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Abstract Gentzen’s sequent calculi LK and LJ are landmark proof systems. They
identify the structural rules of weakening and contraction as notable inference
rules, and they allow for an elegant statement and proof of both cut elimination and
consistency for classical and intuitionistic logics. Among the undesirable features
of those sequent calculi is that their inferences rules are low-level and frequently
permute over each other. As a result, large-scale structures within sequent calculus
proofs are hard to identify. In this paper, we present a different approach to designing
a sequent calculus for classical logic. Starting with Gentzen’s LK proof system, we
examine the proof search meaning of his inference rules and classify those rules as
involving either don’t care nondeterminism or don’t know nondeterminism. Based
on that classification, we design the focused proof system LKF in which inference
rules belong to one of two phases of proof construction depending on which flavor of
nondeterminism they involve. We then prove that the cut rule and the general form
of the initial rule are admissible in LKF. Finally, by showing that the inference rules
for LK are all admissible in LKF, we can give a relative completeness proof for LKF
provability with respect to LK provability. We shall also apply these properties of
the LKF proof system to establish other meta-theoretic properties of classical logic,
including Herbrand’s theorem.
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1 Introduction

In his attempt to prove the Hauptsatz (cut elimination) for both intuitionistic and
classical logics, Gentzen (1935) moved away from natural deduction to the sequent
calculus. The sequent calculus allowed him to introduce the structural rules of weak-
ening and contraction: their use on the right-hand side of sequents was fundamental
to capturing both classical and intuitionistic logics in one framework. If we are only
interested in proving cut elimination and consistency, then the sequent calculus, as
Gentzen presented it, is a great tool. If, however, we wish to apply logic and proof
theory to, say, computation, then Gentzen’s sequent calculus has some significant
problems: we discuss four such problems in Section 2.

In earlier work (Liang and Miller, 2009), we have presented the focused proof
system LJF as an improved version of Gentzen’s sequent system LJ for intuitionistic
logic. Such focused proof systems have been used to give a foundation to logic
programming (Miller, 1989; Miller, Nadathur, Pfenning, and Scedrov, 1991), model
checking (Heath and Miller, 2019), and term representation (Herbelin, 1995; Scherer,
2016).

This paper examines a focused version of the LK sequent calculus proof system,
called LKF. The key properties of LKF — cut elimination and relative completeness
for LK — have been proved elsewhere (Liang and Miller 2009; 2011) by using
complex and indirect arguments involving linear logic (Girard, 1987), a focused proof
system for linear logic due to Andreoli (1992), and the focused proof system LJF.
Here, we present LKF from first principles: we make no use of intuitionistic or linear
logics nor the meta-theory of other proof systems. Additionally, proof transformations
here, including those for cut elimination, should be easier to formalize in, say, proof
assistants than the more abstract arguments used elsewhere (including in Liang and
Miller, 2011).

After presenting the LK inference rules, we describe some of the shortcomings of
that proof system in Section 2. In Section 3, that criticism of LK motivates the design
of LKF. We then prove the following results about LKF.
1. The cut rule in LKF is admissible in (cut-free) LKF (Section 4).
2. While the initial rule in LKF is limited to atomic formulas, the general form of

the initial rule is admissible (Section 5).
3. The rules of LK are admissible in LKF (Section 7).

Taken together, these results prove that LKF is complete for LK. A similar proof
outline for proving the relative completeness of focused proof systems has been used
by Laurent (2004) for linear logic, by Chaudhuri, Pfenning, and Price (2008) for
an intuitionistic version of linear logic, and by Simmons (2014) for a propositional
intuitionistic logic. The proofs of these meta-theoretic results for LKF rely almost
exclusively on tedious arguments about the permutability of inference rules. One of
the design goals for LKF has been to build a calculus that can be used directly to prove
other proof-theoretic results without the need to involve such tedious permutation
arguments. We illustrate this principle by proving the admissibility of cut in cut-free
LK (Section 9.1) and by proving Herbrand’s theorem (Section 9.3): both proofs do
not explicitly involve permutation arguments.
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Structural rules

Γ, 𝐵, 𝐵 ⊢ Δ

Γ, 𝐵 ⊢ Δ
cL

Γ ⊢ Δ, 𝐵, 𝐵

Γ ⊢ Δ, 𝐵
cR Γ ⊢ Δ

Γ, 𝐵 ⊢ Δ
wL Γ ⊢ Δ

Γ ⊢ Δ, 𝐵
wR

Identity rules

𝐵 ⊢ 𝐵
init

Γ ⊢ Δ, 𝐵 Γ, 𝐵 ⊢ Δ′

Γ, Γ′ ⊢ Δ, Δ′ cut

Introduction rules

Γ, 𝐵𝑖 ⊢ Δ

Γ, 𝐵1 ∧ 𝐵2 ⊢ Δ
∧𝐿

Γ ⊢ Δ, 𝐵 Γ ⊢ Δ, 𝐶

Γ ⊢ Δ, 𝐵 ∧𝐶
∧𝑅

Γ ⊢ Δ, t t𝑅

Γ, 𝐵 ⊢ Δ Γ, 𝐶 ⊢ Δ

Γ, 𝐵 ∨𝐶 ⊢ Δ
∨𝐿

Γ, f ⊢ Δ
f 𝐿

Γ ⊢ Δ, 𝐵𝑖

Γ ⊢ Δ, 𝐵1 ∨ 𝐵2
∨𝑅

Γ ⊢ Δ, 𝐵 Γ, 𝐶 ⊢ Δ′

Γ, Γ′, 𝐵 ⊃ 𝐶 ⊢ Δ, Δ′ ⊃ 𝐿
Γ, 𝐵 ⊢ Δ, 𝐶

Γ ⊢ Δ, 𝐵 ⊃ 𝐶
⊃ 𝑅

Γ, [𝑠/𝑥 ]𝐵 ⊢ Δ

Γ, ∀𝑥.𝐵 ⊢ Δ
∀𝐿

Γ ⊢ Δ, [𝑦/𝑥 ]𝐵
Γ ⊢ Δ, ∀𝑥.𝐵 ∀𝑅

Γ, [𝑦/𝑥 ]𝐵 ⊢ Δ

Γ, ∃𝑥.𝐵 ⊢ Δ
∃𝐿

Γ ⊢ Δ, [𝑠/𝑥 ]𝐵
Γ ⊢ Δ, ∃𝑥.𝐵 ∃𝑅

Fig. 1 The rules for LK. In the ∀𝑅 and ∃𝐿 rules, the variable 𝑦 is not free in the conclusion. In the
∧𝐿 and ∨𝑅 rules, 𝑖 ∈ {1, 2}. In ∀𝐿 and ∃𝑅, 𝑠 is a first-order term.

2 The LK proof system

Formulas for first-order classical logic are defined as follows. Atomic formulas are of
the form 𝑃(𝑡1, . . . , 𝑡𝑛), where 𝑛 ≥ 0, 𝑃 is a predicate of arity 𝑛, and 𝑡1, . . . , 𝑡𝑛 is a list
of first-order terms. Formulas are built from atomic formulas using both the logical
connectives ∧, t, ∨, f , ⊃ as well as the two first-order quantifiers ∀ and ∃. We shall
assume the usual treatment of bound variables and substitutions: in particular, the
expression [𝑠/𝑥]𝐵 denotes the result of performing a capture-avoiding substitution
of term 𝑠 for all free occurrences of the variable 𝑥 in the formula 𝐵.

Figure 1 presents the LK sequent proof calculus of Gentzen (1935). Inference rules
are between sequents which are pairs of multisets of formula, formally written with
an infix ⊢. The rules there are divided into introduction rules, structural rules, and
identity rules. Note that the rules in this latter group, namely the init and the cut rules,
require checking that two occurrences of a formula, here 𝐵, on different sides of a
sequent or in different sequents, have the same identity (e.g., are equal). Note also
that the first important results about the LK sequent calculus imply that completeness
is maintained if almost all of the identity rules are eliminated: one must only retain
occurrences of the init rule where 𝐵 is atomic.

The main differences between the proof system in Figure 1 and Gentzen’s
presentation of LK are the following.

1. In Gentzen’s system, contexts are lists of formulas, and the exchange rule, which
allowed two adjacent formulas to be swapped, was used. In Figure 1, contexts (Γ
and Δ) are multisets of formulas, and the exchange rule is not used.
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2. Gentzen did not have the logical units for true and false while here they are
explicitly written as t and f : they also have associated inference rules.

3. Gentzen’s system contained negation as a primitive connective while we shall
treat it as an abbreviation: in particular, ¬𝐵 is defined to be 𝐵 ⊃ f .

For this paper, we shall make the following distinction between proof and derivation.
By proof, we mean a tree structure of inference rules and sequents such that all
premises are closed, in the sense that the inference rules at the leaves have zero
premises (such as the initial rule). By derivation, we mean a similar tree structure
of inference rules and sequents, but we do not assume that all leaves are closed:
derivations can have unproved premises.

Gentzen’s sequent calculus was designed to support the proof of cut elimination
(for both classical and intuitionistic logics). As we suggested in the introduction,
sequent calculus is difficult to apply in a number of application areas. We describe
four major shortcomings of the LK sequent calculus.

2.1 The collision of cut and the structural rules

Consider the following instance of the cut rule.

(†) Γ ⊢ 𝐶 Γ′, 𝐶 ⊢ 𝐵

Γ, Γ′ ⊢ 𝐵
cut.

If the right premise is proved by a left-contraction rule from Γ′, 𝐶, 𝐶 ⊢ 𝐵, then cut
elimination proceeds by permuting the cut rule to the right premises, yielding the
derivation

Γ ⊢ 𝐶

Γ ⊢ 𝐶 Γ′, 𝐶, 𝐶 ⊢ 𝐵

Γ, Γ′, 𝐶 ⊢ 𝐵
cut

Γ, Γ, Γ′ ⊢ 𝐵
cut

Γ, Γ′ ⊢ 𝐵
cL.

(An inference figure written with double lines indicates possibly several applications
of the rules listed as its justification.) In the intuitionistic variant of the sequent
calculus, it is not possible for the occurrence of 𝐶 in the left premise of (†) to be
contracted since two formulas are not allowed on the right of the sequent arrow. If
the cut inference in (†) takes place in the classical proof system LK, it is possible that
the left premise is the conclusion of a contraction applied to Γ ⊢ 𝐶,𝐶. In that case,
cut elimination can also proceed by permuting the cut rule to the left premise.

Γ ⊢ 𝐶,𝐶 Γ′, 𝐶 ⊢ 𝐵

Γ, Γ′ ⊢ 𝐶, 𝐵
cut

Γ′, 𝐶 ⊢ 𝐵

Γ, Γ′, Γ′ ⊢ 𝐵, 𝐵
cut

Γ, Γ′ ⊢ 𝐵
cL, cR
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Thus, in LK, it is possible for both occurrences of𝐶 in (†) to be contracted and, hence,
the elimination of cut is nondeterministic since the cut rule can move to both the left
and right premises.

Such nondeterminism in cut elimination is even more pronounced when we
consider the collision of the cut rule with weakening. Consider the derivation (taken
from Girard, Taylor, and Lafont, 1989, Appendix B).

Ξ1
⊢ 𝐵

⊢ 𝐶, 𝐵
wR

Ξ2
⊢ 𝐵

𝐶 ⊢ 𝐵
wL

⊢ 𝐵, 𝐵
cut

⊢ 𝐵
cR

cut elimination here can yield either Ξ1 or Ξ2: thus, nondeterminism arising from
weakening can lead to completely different proofs of 𝐵. This kind of example does
not occur in the intuitionistic (single-sided) version of the sequent calculus.

These problems with cut elimination and the structural rules were noted in Danos,
Joinet, and Schellinx (1997) and by Lafont in Girard, Taylor, and Lafont (1989). Lafont
concludes that in order to avoid this problem with cut elimination, one can choose
from among two solutions: either make the sequent calculus asymmetric (leading to
intuitionistic logic where the structural rules are not available on the right) or forbid
all structural rules (leading to linear logic where structural rules are not available on
the left and right). It is possible, however, to remain in classical logic by employing a
third solution that uses both polarization and focused proof systems. Such an approach
was proposed by Girard (1991) in his LC proof system and by Danos, Joinet, and
Schellinx (1997) in their LK𝜂 proof system. In this paper, we present the LKF proof
system, which is also based on the notions of polarization and focusing. As we shall
see, the problems with the nondeterminism in cut elimination caused by the use of
structural rules in classical logic disappear in LKF for two reasons. First, weakening
will be allowed only in the initial rules of LKF where it cannot cause problems with
cut elimination. Second, a cut takes place between two polarized formulas of opposite
polarity and, in LKF, contraction is only applied to positive formulas.

2.2 Permutations of inference rules

A dominating feature of sequent calculus proofs in LK is that many pairs of inference
rules permute over each other (Kleene, 1952). For example, when an occurrence of
⊃ 𝐿 is below ∀𝑅, as in the derivation

Γ1 ⊢ 𝐵,Δ1

Γ2, 𝐶 ⊢ [𝑦/𝑥]𝐷,Δ2
Γ2, 𝐶 ⊢ ∀𝑥.𝐷,Δ2

∀𝑅

Γ1, Γ2, 𝐵 ⊃ 𝐶 ⊢ ∀𝑥.𝐷,Δ1,Δ2
⊃ 𝐿,

the order of these two rules can be switched to form the derivation
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Γ1 ⊢ 𝐵,Δ1 Γ2, 𝐶 ⊢ [𝑦/𝑥]𝐷,Δ2
Γ1, Γ2, 𝐵 ⊃ 𝐶 ⊢ [𝑦/𝑥]𝐷,Δ1,Δ2

⊃ 𝐿

Γ1, Γ2, 𝐵 ⊃ 𝐶 ⊢ ∀𝑥.𝐷,Δ1,Δ2
∀𝑅.

Similarly, the following two deviations are such that permuting the inference rules in
one derivation yields the other derivation.

Γ, 𝐵𝑖 , 𝐶 𝑗 ⊢ Δ

Γ, 𝐵𝑖 , 𝐶1 ∧ 𝐶2 ⊢ Δ

Γ, 𝐵1 ∧ 𝐵2, 𝐶1 ∧ 𝐶2 ⊢ Δ

Γ, 𝐵𝑖 , 𝐶 𝑗 ⊢ Δ

Γ, 𝐵1 ∧ 𝐵2, 𝐶 𝑗 ⊢ Δ

Γ, 𝐵1 ∧ 𝐵2, 𝐶1 ∧ 𝐶2 ⊢ Δ

If one is trying to find structure in sequent calculus proofs, then it is likely that both
of these pairs of derivations should be identified in some way.

The existence of such permutations of inference rules suggests that uncovering
structures in proofs will always be disturbed by the possibilities of such shallow
rearrangements of inference rules. For such reasons, people have often argued that
the “essence” of proof structures is better captured in some radically different proof
systems, such as, for example, expansion trees (Miller, 1987), proof nets (Girard,
1987; Laurent, 2011), and atomic flows (Guglielmi and Gunderson, 2008). In this
paper, we also replace Gentzen-style sequent calculus with something else, namely
LKF, but this time, that replacement will still resemble sequent calculus but with
more structure added to both sequents and inference rules.

An introduction rule of LK is invertible if whenever there is an LK proof of its
conclusion, there are LK proofs of the premises. When attempting to build a proof
from the bottom-up, invertible rules can always be applied without losing provability.
If an introduction rule is not invertible, it is non-invertible. The LK introduction rules
can be classified as follows: the invertible rules are ∧𝑅, t𝑅, ∨𝐿, f 𝐿, ⊃ 𝑅, ∀𝑅, ∃𝐿
while the non-invertible rules are ∧𝐿, ∨𝑅, ⊃ 𝐿, ∀𝐿, ∃𝑅. Note that every connective
has an invertible introduction rule on one side of the ⊢, and every occurrence of
the corresponding introduction rule on the other side is non-invertible. (This last
statement is vacuously true for t and f since they have zero introduction rules on the
left and right, respectively.) Observing the invertibility of introduction rules allows
us to give some structure to the permutation of inference rules. In particular, an
invertible rule above any other rule can always be permuted down. Furthermore, two
non-invertible rules, one above the other, can always be permuted as well.

We make one additional observation: if an occurrence of a non-atomic formula
on the left or right of a sequent can be the consequence of an invertible rule, that
formula occurrence never needs to have a structural rule applied to it. For example, the
contraction-left rule never needs to be applied to a disjunction since the disjunction-left
rule is invertible.

