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Abstract We define intuitionistic subatomic natural deduction systems for reasoning
with elementary would-counterfactuals and causal since-subordinator sentences. The
former kind of sentence is analysed in terms of counterfactual implication, the latter
in terms of factual implication. Derivations in these modal proof systems make use
of modes of assumptions which are sensitive to the factuality status of the formula
that is to be assumed. This status is determined by means of the reference proof
system on top of which a modal proof system is defined. The introduction and
elimination rules for counterfactual (resp. factual) implication draw on this status. It is
shown that derivations in the systems normalize and that normal derivations have the
subexpression/subformula property. An intuitionistically acceptable proof-theoretic
semantics is formulated in terms of canonical derivations. The systems are applied to
so-called counterpossibles and to related constructions.

Key words: assumption, conditional logic, counterfactuals, counterpossibles, intu-
itionistic logic, natural deduction, proof-theoretic semantics

1 Introduction

The notion of assumption is essential to reasoning insofar as reasoning can be
characterized as the activity of drawing conclusions from assumptions. It is the
purpose of natural deduction systems (Gentzen, 1934; Jaśkowski, 1934) to depict
this inferential activity as closely as possible and to lay it down formally in terms of
inference rules. In his study of the notion of assumption in proof systems Schroeder-
Heister (2004),PeterSchroeder-Heister stresses,using a tree-style format, the following
asymmetry between assumptions and assertions (i.e., conclusions) in natural deduction:
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there is only an unspecific way of introducing assumptions, but there is both an
unspecific and a specific way of introducing assertions. In order to introduce an
assumption of formula 𝐴, one only has to state 𝐴 as an assumption. Schroeder-Heister
calls this way of introducing an assumption unspecific, because “the form of 𝐴 is not
specified” (Schroeder-Heister, 2004, p. 27). In order to introduce an assertion of 𝐴 in
an unspecific way, one has to proceed like in the case of introducing an assumption of
𝐴, thereby making 𝐴 dependent on itself. To introduce an assertion of 𝐴 in a specific
way, one has to derive 𝐴 as a conclusion using an inference rule (where 𝐴 is an axiom,
in case the inference rule considered has no premisses). Schroeder-Heister argues
that this asymmetry is responsible for limitations of expressive power and considers
proof systems which, like the sequent calculus in Gentzen (1934), on his preferred
reading, allow for both an unspecific and a specific way of introducing assumptions.

In what follows, we take up Schroeder-Heister’s call to contribute to the exploration
of the notion of assumption and of its significance to philosophical logic (cf. Schroeder-
Heister, 2004,p. 45). However,we shall remain within the confines of natural deduction
and suggest a way to widen its conception of assumption so as to put natural deduction
in a position to “capture and codify reasoning” (Schroeder-Heister, 2004, p. 28) with
would-counterfactuals, i.e., constructions of the form

(1) If 𝐴 were the case, 𝐵 would be the case.

More precisely, the aim of this contribution is to outline an intuitionistically (or con-
structively; cf. Dalen, 2002) acceptable formal approach to counterfactual reasoning
and to the semantics of would-counterfactuals in terms of modal proof systems which
are motivated directly by the practice of counterfactual inference making. Specifically,
the systems use different modes of making assumptions.

Modes of assumptions, as we shall understand them in what follows, are dependent
on the factuality status of the formula that is to be assumed. In a modal proof system
this status is determined by means of a reference proof system on top of which the
modal system is defined. In a nutshell, we assign factual status to a formula 𝐴, in case
𝐴 has been derived canonically (i.e., by means of an application of an introduction
rule in the last inference step; cf. Dummett, 1991; Prawitz 2006; 2012) in the reference
proof system S. We shall distinguish three modes of making assumptions in modal
proof systems. Intuitively, in order to assume 𝐴 in the factual mode, we need to make
sure that a canonical derivation of 𝐴 in S has been constructed. To assume 𝐴 in the
counterfactual mode, we need to make sure that a canonical derivation of 𝐴 in S has
not been constructed. Finally, to assume 𝐴 in the independent mode, we just assume
𝐴 (without any proviso).

Whereas sentences of the form (1) are most adequately used in case 𝐴 does not
count as a fact, causal since-subordinator sentences of the form

(2) Since 𝐴 is the case, it is the case that 𝐵.

are most adequately used in case 𝐴 does count as a fact (e.g., Dancygier and Sweetser,
2000, p. 126). Due to their sensitivity to the factuality status of the formula that
is to be assumed, our modal natural deduction systems will be also in a position
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to deal with such since-constructions. Our analysis will focus exclusively on such
intuitive uses. More specifically, constructions of the first form will be analysed as
counterfactual implications, and those of the second form as factual implications. The
meaning of the former will be explained by appeal to counterfactual assumptions, that
of the latter by appeal to factual assumptions. In order to outline the main idea more
clearly, the analysis will be confined to very elementary instances of (1) and (2).

The idea of using different ways of making assumptions for the purpose of a
proof-theoretic analysis of counterfactual reasoning goes back at least to Thomason’s
(1970) Fitch-style natural deduction system FCS for Stalnaker’s (1970) preferred
conditional logic CS. However, not only the details but also the motivation of
modal natural deduction systems differs from that underlying Thomason’s FCS.
We do not aim to formulate a structural proof system which is equivalent with
a specific Hilbert-style axiom system for some specific conditional logic whose
semantics is given non-inferentially. Rather, we shall develop our systems without
any Hilbert-system in mind. One reason for this is that the axioms of such systems
ultimately depend for their intelligibility on specific model-theoretic conditions. As
a result, axioms may inherit undesirable features from these conditions. Recall,
for example, that D. Lewis felt he should apologize for the “long and obscure”
axiom (𝜙 □→ ∼𝜓) ∨ (((𝜙 & 𝜓) □→ 𝜒) ≡ (𝜙 □→ (𝜓 ⊃ 𝜒))) of his simplest
Hilbert-style system for VC (cf. Lewis, 2011, p. 133). It is for this reason that he
preferred an equivalent axiomatization of VC in terms of his notion of “comparative
possibility” of possible worlds (cf. Lewis, 2011, §2.5) rather than in terms of his
would-counterfactual □→. Furthermore, Hilbert-systems are not indispensable, if
our aim is to formulate inferentially intuitive natural deduction systems which have
good structural properties (e.g., normalization, subformula property) and which
admit a proof-theoretic semantics (see Francez, 2015; Kahle and Schroeder-Heister,
2006; Piecha and Schroeder-Heister, 2016; Schroeder-Heister, 2018; Wansing, 2001)
that is acceptable from an intuitionistic point of view (see Dummett, 1991, Prawitz
2006; 2012; for model-theoretic semantical considerations on Hilbert-systems for
intuitionistic conditional logic see, e.g., Ciardelli and Liu, 2020 and Weiss, 2018).

Specifically, the intended proof-theoretic semantics is to be semantically autarkic,
i.e., not defined in terms of a structural proof system that is itself defined by appeal to
a formal semantics of a different kind (cf. Więckowski, 2021a). Since our approach to
counterfactual reasoning is intended to be acceptable from an intuitionistic perspective,
it will support a verification oriented conception of truth (cf. Dummett, 1991, Prawitz
2006; 2012).

The way in which this contribution is organized reflects the architecture of a modal
natural deduction system. Section 2 defines the kind of proof system that will be used
as reference proof system of such a system. Modal natural deduction systems for
reasoning with factual and counterfactual implications will be then defined in Section 3.
This section also contains the main results of this contribution (i.e., normalization and
the subexpression/subformula property for the intended modal systems) and presents
a proof-theoretic semantics with the desired properties. In Section 4, the modal proof
systems will be used in an analysis of so-called counterpossibles (see, e.g., Berto,
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French, Priest, and Ripley, 2018 and Williamson, 2007) and related constructions.
Section 5 makes some concluding remarks.

2 Reference proof systems

We shall now define the kind of reference proof system on top of which modal natural
deduction systems will be defined in Section 3. We first specify the language and then
formulate, in three steps, the intended kind of reference proof system. We choose
subatomic natural deduction systems (cf. Więckowski 2011; 2016; 2021b; 2021a;
2023) as our reference proof systems, since we need, as mentioned above, a way to
obtain canonical derivations of atomic sentences, if 𝐴 in (1) (resp. (2)) is atomic and
if we want to assume 𝐴 in the counterfactual (factual) mode. Unlike standard natural
deduction systems, subatomic natural deduction systems maintain introduction and
elimination rules also for atomic sentences.

2.1 Subatomic systems

We first define the language 𝐿0 that we shall use in the formulation of reference proof
systems.

