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Abstract The relation between ex falso and disjunctive syllogism, or even the
justification of ex falso based on disjunctive syllogism, is an old topic in the history
of logic. This old topic reappears in contemporary logic since the introduction of
minimal logic by Johansson. The disjunctive syllogism seems to be part of our general
non-problematic inferential practices and superficially it does not seem to be related
to or to depend on our acceptance of the frequently disputable ex falso rule. We
know that the acceptance of the ex falso is a sufficient condition for the acceptance of
the disjunctive syllogism, but the interesting question is: is the ex falso a necessary
condition for the acceptance of the disjunctive syllogism? The aim of the present paper
is to discuss some possible ways to define systems that combines the preservation of
the disjunctive syllogism with the rejection of the ex falso.

1 Introduction

The relation between ex falso and disjunctive syllogism, or even the justification of
ex falso based on disjunctive syllogism, is an old topic in the History of Logic. This
old topic reappears in contemporary logic since the introduction of minimal logic by
Johansson. The disjunctive syllogism seems to be part of our general non-problematic
inferential practices and superficially it does not seem to be related to or to depend
on our acceptance of the ex falso rule; on the other hand, the general validity of the
ex falso has been subjected to dispute. We know that the acceptance of the ex falso is
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a sufficient condition for the acceptance of the disjunctive syllogism, as the following
simple derivation in an intuitionistic natural deduction system shows:

(𝐴 ∨ 𝐵) [𝐴]1

[𝐵]2 ¬𝐵 ¬E
⊥ ⊥𝑖
𝐴

∨E 1, 2
𝐴

The interesting question is: is the ex falso a necessary condition for the acceptance
of the disjunctive syllogism?

As it was said, the relation between ex falso and the disjunctive syllogism has
a long history. A form of the disjunctive syllogism appears in Stoic Logic1 as the
fifth type of undemonstrated argument, “an argument which, having an exclusive
disjunction and the contradictory of one of the disjuncts as premises, infers the other
disjunct as its conclusion”2. Diogenes Laertius, in Lives of Eminent Philosophers
(VII, 49), gives the following example:

Either it is day or it is night.
It is not night.

Therefore, it is day.

A medieval argument from the 12th century, attributed to William of Soissons,
shows how to derive the ex falso from the disjunctive syllogism and other “non-
problematic” rules. The argument in natural language is3:

I wonder that certain men oppose the thesis that from a per se impossibility anything
whatsoever follows . . .. For doesn’t it follow that if Socrates is a man and not a man, then
Socrates is a man, but if Socrates is a man, then Socrates is man or a stone. Therefore, if
Socrates is a man and not a man, then Socrates is a man or a stone. But if Socrates is a man
and Socrates is not a man, then Socrates is not a man. Therefore, if Socrates is a man and
Socrates is not a man, then Socrates is a stone.

We can reconstruct this argument axiomatically4 as:

1. (𝐴 ∧ ¬𝐴) → 𝐴 Conditional Simplification,
2. (𝐴 → (𝐴 ∨ 𝐵)) Conditional Addition,
3. ((𝐴 ∧ ¬𝐴) → (𝐴 ∨ 𝐵)) 1, 2, Transitivity,
4. ((𝐴 ∧ ¬𝐴) → ¬𝐴) Conditional Simplification,
5. ((𝐴 ∧ ¬𝐴) → ((𝐴 ∨ 𝐵) ∧ ¬𝐴)) 3, 4, Conditional Adjunction,
6. (((𝐴 ∨ 𝐵) ∧ ¬𝐴) → 𝐵) Conditional Disjunctive Syllogism,
7. (𝐴 ∧ ¬𝐴) → 𝐵) 5, 6, Transitivity.