These three observations about invertible and non-invertible rules — the left-right
duality regarding invertibility; the permutations involving invertible and non-invertible
rules; and the connection between invertible rules and the structural rules — will all
be made explicit in the design of the LKF proof system.
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Γ, 𝐵1, 𝐵2 ⊢ Δ

Γ, 𝐵1 ∧ 𝐵2 ⊢ Δ
∧𝐿 Γ ⊢ Δ

Γ, t ⊢ Δ
t𝐿

Γ ⊢ Δ, 𝐵 Γ′ ⊢ Δ′, 𝐶

Γ, Γ′ ⊢ Δ, Δ′, 𝐵 ∧𝐶
∧𝑅 · ⊢ t t𝑅

Γ, 𝐵 ⊢ Δ Γ′, 𝐶 ⊢ Δ′

Γ, Γ′𝐵 ∨𝐶 ⊢ Δ, Δ′ ∨𝐿 f ⊢ · f 𝐿
Γ ⊢ Δ, 𝐵1, 𝐵2
Γ ⊢ Δ, 𝐵1 ∨ 𝐵2

∨𝑅 Γ ⊢ Δ

Γ ⊢ Δ, f
f𝑅

Fig. 2 The introduction rules for conjunction, disjunction, and their units using multiplicative instead
of additive rules.

2.3 Additive and multiplicative rules and connectives

The LK rules that have two premises can be classified as either additive, in which case
the side formulas (Γ, Δ) are the same in the conclusion as well as in both premises, or
multiplicative, in which case the side formulas in the premises (Γ, Δ and Γ′, Δ′) are
accumulated to form the side formulas in the conclusion. Of the four inference rules in
Figure 1 with two premises, the cut rule and the implication-left rule are multiplicative
while the disjunction-left rule and the conjunction-right rule are additive.

Consider the alternative inference rules in Figure 2 for conjunction and disjunction.
The rules in that figure with two premises are multiplicative. We can make the
following observations.

1. The rules in Figure 2 are inter-admissible, in the sense of preserving the provability
of sequents, with those for the same connectives given in Figure 1. Establishing
that fact requires using the structural rules of weakening and contraction.

2. The ∧𝑅 rule in Figure 1 is invertible while the corresponding ∧𝑅 rule in Figure 2
is not invertible. Similarly, the ∨𝑅 rule in Figure 1 are not invertible while the
corresponding ∨𝑅 rule in Figure 2 is invertible.

3. If we are keen to separate the roles of structural rules from cut elimination,
then we should not mix the various rules in Figures 1 and 2. For example, if we
replace the ∧𝐿 rule in Figure 1 with ∧𝐿 in Figure 2, then the proof that a cut of a
conjunction can be eliminated will necessarily use a structural rule.

Although Gentzen used the additive rules for conjunction and disjunction, there
are reasons to admit other choices. For example, it is a popular choice to select
the invertible right introduction rules for both conjunction and disjunction, which
means selecting the additive conjunction and the multiplicative disjunction. Ketonen
introduced such a variant of Gentzen’s original calculus and used it to give “a strikingly
elegant proof of completeness” (von Plato, 2012). People working in automated
theorem proving often use the invertible rules since it simplifies implementations
of proof search. In particular, it is possible to define one-sided sequent systems for
classical logic in such a way that all (right) introduction rules are invertible except
for the existential introduction rule. As a result, proof search algorithms can limit
backtracking to only the treatment of existential quantifiers.

The LKF proof system contains both the additive and multiplicative versions of
conjunction and disjunction (and their units).
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2.4 The need for synthetic inference rules

Our final criticism of LK is that its inference rules are too small, especially for
applications involving theories. For example, assume that we are working with a
theory (a set of assumptions) that has an axiom that declares that the binary predicate
path is transitive: that is, that the theory contains the formula

∀𝑥∀𝑦∀𝑧 (path(𝑥, 𝑦) ⊃ path(𝑦, 𝑧) ⊃ path(𝑥, 𝑧)).

If that formula is invoked in an LK proof, there will be a minimum of five introduction
rules involved in that invocation. That seems unfortunate since it is more natural to
view that formula as denoting one of the following inference rules.

Γ ⊢ Δ, path(𝑥, 𝑦) Γ ⊢ Δ, path(𝑦, 𝑧)
Γ ⊢ Δ, path(𝑥, 𝑧)

or
path(𝑥, 𝑦), path(𝑦, 𝑧), path(𝑥, 𝑧), Γ ⊢ Δ

path(𝑥, 𝑦), path(𝑦, 𝑧), Γ ⊢ Δ

These synthetic rules would be a more appropriate way to invoke the transitivity axiom.
Such synthetic rules have been addressed before in the literature, particularly as a
back-chaining inference rule (Hallnäs and Schroeder-Heister, 1990; Miller, Nadathur,
Pfenning, and Scedrov, 1991) or as a forward-chaining inference rule (Negri and von
Plato, 1998). One of the immediate applications of LKF is as a formal framework for
computing and justifying the addition of such synthetic inference rules to LK.

3 The LKF proof system

The LKF proof system does not deal with formulas but with polarized formulas: these
are built from atomic formulas and negated atomic formulas (collectively called
literals), and polarized logical connectives as well as the first-order quantifiers ∀ and
∃. The polarized logical connectives come in two flavors: the positive connectives are
𝑓 +, ∨+, 𝑡+, ∧+, and ∃ while the negative connectives are 𝑡− , ∧− , 𝑓 − , ∨− , and ∀.

Literals are also assigned a polarity as follows. An atomic bias assignment is a
function 𝛿(·) that maps atomic formulas to the set of two tokens {+,−}: if 𝛿(𝐴) is
+ then that atomic formula is positive and if 𝛿(𝐴) is − then that atomic formula is
negative. We extend 𝛿(·) to literals by setting 𝛿(¬𝐴) to be the opposite polarity of
𝛿(𝐴). We may ask that all atomic formulas are positive, that they are all negative, or we
can mix polarity assignments. In particular, the atomic bias assignment 𝛿+(·) assigns
all atoms the positive polarity while 𝛿−(·) assigns all atoms the negative polarity.
We shall often suppress explicit reference to atomic bias assignments, assuming that
they have been specified and fixed. The only restriction we impose on atomic bias
assignments is that they are stable under substitution: that is, for all atomic formulas
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𝐴 and every first-order variable 𝑥 and term 𝑠, then 𝛿(𝐴) = 𝛿( [𝑥/𝑠]𝐴). This restriction
is equivalent to saying that the value of 𝛿(·) is determined by the predicate that is
the top-level symbol of 𝐴: that is, if 𝐴 and 𝐴′ are two atoms formed with the same
predicate, then 𝛿(𝐴) = 𝛿(𝐴′).

A polarized formula is positive if it is a positive literal or its top-level connective
or quantifier is positive (i.e, it is of the form 𝐴∧+ 𝐵, 𝐴∨+ 𝐵, ∃𝑥.𝐴, 𝑡+ or 𝑓 +); similarly,
a polarized formula is negative it is a negative literal or its top-level connective or
quantifier is negative (i.e, it is of the form 𝐴 ∧− 𝐵, 𝐴 ∨− 𝐵, ∀𝑥.𝐴, 𝑡− or 𝑓 −).

Polarized formulas are in negation normal form (nnf), meaning that there are no
occurrences of implication ⊃ and that the negation symbol ¬ has only atomic scope.
When the negation symbol ¬ is used with the non-atomic polarized formulas of LKF,
we shall view it as the following function that transforms that polarized formula to its
De Morgan dual.

Definition 3.1 The negation symbol ¬ is defined as the following function when
applied to non-atomic polarized formulas.

1. ¬¬𝑎 = 𝑎 for atomic formula 𝑎

2. ¬(𝐴 ∧+ 𝐵) = ¬𝐴 ∨− ¬𝐵, ¬(𝐴 ∨− 𝐵) = ¬𝐴 ∧+ ¬𝐵
3. ¬(𝐴 ∨+ 𝐵) = ¬𝐴 ∧− ¬𝐵, ¬(𝐴 ∧− 𝐵) = ¬𝐴 ∨+ ¬𝐵
4. ¬∃𝑥.𝐴 = ∀𝑥.¬𝐴, ¬∀𝑥.𝐴 = ∃𝑥.¬𝐴

It is easily shown that ¬¬𝐴 = 𝐴 for all polarized formulas 𝐴. Clearly, negation is
treated differently between unpolarized formulas (where it is an abbreviation for
“implies false”) and polarized formulas (where it computes the De Morgan dual).

The sequent calculus LKF for polarized formulas is presented in Figure 3: this
presentation is a simplification of our original presentation given in Liang and Miller
(2009). This proof system uses one-sided sequents, but of two varieties, namely,
⊢ Γ ⇑ Θ and ⊢ 𝐴 ⇓ Θ, where Γ is a multiset of polarized formulas, Θ is a set of
polarized formulas, and 𝐴 is a single polarized formula. The up and down arrows
separate sequents into two zones: the zone on the right of the arrows (written using Θ)
is called the storage for that sequent. In notation such as ⊢ Γ, Γ′ ⇑ Θ,Θ′, the multiset
Γ, Γ′ represents the multiset sum of Γ and Γ′ while the set Θ,Θ′ represents the union
of the two sets Θ and Θ′: it is, of course, possible for Θ and Θ′ to share a non-empty
intersection. When moving a collection of polarized formulas from the left of the ⇑
into storage, we coerce multisets into sets in the obvious way. Note that by inspection,
the storage of the sequent in the conclusion of an inference rule is always a subset of
storage of the sequents in the premises. We say that the polarized formula 𝐵 has an
LKF proof if the sequent ⊢ 𝐵 ⇑ · has a proof using the inference rules from Figure 3.

Before completing the details of the LKF proof system, we informally describe its
relationship to Gentzen’s LK proof system. Just as polarized formulas are essentially
regular formulas with some additional structure added (the + and − annotations), LKF
sequents are essentially LK sequents with additional structure. That extra structure is
the establishment of two zones within a sequent, namely, the storage zone and the
non-storage zone. Additionally, LKF sequents come in two kinds, as is witnessed
by the use of either ⇑ or ⇓. Thus, if one wishes to relate LKF sequents to Gentzen’s
original sequents, one only needs to forget this additional structure. In particular, the
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Asynchronous introduction rules

⊢ 𝑡− , Γ ⇑ Θ
𝑡−

⊢ 𝐴, Γ ⇑ Θ ⊢ 𝐵, Γ ⇑ Θ

⊢ 𝐴∧− 𝐵, Γ ⇑ Θ
∧−

⊢ Γ ⇑ Θ

⊢ 𝑓 − , Γ ⇑ Θ
𝑓 −

⊢ 𝐴, 𝐵, Γ ⇑ Θ

⊢ 𝐴∨− 𝐵, Γ ⇑ Θ
∨−

⊢ [𝑦/𝑥 ]𝐵, Γ ⇑ Θ

⊢ ∀𝑥.𝐵, Γ ⇑ Θ
∀

Synchronous introduction rules

⊢ 𝑡+ ⇓ Θ
𝑡+

⊢ 𝐴 ⇓ Θ ⊢ 𝐵 ⇓ Θ

⊢ 𝐴∧+ 𝐵 ⇓ Θ
∧+

⊢ 𝐵𝑖 ⇓ Θ

⊢ 𝐵1 ∨+ 𝐵2 ⇓ Θ
∨+, 𝑖 ∈ {1, 2}

⊢ [𝑠/𝑥 ]𝐵 ⇓ Θ

⊢ ∃𝑥.𝐵 ⇓ Θ
∃

Initial, store, release, and decide rules

⊢ 𝑝 ⇓ ¬𝑝,Θ init
⊢ Γ ⇑ 𝑄,Θ

⊢ 𝑄, Γ ⇑ Θ
store

⊢ 𝑁 ⇑ Θ

⊢ 𝑁 ⇓ Θ
release

⊢ 𝑃 ⇓ 𝑃,Θ

⊢ · ⇑ 𝑃,Θ
decide

Fig. 3 The inference rules for LKF. Here, 𝑃 is a positive polarized formula and 𝑝 is a positive
literal; 𝑁 is a negative polarized formula and 𝑄 is a positive polarized formula or negative literal.
The rule for ∀ has the usual eigenvariable restriction: 𝑦 is not free in any polarized formula in the
concluding sequent.

arrows ⇑ and ⇓ can be replaced by a comma and all the polarization annotations on
polarized formulas can be deleted.

We borrow the terminology asynchronous and synchronous rules from Andreoli
(1992). A derivation composed only of asynchronous introduction rules (see Figure 3)
and the store rule will be called an asynchronous phase, and a derivation composed
only of synchronous introduction rules and the init rule will be called a synchronous
phase. The sequents in an asynchronous phase all involve ⇑-sequents while the
sequents in a synchronous phase all involve ⇓-sequents. An LKF proof is composed
of alternations of these two kinds of phases. In particular, the decide rule connects
a synchronous phase above its premise with an asynchronous phase below its
conclusion, and the release rule connects an asynchronous phase above its premise
with a synchronous phase below its conclusion.

The asynchronous phase can be used to encapsulate what is often called don’t
care nondeterminism. That is, if we consider the asynchronous phase as a large scale
inference rule having a sequent of the form ⊢ 𝑁 ⇑ Θ as its conclusion and sequents
of the form ⊢ · ⇑ Θ′ as its premises, then that large scale rule is independent of the
sequence of rule applications within the asynchronous phase (see Lemma 3.4). On
the other hand, the synchronous phase is a sequence of applications of inference rules
with choices (particularly for the ∨+ and ∃ introduction rules), and different choices
will yield different synchronous phases: such phases, therefore, capture don’t know
nondeterminism.

While the weakening and contraction rules are not explicitly given in LKF, both
of these rules occur implicitly. The decide rule does an implicit contraction on the
polarized formula 𝑃: hence, the only polarized formulas contracted in an LKF proof
are positive polarized formulas. The init and the 𝑡+ rules do implicit weakening
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on the polarized formulas in Θ: thus weakening is available for positive polarized
formulas and negative literals. Thus, a negative, non-literal polarized formula is never
weakened nor contracted: such polarized formulas are treated linearly, in the sense of
linear logic (Girard, 1987).

Polarized formulas in the storage zone play two different roles in proof search.
With the decide rule, a positive polarized formula in the storage is simultaneously
contracted and made available to introduction rules. On the other hand, with the
init rule, a negative literal in storage is available to end the proof. No other kind of
polarized formula will occur in storage.

The four binary logical connectives of LKF — ∨+, ∨− , ∧+, ∧− — can be classified
using three different attributes: positive or negative; additive or multiplicative; and
conjunctive or disjunctive. By fixing any two of these attributes, the third attribute is
uniquely determined. For example, a connective that is both additive and positive
must be the disjunction ∨+. Note also that the De Morgan dual of a logical connective
(in the sense of Definition 3.1) flips its polarity and conjunctive/disjunctive status
but does not change its additive/multiplicative status. The introduction rule for ∧+
looks additive since the storage Θ in the conclusion and the premises are all the same.
The essential multiplicative character of ∧+ is not apparent in this proof system in
which there can be only one focused polarized formula in a sequent. In Section 10,
we present a multifocused version of LKF, and in that enlarged setting, it will be clear
that ∧+ is, in fact, a multiplicative connective.

The proof system for LKF given in Figure 3 has no cut rule; thus the proofs built
using the rules in Figure 3 are cut-free proofs. Cut-rules for LKF and a cut-elimination
theorem will be presented in the next section.

Let 𝐵 be a polarized formula and let �̌� be the depolarized version of 𝐵: that is, �̌�
is the unpolarized formula that results from removing the superscript + and − from
the logical connectives in 𝐵. Since 𝐵 is in negation normal form, the formula �̌� might
have occurrences of negated atomic formulas, say ¬𝐴, and these should be seen as
abbreviations for 𝐴 ⊃ f . Depolarizing a multiset or set of polarized formulas Γ is the
set Γ̌ resulting from depolarized the formulas in Γ.

Theorem 3.2 (Soundness of LKF) Let 𝐵 be a polarized formula and let Γ and Θ be
a multiset and set, respectively, of polarized formulas. If ⊢ Γ ⇑ Θ is provable in LKF
then ⊢ Γ̌, Θ̌ is provable in LK. If ⊢ 𝐵 ⇓ Θ is provable in LKF then ⊢ �̌�, Θ̌ is provable
in LK.

