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Abstract The status of the equality predicate as a logical constant is problematic.
In the paper we look at the problem from the proof-theoretic standpoint and survey
several ways of treating equality in formal systems of different sorts. In particular,
we focus on the framework of sequent calculus and examine equality in the light of
criteria of logicality proposed by Hacking and Došen. Both attempts were formulated
in terms of sequent calculus rules, although in the case of Došen it has a nonstandard
character. It will be shown that equality can be characterised in a way which satisfies
Došen’s criteria of logicality. In the case of Hacking’s approach the fully satisfying
result can be obtained only for languages with a nonempty, finite set of predicate
constants other than equality. Otherwise, cut elimination theorem fails to hold.
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1 Introduction

It is difficult to find serious applications of logic that do not use equality. Not only it
is necessary for development of mathematical theories but it plays also an important
role in philosophical applications. Yet it is problematic to show that it is a logical
constant having a similar behaviour to undisputable cases like extensional connectives
or quantifiers. In this paper we try to look at the problem from the proof-theoretic
perspective and ask if it is possible to characterize equality by means of rules
satisfying some of the proposed criteria of logicality. For simplicity’s sake we restrict
our considerations to classical first-order logic (FOL) although obtained results may
be easily transmitted to intuitionistic logic (see concluding remarks). The criteria
which will be examined with respect to equality are those proposed by Hacking (1979)
and Došen (1989), and the framework for our considerations is provided by Gentzen’s
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sequent calculus (SC). This is partly determined by the fact that both approaches
to criteria of logicality were proposed in this framework, although in the case of
Došen it was not a standard variant of SC. Moreover, the framework of SC seems to
be particularly well suited for investigations concerning the problems of criteria for
logical constants and in general for investigations in proof-theoretic semantics (see,
e.g., Schroeder-Heister 2016).

It will be convenient to start our considerations with some general remarks
concerning equality since the problem of its logical status begins with the proper
understanding of what the equality predicate stands for. It is tacitly and commonly
assumed that a binary predicate, usually symbolised as =, is introduced to formal
languages as a characterization of the identity relation. In fact, the words ‘identity’
and ‘equality’ are often treated as synonymous by a majority of mathematicians and
logicians (not excluding the author). Usually, it does not lead to any problems, but
in the case where equality is itself an object of study, we should be more careful.
Therefore, we prefer to follow here such authors like Manzano and Moreno (2017) or
Kahle (2016), in keeping a strict distinction between identity and equality. Identity
is a relation between objects and equality between terms. The former is a semantic
relation that holds trivially only between an object and itself, whereas the latter
is a syntactical relation which may hold between any terms of the language. It is
natural to postulate that the equality predicate expresses in the language the identity
of objects denoted by its arguments, however, there are serious problems hidden
in such identification. First of all it can be even doubtful if identity is a genuine
relation, and if so, if it should be represented by some binary predicate. Wittgenstein
(1922) presented such a view in his rejection of the very symbol of equality from his
language. In fact, Wittgenstein’s view can be formally developed in an interesting
way, as was shown by Hintikka (1956) and Wehmeier (2014).

Even if we follow a standard practice of treating identity as a relation, one must
be aware that the kind of the correspondence between the equality predicate and the
identity relation is not very strict. In model-theoretic terms identity is just a diagonal
relation on the product of the domain of a model. But the equality predicate, as
characterised in axiomatic systems of first-order logic (see Section 3) cannot express
identity only. Even in the case of a language with a finite number of predicates,
one can find nonstandard models in which axioms of equality do not characterise
identity. It seems that the second-order logic (SOL) is better in this respect. Well, if
we admit that the second-order logic is a genuine logic we can define identity in terms
of equivalence and the second-order universal quantification, by means of Leibniz’
axiom (see Section 3). But the second-order logic is expressive enough to capture
Peano’s Arithmetic so only the logicist position makes this argument unproblematic.
Moreover, this holds only in the standard semantics for which SOL is not complete.
If we take Henkin’s generalised models to regain completeness, we can again find
models where Leibniz’ axiom does not determine identity (see, e.g., Manzano, 2005).

Despite the deficiency of equality as a definition of identity (in FOL in particular) it
does make sense to check if equality itself may be conceived as a logical constant and
this is our aim. In Section 2 we establish the notation and recall the basic information
on sequent calculi and properties of rules which are important for this task. Several
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ways of formalising equality in axiomatic and natural deduction systems are surveyed
in Section 3. Ways of dealing with equality in sequent calculi are discussed in a
separate section. In Section 5 we recall criteria of logicality formulated by Hacking
and check if equality can be formalised in a way conforming to these desiderata. It
appears that most of the criteria hold for our proposal but cut elimination is sensitive to
the kind of language under consideration. In Section 6 we describe Došen’s approach
and a nonstandard structural variant of sequent calculus adapted to its realization. It
seems that equality formalised in this kind of a system satisfies fully the conditions
for logical constant but only if equality is not the only predicate of the language. We
finish with some remarks concerning further applications and possible generalizations
of presented approach.

2 Preliminaries

The notation applied in the paper is mostly standard. 𝜑, 𝜓, 𝜒 will represent arbitrary
formulae built by means of ¬,∧,∨,→,∀, ∃ from atomic formulae, i.e., predicates
followed by a list of terms. Following Gentzen’s custom, we distinguish between
bound and free occurrences, reserving 𝑥, 𝑦, 𝑧, . . . for representing the former and
𝑎, 𝑏, 𝑐, . . . for the latter, usually called parameters. Nothing essential depends on
this distinction, although it simplifies a definition of substitution for terms. Other
terms, if any, will be constructed from function symbols of any arity. We will use
𝑓 , 𝑔, ℎ and metalevel 𝜃𝑛 for their representation. Arbitrary terms will be represented
as 𝜏1, 𝜏2, . . .. Predicates will also be divided into parameters (schematic symbols)
and predicate constants of specific languages determining their signature. Predicates
of both categories will be represented either by 𝐴, 𝑅 or, in the metalevel, by 𝜋𝑛.
Incidentally, 𝑋 will be used for bound (predicate) variable of the second-order and.
𝜑(𝜏) denotes a fomula having at least one occurrence of 𝜏 and 𝜑[𝑥/𝜏] the result of
the correct substitution of 𝜏 for all free occurrences of 𝑥. Γ,Δ, Σ, . . . represent finite
multisets of formulae. Eventually = will be used as a symbol of equality. In general,
formulae of the form 𝜏1 = 𝜏2 are not counted as atomic, since = is considered as a
logical constant.

Following Church’s (1956) terminology we distinguish the following language
variants of FOLI (FOL with identity):

1. pure FOLI with predicate and term variables/parameters and equality as the only
predicate constant;

2. applied FOLI with additional other predicate constants;
3. simple applied FOLI with no predicate parameters (only constants);
4. simple FOLI with no predicate parameters and constants except equality.

Thus pure FOLI is just a schematic version of FOL with equality whereas several
cases of simple applied FOLIs are specific languages characterised by their signatures.
For example the language of simple applied FOLI of set theory has two binary
predicate constants: = and ∈. The cases of applied FOLI are of mixed character
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since in addition to constants they admit variables/parameters. This classification is
essential for comparison of different possible characterisations of equality.

As our basic sequent calculus (SC) for classical logic FOL we will use a system
which is essentially Gentzen’s LK but with sequents built from multisets to avoid
inessential complications. We also prefer to present all two-premiss rules in the
multiplicative (or with independent contexts) version in contrast to Gentzen’s original
rules for ∧,∨. Again nothing essential hinges on this choice and other variants of
SC can be also applied. The calculus consists of the following structural and logical
rules:

(AX) 𝜑 ⇒ 𝜑 (Cut) Γ⇒ Δ, 𝜑 𝜑,Π⇒ Σ

Γ,Π⇒ Δ, Σ

(W⇒) Γ⇒ Δ
𝜑, Γ⇒ Δ

(⇒W) Γ⇒ Δ
Γ⇒ Δ, 𝜑

(C⇒) 𝜑, 𝜑, Γ⇒ Δ

𝜑, Γ⇒ Δ
(⇒C) Γ⇒ Δ, 𝜑, 𝜑

Γ⇒ Δ, 𝜑

(¬⇒) Γ⇒ Δ, 𝜑

¬𝜑, Γ⇒ Δ
(⇒¬) 𝜑, Γ⇒ Δ

Γ⇒ Δ,¬𝜑

(∧⇒) 𝜑, 𝜓, Γ⇒ Δ

𝜑∧𝜓, Γ⇒ Δ
(⇒∧) Γ⇒ Δ, 𝜑 Π⇒ Σ, 𝜓

Γ,Π⇒ Δ, Σ, 𝜑∧𝜓

(∨⇒) 𝜑, Γ⇒ Δ 𝜓,Π⇒ Σ

𝜑∨𝜓, Γ,Π⇒ Δ, Σ
(⇒∨) Γ⇒ Δ, 𝜑, 𝜓

Γ⇒ Δ, 𝜑∨𝜓

(→⇒) Γ⇒ Δ, 𝜑 𝜓,Π⇒ Σ

𝜑→𝜓, Γ,Π⇒ Δ, Σ
(⇒→) 𝜑, Γ⇒ Δ, 𝜓

Γ⇒ Δ, 𝜑→𝜓

(∀⇒) 𝜑[𝑥/𝑡], Γ⇒ Δ

∀𝑥𝜑, Γ⇒ Δ
(⇒∀)1 Γ⇒ Δ, 𝜑[𝑥/𝑎]

