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Abstract In the present paper we discuss a recent suggestion of Schroeder-Heister
concerning the possibility of defining an intensional notion of harmony using
isomorphism in second-order propositional logic. The latter is not an absolute notion,
but its definition is relative to the choice of criteria for identity of proofs. In the paper,
it is argued that in order to attain a satisfactory account of harmony, one has to consider
a notion of identity stronger than the usual one (based on 𝛽- and 𝜂-conversions) that
the authors have investigated in recent work.
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1 Introduction

The inferentialist thesis that the meaning of a logical constant is determined by its
inferences rules has been famously challenged by Prior (1960) who put forward the
following pair of introduction and elimination rules for the binary connective tonk:

𝐴
tonkI

𝐴 tonk 𝐵
𝐴 tonk 𝐵

tonkE
𝐵

The strong intuition that tonk is semantically deficient has been taken to require a
qualification of the inferentialist thesis: Not any arbitrary collection of inference rules
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can determine the meaning of a logical constant but only those satisfying a certain
requirement, that (following Dummett, 1991) is commonly referred to as harmony.

The exact significance of harmony is open to interpretation. In particular, there
is no agreement as to whether harmony should be regarded as a descriptive or
normative criterion; nor as to whether harmony should be regarded as a criterion of
“meaningfulness” or merely of “logicality” (i.e., whether expressions governed by
rules which are not in harmony should be regarded as meaningless; or as meaningful,
but not belonging to the logical vocabulary), or possibly something else. Moreover,
different characterizations of the notion of harmony have been proposed in the
literature, some of them being fully formal, some of them being less precise.

Harmony via second-order translations. In the context of natural deduction
(Gentzen, 1935; Prawitz, 1965a), harmony is usually described by reference to the
“perfect balance” between the introduction and elimination rules of the connectives
of intuitionistic propositional logic NI (see Table 1).

Table 1 The natural deduction system NI.

𝐴 𝐵 ∧I
𝐴∧ 𝐵

𝐴∧ 𝐵 ∧E1
𝐴

𝐴∧ 𝐵 ∧E2
𝐵

[𝐴]
𝐵 ⊃I

𝐴 ⊃ 𝐵

𝐴 ⊃ 𝐵 𝐴 ⊃E
𝐵

𝐴 ∨I1
𝐴∨ 𝐵

𝐵 ∨I2
𝐴∨ 𝐵

𝐴∨ 𝐵

[𝐴]
𝐶

[𝐵]
𝐶 ∨E

𝐶

⊤I⊤
⊥ ⊥E
𝐶

But what does this “perfect balance” consist in, exactly? In spite of some attempts
to answer the question in a precise way (see, e.g., Belnap, 1962; Tennant, 1978; Read,
2010) a first fully formal definition of harmony has been proposed only recently by
Peter Schroeder-Heister (2014a; 2014b).

In a nutshell, Schroeder-Heister’s proposal is that of characterizing collections of
introduction rules and collections of elimination rules with a formula of quantified
propositional intuitionistic logic NI2, the extension of NI with universal quantification
over propositions, governed by the following rules:

𝐴 ∀I∀𝑋.𝐴
∀𝑋.𝐴 ∀E
𝐴[𝐶/𝑋]

Schroeder-Heister’s proposal is that two collections of introduction and elimination
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rules for a connective are in harmony if and only if their characteristic formulas are
interderivable in NI2.

Towards intensional harmony. Although this proposal represents a long-awaited
step forward in the understanding of harmony, there are reasons of dissatisfaction
with it. These hinge upon the fact that collections of rules that are interderivable are
characterized by interderivable formulas. For instance, given ∧E1, the rule ∧E2 is
obviously interderivable with the following rule:

𝐴 ∧ 𝐵 𝐴 ∧E′
2𝐵

and the formulas 𝑋∧𝑌 and 𝑋∧(𝑋⊃𝑌 ) — characterizing the collections of elimination
rules for ∧ consisting in the pairs of ∧E1, ∧E2 and of ∧E1, ∧E′

2 respectively — are
obviously interderivable. Thus both pairs of rules qualify as in harmony with ∧I on
Schroeder-Heister’s criterion. However, one has a clear intuition that the pair ∧E1,
∧E′

2 is “less” in harmony with ∧I than the pair ∧E1, ∧E2.
This has prompted the second author (see Tranchini, 2016a) to regard Schroeder-

Heister’s criterion as a characterization of a “weak” notion of harmony, and to
call for a strengthening of it capable of capturing a notion of harmony on which
only the pair ∧E1, ∧E2 (and not the pair ∧E1, ∧E′

2) qualify as in harmony with ∧I.
What distinguishes such a would-be stronger notion of harmony — not just from
Schroeder-Heister’s weak harmony, but also from other proposals, such as those of
Belnap (1962), and of Tennant (1978) — is its (hyper-)intensional nature, that is, its
being capable of discriminating among collection of rules which are indistinguishable
in terms of derivability.

Intensional inferentialism. The idea that a semantic framework should be able
to draw (hyper-)intensional distinctions has a long tradition, going back at least to
Carnap (1956), who notably regarded logical equivalence as too coarse a criterion
for synonymy, and proposed instead to characterize synonymy using the notion of
intensional isomorphism.

In the context of inferential accounts of meaning, especially in the proof-theoretic
semantics tradition of Dummett and Prawitz, (hyper-)intensional aspects have been
largely ignored. One of the reasons for this is that these theories of meaning have been
shaped in analogy with traditional ones, by replacing the notion of truth conditions
with the one of assertibility conditions. Consider for instance a language containing
two distinct binary connectives ♯ and ♭ whose inferential behaviour is described as
follows: a proof of 𝐴 ♯ 𝐵 is a triple consisting of a proof of 𝐴, a method to transform
proofs of 𝐴 into proofs of 𝐵 and a method to transform proofs of 𝐵 into proofs of 𝐴;
a proof of 𝐴 ♭ 𝐵 differs from a proof 𝐴 ♯ 𝐵 in that its first member is a proof of 𝐵.
Clearly, 𝐴 ♯ 𝐵 and 𝐴 ♭ 𝐵 are assertible under the same conditions: Whenever one has
a proof of 𝐴 ♯ 𝐵, one knows that a proof of 𝐴 ♭ 𝐵 could be constructed, and vice versa.
However, to be in possession of a proof of 𝐴 ♯ 𝐵 is clearly a different epistemic state
from being in possession of a proof of 𝐴 ♭ 𝐵. If we take meaning to consist not only of
what Frege called Bedeutung (the portion of reality referred to by an expression) but
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also of Sinn (the epistemic content of an expression), then an inferentialist account of
meaning should be able to distinguish between the meanings of 𝐴 ♯ 𝐵 and 𝐴 ♭ 𝐵.

As a matter of fact, proof theory offers a wide range of formal tools to analyze
such issues, and in the present paper we will discuss the prospects of using some of
these tools to deliver an intensional account of the notion of harmony.

Harmony via isomorphism. An obvious way of attaining a notion of harmony
stronger than Schroeder-Heister’s would be to require the characteristic formula of the
collection of introduction rules to be the same as that of the collection of eliminations.
But this would be too much. It is true that on such a strengthening the pair ∧E1,
∧E′

2 would not count as in harmony with ∧I. However, neither would ∨E count as in
harmony with the pair ∨I1, ∨I2: The characteristic formula (see below for precise
definition) of the former is ∀𝑋 ((𝑌 ⊃ 𝑋) ∧ (𝑍 ⊃ 𝑋)) ⊃ 𝑋 while that of the latter
is 𝑌 ∨ 𝑍 , i.e., two distinct, though interderivable NI2-formulas. In other words, by
adopting this notion of harmony (we dub it strict harmony) one would be led to deny
that the rules of disjunction are harmonious.

The notion of formula isomorphism coming from categorial proof-theory and the
study of typed lambda-calculi provides a middle ground between interderivability and
identity. Inspired by the work of Došen (see, e.g., Došen, 2003), the second author
(see again Tranchini, 2016a) used the notion of isomorphism to clarify the exact sense
in which merely weakly harmonious rules are harmful (see also below Section 3)
therefore pointing to the relevance of isomorphism for a characterization of harmony.