Proof This theorem can be proved by a straightforward mutual induction on the struc-
ture of (cut-free) LKF proofs. Most cases of this mutual induction are straightforward.
For example, the introduction rule for ∨+ in LKF corresponds to the introduction rule
for∨ in LK, while the introduction rule for∨− in LKF corresponds to the multiplicative
version of the introduction rule for ∨ in Figure 2. The init rule in LKF corresponds,
however, to the following LK derivation.
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𝑝 ⊢ 𝑝
init

𝑝 ⊢ 𝑝, f , Θ̌
wR

⊢ 𝑝, 𝑝 ⊃ f , Θ̌
⊃ 𝑅

Finally, decide in LKF corresponds to the cR rule, and store and release do not
contribute to the LK proof. □

The converse of this soundness theorem is more challenging to prove: we shall state
and prove such completeness as Theorem 8.4 in Section 8. (Every time we mention
completeness theorems in this paper, we shall mean relative completeness with respect
to another proof system: we will not use the model theory notion of validity in this
paper.) In anticipation of that result, we state a version of that completeness theorem
here. Let 𝐵 be a first-order polarized formula, let 𝛿(·) be any atomic bias assignment,
and let 𝐶 be the unpolarized formula �̌�. If 𝐶 is provable in LK (in the sense that ⊢ 𝐶

is provable in LK) then 𝐵 is provable in LKF. A consequence of this completeness
theorem is the following: if 𝐶 is an unpolarized formula that is provable in LK, then
for every polarized formula 𝐵 (and atomic bias assignment) such that �̌� is 𝐶, then 𝐵

has an LKF proof. Note that if there are 𝑛 occurrences of propositional connectives in
𝐶, there are 2𝑛 polarized formulas 𝐵 such that �̌� = 𝐶. Clearly, polarization does not
affect provability, but it can have a large impact on the structure of (focused) proofs.

We now state two properties about (cut-free) LKF proofs.

Lemma 3.3 (Admissibility of Weakening) If ⊢ Γ ⇑ Θ and ⊢ 𝐴 ⇓ Θ are (cut-free)
provable and if Θ′ is a set of positive polarized formulas and negative literals then
⊢ Γ ⇑ Θ,Θ′ and ⊢ 𝐴 ⇓ Θ,Θ′ are also provable.

This lemma is proved easily by induction on the structure of proofs. The proof further
shows that weakening also does not affect the structure of proofs in that the same
inference rules are applied at each step.

The following lemma captures the fact that the asynchronous phase of inference
rules can deal with don’t-care-nondeterminism: any polarized formula to the left of
the ⇑ can be selected to be processed first.

Lemma 3.4 If there is a (cut-free) proof of ⊢ 𝐴, Γ ⇑ Θ then there is a (cut-free) proof
that ends with either an introduction of 𝐴 or a store rule on 𝐴.

Proof This lemma holds because the asynchronous introduction rules permute over
each other in such a way that the same premises remain. The formal proof of this
lemma is by induction on the sum of the sizes of formulas in Γ. The size of a formula
is the number of occurrences of literals, connectives, and quantifiers in the formula.
In particular, 𝐴 and ¬𝐴 are of the same size. In the base case, Γ is empty, and the
result is trivial. For the inductive case, let Γ = 𝐵, Γ′ and assume that the sequent
⊢ 𝐴, 𝐵, Γ′ ⇑ Θ is the conclusion of an inference rule 𝜌 which is either an introduction
or store on 𝐵. We then proceed to show that the 𝜌 rule can be permuted above the
introduction or store of 𝐴. There are several cases to consider.

Case: 𝐴 and 𝐵 are both either positive formulas or negative literals. In this case,
𝜌 is store on 𝐵 with premise ⊢ 𝐴, Γ′ ⇑ Θ, 𝐵. By inductive hypothesis on the smaller
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Γ′, the next rule above must be a store on 𝐴, with premise ⊢ Γ′ ⇑ Θ, 𝐴, 𝐵. But clearly
we can switch the order of the two store rules:

⊢ Γ′ ⇑ Θ, 𝐴, 𝐵

⊢ 𝐵, Γ′ ⇑ Θ, 𝐴
store

⊢ 𝐴, 𝐵, Γ′ ⇑ Θ
store

Case: 𝐴 is a positive formula or negative literal and 𝐵 is a non-literal negative
formula. In this case, we consider the structure of 𝐵. For example, if 𝐵 is 𝐵1 ∨− 𝐵2,
then the premise of 𝜌 is ⊢ 𝐴, 𝐵1, 𝐵2, Γ

′ ⇑ Θ. Since the size of 𝐵1, 𝐵2, Γ
′ is smaller

than the size of 𝐵1 ∨− 𝐵2, Γ
′, the inductive hypothesis provides a proof where the

rule above 𝜌 is the store rule applied to 𝐴 with premise ⊢ 𝐵1, 𝐵2, Γ
′ ⇑ Θ, 𝐴. Starting

from that sequent, we can switch the store and ∨− rules, resulting in

⊢ 𝐵1, 𝐵2, Γ
′ ⇑ Θ, 𝐴

⊢ 𝐵1 ∨− 𝐵2, Γ
′ ⇑ Θ, 𝐴

∨−

⊢ 𝐴, 𝐵1 ∨− 𝐵2, Γ
′ ⇑ Θ

store

The cases of 𝐵 is 𝑡− , 𝐵1 ∧− 𝐵2, ∀𝑥.𝐵′ and 𝑓 − are similar.
Case: 𝐵 is a positive formula or negative literal and 𝐴 is a non-literal negative

formula. This case is analogous to the above case. We illustrate with the case that 𝐴
is 𝐴1 ∧− 𝐴2. Since the 𝜌 rule is store on 𝐵, its premise is ⊢ 𝐴1 ∧− 𝐴2, Γ

′ ⇑ Θ, 𝐵. By
the inductive hypothesis, the next rule above is the introduction for ∧−:

⊢ 𝐴1, Γ
′ ⇑ Θ, 𝐵 ⊢ 𝐴2, Γ

′ ⇑ Θ, 𝐵

⊢ 𝐴1 ∧− 𝐴2, Γ
′ ⇑ Θ, 𝐵

∧−

⊢ 𝐴1 ∧− 𝐴2, 𝐵, Γ
′ ⇑ Θ

store.

These rules can be permuted to yield the desired form

⊢ 𝐴1, Γ
′ ⇑ Θ, 𝐵

⊢ 𝐴1, 𝐵, Γ
′ ⇑ Θ

store
⊢ 𝐴2, Γ

′ ⇑ Θ, 𝐵

⊢ 𝐴2, 𝐵, Γ
′ ⇑ Θ

store

⊢ 𝐴1 ∧− 𝐴2, 𝐵, Γ
′ ⇑ Θ

∧− .

Case: 𝐴 and 𝐵 are both non-literal negative polarized formulas. There are several
cases to consider, but they are all similar. For example, if 𝐴 and 𝐵 are 𝐴1 ∨− 𝐴2 and
𝐵 = 𝐵1∨− 𝐵2, respectively, and the last rule introduces 𝐵, we just need to show that the
two ∨−-introductions permute over each other, which follows easily from the fact that
both proofs can be constructed from the common premise of ⊢ 𝐴1, 𝐴2, 𝐵1, 𝐵2, Γ

′ ⇑ Θ.
In the case where 𝐴 is 𝐴1 ∨− 𝐴2 and 𝐵 is 𝐵1 ∧− 𝐵2, introducing 𝐵1 ∧− 𝐵2 results
in the premises ⊢ 𝐴1 ∨− 𝐴2, 𝐵1, Γ

′ ⇑ Θ and ⊢ 𝐴1 ∨− 𝐴2, 𝐵2, Γ
′ ⇑ Θ, both of which

have a smaller inductive measure, which allows us to assume that the next rule above
will introduce 𝐴1 ∨− 𝐴2 and we can therefore build the proof
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⊢ 𝐴, Γ ⇑ Θ ⊢ ¬𝐴, Γ′ ⇑ Θ′

⊢ Γ, Γ′ ⇑ Θ,Θ′ cutu
⊢ 𝐴 ⇓ Θ ⊢ ¬𝐴, Γ′ ⇑ Θ′

⊢ Γ′ ⇑ Θ,Θ′ cutf

⊢ Γ ⇑ Θ, 𝑃 ⊢ ¬𝑃, Γ′ ⇑ Θ′

⊢ Γ, Γ′ ⇑ Θ,Θ′ dcutu
⊢ 𝐵 ⇓ Θ, 𝑃 ⊢ ¬𝑃 ⇑ Θ′

⊢ 𝐵 ⇓ Θ,Θ′ dcutf

Fig. 4 The Cut Rules of LKF. Here, 𝐴 and 𝐵 are arbitrary polarized formulas and 𝑃 is a positively
polarized formula.

⊢ 𝐴1, 𝐴2, 𝐵1, Γ
′ ⇑ Θ ⊢ 𝐴1, 𝐴2, 𝐵2, Γ

′ ⇑ Θ

⊢ 𝐴1, 𝐴2, 𝐵1 ∧− 𝐵2, Γ
′ ⇑ Θ

∧−

⊢ 𝐴1 ∨− 𝐴2, 𝐵1 ∧− 𝐵2, Γ
′ ⇑ Θ

∨− .

The remaining cases are treated similarly. □

Definition 3.5 We say that a (cut-free) proof of ⊢ 𝐴, Γ ⇑ Θ is eager with respect to
𝐴 if the last inference rule introduces 𝐴 or is a store rule on 𝐴. We say that the proof
is delayed with respect to 𝐴 if either

1. Γ is empty, or
2. the last inference rule does not introduce 𝐴, is not a store rule on 𝐴, and each

immediate subproof above ⊢ 𝐴, Γ ⇑ Θ is also delayed with respect to 𝐴.

In other words, a proof is delayed with respect to 𝐴 if 𝐴 is only subject to an
introduction or store rule on 𝐴 when it appears in a conclusion of the form ⊢ 𝐴 ⇑ Θ.
Note also that a proof of ⊢ 𝐴 ⇑ Θ is both eager and delayed with respect to 𝐴.

Lemma 3.4 implies that a proof can be transformed into either the eager or the
delayed form.

4 Cut Elimination for LKF

Given that LKF has two kinds of sequents and each of these has two zones for holding
polarized formulas, we introduce in Figure 4 a total of four cut rules in order to state
and prove the cut-elimination theorem for LKF. The cutu rule (called the unfocused
cut rule) applies only to ⇑-sequents while the cutf rule (called the focused cut rule)
involves one ⇓-sequent. Both of those cut rules also have a “delayed” version in which
one of the occurrences of the polarized cut formula is “locked” in storage.

It is important to note that in the delayed cuts, the polarized cut formula 𝑃 is
positive and not a negative literal: in particular if 𝑃 were a negative literal in the dcutf
rule and if 𝐵 = ¬𝑃 then dcutf is not admissible since focusing on a positive literal
requires the proof to end in an initial rule.

A simple observation shows that the cut-rules in Figure 4 do not suffer the collision
problems mentioned in Section 2.1. As we noted in the previous section, only positive
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polarized formulas are contracted (by the decide rule) in LKF proofs: as a result,
exactly one of the pair of polarized formulas 𝐴 and ¬𝐴 involved in a cut rule will be
positive, and only one of them can be contracted. Similarly, weakening only appears
within the init rule in LKF proofs and, as a result, the problematic case involving
weakening also disappears.

The general strategy for proving cut elimination in LKF extended with these cut
rules is familiar: we reduce cuts to “key cases” in which the polarized cut formula is
principal in both premises. The proof proceeds by simultaneous induction over the
permutabilities of all four cuts. The inductive measure is the lexicographical ordering
consisting of the size of the polarized cut formula followed by the sum of the heights
of the subproofs above the cut. We apply the procedure to the topmost cuts first, thus
assuming that the cuts to be reduced have cut-free subproofs.

Lemma 3.4 is used to simplify the cut-elimination proof. However, the application
of this lemma for proof transformation may affect the height of proofs (because
of the 𝑡− rule). These transformations must be applied carefully to preserve the
inductive measure. For the cut-elimination proof, we further require that the following
conditions be placed on the cut rules.

1. In cutu, the subproof of the premise with the positive cut formula must be eager
with respect to the cut formula; the subproof of the premise with the negative cut
formula must be delayed with respect to the cut formula.

2. In dcutu, the subproof of the premise with the negative cut formula must be
delayed with respect to the cut formula.

3. In cutf, the subproof of the sequent ⊢ ¬𝐴, Γ′ ⇑ Θ′, where ¬𝐴 is the cut formula,
must be eager with respect to ¬𝐴 regardless of the polarity of 𝐴.

The third requirement may appear inconsistent with the others when ¬𝐴 is negative
in cutf: however, the transition from cutu or dcutu to a cutf only occurs when the
cut formula is decomposed into subformulas, which reduces the stronger inductive
measure. For the dcutf rule, the subproof above the negative cut formula ¬𝑃 can be
considered both eager and delayed with respect to ¬𝑃 because it is the only formula
to the left of ⇑. By Lemma 3.4, any proof can be transformed into the required
forms so that the reducibility of the restricted cuts also implies the reducibility of
the unrestricted versions. In other words, before the application of any cut, we can
always apply Lemma 3.4 to assume that the subproofs are in the required forms. The
cut-elimination arguments will show that all restrictions are preserved when any of
the four cut rules are permuted to other cut rules.

We detail the permutation of each of the four cuts. We sometimes do not repeat
cases that are obvious, and we generally ignore the quantifiers as the first-order
quantifiers add nothing to the argument: their treatment is completely standard.

4.1 Permutations of cutu

The cutu rule has the general form, repeated here for convenience:
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⊢ 𝐴, Γ ⇑ Θ ⊢ ¬𝐴, Γ′ ⇑ Θ′

⊢ Γ, Γ′ ⇑ Θ,Θ′ cutu.

Assume without loss of generality that 𝐴 is positive and, therefore, ¬𝐴 is negative. It
is also required that the left subproof above cutu is eager with respect to the positive
𝐴, i.e., it ends in a store rule on the cut formula 𝐴. Furthermore, the right subproof
above the negative cut formula ¬𝐴, is required to be delayed with respect to ¬𝐴.
These assumptions mean that this cut can be transformed immediately into a dcutu:

⊢ Γ ⇑ Θ, 𝐴

⊢ 𝐴, Γ ⇑ Θ
store ⊢ ¬𝐴, Γ′ ⇑ Θ′

⊢ Γ, Γ′ ⇑ Θ,Θ′ cutu
−→ ⊢ Γ ⇑ Θ, 𝐴 ⊢ ¬𝐴, Γ′ ⇑ Θ′

⊢ Γ, Γ′ ⇑ Θ,Θ′ dcutu.

Clearly the restriction on the delayed form of the subproof above the negative cut
formula ¬𝐴 is preserved for the dcutu rule. The inductive measure is reduced by the
smaller height of the left subproofs above the cut.

4.2 Permutations of dcutu

The delayed, unfocused dcutu rule has the form

⊢ Γ ⇑ Θ, 𝑃 ⊢ ¬𝑃, Γ′ ⇑ Θ′

⊢ Γ, Γ′ ⇑ Θ,Θ′ dcutu

where the cut formula 𝑃 is positive. It is required that the subproof above the right
premise is delayed with respect to the cut formula ¬𝑃. These cuts are permuted
to the point where 𝑃 is selected for focus, at which point the cut transforms into a
combination of cutf and dcutf. In other words, the “goal” or “target” of all permutations
of dcutu is to be able to apply the following transformation when the left premise of
the dcutu is the decide rule.

⊢ 𝑃 ⇓ Θ, 𝑃

⊢ · ⇑ Θ, 𝑃 ⊢ ¬𝑃 ⇑ Θ′

⊢ · ⇑ Θ,Θ′ dcutu
−→

⊢ 𝑃 ⇓ Θ, 𝑃 ⊢ ¬𝑃 ⇑ Θ′

⊢ 𝑃 ⇓ Θ,Θ′ dcutf ⊢ ¬𝑃 ⇑ Θ′

⊢ · ⇑ Θ,Θ′ cutf.