Γ⇒ Δ,∀𝑥𝜑
where 𝑎 is not in Γ,Δ, 𝜑

(∃⇒) 𝜑[𝑥/𝑎], Γ⇒ Δ

∃𝑥𝜑, Γ⇒ Δ
(⇒∃) Γ⇒ Δ, 𝜑[𝑥/𝑡]

Γ⇒ Δ, ∃𝑥𝜑
where 𝑎 is not in Γ,Δ, 𝜑

Formulae displayed in the schemata are active whereas those in (possibly empty)
multisets Γ,Δ are parametric (or form the context). In particular, a unique formula in
the antecedent or succedent of the conclusion is the principal formula of the respective
rule application whereas active formulae in the premisses are called side-formulae.
The notion of a proof is standard, i.e., a tree labelled with sequents where each leaf is
an axiom and edges are regulated by the rules. The height of a proof is the number of
nodes in maximal branches. For stating criteria of logicality it is important to focus
on some of the characteristic features of the logical rules. First of all they are rules of
introduction of a constant, either to the antecedent or to the succedent of a sequent.
Moreover, using a terminology of Wansing (1999) (see also Poggiolesi, 2011), we
can observe that well-behaved rules have the following properties:
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1. Separation: a rule for a constant should not exhibit any other constants in its
schema.

2. Weak symmetry: each rule should either introduce a constant to the antecedent
or to the succedent; if both rules for a constant are of such a kind, the calculus is
(simply) symmetric with respect to this constant.

3. Weak explicitness: a constant should be present only in the conclusion; if only
one occurrence of it is present a rule is (simply) explicit.

4. Subformula property: only formulae present in the conclusion and their subfor-
mulae (modulo substitution of terms) are present in the premisses.

Rules satisfying these properties are also called canonical by Avron (2001). In
what follows we tacitly assume that candidates on rules characterising a logical
constants should have these features or some reasonable generalizations of them. But
these are considered only as necessary conditions, for sufficiency we will examine
additional requirements formulated by Hacking and Došen.

3 Approaches to equality

As we remarked our main tool will be SC but it is profitable to recall first how equality
was (and is) usually dealt with in the framework of other proof systems, in particular,
in axiomatic or natural deduction systems (ND). In the philosophical considerations
we can often find a reference to the traditional characterisation of equality due to
Leibniz. This approach may be formally presented as a formula of the second-order
logic (SOL) which we call LA (Leibniz Axiom):

𝜏1 = 𝜏2 ↔ ∀𝑋 (𝑋𝜏1 ↔ 𝑋𝜏2).

Commonly, the left-right implication is called the principle of indiscernibility of
identiticals, whereas the converse is called the principle of identity of indiscernibles1.
The latter principle implies immediately reflexivity of = whereas full LA is required
to prove both symmetry and transitivity of = as implied by symmetry and transitivity
of ↔. Note also that LA may be weakened in two senses: (a) 𝑋 may be restricted to
atomic predicates (b) the rightmost equivalence may be replaced with implication.
The restriction (b) is not independent from (a); LA is derivable from the weaker
form (b) if we admit that not only predicates but complex formulae (of FOL) may
be instantiated for 𝑋 (see the proofs provided by Read, 2004 or Parlamento and
Previale, 2019). This is perhaps not in conflict with the original intuitions of Leibniz
since he seems to consider every context where respective terms may be exchanged
salva veritate. On the other hand, in order to prove that equality is symmetric in
restricted case (b) we must instantiate 𝑋 with equalities. But this solution shows that
LA in restricted form (b) cannot be treated as a definition of identity since it is either
incomplete or circular. In the former case to obtain the full characteristics of identity

1 Although some doubts may be raised against the correctness of the identification of these traditionally
considered principles with this formula of SOL, see, e.g., Mates (1986).
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we must add explicitly the condition of symmetry. Below we will show that using
restricted form (b) of LA leads to other inadequacies as well.

On the other hand, restriction (a), i.e., restriction to atomic predicates as admissible
instances of 𝑋 , has some merits in the case of simple applied languages which was
noted by Quine (1970). We can change the ‘definiens’ into conjunction of all possible
cases. For example, if our language has one unary primitive predicate constant 𝐴 and
one binary 𝑅 it takes the form:

(LA′) 𝜏1 = 𝜏2 ↔ ((𝐴𝜏1 ↔ 𝐴𝜏2) ∧ ∀𝑥((𝑅𝜏1𝑥 ↔ 𝑅𝜏2𝑥) ∧ (𝑅𝑥𝜏1 ↔ 𝑅𝑥𝜏2)).

We already mentioned that this is not sufficient to obtain a real definition of identity
in FOL but it can work as good stipulation of identity in the case of simple applied
FOLI, i.e., languages with finite number of predicate constants.

If we restrict our considerations to FOL, a characterisation of equality in terms
of LA is of no use in the case of pure or applied versions of language but still may
have some heuristic value. In particular, on the ground of Hilbert systems one may
distinguish two approaches which we call algebraic and Leibnizian. In the former,
equality is characterised simply as a congruence on terms so we need to state first
that it is an equivalence relation expressed by:
1. reflexivity axiom R: ∀𝑥(𝑥 = 𝑥);
2. symmetry axiom SYM: ∀𝑥𝑦(𝑥 = 𝑦 → 𝑦 = 𝑥)
3. transitivity axiom TR: ∀𝑥𝑦𝑧(𝑥 = 𝑦 ∧ 𝑦 = 𝑧 → 𝑥 = 𝑧).

This is enough for simple FOLI; in the case of simple applied versions of FOLI we
must add two principles of congruence for every primitive atomic predicate and term:

1. Congruence of Predicates CP:

∀𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛 (𝑥1 = 𝑦1 ∧ . . . ∧ 𝑥𝑛 = 𝑦𝑛 →
(𝜋𝑛 (𝑥1, . . . , 𝑥𝑛) → 𝜋𝑛 (𝑦1, . . . , 𝑦𝑛)),

where 𝜋𝑛 is 𝑛-argument predicate symbol.
2. Congruence of Terms CT:

∀𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛 (𝑥1 = 𝑦1 ∧ . . . ∧ 𝑥𝑛 = 𝑦𝑛 →
𝜃𝑛 (𝑥1, . . . , 𝑥𝑛) = 𝜃𝑛 (𝑦1, . . . , 𝑦𝑛)),

where 𝜃𝑛 is 𝑛-argument function symbol.
This way of characterising equality is particularly elegant if we deal with simple

applied first-order languages having only a small number of primitive predicate or
function constants. It works better than characterization via LA′ since we obtain
one axiom for every predicate instead of 𝑛 equivalences for every 𝑛-ary predicate.
Moreover, if we treat equality as a primitive atomic predicate it is not necessary for
symmetry and transitivity of = to be explicitly added since they are provable by means
of CP.

Authors dealing with pure or applied FOL, i.e., with predicate and function
parameters usually prefer the latter approach which we called Leibnizian. It also
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requires reflexivity usually stated schematically as 𝜏 = 𝜏 for every term, and the
extensionality principle:

(EP) ∀𝑥𝑦(𝑥 = 𝑦 ∧ 𝜑[𝑧/𝑥] → 𝜑[𝑧/𝑦]),

where 𝜑 is arbitrary or atomic. The latter form is simpler to formulate since there is no
problem with bound variables; moreover the general form is provable in extensional
FOLI. In what follows we will keep the name EP for the version with arbitrary 𝜑

and call the version restricted to atoms Leibniz principle LP. One should note that it
encodes one direction of LA, namely indiscernibility of identicals in weaker form (b),
i.e., with ↔ replaced by →. It explains why we call this approach Leibnizian. One
should also note that, contrary to ordinary custom, we defined EP (LP) by means of
(correct) substitution of 𝑥, 𝑦 for some free variable 𝑧. It is much more popular that it
is characterised in terms of replacement:

(EP′) ∀𝑥𝑦(𝑥 = 𝑦 ∧ 𝜑 → 𝜑[𝑥//𝑦]),

where 𝜑[𝑥//𝑦] denotes a replacement of some (not necessarily all) occurrences of
𝑥 by 𝑦. It is perhaps intuitively more accessible but has some formal disadvantage
since replacement is not an operation. To avoid this problem some authors define EP
(LP) by means of a unique replacement:

(EP′′) ∀𝑥𝑦(𝑥 = 𝑦 ∧ 𝜑(. . . 𝑥 . . .) → 𝜑(. . . 𝑦 . . .)),

where only one displayed occurrence of a variable (term) is taken into account.
The last formulation is also simpler for arithmetization hence applied in the works
dealing with Gödel’s theorems. But it should be stressed that all these forms of
characterization are equivalent. In particular, any possible application of EP′ is just a
series of applications of EP′′. Also SYM and TR are easily provable by any of these
principles so it is not necessary to introduce them as primitive axioms.

Instead of REF we can find (for example in Tarski, 1941):

(∃ =) ∃𝑥(𝑥 = 𝜏) where 𝑥 is not in 𝜏.

This formula implies reflexivity by EP: 𝑎 = 𝜏 ∧ 𝑎 = 𝜏 → 𝜏 = 𝜏. In Mates (1965) the
same characterization is applied but with universal closures of EP′ and (∃ =).

