which corresponds to the definition (D ◦). If uniqueness 
is satisfied, (D ◦) and (C ◦) are obviously equivalent. 

As an example, we consider the following relational definition of conjunction 

. c is a conjunction of a and b ↔ a, b/c & c/a & c/b,

where the metalinguistic condition “.a, b/c & c/a & c/b” on the right hand side 
formulates the standard introduction and elimination rules for conjunction in the 
form of consequence statements. Let us call this condition .R∧(c, a, b). Then the 
inferential definition of conjunction is 

.c//a ∧ b ↔ R∧(c, a, b),
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and the characterizing rule is 

. R∧(a ∧ b, a, b).

Other definitions of conjunction can be given by choosing alternative metalinguistic 
conditions . R. We will see an example in Sect. 14.4.3. 

14.4.2 Existence and Uniqueness in Inferential Definitions 

What form might characterizing rules like .R(a ◦ b, a, b) be allowed to take? Should 
certain rules be disallowed because their use in a definition of form (D ◦) does not in 
fact define a logical constant, or does any rule . R give rise to a definition of a logical 
constant? For Popper any characterizing rule which is equivalent to an inferential 
definition characterizes a logical constant. He calls such rules fully characterizing 
(cf., e.g., Popper 1948c, § VI):  

(A) A rule . R characterizing an operation . ◦ is called fully characterizing if and only 
if it is equivalent to an inferential definition of . ◦. 

If . R is given in the form .R(a ◦ b, a, b), this means uniqueness of . R for its first 
argument. For Popper uniqueness is essential for any definition of a logical constant 
(cf. Popper 1948c, p. 324). That is, we have 

(B) A rule of the form .R(c, a1, . . . , an) is fully characterizing if and only if 

. (R(a, a1, . . . , an) & R(b, a1, . . . , an)) → a//b.

In other words, if and only if a rule . R characterizes a statement c up to mutual 
deducibility, then . R is fully characterizing c. 

We distinguish between the definition (A) and the fact (B) because not every 
characterizing rule has the form .R(c, a1, . . . , an) and can thus be used in a 
relational definition. Only logical constants, which are fully characterized, are 
always definable by rules of the form .R(c, a1, . . . , an). 

What about the existence requirement? The inferential definition (D ◦) is a proper 
definition only if, in addition to uniqueness, there exists a connection of a and b in 
the object language considered, for which we define a name. We may, of course, 
stipulate that there be a connection of a and b and even denote it by .a ◦ b, but this is 
nothing an inferential definition can do by itself without becoming creative. Unique 
connections must be there before we can single them out by means of an inferential 
definition. Popper is aware of this point. The existence of fully characterizing rules 
is Popper’s criterion of logicality. 

Forcing an operation to exist in an object language can make the object language 
inconsistent. However, if it is uniquely characterized, it is a logical constant. For 
example, Popper (1947a, p. 284) allows the following definition for “the opponent
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of a statement” (opp), with its characterizing rule: 

.a//opp(b) ↔ (c)(b/a & a/c), . (D opp) 

(c)(b/opp(b) & opp(b)/c). (C opp) 

This obviously trivializes any system, since it implies .(c)(b/c) for any b. But this 
does not lead Popper to reject (D opp) as a definition. In a system, where opp exists 
(thus an inconsistent system), it is a logical constant because it is unique for trivial 
reasons. Historically, it is interesting to note that the connective opp is quite similar 
to the connective tonk, which was later introduced into the philosophical discussion 
by Prior (1960), with the intention to discredit inferentialism. 

14.4.3 Inferential Definitions of Some Connectives 

In order to illustrate Popper’s special theory of deduction, we present inferential 
definitions and their characterizing rules for some standard connectives, now 
using the defined notion of relative demonstrability . ⊢. We already discussed one 
possibility to define conjunction. Another possible definition of conjunction is the 
following, which can be dualized by swapping the left and right hand sides of . ⊢ to 
obtain the shown definition of disjunction. Popper often uses duality in this way as it 
also allows him to dualize logical constants in the context of non-classical logics. 

