Skip to main content

Cell-Based Therapies in Myocardial Infarction and Tissue Regeneration

  • Chapter
  • First Online:
Immunomodulatory Biomaterials for Cell Therapy and Tissue Engineering

Part of the book series: Synthesis Lectures on Biomedical Engineering ((SLBE))

  • 22 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heathman, T.R., et al., The translation of cell-based therapies: clinical landscape and manufacturing challenges. Regen Med, 2015. 10(1): p. 49-64.

    Article  Google Scholar 

  2. El-Kadiry, A.E., M. Rafei, and R. Shammaa, Cell Therapy: Types, Regulation, and Clinical Benefits. Front Med (Lausanne), 2021. 8: p. 756029.

    Article  Google Scholar 

  3. Basile, G., et al., Emerging diabetes therapies: Bringing back the beta-cells. Mol Metab, 2022. 60: p. 101477.

    Article  Google Scholar 

  4. Wang, Q., et al., The Effect of Schwann Cells/Schwann Cell-Like Cells on Cell Therapy for Peripheral Neuropathy. Front Cell Neurosci, 2022. 16: p. 836931.

    Article  Google Scholar 

  5. Mu, L., R. Dong, and B. Guo, Biomaterials-Based Cell Therapy for Myocardial Tissue Regeneration. Adv Healthc Mater, 2023. 12(10): p. e2202699.

    Article  Google Scholar 

  6. Solazzo, M., et al., The rationale and emergence of electroconductive biomaterial scaffolds in cardiac tissue engineering. APL Bioeng, 2019. 3(4): p. 041501.

    Article  Google Scholar 

  7. Sedighi, M., et al., Therapeutic bacteria to combat cancer; current advances, challenges, and opportunities. Cancer Med, 2019. 8(6): p. 3167-3181.

    Article  Google Scholar 

  8. Ikada, Y., Challenges in tissue engineering. J R Soc Interface, 2006. 3(10): p. 589-601.

    Article  Google Scholar 

  9. Yang, F., et al., Injectable and redox-responsive hydrogel with adaptive degradation rate for bone regeneration. J Mater Chem B, 2014. 2(3): p. 295-304.

    Article  Google Scholar 

  10. Chaudhari, A.A., et al., Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review. Int J Mol Sci, 2016. 17(12).

    Google Scholar 

  11. Hitscherich, P., et al., Injectable Self-Assembling Peptide Hydrogels for Tissue Writing and Embryonic Stem Cell Culture. J Biomed Nanotechnol, 2018. 14(4): p. 802-807.

    Article  Google Scholar 

  12. Ghanta, R.K., et al., Immune-modulatory alginate protects mesenchymal stem cells for sustained delivery of reparative factors to ischemic myocardium. Biomater Sci, 2020. 8(18): p. 5061-5070.

    Article  Google Scholar 

  13. Kobayashi, K., et al., On-site fabrication of Bi-layered adhesive mesenchymal stromal cell-dressings for the treatment of heart failure. Biomaterials, 2019. 209: p. 41-53.

    Article  Google Scholar 

  14. Levit, R.D., et al., Cellular encapsulation enhances cardiac repair. J Am Heart Assoc, 2013. 2(5): p. e000367.

    Article  Google Scholar 

  15. Roche, E.T., et al., Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart. Biomaterials, 2014. 35(25): p. 6850-6858.

    Article  Google Scholar 

  16. Blondiaux, E., et al., Bone marrow-derived mesenchymal stem cell-loaded fibrin patches act as a reservoir of paracrine factors in chronic myocardial infarction. J Tissue Eng Regen Med, 2017. 11(12): p. 3417-3427.

    Article  Google Scholar 

  17. Gao, L., et al., Large Cardiac Muscle Patches Engineered From Human Induced-Pluripotent Stem Cell-Derived Cardiac Cells Improve Recovery From Myocardial Infarction in Swine. Circulation, 2018. 137(16): p. 1712-1730.

    Article  Google Scholar 

  18. Zhang, H., et al., Transplantation of microencapsulated genetically modified xenogeneic cells augments angiogenesis and improves heart function. Gene Ther, 2008. 15(1): p. 40-8.

    Article  Google Scholar 

  19. Kanczler, J.M., et al., The effect of the delivery of vascular endothelial growth factor and bone morphogenic protein-2 to osteoprogenitor cell populations on bone formation. Biomaterials, 2010. 31(6): p. 1242-50.

    Article  Google Scholar 

  20. Man, Y., et al., Angiogenic and osteogenic potential of platelet-rich plasma and adipose-derived stem cell laden alginate microspheres. Biomaterials, 2012. 33(34): p. 8802-11.

    Article  Google Scholar 

  21. Saha, S., et al., A biomimetic self-assembling peptide promotes bone regeneration in vivo: A rat cranial defect study. Bone, 2019. 127: p. 602-611.

    Article  Google Scholar 

  22. Honghyun Park, K.Y.L., Facile control of RGD-alginate/hyaluronate hydrogel formation for cartilage regeneration. Carbohydrate Polymers, 2011. 86(3): p. 1107–1112.

    Google Scholar 

  23. Bian, L., et al., Enhanced MSC chondrogenesis following delivery of TGF-beta3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo. Biomaterials, 2011. 32(27): p. 6425-34.

    Article  Google Scholar 

  24. Tay, L.X., et al., Treatment outcomes of alginate-embedded allogenic mesenchymal stem cells versus autologous chondrocytes for the repair of focal articular cartilage defects in a rabbit model. Am J Sports Med, 2012. 40(1): p. 83-90.

