Skip to main content

Use of Immunomodulatory Biomaterials in Diabetes Therapy

  • Chapter
  • First Online:
Immunomodulatory Biomaterials for Cell Therapy and Tissue Engineering

Part of the book series: Synthesis Lectures on Biomedical Engineering ((SLBE))

  • 22 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Desai, T. & Shea, L. D. Advances in islet encapsulation technologies. Nature Reviews Drug Discovery 16, 338-350, https://doi.org/10.1038/nrd.2016.232 (2017).

    Article  Google Scholar 

  2. Ernst, A. U., Wang, L.-H. & Ma, M. Islet encapsulation. Journal of Materials Chemistry B 6, 6705-6722, https://doi.org/10.1039/C8TB02020E (2018).

    Article  Google Scholar 

  3. Association, A. D. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 37, S81-S90, https://doi.org/10.2337/dc14-S081 (2013).

    Article  Google Scholar 

  4. Li, Y. et al. In vitro platform establishes antigen-specific CD8+ T cell cytotoxicity to encapsulated cells via indirect antigen recognition. Biomaterials 256, 120182, doi:https://doi.org/https://doi.org/10.1016/j.biomaterials.2020.120182 (2020).

    Article  Google Scholar 

  5. J. Bauer, S. & Doloff, J. C. in Immunomodulatory Biomaterials (eds Stephen F. Badylak & Jennifer H. Elisseeff) 215–250 (Woodhead Publishing, 2021).

    Google Scholar 

  6. Farah, S. et al. Long-term implant fibrosis prevention in rodents and non-human primates using crystallized drug formulations. Nature Materials 18, 892-904, https://doi.org/10.1038/s41563-019-0377-5 (2019).

    Article  Google Scholar 

  7. Mukherjee, S. et al. Screening hydrogels for antifibrotic properties by implanting cellularly barcoded alginates in mice and a non-human primate. Nature Biomedical Engineering, https://doi.org/10.1038/s41551-023-01016-2 (2023).

    Article  Google Scholar 

  8. Bochenek, M. A. et al. Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques. Nature Biomedical Engineering 2, 810-821, https://doi.org/10.1038/s41551-018-0275-1 (2018).

    Article  Google Scholar 

  9. Ernst, A. U. et al. Nanotechnology in cell replacement therapies for type 1 diabetes. Advanced Drug Delivery Reviews 139, 116-138, https://doi.org/10.1016/j.addr.2019.01.013 (2019).

    Article  Google Scholar 

  10. Hortelano, G. Therapeutic applications of cell microencapsulation. Foreword. Adv Exp Med Biol 670, vii-viii (2010).

    Google Scholar 

  11. Ryan, A. J., O’Neill, H. S., Duffy, G. P. & O’Brien, F. J. Advances in polymeric islet cell encapsulation technologies to limit the foreign body response and provide immunoisolation. Current Opinion in Pharmacology 36, 66-71, https://doi.org/10.1016/j.coph.2017.07.013 (2017).

    Article  Google Scholar 

  12. Wang, X. et al. Local Immunomodulatory Strategies to Prevent Allo-Rejection in Transplantation of Insulin-Producing Cells. Advanced Science 8, 2003708, https://doi.org/10.1002/advs.202003708 (2021).

    Article  Google Scholar 

  13. Farina, M., Alexander, J. F., Thekkedath, U., Ferrari, M. & Grattoni, A. Cell encapsulation: Overcoming barriers in cell transplantation in diabetes and beyond. Advanced Drug Delivery Reviews 139, 92-115, https://doi.org/10.1016/j.addr.2018.04.018 (2019).

    Article  Google Scholar 

  14. Orive, G. et al. Engineering a Clinically Translatable Bioartificial Pancreas to Treat Type I Diabetes. Trends in Biotechnology 36, 445-456, https://doi.org/10.1016/j.tibtech.2018.01.007 (2018).