Conjunction . ∧: .a//b ∧ c ↔ (d)(a ⊢ d ↔ b, c ⊢ d), . (D ∧) 

b ∧ c ⊢ d ↔ b, c ⊢ d. (C ∧) 

Disjunction . ∨: .a//b ∨ c ↔ (d)(d ⊢ a ↔ d ⊢ b, c), . (D ∨) 

d ⊢ b ∨ c ↔ d ⊢ b, c. (C ∨) 

Conditional . >: .a//b > c ↔ (d)(d ⊢ a ↔ d, b ⊢ c), . (D >) 

d ⊢ b >  c  ↔ d, b ⊢ c. (C >) 

Classical negation . ¬k: .a//¬kb ↔ (a, b ⊢ & ⊢ a, b), . (D ¬k) 

¬kb, b ⊢ & ⊢ ¬kb, b. (C ¬k) 

Unary tautology t : .a//t (b) ↔ (c)(b/a ↔ c/a), . (D t) 

(c)(b/t (b) ↔ c/t (b)). (C t) 

Unary contradiction f : .a//f (b) ↔ (c)(a/b ↔ a/c), . (D f ) 

(c)(f (b)/b ↔ f (b)/c). (C f )
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For the last two unary connectives we have, for any a and b, .t (a)//t (b) and 
.f (a)//f (b). Thus one can simply write t and f . In other words, these connectives 
correspond to the nullary constants verum and falsum, and they will be used in this 
way in Sect. 14.4.5, (PF4). 

In the context of non-classical logics, Popper inferentially defines, for example, 
several kinds of non-classical negations, such as: 

Intuitionistic negation . ¬i :. a//¬ib ↔ (c)(c ⊢ a ↔ c, b ⊢), . (D ¬i) 

c ⊢ ¬ib ↔ c, b ⊢ . (C ¬i) 

Dual-intuitionistic negation . ¬m:. a//¬mb ↔ (c)(a ⊢ c ↔ ⊢ c, b), . (D ¬m) 

¬mb ⊢ c ↔ ⊢ c, b. (C ¬m) 

Both intuitionistic negation . ¬i and dual-intuitionistic negation .¬m are logical 
constants, since their rules are fully characterizing. Popper observes that by adding 
classical negation . ¬k to a language containing both intuitionistic negation . ¬i and 
dual-intuitionistic negation .¬m one obtains 

. ¬ka//¬ia, ¬ka//¬ma and ¬ia//¬ma.

That is, the addition of . ¬k is a non-conservative language extension in this case. 

14.4.4 From Inferential Definitions to Logical Laws 

Given inferential definitions of certain logical constants, we immediately obtain 
from them basic laws for these constants, namely the right hand side . R of 
the inferential definitions with the logically composed statement inserted for the 
leftmost variable. 

For example, from the inferential definition of conjunction 

. c//a ∧ b ↔ R∧(c, a, b)

with .R∧(c, a, b) being 

. a, b/c & c/a & c/b

we obtain .R∧(a ∧ b, a, b) by inserting .a ∧ b for c, that is, the introduction and 
elimination rules for conjunction: 

.a, b/a ∧ b a ∧ b/a a ∧ b/b.
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More generally, for any inferential definition of an n-place propositional operator 
.∗(a1, . . . , an) of the form 

.c// ∗(a1, . . . , an) ↔ R∗(c, a1, . . . , an) (D ∗) 

we obtain the inference rules 

. R∗(∗(a1, . . . , an), a1, . . . , an)

that govern . ∗ by substituting .∗(a1, . . . , an) for c. As this instantiation is immediate 
and yields inference rules in a trivial way, Popper may speak of the “trivialization 
of logic”, namely the metalinguistic deduction of valid inference rules immediately 
from a definition. Given the inferential definitions of logical constants in the form 
(D ∗), obtaining their governing rules is trivial. 