1 It is worth noticing that, while stoic disjunction is exclusive, all the new systems examined in this
paper use inclusive disjunctions. Even though changes are promoted in elimination rules, we are
always allowed to use the standard rules of conjunction elimination and disjunction introduction to
show that 𝐴∧ 𝐵 ⊢ 𝐴∨ 𝐵.
2 Benson Mates (1953), p. 73.
3 See Martin (1986), p. 571.
4 We prefer the axiomatic style here as it looks closer to the text.
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This argument is considered a precursor to the argument known as Lewis’ argu-
ment5:

Assume 𝑝 ∼ 𝑝.(1)
(1) J 𝑝(2)

If 𝑝 is true and 𝑝 is false, then 𝑝 is true.
(1) J ∼ 𝑝(3)

If 𝑝 is true and 𝑝 is false, then 𝑝 is false.
(2) . J . 𝑝 ∨ 𝑞(4)

If, by (2), 𝑝 is true, then at least one of the two, 𝑝 and 𝑞, is true.
(3) . (4): J . 𝑞

If, by (3), 𝑝 is false, and by (4), at least
one of the two, 𝑝 and 𝑞, is true; then 𝑞 must be true.

We can also easily show that the disjunctive syllogism axiom implies the ex falso
theorem:

[𝐵]1

(𝐴 ∨ 𝐵) [¬𝐵]2

((𝐴 ∨ 𝐵) ∧ ¬𝐵) (((𝐴 ∨ 𝐵) ∧ ¬𝐵) → 𝐴)
𝐴 1(𝐵 → 𝐴)

2(¬𝐵 → (𝐵 → 𝐴))

And the same result can be obtained if we add the disjunctive-syllogism rule (DS)

(𝐴 ∨ 𝐵) ¬𝐴
DS

𝐵

to minimal logic6

[𝐵]1

(𝐴 ∨ 𝐵) [¬𝐵]2
DS

𝐴 →I 1
(𝐵 → 𝐴)

→I 2
(¬𝐵 → (𝐵 → 𝐴))

which allows a simple reconstruction of Soissons’ argument in natural deduction:

5 See Lewis and Langford (1959, p. 250).
6 Rodolfo Ertola-Biraben called our attention to the fact that it is enough to add the following
particular case DS¬ of DS

(𝐴∨ ¬𝐴) ¬¬𝐴
DS¬

𝐴

in order to obtain the full power of ex-falso.
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(𝐴 ∧ ¬𝐴)
𝐴

(𝐴 ∨ 𝐵)
(𝐴 ∧ ¬𝐴)

¬𝐴
DS

𝐵

It is interesting to observe that all these arguments and proofs are not normal in the
proof-theoretical sense, as some occurrences of disjunctive formulas are both the
conclusion of an introduction rule and the major premise of an application of the
disjunctive syllogism, which has the shape of an elimination rule.

But are we really committed to the ex falso if we accept the disjunctive syllogism? Is
it really necessary to resort to the ex falso in order to justify the disjunctive syllogism?
Could we not try some sort of admissibility argument to justify the disjunctive
syllogism?

2 An admissibility argument in minimal logic

An admissibility strategy was considered by Tim van der Molen in the paper “The
Johansson/Heyting letters and the birth of minimal logic”. In the very beginning of
the paper we find the following interesting passage:

The provability of Formula 4.41 [( ( (𝐴∧¬𝐴) ∨𝐵) → 𝐵)] in minimal logic is a desideratum
because it stems from the disjunction property. The disjunction property is a property shared
by all the usual intuitionistic formal systems. It states that if we can produce a proof of
(𝐴∨ 𝐵) , then we can also produce a proof of 𝐴 or a proof of 𝐵. So, if ( (𝐴∧¬𝐴) ∨ 𝐵) (the
antecedent of 4.41) has been proved, then, by the disjunction property, (𝐴∧ ¬𝐴) is provable
or 𝐵 is. In a consistent system like minimal logic (𝐴∧ ¬𝐴) is not provable. Therefore, 𝐵
(the consequent of 4.41) must be provable. This indicates that Formula 4.41 should hold in
minimal logic. (van der Molen, 2016, p. 2)

The argument used by van der Molen has the form of an admissibility argument:
in order to show that the rule