In the transformed proof, the upper dcutf has subproofs of lesser height measure,
while the lower cutu is a key case cut where the cut formula is principal in both
subproofs. That is, cut-free proofs for ⊢ 𝑃 ⇓ Θ,Θ′ and ⊢ ¬𝑃 ⇑ Θ′ must both end with
the cut formulas 𝑃 and ¬𝑃 subject to an inference rule. The key-case cuts immediately
decompose into cuts on subformulas of a smaller size than 𝑃 (or reduces completely
by weakening in case of 𝑃 being a positive literal). Thus, the inductive measures of
both cuts are reduced.

Note that the eager restriction on the right subproof above cutf is trivially preserved
since ¬𝑃 is the only polarized formula on the left of ⇑.
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All other permutations of dcutu make progress toward this case. We organize these
permutations into two stages.

The first stage performs permutations over inference rules in the right subproof
of dcutu. The right subproof above dcutu ends in ⊢ ¬𝑃, Γ′ ⇑ Θ′. We permute dcutf
until it has such a right subproof with an empty Γ′. The fact that this subproof is
delayed with respect to ¬𝑃 means that if it ends in a conclusion ⊢ ¬𝑃, 𝐵, Γ′ ⇑ Θ′ we
can assume that the last rule either introduces 𝐵 or is a store rule on 𝐵 (and not on
¬𝑃). There are many subcases depending on the form of 𝐵:

Case: 𝐵 is a positive polarized formula or negative literal. In this case, the rule
above is a store on 𝐵, resulting in the following permutation.

⊢ Γ ⇑ Θ, 𝑃

⊢ ¬𝑃, Γ′ ⇑ Θ′, 𝐵

⊢ ¬𝑃, 𝐵, Γ′ ⇑ Θ′ store

⊢ 𝐵, Γ, Γ′ ⇑ Θ,Θ′ dcutu
−→

⊢ Γ ⇑ Θ, 𝑃 ⊢ ¬𝑃, Γ′ ⇑ Θ′, 𝐵

⊢ Γ, Γ′ ⇑ Θ,Θ′, 𝐵
dcutu

⊢ 𝐵, Γ, Γ′ ⇑ Θ,Θ′ store

The “delayed” restriction on the right subproof above dcutu is preserved by definition:
an immediate subproof of a delayed proof is also delayed. This property applies
similarly to all subsequent cases.

Case: 𝐵 is 𝐵1 ∨− 𝐵2. In this case, we can transform

⊢ Γ ⇑ Θ, 𝑃

⊢ ¬𝑃, 𝐵1, 𝐵2, Γ
′ ⇑ Θ′

⊢ ¬𝑃, 𝐵1 ∨− 𝐵2, Γ
′ ⇑ Θ′ ∨−

⊢ 𝐵1 ∨− 𝐵2, Γ, Γ
′ ⇑ Θ,Θ′ dcutu

into the following derivation.

⊢ Γ ⇑ Θ, 𝑃 ⊢ ¬𝑃, 𝐵1, 𝐵2, Γ
′ ⇑ Θ′

⊢ 𝐵1, 𝐵2, Γ, Γ
′ ⇑ Θ,Θ′ dcutu

⊢ 𝐵1 ∨− 𝐵2, Γ, Γ
′ ⇑ Θ,Θ′ ∨−

Case: 𝐵 is 𝐵1 ∧− 𝐵2. In this case, we can transform

⊢ Γ ⇑ Θ, 𝑃

⊢ ¬𝑃, 𝐵1, Γ
′ ⇑ Θ′ ⊢ ¬𝑃, 𝐵1, Γ

′ ⇑ Θ′

⊢ ¬𝑃, 𝐵1 ∧− 𝐵2, Γ
′ ⇑ Θ′ ∧−

⊢ 𝐵1 ∧− 𝐵2, Γ, Γ
′ ⇑ Θ,Θ′ dcutu

into the following derivation.

⊢ Γ ⇑ Θ, 𝑃 ⊢ ¬𝑃, 𝐵1, Γ
′ ⇑ Θ′

⊢ 𝐵1, Γ, Γ
′ ⇑ Θ,Θ′ dcutu

⊢ Γ ⇑ Θ, 𝑃 ⊢ ¬𝑃, 𝐵2, Γ
′ ⇑ Θ′

⊢ 𝐵2, Γ, Γ
′ ⇑ Θ,Θ′ dcutu

⊢ 𝐵1 ∧− 𝐵2, Γ, Γ
′ ⇑ Θ,Θ′ ∧−

The other cases for 𝐵 are proved similarly. This stage ends when the right subproof
concludes with a sequent of the form ⊢ ¬𝑃 ⇑ Θ′.

The second stage performs permutation over inference rules in the left subproof
of dcutu. The cases of asynchronous introduction rules are analogous to the cases
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demonstrated above and are equally straightforward. Generally speaking, the permuta-
tion of cut above introduction rules is always straightforward. The important cases to
point out are the decide, release, and store rules. A store rule ending the left subproof
is also a trivial case because it cannot affect the cut formula. The interesting case is
when the left subproof ends in the form ⊢ · ⇑ Θ, 𝑃. The rule above this sequent must
be decide. There are two cases depending on whether or not the polarized formula
selected for focus is the cut formula 𝑃 or not. If it is not the cut formula but, say,
another formula 𝑄, then we can permute inference rules as follow.

⊢ 𝑄 ⇓ 𝑄,Θ, 𝑃

⊢ · ⇑ 𝑄,Θ, 𝑃
decide ⊢ ¬𝑃 ⇑ Θ′

⊢ · ⇑ 𝑄,Θ,Θ′ dcutu
−→

⊢ 𝑄 ⇓ 𝑄,Θ, 𝑃 ⊢ ¬𝑃 ⇑ Θ′

⊢ 𝑄 ⇓ 𝑄,Θ,Θ′ dcutf

⊢ · ⇑ 𝑄,Θ,Θ′ decide

If the polarized formula selected for focus is 𝑃, then we have reached the targeted
transition to key-case cuts as already described above.

4.3 Permutations of dcutf

The general form of dcutf is

⊢ 𝐵 ⇓ Θ, 𝑃 ⊢ ¬𝑃 ⇑ Θ′

⊢ 𝐵 ⇓ Θ,Θ′ dcutf

with 𝑃 positive. This cut permutes over synchronous introduction rules until reaching
an init or release rule on its left premise, at which point the cut will transition to a
dcutu with lower subproofs:

⊢ 𝐵 ⇑ Θ, 𝑃

⊢ 𝐵 ⇓ Θ, 𝑃
release ⊢ ¬𝑃 ⇑ Θ′

⊢ 𝐵 ⇓ Θ,Θ′ dcutf
−→

⊢ 𝐵 ⇑ Θ, 𝑃 ⊢ ¬𝑃 ⇑ Θ′

⊢ 𝐵 ⇑ Θ,Θ′ dcutu

⊢ 𝐵 ⇓ Θ,Θ′ release

Besides the cases of initial rules, all other permutations of dcutf make progress
towards this case. Since ¬𝑃 is the only polarized formula to the left of ⇑, the “delayed”
requirement of dcutu is trivially met. The right-side subproof with the negative cut
formula stays intact during these permutations. We consider two cases where 𝐵 is
a positive polarized formula: the other cases are treated similarly. If 𝐵 is a positive
literal, then ⊢ 𝐵 ⇓ Θ, 𝑃 must be the conclusion of an initial rule. Since 𝑃 is also
positive, it must be the case that 𝐵⊥ ∈ Θ. Thus ⊢ 𝐵 ⇓ Θ,Θ′ is also the conclusion of
an initial rule. If 𝐵 is 𝐵1 ∨+ 𝐵2, then we have the following transformation (here, 𝑖 is
1 or 2):

⊢ 𝐵𝑖 ⇓ Θ, 𝑃

⊢ 𝐵1 ∨+ 𝐵2 ⇓ Θ, 𝑃
∨+ ⊢ ¬𝑃 ⇑ Θ′

⊢ 𝐵1 ∨+ 𝐵2 ⇓ Θ,Θ′ dcutf
−→

⊢ 𝐵𝑖 ⇓ Θ, 𝑃 ⊢ ¬𝑃 ⇑ Θ′

⊢ 𝐵𝑖 ⇓ Θ,Θ′ dcutf

⊢ 𝐵1 ∨+ 𝐵2 ⇓ Θ,Θ′ ∨+
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4.4 Permutations of cutf

The cutf rule has the general form

⊢ 𝐴 ⇓ Θ ⊢ ¬𝐴, Γ′ ⇑ Θ′

⊢ Γ′ ⇑ Θ,Θ′ cutf.

It is required that the subproof above the unfocused sequent ⊢ ¬𝐴, Γ′ ⇑ Θ′ is eager
with respect to ¬𝐴.

If 𝐴 is negative, then the left subproof above cutf must be the conclusion of a
release rule, and the cut permutes to a cutu with shorter subproofs:

⊢ 𝐴 ⇑ Θ ⊢ ¬𝐴, Γ′ ⇑ Θ′

⊢ Γ′ ⇑ Θ,Θ′ cutu.

As for the restrictions on cutu, ¬𝐴 must be positive if 𝐴 is negative, so the subproof
above the positive cut formula stays eager with respect to that polarized formula, and
the subproof above ⊢ 𝐴 ⇑ Θ is trivially delayed above the negative cut formula.

If 𝐴 is positive, then the left subproof above cutf must be either init or an introduction
of the cut formula 𝐴. We illustrate three cases below: the other cases are similar.

1. If 𝐴 is a positive literal 𝑝 then the left premise of cutf, namely ⊢ 𝑝 ⇓ Θ, is the
conclusion of an initial rule with¬𝑝 ∈ Θ. The other, eager subproof of ⊢ ¬𝑝, Γ′ ⇑ Θ′,
must end in a store rule on ¬𝑝, with premise ⊢ Γ′ ⇑ Θ′,¬𝑝. But since ¬𝑝 ∈ Θ, the
provability of ⊢ Γ′ ⇑ Θ,Θ′ follows from weakening.

2. If 𝐴 is 𝐴1 ∨+ 𝐴2, then ¬𝐴 is ¬𝐴1 ∧− ¬𝐴2. This key case requires transforming
the derivation

⊢ 𝐴𝑖 ⇓ Θ

⊢ 𝐴1 ∨+ 𝐴2 ⇓ Θ
∨+

⊢ ¬𝐴1, Γ
′ ⇑ Θ′ ⊢ ¬𝐴2, Γ

′ ⇑ Θ′

⊢ ¬𝐴1 ∧− ¬𝐴2, Γ
′ ⇑ Θ′ ∧−

⊢ Γ′ ⇑ Θ,Θ′ cutf

into the derivation
⊢ 𝐴𝑖 ⇓ Θ ⊢ ¬𝐴𝑖 , Γ

′ ⇑ Θ′

⊢ Γ′ ⇑ Θ,Θ′ cutf.

The inductive measure is reduced by the size of the cut formulas. Here we can apply
Lemma 3.4 to the subproof above ⊢ ¬𝐴𝑖 , Γ

′ ⇑ Θ′ so that it becomes eager with
respect to (each) ¬𝐴𝑖 without regard to how the transformation might affect the
height of proofs because the lexicographical inductive measure is still reduced. This
argument similarly applies to the other key cases.

3. if 𝐴 is 𝐴1 ∧+ 𝐴2 then ¬𝐴 is ¬𝐴1 ∨− ¬𝐴2 and the proof is transformed as follows:

⊢ 𝐴1 ⇓ Θ ⊢ 𝐴2 ⇓ Θ

⊢ 𝐴1 ∧+ 𝐴2 ⇓ Θ
∧+

⊢ ¬𝐴1,¬𝐴2, Γ
′ ⇑ Θ′

⊢ ¬𝐴1 ∨− ¬𝐴2, Γ
′ ⇑ Θ′ ∨−

⊢ Γ′ ⇑ Θ,Θ′ cutf
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↓

⊢ 𝐴2 ⇓ Θ

⊢ 𝐴1 ⇓ Θ ⊢ ¬𝐴1,¬𝐴2, Γ
′ ⇑ Θ′

⊢ ¬𝐴2, Γ
′ ⇑ Θ,Θ′ cutf

⊢ Γ′ ⇑ Θ,Θ′ cutf

The two cuts introduced are both on smaller cut formulas compared to the original
cut: the inductive hypothesis is first applied to the upper cut to obtain a cut-free proof,
then to the lower one.

With these permutation results in hand, we can now prove the cut-admissibility
theorem for LKF.

Theorem 4.1 The rules cutu, cutf, dcutu and dcutf are admissible in LKF.

Proof The formal proof is a nested induction argument: first on the number of cuts in
each proof, the second on the lexicographical measure for each cut. The corresponding
procedure is: select a top-most cut with cut-free subproofs and apply Lemma 3.4
so that the subproofs satisfy the requirements concerning the eager and delayed
properties. Then apply the transformations to reduce the cut. Apply this procedure
repeatedly until all cuts are eliminated. □

5 Admissibility of the general init rule

The initial rule of LKF requires 𝐴 to be a literal in order to prove the sequent
⊢ 𝐴 ⇓ ¬𝐴,Θ. Just as important as the admissibility of cut is the admissibility of
the more general form of init: that is, the sequent ⊢ 𝐴,¬𝐴 ⇑ Θ is provable for
every polarized formula 𝐴. For unfocused sequent calculus, the proof of this result
is straightforward because of the perfect duality between the introduction rules
for dual logical connectives. In particular, assuming that 𝐴 is negative, apply its
(invertible) introduction rule followed by the introduction rule for ¬𝐴 (reading rules
from conclusion to premises). The induction hypothesis can then be applied directly
to the premises. In a focused setting, however, the proof becomes more difficult since
multiple asynchronous or synchronous connectives are introduced in a single phase.
To solve this problem, we introduce the following relation, which was also used in
Liang and Miller (2011).

Definition 5.1 Let ↑ be the binary relation between a polarized formula and multisets
of polarized formulas defined inductively as follows.

1. 𝐴 ↑ {𝐴} if 𝐴 is a positive polarized formula or negative literal.
2. 𝑓 − ↑ {}.
3. 𝐴 ∨− 𝐵 ↑ Φ,Φ′ if 𝐴 ↑ Φ and 𝐵 ↑ Φ′.
4. 𝐴 ∧− 𝐵 ↑ Φ if 𝐴 ↑ Φ or 𝐵 ↑ Φ.
5. ∀𝑥.𝐴 ↑ Φ if 𝐴 ↑ Φ.
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Clearly each such Φ contains only positive polarized formulas and negative literals.
Note that the polarized formulas 𝑡− and 𝐴 ∨− 𝑡− are not ↑-related to any multiset of
polarized formulas.

The following lemmas establish the properties of the asynchronous and synchronous
phases in a form that allows us to derive the admissibility of the general init rule.

Lemma 5.2 For all polarized formulas 𝐴, multisets of polarized formulas Γ, and sets
of polarized formulas Θ, if ⊢ Φ, Γ ⇑ Θ is provable for all Φ such that 𝐴 ↑ Φ, then
⊢ 𝐴, Γ ⇑ Θ is also provable.

Proof The proof is by induction on the size of 𝐴. If a polarized formula 𝐴 is not
↑-related to any multiset of polarized formulas then we say that ↑ is undefined for 𝐴.
Note that if ↑ is undefined for 𝐴 then the lemma implies that ⊢ 𝐴, Γ ⇑ Θ is provable.

1. If 𝐴 is a positive polarized formula or negative literal, the property is trivial
since only 𝐴 ↑ {𝐴} holds and Φ contains only 𝐴.

2. If 𝐴 is the constant 𝑓 − , then the property holds by the 𝑓 − rule.
3. If 𝐴 is the constant 𝑡− , then ⊢ 𝑡− , Γ ⇑ Θ is provable by the rule for 𝑡− .
4. Let 𝐴 be the polarized formula 𝐵 ∧− 𝐶. If ↑ is undefined for 𝐴, then it is

undefined for 𝐵 and for 𝐶, and the inductive hypothesis states that ⊢ 𝐵, Γ ⇑ Θ and
⊢ 𝐶, Γ ⇑ Θ are provable. Otherwise, if ⊢ Φ, Γ ⇑ Θ is provable for all Φ such that
𝐴 ↑ Φ, then it is provable for allΦ such that 𝐵 ↑ Φ or𝐶 ↑ Φ. The inductive hypothesis
yields the provability of both ⊢ 𝐵, Γ ⇑ Θ and ⊢ 𝐶, Γ ⇑ Θ. In either case, the ∧− rule
yields a proof of ⊢ 𝐵 ∧− 𝐶, Γ ⇑ Θ.