This is, of course, also the case for inferential definitions which are formulated 
in terms of relative demonstrability . ⊢, such as (D ∧) and (D ∨), for example. For 

.a//b ∧ c ↔ (d)(a ⊢ d ↔ b, c ⊢ d) (D ∧) 

we consider the substitution instance 

. a ∧ b ⊢ a ↔ a, b ⊢ a

of (C ∧). The right hand side .a, b ⊢ a holds by (Rg), hence .a ∧ b ⊢ a, from which 
we obtain the conjunction elimination rule .a ∧b/a. Similarly, one can show . a ∧b/b

and the introduction rule .a, b/a ∧ b. In the case of 

.a//b ∨ c ↔ (d)(d ⊢ a ↔ d ⊢ b, c) (D ∨) 

we consider the substitution instance 

. a ∨ b ⊢ a ∨ b ↔ a ∨ b ⊢ a, b

of (C ∨). The left hand side .a ∨ b ⊢ a ∨ b holds by (Rg), hence .a ∨ b ⊢ a, b. The  
definition of . ⊢ gives us the disjunction elimination rule 

. (c)((a/c & b/c) → a ∨ b/c).

The disjunction introduction rules .a/a ∨ b and .b/a ∨ b follow in a similar way.
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14.4.5 The Theory of Quantification 

For propositional logic it was sufficient to consider pairs .(L; a1, . . . , an/b) of an 
object language . L and a deducibility relation . / with a basis consisting of the rules 
(Rg) and (Tg), where each element of . L is a statement, that is, something which has 
a truth value. Popper’s first step in extending his framework of inferential definitions 
to a theory of quantification is to consider instead quadruples 

. (L;P; a1, . . . , an/b; a
(
x
y

)
),

which consist of a set . L of formulas, a set . P of name-variables (or pronouns), a 
deducibility relation . / on . L and a substitution operation 

. a
(
x
y

)

which substitutes the name-variable y for the name-variable x in the formula a. 
Variables .a, b, . . . now range over formulas in . L, and variables .x, y, . . . range over 
name-variables in . P. Formulas can either be open statements (also called statement-
functions) or closed statements (also called statements). Popper explicitly remarks 
that open statements do not have a truth value on their own. The deducibility 
relation . / is axiomatized by the same rules (Rg) and (Tg) as in the case of 
propositional logic, but it now ranges over arbitrary formulas, not just closed 
statements. 

The new substitution operation .a
(
x
y

)
is characterized by the following postulates 

(PF1) to (PF4) (which we present in a slightly simplified form) and by the six 
primitive rules of inference (S1) to (S6) given below. 

.L ∩ P = ∅. (PF1) 

If a ∈ L and x, y ∈ P, then a
(
x 
y

) ∈ L. (PF2) 

For all a ∈ L there exists an x ∈ P such that for all y ∈ P : a(
x 
y

)
//a. (PF3) 

There exist a ∈ L and x, y ∈ P : a/a
(
x 
y

) → t/f. (PF4) 

Note that two kinds of metalinguistic quantifiers are used here: there is a universal 
and an existential quantifier ranging over statements .a ∈ L and a universal and an 
existential quantifier ranging over name-variables .x ∈ P. For better readability, we 
do not use symbols for them, but write “for every a”, “for every x” etc.  

The postulates (PF1) and (PF2) are, in a way, only about the correct grammatical 
use of formulas and name-variables. The postulate (PF3) says that for every formula 
there is some name-variable not occurring in it. This is obvious if the set of name-
variables is considered to be infinite, and if each formula is a finite object which 
can only mention a finite number of name-variables. The postulate (PF4), which
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Popper considers to be optional, excludes degenerate systems in which only one 
object exists. 

The six primitive rules of inference are as follows. They are valid for a concrete 
formalized object language and a substitution operation for that language. 