Different options as to defining harmony using isomorphism have been tentatively
put forward by Schroeder-Heister (2016). Among the different options proposed,
there is that of defining strong harmony by replacing interderivability (resp. identity)
in the definition of weak (resp. strict) harmony with that of isomorphism. However,
this proposal is discarded as inappropriate, due to the fact that — at least prima facie
— ∀𝑍 ((𝑋 ⊃ 𝑍) ∧ (𝑌 ⊃ 𝑍)) ⊃ 𝑍 and 𝑋 ∨ 𝑌 are not isomorphic in NI2.

Main contribution. The isomorphism of two formulas in a given system is not
an absolute notion, but it is relative to the choice of a notion of identity of proofs
(that is, of an equational theory on the derivations of the system). Building on
well-established results in the categorial semantics of second-order logic, in recent
work the authors have introduced an equational theory stronger than the usual one
using a class of equations referred to as 𝜀-equations (see Tranchini, Pistone, and
Petrolo, 2019; Pistone, Tranchini, and Petrolo, 2021; Pistone and Tranchini, 2021).
The class of isomorphisms relative to 𝜀-equivalence is rich enough to overcome the
problem mentioned above (in particular ∀𝑋 ((𝑌 ⊃ 𝑋) ∧ (𝑍 ⊃ 𝑋)) ⊃ 𝑋 and 𝑌 ∨ 𝑍 are
𝜀-isomorphic formulas in NI2). Moreover, although the equational theory induced
by 𝜀-equations (together with the standard conversions for NI2) is not maximal on
the whole of NI2, it is the maximum equational theory of certain weak fragments
of NI2. Among these fragments there is the one whose formulas correspond to the
“encodings” of collections of introduction and elimination rules for propositional
connectives. In this paper, we present in an informal way the notion of identity of
proofs captured by the 𝜀-equations and show how the results obtained about them
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provide a firm footing for an intensional account of harmony between weak and strict
harmony.

2 From reductions and expansions to isomorphism

The “perfect balance” between introduction and elimination rules that the notion of
harmony aims at capturing has been described as obtaining when

what can be inferred from a logically complex sentence by means of the
elimination rules for its main connective is no more and no less than what
has to be established in order to infer that very logically complex sentence
using the introduction rules for its main connective.

When the rules for a connective are in harmony, two kinds of deductive patterns can
be exhibited.

Patterns of the first kind are those giving rise to maximal formulas occurrences,
that is formula occurrences which are the major premise of an application of an
elimination rule (i.e., the premise whose main connective is the one to be eliminated)
and that are the conclusion of an application of one of the introduction rules. Prawitz
(1965b) defined certain operations on derivations called reductions. Reductions
allow rewriting a derivation into another one thereby getting rid of a single maximal
formula occurrence (though new ones may be generated in the process): In the case
of conjunction, we have the following two reductions:

𝒟1
𝐴

𝒟2
𝐵 ∧I

𝐴 ∧ 𝐵 ∧E1
𝐴

reduces to 𝒟1
𝐴

𝒟1
𝐴

𝒟2
𝐵 ∧I

𝐴 ∧ 𝐵 ∧E2
𝐵

reduces to 𝒟2
𝐵

Prawitz showed how — by successively applying reductions in a certain order — any
given NI-derivation can be to transformed into one in normal form, that is one with
no maximal formula occurrences.

The other kinds of patterns are those in which the premises of applications of
introduction rules have been obtained by applying the corresponding elimination
rules. Prawitz (1971) defined operations that are, in a sense, the dual of reductions,
called immediate expansions. In the case of conjunction, the expansion looks as
follows:

𝒟

𝐴 ∧ 𝐵
expands to

𝒟

𝐴 ∧ 𝐵 ∧E1
𝐴

𝒟

𝐴 ∧ 𝐵 ∧E2
𝐵 ∧I

𝐴 ∧ 𝐵

Prawitz showed that by successively applying expansions it is possible to transform any
given normal derivation in NI into one in long normal form, i.e., into a derivation in
which all minimal formula occurrences (those that are the conclusion of an elimination
and the premise of an introduction rule) are atomic.

The reduction and expansion associated to the rules of implication are the following:
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𝑢

[𝐴]
𝒟

𝐵(𝑢) ⊃I
𝐴 ⊃ 𝐵

𝒟
′

𝐴

𝐵

reduces to

𝒟
′

[𝐴]
𝒟

𝐵

𝒟

𝐴 ⊃ 𝐵
expands to

𝒟

𝐴 ⊃ 𝐵
𝑢

𝐴 ⊃E
𝐵(𝑢) ⊃I

𝐴 ⊃ 𝐵

Via the Curry-Howard correspondence between derivations in the implicational
fragment of NI and terms of the simply typed 𝜆-calculus, these rewriting operations
on derivations correspond (respectively) to those of 𝛽-reduction and 𝜂-expansion on
𝜆-terms:

(𝜆𝑥.𝑡)𝑠 𝛽
⇝ 𝑡 [𝑠/𝑥] 𝑡

𝜂
⇝ (𝜆𝑥.𝑡)𝑥

Like in 𝜆-calculus, reductions and expansions can be used to define an equivalence
relation on natural deduction derivations. Two derivations 𝒟 and 𝒟

′ are equivalent
if and only if one can be obtained from the other by applying a finite number of
times (𝛽-)reduction, (𝜂-)expansion and their inverse operations to 𝒟 and 𝒟

′ or their
sub-derivations (we indicate that 𝒟 and 𝒟

′ are 𝛽𝜂-equivalent as 𝒟
𝛽𝜂
≡ 𝒟

′, and more
in general given an equivalence relation 𝐸 , we indicate 𝐸-equivalence as 𝒟 𝐸≡ 𝒟

′).1
As equivalent 𝜆-terms can be seen as different ways of representing the same function,
Prawitz (1971) observed — following a suggestion by Martin-Löf — that equivalent
derivations can be seen as different linguistic representations of the same proof (where
proofs are understood as abstract entities informally characterized by the so-called
BHK-clauses; see Tranchini 2012; 2016b; 2019).

Given an equivalence relation on derivations, it is possible to use it to define an
equivalence relation on formulas that is, in general, stricter than interderivability and
that it is commonly referred to as isomorphism. Let 𝐸 be an equivalence relation on
derivations of a natural deduction system 𝑆. Two formulas are 𝐸-isomorphic (notation
𝐴

𝐸≃ 𝐵) iff

1. there exist two 𝑆-derivations𝒟1 and𝒟2 of 𝐴 from 𝐵 and of 𝐵 from 𝐴 respectively
(i.e., 𝐴 and 𝐵 are interderivable in 𝑆);

2. such that their compositions are 𝐸-equivalent to the derivations consisting only
of the assumptions of 𝐴 and of 𝐵 respectively:

𝐵
𝐸≡

[𝐵]
𝒟1
[𝐴]
𝒟2
𝐵

[𝐴]
𝒟2
[𝐵]
𝒟1
𝐴

𝐸≡ 𝐴

1 We will always implicitly identify derivations up to renaming of discharge indexes, which
corresponds to 𝛼-equivalence on 𝜆-terms.
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The derivation consisting of the assumption of a formula 𝐴 can be viewed as
representing the identity function on the set of proofs of 𝐴. Hence, the second
condition of the definition of isomorphism can be expressed by saying that the two
derivations 𝒟1 and 𝒟2 represent two functions from proofs of 𝐴 to proofs of 𝐵 and
vice versa which are the inverse of each other. This in turn means that the set of
proofs of 𝐴 and of 𝐵 are in bĳection.