5. Let 𝐴 be the polarized formula 𝐵 ∨− 𝐶. Assume that ⊢ Φ, Γ ⇑ Θ is provable
for all Φ such that 𝐵 ∨− 𝐶 ↑ Φ. This assumption is equivalent to assuming that
⊢ Φ′,Φ′′, Γ ⇑ Θ is provable for all Φ′ and Φ′′ such that 𝐵 ↑ Φ′ and 𝐶 ↑ Φ′′.
Now assume that 𝐵 ↑ Φ′ and 𝐶 ↑ Φ′′ hold. By the above hypothesis, we have
⊢ Φ′,Φ′′, Γ ⇑ Θ is provable. By the inductive hypothesis applied to 𝐵, we know that
⊢ 𝐵,Φ′′, Γ ⇑ Θ is provable and by the inductive hypothesis applied to 𝐶, we know
that ⊢ 𝐵,𝐶, Γ ⇑ Θ is provable. If ↑ is undefined for either 𝐵 or 𝐶, we reach the same
conclusion. The ∨− rule thus yields a proof of ⊢ 𝐵 ∨− 𝐶, Γ ⇑ Θ.

6. Let 𝐴 be the polarized formula ∀𝑥.𝐵 and assume that 𝑥 is not free in Γ, Θ. If
𝐴 ↑ Φ then 𝐵 ↑ Φ. If ↑ is undefined for 𝐴 then it is also undefined for 𝐵. In either
case the inductive hypothesis states that if ⊢ Φ, Γ ⇑ Θ is provable for all Φ such that
𝐵 ↑ Φ, then ⊢ 𝐵, Γ ⇑ Θ is provable. The property is established by applying the ∀
rule. □

The next lemma connects the synchronous phase with the ↑-relation.

Lemma 5.3 For all polarized formulas 𝐴 and multisets of polarized formulas Φ, if
𝐴 ↑ Φ then ⊢ ¬𝐴 ⇓ Φ is provable.

Proof The proof proceeds by induction on the size of 𝐴, which is the same as the
size of ¬𝐴.

1. If 𝐴 is 𝑡− , then the property holds vacuously.
2. If 𝐴 is a negative literal then the property holds by the initial rule init.
3. If 𝐴 is 𝑓 − , the property holds by the rule for 𝑡+.
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4. If 𝐴 is 𝐵 ∧− 𝐶 then ¬𝐴 is ¬𝐵 ∨+ ¬𝐶. Assuming that 𝐴 ↑ Φ then either 𝐵 ↑ Φ

or 𝐶 ↑ Φ. Assume without loss of generality that 𝐵 ↑ Φ: by inductive hypothesis
⊢ ¬𝐵 ⇓ Φ is provable. Thus, ⊢ ¬𝐵 ∨+ ¬𝐶 ⇓ Φ is provable using the ∨+ rule.

5. If 𝐴 is 𝐵 ∨− 𝐶 then ¬𝐴 is ¬𝐵 ∧+ ¬𝐶. Assume that 𝐴 ↑ Φ,Φ′ such that
𝐵 ↑ Φ and 𝐶 ↑ Φ′. By the inductive hypotheses, we know that ⊢ ¬𝐵 ⇓ Φ and
⊢ ¬𝐶 ⇓ Φ′ are provable. Apply weakening (Lemma 3.3) to both sequents and we
get that ⊢ ¬𝐵 ⇓ Φ,Φ′ and ⊢ ¬𝐶 ⇓ Φ,Φ′ are provable. Thus ⊢ ¬𝐵 ∧+ ¬𝐶 ⇓ Φ,Φ′ is
provable using the ∧+ rule.

6. If 𝐴 is ∀𝑥.𝐵 then ¬𝐴 is ∃𝑥.¬𝐵. If 𝐴 ↑ Φ then 𝐵 ↑ Φ. By inductive hypothesis
we have ⊢ ¬𝐵 ⇓ Φ and by the ∃ rule, we have ⊢ ∃𝑥.¬𝐵 ⇓ Φ.

7. If 𝐴 is a positive polarized formula, then the inductive hypothesis also applies
to the proper subformulas of ¬𝐴, which is negative and of the same size as 𝐴. Thus
if ¬𝐴 ↑ Φ then the cases above show that ⊢ 𝐴 ⇓ Φ is provable. By weakening
⊢ 𝐴 ⇓ 𝐴,Φ is also provable, and we can form the derivation

⊢ 𝐴 ⇓ 𝐴,Φ

⊢ · ⇑ 𝐴,Φ
decide

⊢ Φ ⇑ 𝐴
store

where a sequence of store rules are applied to the positive polarized formulas and
negative literals in Φ. This holds for all Φ such that ¬𝐴 ↑ Φ, so by Lemma 5.2,
⊢ ¬𝐴 ⇑ 𝐴 is provable, and by applying the release rule, we have a proof of ⊢ ¬𝐴 ⇓ 𝐴.
This establishes the property for positive 𝐴 for which only 𝐴 ↑ {𝐴} holds. □

The following theorem states the admissibility of the general form of the init rule.

Theorem 5.4 ⊢ 𝐴,¬𝐴 ⇑ · is provable for all polarized formulas 𝐴.

Proof Assume without loss of generality that 𝐴 is positive. Then 𝐴 ↑ {𝐴} and
Lemma 5.3 states that ⊢ ¬𝐴 ⇓ 𝐴 is provable. Since ¬𝐴 is negative, this sequent
must be the conclusion of a release rule in a cut-free proof, so ⊢ ¬𝐴 ⇑ 𝐴 is provable.
Applying the store rule on 𝐴 to this sequent gives a proof of ⊢ 𝐴,¬𝐴 ⇑ ·. □

6 Generalized invertibility

The following results about the invertibility of the negative introduction rules is now
easily proved using the admissibility of cut. The following corollary is the converse
of Lemma 5.2.

Corollary 6.1 If ⊢ 𝐴, Γ ⇑ Θ is provable and 𝐴 ↑ Φ, then ⊢ Φ, Γ ⇑ Θ is provable.

Proof Given the assumption 𝐴 ↑ Φ, Lemma 5.3 implies that the sequent ⊢ ¬𝐴 ⇓ Φ

is provable. Using a cut rule, we therefore have the following proof.
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⊢ 𝐴, Γ ⇑ Θ ⊢ ¬𝐴 ⇓ Φ

⊢ Γ ⇑ Θ,Φ
cutf

⊢ Φ, Γ ⇑ Θ
store.

The final result follows from the admissibility of cut (Theorem 4.1). □

From the generalized invertibility property and Lemma 5.2, we can derive the
invertibility of the individual asynchronous introduction rules.

Lemma 6.2 The introduction rules for the negative connectives are invertible; i.e.,
the provability of the conclusion of each rule implies the provability of all of its
premises.

Proof First, consider the case for ∨− . Assume that ⊢ 𝐴 ∨− 𝐵, Γ ⇑ Θ is provable
and assume that 𝐴 is ↑-related to exactly the multisets Φ1

𝐴
, . . . ,Φ𝑛

𝐴
and that 𝐵 is

↑-related to exactly Φ1
𝐵
, . . . ,Φ𝑚

𝐵
, where 𝑛, 𝑚 ≥ 0. By the definition of ↑, we know

that 𝐴 ∨− 𝐵 ↑ Φ𝑖
𝐴
Φ𝑘

𝐵
for each 𝑖 and 𝑘 such that 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑘 ≤ 𝑚. (Note

that if either 𝑛 or 𝑚 is 0 then this statement is vacuously true.) Corollary 6.1 implies
that ⊢ Φ𝑖

𝐴
Φ𝑘

𝐵
, Γ ⇑ Θ is provable. By Lemma 5.2, this means that ⊢ 𝐴, 𝐵, Γ ⇑ Θ is

provable.
To consider the case for∧− assume that ⊢ 𝐴∧− 𝐵, Γ ⇑ Θ is provable and (as above)

𝐴 is ↑-related to Φ1
𝐴
, . . . ,Φ𝑛

𝐴
and 𝐵 is ↑-related to Φ1

𝐵
, . . . ,Φ𝑚

𝐵
, where 𝑛, 𝑚 ≥ 0.

Then 𝐴 ∧ 𝐵 ↑ Φ𝑖
𝐴

for each 𝑖 such that 1 ≤ 𝑖 ≤ 𝑛 and 𝐴 ∧ 𝐵 ↑ Φ𝑘
𝐵

for each 𝑘 such that
1 ≤ 𝑘 ≤ 𝑚. By Corollary 6.1, this implies that ⊢ Φ𝑖

𝐴
, Γ ⇑ Θ is provable for each 𝑖

such that 1 ≤ 𝑖 ≤ 𝑛 and ⊢ Φ𝑘
𝐵
, Γ ⇑ Θ is provable for each 𝑘 such that 1 ≤ 𝑘 ≤ 𝑚. By

Lemma 5.2, ⊢ 𝐴, Γ ⇑ Θ and ⊢ 𝐵, Γ ⇑ Θ are provable.
The cases for 𝑡− and ∀ are similar and omitted. □

Given Lemmas 5.2 and 5.3, we often use the following argument schema to
establish the provability of ⊢ 𝐴1, . . . , 𝐴𝑛, Γ ⇑ Θ: If ↑ is undefined for any 𝐴𝑖 then
Lemma 5.2 already shows that the sequent is provable. Otherwise, assume that for
each 𝑖 ∈ {1, . . . , 𝑛} there is an 𝑛𝑖 greater than or equal to 1 such that 𝐴𝑖 is ↑-related
to exactly Φ1

𝑖
, . . . ,Φ

𝑛𝑖
𝑖

. Show that for each possible selection of Φ𝑘1
1 , . . . ,Φ

𝑘𝑛
𝑛 , the

sequent ⊢ Γ ⇑ Θ,Φ
𝑘1
1 , . . . ,Φ

𝑘𝑛
𝑛 is provable. Then ⊢ 𝐴1, . . . , 𝐴𝑛, Γ ⇑ Θ is provable

by Lemma 5.2 plus enough applications of the store rule to move each member of Φ𝑘𝑖
𝑖

to the left side of ⇑. Furthermore, if Γ consists of a single positive polarized formula
𝑃 (𝑃 can also be in Θ with Γ empty) and ⊢ 𝑃 ⇓ 𝑃,Θ,Φ

𝑘1
1 , . . . ,Φ

𝑘𝑛
𝑛 is provable, then

using the decide rule

⊢ 𝑃 ⇓ 𝑃,Θ,Φ
𝑘1
1 , . . . ,Φ

𝑘𝑛
𝑛

⊢ · ⇑ 𝑃,Θ,Φ
𝑘1
1 , . . . ,Φ

𝑘𝑛
𝑛

decide

the provability ⊢ 𝐴1, . . . , 𝐴𝑛, 𝑃 ⇑ Θ also follows from Lemma 5.2 and the store rule.
The provability of the focused sequent above decide often follows from Lemma 5.3.
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7 Returning to LK

In this section, we show how the unfocused LK proof system can be faithfully captured
within LKF. We do this in three steps: (1) we translate the two-sided proof system
LK into a one-sided system; (2) we show that a more general form of contraction is
admissible in LKF; and (3) we prove that the unfocused introduction rules of (the
one-side version of) LK are admissible in LKF. As a consequence, LKF is complete
for LK.

Gentzen’s original version of LK used the additive versions of conjunction and
disjunction, namely ∧− and ∨+, while his implication ⊃ was multiplicative. Gentzen
himself noted (Gentzen, 1935, Remark 2.4) that LK is ‘dual’ in the sense that the left
and right inference rules are symmetrical except for ⊃. In LKF, the multiplicative
connective ∨− can be used to encode 𝐴 ⊃ 𝐵 into ¬𝐴 ∨− 𝐵: hence, ¬(𝐴 ⊃ 𝐵) is
encoded as 𝐴∧+¬𝐵. As a result, we can remove implications and negated implications
by mapping them to these multiplicative connectives.

Definition 7.1 The LK -polarization (·)± of classical formulas is defined as follows
(recall that the negation of polarized formulas is given in Definition 3.1):

1. For any atomic polarized formula 𝑎, 𝑎± = 𝑎 and (¬𝑎)± = ¬𝑎.
2. (𝐴 ∧ 𝐵)± = 𝐴± ∧− 𝐵±; (𝐴 ∨ 𝐵)± = 𝐴± ∨+ 𝐵±; t± = 𝑡−; f ± = 𝑓 +;
3. (𝐴 ⊃ 𝐵)± = ¬𝐴± ∨− 𝐵±

We also assume that all atomic polarized formulas are polarized positively.

Figure 5 contains the inference rules for LKi, a sequent calculus intermediate
between LK and LKF in the sense that it is a one-sided sequent calculus that contains
polarized formulas but it is not focused. An LK sequent 𝐴1, . . . , 𝐴𝑛 ⊢ 𝐵1, . . . , 𝐵𝑚 is
represented in this setting as ⊢ ¬𝐴1

±, . . . ,¬𝐴𝑛
±, 𝐵1

±, . . . , 𝐵𝑚
±. Each inference rule

of LK is translated directly into this setting: replace each sequent in the premises and
conclusion of the rule with their one-sided, polarized versions. Left-introductions
rules on 𝐴𝑖 are thus represented as one-sided introduction rules on ¬𝐴𝑖

±.

Theorem 7.2 Let 𝑛, 𝑚 ≥ 0 and let 𝐴1, . . . , 𝐴𝑛, 𝐵1, . . . , 𝐵𝑚 be unpolarized formulas.
If the sequent ⊢ ¬𝐴1

±, . . . ,¬𝐴𝑛
±, 𝐵1

±, . . . , 𝐵𝑚
± ⇑ · is provable in LKF then the

sequent 𝐴1, . . . , 𝐴𝑛 ⊢ 𝐵1, . . . , 𝐵𝑚 is provable in LK.

Proof Note that an LKF proof of ⊢ ¬𝐴1
±, . . . ,¬𝐴𝑛

±, 𝐵1
±, . . . , 𝐵𝑚

± ⇑ · can easily be
translated to an LKi proof of ⊢ ¬𝐴1

±, . . . ,¬𝐴𝑛
±, 𝐵1

±, . . . , 𝐵𝑚
±. Such an LKi proof

can then be converted to a proof of the two-sided sequent 𝐴1, . . . , 𝐴𝑛 ⊢ 𝐵1, . . . , 𝐵𝑚

in LK. In this later transformation, when the multiplicative connectives ∨− and ∧+ are
introduced in the LKi proof, implications are introduced on the right or left in the LK
proof. □

We shall now proceed to prove that the rules of LKi are admissible in LKF by
presenting new admissible LKF rules derived from the LKi rules. When naming the
new admissible LKF rules, we will add parentheses around the name of the LKi rule.
For example, the init rule of LKi yields the admissible LKF rule
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Structural rules and Identity rules

⊢ Δ, 𝐵, 𝐵

⊢ Δ, 𝐵
cR ⊢ Δ

⊢ Δ, 𝐵
wR ⊢ 𝐵, ¬𝐵 init

⊢ 𝐵, Δ ⊢ ¬𝐵, Δ′

⊢ Δ, Δ′ cut

Introduction rules

⊢ 𝑡− , Δ
𝑡−

⊢ 𝐴,Θ ⊢ 𝐵,Θ

⊢ 𝐴∧− 𝐵,Θ
∧− ⊢ 𝑡+

𝑡+
⊢ 𝐴,Θ ⊢ 𝐵,Θ′

⊢ 𝐴∧+ 𝐵,Θ,Θ′ ∧+

⊢ 𝐵𝑖 ,Θ

⊢ 𝐵1 ∨+ 𝐵2,Θ
∨+ ⊢ Θ

⊢ 𝑓 − ,Θ
𝑓 −

⊢ 𝐴, 𝐵,Θ

⊢ 𝐴∨− 𝐵,Θ
∨−

⊢ Δ, [𝑦/𝑥 ]𝐵
⊢ Δ, ∀𝑥.𝐵 ∀

⊢ Δ, [𝑠/𝑥 ]𝐵
⊢ Δ, ∃𝑥.𝐵 ∃

Fig. 5 The rules for LKi. In the ∀ rule, the variable 𝑦 is not free in the conclusion. In the ∨+ rule,
𝑖 ∈ {1, 2}.

⊢ 𝐵,¬𝐵, Γ ⇑ · (init).