𝐴1 . . . 𝐴𝑛

𝐵

is admissible, we show that if ⊢ 𝐴1, . . . ,⊢ 𝐴𝑛, then ⊢ 𝐵. If we try to apply this kind
of admissibility argument7 to the disjunctive syllogism we obtain:

7 An alternative admissibility argument could be obtained by means of the so-called Dummett’s
fundamental assumption, according to which every proof (i.e., closed derivation) in intuitionistic
logic — and a fortiori in minimal logic — can be reduced to a canonical proof (i.e., a closed derivation
using an introduction rule in the last step). Both the disjunctive property and the consistency of
minimal logic are immediate corollaries of applying the fundamental assumptions to ⊢ 𝐴∨ 𝐵 and
⊢ ⊥ (due to the shape of the introduction rule for disjunction and to the absence of introduction
rules for ⊥). Then, since we must have either a proof of 𝐴 or of 𝐵 and (by assumption) we have a
proof of ¬𝐴, the fact that a proof of 𝐴 could then lead us to a proof of ⊥ and that it is impossible to
obtain a proof of ⊥ allows us to use a meta-application of the disjunctive syllogism and conclude
⊢ 𝐵. (We would like to thank one of the anonymous reviewers for drawing our attention to this
formulation of the admissibility argument).
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1. Assume ⊢ (𝐴 ∨ 𝐵) and ⊢ ¬𝐴;
2. By the disjunctive property, we have that ⊢ 𝐴 or ⊢ 𝐵;
3. But then, assuming that minimal logic is consistent, ⊬ 𝐴;
4. Thus, ⊢ 𝐵.

Could then an intuitionist accept the disjunctive syllogism without accepting the
general validity of ex falso? What would be Brouwer’s own position concerning the
ex falso and the disjunctive syllogism? According to van Atten, Brouwer would reject
the irrestricted validity of the ex falso:

In his dissertation from 1907, Brouwer gave an account of the hypothetical judgement that
served him all his life. On that account, hypothetical judgements may in certain cases have
false antecedents, but there is no justification of the general principle Ex Falso Sequitur
Quodlibet. Neither is the familiar derivation of Ex Falso using the disjunctive syllogism
acceptable on Brouwer’s view of logic. A systematic conclusion, then, is that Brouwer’s logic
is a relevance logic. (van Atten, 2009, p. 123)

But again according to van Atten, a kind of “admissibility argument” in defense of
the disjunctive syllogism can be attributed to Brouwer:

The application of the disjunctive syllogism is not problematic either. For if 𝐴 ∨ 𝐵 is a
description that applies to a mathematical construction, this means that we have a mathematical
method that, when carried out, will show that the description 𝐴 applies, or that the description
𝐵 applies; a proof of ¬𝐵 then simply tells us that the outcome of that method will be a
proof of 𝐴. But then we also know that we would have obtained 𝐴 as a description of the
mathematical construction in question if no independent proof of ¬𝐵 had been available to
us. The disjunctive syllogism, then, accompanies the mathematical operation of leaving the
construction described by 𝐴 as is. (van Atten, 2009, p. 124)

From the way the argument is formulated, it is obvious that it seems circular: the last
step of the argument is an explicit application of the very rule we are trying to justify,
to wit, the disjunctive syllogism, even if only a meta-application! But is it necessary to
understand this meta-application of disjunctive syllogism as dependent on a previous
acceptance of ex falso? Let us consider the following scenario where we explore a
comparison between our argument paths and trails we can follow in a promenade.