There are also possible approaches which dispense with reflexivity, instead using
just one formula which is equivalent to REF and EP. This approach is due to Wang
(see Quine, 1966) and a dual axiom is due to Kalish and Montague (1957). On the
ground of Hilbert system each one may be expressed by one axiom:

∃𝑥(𝑥 = 𝜏 ∧ 𝜑) ↔ 𝜑[𝑥/𝜏], where 𝑥 is not free in 𝜏

or

∀𝑥(𝑥 = 𝜏 → 𝜑) ↔ 𝜑[𝑥/𝜏], where 𝑥 is not free in 𝜏.

In the framework of natural deduction (ND) the Leibnizian approach is prevalent
although EP (LP) is usually presented as an inference rule of identity elimination:
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(IE) 𝜏1 = 𝜏2, 𝜑[𝑥/𝜏1] ⊢ 𝜑[𝑥/𝜏2],

whence reflexivity is treated as a zero-premiss rule of identity introduction:2

(II) ∅ ⊢ 𝜏 = 𝜏.

Martin-Löf (1971) has shown that such a pair of rules is naturally induced for
equality predicate in the general ND framework which satisfies normalization.

Kalish and Montague (1964) provide an ND system where the pair of rules is of
the form:

∀𝑥(𝑥 = 𝜏 → 𝜑) ⊢ 𝜑[𝑥/𝜏], where 𝑥 is not free in 𝜏,(IE′)
𝜑[𝑥/𝜏] ⊢ ∀𝑥(𝑥 = 𝜏 → 𝜑), where 𝑥 is not free in 𝜏.(II′)

Both are clearly derived from the second axiom stated above.
There are also ND systems which operate not on formulae but on sequents of the

form Γ ⊢ 𝜑, where Γ is a set (multiset, sequence) of active assumptions for 𝜑3. In
this setting rules for equality are formulated as follows:

Γ ⊢ 𝜏 = 𝜏,(II′′)
If Γ ⊢ 𝜏1 = 𝜏2 and Δ ⊢ 𝜑[𝑥/𝜏1], then Γ,Δ ⊢ 𝜑[𝑥/𝜏2].(IE′′)

Finally let us point out the solution which is particularly important for our purposes.
Read (2004) provides a rule of equality introduction as a proof construction rule of
the form:

If Γ, 𝜑[𝑥/𝜏1] ⊢ 𝜑[𝑥/𝜏2], then Γ ⊢ 𝜏1 = 𝜏2,(RII)
where 𝜑 is atomic and does not occur in Γ.

This rule is not sound in standard models for FOLI, however it is sound in so called
Leibnizian models (see Read, 2004) and it may be shown that this class of models can
equivalently characterise FOLI. Note that in the context of simple applied languages
with a finite number of primitive predicates the corresponding result cannot be stated
by means of such a rule; instead it may be stated by means of finite number of subproofs
for each predicate constant. Something similar was proposed by Więckowski (2011)
who provided a rule of the form:

(WRI) 𝜑1 [𝑥/𝜏1] ↔ 𝜑1 [𝑥/𝜏2], . . . 𝜑𝑛 [𝑥/𝜏1] ↔ 𝜑𝑛 [𝑥/𝜏2] ⊢ 𝜏1 = 𝜏2.

Note that here we have an inference rule since instead of subproofs we have a finite
number of premisses. The drawback of this rule is that another constant, namely the

2 Some authors add also inference rules corresponding to SYM and TR but of course they are
derivable.
3 The fact that we deal with sequents not with formulae is sometimes hidden since Γ consists not
of formulae but of numbers referring to lines where assumptions were stated — see, e.g., Suppes
(1957), Lemmon (1965).
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equivalence connective, is present so the rule is not separate (see the previous section).
It could be changed into a separate rule (i.e., with displayed equality only) by replacing
each premiss 𝜑𝑖 [𝑥/𝜏1] ↔ 𝜑𝑖 [𝑥/𝜏2] with a pair of subproofs 𝜑𝑖 [𝑥/𝜏1] ⊢ 𝜑𝑖 [𝑥/𝜏2]
and 𝜑𝑖 [𝑥/𝜏2] ⊢ 𝜑𝑖 [𝑥/𝜏1]. Note that it does not directly corresponds to Read’s rule —
the latter should have an additional subproof leading from 𝜑[𝑥/𝜏2] (as an assumption)
to 𝜑[𝑥/𝜏1]. The reasons why Read dispenses with the second subproof was explained
above; WRI is based on LA (or rather LA′) whereas RII on LA with nonrestricted
instantiation for 𝑋 which enables replacement of equivalences by implication. Read’s
solution may be criticised not only from technical but also from philosophical point
of view (see, e.g., Griffiths 2014, or Klev 2019) but deserves carefull examination. In
what follows we will check how it works in the setting of SC.

4 Equality in sequent calculi

SC provides a framework which not only easily accomodates all approaches described
so far but allows for several other solutions. An interesting thing is that in SC we can
characterise equality not only by local rules but globally in the following way:

(SUB) 𝜏1 = 𝜏2, Γ[𝑥/𝜏1] ⇒ Δ[𝑥/𝜏1]
𝜏1 = 𝜏2, Γ[𝑥/𝜏2] ⇒ Δ[𝑥/𝜏2]

(REF) ⇒ 𝜏 = 𝜏

where Γ[𝑥/𝜏] denotes a uniform substitution of 𝑥 by 𝜏 in all elements of Γ. Such
solution was first introduced by Kanger (1957) but also proposed by Wang (1960)
in the version where substitution is made only in Δ; this apparently weaker version
is in fact sufficient. Essentially the same solution was used among others, by Mints
(1968), Došen (1989), Seligman (2001), in several variants (for example with 𝜏1 = 𝜏2
only in the conclusion). Usually (SUB) is introduced in two variants where in the
second we have 𝜏2 = 𝜏1, but it is redundant. Similar approach was also applied by
Schroeder-Heister (1994) in the formalization of the free equality investigated in the
setting of logic programming.

This form of introduction of equality is global, since we can treat a sequent as
expressing a whole proof at some stage. Hence to imitate the application of this rules
in ND we should rewrite the whole derivation. So in fact it is global in comparison
with the solution proposed in ND setting. In SC this is reduced to the operation
performed on the sequent not on the whole derivation. Such an approach has obvious
virtues. One may easily prove everything which is needed to show that it is adequate;
we obtain a proof of LP immediately. Moreover, cut elimination holds for it (see,
e.g., Seligman, 2001 for a constructive proof; the version of Kanger is just a cut-free
variant of G3). It is also worth noting that it was the most influential approach in
automated theorem proving based on SC4. However, it seems that this approach is
not fully convincing as a way for justifying equality as a logical constant. Even in the
form proposed by Došen (see Section 6) equality is presented as something which

4 Degtyarev and Voronkov (2001) present it as the only SC-based approach to equality formalization
in automated deduction.
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affects the whole sequent and looks like something of slightly different character
from other logical constants which are characterised by local rules.

Other approaches are of local character and can be divided according to the possible
ways of formalizing theories in the framework of SC. Negri and von Plato (2001)
described four approaches to this question:

1. Addition of axiomatic sequents ⇒ 𝜑 for each axiom 𝜑.
2. Addition of “mathematical basic sequents” which consist of atomic formulae.
3. Addition of all axioms as a context in the antecedents of all provable sequents.
4. Addition of new rules corresponding to axioms.

In every class we can find SC formalizations of equality. The first approach may
be called the "naive" since it treats SC in the same way as Hilbert system and does not
refer to its specific features. Not surprisingly such a solution obstructs the application
of specific virtues of SC; in particular cut elimination cannot be proved.

The second approach may be seen as a refinement of the first and was already
applied by Gentzen in his formalization of Peano arithmetic. Restricted to equality it
leads to addition of two axiomatic (atomic) sequents of the form:

⇒ 𝜏 = 𝜏

𝜏1 = 𝜏2, 𝜑[𝑥/𝜏1] ⇒ 𝜑[𝑥/𝜏2] with 𝜑 atomic

In Takeuti (1987) one may find variants of this approach and the proofs of some of
its features. It is interesting that although cut elimination cannot be proved in general
for such a system it may be proved in restricted form. Let us call inessential any
cut in which the cut formula is an equality, otherwise cut is essential. For Takeuti’s
system it holds that all essential cuts are eliminable. Recently Parlamento and Previale
(2019) proved an even stronger result showing that after an additional series of
transformations cut can be eliminated from all proofs.

The third approach was also considered by Gentzen. Interestingly enough one can
prove cut elimination for it but for any theorem 𝜑 of FOLI we do not obtain proofs of
⇒ 𝜑 but of Γ ⇒ 𝜑 where Γ is a collection of instances of REF and LP. Accordingly
this approach does not provide an interesting tool for analysis of proofs.

There is a variant of this approach which in fact can be treated also as belonging
to the last group. For each axiom 𝜑 an SC rule is postulated for elimination of this
axiom, which is of the form:

(AE)
𝜑, Γ⇒ Δ

Γ⇒ Δ

Such formalization of cut-free SC for FOLI is considered in Gallier (1986), where
𝜑 can be an instance of REF, CP or CT. Also Bell and Machover (1977) apply this
approach in the tableau framework where it is represented just as a rule of introduction
of suitable instances of REF, CT or CP on the branch. Note that in the context of SC
this solution although applied in the cut-free version is in fact equivalent to addition of
the special form of cut. This follows from the result that the cut elimination theorem
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is equivalent to the result showing eliminability of (AE) where 𝜑 is an arbitrary thesis
(see Indrzejczak, 2017).