The admissibility of (init) follows immediately from Theorem 5.4. The admissibility
of (wR), namely,

⊢ Δ ⇑ Θ

⊢ 𝐵,Δ ⇑ Θ,Θ′ (wR)

follows from Lemma 3.3 and a simple induction on the structure of 𝐵. We delay the
proof of the admissibility of the LKi cut rule until Section 9.1. We now proceed to
prove the admissibility of contraction and the introduction rules of LKi.

Unlike LK and LKi, LKF does not include explicit rules for contraction. In LKF, the
rule of contraction is only applied to positive polarized formulas and only within the
decide rule. We now show that contraction for all polarized formulas is admissible in
LKF.

Lemma 7.3 The following rule is admissible in LKF for all polarized formulas 𝐴.

⊢ 𝐴, 𝐴, Γ ⇑ Θ

⊢ 𝐴, Γ ⇑ Θ
(cR)

Proof Assume that ⊢ 𝐴, 𝐴, Γ ⇑ Θ has an LKF proof. Using Lemma 3.4, we can
assume that this proof is eager for the first occurrence of 𝐴. If 𝐴 is a positive polarized
formula or negative literal, then the only rule that can be applied to it is store, which
means that the sequent ⊢ 𝐴, Γ ⇑ 𝐴,Θ has an LKF proof. Again, this sequent has
a proof eager for 𝐴 and, thus, must be proved by the store rule, which implies that
⊢ Γ ⇑ 𝐴,Θ has an LKF proof. By using that sequent as the premise of the store rule
we have an LKF proof of ⊢ 𝐴, Γ ⇑ Θ.

Consider the cases where 𝐴 is a non-literal negative polarized formula. The case
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where 𝐴 is 𝑡− is immediate. The case where 𝐴 is 𝑓 − follows using Lemma 6.2
twice. If 𝐴 is 𝐵 ∨− 𝐶 then, using Lemmas 3.4 and 6.2 twice, it is the case that
⊢ 𝐵, 𝐵, 𝐶, 𝐶, Γ ⇑ Θ is provable. The result follows by using the inductive assumption
twice along with the ∨− rule. If 𝐴 is 𝐵 ∧− 𝐶 then, using Lemmas 3.4 and 6.2 twice,
it is the case that both ⊢ 𝐵, 𝐵, Γ ⇑ Θ and ⊢ 𝐶,𝐶, Γ ⇑ Θ are provable. The result
follows by using the inductive assumption twice along with the ∧− rule. Finally, the
case where 𝐴 is universally quantified is similar and omitted here. □

From the results in the preceding sections, we can show the admissibility of the
unfocused introduction rules (corresponding to the rules of LKi) in LKF.

Theorem 7.4 (Admissibility of unfocused introduction rules) All the introduction
rules of LKi are admissible in LKF.

Proof Throughout this proof, we use the admissibility of cut combined with the
argument schema outlined at the end of Section 6.

The ∨+-introduction rule for LKi is admissible in LKF in the form

⊢ 𝐵𝑖 , Γ ⇑ Θ

⊢ 𝐵1 ∨+ 𝐵2, Γ ⇑ Θ
(∨+)

for 𝑖 ∈ {1, 2}. Admissibility follows from using the admissibility of the cutu rule in
the derivation

⊢ 𝐵𝑖 , Γ ⇑ Θ ⊢ ¬𝐵𝑖 , 𝐵1 ∨+ 𝐵2 ⇑ ·
⊢ 𝐵1 ∨+ 𝐵2, Γ ⇑ Θ

cutu.

To show the provability of the right premise above the cut we apply the argument
schema of Section 6. Let ¬𝐵𝑖 ↑ Φ1, . . . ,¬𝐵𝑖 ↑ Φ𝑛 be an exhaustive list of multisets
of polarized formulas ↑-related to ¬𝐵𝑖 , for 𝑛 ≥ 0. If 𝑛 = 0 then the sequent is provable
by Lemma 5.2. Otherwise, 𝑛 is positive. For each Φ𝑘 (𝑘 ∈ 1, . . . , 𝑛), construct the
following subproof

⊢ 𝐵𝑖 ⇓ 𝐵1 ∨+ 𝐵2,Φ
𝑘

⊢ 𝐵1 ∨+ 𝐵2 ⇓ 𝐵1 ∨+ 𝐵2,Φ
𝑘
∨+

⊢ · ⇑ 𝐵1 ∨+ 𝐵2,Φ
𝑘

decide

⊢ 𝐵1 ∨+ 𝐵2,Φ
𝑘 ⇑ ·

store

The provability of the top sequent follows from Lemma 5.3 and the provability of
⊢ ¬𝐵𝑖 , 𝐵1 ∨+ 𝐵2 ⇑ · follows from all such subproofs by Lemma 5.2.

The ∧+-introduction rule for LKi is admissible in LKF in the form

⊢ 𝐴, Γ ⇑ Θ ⊢ 𝐵, Γ ⇑ Θ

⊢ 𝐴 ∧+ 𝐵, Γ ⇑ Θ
(∧+).

This rule is also justified using the admissibility of cutu as follows.
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⊢ 𝐵, Γ ⇑ Θ

⊢ 𝐴, Γ ⇑ Θ ⊢ ¬𝐴,¬𝐵, 𝐴 ∧+ 𝐵 ⇑ ·
⊢ ¬𝐵, 𝐴 ∧+ 𝐵, Γ ⇑ Θ

cutu

⊢ 𝐴 ∧+ 𝐵, Γ, Γ ⇑ Θ
cutu

⊢ 𝐴 ∧+ 𝐵, Γ ⇑ Θ
(cR)

The provability of the top right sequent uses the argument schema described above:
let ¬𝐴 ↑ Φ1

¬𝐴, . . . ,¬𝐴 ↑ Φ𝑛
¬𝐴 and ¬𝐵 ↑ Φ1

¬𝐵, . . . ,¬𝐵 ↑ Φ𝑚
¬𝐵 be exhaustive lists of

multiset of set related to ¬𝐴 and ¬𝐵, respectively. If either 𝑛 or 𝑚 is 0, then the
sequent is already provable. Otherwise for each pair Φ𝑖

¬𝐴,Φ
𝑘
¬𝐵 construct the subproof

⊢ 𝐴 ⇓ 𝐴 ∧+ 𝐵,Φ𝑖
¬𝐴,Φ

𝑘
¬𝐵 ⊢ 𝐵 ⇓ 𝐴 ∧+ 𝐵,Φ𝑖

¬𝐴,Φ
𝑘
¬𝐵

⊢ 𝐴 ∧+ 𝐵 ⇓ 𝐴 ∧+ 𝐵,Φ𝑖
¬𝐴,Φ

𝑘
¬𝐵

∧+

⊢ · ⇑ 𝐴 ∧+ 𝐵,Φ𝑖
¬𝐴,Φ

𝑘
¬𝐵

decide

⊢ 𝐴 ∧+ 𝐵,Φ𝑖
¬𝐴,Φ

𝑘
¬𝐵 ⇑ ·

store.

The provability of the top sequents follows from Lemma 5.3 and from these subproofs
the provability of ⊢ ¬𝐴,¬𝐵, 𝐴 ∧+ 𝐵 ⇑ · follows by Lemma 5.2.

To prove the admissibility of the introduction of ∃, we similarly rewrite

⊢ 𝐴[𝑠/𝑥], Γ ⇑ Θ

⊢ ∃𝑥.𝐴, Γ ⇑ Θ
(∃) −→ ⊢ 𝐴[𝑠/𝑥], Γ ⇑ Θ ⊢ ¬𝐴[𝑠/𝑥], ∃𝑥.𝐴 ⇑ ·

⊢ ∃𝑥.𝐴, Γ ⇑ Θ
cutu

The provability of the right premise again uses the argument schema of Section 6:
let ¬𝐴[𝑠/𝑥] ↑ Φ1, . . . ,¬𝐴[𝑠/𝑥] ↑ Φ𝑛 be the exhaustive list of multisets that are
↑-related to ¬𝐴[𝑠/𝑥]. If 𝑛 = 0, then the premise is already provable. Otherwise, for
each Φ𝑖 we have

⊢ 𝐴[𝑠/𝑥] ⇓ ∃𝑥.𝐴,Φ𝑖

⊢ ∃𝑥.𝐴 ⇓ ∃𝑥.𝐴,Φ𝑖
∃

⊢ · ⇑ ∃𝑥.𝐴,Φ𝑖
decide

⊢ ∃𝑥.𝐴,Φ𝑖 ⇑ ·
store

from which the provability of ⊢ ¬𝐴[𝑠/𝑥], ∃𝑥.𝐴 ⇑ · follows.
The LKi introduction rule for 𝑡+ yields the following admissible rule, which can be

justified by the associated LKF derivation.

⊢ 𝑡+, Γ ⇑ Θ
(𝑡+) −→

⊢ 𝑡+ ⇓ 𝑡+
𝑡+

⊢ · ⇑ 𝑡+
decide

⊢ 𝑡+ ⇑ · store

⊢ 𝑡+, Γ ⇑ Θ
(wR)

The negative introduction rules already apply on the left side of ⇑. Thus every
unfocused inference rule can be emulated on the left side ⇑, and the completeness
of LKF with respect to the intermediate LKi, and to the original LK is therefore
established.
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Theorem 7.5 (Weak completeness of LKF) If the sequent 𝐴1, . . . , 𝐴𝑛 ⊢ 𝐵1, . . . , 𝐵𝑚

is provable in LK then the sequent ⊢ ¬𝐴1
±, . . . ,¬𝐴𝑛

±, 𝐵1
±, . . . , 𝐵𝑚

± ⇑ · is provable
in LKF.

We have labeled this theorem as “weak completeness” since it states that if an
unpolarized formula is provable in LK, then there is some polarization of that formula
(namely (·)±) which is provable in LKF. Theorem 8.4 in the next section is a stronger
version of the completeness theorem since it states that every polarization of an
unpolarized theorem is provable in LKF.

8 Choosing the polarization of formulas

We are now able to prove that every polarization of a formula provable in LK is
provable in LKF. Formally, we say that the polarized formula 𝐵 (together with an
atom bias assignment 𝛿(·)) is a polarization of 𝐶 if �̌� is 𝐶.

We write 𝐴 ≡ 𝐵 to mean that both ⊢ ¬𝐴, 𝐵 ⇑ · and ⊢ ¬𝐵, 𝐴 ⇑ · are provable. We
first show that the positive and negative versions of each connective are equivalent.

Lemma 8.1 For every pair of polarized formulas 𝐴 and 𝐵, it is the case that 𝐴∨+ 𝐵 ≡
𝐴 ∨− 𝐵 and 𝐴 ∧+ 𝐵 ≡ 𝐴 ∧− 𝐵.

Proof To prove the first equivalence, we need proofs of ⊢ ¬𝐴∧− ¬𝐵, 𝐴∨− 𝐵 ⇑ · and
⊢ ¬𝐴 ∧+ ¬𝐵, 𝐴 ∨+ 𝐵 ⇑ · The first of these is straightforward given the admissibility
of the general initial rule. The provability of the second sequent is equally simple
given the admissibility of the unfocused introduction rules shown in Section 7, as
demonstrated by the following derivation.

⊢ ¬𝐴, 𝐴 ⇑ ·
⊢ ¬𝐴, 𝐴 ∨+ 𝐵 ⇑ · (∨+) ⊢ ¬𝐵, 𝐵 ⇑ ·

⊢ ¬𝐵, 𝐴 ∨+ 𝐵 ⇑ · (∨+)

⊢ ¬𝐴 ∧+ ¬𝐵, 𝐴 ∨+ 𝐵 ⇑ · (∧+)

Showing 𝐴 ∧+ 𝐵 ≡ 𝐴 ∧− 𝐵 is similar, and the equivalences between the positive and
negative versions of the units are straightforward. □

Definition 8.2 Let ◦ represent one of the binary connectives ∨− , ∨+, ∧− , or ∧+ and
let 𝐹 be a syntactic variable ranging over arbitrary polarized formulas. Let 𝑆 range
over subformula contexts which are defined inductively by

𝑆 = [·] | 𝑆 ◦ 𝐹 | 𝐹 ◦ 𝑆 | ∃𝑥.𝑆 | ∀𝑥.𝑆.

Here, [·] is a constant denoting a primitive subformula context. The notation 𝑆[𝐴]
denotes the polarized formula that results from replacing [·] in 𝑆 with 𝐴.

Theorem 8.3 Let 𝑆 be a subformula context. If 𝐴 ≡ 𝐵 then 𝑆[𝐴] ≡ 𝑆[𝐵].
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Proof We prove the general property: if ⊢ ¬𝐴, 𝐵 ⇑ · is provable then for any
subformula context 𝑆, ⊢ ¬𝑆[𝐴], 𝑆[𝐵] ⇑ · is also provable.

The proof of this property essentially repeats the arguments for eliminating the
generalized initial rule. However, instead of replicating Lemmas 5.2 and 5.3, we can
take advantage of the admissibility of unfocused rules for the positive connectives.

We proceed by induction on 𝑆. In the base case, 𝑆 = [·] and the property
is immediate. If, instead, 𝑆 = 𝐹 ∨− 𝑆′ then 𝑆[𝐴] = 𝐹 ∨− 𝑆′ [𝐴], and ¬𝑆[𝐴] =

¬𝐹 ∧+ ¬𝑆′ [𝐴]: we construct

⊢ ¬𝐹, 𝐹, 𝑆′ [𝐵] ⇑ · ⊢ ¬𝑆′ [𝐴], 𝑆′ [𝐵], 𝐹 ⇑ ·
⊢ ¬𝐹 ∧+ ¬𝑆′ [𝐴], 𝐹, 𝑆′ [𝐵] ⇑ · (∧+)

⊢ ¬𝐹 ∧+ ¬𝑆′ [𝐴], 𝐹 ∨− 𝑆′ [𝐵] ⇑ · ∨−

The left premise follows from the general initial rule admissibility and the right
premise is provable by inductive hypothesis (plus weakening). All the other cases are
proved similarly. □

Theorem 8.4 (Strong completeness of LKF) Let 𝐶 be an unpolarized formula that
is provable in LK and let 𝐵 be a polarization of 𝐶. Then 𝐵 is provable in LKF.

Proof Let𝐶 be an unpolarized formula that is provable in LK and let 𝐵 be a polarized
version of 𝐶 and let 𝛿(·) be any atomic bias assignment. By weak completeness
(Theorem 7.5), we know that𝐶± is provable in LKF. Since the only difference between
𝐶± and 𝐵 are polarized formulas is that the + and − signs on logical connectives
might be different and, by construction, the atoms in 𝐶 are all given positive bias.
Using the equivalences in Lemma 8.1 and Theorem 8.3, we can conclude that 𝐵 is
provable, assuming that all atoms are positively biased.

What remains to be shown is that provability is preserved by imposing the atomic
bias assignment 𝛿(·). Translating a proof with a negative atom 𝑎 into one where 𝑎 is
considered positive is the same as translating a proof with ¬𝑎 considered positive
to one where ¬𝑎 is considered negative, so we only need to show one direction
of the translation. Assume that 𝑎 is considered negative in a proof. A strategy for
reconstructing the proof where 𝑎 is considered positive is to use delays together
with cut. In particular, we define the polarized formula 𝐵𝛿 as the result of replacing
every occurrence of 𝑎 in 𝐵 with 𝑎 ∨− 𝑓 − (and therefore every occurrence of ¬𝑎 by
¬𝑎 ∧+ 𝑡+). The strategy is to show that every proof of ⊢ 𝐵 ⇑ · with 𝑎 considered
negative corresponds to a proof of ⊢ 𝐵𝛿 ⇑ · with 𝑎 considered positive. Then by the
cut rule

⊢ 𝐵𝛿 ⇑ · ⊢ ¬𝐵𝛿 , 𝐵 ⇑ ·
⊢ 𝐵 ⇑ ·

cutu

we derive a proof of 𝐵 without delays and with 𝑎 considered positive. We can
easily generalized the proof of a single formula to the proof of a sequent since (by
invertibility) a multiset {𝐵1, . . . , 𝐵𝑛} is equivalent to 𝐵1 ∨− 𝐵2 . . . ∨− 𝐵𝑛.

The rules that may have a literal as principal formula are store, release, decide,
and init. We show how each rule is emulated in a proof of 𝐵𝛿 :
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1. Both 𝑎 and ¬𝑎 can be subject to a store, in which case the emulations are as
follow.