Definition 2.1 𝐿0 is a first-order language which is defined in the usual inductive way.
C and P are the sets of individual (or nominal) constants (metavariables: 𝛼, 𝛼𝑖) and 𝑛-
ary predicate constants (metavariables: 𝜑𝑛, 𝜑𝑛

𝑖
), respectively. 𝐿0-formulae are atomic

formulae (form: 𝜑𝑛𝑜1 . . . 𝑜𝑛), absurdity (⊥), conjunctions (𝐴&𝐵), disjunctions (𝐴∨𝐵),
implications (𝐴 ⊃ 𝐵), universal quantifications (∀𝑥𝐴), and existential quantifications
(∃𝑥𝐴). In addition to defined operators for negation and bi-implication, 𝐿0 contains
also a special non-primitive identity predicate:

1. ¬𝐴 =def 𝐴 ⊃ ⊥
2. 𝐴↔ 𝐵 =def (𝐴 ⊃ 𝐵) & (𝐵 ⊃ 𝐴)
3. Let 𝜑𝑛 be an 𝑛-ary predicate constant.

𝐾𝑛
𝜑𝑛 (𝑜1, 𝑜2) =def ∀𝑧1 . . .∀𝑧𝑛−1∀𝑧𝑛 ((𝜑𝑛𝑜1𝑧2 . . . 𝑧𝑛 ↔ 𝜑𝑛𝑜2𝑧2 . . . 𝑧𝑛)

& (𝜑𝑛𝑧1𝑜1 . . . 𝑧𝑛 ↔ 𝜑𝑛𝑧1𝑜2 . . . 𝑧𝑛)
& . . . & (𝜑𝑛𝑧1 . . . 𝑧𝑛−1𝑜1 ↔ 𝜑𝑛𝑧1 . . . 𝑧𝑛−1𝑜2)).

Let 𝜑𝑘1
1 , . . . , 𝜑

𝑘𝑚
𝑚 be all the predicate constants in P, where 𝜑𝑖 is 𝑘𝑖-ary.

𝑜1 ¥=𝑜2 =def 𝐾
𝑘1
𝜑1 (𝑜1, 𝑜2) & . . . & 𝐾𝑘𝑚

𝜑𝑚
(𝑜1, 𝑜2).

𝐴𝑡𝑚 is the set of atomic sentences. Atm(𝛼) =def {𝐴 ∈ 𝐴𝑡𝑚 : 𝐴 contains at least one
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occurrence of 𝛼 ∈ C} and Atm(𝜑𝑛) =def {𝐴 ∈ 𝐴𝑡𝑚 : 𝐴 contains an occurrence of
𝜑𝑛 ∈ P}. Due to the presence of ¥= in 𝐿0 we take P to be finite.

The first step of the definition of the intended kind of reference proof system
consists in the definition of a subatomic system. In such systems we may introduce
and eliminate atomic sentences using term assumptions for non-logical constants.
Definition 2.2 A subatomic system S is a pair ⟨I,R⟩, where I is a subatomic base
and R is a set of introduction and elimination rules for atomic sentences. I is a
3-tuple ⟨C,P, 𝑣⟩, where C and P are as above, and where 𝑣 is such that:

1. For any 𝛼 ∈ C, 𝑣 : C → ℘(𝐴𝑡𝑚), where 𝑣(𝛼) ⊆ Atm(𝛼).
2. For any 𝜑𝑛 ∈ P, 𝑣 : P → ℘(𝐴𝑡𝑚), where 𝑣(𝜑𝑛) ⊆ Atm(𝜑𝑛).

We let 𝜏Γ =def 𝑣(𝜏) for any 𝜏 ∈ C ∪ P, and call 𝜏Γ the set of term assumptions for 𝜏.
R contains I/E-rules of the following form:

D0
𝜑𝑛0Γ

D1
𝛼1Γ . . .

D𝑛

𝛼𝑛Γ
(𝑎𝑠I)

𝜑𝑛0𝛼1 . . . 𝛼𝑛

where
𝜑𝑛0𝛼1 . . . 𝛼𝑛 ∈ 𝜑𝑛0Γ ∩ 𝛼1Γ ∩ . . . ∩ 𝛼𝑛Γ

D1
𝜑𝑛0𝛼1 . . . 𝛼𝑛

(𝑎𝑠E𝑖)
𝜏𝑖Γ

where 𝑖 ∈ {0, . . . , 𝑛} and
𝜏𝑖 ∈ {𝜑𝑛0 , 𝛼1, . . . , 𝛼𝑛}

Intuitively, a term assumption stores the elementary information which is associated
with a non-logical constant and the 𝑎𝑠I-rule allows us to establish the truth of an
atomic sentence on the basis of this information.

Definition 2.3 Derivations in S-systems.
Basic step. Any term assumption 𝜏Γ and any atomic sentence 𝐴 (i.e., a derivation

from the open assumption of 𝐴) is an S-derivation.
Induction step. If D𝑖 , for 𝑖 ∈ {0, . . . , 𝑛}, are S-derivations, then an S-derivation

can be constructed by means of the 𝑎𝑠I/E-rules displayed above.

Example 2.4 Let theS-system contain only two predicates (i.e.,𝐹,𝑅) and two nominal
constants (i.e., 𝑎, 𝑏), and let the term assumptions be as follows: 𝐹Γ = {𝐹𝑎, 𝐹𝑏},
𝑅Γ = {𝑅𝑎𝑏, 𝑅𝑏𝑎}, 𝑎Γ = {𝐹𝑎, 𝑅𝑎𝑏, 𝑅𝑏𝑎}, and 𝑏Γ = {𝐹𝑏, 𝑅𝑎𝑏, 𝑅𝑏𝑎}.

(3)

𝑅Γ 𝑎Γ 𝑏Γ (𝑎𝑠I)
𝑅𝑎𝑏 (𝑎𝑠E0)
𝑅Γ 𝑏Γ

𝐹𝑎 (𝑎𝑠E1)
𝑎Γ (𝑎𝑠I)

𝑅𝑏𝑎 (𝑎𝑠E2)
𝑎Γ

Derivation (3) contains two detours and is, therefore, not in normal form (or normal).

Definition 2.5 Detour conversion for 𝑎𝑠:
D0
𝜑𝑛0Γ

D1
𝛼1Γ . . .

D𝑛

𝛼𝑛Γ
(𝑎𝑠I)

𝜑𝑛0𝛼1 . . . 𝛼𝑛
(𝑎𝑠E𝑖)

𝜏𝑖Γ

conv
D𝑖

𝜏𝑖Γ
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Theorem 2.6 Any derivation D in an S-system can be transformed into a normal
S-derivation.

Proof Immediate. □

Definition 2.7 Let D be a derivation in an S-system.

1. An S-unit in D is either an occurrence of (i) an atomic sentence or (ii) a term
assumption 𝜏Γ in D. We use𝑈S ,𝑈

′
S (possibly with subscripts) for S-units.

2. In case𝑈S is a term assumption 𝜏Γ in D, 𝜏 is the expression in𝑈S .

Theorem 2.8 If D is a normal S-derivation of an S-unit𝑈S from a set of S-units Γ,
then each S-unit in D is a subexpression of an expression in Γ ∪ {𝑈S}.

Proof Immediate. □

2.2 Subatomic identity systems

The next step of the definition of the intended kind of reference proof system consists
in the extension of subatomic systems to subatomic identity systems by adding
I/E-rules for non-primitive identity sentences. Roughly, two nominal constants are
identical in this sense if they are indistinguishable with respect to the elementary
information associated with them (cf. Definition 2.2).

Definition 2.9 Atomic sentences 𝜑(𝛼1) and 𝜑(𝛼2) are mirror atomic sentences if
and only if they are exactly alike except that the former contains occurrences of 𝛼1 at
all the places at which the latter contains occurrences of 𝛼2, and vice versa.

Definition 2.10 A subatomic identity systemS ¥= is a 3-tuple ⟨I,R,R ¥=⟩ which extends
a subatomic system with a set R ¥= of I/E-rules for ¥=-sentences:

[𝜑1 (𝛼1)] (11 ) [𝜑1 (𝛼2)] (12 )

D11 D12

𝜑1 (𝛼2) 𝜑1 (𝛼1) . . .

[𝜑𝑘 (𝛼1)] (𝑘1 ) [𝜑𝑘 (𝛼2)] (𝑘2 )

D𝑘1 D𝑘2

𝜑𝑘 (𝛼2) 𝜑𝑘 (𝛼1)
(¥=I), 11 , 12 , . . . , 𝑘1 , 𝑘2

𝛼1 ¥=𝛼2

D1
𝛼1 ¥=𝛼2

D𝑖2

𝜑𝑖 (𝛼1) (¥=E𝑖1)
𝜑𝑖 (𝛼2)

D1
𝛼1 ¥=𝛼2

D𝑖1

𝜑𝑖 (𝛼2) (¥=E𝑖2)
𝜑𝑖 (𝛼1)

where 𝑖 ∈ {1, . . . , 𝑘}, and 𝜑𝑖 (𝛼1) and 𝜑𝑖 (𝛼2) are mirror atomic sentences.