It seems that the most interesting approach, in particular for our purposes, is the
last one. Gallier’s solution is literaly speaking of this sort but not very satisfactory
since (AE) is rather a trivial kind of rule mechanically applied to any formula. The
subformula property does not hold and cut freeness is apparent, as we noted above.
Generally speaking, it is not in any sense better than the first approach. What we need
is the generation of genuine rules with active formulae in premisses and conclusions
and satisfying possibly some welcome proof-theoretic properties like cut elimination
or a reasonable form of the subformula property. Such solution which, in some specific
form, was advocated by Negri and von Plato (2001) and applied to formalisations of
several theories on the basis of SC, found many adherents. In particular, Troelstra and
Schwichtenberg (1996) in the second edition of their well known textbook introduced
this characterization of equality instead of the second one which was present in the
first edition. Equality is characterised by means of two rules:

(RE) 𝜏1 = 𝜏2, 𝜑[𝑥/𝜏1], 𝜑[𝑥/𝜏2], Γ⇒ Δ

𝜏1 = 𝜏2, 𝜑[𝑥/𝜏1], Γ⇒ Δ
(REP) 𝜏 = 𝜏, Γ⇒ Δ

Γ⇒ Δ

which are added to purely logical variant G3 . In general the specific features of
Negri and von Plato’s approach are connected with the fact that active formulae are
atomic and occur only on one side of sequents. We will call this variant the one-sided
approach; systems in Negri and Plato (2001) are in fact left- (or antecedent-)sided
but in Negri and Plato (2011) right-(or succedent-)sided systems are also considered.
Rules of this kind can safely be added without destroying all results concerning
admissibility of structural rules, including cut. However, the rule-based approach to
the characterisation of theories may be realised in many different ways, not necessarily
as one-sided, despite its obvious virtues.

In order to put things in a systematic way we apply the following theorem
(Indrzejczak, 2018b):

Theorem 4.1 (Rule-generation) For any sequent Γ ⇒ Δ with Γ = {𝜑1, . . . , 𝜑𝑘}
and Δ = {𝜓1, . . . , 𝜓𝑛}, 𝑘 ≥ 0, 𝑛 ≥ 0, 𝑘 + 𝑛 ≥ 1 there are 2𝑘+𝑛 − 1 equivalent rules
captured by the general schema:

Π1,⇒ Σ1, 𝜑1, . . . , Π𝑖 ⇒ Σ𝑖 , 𝜑𝑖 𝜓1,Π𝑖+1 ⇒ Σ𝑖+1, . . . , 𝜓 𝑗 ,Π𝑖+ 𝑗 ⇒ Σ𝑖+ 𝑗

Γ−𝑖 ,Π1, . . . ,Π𝑖 ,Π𝑖+1, . . . ,Π𝑖+ 𝑗 ⇒ Σ1, . . . , Σ𝑖 , Σ𝑖+1, . . . , Σ𝑖+ 𝑗Δ− 𝑗

where Γ−𝑖 = Γ−{𝜑1, . . . , 𝜑𝑖} and Δ− 𝑗 = Δ−{𝜓1, . . . , 𝜓 𝑗 } for 0 ≤ 𝑖 ≤ 𝑘, 0 ≤ 𝑗 ≤ 𝑛.

It should be stressed that the proof of this theorem requires only applications of
axioms and cut (see Indrzejczak, 2018b). Informally, it shows that for any sequent we
can provide different rules which are interderivable with it. Premisses of these rules
are obtained either by deleting some formula from the antecedent of the respective
sequent and putting it in the succedent (of the respective premiss), or conversely, by
deleting a formula in the succedent and putting it into the antecedent of a premiss.
The conclusion of such a rule is provided by what remains intact in the input sequent.
Let us see what kind of rules can be generated on the basis of LP (or EP if we wish),
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expressed as a sequent (1=) 𝜏1 = 𝜏2, 𝜑[𝑥/𝜏1] ⇒ 𝜑[𝑥/𝜏2]. We obtain the following
equivalent rules:

(2=) 𝜑[𝑥/𝜏2], Γ⇒ Δ

𝜏1 = 𝜏2, 𝜑[𝑥/𝜏1], Γ⇒ Δ
(3=) Γ⇒ Δ, 𝜑[𝑥/𝜏1]

𝜏1 = 𝜏2, Γ⇒ Δ, 𝜑[𝑥/𝜏2]

(4=) Γ⇒ Δ, 𝜏1 = 𝜏2
𝜑[𝑥/𝜏1], Γ⇒ Δ, 𝜑[𝑥/𝜏2]

(5=) Γ⇒ Δ, 𝜏1 = 𝜏2 Π⇒ Σ, 𝜑[𝑥/𝜏1]
Γ,Π⇒ Δ, Σ, 𝜑[𝑥/𝜏2]

(6=) Γ⇒ Δ, 𝜏1 = 𝜏2 𝜑[𝑥/𝜏2],Π⇒ Σ

𝜑[𝑥/𝜏1], Γ,Π⇒ Δ, Σ

(7=) Γ⇒ Δ, 𝜑[𝑥/𝜏1] 𝜑[𝑥/𝜏2],Π ⇒ Σ

𝜏1 = 𝜏2, Γ,Π⇒ Δ, Σ

(8=) Γ⇒ Δ, 𝜏1 = 𝜏2 Π⇒ Σ, 𝜑[𝑥/𝜏1] 𝜑[𝑥/𝜏2],Λ⇒ Θ

Γ,Π,Λ⇒ Δ, Σ,Θ

Each of them may be used to express LP as a rule of SC, and in fact all were used for
that. For example, Negri and von Plato (2001) applied (2=) (but with the repetition
of active formulae in the premiss to save admissibility of contraction — see the rule
(RE) above) and Manzano (1999) prefers its dual form (3). Some authors, for example
Parlamento and Previale (2019) used both (2=) and (3=) although it is redundant.
Note also that both (2) and (3) may be seen as special forms of (SUB) (with singular
antecedent and succedent containing only 𝜑). (4) was applied by Reeves (1987),
although in the framework of tableaux and in an apparently different way. He considers
rules modelled not on LP but on CP, so the general schema would be rather:

(CP)
Γ1⇒ Δ1, 𝜏1 = 𝜏′1 . . . Γ𝑛⇒ Δ𝑛, 𝜏𝑛 = 𝜏′𝑛

𝜑(𝜏1, . . . 𝜏𝑛), Γ1, . . . Γ𝑛⇒ Δ1, . . .Δ𝑛, 𝜑(𝜏′1, . . . 𝜏
′
𝑛)

and similarly for CT. Moreover, it deals with tableaux so the rules are branching
downwards and there are no sequents but formulae as nodes.

Indrzejczak (2019) used (5=), whereas Baaz and Leitsch (2011) both (5=) and
(6=) which is its dual. Nagashima (1966) used (7=) and Indrzejczak (2018a) (8=).

Let us discuss these rules in the light of properties required from well-behaved SC
rules. Although all these rules are separate most of them are rather not satisfactory
with respect to other features. Only (2=), (3=) and (7=) are weakly symmetric and
explicit, in the sense that they may be treated as equality introduction rules. Together
with REF treated as 0-premiss rule we may even say that such pair is symmetric.
Only (2=) and (3=) satisfy the subformula property. In the remaining cases this
property holds in the generalised sense: in any (cut-free) proof either subformulae of
the proven sequent or atomic formulae occur.

What with cut elimination? Before we answer this question it should be established
also in what form the reflexivity of equality is represented in the system. On the basis
of the rule generation theorem, the only nontrivial rule (except axiomatic sequent
REF) is the above mentioned:
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(REP)
𝜏 = 𝜏, Γ⇒ Δ

Γ⇒ Δ
,

which is used by Negri and von Plato (2001) (but also by Nagashima, 1966 and
Gallier, 1986), whereas other authors prefer axiomatic sequents. However this is not
an introduction but rather elimination rule. Of course we can think also of making
use of Kalish and Montague (1964) solution from their ND system. Let us consider
the possibility of application of the rule generation theorem to a sequent:

∀𝑥(𝑥 = 𝜏 → 𝜑) ⇒ 𝜑[𝑥/𝜏], where 𝑥 is not free in 𝜏

corresponding to the reflexivity axiom. It may be expressed as a rule in the following
ways:

(1) 𝜑[𝑥/𝜏], Γ⇒ Δ

∀𝑥(𝑥 = 𝜏 → 𝜑), Γ⇒ Δ
(2) Γ⇒ Δ,∀𝑥(𝑥 = 𝜏 → 𝜑)

Γ⇒ Δ, 𝜑[𝑥/𝜏]

(3) Γ⇒ Δ,∀𝑥(𝑥 = 𝜏 → 𝜑) 𝜑[𝑥/𝜏],Π⇒ Σ

Γ,Π⇒ Δ, Σ

Moreover, variants (2) and (3) may be improved in a way which dispenses with
other constants:

(2′) 𝑎 = 𝜏, Γ⇒ Δ, 𝜑[𝑥/𝑎]
Γ⇒ Δ, 𝜑[𝑥/𝜏] (3′) 𝑎 = 𝜏, Γ⇒ Δ, 𝜑[𝑥/𝑎] 𝜑[𝑥/𝜏],Π⇒ Σ

Γ,Π⇒ Δ, Σ

where 𝑎 is not free in 𝜏, Γ,Δ.
Such a rule is closer to the ordinary way of defining rules in SC setting since it

is separated in a sense that no other constant is present in the schema. On the other
hand, it is an elimination, not an introduction rule, similarly as (REP).