⊢ Γ ⇑ 𝑎,Θ

⊢ 𝑎, Γ ⇑ Θ
store −→

⊢ Γ ⇑ 𝑎,Θ

⊢ 𝑎, Γ ⇑ Θ
store

⊢ 𝑎, 𝑓 − , Γ ⇑ Θ
𝑓 −

⊢ 𝑎 ∨− 𝑓 − , Γ ⇑ Θ
∨−

⊢ Γ ⇑ ¬𝑎,Θ
⊢ ¬𝑎, Γ ⇑ Θ

store −→ ⊢ Γ ⇑ ¬𝑎 ∧+ 𝑡+,Θ
⊢ ¬𝑎 ∧+ 𝑡+, Γ ⇑ Θ

store

Thus, in a proof of 𝐵𝛿 , 𝑎 will appear on the right side of ⇑ and ⇓ as 𝑎 but ¬𝑎
will appear as ¬𝑎 ∧+ 𝑡+.

2. The release rule is applicable when 𝑎 is considered negative and is still applicable
to 𝑎 ∨− 𝑓 − when 𝑎 is considered positive. Since 𝑎 is a literal, the only rule that
can apply above release is store.

⊢ · ⇑ 𝑎,Θ

⊢ 𝑎 ⇑ Θ
store

⊢ 𝑎 ⇓ Θ
release

−→

⊢ · ⇑ 𝑎,Θ

⊢ 𝑎 ⇑ Θ
store

⊢ 𝑎, 𝑓 − ⇑ Θ
𝑓 −

⊢ 𝑎 ∨− 𝑓 − ⇑ Θ
∨−

⊢ 𝑎 ∨− 𝑓 − ⇓ Θ
release

3. In the init rule, 𝑎 is negative: it is emulated as indicated.

⊢ ¬𝑎 ⇓ 𝑎,Θ
init −→

⊢ 𝑎 ⇓ ¬𝑎, 𝑎,Θ init

⊢ · ⇑ ¬𝑎, 𝑎,Θ decide

⊢ ¬𝑎 ⇑ 𝑎,Θ
store

⊢ ¬𝑎 ⇓ 𝑎,Θ
release ⊢ 𝑡+ ⇓ 𝑎,Θ

𝑡+

⊢ ¬𝑎 ∧+ 𝑡+ ⇓ 𝑎,Θ
∧+

4. Finally, when 𝑎 is considered negative, the decide rule can only be applied to ¬𝑎,
and must be preceded from above by an init, and so is emulated as follows

⊢ ¬𝑎 ⇓ ¬𝑎, 𝑎,Θ
⊢ · ⇑ ¬𝑎, 𝑎,Θ decide −→ ⊢ ¬𝑎 ∧+ 𝑡+ ⇓ ¬𝑎 ∧+ 𝑡+, 𝑎,Θ

⊢ · ⇑ ¬𝑎 ∧+ 𝑡+, 𝑎,Θ decide

The proof of the remaining premise is easy to find.

Finally, to show that ⊢ ¬𝐵𝛿 , 𝐵 ⇑ · is provable with 𝑎 considered positive, we
induct on the structure of 𝐵:

1. If 𝐵 is 𝑎 or ¬𝑎, consider the following derivations.
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⊢ 𝑎 ⇓ 𝑎,¬𝑎 init

⊢ · ⇑ 𝑎,¬𝑎 decide

⊢ 𝑎,¬𝑎 ⇑ · store

⊢ 𝑎, 𝑓 − ,¬𝑎 ⇑ · 𝑓 −

⊢ 𝑎 ∨− 𝑓 − ,¬𝑎 ⇑ · ∨−

⊢ ¬𝑎 ∧+ 𝑡+ ⇓ ¬𝑎 ∧+ 𝑡+, 𝑎
⊢ · ⇑ ¬𝑎 ∧+ 𝑡+, 𝑎 decide

⊢ ¬𝑎 ∧+ 𝑡+, 𝑎 ⇑ · store

The proof of ⊢ ¬(𝑎 ∨− 𝑓 −), 𝑎 ⇑ · on the right is preceded from above by the
same subproof as in the imitation of decide for ¬𝑎 ∧+ 𝑡+.

2. If 𝐵 is 𝐶 ∨− 𝐷, we apply the admissible unfocused rules to simplify the proof:

⊢ ¬𝐶 𝛿 , 𝐶, 𝐷 ⇑ · ⊢ ¬𝐷 𝛿 , 𝐶, 𝐷 ⇑ ·
⊢ ¬𝐶 𝛿 ∧+ ¬𝐷 𝛿 , 𝐶, 𝐷 ⇑ ·

(∧+)

⊢ ¬𝐶 𝛿 ∧+ ¬𝐷 𝛿 , 𝐶 ∨− 𝐷 ⇑ ·
∨−

The premises are provable by inductive hypotheses and by weakening.
3. If 𝐵 is 𝐶 ∨+ 𝐷:

⊢ ¬𝐶 𝛿 , 𝐶 ⇑ ·
⊢ ¬𝐶 𝛿 , 𝐶 ∨+ 𝐷 ⇑ ·

(∨+) ⊢ ¬𝐷 𝛿 , 𝐷 ⇑ ·
⊢ ¬𝐷 𝛿 , 𝐶 ∨+ 𝐷 ⇑ ·

(∨+)

⊢ ¬𝐶 𝛿 ∧− ¬𝐷 𝛿 , 𝐶 ∨+ 𝐷 ⇑ ·
∧−

The premises are provable by inductive hypotheses.
4. The cases of 𝐶 ∧+ 𝐷 and 𝐶 ∧− 𝐷 are symmetrical to the above. The cases of ∃

and ∀ are also similar and cases where 𝑎 does not appear in 𝐵 follows directly
from the admissibility of the general initial rule. □

Pimentel, Nigam, and Neto (2016) give a similar analysis of how changing the
polarity of atoms within the intuitionistic focused proof system LJF (Liang and Miller,
2009) affects the structure of such proofs.

9 Four applications of LKF

Part of the motivation for developing the LKF proof system is that its meta-theory
should help in proving other proof-theoretic results about first-order classical logic.
To support this claim, we present four applications of LKF.

9.1 The admissibility of cut in LK

We can prove that the admissibility of cut holds for LK given that we have proved
cut-admissibility for the more complex proof system LKF. While it is no surprise that
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this can be done, it is reassuring to see that that result for LK follows so directly from
the results for LKF.

Theorem 9.1 The cut rule for LK is admissible in the cut-free fragment of LK.

Proof Assume that the sequents Γ ⊢ Δ, 𝐵 and Γ′, 𝐵 ⊢ Θ′ have cut-free LK-proofs.
By the weak completeness of LKF (Theorem 7.5), the sequents ⊢ ¬(Γ)±, (Δ)±, 𝐵± ⇑ ·
and ⊢ ¬(Γ′)±,¬(𝐵±), (Δ′)± ⇑ · both have (cut-free) LKF proofs. By the admissibility
of cut for LKF (Theorem 4.1), we know that ⊢ ¬(Γ)±,¬(Γ′)±, (Δ)±, (Δ′)± ⇑ · has
a (cut-free) LKF proof. Finally, by Theorem 7.2, we know that Γ, Γ′ ⊢ Δ,Δ′ has a
cut-free LK proof. □

9.2 Synthetic inference rules

Following up on the suggestion in Section 2.4, we show how to define larger-scale,
synthetic inference rules using the LKF proof system.

A sequent of the form ⊢ · ⇑ Θ is called a border sequent. The only LKF proof rule
that can have a border sequent as a conclusion is the decide rule.

Definition 9.2 (Synthetic inference rule) A synthetic inference rule is an inference
rule involving only border sequents. They are of the form

⊢ · ⇑ Θ1 . . . ⊢ · ⇑ Θ𝑛

⊢ · ⇑ Θ

which is justified by a derivation of the form

⊢ · ⇑ Θ1 . . . ⊢ · ⇑ Θ𝑛

Π

⊢ · ⇑ Θ

Here, 𝑛 ≥ 0, and the derivation Π contains exactly one occurrence of the decide
rule and that occurrence is the last inference rule (having the conclusion ⊢ · ⇑ Θ).
If that decide rule selects as its focus the polarized formula 𝐵 ∈ Θ, we say that this
derivation is a synthetic inference rule for 𝐵.

Consider again using the formula (from Section 2.4)

∀𝑥∀𝑦∀𝑧.(path(𝑥, 𝑦) ⊃ path(𝑦, 𝑧) ⊃ path(𝑥, 𝑧))

as an assumption in a given fixed theory. In the one-sided sequent setting of LKF,
consider instead the negation of this assumption, namely,

∃𝑥∃𝑦∃𝑧.(path(𝑥, 𝑦) ∧+ path(𝑦, 𝑧) ∧+ ¬path(𝑥, 𝑧)).

Assuming that this positive polarized formula is a member of Θ, then consider the
following derivation.
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Ξ1
⊢ path(𝑟, 𝑠) ⇓ Θ

Ξ2
⊢ path(𝑠, 𝑡) ⇓ Θ

Ξ3
⊢ ¬path(𝑟, 𝑡) ⇓ Θ

⊢ path(𝑟, 𝑠) ∧+ path(𝑠, 𝑡) ∧+ ¬path(𝑟, 𝑡) ⇓ Θ
∧+ × 2

⊢ ∃𝑥∃𝑦∃𝑧.(path(𝑥, 𝑦) ∧+ path(𝑦, 𝑧) ∧+ ¬path(𝑥, 𝑧)) ⇓ Θ
∃ × 3

⊢ · ⇑ Θ
decide

In order to determine the shape of the proofs Ξ1, Ξ2, and Ξ3, we must declare the
polarization given to atoms with the path predicate. If all such atoms have a negative
polarity assigned to them, then both Ξ1 and Ξ2 end with the release and store rules
while the proof Ξ3 must be trivial (just containing the init rule) and path(𝑟, 𝑡) must
be a member of Θ. We can write the synthetic rule justified by the above derivation as

⊢ · ⇑ path(𝑟, 𝑠),Θ ⊢ · ⇑ path(𝑠, 𝑡),Θ
⊢ · ⇑ path(𝑟, 𝑡),Θ

However, if all path-atoms have a positive polarity assigned to them, then Ξ3 ends
with the release and store rules while the proof Ξ1 and Ξ2 must be trivial and both
¬path(𝑟, 𝑠) and ¬path(𝑠, 𝑡) must be members of Θ. We can write the synthetic rule
justified by the above derivation as

⊢ · ⇑ ¬path(𝑟, 𝑠),¬path(𝑠, 𝑡),¬path(𝑟, 𝑡),Θ
⊢ · ⇑ ¬path(𝑟, 𝑠),¬path(𝑠, 𝑡),Θ

.

Note that these synthetic inference rules are the one-sided version of the back-chaining
and forward-chaining synthetic inference rules for path displayed in Section 2.4.

The paper Marin, Miller, Pmentel, and Volpe (2020) develops the proof theory of
synthetic inferences for both classical and intuitionistic logic by using the focused
proof systems LKF and LJF. That paper also shows that cut and the general initial rule
are both admissible in the LK and LJ proof systems augmented with such synthetic
inference rules based on geometric formulas.

9.3 Herbrand’s theorem

The completeness of LKF proofs yields a surprisingly simple proof of Herbrand’s
theorem, particularly the variant of Herbrand’s theorem based on formulas with only
existential quantifiers in prefix position. A richer connection between a more general
form of Herbrand’s theorem, based on expansion trees (Miller, 1987), and LKF proofs
can be found in Chaudhuri, Hetzl, and Miller (2016).

Theorem 9.3 (Herbrand’s theorem) Let 𝐵 be an (unpolarized) quantifier-free
formula of first-order classical logic, 𝑛 ≥ 1, and 𝑥1, . . . , 𝑥𝑛 be a list of first-order
variables containing all the free variable of 𝐵. The formula ∃𝑥1 . . . ∃𝑥𝑛.𝐵 is provable
in LK if and only if there is an 𝑚 ≥ 1 and substitutions 𝜃1, . . . , 𝜃𝑚 for the variables
𝑥1, . . . , 𝑥𝑛 such that 𝐵𝜃1 ∨ · · · ∨ 𝐵𝜃𝑚 is provable in LK.
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Proof Let �̂� be a polarized version of 𝐵 in which all logical connectives and units
in 𝐵 are polarized negatively. (For convenience, we abbreviate ∃𝑥1 . . . ∃𝑥𝑛 with ∃𝑥.)
Since ∃𝑥.𝐵 is provable in LK, the sequent ⊢ ∃𝑥.�̂� ⇑ · must have an LKF proof, say Ξ.
Clearly, the last inference rule of Ξ is the store rule with premise ⊢ · ⇑ ∃𝑥.�̂�. Given
our choice of polarization, it is easy to show that every border sequent in Ξ is of the
form ⊢ · ⇑ ∃𝑥.�̂�,L, where L is a set of literals. Thus, there are only two different
ways that the decide rule is applied in Ξ. If the decide rule is used with a positive
literal, the premise is immediately proved using the init rule. Otherwise, the decide
rule starts the synchronous phase with the choice of ∃𝑥.�̂� and the subproof determined
by that occurrence of the decide rule ends with the following inference rules.

⊢ �̂�𝜃 ⇑ ∃𝑥.�̂�,L
⊢ �̂�𝜃 ⇓ ∃𝑥.�̂�,L

release

⊢ ∃𝑥.�̂� ⇓ ∃𝑥.�̂�,L
∃ × 𝑛

That is, every non-trivial synchronous phase encodes a substitution. Let 𝑚 ≥ 1 be the
number of such non-trivial synchronous phases and let 𝜃1, . . . , 𝜃𝑚 be the substitutions
that those phases encode.

Now let 𝐶 be the polarized formula 𝐶 equal to �̂�𝜃1 ∨+ . . . ∨+ �̂�𝜃𝑚 and consider
building an LKF proof of ⊢ 𝐶 ⇑ ·. In order to ensure that 𝐶 is polarized positively,
if 𝑚 = 1, we take 𝐶 to be 𝐶 ∨+ 𝑓 + (essentially encoding a unary version of the binary
∨+). It is now a simple matter to convert the proof Ξ of ⊢ ∃𝑥.�̂� ⇑ · into a proof
of ⊢ �̂�𝜃1 ∨+ . . . ∨+ �̂�𝜃𝑚 ⇑ · by copying the asynchronous phases directly and by
replacing all the non-trivial synchronous phase in Ξ as follows.

⊢ �̂�𝜃𝑖 ⇑ ∃𝑥.�̂�,L
⊢ �̂�𝜃𝑖 ⇓ ∃𝑥.�̂�,L

release

⊢ ∃𝑥.�̂� ⇓ ∃𝑥.�̂�,L
∃ × 𝑛

=⇒
⊢ �̂�𝜃𝑖 ⇑ 𝐶,L
⊢ �̂�𝜃𝑖 ⇓ 𝐶,L

release

⊢ �̂�𝜃1 ∨+ . . . ∨+ �̂�𝜃𝑚 ⇓ 𝐶,L
∨+

In this way, the phase-by-phase structure of Ξ can be used to build an LKF proof for
⊢ �̂�𝜃1 ∨+ . . . ∨+ �̂�𝜃𝑚 ⇑ ·. □

9.4 Hosting other focused proof systems

Proof systems with focusing-like behaviors can sometimes be hosted inside LKF.
Such hosting is usually done by translating unpolarized classical logic formulas into
polarized formulas in which delays have been inserted. These delays are written as
𝜕−(𝐵) and 𝜕+(𝐵) and are such that they are both logically equivalent to the polarized
formula 𝐵 and are such that 𝜕−(𝐵) is negative and 𝜕+(𝐵) is positive. The expression
𝜕−(𝐵) can be defined to be either 𝑓 − ∨− 𝐵, 𝑡− ∧− 𝐵, or ∀𝑥𝐵 (where 𝑥 is not free in 𝐵).
Similarly, the expression 𝜕+(𝐵) can be defined to be either 𝑓 + ∨+ 𝐵, 𝑡+ ∧+ 𝐵, or ∃𝑥𝐵
(where 𝑥 is not free in 𝐵).