Remark 2.11 In the ¥=I/E-rules the operators figuring in the definiens of ¥= (Defini-
tion 2.1) have been absorbed, so to speak, into the metalanguage.

Definition 2.12 Derivations in S ¥=-systems.
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Basic step. Any derivation in an S-system and any identity sentence 𝛼𝑖 ¥=𝛼 𝑗

(i.e., a derivation from the open assumption of 𝛼𝑖 ¥=𝛼 𝑗), where possibly 𝑖 = 𝑗 , is an
S ¥=-derivation.

Induction step. If D1, D11 , D12 , . . ., D𝑘1 , D𝑘2 , D𝑖1 , and D𝑖2 are S-derivations,
then an S ¥=-derivation can be constructed using the ¥=I/E-rules listed above.

Example 2.13 For simplicity, let the S ¥=-system contain only one predicate (i.e., 𝐹)
and two nominal constants (i.e., 𝑎 and 𝑏). And let the term assumptions be as follows:
𝐹Γ = {𝐹𝑎, 𝐹𝑏}, 𝑎Γ = {𝐹𝑎}, and 𝑏Γ = {𝐹𝑏}.

(4)
[𝐹𝑎] (11 )

(𝑎𝑠E0)
𝐹Γ 𝑏Γ (𝑎𝑠I)

𝐹𝑏

[𝐹𝑏] (12 )
(𝑎𝑠E0)

𝐹Γ 𝑎Γ (𝑎𝑠I)
𝐹𝑎 (¥=I), 11, 12

𝑎 ¥=𝑏

(5)
[𝐹𝑎] (11 )

(𝑎𝑠E0)
𝐹Γ

[𝐹𝑎] (11 )
(𝑎𝑠E1)

𝑎Γ (𝑎𝑠I)
𝐹𝑎

[𝐹𝑎] (12 )
(𝑎𝑠E0)

𝐹Γ

[𝐹𝑎] (12 )
(𝑎𝑠E1)

𝑎Γ (𝑎𝑠I)
𝐹𝑎 ( ¥=I), 11, 12

𝑎 ¥=𝑎

Example 2.14 Let 𝜑1 (𝛼), . . . , 𝜑𝑘 (𝛼) ∈ Atm(𝛼) for any 𝛼 ∈ C. The following is a
derivation in any S ¥=-system:
(6)

[𝜑1 (𝛼)] (11 ) [𝜑1 (𝛼)] (12 ) . . . [𝜑𝑘 (𝛼)] (𝑘1 ) [𝜑𝑘 (𝛼)] (𝑘2 )
(¥=I), 11, 12, . . . , 𝑘1, 𝑘2

𝛼 ¥=𝛼

Remark 2.15 According to Example 2.14, 𝛼 ¥=𝛼 does not need to be postulated as an
axiom. In particular, it is not declared, as it is usually the case, a conclusion of a
zero premiss I-rule. Rather it is inferred, on a non-empty basis, by appeal to mirror
formulae.

Definition 2.16 Detour conversions for ¥=:
[𝜑1 (𝛼1 ) ] (11 ) [𝜑1 (𝛼2 ) ] (12 )

D11 D12

𝜑1 (𝛼2 ) 𝜑1 (𝛼1 ) . . .

[𝜑𝑘 (𝛼1 ) ] (𝑘1 ) [𝜑𝑘 (𝛼2 ) ] (𝑘2 )

D𝑘1 D𝑘2

𝜑𝑘 (𝛼2 ) 𝜑𝑘 (𝛼1 ) ( ¥=I)
𝛼1 ¥=𝛼2

D𝑖2

𝜑𝑖 (𝛼1 ) (¥=E𝑖1)
𝜑𝑖 (𝛼2 )

conv

D𝑖2

[𝜑𝑖 (𝛼1 ) ]
D𝑖1

𝜑𝑖 (𝛼2 )

[𝜑1 (𝛼1 ) ] (11 ) [𝜑1 (𝛼2 ) ] (12 )

D11 D12

𝜑1 (𝛼2 ) 𝜑1 (𝛼1 ) . . .

[𝜑𝑘 (𝛼1 ) ] (𝑘1 ) [𝜑𝑘 (𝛼2 ) ] (𝑘2 )

D𝑘1 D𝑘2

𝜑𝑘 (𝛼2 ) 𝜑𝑘 (𝛼1 ) (¥=I)
𝛼1 ¥=𝛼2

D𝑖1

𝜑𝑖 (𝛼2 ) ( ¥=E𝑖2)
𝜑𝑖 (𝛼1 )

conv

D𝑖1

[𝜑𝑖 (𝛼2 ) ]
D𝑖2

𝜑𝑖 (𝛼1 )

Theorem 2.17 Any derivation D in an S ¥=-system can be transformed into a normal
S ¥=-derivation.



406 Bartosz Więckowski

Proof Cf. Więckowski (2016). □

Definition 2.18 Let D be a derivation in an S ¥=-system.

1. An S ¥=-unit in D is either an occurrence of (i) an atomic sentence, (ii) an identity
sentence, or (iii) a term assumption 𝜏Γ in D. We use 𝑈S ¥= ,𝑈′

S ¥= (possibly with
subscripts) for S ¥=-units.

2. In case𝑈S ¥= is a term assumption 𝜏Γ in D, 𝜏 is the expression in𝑈S ¥= .

Theorem 2.19 If D is a normal S ¥=-derivation of an S ¥=-unit 𝑈S ¥= from a set of
S ¥=-units Γ, then each S ¥=-unit in D is a subexpression of an expression in Γ∪ {𝑈S ¥= }.

Proof Cf. Więckowski (2016). □

2.3 Subatomic natural deduction systems

We now complete the definition of the intended kind of reference proof system. In
order to reduce complexity and to focus on the main idea underlying modal proof
systems, we define these reference systems, I(S ¥=)-systems, only for a fragment of 𝐿0.

Definition 2.20 The language 𝐿0′. 𝐿0′ is the fragment of 𝐿0 which comprises only
⊥, atomic, ¥=-, and ⊃-formulae.

Definition 2.21 Derivations in I(S ¥=)-systems.
Basic step. Any derivation in anS ¥=-system and any 𝐿0′-formula 𝐴 (i.e., a derivation

from the open assumption of 𝐴) is an I(S ¥=)-derivation.
Induction step. If D1 and D2 are I(S ¥=)-derivations, then an I(S ¥=)-derivation can

be constructed by means of the following rules:

[𝐴] (𝑢)
D1
𝐵 (⊃I), 𝑢

𝐴 ⊃ 𝐵

D1
𝐴 ⊃ 𝐵

D2
𝐴 (⊃E)

𝐵

D1
⊥ (⊥i)
𝐴

Definition 2.22 1. A derivation D of a formula 𝐴 in an I(S ¥=)-system is a canonical
derivation iff it derives 𝐴 by means of an application of an I-rule in the last step
of D.

2. A canonical derivation D of 𝐴 in an I(S ¥=)-system is a canonical proof of 𝐴
in that system iff there are no applications of 𝑎𝑠-rules and no undischarged
assumptions in D.

3. The conclusions of canonical I(S ¥=)-derivations are I(S ¥=)-theses and the conclu-
sions of I(S ¥=)-proofs are also I(S ¥=)-theorems.

Example 2.23 Let the I(S ¥=)-system maintain only one predicate (i.e., 𝐹) and two
nominal constants (i.e., 𝑎, 𝑏). Let the term assumptions be like in Example 2.13:
𝐹Γ = {𝐹𝑎, 𝐹𝑏}, 𝑎Γ = {𝐹𝑎}, and 𝑏Γ = {𝐹𝑏}.
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(7)

[𝑎 ¥=𝑎] (1) [𝐹𝑎] (21 )
( ¥=E)

𝐹𝑎 (𝑎𝑠E0)
𝐹Γ 𝑏Γ (𝑎𝑠I)

𝐹𝑏

[𝐹𝑏] (22 )
(𝑎𝑠E0)

𝐹Γ 𝑎Γ (𝑎𝑠I)
𝐹𝑎 (¥=I), 21, 22

𝑎 ¥=𝑏 (⊃I), 1
𝑎 ¥=𝑎 ⊃ 𝑎 ¥=𝑏

(8) [𝑎 ¥=𝑏] (1) (⊃I), 1
𝑎 ¥=𝑏 ⊃ 𝑎 ¥=𝑏

It can be readily verified, largely relying on standard methods (cf. Prawitz,
1965; Troelstra and Schwichtenberg, 2000), that derivations in I(S ¥=)-systems can
be transformed into normal derivations and that normal derivations possess the
subexpression/subformula property.

Definition 2.24 Detour conversions in I(S ¥=)-systems. The detour conversions for 𝑎𝑠
and ¥= are like those in Definitions 2.5 and 2.16. These are supplemented with the
detour conversion for ⊃:

[𝐴] (𝑢)
D1
𝐵 (⊃I), 𝑢

𝐴 ⊃ 𝐵

D2
𝐴 (⊃E)

𝐵

conv

D2
[𝐴]
D1
𝐵

Theorem 2.25 Normalization for I(S ¥=)-systems: Any derivation D in an I(S ¥=)-
system can be transformed into a normal I(S ¥=)-derivation.