Typical examples of 𝛽𝜂-isomorphic formulas in NI are pairs of formulas of the
form (𝐴∧ 𝐵) ∧𝐶 and 𝐴∧ (𝐵∧𝐶), or (𝐴∧ 𝐵) ⊃𝐶 and 𝐴 ⊃ (𝐵 ⊃𝐶), whereas typical
examples of interderivable but non-𝛽𝜂-isomorphic formulas are pairs of formulas of
the form 𝐴 and 𝐴 ∧ 𝐴, or 𝐴 ∧ 𝐵 and 𝐴 ∧ (𝐴 ⊃ 𝐵).

The notion of isomorphism has been proposed (notably by Došen, 2003) as a formal
counterpart of the informal notion of synonymy, i.e., identity of meaning. Intuitively,
interderivability is only a necessary, but not sufficient condition for synonymy. From
an inferential perspective, isomorphic formulas can be regarded as synonymous in
the sense that:

“they behave exactly in the same manner in proofs: by composing, we can always extend
proofs involving one of them, either as assumption or as conclusion, to proofs involving the
other, so that nothing is lost, nor gained. There is always a way back. By composing further
with the inverses, we return to the original proofs.” (Došen, 2003, p. 498)

Clearly, a necessary condition for some notion of 𝐸-isomorphism not to collapse
on that of interderivability is that the equivalence relation 𝐸 used in the definition
is non-trivial (i.e., there must be at least one formula 𝐴 and two derivations of 𝐴

belonging to distinct equivalence classes). In particular, if any two derivations 𝒟1
and 𝒟2 of any formula 𝐴 from itself were 𝐸-equivalent, the second condition of the
definition of 𝐸-isomorphism would be vacuously satisfied.

The notion of 𝛽𝜂-equivalence (and consequently that of 𝛽𝜂-isomorphism) plays a
distinguished role in NI, since 𝛽𝜂-equivalence is the maximum non-trivial equivalence
relation definable on NI-derivations. As Došen (2003) and Widebäck (2001) argued,
the maximality of an equivalence relation 𝐸 on the derivation of a system 𝑆 can be
taken as supporting the claim that it is the correct way of analyzing the notion of
identity of proofs underlying 𝑆.

For the {⊃,∧,⊤}-fragment of NI, 𝛽𝜂-equivalence and 𝛽𝜂-isomorphism are well-
understood: the decidability of 𝛽𝜂-equivalence is an immediate consequence of
normalization and confluence of 𝛽𝜂-reduction in the {⊃,∧}-fragment, and its maxi-
mality was established by Statman (1983), Došen and Petrić (2001), and Widebäck
(2001). Moreover, 𝛽𝜂-isomorphism in this fragment is decidable and it has been fully
axiomatized by Solov’ev (1983).

The extension of these results to richer language fragments has proven a difficult
task. In presence of disjunction the decidability andmaximality of 𝛽𝜂-equivalence have
been established only recently by Scherer (2017); the decidability of 𝛽𝜂-isomorphism
was established by Ilik (2014). In this case the difficulty were due to the form of the
𝜂-expansion for disjunction:
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𝒟
′

[𝐴 ∨ 𝐵]
𝒟

′′

𝐶

expands to
𝒟

′

𝐴 ∨ 𝐵

𝑛

𝐴 ∨I[𝐴 ∨ 𝐵]
𝒟

′′

𝐶

𝑚

𝐵 ∨I[𝐴 ∨ 𝐵]
𝒟

′′

𝐶 (𝑛, 𝑚)
𝐶

(with 𝑛 and 𝑚 fresh for 𝒟′)

which can be seen as the composition of the simpler form of expansion proposed by
Prawitz

𝒟

𝐴 ∨ 𝐵
expands to

𝒟

𝐴 ∨ 𝐵

𝑛

𝐴 ∨I1
𝐴 ∨ 𝐵

𝑚

𝐵 ∨I2
𝐴 ∨ 𝐵 ∨E (𝑛, 𝑚)

𝐴 ∨ 𝐵

(with 𝑛 and 𝑚 fresh2 for 𝒟)

and a generalization of the permutative conversions used in establishing the subformula
property of normal derivations in NI:

𝒟

𝐴 ∨ 𝐵

𝑛

[𝐴]
𝒟1
𝐶

𝑚

[𝐵]
𝒟2
𝐶 ∨E (𝑛, 𝑚)

[𝐶]
𝒟3
𝐷

⇝𝛾+

𝒟

𝐴 ∨ 𝐵

𝑛

[𝐴]
𝒟1
[𝐶]
𝒟3
𝐷

𝑚

[𝐵]
𝒟2
[𝐶]
𝒟3
𝐷 ∨E (𝑛, 𝑚)

𝐷

(see, for a discussion, Tranchini 2016a; 2018).3
Whereas the maximality and decidability of 𝛽𝜂-equality also hold in presence of

⊥ (hence for the full language of NI), the decidability of 𝛽𝜂-isomorphism in presence
of ⊥ is still an open problem.

3 Weak harmony and its limits

In order to define harmony formally, a useful preliminary move is that of identifying
rules — that are usually taken to be meta-linguistic schemata — with expressions
belonging to an object language of the appropriate kind. Slightly reformulating

3 In this work, the first author proposed the existence of reduction and expansions of this more
general form as an informal notion of harmony. Although informal, the requirement is enough to
rule out “quantum disjunction” (i.e., the connective whose rules are almost the same as those of
disjunction in NI, the only difference being that the elimination rule can be applied only when its
minor premises depend on no assumption other than those discharged by the rule application; see
Dummett, 1991) as disharmonious, since the restriction on the elimination rule blocks the possibility
of defining an expansion of the more general form. See also concluding remarks in Section 5.
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insights of Schroeder-Heister (2014a; 2014b), we propose to identify the rules of
an arbitrary natural deduction system with a particular class of formulas of the
second-order language extending that of the system NI with

1. universal quantification over propositions
2. for each 𝑛, denumerably many variables for 𝑛-ary connectives (to be indicated

with †𝑛, possibly with subscripts, and other ad hoc symbols), so that if 𝐴1, . . . , 𝐴𝑛

are formulas and †𝑛 is an 𝑛-ary connective variable, then †𝑛 (𝐴1, . . . , 𝐴𝑛) is also
a formula (the superscript 𝑛 indicating the arity of † will be mostly omitted).

More precisely, given denumerably many propositional variables (to be indicated
with 𝑋,𝑌, 𝑍 possibly with subscripts) and denumerably many connective variables
as above, we define the set of formulas L, to be indicated with 𝐴, 𝐵, 𝐶, possibly with
subscripts, by the following grammar (we use 𝐴𝑛 for a sequence of 𝑛 comma-separated
formulas):4

𝐴 ::= 𝑋 | ⊤ | ⊥ | 𝐴 ∧ 𝐴 | 𝐴 ∨ 𝐴 | 𝐴 ⊃ 𝐴 | †𝑛 (𝐴𝑛) | ∀𝑋.𝐴

(we will indicate with L2 the fragment of L lacking variables for connectives, and
with L2⊃ fragment of L2 lacking all connectives apart from ⊃).

The idea of identifying a rule with a formula may appear odd at first, but it is
actually very natural. For instance, the rules ∨I1, ∨I2 and ∨E of NI can be identified
with the following L-formulas:

∀𝑋𝑌.𝑋 ⊃ †(𝑋,𝑌 )(∨i1)
∀𝑋𝑌.𝑌 ⊃ †(𝑋,𝑌 )(∨i2)
∀𝑋𝑌𝑍.(†(𝑌, 𝑍) ∧ (𝑌 ⊃ 𝑋) ∧ (𝑍 ⊃ 𝑋)) ⊃ 𝑋(∨e)

Observe that the standard propositional connectives and the universal quantifier are
used to “encode” the different “structural features” implicit in natural deduction
rules (i.e., conjunction “encodes” multiplicity of premises, implication “encodes” the
passage from premises to conclusions, and universal quantification “encodes” the
schematic nature of rules). As we are using L as a meta-language to investigate the
notion of rule, disregarding the fact that rules can be associated to a specific piece
of vocabulary, we replaced accordingly the disjunction of the rules of NI with the
(binary) connective variable †. In this way, the conjunction of the three formulas
(∨i1), (∨i2) and (∨e) above is an L-formula with a free connective variable that we
can take to express the predicate “being a disjunction”. Similarly, we can identify
the rule ⊃E with the formula ∀𝑋𝑌.(†(𝑋,𝑌 ) ∧ 𝑋) ⊃ 𝑌 and ∧I with the formula
∀𝑋𝑌.(𝑋 ∧ 𝑌 ) ⊃ †(𝑋,𝑌 ).