    Article  Google Scholar 

  15. Kim, B. et al. Current Advances in Immunomodulatory Biomaterials for Cell Therapy and Tissue Engineering. Advanced Therapeutics n/a, 2300002, https://doi.org/10.1002/adtp.202300002.

  16. Paez-Mayorga, J. et al. Emerging strategies for beta cell transplantation to treat diabetes. Trends in Pharmacological Sciences 43, 221-233, https://doi.org/10.1016/j.tips.2021.11.007 (2022).

    Article  Google Scholar 

  17. Desai, T. & Shea, L. D. Advances in islet encapsulation technologies. Nat Rev Drug Discov 16, 338-350, https://doi.org/10.1038/nrd.2016.232 (2017).

    Article  Google Scholar 

  18. Steele, J. A. M., Hallé, J. P., Poncelet, D. & Neufeld, R. J. Therapeutic cell encapsulation techniques and applications in diabetes. Advanced Drug Delivery Reviews 67-68, 74-83, https://doi.org/10.1016/j.addr.2013.09.015 (2014).

    Article  Google Scholar 

  19. Desai, T. & Shea, L. D. Advances in islet encapsulation technologies. Nature Reviews Drug Discovery 16, 338, https://doi.org/10.1038/nrd.2016.232 (2016).

    Article  Google Scholar 

  20. Hwa, A. J. & Weir, G. C. Transplantation of Macroencapsulated Insulin-Producing Cells. Current Diabetes Reports 18, 50, https://doi.org/10.1007/s11892-018-1028-y (2018).

    Article  Google Scholar 

  21. Lim, F. & Sun, A. M. Microencapsulated islets as bioartificial endocrine pancreas. Science 210, 908, https://doi.org/10.1126/science.6776628 (1980).

    Article  Google Scholar 

  22. Dolgin, E. Encapsulate this. Nature Medicine 20, 9-11, https://doi.org/10.1038/nm0114-9 (2014).

    Article  Google Scholar 

  23. Jacobs-Tulleneers-Thevissen, D. et al. Sustained function of alginate-encapsulated human islet cell implants in the peritoneal cavity of mice leading to a pilot study in a type 1 diabetic patient. Diabetologia 56, 1605-1614, https://doi.org/10.1007/s00125-013-2906-0 (2013)

  24. Veiseh, O. & Vegas, A. J. Domesticating the foreign body response: Recent advances and applications. Advanced Drug Delivery Reviews 144, 148-161, https://doi.org/10.1016/j.addr.2019.08.010 (2019).

    Article  Google Scholar 

  25. Desai, T. A. & Tang, Q. Islet encapsulation therapy — racing towards the finish line? Nature Reviews Endocrinology 14, 630-632, https://doi.org/10.1038/s41574-018-0100-7 (2018).

    Article  Google Scholar 

  26. Lin, C. M. & Gill, R. G. Direct and indirect allograft recognition: pathways dictating graft rejection mechanisms. Current Opinion in Organ Transplantation 21, 40-44, https://doi.org/10.1097/mot.0000000000000263 (2016).

    Article  Google Scholar 

  27. Ali, J. M., Bolton, E. M., Bradley, J. A. & Pettigrew, G. J. Allorecognition Pathways in Transplant Rejection and Tolerance. Transplantation 96, 681-688, https://doi.org/10.1097/TP.0b013e31829853ce (2013).

    Article  Google Scholar 

  28. Hilburger, C. E., Rosenwasser, M. J. & Delcassian, D. The type 1 diabetes immune niche: Immunomodulatory biomaterial design considerations for beta cell transplant therapies. Journal of Immunology and Regenerative Medicine 17, 100063, https://doi.org/10.1016/j.regen.2022.100063 (2022).

    Article  Google Scholar 

  29. Stabler, C. L., Li, Y., Stewart, J. M. & Keselowsky, B. G. Engineering immunomodulatory biomaterials for type 1 diabetes. Nature Reviews Materials 4, 429-450, https://doi.org/10.1038/s41578-019-0112-5 (2019).