Proof A consequence of the normalization proof in Więckowski (2016). □

Remark 2.26 (3) is neither normal nor canonical, but it can be transformed into
a normal I(S ¥=)-derivation (that is not canonical). (4)-(5) and (7)-(8) are normal
canonical I(S ¥=)-derivations. (6) and (8) have the form of normal canonical I(S ¥=)-
proofs.

Definition 2.27 Let D be a derivation in an I(S ¥=)-system.

1. A unit in D is either (i) a formula or (ii) the occurrence of an S ¥=-unit in D. We
use𝑈,𝑈′ (possibly with subscripts) for units.

2. In case𝑈 is a term assumption 𝜏Γ in D, 𝜏 is the expression in𝑈.

Theorem 2.28 Subexpression property for I(S ¥=)-systems: If D is a normal I(S ¥=)-
derivation of a unit𝑈 from a set of units Γ, then each unit in D is a subexpression of
an expression in Γ ∪ {𝑈}.

Proof A consequence of the corresponding proof in Więckowski (2016). □

Corollary 2.29 Subformula property for I(S ¥=)-systems: If D is a normal I(S ¥=)-
derivation of formula 𝐴 from a set of formulae Γ, then each formula in D is a
subformula of a formula in Γ ∪ {𝐴}.
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Remark 2.30 (4)-(8) possess the subexpression property, and so does (3) after its
transformation into a normal derivation. Concerning the subformula property, we
have to bear in mind that ¥=-formulae are abbreviations according to Definition 2.1.

3 Modal proof systems

Modal proof systems, as we shall understand them, are proof systems which, given
a reference proof system that serves to determine what counts as a fact, distinguish
between various modes of making assumptions. Section 3.1 defines modal proof
systems for reasoning with elementary would-counterfactuals and causal since-
subordinator sentences. Section 3.2 formulates a proof-theoretic semantics for such
constructions.

3.1 IFC-systems

The natural deduction systems to be defined in this section maintain three modes
of assumption. Derivations in these systems reflect, as it were, how the modes of
assumptions are related to the moods of implications. The systems are defined for the
language 𝐿1.

Definition 3.1 The language 𝐿1. The notion of a formula of 𝐿1 is inductively defined
by the following clauses:

1. Any formula of 𝐿0′ is a formula of 𝐿1.
2. If 𝐴, 𝐵 are formulae of 𝐿1, then 𝐴 ⊃ 𝑓 𝐵 (factual implication), 𝐴 ⊃𝑐 𝐵 (counter-

factual implication), and 𝐴 ⊃ 𝐵 (mode-sensitive implication) are formulae of
𝐿1.

Note that we do not use a different symbol for mode-sensitive implication. Let
◦ ∈ {⊃ 𝑓 , ⊃𝑐, ⊃}. Call the ◦-operators implication-operators and formulae with
principal ◦ implication-formulae. Defined operators of 𝐿1: ¬ 𝑓 𝐴 =def 𝐴 ⊃ 𝑓 ⊥
(factual negation), ¬𝑐𝐴 =def 𝐴 ⊃𝑐 ⊥ (counterfactual negation), ¬𝐴 =def 𝐴 ⊃ ⊥
(mode-sensitive negation).

For instance, we symbolize sentences of the form (1) by 𝐴 ⊃𝑐 𝐵 and sentences of the
form (2) by 𝐴 ⊃ 𝑓 𝐵.

Definition 3.2 Let Fml0 be the set of formulae of 𝐿0′ and let Fml1 be the set of
formulae of 𝐿1. An 𝐿1-formula 𝐴 is a modal formula in case 𝐴 ∈ Fml1 \ Fml0.

We now define the intended modal proof systems.

Definition 3.3 An IFC-system is a modal natural deduction system for intuitionistic
factual, counterfactual, and mode-sensitive implication which, given a reference
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proof system (Definition 3.4), distinguishes three modes of making assumptions
(Definition 3.5): factual, counterfactual, and independent. Derivations in IFC-systems
are defined on the basis of these modes (Definition 3.7).

Definition 3.4 Reference proof system S. Let S be an I(S ¥=)-system. Let an established
thesis of S be an 𝐿0′-formula for which a canonical S-derivation (Definition 2.22(1))
has been constructed. And let ΘS be the set of established theses (or facts).

Definition 3.5 Modes of assumptions (IFC-systems). There are three modes of making
assumptions in IFC-systems:

1. |𝐴| indicates that 𝐴 is assumed in the factual mode, given that 𝐴 ∈ Fml0 and
𝐴 ∈ ΘS.

2. ≀𝐴≀ indicates that 𝐴 is assumed in the counterfactual mode, given that 𝐴 ∈ Fml0
and 𝐴 ∈ Θ𝑐

S, where Θ𝑐
S =def Fml0 \ ΘS.

3. 𝐴 (no markers) indicates that 𝐴 is assumed in the independent mode, where 𝐴 ∈
Fml1. Specifically, in case 𝐴 is also an 𝐿0′-formula, 𝐴 is assumed independently
of whether it is contained in ΘS or Θ𝑐

S.
We write /𝐴/ to indicate that 𝐴 is assumed in one of the three modes.

Remark 3.6 A consequence of Definition 3.5 is that modal 𝐿1-formulae can be
assumed only in the independent mode.

Definition 3.7 Derivations in IFC-systems.
Basic step. Any derivation in the reference system S of an IFC-system, any

𝐿0′-formula 𝐴 assumed in the factual (resp. counterfactual) mode |𝐴| (≀𝐴≀), i.e., a
derivation from the open factual (counterfactual) assumption of 𝐴, and any 𝐿1-formula
𝐴 assumed in the independent mode, i.e., a derivation from the open independent
assumption of 𝐴, is a derivation in that IFC-system.

Induction step. If D1 and D2 are IFC-derivations, then an IFC-derivation can be
constructed by means of I/E-rules for 𝑎𝑠 and ¥=, which now also take the modes of
assumptions into account, and the following rules:

[|𝐴|] (𝑢)
D1
𝐵 (⊃ 𝑓 I), 𝑢

𝐴 ⊃ 𝑓 𝐵

D1
𝐴 ⊃ 𝑓 𝐵

D2
𝐴

(⊃ 𝑓 E)
𝐵

[≀𝐴≀] (𝑢)
D1
𝐵 (⊃𝑐I), 𝑢

𝐴 ⊃𝑐 𝐵

D1
𝐴 ⊃𝑐 𝐵

D2
𝐴 (⊃𝑐E)

𝐵

[/𝐴/] (𝑢)
D1
𝐵 (⊃I), 𝑢

𝐴 ⊃ 𝐵

D1
𝐴 ⊃ 𝐵

D2
𝐴 (⊃E)

𝐵

D1
⊥ (⊥i)
𝐴

1. Side conditions:
SC1. ⊃ 𝑓 I: No empty discharge; and no empty discharge contained in D1.
SC2. ⊃ 𝑓 E: The minor premiss 𝐴 has factual status, i.e.: 𝐴 depends on no

counterfactual assumption in D2; and either 𝐴 depends on at least one
factual assumption in D2, or D2 contains at least one term assumption, or
D2 is a derivation in S.
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SC3. ⊃𝑐I: Like SC1.
SC4. ⊃𝑐E: (a) The minor premiss 𝐴 has counterfactual status, i.e.: 𝐴 depends

on at least one counterfactual assumption in D2. (b) In case 𝐴 and 𝐵 are
distinct formulae, the conclusion of ⊃𝑐E must not be the minor premiss of
another application of ⊃𝑐E or of ⊃E (break formula, for short).

2. Terminology: The minor premiss 𝐴 of ⊃E has independent status in case 𝐴
depends on no factual or counterfactual assumption in D2 and has not been
derived by means of a term assumption in D2.

3. Assumption Principles: The following principles are respected by derivations in
IFC-systems:

AP1. No formula is assumed in more than one mode in D.
AP2. The mode in which an antecedent 𝐴 is assumed in ◦I-applications in D

determines the modal status (factual, counterfactual, independent) of all
antecedent 𝐴-nodes (i.e., minor premisses of ◦E-applications) in D.

Remark 3.8 1. Factual implication: SC1 ensures that 𝐴 is indeed assumed factually
and that factual implication behaves inferentially in an intuitively required non-
monotonic manner. SC2 ensures that the minor premiss 𝐴 is rooted in facts and does
not rest on the unestablished.

2. Counterfactual implication: SC3 ensures that 𝐴 is indeed assumed counterfac-
tually and that counterfactual implication behaves non-monotonically. SC4a ensures
that the minor premiss 𝐴 is neither based entirely on facts nor on assumptions made
in the independent mode. SC4b excludes break formulae in order to block transitivity.