3 An informal account

Suppose that John is hiking in a forest and that at some point of the trail he finds a
bifurcation point marked 𝐴 ∨ 𝐵. From this point, John could take the path marked by
𝐴 or the path marked by 𝐵. But assume now that there is a sign (an extra information)
¬𝐵 that indicates that the path 𝐵 will lead to a dead-end (the ⊥). In this case, the only
path open to John is the path marked 𝐴. This situation can be graphically represented
as:



198 Luiz Carlos Pereira, Edward Hermann Haeusler and Victor Nascimento

Γ

𝐴 ∨ 𝐵

𝐴 𝐵 ¬𝐵

⊥

The sign ⊥ here indicates that John can no longer go along path 𝐵. In a certain
sense, this scenario reminds an interesting passage in the third chapter of Brouwer’s
thesis where he says:

‘But’, the logician will retort, ‘it might have happened that in the course of these reasonings a
contradiction turned up between the newly deduced relations and those that had been kept in
store. This contradiction, to be sure, will be observed as a logical figure, and this observation
will be based upon the principium contradictionis.’ To this I can reply: ‘The words of your
mathematical demonstration merely accompany a mathematical construction that is effected
without words. At the point where you enounce the contradiction, I simply perceive that the
construction no longer goes, that the required structure cannot be imbedded in the given basic
structure.’ And when I make this observation, I do no think of a principium contradictionis.
(Brouwer, 1975, pp. 72–73)

The idea is that the traveller, as Brouwer says, simply perceives that he can no
longer consider path 𝐵, when he finds the contradiction. It is true that the ex falso
may be “secretly” used in the process, but our first impression is that this scenario
would be acceptable to a minimal logician!

Just another point: this scenario also reminds Gentzen’s interesting remark on the
form of disjunction elimination. Gentzen says:

In this example the tree form must appear somewhat artificial since it does not bring out the
fact that it is after the enunciation of 𝑋 ∨ (𝑌 ∨ 𝑍 ) that we distinguish the cases 𝑋, 𝑌 and 𝑍 .
(Gentzen’s first example (1.1) on page 79 of Gentzen, 1969)

The point of this remark is that the fact that disjunction elimination has the form
it has in the usual natural deduction systems is a kind of artificial adaptation to the
general tree-form of derivations, but that, truly, the assumptions discharged come
after the major premiss, as we do in some multiple-conclusion versions of natural
deduction, as the following figure shows:

Γ

𝐴 ∨ 𝐵

𝐴 𝐵

𝐶 𝐶

But if we consider a disjunction as a branching point, we need some kind of
synchronization mechanism to bring paths together again!
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Γ

𝐴 ∨ 𝐵

𝐴 𝐵

𝐶 𝐶

𝐶

The point now is that the case of the disjunctive syllogism seems to require a new
kind of synchronization mechanism, as the following figure shows:

Γ

𝐴 ∨ 𝐵

𝐴 𝐵

𝐶 ⊥

𝐶

Maybe this is just an extravagant idea, but now what seemed to be an application
of a disputable rule, the ex falso, is just a kind of synchronization mechanism required
by disjunction. This idea applied to the disjunctive syllogism yields:

Γ

𝐴 ∨ 𝐵

𝐴 𝐵 ¬𝐵

⊥

𝐴

But as we shall see, this representation is not free of problems. In a certain sense,
this representation suggests that we could go from the end-point ⊥ to 𝐴 and this path
may hide an application of ex falso. Maybe a more faithful representation would be

Γ

𝐴 ∨ 𝐵

𝐴 𝐵 ¬𝐵

⊥
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But this representation would inevitably leave us in the realm of multiple-conclusion
systems.

4 The system M∨

If we do not want to go multiple-conclusion, we could try to define a set of new
disjunction eliminations (∨⊥-eliminations) as follows8:

1. ∨⊥-elimination-1

Γ
Π

𝐴 ∨ 𝐵

[𝐴]𝑚
Π1
𝐶

[𝐵]𝑛
Π2
𝐶

𝑚, 𝑛
𝐶

2. ∨⊥-elimination-2

Γ
Π

𝐴 ∨ 𝐵

[𝐴]𝑚
Π1
𝐶

[𝐵]𝑛
Π2
⊥

𝑚, 𝑛
𝐶

3. ∨⊥-elimination-3

Γ
Π

𝐴 ∨ 𝐵

[𝐴]𝑚
Π1
⊥

[𝐵]𝑛
Π2
𝐶

𝑚, 𝑛
𝐶

Let us the consider the natural deduction system M∨ that is obtained from the
propositional part of the Gentzen-Prawitz natural deduction system M for minimal
logic through the replacement of the usual disjunction-elimination rule by this new set
of disjunction eliminations (∨⊥-elimination-1, ∨⊥-elimination-2 and ∨⊥-elimination-
3). It is clear that the system M is a proper subsystem of the new system M∨ and that
M∨ is a subsystem of the propositional part of the Gentzen-Prawitz natural deduction
system 𝐼 for intuitionistic logic, but is M∨ a proper subsystem of I? Is it possible
to prove the full power of ex falso, to prove (𝐴 → (¬𝐴 → 𝐵))), in M∨? If it is not
possible, then the system M∨ could be a good candidate to be an intermediate system,
lying between the minimal system M and the intuitionistic system I. But consider now
the following simple derivations:

[𝐴]2

(𝐴 ∨ 𝐵)
[𝐴]3 [¬𝐴]1

⊥ [𝐵]4
∨ 3, 4

𝐵 →I 1(¬𝐴 → 𝐵) →I 2(𝐴 → (¬𝐴 → 𝐵))
8 This modification of the disjunction-elimination rule was first proposed by Neil Tennant (1979).
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[(𝐵 ∧ 𝐸)]4

𝐵

(𝐴 ∨ 𝐵)

[(𝐴 ∨ 𝐵)]3 [𝐴]1
[𝐵]2 ¬𝐵

⊥
1, 2

𝐴 3((𝐴 ∨ 𝐵) → 𝐴)
𝐴 4(𝐵 ∧ 𝐸) → 𝐴

The first derivation is a correct non-normal proof of (𝐴 → (¬𝐴 → 𝐵)) in M∨ using
the detour 𝐴∨𝐵; the second example is a correct derivation of {¬𝐵} ⊢ ((𝐵∧𝐸) → 𝐴)
using the detour ((𝐴 ∨ 𝐵) → 𝐴). How can we avoid these problematic derivations in
M∨?

The system M∨ is clearly related to the intuitionistic relevant system IR defined by
Tennant (1987). He recognizes that without further restrictions, the ex falso would be
derivable, and he considers the following derivation:

𝐴 ∨𝐼1(𝐴 ∨ 𝐵)
[𝐴]1 ¬𝐴 ¬E⊥ [𝐵]2

∨E 1, 2
𝐵

As we saw, Brouwer would have nothing against the use of the disjunctive syllogism
in the derivation above; his qualms would be related to the composition of derivations:

The problem is rather with the composition of these two inferences. The first inference
requires that the mathematical construction being described is one for ⊥; the second that it
is one for 𝐴. As in general 𝐴 and ⊥ will not be equivalent descriptions, there is no general
guarantee that when ⊥ describes a mathematical construction, 𝐴 describes it as well. This
means that there is no guarantee that the linguistic figures in Lewis’ argument accompany a
mathematical procedure. (van Atten, 2009, p. 124)

What are “these two inferences” to which van Atten is referring? The recognition
that there is a composition problem and that some restriction on the composition
of derivations is needed is exactly what Tennant does: in any application 𝛼 of an
elimination rule, the major premiss of 𝛼 cannot be the conclusion of an introduction
rule. The derivations

𝐴

(𝐴 ∨ 𝐵)

(𝐴 ∨ 𝐵)
[𝐴]1 ¬𝐴

⊥ [𝐵]2
1, 2

𝐵

are correct, but the derivation (the result of the composition)

𝐴

(𝐴 ∨ 𝐵)
[𝐴]1 ¬𝐴

⊥ [𝐵]2
1, 2

𝐵
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is not.
We can certainly use Tennant’s idea (forgetting everything about relevance) and

impose normality by stipulation: only normal derivations are accepted as legitimate
derivations. Obviously the system M∨ is Tennant’s system IR without the relevance-
restrictions. As in the case of IR, we can say that:

1. The propositional part of the natural deduction system M for minimal logic is a
subsystem of M∨ (M satisfies normalization);