The last option for a nontrivial rule expressing reflexivity of equality is Read’s
rule from ND presented in the previous section. It may be used also in SC framework
for formalization of reflexivity. It looks like this:

𝜑[𝑥/𝜏1], Γ⇒ Δ, 𝜑[𝑥/𝜏2]
Γ⇒ Δ, 𝜏1 = 𝜏2

,

where 𝜑 is a predicate not present in Γ,Δ.
Such a rule is considered also by Parlamento and Previale (2019) whereas Restall

(2020) considers a rule that is closer to Więckowski’s solution (in fact he considers a
stronger rule — see the next section):

(⇒=)
𝜑[𝑥/𝜏1], Γ⇒ Δ, 𝜑[𝑥/𝜏2] 𝜑[𝑥/𝜏2], Γ ⇒ Δ, 𝜑[𝑥/𝜏1]

Γ⇒ Δ, 𝜏1 = 𝜏2

where 𝜑 is a predicate not present in Γ,Δ.
These two rules seem to be the best choice from the syntactical point of view,

since they are nontrivial equality introduction rules. Moreover they are separate,
weakly symmetric (together with (2=), (3=) or (7=) even symmetric) and explicit.
They also satisfy the subformula property in the generalised sense. Note also that for
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any simple applied language with 𝑛 primitive predicates, these rules may be replaced
with rules which do not refer to fresh predicate parameters. Consider a language
having only 𝑛 unary predicates, then a suitable rule will have just 𝑛 (Read’s variant)
or 2𝑛 (Restall’s variant) premisses. Of course in the case of languages having 𝑘-ary
predicate constants (for 𝑘 > 1) the situation is more complicated since for every such
predicate we must have 𝑘- (Read variant) or 2𝑘-premisses which take into account all
positions of 𝜏1, 𝜏2 as arguments of this predicate, exactly as in Quine’s counterpart of
LA.

Now let us consider which combinations of rules yield cut-free SC. At first we
consider only how rules (2=)-(8=) behave in this respect together with (REF) or
(REP). It is well known, as shown in Negri and Plato (2001), that SC with (REP) is
cut free. In fact, also (2=) allows for cut elimination in LK again only with (REP).
A similar situation holds for (6=). On the other hand (5=), (7=) and (8=) provide
cut-free LK independently of the choice of (REP) or (REF). For systems with (3=)
and (4=) it is not clear if cut elimination can be constructively proved. Consider the
following:

Γ ⇒ Δ, 𝑎 = 𝑐(3=)
𝑎 = 𝑏, Γ ⇒ Δ, 𝑏 = 𝑐

Π ⇒ Σ, 𝐴𝑏 (3=)
𝑏 = 𝑐,Π ⇒ Σ, 𝐴𝑐 (Cut)

𝑎 = 𝑏, Γ,Π ⇒ Δ, Σ, 𝐴𝑐

It is neither possible to reduce the height of this cut or the complexity of cut-formula
in the standard manner. A similar counterexample may be easily provided for (4=).
Of course one can easily notice that in such cases the problem is connected with the
fact that equalities are allowed as instances of 𝜑 in schemata of the respective rules.
Of course if we think of rules for equality not only satisfying some desirable syntactic
criteria for logicality, but also as being in a sense definitions of this constant, it would
be desirable to restrict instances of 𝜑 to atomic formulae other than equalities. But
then neither symmetry nor transitivity of equality can be proved. In fact, this holds
for all seven rules considered in connection with (REF) or (REP).

Although most of the systems are cut-free, taking into account other properties, the
only reasonable candidate for our aim is LK with (REF) and (7=). In the remaining
combinations at least one rule is not a rule of equality introduction. Still (REF) is
also rather a poor candidate for our aim. So eventually we should take (7) and (⇒ =)
(or its one-premiss version due to Read) as the pair of rules which, at least at the first
sight, look better. In the next section we examine LK with such a pair of rules in the
light of criteria of logicality proposed by Hacking.

5 Hacking’s criterion

Hacking (1979) based his considerations on the criteria of logicality on the standard
form of SC with canonical logical and structural rules5. He did not consider equality

5 Although he is using sequents built from finite sets so contraction rules are dispensable.
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but, as we will show, his analysis may be applied to this constant. In fact, Hacking
follows closely Gentzen’s suggestions concerning rules as possible definitions of
constants. Hence rules of this kind have to satisfy all the properties we discussed in
the preceding section with special attention paid to the subformula property. As we
noticed, the two rules we have chosen satisfy this property only in the generalised
sense but it seems that this generalisation is reasonable. However, this is not enough.
In order to satisfy Hacking’s requirements of logicality it should be possible to show
three elimination theorems for a system consisting of such rules:

1. every axiom built from complex formulae must be eliminated in favor of atomic
axioms;

2. every application of weakening rules introducing complex formulae must be
eliminated in favor of weakening made on atomic formulae;

3. applications of cut must be eliminated.

The last one is Gentzen’s famous Hauptsatz, whereas the remaining ones have
a slightly weaker character since they do not postulate the complete elimination of
purely logical axioms or weakening but only their reduction to the atomic level. In fact,
if we consider purely logical versions of SC, i.e., without primitive structural rules,
like G3 6, then atomic axioms are present as primitive and all these requirements may
be presented in a more uniform way as respective admissibility results. However, we
opt for LK as our basis and check how it behaves when enriched with equality rules.

We start with SC for pure and applied FOLI. As we concluded the preceding
section the only reasonable candidates are (7=) as the antecedent introduction rule,
and Read’s or Restall’s rule as the succedent introduction rule. Accordingly we
consider two variants, and in both (7=) will be taken (possibly in two symmetric
versions) as the antecedent introduction rule. LKI1 is LK with:

Γ⇒ Δ, 𝜑[𝑎/𝜏1] 𝜑[𝑎/𝜏2],Π ⇒ Σ

𝜏1 = 𝜏2, Γ,Π⇒ Δ, Σ
(1=⇒)

𝜑[𝑎/𝜏1], Γ ⇒ Δ, 𝜑[𝑎/𝜏2]
Γ⇒ Δ, 𝜏1 = 𝜏2

(1⇒=)

where in the latter rule 𝜑 is an atomic predicate not in Γ,Δ (in antecedent introduction
rules it is an arbitrary atomic formula).

Whereas in LKI2 we have instead:

Γ⇒ Δ, 𝜑[𝑎/𝜏1] 𝜑[𝑎/𝜏2],Π ⇒ Σ

𝜏1 = 𝜏2, Γ,Π⇒ Δ, Σ
(1=⇒)

Γ⇒ Δ, 𝜑[𝑎/𝜏2] 𝜑[𝑎/𝜏1],Π ⇒ Σ

𝜏1 = 𝜏2, Γ,Π⇒ Δ, Σ
(2=⇒)

6 See, e.g., Troelstra and Schwichtenberg (1996) or Negri and von Plato (2001).
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𝜑[𝑎/𝜏1], Γ⇒ Δ, 𝜑[𝑎/𝜏2] 𝜑[𝑎/𝜏2],Π⇒ Σ, 𝜑[𝑎/𝜏1]
Γ,Π⇒ Δ, Σ, 𝜏1 = 𝜏2

(2⇒=)

where in the latter rule 𝜑 is an atomic predicate not in Γ,Δ.
The distinction between LKI1 and LKI2 follows from the way we treat equalities.

If they are treated as atomic formulae, LKI1 is sufficient; otherwise we need LKI2.
The key point is how to prove symmetry in both systems; in the former we have the
following proof:

𝐴𝜏1 ⇒ 𝐴𝜏1(1⇒=) ⇒ 𝜏1 = 𝜏1 𝜏2 = 𝜏1 ⇒ 𝜏2 = 𝜏1(1=⇒)
𝜏1 = 𝜏2 ⇒ 𝜏2 = 𝜏1

where 𝜑[𝑎/𝜏𝑖] is 𝑎 = 𝜏1 [𝑎/𝜏𝑖].
In LKI2 it looks like that:

𝐴𝜏2 ⇒ 𝐴𝜏2 𝐴𝜏1 ⇒ 𝐴𝜏1(2=⇒)
𝜏1 = 𝜏2, 𝐴𝜏2 ⇒ 𝐴𝜏1

𝐴𝜏1 ⇒ 𝐴𝜏1 𝐴𝜏2 ⇒ 𝐴𝜏2 (1=⇒)
𝜏1 = 𝜏2, 𝐴𝜏1 ⇒ 𝐴𝜏2(2⇒=)

𝜏1 = 𝜏2 ⇒ 𝜏2 = 𝜏1

Both systems are complete and it is not difficult to extend them to cover complex
terms. However suitable rules of the antecedent introduction for equality must be
modified in the way which ensures derivability of CT. It is only necessary to require
that in two atomic formulae which are side formulae in both premisses the respective
occurrences of terms being arguments of principal formula, may appear not only
as arguments of this predicate but also as arguments of complex terms being its
arguments. Under this generalised understanding a proof of the simplest case of CT
in LKI2 for some unary operation 𝑓 looks like this:

𝐴 𝑓 𝜏1 ⇒ 𝐴 𝑓 𝜏1 𝐴 𝑓 𝜏2 ⇒ 𝐴 𝑓 𝜏2(1=⇒)
𝜏1 = 𝜏2, 𝐴 𝑓 𝜏1 ⇒ 𝐴 𝑓 𝜏2

𝐴 𝑓 𝜏2 ⇒ 𝐴 𝑓 𝜏2 𝐴 𝑓 𝜏1 ⇒ 𝐴 𝑓 𝜏1 (2=⇒)
𝜏1 = 𝜏2, 𝐴 𝑓 𝜏2 ⇒ 𝐴 𝑓 𝜏1(2⇒=)

𝜏1 = 𝜏2 ⇒ 𝑓 𝜏1 = 𝑓 𝜏2

There are other solutions which work as well as LKI2 but are simpler. A close
inspection of proofs needed to prove completeness shows that it is also possible
to obtain two variants of LKI1 keeping the proviso concerning equalities in LKI2
(i.e., that they are not treated as atoms being possible instances of the antecedent
introduction rule). Instead of one 2-premiss rule (2⇒=) we can add two one-premiss
rules: It is enough either to use both rules of the antecedent introduction, as in LKI2, or
to add a symmetric version of (1⇒=) (corresponding to the right premiss of (2⇒=)):

(1⇒=′)
𝜑[𝑎/𝜏2], Γ ⇒ Δ, 𝜑[𝑎/𝜏1]

Γ⇒ Δ, 𝜏1 = 𝜏2

(with the same proviso concerning fresh 𝜑). It may be easily checked that suitable
proofs of symmetry and transitivity may be obtained from the proofs in LKI2 stated
above by deleting derivations of one branch. This provides an adequate SC for FOL
with equality and simplifies many proofs since the branching factor is lower.
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The last thing concerns the question how these variants of SC fare with respect to
Hacking’s criteria of logicality. We have noticed above that the subformula property
is generalised but in the sense which is acceptable. As for eliminability conditions
one may easily check that the first two hold for all stated versions of LKI. What with
cut elimination? First of all note that in this respect LKI1 is not a suitable system.
Consider the case where the cut formula is an equality which is a principal formula
of the last applied rule, and moreover side formulae of (1=⇒) application were
equalities:

𝜑(𝜏1), Γ ⇒ Δ, 𝜑(𝜏2)
Γ ⇒ Δ, 𝜏1 = 𝜏2

Π ⇒ Σ, 𝜏1 = 𝜏3 𝜏2 = 𝜏3,Π ⇒ Σ

𝜏1 = 𝜏2,Π ⇒ Σ

Γ,Π ⇒ Δ, Σ

In this case, there is no possibility of making a reduction either on the height or
on the degree (complexity) of cut formula.

Perhaps LKI2, or modified versions of LKI1 with additional rule but excluding
equality as atomic, are better. Again consider the case where the cut formula is an
equality which is a principal formula of the last applied rule:

𝜑(𝜏1), Γ ⇒ Δ, 𝜑(𝜏2) 𝜑(𝜏2), Γ ⇒ Δ, 𝜑(𝜏1)
Γ ⇒ Δ, 𝜏1 = 𝜏2

Π ⇒ Σ, 𝜓(𝜏1) 𝜓(𝜏2),Π ⇒ Σ

𝜏1 = 𝜏2,Π ⇒ Σ

Γ,Π ⇒ Δ, Σ

(The argument for the right premiss deduced by (2=⇒) is symmetric). We assume
that all atomic formulae have complexity 0 but equalities have complexity 1 since =
is treated on a par with other logical constants. In order to apply induction on the
complexity of the cut formula we should however first unify side formulae in the
premisses of both applications of equality rules. The situation is analogous to the
case of reduction made when the cut formula is introduced by quantifier rules. In this
case we first apply substitution to fresh parameter of the premiss of (⇒ ∀) (or (∃⇒))
and then we can make a reduction by making cut on the premisses. In the present
case, if a similar kind of substitution is possible, the following reduction of cut degree
would do:

Π ⇒ Σ, 𝜓(𝜏1) 𝜓(𝜏1), Γ ⇒ Δ, 𝜓(𝜏2)
Π, Γ ⇒ Σ,Δ, 𝜓(𝜏2) 𝜓(𝜏2),Π ⇒ Σ

Γ,Π,Π ⇒ Δ, Σ, Σ

Γ,Π ⇒ Δ, Σ

where in the middle sequent 𝜓(𝜏1), 𝜓(𝜏2) were substituted for unique occurrences of
𝜑(𝜏1), 𝜑(𝜏2) in the leftmost premiss of the previuos figure. The problem is that no
corresponding result for substitution of fresh atomic formulae can be proved in the
presence of rules for antecedent introduction. Consider the following example which
shows the source of the problem:

𝜏3 = 𝜏2, 𝜑(𝜏1), Γ1 ⇒ Δ1, 𝜑(𝜏2)
𝜑(𝜏2) ⇒ 𝜑(𝜏2) 𝜑(𝜏3), Γ2 ⇒ Δ2, 𝜑(𝜏1)

𝜏3 = 𝜏2, 𝜑(𝜏2), Γ2 ⇒ Δ2, 𝜑(𝜏1)
𝜏3 = 𝜏2, Γ ⇒ Δ, 𝜏1 = 𝜏2



228 Andrzej Indrzejczak

Assuming that it is a proof of the left premiss of the considered cut application we
cannot change 𝜑 for 𝜓 since the middle top sequent will not be an axiom.

This shows that in case of pure and applied FOLI our solution does not satisfy the
most important condition in the list of logicality criteria provided by Hacking. Since
it is not applicable to simple FOLI there is only one possibility — that it works for
simple applied versions of FOLI. Certainly it works for all languages having only one
unary predicate constant. In this case all the rules of LKI2 (or variants of LKI1) have
the same shape but with 𝜑(𝜏) being always 𝐴𝜏 and with no side condition for the
succedent introduction rules. All proofs are intact, moreover, the problem connected
with the proof of cut elimination does not hold since there is only one atomic formula
in both premisses of cut, i.e., both 𝜑(𝜏) and 𝜓(𝜏) are 𝐴𝜏 and the reduction of cut
degree holds. What with languages having richer signature? Following Quine’s recipe
mentioned in Section 3 we must suitably modify both rules of succedent introduction:
In the case of (1⇒=) for each 𝑛-ary predicate constant we must use 𝑛 premisses with
respective term as an argument in all positions, for (2⇒=) we must introduce 2𝑛 of
such premisses. For example suitable form of (1⇒=) for the language with unary 𝐴

and binary 𝑅 which was considered in Section 3 for the illustration of LA′ looks like
that:

𝐴𝜏1, Γ1 ⇒ Δ1, 𝐴𝜏2 𝑅𝜏1𝑎, Γ2 ⇒ Δ2, 𝑅𝜏2𝑎 𝑅𝑎𝜏1, Γ3 ⇒ Δ3, 𝑅𝑎𝜏2
Γ ⇒ Δ, 𝜏1 = 𝜏2

where 𝑎 is not in Γ,Δ, 𝜏1, 𝜏2.
Rules for the antecedent introduction remain intact but 𝜑 is now an instance of

an arbitrary predicate constant with at least one occurrence of suitable term. Such
versions of SC with succedent introduction rules having no fixed number of premisses
but relative to the signature are not very satisfactory. In particular, from the proof-
search point of view in the case of richer signature the branching factor is too big to
use them in practice. However, we are not concerned here with practical application
but with satisfiability of theoretical desiderata and from this point of view this solution
works. In particular, cut elimination can be proved since every application of (2⇒=)
(and (1⇒=) in variants of LKI1) has always among its premisses the one which has
identical side formula as the ones occuring in actual premisses of (1=⇒) or (2=⇒).

6 Došen’s criterion

In this section we focus on the criterion of logicality proposed by Došen. It can be seen
as a successful refinement of a proposal due to Popper (1947a; 1947b) concerned with
some conception of proof-theoretical semantics which was however not articulated
in a satisfactory way. Popper tried to characterize constants by means of inferential
definitions which yield double-valid rules characterising constants of the form:

(→)
𝜑, 𝜒 ⇒ 𝜓

𝜒 ⇒ 𝜑 → 𝜓
(∧)

𝜑, 𝜓 ⇒ 𝜒

𝜑 ∧ 𝜓 ⇒ 𝜒
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(∨)
𝜑 ⇒ 𝜒 𝜓 ⇒ 𝜒

𝜑 ∨ 𝜓 ⇒ 𝜒
(¬)