The LKQ and LKT proof systems of Danos, Joinet, and Schellinx (1995) can be seen
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LKT

Atoms are negative

LKQ

Atoms are positive
(𝐴)𝑙 = ¬𝐴 (𝐴)𝑙 = ¬𝐴
(𝐴)𝑟 = 𝐴 (𝐴)𝑟 = 𝐴

(𝐵 ⊃ 𝐶 )𝑙 = (𝐵)𝑟 ∧+ (𝐶 )𝑙 (𝐵 ⊃ 𝐶 )𝑙 = (𝐵)𝑟 ∧+ 𝜕−( (𝐶 )𝑙 )
(𝐵 ⊃ 𝐶 )𝑟 = (𝐵)𝑙 ∨− 𝜕+( (𝐶 )𝑟 ) (𝐵 ⊃ 𝐶 )𝑟 = 𝜕+( (𝐵)𝑙 ∨− (𝐶 )𝑟 )

Fig. 6 Two different ways to translate classical logic formulas into polarized formulas.

as LKF proofs in which the following polarization functions are used. Figure 6 defines
the left and right translations of unpolarized formulas containing only implications
and atoms to polarized formulas. In that figure, 𝐴 ranges over atomic formulas. It is the
case that (cut-free) proofs in LKT of an unpolarized formula 𝐵 using only implications
correspond to LKF proofs of (𝐵)𝑟 (using the LKT definition) and (cut-free) proofs in
LKQ of an unpolarized formula 𝐵 using only implications correspond to LKF proofs of
(𝐵)𝑟 (using the LKQ definition). LKT focuses only on the left and LKQ only on the right
of two-sided sequents. These systems are also examples of “less aggressive” focused
systems that designate a “stoup” formula: these systems impose fewer restrictions
than the formula under focus in LKF. The delays emulate the one-sided focusing
character of these systems as well as adopt the stoup to a strongly focused system.

10 Other variations for focusing in classical logic

There have been several variations on focusing systems studied in the literature. In
fact, the general phenomena of focusing for classical logic can be seen as arising from
Girard’s uses of linear logic exponentials to encode classical logic (Girard, 1987) and
from Andreoli’s discovery of polarity (Andreoli, 1992).

The LKF proof system we have given here can be called a strongly focused system:
the decide rule can only be invoked after every negative non-atomic polarized formula
has been removed from the sequent. If we do not insist that all negative polarized
formulas have been removed in this way, the resulting variant is called a weakly
focused proof system following Laurent (2004) and Simmons and Pfenning (2011).
Girard’s LC proof system is an early example of a weakly focused proof system for
classical logic (Girard, 1991). A variant on strong focusing is a system where one
chooses a predetermined suspension criterion and then allows explicitly suspected
negative polarized formulas to remain in the conclusion of the (suitably modified)
decide rule: suspensions of this kind have proved useful in a setting where logic
contains fixed point expressions (Gérard and Miller, 2017).

Let LKFm be the proof system that results from replacing the inference rules for
LKF with the extended version of the synchronous introduction rules and the release
and decide rules given in Figure 7. If the ‡ proviso on the decide rule requires that the
multiset Δ contains exactly one positive polarized formula, then LKFm is the same as
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Synchronous introduction rules

⊢ 𝑡+ ⇓ Γ

⊢ 𝐵1,Θ1 ⇓ Γ ⊢ 𝐵2,Θ2 ⇓ Γ

⊢ 𝐵1 ∧+ 𝐵2,Θ1,Θ2 ⇓ Γ

⊢ 𝐵𝑖 ,Θ ⇓ Γ

⊢ 𝐵1 ∨+ 𝐵2,Θ ⇓ Γ
𝑖 ∈ {1, 2}

⊢ [𝑠/𝑥 ]𝐵,Θ ⇓ Γ

⊢ ∃𝑥.𝐵,Θ ⇓ Γ

Release and decide rules

⊢ Δ ⇑ Γ

⊢ Δ ⇓ Γ
release†

⊢ Δ ⇓ Δ̄, Γ

⊢ · ⇑ Δ̄, Γ
decide‡

The † proviso requires that Δ consists of only negative polarized formulas. In the decide rule, Δ
is a non-empty multiset of positive polarized formulas and Δ̄ is its underlying set of polarized
formulas. The ‡ proviso is discussed in the text.

Fig. 7 Variations in some of the LKF inference rules.

LKF. It is for this reason that we say that LKF is single focused: in such proofs, the zone
to the left of the ⇓ always contains exactly one polarized formula (the focus of that
sequent). If the ‡ proviso restricts Δ to be just a non-empty set of positive polarized
formulas, then the resulting proof system is multifocused and that proof system
contains more proofs than the single conclusion system. Multifocused proofs were
first considered in Delande and Miller (2008) and Delande, Miller, and Saurin (2010)
(in the context of linear logic) and the notion of maximal multifocused proofs has been
used to describe canonical proof system in linear logic (Chaudhuri, Miller, and Saurin,
2008) and classical logic (Chaudhuri, Hetzl, and Miller, 2016) and to relate sequent
calculus proofs to natural deduction proofs (Pimentel, Nigam, and Neto, 2016).

Note that the version of the ∧+ introduction rule in LKFm is not necessarily
invertible, while the version of that introduction rule in LKF is invertible: it appears
that the true status of ∧+ introduction as belonging to the synchronous phase only
becomes apparent in the multifocused setting. Note also that it is immediate to prove
the completeness of LKFm given the completeness of LKF.

Two simple changes to the LKF proof system yield a focused proof system for
multiplicative additive linear logic MALL (Girard, 1987). First, the set of formulas to
the right of the double arrows must be changed to multisets. Second, the following
four inference rules must replace the corresponding inference rules in LKF (Figure 3).

𝐴 atomic
⊢ 𝐴 ⇓ ¬𝐴 init

⊢ 𝑃 ⇓ Γ

⊢ · ⇑ 𝑃, Γ
decide ⊢ 𝑡+ ⇓ · 𝑡+

⊢ 𝐴 ⇓ Θ1 ⊢ 𝐵 ⇓ Θ2
⊢ 𝐴 ∧+ 𝐵 ⇓ Θ1,Θ2

∧+

Here, the init and 𝑡+ rules do not do an implicit weakening, the decide rule does not do
an implicit contraction, and the side formulas of ∧+ are treated multiplicatively. The
resulting proof system, called MALLF in Liang and Miller (2011), is a focused proof
system for MALL. Of course, the usual presentation of MALL results from replacing
the logical connectives 𝑡− , 𝑡+, 𝑓 − , 𝑓 +, ∧− , ∧+, ∨+, and ∨− with ⊤, 1, ⊥, 0, &, ⊗, `,
and ⊕, respectively. The fact that this proof system is sound and complete for MALL
immediately follows from the results about focusing in full linear logic given by
Andreoli (1992).
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Another variation on focused proof systems uses a list, not a multiset, of formulas
to the left of the ⇑: that is, the order by which the asynchronous inference rules are
attempted is proscribed in a fixed fashion. This variation was used by Andreoli (1992)
in his first focused proof system for linear logic.

The LKF proof system was designed to support automated proof checking and
proof search (Chihani, Miller, and Renaud, 2017) as well as to provide new means
for proving meta-theoretic results for first-order classical logic (see Section 9). Other
researchers, concentrating on the Curry-Howard correspondence (proofs-as-programs)
perspective, have designed other variants of focusing for classical logic. In particular,
see the LC proof system (Girard, 1991), the LK𝜂

𝜌 (Danos, Joinet, and Schellinx,
1995; Danos, Joinet, and Schellinx, 1997), and the proof system used to define the
�̄�𝜇�̃�-calculus (Curien and Herbelin, 2000).

11 Conclusion

We have presented the proof system LKF and have proved that it is sound and complete
for LK and that the cut rule and the initial rule are admissible. The proofs of these
theorems were all done directly using permutation arguments. We have illustrated the
utility of LKF by applying it to some standard topics that arise in the proof theory
of classical logic. We hope that while the metatheory of LKF was established by
tedious permutation arguments, many other properties of proofs in classical logic
can be proved by applying LKF directly and without the need for such permutation
arguments.

Acknowledgements We thank Beniamino Accattoli, Marianna Girlando, and the anonymous
reviewers for their comments on an earlier version of this paper.

References

Andreoli, J. M. (1992). Logic programming with focusing proofs in linear logic.
Journal of Logic and Computation 2, 297–347. doi: 10.1093/logcom/2.3.297.

Chaudhuri, K., S. Hetzl, and D. Miller (2016). A multi-focused proof system isomor-
phic to expansion proofs. Journal of Logic and Computation 26, 577–603. doi:
10.1093/logcom/exu030.

Chaudhuri, K., D. Miller, and A. Saurin (2008). Canonical sequent proofs via multi-
focusing. In: Fifth International Conference on Theoretical Computer Science.
Ed. by G. Ausiello, J. Karhumäki, G. Mauri, and L. Ong. Vol. 273. IFIP. Springer,
383–396. doi: 10.1007/978-0-387-09680-3\_26.

Chaudhuri, K., F. Pfenning, and G. Price (2008). A logical characterization of forward
and backward chaining in the inverse method. Journal of Automated Reasoning
40, 133–177. doi: 10.1007/s10817-007-9091-0.

https://doi.org/10.1093/logcom/2.3.297
https://doi.org/10.1093/logcom/exu030
https://doi.org/10.1007/978-0-387-09680-3\_26
https://doi.org/10.1007/s10817-007-9091-0


312 Chuck Liang and Dale Miller

Chihani, Z.,D. Miller, and F. Renaud (2017). A semantic framework for proof evidence.
Journal of Automated Reasoning 59, 297–330. doi: 10.1007/s10817-016-9380-6.

Curien, P.-L. and H. Herbelin (2000). The duality of computation. In: ICFP ’00:
Proceedings of the fifth ACM SIGPLAN international conference on Functional
programming. New York: ACM Press, 233–243. doi: 10.1145/357766.351262.

Danos, V., J. B. Joinet, and H. Schellinx (1995). LKT and LKQ: sequent calculi for
second order logic based upon dual linear decompositions of classical implication.
In: Advances in Linear Logic. Ed. by J.-Y. Girard, Y. Lafont, and L. Regnier.
Vol. 22. London Mathematical Society Lecture Note Series. Cambridge University
Press, 211–224.

Danos, V., J.-B. Joinet, and H. Schellinx (1997). A new deconstructive logic: linear
logic. Journal of Symbolic Logic 62, 755–807. doi: 10.2307/2275572.

Delande, O. and D. Miller (2008). A neutral approach to proof and refutation in
MALL. In: 23th Symposium on Logic in Computer Science. Ed. by F. Pfenning.
IEEE Computer Society Press, 498–508. doi: 10.1016/j.apal.2009.07.017.

Delande, O., D. Miller, and A. Saurin (2010). Proof and refutation in MALL as a game.
Annals of Pure and Applied Logic 161, 654–672. doi: 10.1016/j.apal.2009.07.017.

Gentzen, G. (1935). Investigations into logical deduction. In: The Collected Papers
of Gerhard Gentzen. Ed. by M. E. Szabo. Translation of articles that appeared in
1934-35. Collected papers appeared in 1969. Amsterdam: North-Holland, 68–131.
doi: 10.1007/BF01201353.

Gérard, U. and D. Miller (2017). Separating functional computation from relations.
In: 26th EACSL Annual Conference on Computer Science Logic (CSL 2017).
Ed. by V. Goranko and M. Dam. Vol. 82. LIPIcs, 23:1–23:17. doi: 10.4230/LIPIcs.
CSL.2017.23.

Girard, J. Y., P. Taylor, and Y. Lafont (1989). Proofs and Types. Cambridge University
Press.

Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science 50, 1–102. doi:
10.1016/0304-3975(87)90045-4.

– (1991). A new constructive logic: classical logic. Mathematical Structures in
Computer Science 1, 255–296. doi: 10.1017/S0960129500001328.

Guglielmi, A. and T. Gunderson (2008). Normalisation control in deep inference via
atomic flows. Logical Methods in Computer Science 1.

Hallnäs, L. and P. Schroeder-Heister (1990). A proof-theoretic approach to logic
programming. I. Clauses as rules. Journal of Logic and Computation 1, 261–283.
doi: 10.1093/logcom/1.2.261.

Heath, Q. and D. Miller (2019). A proof theory for model checking. Journal of
Automated Reasoning 63, 857–775. doi: 10.1007/s10817-018-9475-3.

Herbelin, H. (1995). A lambda-calculus structure isomorphic to Gentzen-style sequent
calculus structure. In: Computer Science Logic, 8th International Workshop,
CSL ’94. Vol. 933. Lecture Notes in Computer Science. Springer, 61–75. doi:
10.1007/BFb0022247.

Kleene, S. C. (1952). Permutability of inferences in Gentzen’s calculi LK and LJ.
Memoirs of the American Mathematical Society 10, 1–26.

https://doi.org/10.1007/s10817-016-9380-6
https://doi.org/10.1145/357766.351262
https://doi.org/10.2307/2275572
https://doi.org/10.1016/j.apal.2009.07.017
https://doi.org/10.1016/j.apal.2009.07.017
https://doi.org/10.1007/BF01201353
https://doi.org/10.4230/LIPIcs.CSL.2017.23
https://doi.org/10.4230/LIPIcs.CSL.2017.23
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1017/S0960129500001328
https://doi.org/10.1093/logcom/1.2.261
https://doi.org/10.1007/s10817-018-9475-3
https://doi.org/10.1007/BFb0022247


Focusing Gentzen’s LK proof system 313

Laurent, O. (2004). A proof of the focalization property of linear logic. Unpublished
note.

– (2011). Intuitionistic dual-intuitionistic nets. Journal of Logic and Computation
21, 561–587. doi: 10.1093/logcom/exp044.

Liang, C. and C. Miller (2011). A focused approach to combining logics. Annals of
Pure and Applied Logic 10, 679–697. doi: 10.1016/j.apal.2011.01.012.

Liang, C. and D. Miller (2009). Focusing and polarization in linear, intuitionistic, and
classical logics. Theoretical Computer Science 410, 4747–4768. doi: 10.1016/j.
tcs.2009.07.041.

Miller, D. (1987). A compact representation of proofs. Studia Logica 46, 347–370.
doi: 10.1007/BF00370646.

– (1989). A logical analysis of modules in logic programming. Journal of Logic
Programming 6, 79–108. doi: 10.1016/0743-1066(89)90031-9.

Miller, D., G. Nadathur, F. Pfenning, and A. Scedrov (1991). Uniform proofs as a
foundation for logic programming. Annals of Pure and Applied Logic 51, 125–157.
doi: 10.1016/0168-0072(91)90068-W.

Negri, S. and J. von Plato (1998). Cut elimination in the presence of axioms. Bulletin
of Symbolic Logic 4, 418–435. doi: 10.2307/420956.

Pimentel, E., V. Nigam, and J. Neto (2016). Multi-focused proofs with different
polarity assignments. In: Proceedings of the Tenth Workshop on Logical and
Semantic Frameworks, with Applications (LSFA 2015). Vol. 323. ENTCS, 163–179.
doi: 10.1016/j.entcs.2016.06.011.

Scherer, G. (2016). Which types have a unique inhabitant? Focusing on pure program
equivalence. PhD thesis. Université Paris-Diderot.

Simmons, R. J. (2014). Structural focalization. ACM Transaction on Computational
Logic 15. doi: 10.1145/2629678.

Simmons, R. J. and F. Pfenning (2011). Weak focusing for ordered linear logic.
Technical Report. CMU-CS-10-147, Carnegie Mellon University.

von Plato, J. (2012). Gentzen’s proof systems: byproducts in a work of genius. Bulletin
of Symbolic Logic 18, 313–367. doi: 10.2178/bsl/1344861886.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-sa/4.0/), which per-
mits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made. If you remix, transform, or build upon this
chapter or a part thereof, youmust distribute your contributions under the same license as the original.
The images or other third party material in this chapter are included in the chapter's Creative

Commons license, unless indicated otherwise in a credit line to thematerial. If material is not included
in the chapter's Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.

https://doi.org/10.1093/logcom/exp044
https://doi.org/10.1016/j.apal.2011.01.012
https://doi.org/10.1016/j.tcs.2009.07.041
https://doi.org/10.1016/j.tcs.2009.07.041
https://doi.org/10.1007/BF00370646
https://doi.org/10.1016/0743-1066(89)90031-9
https://doi.org/10.1016/0168-0072(91)90068-W
https://doi.org/10.2307/420956
https://doi.org/10.1016/j.entcs.2016.06.011
https://doi.org/10.1145/2629678
https://doi.org/10.2178/bsl/1344861886
https://creativecommons.org/licenses/by-sa/4.0/

	Focusing Gentzen’s LK Proof System