2. The disjunctive syllogism is derivable in M∨; and
3. M∨ does not have the ex falso.

It is true one could say that to impose normality is a too high price to pay in order
to preserve the disjunctive syllogism without preserving the ex falso. In order to have
a better understanding of what is happening with detours of the form (𝐴 ∨ 𝐵) in the
derivation above, let us go back to our initial scenario where John is hiking in a trail.
Suppose that John is hiking with a map and that John arrives at the same bifurcation
point marked (𝐴 ∨ 𝐵). Let us suppose that path 𝐴 with some extra information 𝐶

leads to point 𝐸 and that path 𝐵 together with extra-information 𝐹 leads to a point 𝐺,
and that from the points 𝐸 and 𝐺 we can go to point 𝐻. We could try to represent
this situation with the following figure:

Γ

𝐴 ∨ 𝐵

𝐴𝐶 𝐵 𝐹

𝐺𝐸

𝐻

In the case of classical logic, if we are at point 𝐸 , we can access point𝐶, point 𝐹 and
all points in Γ: no visibility/accessibility restrictions. But in case of intuitionistic logic
the situation is completely different: after the bifurcation point, visibility/accessibility
restrictions are required. A more faithful representation of the situation is as follows:

Γ

𝐴 ∨ 𝐵

𝐶 𝐴 𝐵 𝐹

𝐸 𝐺

𝐻
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According to this new picture, at point 𝐸 we have only access to what is inside
its box (and the same holds for point 𝐺 with respect to its box). In the next section
we define a new system whose aim is to incorporate these visibility/accessibility
restrictions.

5 The system M⊥

Let the natural deduction system M⊥ be obtained from the propositional part of the
Gentzen-Prawitz natural deduction system M for minimal logic by the replacement of
the usual disjunction elimination by the following new set of disjunction-elimination
rules:

1. ∨⊥-elimination-1

Γ
Π

𝐴 ∨ 𝐵

[𝐴]𝑚
Π1
𝐶

[𝐵]𝑛
Π2
𝐶 ∨⊥E-1 𝑚, 𝑛

𝐶

2. ∨⊥-elimination-2

Γ∗

Π
𝐴 ∨ 𝐵

[𝐴]𝑚
Π1
𝐶

[𝐵]𝑛 Γ∗
2

Π2
⊥ ∨⊥E-2 𝑚, 𝑛, Γ∗ , Γ∗

2
𝐶

3. ∨⊥-elimination-3

Γ∗

Π
𝐴 ∨ 𝐵

[𝐴]𝑚 Γ∗
1

Π1
⊥

[𝐵]𝑛
Π2
𝐶 ∨⊥E-3 𝑚, 𝑛, Γ∗ , Γ∗

1
𝐶

The notation Γ∗ and Γ∗
𝑖

(𝑖 = 1, 2) indicates that the assumptions in Γ and in Γ𝑖
(𝑖 = 1, 2) are frozen, i.e., that they cannot be discharged below the conclusion of the
application of the corresponding ∨⊥-elimination.9

The non-normal derivation of (𝐴 → (¬𝐴 → 𝐵)) obtained in M∨ is clearly not a
correct derivation in M⊥: the application of disjunction elimination that was used
is an application 𝛼 of ∨-elimination-2 and the restriction demanded by the new
∨⊥-elimination-2 rule is not satisfied in 𝛼, since the hypothesis ¬𝐴 is discharged
below the conclusion of 𝛼. The restrictions on Γ forbid the second problematic
example given above. Although these problematic cases are not theorems of M⊥, we
still have a non-normal derivation of {¬𝐴∗2 , 𝐴∗1 } ⊢ 𝐵!

9 The intuitionistic multiple succedent sequent calculus FIL defined in de Paiva and Pereira (2005)
incorporates this idea by means of devices that control dependency relations between formulas in
the antecedent and formulas in the succedent of a sequent.
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𝐴∗1

(𝐴 ∨ 𝐵)
[𝐴]1 ¬𝐴∗2

⊥ [𝐵]2
∨⊥E-3 1, 2, 𝐴∗1 , ¬𝐴∗2

𝐵

In order to avoid these problematic derivability relations, let us examine the
normalization problem for M⊥.