𝜑, 𝜓 ⇒ 𝜒

¬𝜒, 𝜓 ⇒ ¬𝜑

Popper’s project was criticised by Kleene, Curry, and many others, however it
was convincingly shown by Schroeder-Heister (1984) (see also Schroeder-Heister,
2006 and Binder and Piecha, 2021) that his works contain an interesting proposal
for a slightly weaker plan of providing criteria for being a logical constant. Such an
enterprise was undertaken much later by Došen, first in his doctoral thesis and then in
Došen (1989). It seems that if we do not use them as a way for establishing a variant
of proof theoretic semantics but only as an independent criterion of logicality it works
well. In fact, the opinions on the very nature of the relationships between criteria
of logicality and proof-theoretic semantics differ strongly. Despite of Došen’s own
remarks that in his proposal rules are not intended as definitions of constants7 it may
be treated as a good framework even for developing proof-theoretic semantics. The
idea of the application of double-line rules as definitional rules reappeared in such
significantly different frameworks like Koslow’s structural approach to logics (see
Koslow, 1992), Sambin’s Basic Logic (see Sambin, Battilotti, and Faggian, 2000),
or categorical logic (see Maruyama, 2016). Moreover, this strong interpretation of
Došen’s proposal is provided independently by Gratzl and Orlandelli (2017) and by
Restall (2019). In particular, the former work proposes an interesting explanation of
the reasons for such a choice in terms of harmony. Since the 1960s, harmony was
treated as crucial for the explanation of proper rules for defining logical constants,
and a lot of work was offered in which a clarification of this notion was provided8.
Harmony is in general understood as a kind of balance between two kinds of rules,
introduction and elimination in ND, or antecedent and succedent introduction in SC.
However, this notion is explicated in many different ways. Gratzl and Orlandelli
(2017) proposed an explanation of harmony as a kind of deductive equilibrium which
was first proposed by Tennant (2010). Their approach may be seen as an improvement
of Tennant’s solution in the sense that it is purely local, i.e., an analysis of a constant
in terms of rules is independent of what other constants are already present in the
language. Moreover, in contrast to other approaches to harmony it allows for the
unique determination of one kind of rules from the other kind and vice versa.

Došen’s system described below serves as an exemplification of his theory of
criteria of logicality. The starting point of analysis of logical constants is the conviction
that logic is the science of formal proofs. Hence basic formal proofs are of purely
structural character, i.e., where only structural rules were applied9. It follows that an
expression is logical iff it is analysable in purely structural terms. As he emphasized
in the title of his paper — logical constants are punctuation marks. An analysis should
satisfy three conditions:

7 In particular, the proposed criteria do not necessarily satisfy the criteria of eliminability and
non-creativity required from the well-stated definitions.
8 See, e.g., Schroeder-Heister (2012), Poggiolesi (2011) or Kürbis (2019).
9 It is in a sense a development of Hertz’s programme (see Hertz, 1929).
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1. any sentence (sequent) with constant to be analysed should be equivalent to a
sentence (sequent) without it;

2. the analysis must be adequate (i.e., sound and complete);
3. the constant must be uniquely characterised.

His rules provide such an analysis in the sense that on the one side we have only
structural sequents, i.e., with no constant displayed. According to Došen, in order to
claim that an expression is a logical constant it is necessary to find such a double-valid
rule which after addition to structural rules allows for obtaining a full characterisation
of this constant. Došen (1989) proposed a structural version of LK, which we will
call SLK, in the language without negation but with ⊥ and ⊤ but we introduce a rule
for negation instead. In this system the set of structural rules is primitive and not
eliminable. Every constant is characterised by means of only one, but double-line
(i.e., invertible) rule:

(→)
𝜑, Γ ⇒ Δ, 𝜓

Γ⇒ Δ, 𝜑 → 𝜓
(∧)

Γ⇒ Δ, 𝜑 Γ⇒ Δ, 𝜓

Γ⇒ Δ, 𝜑 ∧ 𝜓
(¬)

𝜑, Γ ⇒ Δ

Γ⇒ Δ,¬𝜑

(∨)
𝜑, Γ ⇒ Δ 𝜓, Γ⇒ Δ

𝜑 ∨ 𝜓, Γ⇒ Δ
(∀)1 Γ⇒ Δ, 𝜑[𝑥/𝑎]

Γ⇒ Δ,∀𝑥𝜑 (∃)1 𝜑[𝑥/𝑎], Γ⇒ Δ

∃𝑥𝜑, Γ⇒ Δ

where in the latter two rules 𝑎 is not in Γ,Δ, 𝜑. In each case in addition to the
rule of introduction we have also a rule of elimination if we read the rule upside
down. Every rule is then a counterpart of a suitable equivalence characterising the
respective constant within Scott’s theory of consequence relations (see Scott, 1974).
In what follows we will use notation (↓→) and (↑→) for suitable halves of the rule
for implication and similarly for other constants.

The first condition is obviously satisfied for all rules. The second one can be shown
by providing a proof of equivalence with some standard version of SC which is known
to be adequate; our version of LK is sufficient. Since one half of each of Došen’s
rules corresponds to a suitable introduction rule such a proof amounts in principle to
demonstration of derivability of the remaining rules by means of structural rules only.
For example if we take his rule for implication, then (↓→) is exactly our (⇒→) and
the following shows derivability of (→⇒) by means of (↑→):

Γ ⇒ Δ, 𝜑

𝜑 → 𝜓 ⇒ 𝜑 → 𝜓(↑→)
𝜑, 𝜑 → 𝜓 ⇒ 𝜓 𝜓,Π ⇒ Σ (Cut)

𝜑, 𝜑 → 𝜓,Π ⇒ Σ (Cut)
𝜑 → 𝜓, Γ,Π ⇒ Δ, Σ

whereas the converse derivability goes like that:

Γ ⇒ Δ, 𝜑 → 𝜓

𝜑 ⇒ 𝜑 𝜓 ⇒ 𝜓 (→⇒)
𝜑 → 𝜓, 𝜑 ⇒ 𝜓 (Cut)

𝜑, Γ ⇒ Δ, 𝜓

Note that both demonstrations of derivability are structural and moreover in addition
to the respective logical rules they use only axioms and cut. Such demonstration of
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interderivability is sufficient to show that rules of LK are harmonious in the sense
explained by Gratzl and Orlandelli (2017). One may easily check that the remaining
halves of Došen’s rules are also interderivable with (∧⇒), (¬⇒), (⇒∨), (∀⇒) and
(⇒∃). However, in the case of interderivability of (∧⇒) and (⇒∨) with (↑∧) and
(↓∨) we must additionally use contraction and weakening. Derivations are still
structural but some authors tend to be careful with that and admit as fully satisfactory
analyses only those where axioms and cut are the only rules (see, e.g., Gratzl and
Orlandelli, 2017). However, it is easy to provide a remedy. In fact, Došen’s rules were
based on the original Gentzen’s rules for LK which are additive and for these rules
interderivability requires only axioms and cut. On the other hand we have chosen all
rules to be multiplicative. If we change Došen’s rules for conjunction and disjunction
into:

(∧)
𝜑, 𝜓, Γ ⇒ Δ

𝜑 ∧ 𝜓, Γ⇒ Δ
(∨)

Γ ⇒ Δ, 𝜑, 𝜓

Γ⇒ Δ, 𝜑 ∨ 𝜓

we can provide interderivability proofs for our version of LK by means of axioms and
cut only.

On the other hand note that showing derivability of (∀⇒) and (⇒ ∃) in structural
variant requires additional structural rule of substitution:

(SUB)
Γ⇒ Δ

Γ[𝑎/𝜏] ⇒ Δ[𝑎/𝜏]

which is necessary to enable unrestricted instantiation (modulo correct substitution)
of terms in these two rules.

The last condition, i.e., uniqueness may be demonstrated as the provability for
each constant ∗ of two sequents: ∗𝜑 ⇒ ★𝜑 and 𝜑 ⇒ ∗𝜑, where ★ is a notational
variant having the same rule. Suitable proofs are trivial in this setting (although not
in general — see, e.g., Došen, 1985).

How can equality be characterised in this framework? In fact, Došen proposed a
rule which is of global character:

(=)
Γ[𝑎/𝜏1]⇒ Δ[𝑎/𝜏1]

𝜏1 = 𝜏2, Γ⇒ Δ

In Section 2 we explained why such kind of rules cannot be treated as providing
a criterion of logicality. What kind of local rules can be used instead? The obvious
candidates are double versions of the rules for succedent introduction which we
examined in the last section:

𝜑[𝑎/𝜏1], Γ ⇒ Δ, 𝜑[𝑎/𝜏2]
Γ⇒ Δ, 𝜏1 = 𝜏2

(1=)

𝜑[𝑎/𝜏1], Γ⇒ Δ, 𝜑[𝑎/𝜏2] 𝜑[𝑎/𝜏2], Γ⇒ Δ, 𝜑[𝑎/𝜏1]
Γ⇒ Δ, 𝜏1 = 𝜏2

(2=)
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where in both rules 𝜑 is atomic predicate not in Γ,Δ. The first one is an obvious
SC version of Read’s rule and the second of Restall’s one. Let us consider a pure or
applied FOLI as formalised by Došen’s SLK in two variants: SLK1 (with (1=)) and
SLK2 (with (2=)). We start with the latter, moreover we add, similarly as in LKI2,
the proviso that equalities are not atomic predicates, so only predicate parameters
(and other predicate constants in applied version) are admitted as instances of 𝜑. This
system satisfies the first condition so we must check the second, i.e., adequacy. Both
directions of (2=) are cases of (2⇒=) and (4=) respectively so SLK2 is sound. Of
course we can also easily provide demonstrations of the interderivability of (1=↑)
and (2=↑) with (1=⇒) and (2=⇒) which is enough to show that the equality rules
of LKI1 and LK2 are harmonious in the sense of Gratzl and Orlandelli (2017). To
show that SLK (in both versions) is complete we must be able to prove the reflexivity
axiom and LP which are immediate:

𝐴𝜏 ⇒ 𝐴𝜏 𝐴𝜏 ⇒ 𝐴𝜏(↓2=) ⇒ 𝜏 = 𝜏

𝜏1 = 𝜏2 ⇒ 𝜏1 = 𝜏2(↑2=)
𝜏1 = 𝜏2, 𝜑[𝑎/𝜏1] ⇒ 𝜑[𝑎/𝜏2]

where 𝜑 is any atomic predicate (parameter or constant).
However, it is not sufficient. Since equalities cannot be instances of 𝜑 we must

provide also proofs of symmetry and transitivity for =:
𝜏1 = 𝜏2 ⇒ 𝜏1 = 𝜏2(2=↑)
𝜏1 = 𝜏2, 𝐴𝜏2 ⇒ 𝐴𝜏1

𝜏1 = 𝜏2 ⇒ 𝜏1 = 𝜏2 (2=↑)
𝜏1 = 𝜏2, 𝐴𝜏1 ⇒ 𝐴𝜏2(2=↓)

𝜏1 = 𝜏2 ⇒ 𝜏2 = 𝜏1

for transitivity we derive:

𝜏1 = 𝜏2 ⇒ 𝜏1 = 𝜏2(2=↑)
𝜏1 = 𝜏2, 𝐴𝜏1 ⇒ 𝐴𝜏2

𝜏2 = 𝜏3 ⇒ 𝜏2 = 𝜏3 (2=↑)
𝜏2 = 𝜏3, 𝐴𝜏2 ⇒ 𝐴𝜏3(Cut)

𝜏1 = 𝜏2, 𝜏2 = 𝜏3, 𝐴𝜏1 ⇒ 𝐴𝜏3

and
𝜏2 = 𝜏3 ⇒ 𝜏2 = 𝜏3(2=↑)
𝜏2 = 𝜏3, 𝐴𝜏3 ⇒ 𝐴𝜏2

𝜏1 = 𝜏2 ⇒ 𝜏1 = 𝜏2 (2=↑)
𝜏1 = 𝜏2, 𝐴𝜏2 ⇒ 𝐴𝜏1(Cut)

𝜏1 = 𝜏2, 𝜏2 = 𝜏3, 𝐴𝜏3 ⇒ 𝐴𝜏1

which together by (2=↓) yield 𝜏1 = 𝜏2, 𝜏2 = 𝜏3 ⇒ 𝜏1 = 𝜏3.
It is important to note that in both proofs the use of both premisses of (2=) is

essential. It is not possible to provide a proof of symmetry and transitivity of = in
SLK1 with the same proviso. On the other hand, if we admit equalities as possible
instances of 𝜑, SLK1 appears also to be an adequate formalization of pure or applied
FOLI, similarly as LKI1. Proofs of symmetry and transitivity look like that:

𝐴𝜏1 ⇒ 𝐴𝜏1(1=↓) ⇒ 𝜏1 = 𝜏1

𝜏1 = 𝜏2 ⇒ 𝜏1 = 𝜏2 (1=↑)
𝜏1 = 𝜏1, 𝜏1 = 𝜏2 ⇒ 𝜏2 = 𝜏1(Cut)

𝜏1 = 𝜏2 ⇒ 𝜏2 = 𝜏1
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where in the application of (1=↑) on the right 𝜑[𝑎/𝜏𝑖] is 𝑎 = 𝜏1 [𝑎/𝜏𝑖].

𝜏1 = 𝜏2 ⇒ 𝜏1 = 𝜏2

𝜏2 = 𝜏3 ⇒ 𝜏2 = 𝜏3 (1=↑)
𝜏1 = 𝜏2, 𝜏2 = 𝜏3 ⇒ 𝜏1 = 𝜏3 (Cut)

𝜏1 = 𝜏2, 𝜏2 = 𝜏3 ⇒ 𝜏1 = 𝜏3

where in the application of (1=↑) on the right 𝜑[𝑎/𝜏𝑖] is 𝜏1 = 𝑎[𝑎/𝜏𝑖]. Since the
proof of LP is correct also with (1=) and the proof of reflexivity by (1=) is involved in
the proof of symmetry above we are done. Also the proofs of uniqueness are directly
obtainable in both versions of SLK. The above proofs show also that simple FOLI
may be also formalised by means of SLK1; it is enough to change in the proof of
reflexivity 𝐴𝜏 ⇒ 𝐴𝜏 for 𝜏 = 𝜏 ⇒ 𝜏 = 𝜏.

We leave the problem of formalization of simple applied versions of FOLI in SLK
— it may follow the way described in the preceding section. The only difference is that
now such many-premiss rules are treated as double valid. In particular, in the case of
the language with just one unary predicate we can use just (2=) without proviso that
𝜑 is fresh.

There is no problem with the treatment of complex terms in the structural variant
provided we will treat substitution of terms in the same way as in the systems of the
preceding section. For illustration we can show how to provide a proof of CT for a
binary operation 𝑓 of the form: ∀𝑥𝑦𝑧𝑣(𝑥 = 𝑦 ∧ 𝑧 = 𝑣 → 𝑓 𝑥𝑧 = 𝑓 𝑦𝑣)

We can prove:

𝑎 = 𝑏 ⇒ 𝑎 = 𝑏(2=↑)
𝑎 = 𝑏, 𝐴 𝑓 𝑎𝑐 ⇒ 𝐴 𝑓 𝑏𝑐

𝑎 = 𝑏 ⇒ 𝑎 = 𝑏 (2=↑)
𝑎 = 𝑏, 𝐴 𝑓 𝑏𝑐 ⇒ 𝐴 𝑓 𝑎𝑐(2=↓)

𝑎 = 𝑏 ⇒ 𝑓 𝑎𝑐 = 𝑓 𝑏𝑐

In a similar way we prove 𝑐 = 𝑑 ⇒ 𝑓 𝑏𝑐 = 𝑓 𝑏𝑑. Since 𝑓 𝑎𝑐 = 𝑓 𝑏𝑐, 𝑓 𝑏𝑐 = 𝑓 𝑏𝑑 ⇒
𝑓 𝑎𝑐 = 𝑓 𝑏𝑑 is provable as an instance of transitivity we obtain 𝑎 = 𝑏, 𝑐 = 𝑑 ⇒
𝑓 𝑎𝑐 = 𝑓 𝑏𝑑 by two applications of cut, and then the result by (∧), (→), (∀). This
proof generalizes for any 𝑛-ary operation.

We finish this section with the remark that similarly as in the case of other constants,
there is another possibility of characterizing equality by means of invertible rule. We
can use the antecedent-based rule:

(=3)
Γ⇒ Δ, 𝜑[𝑎/𝜏1], 𝜑[𝑎/𝜏2] 𝜑[𝑎/𝜏1], 𝜑[𝑎/𝜏2], Γ⇒ Δ

𝜏1 = 𝜏2, Γ⇒ Δ

This rule has an advantage of having no side condition on 𝜑 except that it is atomic.
However, showing that it satisfies Došen’s criteria is slightly more involved and we
do not pursue this task here.

7 Final comments

The results of our analysis do not provide a decisive answer to the problem that was
posed concerning logicality of equality. They show that the status of equality as a
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logical constant is dependent not only on the criteria which are taken into account
but also sensitive to the version of the language to which equality is appended. In
this respect the structural variant of Došen works better. All criteria of logicality
hold for pure, applied and simple applied variants of FOLI introduced in Section 6.
Moreover, invertible rules of this calculus allow us to show that standard introduction
rules from Section 5 are harmonious in the sense advocated by Gratzl and Orlandelli
(2017). However, in the latter case, i.e., SC realizing Hacking’s approach, it is striking
that the most important condition, namely cut eliminability, fails for the pure and
applied version of FOLI. On the other hand it can be proved for many other sequent
formalizations of FOLI but with non-canonical equality rules. Such rules however
cannot be considered as proof-theoretic characterisations of a logical constant. Note
also that simple FOLI does not satisfy the criteria of logicality in either formalization.
Neither cut elimination holds for LKI variants, nor the first condition of Došen’s
analysis holds if equality is a sole predicate.

Our analysis was provided in the setting of standard SC and its slightly nonstandard
variant but still based on the standard notion of a sequent. One may ask if the application
of some other generalised setting may show in a more decisive way that equality
satisfies the criteria of logicality. For example, in Hacking (1979) modal operators
are taken as a negative example since in the setting of standard SC they cannot be
characterised by means of canonical rules. But one can find more satisfying solutions
on the ground of generalised formalisations. For example, in the setting of display
logic one can provide rules for modal operators satisfying Hacking’s demands (see,
e.g., Wansing, 1999).

One possible generalization which works for equality can be based on using
sequents with terms occuring on a par with formulae. The idea of formal systems
with terms treated as fully fledged elements of deductions is not new. For the first
time it was introduced by Jaśkowski (1934) in his first system of ND. Quite recently
the idea was independently undertaken and developed in the setting of ND by Textor
(2017) and Gazzari (2019). In the framework of SC it was developed by Restall
(2019) and in Indrzejczak (2021). It seems that in this slightly generalised setting not
only equality but also several kinds of term-forming operators may be formalised in a
way important for further development of proof-theoretic semantics.

In this study we have restricted considerations to classical FOLI but the results we
obtained may be easily extended to Intuitionistic version by restricting sequents to
single-succedent ones. It is an open problem how to adapt this kind of analysis to
other predicates of similar character applied in nonclassical logics.
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