More generally, we call structural formulas (to be indicated with 𝑆, 𝑆1, . . .) those
formulas constructed using only propositional variables and connective variables.

4 In other words, we are actually working in the fragment of the third-order language of the system
𝐹1 of Girard (1986), in which variables for connectives occur only free. Thus the natural deduction
system over ℒ consists of the rules of the second-order natural deduction system NI2, the extension
of Girard’s System 𝐹 with primitive rules for ⊤, ⊥, ∧ and ∨.
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More precisely, the set of structural formulas is the subset L𝑠 of L defined as follows
(we use 𝑆𝑛 for a list of 𝑛 comma-separated structural formulas):

𝑆 ::= 𝑋 | †𝑛 (𝑆𝑛)

and we call rule formulas (or simply rules, to be indicated with 𝑅, 𝑅1, . . .) the L-
formulas constructed according to the following grammar (we indicate the set of rule
formulas as L𝑟 ):

𝑅 ::= 𝑆 | ∀−→𝑋 (∧𝑛
𝑖=1 𝑅𝑖 ⊃ 𝑆)

where ∀−→𝑋 = ∀𝑋1 . . .∀𝑋𝑚 if 𝑚 > 0 or it is empty otherwise, and
∧𝑛

𝑖=1 𝐴𝑖 = 𝐴1 ∧
(𝐴2∧ (. . .∧𝐴𝑛) . . .) if 𝑛 > 0 or

∧𝑛
1 𝐴𝑖 = ⊤ otherwise. The level of a rule 𝑅, indicated

with ℓ(𝑅) is the maximum number of nested implications in 𝑅, so that ℓ(𝑆) = 0 and
ℓ(∀−→𝑋 (∧𝑛

𝑖=1 𝑅𝑖 ⊃ 𝑆)) = max(ℓ(𝑅𝑖)) + 1.
By an introduction rule for an 𝑛-ary connective † we understand a rule of the form

(INTRO) ∀−→𝑋
(∧𝑛

𝑖=1 𝑅𝑖 ⊃ †(−→𝑋 )
)

satisfying the following two conditions:
1. in each 𝑅𝑖 neither the universal quantifier nor connective variables occurs at all;
2. no propositional variable occurs free (i.e., the only propositional variables

occurring in each 𝑅𝑖 are among those in −→
𝑋 ).

If 𝑅 is an introduction rule for † of the above form, we define the content of 𝑅
(notation 𝒞(𝑅)) to be the L2-formula

∧𝑛
𝑖=1 𝑅𝑖 . If ℐ† = ⟨𝑅𝐼1, . . . , 𝑅𝐼𝑚𝐼

⟩ is a list of
introduction rules for †, we define the content of ℐ† (notation 𝒞(ℐ†)) to be the
L2-formula

∨𝑚𝐼

𝑗=1 𝒞(𝑅𝐼𝑖), where
∨𝑛

𝑖=1 𝐴𝑖 = 𝐴1 ∨ (𝐴2 ∨ (. . . ∨ 𝐴𝑛) . . .) if 𝑛 > 0 or∨𝑛
𝑖=1 𝐴𝑖 = ⊥ otherwise.
By an elimination rule for an 𝑛-ary connective † we understand a rule of the form

(ELIM) ∀𝑋∀−→𝑌 ∀−→𝑋
((
†(−→𝑋 ) ∧∧𝑛

1 𝑅𝑖

)
⊃ 𝑋

)
satisfying the following three conditions:
1. in each 𝑅𝑖 neither the universal quantifier nor connective variables occurs at all;
2. no propositional variable occurs free (i.e., −→𝑌 contains all propositional variables

occurring in any of the 𝑅𝑖 other than 𝑋 and those in −→
𝑋 );

3. if 𝑋 occurs in any of the 𝑅𝑖 it occurs in rightmost position.5
If 𝑅 is an elimination rule for † of the above form, its content 𝒞(𝑅) is the

L2-formula ∀𝑋∀−→𝑌
(∧𝑛

𝑖=1 𝑅𝑖 ⊃ 𝑋
)
. Ifℰ† = ⟨𝑅𝐸1, . . . , 𝑅𝐸𝑚𝐸

⟩ is a list of elimination
rules for †, we define the content of ℰ† (notation 𝒞(ℰ†)) to be the L2-formula∧𝑚𝐸

𝑘=1 𝒞(𝑅𝐸𝑘).

5 With the exception of this last conditions, the definitions of introduction and elimination rules
follow those given in Schroeder-Heister (2014a). The reason for considering this final restriction
will be discussed at the end of Section 4.



Intensional Harmony as Isomorphism 325

Suppose now we are given a list ℐ† of introduction rules and a list ℰ† of
elimination rules for an 𝑛-ary connective †. We say that the two collections of rules
are in weak harmony if and only if the following holds in NI2:6

𝒞(ℐ†) ⊢⊢ 𝒞(ℰ†)

For example, the rule ∧I, ∧E1 and ∧E′
2 discussed in the introduction are the

formulas (we use the connective variable † for conjunction) ∀𝑋𝑌.(𝑋 ∧𝑌 ) ⊃ †(𝑋,𝑌 ),
∀𝑋𝑌. † (𝑋,𝑌 ) ⊃ 𝑋 and ∀𝑋𝑌.(†(𝑋,𝑌 ) ∧ 𝑋) ⊃ 𝑌 respectively. Thus, the content
of the collection of introduction rules for conjunction consisting of ∧I and of the
collection of elimination rules for conjunction consisting of ∧E1 and ∧E′

2 are 𝑋 ∧ 𝑌

and 𝑋 ∧ (𝑋 ⊃ 𝑌 ) respectively. As these two formulas are intederivable in NI2, the two
collections of rules are in weak harmony. As the reader can check, the collections of
introduction and elimination rules consisting of the rules of NI are in weak harmony
as well.

Prawitz (1979) and Schroeder-Heister (1981; 1984; 2014b) proposed a simple
method to construct a weakly harmonious collection of elimination rules by “inverting”
a collection of introduction rules for a given connective †. In particular, let ℐ† be a
sequence of 𝑚 distinct introduction rules of the above form, i.e., ℐ† = ⟨𝑅1, . . . , 𝑅𝑚⟩,
with 𝑅 𝑗 = ∀−→𝑋

(∧𝑛 𝑗

𝑖=1 𝑅 𝑗𝑖 ⊃ †(−→𝑋 )
)

for all 1 ≤ 𝑗 ≤ 𝑚. The Prawitz-Schroeder-
Heister collection of canonical elimination rule associated to ℐ†, to be indicated
as PSH(ℐ†) is the list containing only one element, namely the elimination rule
∀𝑋∀−→𝑋 .

(
†(−→𝑋 ) ∧∧𝑚

𝑗=1

(∧𝑛 𝑗

𝑖=1 𝑅 𝑗𝑖 ⊃ 𝑋

))
⊃ 𝑋 that we indicate with †EPSH(ℐ†) . The

collections of introduction rules ℐ† and that of elimination rules PSH(ℐ†) are in
weak harmony since in NI2 the content of ℐ† is interderivable with that of PSH(ℐ†)
(i.e., with the content of †EPSH(ℐ†) ):∨𝑚

𝑗=1
∧𝑛 𝑗

𝑖=1 𝑅 𝑗𝑖 ⊢⊢ ∀𝑋.
(∧𝑚

𝑗=1

(∧𝑛 𝑗

𝑖=1 𝑅 𝑗𝑖 ⊃ 𝑋

))
⊃ 𝑋

As Schroeder-Heister (2014a) shows, the left-to-right direction of harmony (called
“conservativity” criterion) warrants that the addition of the rules for † (understood as
meta-linguistic schemata) to a given natural deduction system N yields a conservative
extension of N; and that the right-to-left direction warrants the uniqueness of † (where
conservativity and uniqueness are understood in the sense of Belnap, 1962).