6 Normalization for M⊥

Let us assume now that our hiker when he arrives at the bifurcation point (𝐴 ∨ 𝐵) his
map indicates that he should take path 𝐴. This situation can be pictured as:

Γ

𝐴

𝐴 ∨ 𝐵

𝐴 𝐵 ¬𝐵

⊥
𝐶

After taking the path marked by 𝐴, John’s promenade looks as follows:

Γ

𝐴

𝐶

If John had found the indication to take path 𝐵, we would have the following
picture:

Γ

𝐵

𝐴 ∨ 𝐵

𝐴 𝐵 ¬𝐵

⊥
𝐶

And after taking the path 𝐵, the situation is:
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Γ

𝐵 ¬𝐵

⊥

The new ∨⊥ reductions corresponding to these figures are:

1. A derivation of the form

Γ
Π
𝐴

𝐴 ∨ 𝐵

[𝐴]𝑚
Π1
𝐶

[𝐵]𝑛
Π2
𝐶2 ∨⊥E-1 𝑚, 𝑛

𝐶
Π3

where 𝐶2 is either 𝐶 or ⊥, reduces (as usual) to

Γ
Π

[𝐴]
Π1
[𝐶]
Π3

2. A derivation of the form

Γ
Π
𝐵

𝐴 ∨ 𝐵

[𝐴]𝑚
Π1
𝐶1

[𝐵]𝑚
Π2
𝐶 ∨⊥E-1 𝑚, 𝑛

𝐶
Π3

where 𝐶1 is either 𝐶 or ⊥, reduces (as usual) to

Γ
Π

[𝐵]
Π2
[𝐶]
Π3

3. A derivation of the form

Γ∗

Π
𝐵

𝐴 ∨ 𝐵

[𝐴]𝑚
Π1
𝐶

[𝐵]𝑛
Π2
⊥ ∨⊥E-2 𝑚, 𝑛, Γ∗

𝐶
Π3

reduces to

Γ∗

Π

[𝐵]
Π2
⊥
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4. A derivation of the form

Γ∗

Π
𝐴

𝐴 ∨ 𝐵

[𝐴]𝑚
Π1
⊥

[𝐵]𝑛
Π2
𝐶 ∨⊥E-3 𝑚, 𝑛, Γ∗

𝐶
Π3

reduces to

Γ∗

Π

[𝐴]
Π1
⊥

We could use here the strategy we used with respect to M∨ and impose normality by
stipulation: only normal derivations are accepted as legitimate derivations.

But we can also use a new strategy that was used by Prawitz in Natural Deduction.
In the appendix A, on set theory, Prawitz introduces the notion of quasi-derivation:

F [𝐹𝑐] is to be the system that is obtained from I [𝐶′] by the addition of the 𝜆𝐼- and 𝜆𝐸-rule.
A quasi-deduction in one of these systems is defined in the same way as a deduction was
defined for Gentzen-type systems in general (Chapter I, §2). A deduction is then defined as a
quasi-deduction that is normal. (Prawitz, 1965, pp. 94–95)

We could use this idea and define:
Definition 6.1 A quasi-derivation in M⊥ is a derivation as we usually define it. A
derivation in M⊥ is a quasi-derivation that is normal.

We can now formulate the normalization theorem for M⊥ as follows:
Theorem 6.2 Let Π be a quasi-derivation of Γ, Δ∗ ⊢ 𝐴. Then, either Π reduces to a
derivation Π′ of Γ, Δ∗ ⊢ 𝐴 or Π reduces to a derivation Π′′ of Γ, Δ∗ ⊢ ⊥.

The new normalization theorem establishes that a quasi-derivation will always
take us either to a normal derivation of the same conclusion or to a normal derivation
of ⊥10. We can think of quasi-derivations in M⊥ as deduction-maps that may contain
detours. Once we follow the map eliminating the detours (the normalization guide),
we will either reach the marked goal or we will reach a dead-end.