3. (Mode-sensitive) implication: There are no side conditions on the I/E-rules for
⊃. The ⊃-rules of S-systems are special cases of the ⊃-rules of IFC-systems. We may
regard these special cases, allowing only for independent assumptions, as governing
⊃ in the usual (i.e., mode-less) sense of implication. As mentioned, if 𝐴 is a modal
𝐿1-formula (Definition 3.2), [/𝐴/] (𝑢) in an ⊃I-application can be only of the form
[𝐴] (𝑢) .

4. We obtain a minimal system (abbr. MFC-system) from an IFC-system, if we
remove the ⊥i-rule from the latter.

Definition 3.9 Canonical derivation, canonical proof, thesis, and theorem (IFC-
systems). Analogous to Definition 2.22.

Example 3.10

(9)

[≀𝑅𝑎𝑏≀] (1) (𝑎𝑠E0)
𝑅Γ

[|𝐹𝑐 |] (2) (𝑎𝑠E1)
𝑐Γ 𝑑Γ (𝑎𝑠I)

𝑅𝑐𝑑 (⊃ 𝑓 I), 2
𝐹𝑐 ⊃ 𝑓 𝑅𝑐𝑑 (⊃𝑐I), 1

𝑅𝑎𝑏 ⊃𝑐 (𝐹𝑐 ⊃ 𝑓 𝑅𝑐𝑑) ≀𝑅𝑎𝑏≀
(⊃𝑐E)

𝐹𝑐 ⊃ 𝑓 𝑅𝑐𝑑

𝐹Γ 𝑐Γ (𝑎𝑠I)
𝐹𝑐

(⊃ 𝑓 E)
𝑅𝑐𝑑 (𝑎𝑠E1)
𝑐Γ
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(10) (a)

[¬𝑐𝐴] (2) [≀𝐴≀] (1) (⊃𝑐E)⊥ (⊃I), 2¬¬𝑐𝐴 (⊃𝑐I), 1
𝐴 ⊃𝑐 ¬¬𝑐𝐴

(b)

[¬ 𝑓 𝐵] (2)
[𝐴 ⊃ 𝑓 𝐵] (1) [|𝐴|] (3)

(⊃ 𝑓 E)
𝐵

(⊃ 𝑓 E)
⊥ (⊃ 𝑓 I), 3

¬ 𝑓 𝐴 (⊃I), 2¬ 𝑓 𝐵 ⊃ ¬ 𝑓 𝐴 (⊃I), 1(𝐴 ⊃ 𝑓 𝐵) ⊃ (¬ 𝑓 𝐵 ⊃ ¬ 𝑓 𝐴)
The side conditions imposed on the ⊃𝑐-rules guarantee that IFC-systems do justice

to traditional counterfactual fallacies (cf. Stalnaker, 1968, pp. 48–49; see also Lewis,
2011, §1.8). The failures of transitivity and contraposition are reflected by the illegal
(11a) and (11b), respectively. In both derivations 𝐵 is a break formula. (12a) and
(12b) contain violations of weakening and are related to the fallacy of strengthening
of the antecedent.

(11) (a) 𝐵 ⊃𝑐 𝐶

𝐴 ⊃𝑐 𝐵 [≀𝐴≀] (1) (⊃𝑐E) illeg.
𝐵 (⊃𝑐E)

𝐶 (⊃𝑐I), 1
𝐴 ⊃𝑐 𝐶

(b)
[≀¬𝐵≀] (2)

[𝐴 ⊃𝑐 𝐵] (1) [≀𝐴≀] (3) (⊃𝑐E) illeg.
𝐵 (⊃E)⊥ (⊃I), 3¬𝐴 (⊃𝑐I), 2¬𝐵 ⊃𝑐 ¬𝐴 (⊃I), 1(𝐴 ⊃𝑐 𝐵) ⊃ (¬𝐵 ⊃𝑐 ¬𝐴)

(12) (a)
[≀𝐴≀] (1) (⊃𝑐I) illeg.
𝐵 ⊃𝑐 𝐴 (⊃𝑐I), 1

𝐴 ⊃𝑐 (𝐵 ⊃𝑐 𝐴)

(b)
[¬(𝐴 ⊃𝑐 𝐵)] (1)

[/𝐵/] (2) (⊃𝑐I) illeg.
𝐴 ⊃𝑐 𝐵

⊥ (⊃I), 2¬𝐵 (⊃𝑐I) illeg.
𝐴 ⊃𝑐 ¬𝐵 (⊃I), 1¬(𝐴 ⊃𝑐 𝐵) ⊃ (𝐴 ⊃𝑐 ¬𝐵)

Derivations in IFC-systems may contain detours (i.e., cut or maximum formulae).
(9) is an example. Such derivations can be transformed into normal derivations.
Definition 3.11 1. The occurrence of a formula in a derivation D in and IFC-system

is a cut (or maximum) formula, if it is the conclusion of an application of an



412 Bartosz Więckowski

I-rule and the (major) premiss of an E-rule. A maximal cut formula in D is a cut
formula with maximal rank 𝑟 .

2. The cut rank of D, 𝑐𝑟 (D), is ⟨𝑑, 𝑛⟩, where 𝑑 =𝑚𝑎𝑥{𝑟 (𝐴) : 𝐴 cut formula in D},
and where 𝑛 is the number of maximal cut formulae in D. A derivation is normal
(or in normal form), if it contains no cut formulae.

Definition 3.12 Detour conversions in IFC-systems. The detour conversions for 𝑎𝑠
and ¥= are like those in Definitions 2.5 and 2.16, except that assumptions of 𝑎𝑠- and
¥=-formulae now occur in //. These are supplemented with detour conversions for the
◦-operators:

[|𝐴|] (𝑢)
D1
𝐵 (⊃ 𝑓 I), 𝑢

𝐴 ⊃ 𝑓 𝐵

D2
𝐴

(⊃ 𝑓 E)
𝐵

conv

D2
[|𝐴|]
D1
𝐵

[≀𝐴≀] (𝑢)
D1
𝐵 (⊃𝑐I), 𝑢

𝐴 ⊃𝑐 𝐵

D2
𝐴 (⊃𝑐E)

𝐵

conv

D2
[≀𝐴≀]
D1
𝐵

[/𝐴/] (𝑢)
D1
𝐵 (⊃I), 𝑢

𝐴 ⊃ 𝐵

D2
𝐴 (⊃E)

𝐵

conv

D2
[/𝐴/]
D1
𝐵

Remark 3.13 1. The ⊃-conversion of S-systems (Definition 3.12) is a special case
of the ⊃-conversion of IFC-systems.

2. Recall that, in virtue of AP1, a formula can be only assumed in exactly one mode
in a derivation. Because of [|𝐴|] (𝑢) , the minor premiss 𝐴 of the ⊃ 𝑓 E-application in
the ⊃ 𝑓 -conversion has, by AP2, factual status. Similarly, since we have [≀𝐴≀] (𝑢) on
the left-hand side of the ⊃𝑐-conversion, the minor premiss 𝐴 of the ⊃𝑐E-application
in the ⊃𝑐-conversion has counterfactual status. Finally, in the ⊃-conversion, 𝐴 is
assumed in exactly one of the three modes in [/𝐴/] (𝑢) . By AP2, this mode determines
the modal status of the two 𝐴-nodes in the derivation on the left-hand side of the
conversion.

The following considerations supplement Remark 3.13(2).

Remark 3.14 Let 𝐹 be an implication-formula 𝐴 ◦ 𝐵. Let D𝐹 be a derivation which
derives 𝐹 by means of an ◦I-application in its last step, and letD𝐵 be the subderivation
of D𝐹 which derives the premiss 𝐵 of that ◦I-application. Let D𝐴 be a derivation
which derives 𝐴. The tables below list the cases in which an ◦E-application can be
used to construct a derivation D∗ of 𝐵 (i.e., a detour derivation with 𝐹 being a detour
formula) from derivations D𝐹 and D𝐴. (Since no mode-related side conditions are
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imposed on the I/E-rules for 𝑎𝑠- and ¥=-formulae, we consider only cases in which 𝐵
and 𝐴 have been obtained by means of ◦-rules.) The columns with the heading D𝐵

(resp. D𝐴) indicate the last rule applied in D𝐵 (D𝐴). ‘+’ means that the construction
of D∗ is legal and that D∗’s conversion is successful. ‘−’ means that a conversion is
precluded, since the construction is not legal. In case D𝐵 ends with an ◦E-application
there are two entries. The first [second] entry indicates the result for the case in which
𝐹 is introduced discharging an assumption used to derive the major [minor] premiss
of that ◦E-application.