    Article  Google Scholar 

  30. Wang, X. et al. A nanofibrous encapsulation device for safe delivery of insulin-producing cells to treat type 1 diabetes. Science Translational Medicine 13, eabb4601, https://doi.org/10.1126/scitranslmed.abb4601 (2021).

  31. Liu, Q. et al. Zwitterionically modified alginates mitigate cellular overgrowth for cell encapsulation. Nature Communications 10, 5262, https://doi.org/10.1038/s41467-019-13238-7 (2019).

    Article  Google Scholar 

  32. Vegas, A. J. et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nature Biotechnology 34, 345-352, https://doi.org/10.1038/nbt.3462 (2016).

    Article  Google Scholar 

  33. Aghlara-Fotovat, S., Nash, A., Kim, B., Krencik, R. & Veiseh, O. Targeting the extracellular matrix for immunomodulation: applications in drug delivery and cell therapies. Drug Delivery and Translational Research 11, 2394-2413, https://doi.org/10.1007/s13346-021-01018-0 (2021).

    Article  Google Scholar 

  34. Vegas, A. J. et al. Long-term glycemic control using polymer-encapsulated human stem cell–derived beta cells in immune-competent mice. Nature Medicine 22, 306-311, https://doi.org/10.1038/nm.4030 (2016).

    Article  Google Scholar 

  35. Atri, C., Guerfali, F. Z. & Laouini, D. Role of Human Macrophage Polarization in Inflammation during Infectious Diseases. International Journal of Molecular Sciences 19, 1801 (2018).

    Article  Google Scholar 

  36. Chen, T. et al. Alginate Encapsulant Incorporating CXCL12 Supports Long-Term Allo- and Xenoislet Transplantation Without Systemic Immune Suppression. American Journal of Transplantation 15, 618-627, https://doi.org/10.1111/ajt.13049 (2015).

    Article  Google Scholar 

  37. Montane, J. et al. CCL22 Prevents Rejection of Mouse Islet Allografts and Induces Donor-Specific Tolerance. Cell Transplantation 24, 2143-2154, https://doi.org/10.3727/096368914x685249 (2015).

    Article  Google Scholar 

  38. Taylor, A., Verhagen, J., Blaser, K., Akdis, M. & Akdis, C. A. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-β: the role of T regulatory cells. Immunology 117, 433-442, https://doi.org/10.1111/j.1365-2567.2006.02321.x (2006).

    Article  Google Scholar 

  39. Liu, J. M. H. et al. Transforming growth factor-beta 1 delivery from microporous scaffolds decreases inflammation post-implant and enhances function of transplanted islets. Biomaterials 80, 11-19, https://doi.org/10.1016/j.biomaterials.2015.11.065 (2016).

    Article  Google Scholar 

  40. Peng, Y., Tellier, L. E. & Temenoff, J. S. Heparin-based hydrogels with tunable sulfation & degradation for anti-inflammatory small molecule delivery. Biomater Sci 4, 1371-1380, https://doi.org/10.1039/c6bm00455e (2016).

    Article  Google Scholar 

  41. Zhong, Y. & Bellamkonda, R. V. Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes. Brain Research 1148, 15-27, https://doi.org/10.1016/j.brainres.2007.02.024 (2007).

    Article  Google Scholar 

  42. Udipi, K. et al. Modification of inflammatory response to implanted biomedical materials in vivo by surface bound superoxide dismutase mimics. Journal of Biomedical Materials Research 51, 549-560, https://doi.org/10.1002/1097-4636(20000915)51:4<549::AID-JBM2>3.0.CO;2-Z (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Mukherjee .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, B., Mukherjee, S. (2024). Use of Immunomodulatory Biomaterials in Diabetes Therapy. In: Immunomodulatory Biomaterials for Cell Therapy and Tissue Engineering. Synthesis Lectures on Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-50844-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50844-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50843-1

  • Online ISBN: 978-3-031-50844-8

  • eBook Packages: Synthesis Collection of Technology (R0)

Publish with us

Policies and ethics