As shown in Schroeder-Heister (1981) one can define reduction procedures to
get rid of consecutive applications of an introduction rule for a connective followed
immediately by the Prawitz-Schroeder-Heister elimination rule, and the same is
true for expansions (see Tranchini, 2016a). Actually, reduction and expansions are
available not only when the elimination rules follow the pattern of Prawitz and
Schroeder-Heister: If two collections of introduction and elimination rules are in
weak harmony, it is possible to equip them with expansions and reductions as well.
A formalization of this claim hinges on a formal characterization of what sort of

6 Observe that the two formulas contain no occurrence of connective variables, that is they belong
to the proper second-order system NI2. Cf. note 4 above.
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operations can qualify as reductions and expansions. Here we limit to an informal
sketch of how reduction and expansions for harmonious rules can be obtained from
those associated to the “canonical pair” consisting of a collection of introduction
rule and the Prawitz-Schroeder-Heister collection of elimination rules, and to discuss
some examples.

Observe first that, if a collection of introduction rules ℐ† and a collection of
elimination rules ℰ† = ⟨𝑅1, . . . , 𝑅𝑚⟩ are in weak harmony, then the content ℰ is
interderivable with the content of the Prawitz-Schroeder-Heister elimination rule and
hence the content of each elimination rule inℰ† is derivable from that of †EPSH(ℐ†) .
From each possible way of deriving the content of any of the rules 𝑅 𝑗 in ℰ† from
that of †EPSH(ℐ†) one can “extract” a reduction procedure to get rid of consecutive
applications of any introduction rule in ℐ† followed immediately by 𝑅 𝑗 . Moreover,
from the derivation of the content of †EPSH(ℐ†) from the content of ℰ† we can
“extract” an expansion for the collections of rules ℐ† andℰ†.

For example, let us reconsider the collection of introduction rules simply consisting
of ∧I and the “deviant” collection of elimination rules consisting of ∧E1 and ∧E′

2 that
we discussed in the introduction. We can obviously define the following reductions
and expansion:

𝒟1
𝐴

𝒟2
𝐵 ∧I

𝐴 ∧ 𝐵 ∧E1
𝐴

𝛽−∧1
▷

𝒟1
𝐴

𝒟1
𝐴

𝒟2
𝐵 ∧I

𝐴 ∧ 𝐵
𝒟

′

𝐴 ∧E′
2

𝐵

𝛽−∧′
2
▷

𝒟2
𝐵

𝒟

𝐴 ∧ 𝐵
expands to

𝒟

𝐴 ∧ 𝐵 ∧E1
𝐴

𝒟

𝐴 ∧ 𝐵

𝒟

𝐴 ∧ 𝐵 ∧E1
𝐴 ∧E′

2
𝐵 ∧I

𝐴 ∧ 𝐵

Using these transformation one can prove a normalization theorem and the
atomization of minimal formulas in normal derivation for the natural deduction system
NI′ obtained by replacing ∧E2 with the deviant ∧E′

2 by opportunely modifying the
standard proofs of Prawitz (1965b; 1971) (from which conservativity and uniqueness
results for the conjunction governed by these rules follow).

As we remarked in the introduction, however, there are reasons for regarding this
as a characterization of a weak notion of harmony, and for looking for a stricter
criterion capturing a notion of strong harmony.

The problem with weak harmony is that although one can equip weakly harmonious
rules with reductions and expansions, the resulting notion of equivalence on derivation
might collapse the notion of isomorphism on that of interderivability. Tranchini (2016a)
considers the following collection of weakly harmonious rules:
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[𝐴]
𝐵

[𝐵]
𝐴 𝐴

♮I
𝐴 ♮ 𝐵

𝐴 ♮ 𝐵 𝐴
♮E1

𝐵

𝐴 ♮ 𝐵 𝐵
♮E2

𝐴

𝐴 ♮ 𝐵
♮E3

𝐵

In spite of the mismatch between the third premise of the introduction and the
conclusion of the third elimination, it is not difficult to devise three reductions and an
expansion for these rules as well. However, Tranchini shows that any two derivations
of 𝐴 from itself can be shown to belong to the same equivalence class induced by
these operations. From this, it immediately follows that any two closed derivations of
the same formula are equivalent. Hence, although the rules are weakly harmonious
and thus conservative in Belnap’s sense (i.e., with respect to derivability), they are
non-conservative with respect to identity of proofs. Let 𝑆′ be the result of extending
a system 𝑆 (including the rules for ⊃) with the rules for ♮, and let 𝐸 ′ be the smallest
equivalence relation on derivations of 𝑆′ extending an equivalence relation 𝐸 on
derivations on 𝑆 (that is closed under the reduction for ⊃) and closed under the
reductions and expansions for ♮.7 For any pair of closed derivations 𝒟1 and 𝒟2 of 𝑆
we have that 𝒟1

𝐸′
≡ 𝒟2. Thus if 𝐸 is non-trivial 𝐸 ′ is a non-conservative extension

of 𝐸 , in fact a trivial non-conservative extension in which any two derivations (of
the same formula) are equated. Similar consideration apply to isomorphism. The
notion of isomorphism relative to the equational theory 𝐸 ′ is trivial in the sense that
any two interderivable formula qualify as 𝐸 ′-isomorphic. Even if the notion of 𝐸-
isomorphism is non-trivial (i.e even if there are interderivable formulas which are not
𝐸-isomorphic), 𝐸 ′-isomorphism is trivial. Thus, we can say that weakly harmonious
rules are unacceptable since their addition to a system has the consequence of blurring
meaning distinctions.

4 Strong harmony via isomorphism

As recalled in the introduction, a tighter connection between introduction and
elimination rules could be achieved by replacing interderivability with syntactic
identity in Schroeder-Heister’s definition of weak harmony. The resulting notion
could be dubbed strict harmony since not only the standard introduction rule for
conjunction and the deviant collection of elimination rules are not in strict harmony,
but not even the two standard introductions rules for disjunction and its standard
elimination rule are in strict harmony. One may expect that a middle ground between
weak and strict harmony–a notion of strong harmony — could be obtained by using
isomorphism instead of derivability in the definition of harmony. At first, it might

7 The existence of 𝐸′ is warranted by the fact that the class of equivalence relations with these
properties are closed under infinite intersection.
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seem that this move does not bring us very far. If strong harmony is defined using
𝛽𝜂-isomorphism, not only the rules for ♮ would fail to qualify as harmonious, but

also those for disjunction, since 𝑌 ∨ 𝑍
𝛽𝜂

; ∀𝑋.((𝑌 ⊃ 𝑋) ∧ (𝑍 ⊃ 𝑋)) ⊃ 𝑋 .
However, this counter-example does not rule out a definition of strong harmony

based on isomorphism per se, but only one based on 𝛽𝜂-isomorphism. Actually,
there are independent reasons for adopting a different notion of equivalence and of
isomorphism when working in NI2. Both in NI and NI2 the maximum non-trivial
notion of equivalence can be defined as contextual equivalence (notation CE≡ ). In the
setting of natural deduction this notion can be defined as follows: two derivations 𝒟1
and 𝒟2 of 𝐴 are contextually equivalent iff for every derivation 𝒟 of ⊤∨⊤ such that

1. the assumption 𝐴 occurs exactly once in 𝒟;
2. the result of replacing the assumption 𝐴 in 𝒟 with 𝒟1 and 𝒟2 (respectively) are

closed derivations;

the following holds:8
𝒟1
[𝐴]
𝒟

⊤ ∨ ⊤

𝛽
≡

𝒟2
[𝐴]
𝒟

⊤ ∨ ⊤
In contrast to what happens in NI,where 𝛽𝜂-equivalence and contextual equivalence

coincide (Scherer, 2017), in NI2 𝛽𝜂-equivalence is much weaker than contextual
equivalence (so much that the former is decidable, while contextual equivalence is
undecidable; this is well-known, for a detailed proof of the latter claim see, e.g., Pistone
and Tranchini, 2021). Similarly, the notions of isomorphism arising by contextual
equivalence is strictly richer than 𝛽𝜂-isomorphisms. In particular 𝑌 ∨ 𝑍 does qualify
as CE-isomorphic to ∀𝑋.((𝑌 ⊃ 𝑋) ∧ (𝑍 ⊃ 𝑋)) ⊃ 𝑋 .