T.1. D𝐵: D𝐴: ⊃ 𝑓 -c ⊃𝑐-c ⊃-c
a. ⊃ 𝑓 I ⊃ 𝑓 I − − +
b. ⊃ 𝑓 I ⊃ 𝑓 E + + +
c. ⊃ 𝑓 E ⊃ 𝑓 I − | − − | − + | +
d. ⊃ 𝑓 E ⊃ 𝑓 E + | + + | − + | +

T.2. D𝐵: D𝐴: ⊃ 𝑓 -c ⊃𝑐-c ⊃-c
a. ⊃ 𝑓 I ⊃𝑐I − − +
b. ⊃ 𝑓 I ⊃𝑐E − − −
c. ⊃ 𝑓 E ⊃𝑐I − | − − | − + | +
d. ⊃ 𝑓 E ⊃𝑐E − | − − | − − | −

T.3. D𝐵: D𝐴: ⊃ 𝑓 -c ⊃𝑐-c ⊃-c
a. ⊃ 𝑓 I ⊃I + + +
b. ⊃ 𝑓 I ⊃E + + +
c. ⊃ 𝑓 E ⊃I + | + + | − + | +
d. ⊃ 𝑓 E ⊃E + | + + | − + | +

T.4. D𝐵: D𝐴: ⊃ 𝑓 -c ⊃𝑐-c ⊃-c
a. ⊃𝑐I ⊃ 𝑓 I − − +
b. ⊃𝑐I ⊃ 𝑓 E + + +
c. ⊃𝑐E ⊃ 𝑓 I − | − − | − + | +
d. ⊃𝑐E ⊃ 𝑓 E + | + + | + + | +

T.5. D𝐵: D𝐴: ⊃ 𝑓 -c ⊃𝑐-c ⊃-c
a. ⊃𝑐I ⊃𝑐I − − +
b. ⊃𝑐I ⊃𝑐E − − −
c. ⊃𝑐E ⊃𝑐I − | − − | − + | +
d. ⊃𝑐E ⊃𝑐E − | − − | − − | −

T.6. D𝐵: D𝐴: ⊃ 𝑓 -c ⊃𝑐-c ⊃-c
a. ⊃𝑐I ⊃I + + +
b. ⊃𝑐I ⊃E + + +
c. ⊃𝑐E ⊃I + | + + | + + | +
d. ⊃𝑐E ⊃E + | + + | + + | +

T.7. D𝐵: D𝐴: ⊃ 𝑓 -c ⊃𝑐-c ⊃-c
a. ⊃I ⊃ 𝑓 I − − +
b. ⊃I ⊃ 𝑓 E + + +
c. ⊃E ⊃ 𝑓 I − | − − | − + | +
d. ⊃E ⊃ 𝑓 E + | + + | + + | +

T.8. D𝐵: D𝐴: ⊃ 𝑓 -c ⊃𝑐-c ⊃-c
a. ⊃I ⊃𝑐I − − +
b. ⊃I ⊃𝑐E − − −
c. ⊃E ⊃𝑐I − | − − | − + | +
d. ⊃E ⊃𝑐E − | − − | − − | −

T.9. D𝐵: D𝐴: ⊃ 𝑓 -c ⊃𝑐-c ⊃-c
a. ⊃I ⊃I + + +
b. ⊃I ⊃E + + +
c. ⊃E ⊃I + | + + | + + | +
d. ⊃E ⊃E + | + + | + + | +

Theorem 3.15 Normalization for IFC-systems: Any derivation D in an IFC-system
can be transformed into a normal IFC-derivation.
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Proof We proceed in the familiar way by applying detour conversions (Definition 3.12)
to D, in order to arrive at 𝑐𝑟 (D) = ⟨0, 0⟩. □

(9), for instance, can be transformed into 𝑐Γ, a derivation in normal form. (10a) and
(10b) are normal derivations.

Normal derivations have a simple structure. It can be shown, adapting standard
methods (cf. Prawitz, 1965; Troelstra and Schwichtenberg, 2000), that they possess
the subexpression property (of which the subformula property is a special case).
Definition 3.16 Let D be a derivation in an IFC-system.

1. A unit in D is either (i) a formula or (ii) the occurrence of an S ¥=-unit in D. We
use𝑈,𝑈′ (possibly with subscripts) for units.

2. In case𝑈 is a term assumption 𝜏Γ in D, 𝜏 is the expression in𝑈.

Definition 3.17 Let D be a normal derivation in an IFC-system, let ◦ ∈ {⊃ 𝑓 , ⊃𝑐, ⊃}.
A sequence of unit occurrences𝑈0, . . . ,𝑈𝑛 such that

1. 𝑈0 is a top formula occurrence 𝐴0 enclosed in // or a top occurrence of a term
assumption 𝜏Γ0 in D, and

2. for 0 ≤ 𝑖 < 𝑛,𝑈𝑖+1 is immediately below𝑈𝑖 , and
3. 𝑈𝑖 is not the minor premiss of ¥=E or ◦E,

is a track of D. A track of order 0 in D is a track ending in the conclusion of D. A
track of order 𝑛 + 1 in D is a track ending in the minor premiss of an application of
¥=E or ◦E with the major premiss belonging to a track of order 𝑛.

Theorem 3.18 Let D be a normal derivation in an IFC-system and let 𝜋 be a track
𝑈0, . . . ,𝑈𝑛 in D. Then there is a unit𝑈𝑖 in 𝜋, the minimum part of the track, which
divides 𝜋 into two (possibly empty) parts, an E-part 𝑈0, . . . ,𝑈𝑖−1 and an I-part
𝑈𝑖+1, . . . ,𝑈𝑛. The E-part is constructed exclusively by E-rule applications. The I-part
is constructed exclusively by I-rule applications.𝑈𝑖 is the conclusion of an E-rule,
and in case 𝑖 < 𝑛, a premiss of an I-rule or of ⊥i.

Proof By Theorem 3.15, a major premiss of an E-rule application cannot be a
conclusion of an I-rule application. The result is a consequence of this insight. □

Theorem 3.19 Subexpression property for IFC-systems: If D is a normal IFC-
derivation of a unit𝑈 from a set of units Γ, then each unit in D is a subexpression of
an expression in Γ ∪ {𝑈}.

Proof Making use of Theorem 3.18, the result is established by induction of the
order of tracks 𝑛. □

Corollary 3.20 Subformula property for IFC-systems: IfD is a normal IFC-derivation
of formula 𝐴 from a set of formulae Γ, then each formula in D is a subformula of a
formula in Γ ∪ {𝐴}.

As a consequence of Theorem 3.19, full analyticity can be claimed for the systems.
We may use, relying on Corollary 3.20, the following method (cf. Więckowski, 2021a)
in order to show that a formula of the language of IFC-systems cannot be derived as a
theorem in these systems:
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Definition 3.21 Method of counter-derivations. Construct a candidate for a normal
canonical IFC-proof of formula 𝐴 by proceeding bottom-up using the rules for the
operators ignoring the side conditions on them. In case (i) the construction has been
successful, check whether the candidate violates a side condition. If this is the case,
(ia) we obtain a counter-derivation for 𝐴, otherwise (ib) we obtain a normal IFC-proof
of 𝐴. In case (ii) the construction of a candidate has not been successful, we may
conclude that 𝐴 cannot be derived as a theorem. Consequently, we get a decision
concerning the IFC-derivability of 𝐴 as a theorem. It is derivable as a theorem in
case (ib), and underivable in cases (ia) and (ii).

Remark 3.22 Some of the derivations in (11) and (12) can be seen as counter-
derivations which show that their conclusions are not theorems.

Remark 3.23 1. As mentioned in Section 1, the idea of using different ways of
making assumptions in the context of natural deduction for counterfactuals can be
traced back at least to Thomason’s (1970) FCS. Crucially, Thomason introduces
the notion of a strict derivation. He takes it that in an ordinary derivation from an
assumption 𝐴, we suppose that 𝐴 is the case in the actual situation. By contrast, in a
strict derivation, we may “hold in abeyance certain portions of our knowledge about
our actual situation, and envisage another situation in which something is supposed to
hold” (Thomason, 1970, p. 398). Since it may happen that in the envisaged alternative
situations not all our knowledge about the actual situation is available, Thomason
imposes restrictions on the availability of that knowledge in strict derivations. Formally,
this is achieved by introducing special reiteration rules which govern reiteration
into strict derivations. One may infer a would-counterfactual (Thomason’s notation:
𝐴 > 𝐵), by means of an introduction rule on the basis of a strict derivation of 𝐵 from
the, as it were, “strict” assumption of 𝐴. In particular, one may assume also known
propositions in this counterfactual way. Thomason establishes the equivalence of
FCS and CS. However, he does not discuss the proof-theoretic properties of FCS.

2. It seems possible to use factual implication for the formal analysis of those
constructions of the form (2) in which “since” can be equivalently replaced by
“because”. Fordiscussion of the relation between these two kinds of causal subordinator
see, e.g., Dancygier and Sweetser (2000) and Guillaume (2013). For an outline of a
formal system for reasoning with “because” see Schnieder (2011).