.If, for every z, a//a
(
y
z

)
and b//b

(
y
z

)
, then a//b → a

(
x
y

)
//b

(
x
y

)
.. (S1) 

a//a
(
x 
x

)
.. (S2) 

If x /= y, then (a
(
x 
y

)
)
(
x 
z

)
//a

(
x 
y

)
.. (S3) 

(a
(
x 
y

)
)
(
y 
z

)
//(a

(
x 
z

)
)
(
y 
z

)
.. (S4) 

(a
(
x 
y

)
)
(
z 
y

)
//(a

(
z 
y

)
)
(
x 
y

)
.. (S5) 

If w /= x, x /= u and u /= y, then (a
(
x 
y

)
)
(
u 
w

)
//(a

(
u 
w

)
)
(
x 
y

)
. (S6) 

The rules (S1) to (S6) characterize substitution as a structural operation. They 
cannot be brought into the form of an inferential definition of an operator of the 
object language. Hence, substitution cannot have the status of a logical constant 
according to Popper’s criterion of logicality. Popper (1947c, p. 1216) writes: “The 
notation ‘.a

(
x
y

)
’ will be used as a (variable) metalinguistic name of the statement 

which is the result of substituting, in the statement a (open or closed), the variable 
y for the variable x, wherever it occurs. .a

(
x
y

)
is identical with a if x does not 

occur in a.” Popper’s rules for substitution may thus be viewed as an implicit 
characterization of a metalinguistic operation, and not as an inferential definition 
of a logical constant for object languages. It is worth noting that Popper gives an 
axiomatic characterization of the substitution operation. It can be compared to the 
theory of explicit substitution, which was developed much later (cf., e.g., Abadi 
et al. 1991). 

In the next step two auxiliary concepts are defined with the help of both 
the deducibility relation and the substitution operation. If we work with some 
inductively defined formal object language, then we can easily specify the set of free 
variables of a formula by recursion on the structure of that formula. This possibility 
is excluded in Popper’s approach, which is not restricted to formal languages. 
Popper therefore introduces the expression 

. ax̀

which can be read as “x does not occur among the free variables in a”. Popper 
himself expresses this as “a does not depend on x”, “a-without-x” and “x does not 
occur relevantly in a”. The formula a does not depend on x if and only if substitution 
of some name-variable y for x does not change the logical strength of a. That is, 

a//ax̀ ↔ for every y: a//a
(
x 
y

)
. (D ax̀ )
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The second concept that Popper defines with the help of deducibility and 
substitution is identity. As Popper (1947b, p. 227f., fn 24) notes, one first has to 
extend the object language . L to incorporate formulas of the form .Idt(x, y); this is  
achieved by the postulate 

.If x and y are name-variables, then Idt(x, y) is a formula. (P Idt) 

In addition, the characterizing rules for substitution have to be extended by rules of 
the following form: 

. (Idt(x, y))
(
x
z

)
//Idt(z, y).

(Idt(x, y))
(
y
z

)
//Idt(x, z).

If x /= u /= y, then Idt(x, y)
(
u
z

)
//Idt(x, y).

With these preliminaries, Popper defines identity .Idt(x, y) in accordance to the idea 
that .Idt(x, y) should be the weakest statement strong enough to satisfy 

. Idt(x, y), a(x)/a(y)

as follows: 

. a//Idt(x, y) ↔ (for every b and z : ((b//bx̀ & b//bỳ) → a, b
(
z
x

)
/b

(
z
y

)
) &

((for every c and u : ((c//cx̀ & c//cỳ) → b, c
(
u
x

)
/c

(
u
y

)
)) → b/a)). (D Idt) 

Finally, Popper (1947b) (with corrections and additions in Popper 1948e) gives  
inferential definitions for universal and existential quantification and derives some 
simple conclusions, without formally developing a meta-theory of quantification, 
since he only aims at showing that his approach is at least on a par with other 
proposed treatments of quantification. 

Popper (1949, p. 725) expresses the intuition behind his inferential definition 
of universal quantification as follows: “The result of universal quantification of a 
statement a can be defined as the weakest statement strong enough to satisfy the 
law of specification, that is to say, the law ‘what is valid for all instances is valid for 
every single one’.” 