From these considerations, a natural proposal would be that of defining strong
harmony by replacing derivability with CE-isomorphism in Schroeder-Heister defini-
tion of weak harmony. The resulting notion would allow to overcome the problems
of weak harmony. However, also this notion is not entirely satisfactory. In general,
it is very hard to decide whether two derivations of a formula 𝐴 are contextually
equivalent, since one has to consider all derivations of ⊤ ∨ ⊤ from 𝐴. Moreover, due
to the undecidability of contextual equivalence there are few hopes for the decidability
of the notion of CE-isomorphism in NI2 and hence for that of a notion of strong
harmony defined in its terms.

For this reason Tranchini, Pistone, and Petrolo (2019) investigated notions of
equivalence lying between 𝛽𝜂-equivalence and contextual equivalence, in the hope
of finding a notion more manageable than CE-equivalence but still suitable for the
definition of the notion of strong harmony. In particular, the authors focused on the

8 The derivation 𝒟 can be seen as a context, and thus 𝒟1
CE≡ 𝒟2 means that 𝒟1 and 𝒟2 are

(𝛽-)equivalent in any context of type ⊤ ∨ ⊤. Note that ⊤ ∨ ⊤ is a proposition with exactly two
distinct proofs, since ⊤ is the proposition with a unique (trivial) proof, and a proof of a disjunction
is a proof of either of the disjuncts (together with a bit of information telling which of the two
disjuncts is proven). Thus contextual inequivalence means that two proofs can be distinguished in
some context in which the possible results of evaluating them are only two.
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one arising from the functorial interpretation of second-order formulas (Bainbridge,
Freyd, Scedrov, and Scott, 1990) and established some results suggesting that this
notion fits the needs of the study of generalized intuitionistic connectives in the
second-order setting (Pistone and Tranchini, 2021).

The key idea underlying this extension of 𝛽𝜂-equivalence can be informally
introduced starting from the statement of the proof-conditions of a formula of the
form ∀𝑋.𝐴 in the style of the BHK-clauses:

A proof of ∀𝑋.𝐴 (henceforth a universal proof ) is a function that applied to a
proposition 𝐵 yields a proof 𝐴[𝐵/𝑋].

As in the case of a proof of 𝐴⊃ 𝐵 (taken to be a function from proofs of 𝐴 to proofs
of 𝐵) a universal proof cannot be merely understood as an infinite list of ordered pairs
(each consisting of a proposition 𝐵 and of a proof of 𝐴[𝐵/𝑋]) on pain of making the
notion of proof epistemically unsurveyable, and thereby contradicting the assumptions
that intuitionistic proofs are the result of an activity of mental construction performed
by a knowing subject. Rather, these functions have to be understood as given in such
a way as to make it possible for a knowing subject to grasp them. A way of meeting
this demand is that of assuming that a universal proof of ∀𝑋.𝐴 is a function 𝑓 that
associates a proof of 𝐴[𝐵/𝑋] to each proposition 𝐵 “in a uniform way”.9

To ask that the values of a universal proof 𝑓 are assigned to its arguments in a
uniform way amounts to requiring that the values of 𝑓 themselves must be defined
in a uniform manner. We take this to mean that in defining each value of 𝑓 (i.e., the
proofs of 𝐴[𝐵/𝑋]) no knowledge about the argument of 𝑓 (i.e., the propositions 𝐵)
should be assumed (for a more thorough discussion, see Pistone, 2018).

Consider for example the proposition ∀𝑋.𝑋 ⊃ 𝑋 . A proof of this proposition is a
function 𝑓 mapping each proposition 𝐵 onto a proof 𝑓 𝐵 of 𝐵 ⊃ 𝐵, which in turn is a
function from the set of proofs of 𝐵 onto itself.10 It is true that there may be different
ways of mapping the set of proofs of a certain proposition onto itself. However, there
does not seem to be many options for defining such a map without assuming any
knowledge about the proposition and hence, about its sets of proofs. In fact it seems
that the only function one can come up with is the identity function. In other words,
if we assume the proofs of ∀𝑋.𝑋 ⊃ 𝑋 to be uniform functions, there seems to be only
one such proof, namely the one associating to each proposition 𝐵 the identity function
id𝐵 on the set of proofs of 𝐵. Although this informal argument is non-conclusive,
being based on considerations of a heuristic nature, it turns out that the strengthening
of 𝛽𝜂-equivalence considered by the authors captures exactly these intuitions.

That the assumption of uniformity has consequences for identity of proofs is not
as surprising as it may appear at first. Consider proofs of propositions of the form

9 The notion of uniformity has been widely investigated in theoretical computer science under the
name “parametricity” (Strachey, 1967; Reynolds, 1983; Hermida, Reddy, and Robinson, 2014) and
it is in direct line of descent from the “schematic” (as opposed to the “numerical”) interpretation of
second-order quantification (see, e.g., Carnap, 1931).
10 Following the common notation in 𝜆-calculus, we indicate the application of a function 𝑓 to its
argument 𝑎 with ( 𝑓 𝑎) , where outermost parentheses will be dropped and application is assumed to
be left associative, so that 𝑓 𝑔ℎ is short for ( ( 𝑓 𝑔)ℎ) .
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(∀𝑋.𝐴) ⊃ 𝐵, i.e., functions from proofs of ∀𝑋.𝐴 to proofs of 𝐵. To assume that
universal proofs are uniform functions means that one is restricting the domain of
the proofs of (∀𝑋.𝐴) ⊃ 𝐵. If two such proofs assign the same value when taking
an arbitrary, but uniform, universal proof as argument, then they denote the same
proof under the assumption that all universal proofs are uniform. Yet, it might still
be possible that these two proofs of ∀𝑋.𝐴 ⊃ 𝐵 assign a different value to some
(non-uniform) proof of ∀𝑋.𝐴, so that they would no more denote the same function
without the assumption.11

To see how the assumption of uniformity can be used to justify new equations
between proofs, consider for example the following two derivations:

𝐵 ⊃ 𝐶

∀𝑋.𝑋 ⊃ 𝑋

𝐵 ⊃ 𝐵 𝐵

𝐵

𝐶

∀𝑋.𝑋 ⊃ 𝑋

𝐶 ⊃ 𝐶

𝐵 ⊃ 𝐶 𝐵

𝐶

𝐶

On the assumption that the proofs of ∀𝑋.𝑋 ⊃ 𝑋 are uniform, the two derivations
should denote the same proof. This is best appreciated when the derivations are
decorated with proofs terms:

ℎ : 𝐵 ⊃ 𝐶

𝑓 : ∀𝑋.𝑋 ⊃ 𝑋

𝑓𝐵 : 𝐵 ⊃ 𝐵 𝑏 : 𝐵
𝑓𝐵𝑏 : 𝐵

ℎ( 𝑓 𝐵𝑏) : 𝐶

𝑓 : ∀𝑋.𝑋 ⊃ 𝑋

𝑓𝐶 : 𝐶 ⊃ 𝐶

ℎ : 𝐵 ⊃ 𝐶 𝑏 : 𝐵
ℎ𝑏 : 𝐶

𝑓𝐶 (ℎ𝑏) : 𝐶

Uniformity warrants that 𝑓 𝐵 and 𝑓 𝐶 are the identity functions id𝐵 and id𝐶 on
the sets of proofs of 𝐵 and 𝐶 respectively, and thus the two derivation encode (for
any 𝑓 , ℎ, 𝑏, 𝐵 and 𝐶) the same proof of 𝐶:

ℎ( 𝑓 𝐵𝑏) = ℎ(id𝐵𝑏) = ℎ𝑏 = id𝐶 (ℎ𝑏) = 𝑓 𝐶 (ℎ𝑏)

It easy to see that 𝛽𝜂-equivalence fails to capture the consequences of uniformity.
The two derivations above are 𝛽𝜂-normal and thus (as a consequence of the Church-
Rosser theorem for 𝛽𝜂-reduction in NI2) they belong to two distinct 𝛽𝜂-equivalence
classes. Hence in order to capture the uniformity of the proofs of ∀𝑋.𝑋 ⊃ 𝑋 we need
to strengthen the equivalence relation on derivations by requiring it to be closed
under the following scheme, the instances of which will be referred to as 𝜀-equations
(observe that the left-to-right orientation of these equations can be seen as an operation
that permutes-up the derivation 𝒟

′ across the application of ∀E):

11 It may also be worth observing that the restriction to uniform proofs does not require to modify in
any way the rules for the second order quantifier in NI2: in fact, the variable condition on the rule
∀I (that ensures that when inferring ∀𝑋.𝐴 from 𝐴 no assumption is made on 𝑋) can be seen as a
syntactic counterpart of the uniformity requirement informally described above. In other words, all
NI2-derivations of formulas of the form ∀𝑋.𝐴 actually denote uniform universal proofs. Moreover, it
is well-known that extensions of the syntax of NI2 with non-uniform constructors, although possible,
might lead to inconsistencies (see, e.g., Harper and Mitchell, 1999).
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𝒟

∀𝑋.𝑋 ⊃ 𝑋

𝐵 ⊃ 𝐵 𝐵

𝐵

𝒟
′

𝐶

𝜀≡
𝒟

∀𝑋.𝑋 ⊃ 𝑋

𝐶 ⊃ 𝐶

𝐵

𝒟
′

𝐶

𝐶

Hence, the 𝜀-equations are justified by the assumption that the only proof of∀𝑋.𝑋 ⊃ 𝑋

is the function associating to each proposition the identity function on its sets of
proofs. Conversely, in every categorial model of NI2 in which the 𝜀-equations are
satisfied, ∀𝑋.𝑋 ⊃ 𝑋 has exactly one proof.

Analogous informal considerations show that the set of uniform proofs of ∀𝑋.(𝐴⊃
𝑋) ⊃ 𝑋 must be in bĳection with the set of proofs of 𝐴 itself (provided 𝑋 does
not occur free in 𝐴). In particular, a proof of ∀𝑋.(𝐴 ⊃ 𝑋) ⊃ 𝑋 associates to each
proposition 𝐵 a function from proofs of (𝐴 ⊃ 𝐵) (which in turn are functions from
proofs of 𝐴 into proofs of 𝐵) to proofs of 𝐵. But the only way to define such a proof in
a uniform manner consists in taking a proof 𝑎 of 𝐴 (if any is available) and associate
to each proposition 𝐵 the function that maps each proof 𝑓 of 𝐴 ⊃ 𝐵 onto 𝑓 𝑎.

Syntactically, uniformity can be again expressed as the possibility of permuting-up
a derivation across an application of ∀E with premise ∀𝑋.(𝐴 ⊃ 𝑋) ⊃ 𝑋 using the
𝜀-equations obtained from the scheme below. In this case observe that the derivation
𝒟

′ cannot be permuted as it stands, on pain of changing the open assumptions
of the derivation, and due to the mismatch between the conclusion of 𝒟′ and the
minor premise required to apply ⊃E. The mismatch can however be resolved by
“surrounding” 𝒟

′ (whose conclusion is 𝐷 and whose undischarged assumptions
are 𝐶 and possibly further assumptions Δ) with some applications of elimination
and introduction rules yielding a derivation, that we indicate with (𝐴 ⊃ 𝑋){𝒟′}, of
(𝐴 ⊃ 𝑋) [𝐷/𝑋] from (𝐴 ⊃ 𝑋) [𝐶/𝑋],Δ:

𝒟

∀𝑋.(𝐴 ⊃ 𝑋) ⊃ 𝑋

((𝐴 ⊃ 𝑋) ⊃ 𝑋) [𝐶/𝑋] (𝐴 ⊃ 𝑋) [𝐶/𝑋]
𝐶

𝒟
′

𝐷

𝜀≡
𝒟

∀𝑋.(𝐴 ⊃ 𝑋) ⊃ 𝑋

((𝐴 ⊃ 𝑋) ⊃ 𝑋) [𝐷/𝑋]

(𝐴 ⊃ 𝑋) [𝐶/𝑋]
(𝐴 ⊃ 𝑋){𝒟′}
(𝐴 ⊃ 𝑋) [𝐷/𝑋]

𝐷

where

(𝐴 ⊃ 𝑋){𝒟′} =

(𝐴 ⊃ 𝑋) [𝐶/𝑋]
𝑛

𝐴

𝐶

𝒟

𝐷(𝑛) (𝐴 ⊃ 𝑋) [𝐷/𝑋]
Since the uniform proofs of ∀𝑋.(𝐴 ⊃ 𝑋) ⊃ 𝑋 are in bĳection with those of 𝐴, it

should be possible, syntactically, to show that∀𝑋.(𝐴⊃𝑋) ⊃𝑋 and 𝐴 are 𝐸-isomorphic
on any notion of equivalence 𝐸 that is strong enough to encode the uniformity of
universal proofs. This is actually the case: taken the two derivations
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𝒟1 =

𝑛

𝐴 ⊃ 𝑋 𝐴

𝑋(𝑛) (𝐴 ⊃ 𝑋) ⊃ 𝑋

∀𝑋.(𝐴 ⊃ 𝑋) ⊃ 𝑋

∀𝑋.(𝐴 ⊃ 𝑋) ⊃ 𝑋

(𝐴 ⊃ 𝐴) ⊃ 𝐴

𝑛

𝐴(𝑛)
𝐴 ⊃ 𝐴

𝐴

= 𝒟2

it is easy to show that the composition
𝒟1

∀𝑋.(𝐴 ⊃ 𝑋) ⊃ 𝑋

𝒟2

𝛽-reduces to the derivation

consisting only of the assumption of 𝐴 and that the composition
𝒟2
𝐴
𝒟1

, after the

application of an 𝜀-permutation, 𝜂-reduces to the derivation consisting only of the
assumption of ∀𝑋.(𝐴 ⊃ 𝑋) ⊃ 𝑋 .

In a similar way, we can define 𝜀-permutations for the formula ∀𝑋.(𝐴 ⊃ 𝑋) ⊃
((𝐵 ⊃ 𝑋) ⊃ 𝑋) (provided 𝑋 does not occur free in 𝐴 and 𝐵) encoding the uniformity
of the proofs of this proposition. On the one hand, this formula is 𝛽𝜂-isomorphic
to ∀𝑋.((𝐴 ⊃ 𝑋) ∧ (𝐵 ⊃ 𝑋)) ⊃ 𝑋 , and on the other hand, using the 𝜀-permutation
we can show that ∀𝑋.(𝐴 ⊃ 𝑋) ⊃ (𝐵 ⊃ 𝑋) ⊃ 𝑋

𝜀≃ 𝐴 ∨ 𝐵. Hence, we have that
𝐴∨ 𝐵

𝜀≃ ∀𝑋.((𝐴 ⊃ 𝑋) ∧ (𝐵 ⊃ 𝑋)) ⊃ 𝑋 , that is, that by defining strong harmony using
𝜀-isomorphism, the standard rules for ∨ qualify as strongly harmonious.