Remark 3.24 In defining modal natural deduction systems there are several decisions
to be made. These may concern, for instance, the choice of the reference proof system,
the conception of an established fact, the modes, in which modal formulae can be
legally assumed, the shape of the rules, or the side conditions that are to be imposed
on them. Thus, the complexity that pertains to formal accounts of counterfactual
reasoning is not moved to conditions on external (e.g., model-theoretic) structures,
but rather enters the systems via such proof-theoretic design options.
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3.2 A proof-theoretic semantics

On the basis of Theorem 3.15, we may formulate a proof-theoretic semantics for
the non-logical constants, the atomic sentences, the identity sentences, and for the
formulae composed of the operators of IFC-systems.

Definition 3.25 Meaning: Let the modal proof system 𝑀 be an IFC-system.

1. The meaning of a non-logical constant 𝜏 is given by the term assumptions 𝜏Γ for
𝜏 which are determined by the subatomic base of the S ¥=-system of the reference
proof system S (Definition 2.2) of 𝑀 .

2. The meaning of an 𝐿1-formula 𝐴 is given by the set of canonical derivations of
𝐴 in 𝑀 (Definition 3.9).

Remark 3.26 1. Definition 3.25 contains a proof-theoretic semantics for the non-
logical constants and formulae of 𝐿0′, defined in terms of S-derivations, as a special
case.

2. Since meaning is defined in terms of canonical derivations (cf. Dummett, 1991;
Prawitz, 2006), the semantics specified above is acceptable from an intuitionistic
point of view.

3. The proposed proof-theoretic semantics is semantically autarkic, since the
modal natural deduction systems do not draw on a formal semantics of a different kind
(e.g., a possible worlds similarity semantics; cf. Lewis, 2011; Nute and Cross, 2001;
Stalnaker, 1968; Stalnaker and Thomason, 1970). For instance, labelled (e.g., Negri
and Olivetti, 2015; Negri and Sbardolini, 2016; Poggiolesi, 2016) or internal (e.g.,
Lellmann and Pattinson, 2012; Olivetti and Pozzato, 2015) structural proof systems for
standard counterfactual logics all of which are formulated in a classical context do not
allow for an autarkic proof-theoretic semantics. Labelled proof systems incorporate
model-theoretic structures in terms of which truth conditions are formulated into
their rules by means of labels (for worlds) and labelled formulae (for similarity). A
proof-theoretic semantics based on such a calculus (envisaged in Girlando, Negri, and
Olivetti, 2018) would certainly not be autarkic. By contrast, internal proof systems
for a given counterfactual logic can be characterized as not involving a syntax that
cannot be defined in terms of the object language of that logic. As a result, the
sequents of such a calculus do not wear their genesis on their sleeves. However,
the internal systems mentioned above make use of structural operators and specific
rules which directly imitate model-theoretic structures involved in the semantics.
(Translations of internal into labelled systems and back are considered in Girlando,
2019; Girlando, Negri, and Olivetti, 2018.) From a foundational point of view—or
seeing proof-theoretic semantics as an “alternative to truth-condition semantics”
(Schroeder-Heister, 2018, p. 1)—neither an internalization of model-theoretic truth
conditions nor an imitation of model-theoretic structures seems to be appealing.

Definition 3.27 A [subatomic] proof system is meaning-integral, if a proof-theoretic
semantics is available for it that is based on [term assumptions and] canonical
derivations.
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Given a meaning-integral proof system, we may define a notion of derivation-based
intuitionistic truth (cf. Więckowski, 2023).

Definition 3.28 Let 𝐼 be an IFC-system and call {𝐴 : Γ ⊢𝐼
𝑐 𝐴}, i.e., the set of formulae

which have been canonically derived in 𝐼 from a set of units Γ, the canonical 𝐼-set.
The 𝐼-truth of 𝐴 with respect to Γ is defined by: Γ ⊩𝐼 𝐴 =def 𝐴 ∈ {𝐴 : Γ ⊢𝐼

𝑐 𝐴}.
Special case: 𝐴 is a logical 𝐼-truth (i.e., ⊩𝐼 𝐴) in case 𝐴 is the conclusion of a
canonical 𝐼-proof (cf. Definition 3.9).

Remark 3.29 𝐼-truth may serve to single out certain atomic sentences, identity sen-
tences, and logical compounds. And it is logical 𝐼-truth, rather than plain 𝐼-truth, that
can be used to single out certain 𝐼-true identity sentences (i.e., self-identities) and
logical compounds further. In general, the canonical derivations on which 𝐼-truths
are based can be seen as formal verifications (for verificationism in the context of
proof-theoretic semantics see, e.g., Dummett, 1991, Prawitz 2006; 2012).

4 A philosophical application: counterpossibles

We shall now apply the modal proof systems developed in the previous section to the
following constructions (cf. Williamson, 2007, p. 174):

If Hesperus had not been Phosphorus, Hesperus would not have been(13)
Hesperus.
If Hesperus had not been Phosphorus, Hesperus would not have been(14)
Phosphorus.

Given certain philosophical presuppositions, in particular, the doctrine of the necessity
of identity (NI, for short; cf. Kripke, 1980; Marcus, 1961), conditional sentences of
this kind are sometimes called “counterpossibles” (see, e.g., Berto, French, Priest, and
Ripley, 2018; Williamson, 2007), since their antecedents turn out to be impossible:
If Hesperus is Phosphorus, then, given NI, this is so of necessity. Moreover, given
the interdefinability of the operators for necessity and possibility (cf. Williamson,
2007, p. 295), guaranteed by classical modal logic, “their” distinctness is, therefore,
impossible.

A further common presupposition in the discussion of counterpossibles is “ortho-
doxy” (cf. Berto, French, Priest, and Ripley, 2018, p. 694), that is, the aforementioned
similarity semantics for counterfactuals. A semantics of this kind makes use of truth
conditions and explains the formal meaning of counterfactuals in terms of subset
relations on possible worlds. Roughly, a sentence of the form (1) is true at world
𝑤 exactly if 𝐵 is true in all the possible worlds in which 𝐴 is true that are most
similar to 𝑤. On this account, there are no 𝐴-worlds, in case 𝐴 is impossible. This
means that an instance of (1) with impossible 𝐴 is true, since, given orthodoxy, for
any 𝐵, 𝐵 is true (vacuously) at all the most similar 𝐴-worlds. So-called vacuists
(e.g., Williamson, 2007) accept this consequence for both (13) and (14). By contrast,
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non-vacuists argue, typically admitting also impossible worlds into the orthodox
picture (see, e.g., Berto, French, Priest, and Ripley, 2018 and the references therein),
that the first counterpossible is false and that the second is true. Our discussion of
(13) and (14) below will presuppose neither NI, nor classicality, nor orthodoxy.

We symbolize (13) and (14) as ¬𝑎 ¥=𝑏 ⊃𝑐 ¬𝑎 ¥=𝑎 and ¬𝑎 ¥=𝑏 ⊃𝑐 ¬𝑎 ¥=𝑏, respectively.
For simplicity, let the reference proof system S of the IFC-system contain only a
single predicate constant (i.e., 𝐹) and two nominal constants (i.e., 𝑎, 𝑏). Moreover, let
the term assumptions be, again, like in Example 2.13: 𝐹Γ = {𝐹𝑎, 𝐹𝑏}, 𝑎Γ = {𝐹𝑎},
and 𝑏Γ = {𝐹𝑏}. (15) is a canonical derivation for (13):

(15)
[≀¬𝑎 ¥=𝑏≀] (1)

[𝑎 ¥=𝑎] (2) [𝐹𝑎] (31 )
( ¥=E)

𝐹𝑎 (𝑎𝑠E0)
𝐹Γ 𝑏Γ (𝑎𝑠I)

𝐹𝑏

[𝐹𝑏] (32 )
(𝑎𝑠E0)

𝐹Γ 𝑎Γ (𝑎𝑠I)
𝐹𝑎 ( ¥=I), 31, 32

𝑎 ¥=𝑏 (⊃E)⊥ (⊃I), 2¬𝑎 ¥=𝑎 (⊃𝑐I), 1¬𝑎 ¥=𝑏 ⊃𝑐 ¬𝑎 ¥=𝑎

The conclusion of (15) is only a thesis of the specific IFC-system. (An alternative
derivation would be, e.g., one in which the subderivation of 𝑎 ¥=𝑏 in (15) were replaced
by |𝑎 ¥=𝑏 |, or one in which it were replaced, e.g., by the S-derivation (4).) Note that
we would not be in a position to assume ¬𝑎 ¥=𝑏 in the counterfactual mode, if we had
established ¬𝑎 ¥=𝑏 as a fact. If we had done so, we would not be in a position to arrive
at the intended conclusion. (16) is a canonical derivation for (14). Its conclusion is a
theorem of the IFC-system:

(16) [≀¬𝑎 ¥=𝑏≀] (1) (⊃𝑐I), 1¬𝑎 ¥=𝑏 ⊃𝑐 ¬𝑎 ¥=𝑏

Comments:
1. We may regard both (13) and (14) as true (cf. Definition 3.28). The latter can

be taken to be also logically true, since its canonical derivation is a proof. Thus,
the present assessment of these sentences as true seems to be closer to the vacuist
one. Note, however, that no appeal to some notion of vacuity is being made in the
explanation of their truth.