    Article  MathSciNet  Google Scholar 

  25. Webber, M.J., et al., Development of bioactive peptide amphiphiles for therapeutic cell delivery. Acta Biomater, 2010. 6(1): p. 3-11.

    Article  MathSciNet  Google Scholar 

  26. Ibanez, B., et al., 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J, 2018. 39(2): p. 119-177.

    Article  Google Scholar 

  27. Lu, L., et al., Myocardial Infarction: Symptoms and Treatments. Cell Biochem Biophys, 2015. 72(3): p. 865-7.

    Article  Google Scholar 

  28. Roffi, M., et al., 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J, 2016. 37(3): p. 267-315.

    Article  Google Scholar 

  29. Heusch, G., et al., Cardiovascular remodelling in coronary artery disease and heart failure. Lancet, 2014. 383(9932): p. 1933-43.

    Article  Google Scholar 

  30. Zornoff, L.A., et al., Ventricular remodeling after myocardial infarction: concepts and clinical implications. Arq Bras Cardiol, 2009. 92(2): p. 150-64.

    Google Scholar 

  31. Gnecchi, M., et al., Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med, 2005. 11(4): p. 367-8.

    Article  Google Scholar 

  32. Yoshioka, T., et al., Repair of infarcted myocardium mediated by transplanted bone marrow-derived CD34+ stem cells in a nonhuman primate model. Stem Cells, 2005. 23(3): p. 355-64.

    Article  Google Scholar 

  33. Pankajakshan, D. and D.K. Agrawal, Mesenchymal Stem Cell Paracrine Factors in Vascular Repair and Regeneration. J Biomed Technol Res, 2014. 1(1).

    Google Scholar 

  34. Lee, J.W., et al., A randomized, open-label, multicenter trial for the safety and efficacy of adult mesenchymal stem cells after acute myocardial infarction. J Korean Med Sci, 2014. 29(1): p. 23-31.

    Article  MathSciNet  Google Scholar 

  35. Hare, J.M., et al., Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA, 2012. 308(22): p. 2369-79.

    Article  Google Scholar 

  36. Riegler, J., et al., Human Engineered Heart Muscles Engraft and Survive Long Term in a Rodent Myocardial Infarction Model. Circ Res, 2015. 117(8): p. 720-30.

    Article  Google Scholar 

  37. Shiba, Y., et al., Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature, 2016. 538(7625): p. 388-391.

    Article  Google Scholar 

  38. Chong, J.J., et al., Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature, 2014. 510(7504): p. 273-7.

    Article  Google Scholar 

  39. Dimitriou, R., et al., Bone regeneration: current concepts and future directions. BMC Med, 2011. 9: p. 66.

    Article  Google Scholar 

  40. Gong, T., et al., Nanomaterials and bone regeneration. Bone Res, 2015. 3: p. 15029.

    Google Scholar 

  41. Intini, G., The use of platelet-rich plasma in bone reconstruction therapy. Biomaterials, 2009. 30(28): p. 4956-66.

    Article  Google Scholar 

  42. Gronthos, S., et al., Postnatal human dental pulp stem cells (DPSCs) <i>in vitro</i> and <i>in</i> <i>vivo</i>. Proceedings of the National Academy of Sciences, 2000. 97(25): p. 13625-13630.

    Article  Google Scholar 

  43. Leyendecker Junior, A., et al., The use of human dental pulp stem cells for in vivo bone tissue engineering: A systematic review. J Tissue Eng, 2018. 9: p. 2041731417752766.

    Article  Google Scholar 

  44. Yamada, Y., et al., A feasibility of useful cell-based therapy by bone regeneration with deciduous tooth stem cells, dental pulp stem cells, or bone-marrow-derived mesenchymal stem cells for clinical study using tissue engineering technology. Tissue Eng Part A, 2010. 16(6): p. 1891-900.

    Article  Google Scholar 

  45. Greene, G.W., et al., Adaptive mechanically controlled lubrication mechanism found in articular joints. Proc Natl Acad Sci U S A, 2011. 108(13): p. 5255-9.

    Article  Google Scholar 

  46. Nam, Y., et al., Current Therapeutic Strategies for Stem Cell-Based Cartilage Regeneration. Stem Cells Int, 2018. 2018: p. 8490489.

    Article  Google Scholar 

  47. Sophia Fox, A.J., A. Bedi, and S.A. Rodeo, The basic science of articular cartilage: structure, composition, and function. Sports Health, 2009. 1(6): p. 461–8.

    Google Scholar 

  48. Asahara, T., et al., Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res, 1999. 85(3): p. 221-8.

    Article  Google Scholar 

  49. Balsam, L.B., et al., Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature, 2004. 428(6983): p. 668-73.

    Article  Google Scholar 

  50. Fischbach, M.A., J.A. Bluestone, and W.A. Lim, Cell-based therapeutics: the next pillar of medicine. Sci Transl Med, 2013. 5(179): p. 179ps7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Mukherjee .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hernandez, A., Mukherjee, S. (2024). Cell-Based Therapies in Myocardial Infarction and Tissue Regeneration. In: Immunomodulatory Biomaterials for Cell Therapy and Tissue Engineering. Synthesis Lectures on Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-50844-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50844-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50843-1

  • Online ISBN: 978-3-031-50844-8

  • eBook Packages: Synthesis Collection of Technology (R0)

Publish with us

Policies and ethics