More in general, we can establish that:∨𝑚
𝑗=1

∧𝑛 𝑗

𝑖=1 𝑅 𝑗𝑖

𝜀≃ ∀𝑋.
(∧𝑚

𝑗=1

(∧𝑛 𝑗

𝑖=1 𝑅 𝑗𝑖 ⊃ 𝑋

))
⊃ 𝑋

and hence that any collection of introduction rules and its Prawitz–Schroeder-Heister
collection of elimination rules are in strong harmony, by defining 𝜀-permutations for
all quantified formulas ∀𝑋.𝐴 in which 𝐴 has a distinctively simple form that we call
nested sp-𝑋 (see, for details, Tranchini, Pistone, and Petrolo, 2019). An L2⊃-formula
𝐴 is strictly positive in 𝑋 iff 𝑋 does not occur to the left of ⊃ in 𝐴, and a nested sp-𝑋
formula is a formula of the form 𝐴1 ⊃ (. . . (𝐴𝑛 ⊃ 𝑋) . . .) where each 𝐴𝑖 is sp-𝑋 for
all 1 ≤ 𝑖 ≤ 𝑛. The above isomorphism is established by showing that the right-hand
side formula is 𝛽𝜂-isomorphic to the nested sp-𝑋 formula

∀𝑋.
(
𝑅11 ⊃

(
. . . (𝑅1𝑛1 ⊃ 𝑋) . . .

) )
⊃
(
. . .

((
𝑅𝑚1 ⊃

(
. . . (𝑅𝑚𝑛𝑚 ⊃ 𝑋) . . .

) )
⊃ 𝑋

)
. . .

)
which in turn is 𝜀-isomorphic to the left-hand side formula.

Let L2⊃
𝑠𝑝 be the fragment of L2⊃ obtained by allowing to prefix a formula 𝐴 with

∀𝑋 only if 𝐴 is nested sp-𝑋 . The content of any introduction and elimination rule of
the form we considered above are 𝜀-isomorphic to formulas in L2⊃

𝑠𝑝 , and so are the
content of collections of introduction and the elimination rules.

Let NI2⊃𝑠𝑝 be the restriction of NI2 to the language L2⊃
𝑠𝑝 . As shown by the authors

(Pistone and Tranchini, 2021), the 𝜀-equational theory has characteristically strong
properties in this fragment, namely it is decidable and the maximum equivalence
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extending 𝛽-equivalence.12 Thus, taking the stance of Došen and Widebäck, 𝜀-
equivalence (resp. 𝜀-isomorphism) can be considered as the canonical notion of
equivalence (resp. isomorphism) in NI2⊃𝑠𝑝 .

These decidability and maximality results are based on the fact that the derivations
of NI2⊃𝑠𝑝 modulo 𝜀-equivalence form a category equivalent to that of the derivations of
NI modulo 𝛽𝜂-equivalence. This in turns implies that the question of the decidability
of isomorphism in NI2⊃𝑠𝑝 is equivalent to that of the decidability of isomorphism in NI,
which is (as remarked in the previous section) still open.

The foregoing results speak in favor of defining strong harmony using 𝜀-
isomorphism rather than 𝛽𝜂- or CE-isomorphism, at least when the form of in-
troduction and elimination rules follows the schemata given above.

Whenever confronted with two collections of introduction and elimination rules
for †, we are not in general capable of telling whether they are in harmony (since
𝛽𝜂-isomorphism in NI, and hence 𝜀-isomorphism in NI2⊃𝑠𝑝 is — of today — not known
to be decidable), but we can decide whether certain derivations do or do not testify
their isomorphism.

5 Concluding remarks

The account of strong harmony using 𝜀-isomorphism delivers a satisfactory sharpening
of the notion of weak harmony developed by Schroeder-Heister for introduction and
elimination rules of the form discussed above.

It is worth stressing,however, that Schroeder-Heister (2014b) considers introduction
and elimination rules of a more general form, namely the following:

(INTRO∗) ∀−→𝑋∀−→𝑌
(∧𝑛

𝑖=1 𝑅𝑖 ⊃ †(−→𝑋 )
)

(ELIM∗) ∀𝑋∀−→𝑌 ∀−→𝑋
((
†(−→𝑋 ) ∧∧𝑛

𝑖=1 𝑅𝑖

)
⊃ 𝑋

)
satisfying the following two conditions:

1. in each 𝑅𝑖 no connective variable occurs at all;
2. no propositional variable occurs free (i.e., −→𝑌 contains all propositional variables

occurring free in any of the 𝑅𝑖 other than 𝑋 and those in −→
𝑋 );

By dropping the third condition on elimination rules (see footnote 5 above) and
allowing nested quantification inside introduction rules and elimination rules, these
less restricted forms of introduction and elimination rules significantly enrich the
class of connectives amenable of a characterization in terms of “pure” introduction
and elimination rules (i.e., introduction rules in which no connective occurs apart
from the one being “defined”). For instance, Schroeder-Heister (2014b) observes that

12 Moreover, it allows to show that any derivation is equivalent to one in which applications of ∀E
are have an atomic witness (Pistone, Tranchini, and Petrolo, 2021).
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it is possible to formulate an introduction rule for negation which does not mention
⊥, namely ∀𝑋.(∀𝑌 .𝑋 ⊃ 𝑌 ) ⊃ †(𝑋).

This more general form of introduction rules is however much more expressive
than that, as it allows for instance to formulate an introduction rule for a zero-place
connective:

(∀𝑌 .(𝑌 ⊃ 𝑌 ) ∧ 𝑌 ⊃ 𝑌 ) ⊃ †

which is essentially the impredicative encoding of the natural number predicate in
NI2.

In contrast to what we observed in the case of introduction and elimination of the
more restricted form we considered throughout the paper, the content of introduction
and elimination rules of this more general form are formulas which cannot be shown
to be 𝜀-isomorphic to formulas in the fragment L2⊃

𝑠𝑝 .
It is true that the 𝜀-equations can be formulated for any formula of the form ∀𝑋.𝐴.

However, in contrast to what happens in the restricted fragment so far considered,
as soon as one allows for encodings of inductive types the 𝜀-equational theory is
not decidable (Pistone and Tranchini, 2021) and might not even be maximal (this is
suggested by the fact that the equivalence between the 𝜀-equational theory for the
fragment of NI2⊃ containing the encoding of the natural number predicate is related
to a (non-maximal) equational theory for Gödel’s System T investigated by Okada
and Scott, 1999).13

Thus, on this more general understanding of introduction and elimination rules, it
may be more appropriate to define the notion of strong harmony using an equational
theory stronger than 𝜀. Moreover, since the 𝜀-equational theory is undecidable outside
the L2⊃

𝑠𝑝 language fragment, there are few hopes for a decidable notion of strong
harmony when introduction and elimination rules of this more general form are taken
into consideration.

We conclude by observing that the notions of weak and strong harmony as defined
in the work of Schroeder-Heister and in the present paper are not directly applicable
to some prominent examples discussed in the literature, such as the rules for quantum-
disjunction14 and rules whose formulation requires first-order structure (as, e.g., those

13 Equational theories stronger than 𝜀 for the whole of NI2⊃ have been studied, among others, by
(Longo, Milsted, and Soloviev, 1993).
14 As to “quantum disjunction” (see footnote 3 above), due to the restriction on its elimination rule,
it does not seem that its elimination content is expressible using an NI2 formula, and hence its rules
fall outside the scope of weak (and hence strong) harmony. One could however consider extensions
of NI2 capable of expressing rules with restrictions of the kind displayed by the quantum disjunction
elimination rule. The most natural possibility would be that of extending NI2 with an implication of
the kind described by Dummett (1991) (see also Tranchini, 2018), i.e., in which the introduction rule
is restricted so that it can be applied only if its premise depends on no other assumption than those
to be discharged by the rule. Using ⊃ for this connective, the content of the collection of elimination
rule for quantum disjunction would be expressible as ∀𝑋.( (𝑌 ⊃ 𝑋) ∧ (𝑍 ⊃ 𝑋) ) ⊃ 𝑋. Perhaps
unsurprisingly, this formula is interderivable with 𝐴 ∨ 𝐵 in the envisaged extension of NI2 and
thus the rules of quantum disjunction would qualify as weakly harmonious. The question of strong
harmony is harder to address, since it would require the definition of an appropriate equivalence
relation on derivations for the system considered (and this might not be obvious, since no expansion
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of the identity predicate). The extension of the notions of weak and strong harmony
to a first-order setting is an interesting topic for further research.
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