Presupposing his rules of substitution, and writing Ax for the universal quantifier, 
the inferential definition and the characterizing rule for universal quantification are 
the following: 

.aỳ//Axbỳ ↔ (for every cỳ: cỳ/aỳ ↔ cỳ/bỳ

(
x
y

)
).. (D Ax) 

For every cỳ: cỳ/Axbỳ ↔ cỳ/bỳ

(
x 
y

)
. (C Ax)
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For clarification, we make a comparison with the more familiar rules for the 
universal quantifier . ∀ of the (intuitionistic) sequent calculus, using the sequent sign 
. ⊢ and writing .ϕ[x ⍿→y] for the result of substituting y for x in the formula . ϕ, with 
the variable condition that y does not occur free in the conclusion of . (⊢∀): 

. 

By instantiating (C Ax) with .Axbỳ and by using the rules (Tg) and (Rg) from the 
basis, we obtain the following rule 

. a, bỳ

(
x
y

)
/c → a,Axbỳ/c,

which is a variant of the rule .(∀⊢) where the name-variable y takes the role of the 
term t . Similarly, by instantiating (C Ax) with . cỳ and reading the bi-implication 
from right to left we obtain the following rule, which corresponds to the rule . (⊢∀)

with the variable condition that y does not occur relevantly in c: 

. cỳ/bỳ

(
x
y

) → cỳ/Axbỳ .

The inferential definition of existential quantification corresponds to the follow-
ing intuition (cf. Popper 1949, p. 725): “The result of existential quantification of 
the statement a can be defined as the strongest statement weak enough to follow 
from every instance of a.” The inferential definition and the characterizing rule for 
the existential quantifier Ex are as follows: 

.aỳ//Exbỳ ↔ (for every cỳ : aỳ/cỳ ↔ bỳ

(
x
y

)
/cỳ).. (D Ex) 

For every cỳ : Exbỳ/cỳ ↔ bỳ

(
x 
y

)
/cỳ . (C Ex) 

In order to elucidate this definition, we make a comparison with the sequent 
calculus rules for the existential quantifier . ∃, with the variable condition that y does 
not occur free in the conclusion of .(∃⊢): 

. 

Instantiating (C Ex) with .Exbỳ and using the rules of the basis we can obtain the 
rule 

.a/bỳ

(
x
y

) → a/Exbỳ,



14 Karl Popper on Deduction 317

which corresponds to . (⊢∃); and by instantiating (C Ex) with . cỳ and reading the bi-
implication from right to left, we obtain the following rule, which corresponds to 
.(∃⊢): 

. bỳ

(
x
y

)
/cỳ → Exỳ/cỳ .

Popper does not consider the explicit definitions (D Ax) and (D Ex) to be 
improvements compared to the characterizing rules. They are given to show that 
universal and existential quantification can be defined using only his basis and the 
rules (S1) to (S6). He notices that these rules are not as simple as the rules of his 
basis. But he points out that the concept of “. ax̀” can be avoided in these definitions 
(cf. Popper 1947b, p. 230, fn 26; added in the corrections and additions of Popper 
1948e). Assuming .x /= y, one can use instead: 

.a
(
y
x

)
/Ax(b

(
y
x

)
) ↔ a

(
y
x

)
/b

(
x
y

)
, . (Ax∗) 

Ex(a
(
y 
x

)
)/b

(
y 
x

) ↔ a
(
x 
y

)
/b

(
y 
x

)
, . (Ex∗) 

a
(
y 
x

)
//Ax(b

(
y 
x

)
) ↔ (for every c : c(y 

x

)
/a

(
y 
x

) ↔ c
(
y 
x

)
/b

(
x 
y

)
), . (D Ax∗) 

a
(
y 
x

)
//Ex(b

(
y 
x

)
) ↔ (for every c : a(

y 
x

)
/c

(
y 
x

) ↔ b
(
x 
y

)
/c

(
y 
x

)
). (D Ex∗) 

Popper (1947b, § 7) considers his rules of quantification to be less complicated 
than those given by Hilbert and Ackermann (1928) or those given by Quine (1940, 
§ 15), and he emphasizes that his rules in the end make use of only one logical 
concept, namely that of deducibility . / as characterized by his basis. 