2. (15) shows how the self-distinctness of Hesperus can be inferred form the
counterfactual assumption of the distinctness of Hesperus and Phosphorus. On the
present semantics, (15) is one of those derivations which constitute the meaning of
its conclusion.

3. By Definition 3.25, the meaning of ¬𝑎 ¥=𝑏 ⊃𝑐 ¬𝑎 ¥=𝑎 does not coincide with that
of ¬𝑎 ¥=𝑏 ⊃𝑐 ¬𝑎 ¥=𝑏, nor do the meanings of any two theorems, or those of any two
logically equivalent formulae. As a consequence, the present semantics is sensitive to
hyperintensional distinctions (a recent collection on hyperintensionality is Duží and
Jespersen, 2015; for discussion in the context of proof-theoretic semantics see, e.g.,
Pezlar, 2018).
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4. Consider the structure of (4) and (6) which canonically derive 𝑎 ¥=𝑏 and 𝑎 ¥=𝑎 (an
instance of 𝛼 ¥=𝛼), respectively. 𝑎 ¥=𝑎 can be derived as a theorem in any IFC-system,
whereas 𝑎 ¥=𝑏 cannot be derived as a theorem in any such system. If we regard
formulae that have been derived as theorems as necessities, and those that have been
derived only as theses as contingencies, we may classify 𝑎 ¥=𝑎 as necessary and 𝑎 ¥=𝑏
as contingent.

5. In order to derive 𝑎 ¥=𝑏 canonically, we have to look to the term assumptions
and to apply the 𝑎𝑠I-rule. However, in order to derive 𝑎 ¥=𝑎 canonically these steps are
not required. If we regard, taking a derivation-oriented perspective, the conclusion of
a canonical derivation as a posteriori in case the derivation requires an application
of an 𝑎𝑠-rule, and if we regard the conclusion of a canonical derivation as a priori
in case the derivation does not need to make use of such rules, we may classify
𝑎 ¥=𝑏 as a posteriori and 𝑎 ¥=𝑎 as a priori. Moreover, depending on whether the
constants symbolize denoting or non-denoting names, we may also distinguish
between a denotational (or referential) and a non-denotational kind of the a posteriori.
Furthermore, taking this derivation-oriented perspective, we may also consider adding
a distinction between an empirical and a non-empirical kind of the denotational a
posteriori.

6. The above categorization of ‘Hesperus is Hesperus’ as necessary a priori and
of ‘Hesperus is Phosphorus’ as contingent a posteriori is relatively old-fashioned in
nature. It differs from Kripke’s well-known proposal (cf. Kripke, 1980), according to
which, given NI (and other prerequisites), ‘Hesperus is Phosphorus’ expresses an a
posteriori necessity.

7. Analogous remarks apply to instances of (13) and (14) which feature empty
names (e.g., let 𝑎 symbolize ‘Superman’ and 𝑏 ‘Clark Kent’). For such instances,
the idea that a proper name is a rigid designator (and so denotes the same object in
every possible world) which lies at the hart of NI, does not seem to be appealing as,
intuitively, there is nothing for such names to designate whether rigidly or not.

We shall next look at constructions related to (13) and (14), in order to obtain a
sharper contrast. First, consider the following counterfactuals:

If Hesperus were Phosphorus, Hesperus would be Hesperus.(17)
If Hesperus were Hesperus, Hesperus would be Phosphorus.(18)

We symbolize (17) and (18) as 𝑎 ¥=𝑏 ⊃𝑐 𝑎 ¥=𝑎 and 𝑎 ¥=𝑎 ⊃𝑐 𝑎 ¥=𝑏, respectively. Let
the IFC-system be like that in the analysis of (13) and (14), but with 𝐹Γ = {𝐹𝑎},
𝑎Γ = {𝐹𝑎}, and 𝑏Γ = {𝐹𝑏}.

(19)

[≀𝑎 ¥=𝑏≀] (1) [𝐹𝑎] (21 )
( ¥=E)

𝐹𝑏 (𝑎𝑠E0)
𝐹Γ 𝑎Γ (𝑎𝑠I)

𝐹𝑎

[𝐹𝑎] (22 )
(𝑎𝑠E0)

𝐹Γ 𝑎Γ (𝑎𝑠I)
𝐹𝑎 ( ¥=I), 21, 22

𝑎 ¥=𝑎 (⊃𝑐I), 1
𝑎 ¥=𝑏 ⊃𝑐 𝑎 ¥=𝑎
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(20)
[≀𝑎 ¥=𝑎≀] (1) illeg. [𝐹𝑎] (21 )

( ¥=E)
𝐹𝑎 (𝑎𝑠E0)
𝐹Γ 𝑏Γ (𝑎𝑠I) illeg.

𝐹𝑏

[𝐹𝑏] (22 )
(𝑎𝑠E0)

𝐹Γ 𝑎Γ (𝑎𝑠I)
𝐹𝑎 (¥=I), 21, 22

𝑎 ¥=𝑏 (⊃𝑐I), 1
𝑎 ¥=𝑎 ⊃𝑐 𝑎 ¥=𝑏

In the present IFC-system, we can neither make a factual assumption of 𝑎 ¥=𝑏 nor can
we derive that formula by means of a canonical S ¥=-derivation. In (20), 𝑎 ¥=𝑎 cannot be
assumed in the counterfactual mode given (6), and 𝐹𝑏 cannot be derived by means
of 𝑎𝑠I given that 𝐹𝑏 ∉ 𝐹Γ.

Now, consider the following two factuals:

Since Hesperus is Hesperus, Hesperus is Phosphorus.(21)
Since Hesperus is Phosphorus, Hesperus is Hesperus.(22)

We symbolize (21) as 𝑎 ¥=𝑎 ⊃ 𝑓 𝑎 ¥=𝑏 and (22) as 𝑎 ¥=𝑏 ⊃ 𝑓 𝑎 ¥=𝑎. Let the IFC-system be
exactly like that in the discussion of (13) and (14).

(23)

[|𝑎 ¥=𝑎 |] (1) [𝐹𝑎] (21 )
( ¥=E)

𝐹𝑎 (𝑎𝑠E0)
𝐹Γ 𝑏Γ (𝑎𝑠I)

𝐹𝑏

[𝐹𝑏] (22 )
(𝑎𝑠E0)

𝐹Γ 𝑎Γ (𝑎𝑠I)
𝐹𝑎 (¥=I), 21, 22

𝑎 ¥=𝑏 (⊃ 𝑓 I), 1
𝑎 ¥=𝑎 ⊃ 𝑓 𝑎 ¥=𝑏

(24)

[|𝑎 ¥=𝑏 |] (1) [𝐹𝑎] (21 )
(¥=E)

𝐹𝑏 (𝑎𝑠E0)
𝐹Γ 𝑎Γ (𝑎𝑠I)

𝐹𝑎

[𝐹𝑎] (22 )
(𝑎𝑠E0)

𝐹Γ 𝑎Γ (𝑎𝑠I)
𝐹𝑎 (¥=I), 21, 22

𝑎 ¥=𝑎 (⊃ 𝑓 I), 1
𝑎 ¥=𝑏 ⊃ 𝑓 𝑎 ¥=𝑎

None of the conclusions of (19), (20), (23), and (24) is a theorem.

5 Concluding remarks

We have defined rudimentary modal natural deduction systems for reasoning with
relatively simple would-counterfactuals and causal since-subordinator sentences.
The systems are motivated by inferential practice. They allow for different modes of
making assumptions relative to their reference proof systems which serve to determine
the factuality status of the formulae that are to be assumed.

Normalization and the subexpression/subformula property have been established
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for these systems along largely familiar lines. Due to the subexpression/subformula
result, the systems are fully analytic. Due to the normalization result, the systems admit
a proof-theoretic semantics. The proposed proof-theoretic semantics is acceptable
from an intuitionistic point of view, since it is defined in terms of canonical derivations.
Moreover, it is semantically autarkic, since the modal natural deduction systems do
not draw on a formal semantics of a different kind (e.g., by internalizing a possible
worlds similarity semantics).

Some aspects of the proposal are philosophically significant. Due to an absence of
a semantic ontology (e.g., possible or impossible worlds), neither metaphysical nor
epistemological considerations concerning such entities are triggered. Furthermore,
an approach to formal epistemology is supported, according to which we arrive at
knowledge of counterfactuals and factuals by means of constructive derivation and
proof.

It is hoped that useful and less rudimentary modal proof systems can be obtained
along the lines suggested in this outline.
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