Important remark: This idea of deduction maps cannot be applied to the system M∨,
since the system M∨ does not satisfy the new normalization theorem. The following
simple derivation is a counter-example to the new normalization theorem: This
derivation

[𝐴]3

(𝐴 ∨ 𝐵)
[𝐴]1 ¬𝐴

⊥ [𝐵]2
∨⊥E-3 1, 2

𝐵 →I 3
(𝐴 → 𝐵)

reduces to
𝐴 ¬𝐴

⊥
We immediately see that the number of open assumptions increases after the

reduction (𝐴 was not open before the reduction).

10 We can easily see that in some cases a quasi-derivation can be transformed into different derivations
of ⊥.
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7 Conclusion

We have been examining two extensions of the propositional part of the Gentzen-
Prawitz natural deduction system M for minimal logic, the systems M∨ and M⊥, that
satisfy in a certain way the disjunctive syllogism but that do not satisfy the ex falso.

The system M∨ uses the rules ∨-elimination-1,∨-elimination-2, and∨-elimination-
3, and normality is imposed by construction. In the system M∨ we have the following
results:

1. By means of the new rules for disjunction, we can easily show that

{(𝐴 ∨ 𝐵),¬𝐵} ⊢M∨ 𝐴.

2. Given that there is no restriction on the deduction theorem in M∨, we also have

⊢M∨ (((𝐴 ∨ 𝐵) ∧ ¬𝐵) → 𝐴).

3. The imposition of normality by contruction guarantees that

⊬M∨ (¬𝐴 → (𝐴 → 𝐵)).

4. {¬𝐴, 𝐴} ⊬M∨ 𝐵.
5. The ⊥ works as the disjunction unity: ⊢M∨ ((𝐴 ∨ ⊥) ↔ 𝐴).
6. A general composition of derivations is lost with the imposition of normality by

contruction. This feature of M∨ does not seem to be faithful to our deductive
practices, where composition seems absolutely natural, as in the case of proofs
of theorems that use lemmas.

The system M⊥ uses the rules∨⊥-elimination-1,∨⊥-elimination-2,and∨⊥-elimination-
3, and these rules impose a more strict control on dependency relations between
assumptions and derived formulas. Normality is not imposed by construction, but it
is used to define derivations: M⊥ works with the concept of quasi-derivations and
defines derivations as quasi-derivations that are normal. The normalization theorem
for M⊥ guarantees that every quasi-derivation Π of Γ, Δ∗ ⊢ 𝐴 either reduces to a
derivation Π′ of Γ, Δ∗ ⊢ 𝐴 or Π reduces to a derivation Π′′ of Γ, Δ∗ ⊢ ⊥.

In the system M⊥ we have the following results:

1. {(𝐴 ∨ 𝐵)∗,¬𝐵∗} ⊢M⊥ 𝐴. In the application of the new disjunction-elimination
rule the assumptions (𝐴 ∨ 𝐵) and ¬𝐵 must be frozen.

2. {(𝐴 ∨ ⊥)∗} ⊢M⊥ 𝐴.
3. ⊬M⊥ (((𝐴 ∨ 𝐵) ∧ ¬𝐵) → 𝐴).
4. {¬𝐴, 𝐴} ⊬M⊥ 𝐵.
5. ⊬M⊥ (¬𝐴 → (𝐴 → 𝐵)).
6. We can think of the quasi-derivations as deduction plans that may contain detours.

The main idea now is that the normalization process will guide us through this
plan and will lead us either to a derivation that ends with a certain goal, or it will
lead us to a dead-end (possibly several dead-ends).
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Obviously there is still a lot of work to be done: (1) a more detailed comparison
between the systems M∨ and M⊥; (2) a more detailed comparison with Tennant’s
systems11,

12; (3) a deeper exploration of the idea of “freezing” hypotheses; and a
more in-depth analysis of the proof-theory of M⊥.
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