14.5 Summary 

Popper claims to lay “new foundations for logic”, which also represent a “trivial-
ization of mathematical logic” (cf. Popper 1947b, 1949). We saw that his approach 
to logic is based on the notion of deducibility .a1, . . . , an/b, where by deducibility 
he does not mean the derivability in a formal system, but the semantical notion of 
logical consequence. Providing new foundations for logic thus means developing 
a theory of deducibility or logical consequence in a novel way. Tarski’s notion of 
logical consequence is based on the idea of truth transmission: b follows logically 
from .a1, . . . , an if every interpretation which makes .a1, . . . , an true, makes b true 
as well. As Tarski had pointed out, this definition hinges on the definition of what a 
“logical constant” or “logical sign” is. An interpretation that makes .a1, . . . , an true 
and carries this truth over to b, can give all non-logical expressions in . a1, . . . , an, b

an arbitrary meaning, while the meaning of the logical signs must be constant. 
Therefore, so one can argue, by providing a satisfying definition of what a logical 
constant is, we obtain a satisfying theory of logical consequence and thus of
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deducibility, given that the notion of truth itself is not problematic and is sufficiently 
clarified by Tarski’s theory of truth. This situation is the systematic starting point of 
Popper’s investigations, in particular of Popper (1947b). 

There are nevertheless certain consequence laws which are independent of log-
ical constants. These are the laws constituting a finite consequence relation in 
Tarski’s sense. In a proof-theoretic setting, Gentzen (1935a,b) called them struc-
tural rules (“Struktur-Schlussfiguren”), where “structural” means independent of 
the “logical” form of the statements involved. Popper calls them “absolutely valid” 
since for their validity we need only be able to distinguish sentences from non-
sentences, disregarding the internal structure of sentences. These absolutely valid 
rules are captured by what Popper calls a basis. As the validity of these rules is 
unproblematic, we can assume that, whenever we are dealing with deducibility, 
it is given as a finite consequence relation. Tarski’s (1936) consideration of 
consequences from an infinite number of assumptions goes beyond Popper’s finite 
proof-theoretic framework, which is in this respect more related to the work of 
Gentzen (1935a,b) and Hertz (1929), as was already pointed out by contemporary 
reviewers (cf. Beth 1948; Curry  1948a,b, 1949; Hasenjaeger 1949; Kleene 1949; 
McKinsey 1948). It is not clear to what extent, if at all, Popper was aware of these 
works when he conceived his approach. 

In spite of this Tarskian motivation and starting point, the idea to define the 
logicality of operations and thus logical consequence for complex statements leads 
Popper to develop a conception entirely different from Tarski’s. This conception has 
at least three central characteristics. 

First, it is not assumed that a specified formal object language is given, in 
which logical operations are represented by functional expressions (“sentential 
functions”), which combine one or more sentences to a compound sentence or, 
in the quantifier case, operate on open statements. Whereas Tarski’s approach 
of truth transmission under preservation of logical structure assumes that such a 
specification is given. 

Second, logical operations are relationally and not functionally characterized. 
This relational view can leave open whether a logical operation always exists and is 
uniquely determined. Both features would have to be presupposed if one preferred 
a functional characterization of logical operations as implicit in standard logical 
notation. Tarski, in considering a structure based on logical constants, sticks to a 
functional view from the very beginning. 

Third, the relational characterization of logical operations proceeds in terms of 
deducibility. For Popper, results of logical operations are characterized by their 
deductive or inferential behaviour. This turns the project of justifying deducibility 
upside down as compared to Tarski. Since we rely on a notion of consequence in the 
relational definition of logical operations, we can no longer use this notion of logical 
operation to define the validity of consequences along Tarskian lines. In fact, such a 
definition of validity in terms of truth transmission becomes obsolete, as deducibility 
must already be available at the level of logical operations. Thus the notions of truth
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and truth transmission do not play a role any more in the justification of logical 
inference. They are discarded in favour of deducibility as a primitive notion. Logical 
rules are set up and explained in an inferentialist framework without any recourse 
to truth. 
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