Skip to main content

Immunomodulation Strategies Using Biomaterial Chemistry and Physical Properties

  • Chapter
  • First Online:
Immunomodulatory Biomaterials for Cell Therapy and Tissue Engineering

Part of the book series: Synthesis Lectures on Biomedical Engineering ((SLBE))

  • 21 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mariani, E., Lisignoli, G., Borzì, R.M. and Pulsatelli, L., 2019. Biomaterials: foreign bodies or tuners for the immune response?. International journal of molecular sciences20(3), p.636.

    Article  Google Scholar 

  2. Capuani, S., Malgir, G., Chua, C.Y.X. and Grattoni, A., 2022. Advanced strategies to thwart foreign body response to implantable devices. Bioengineering & Translational Medicine7(3), p.e10300.

    Article  Google Scholar 

  3. Cravedi, P., Farouk, S., Angeletti, A., Edgar, L., Tamburrini, R., Duisit, J., Perin, L. and Orlando, G., 2017. Regenerative immunology: the immunological reaction to biomaterials. Transplant International30(12), pp.1199-1208.

    Article  Google Scholar 

  4. Taraballi, F., Sushnitha, M., Tsao, C., Bauza, G., Liverani, C., Shi, A. and Tasciotti, E., 2018. Biomimetic tissue engineering: tuning the immune and inflammatory response to implantable biomaterials. Advanced healthcare materials7(17), p.1800490.

    Article  Google Scholar 

  5. Kim, B., Pradhan, L., Hernandez, A., Yenurkar, D., Nethi, S.K. and Mukherjee, S., Current Advances in Immunomodulatory Biomaterials for Cell Therapy and Tissue Engineering. Advanced Therapeutics, p. 2300002.

    Google Scholar 

  6. Bridges, A.W., Singh, N., Burns, K.L., Babensee, J.E., Lyon, L.A. and García, A.J., 2008. Reduced acute inflammatory responses to microgel conformal coatings. Biomaterials29(35), pp.4605–4615. [7] T. Wong, S. Kang, S. Tang, E. Smythe, B. Hatton, A. Grinthal, J. Aizenberg, Nature. 2011, 477, 443

    Google Scholar 

  7. Lin, C.C., Metters, A.T. and Anseth, K.S., 2009. Functional PEG–peptide hydrogels to modulate local inflammation induced by the pro-inflammatory cytokine TNFα. Biomaterials30(28), pp.4907-4914.

    Article  Google Scholar 

  8. Vegas, A.J., Veiseh, O., Doloff, J.C., Ma, M., Tam, H.H., Bratlie, K., Li, J., Bader, A.R., Langan, E., Olejnik, K. and Fenton, P., 2016. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nature biotechnology34(3), pp.345-352.

    Article  Google Scholar 

  9. Sanchez-Cano, C. and Carril, M., 2020. Recent developments in the design of non-biofouling coatings for nanoparticles and surfaces. International Journal of Molecular Sciences21(3), p.1007.

    Article  Google Scholar 

  10. Mukherjee, S., Kim, B., Cheng, L.Y., Doerfert, M.D., Li, J., Hernandez, A., Liang, L., Jarvis, M.I., Rios, P.D., Ghani, S. and Joshi, I., 2023. Screening hydrogels for antifibrotic properties by implanting cellularly barcoded alginates in mice and a non-human primate. Nature Biomedical Engineering, 7, (2023), pages 867–886.

    Article  Google Scholar 

  11. Karinja, S.J., Bernstein, J.L., Mukherjee, S., Jin, J., Lin, A., Abadeer, A., Kaymakcalan, O., Veiseh, O. and Spector, J.A., 2023. An Anti-Fibrotic Breast Implant Surface Coating Significantly Reduces Peri-Prosthetic Capsule Formation. Plastic and Reconstructive Surgery, p. e010323.

    Google Scholar 

  12. Wright, M.A., Miller, A.J., Dong, X., Karinja, S.J., Samadi, A., Lara, D.O., Mukherjee, S., Veiseh, O. and Spector, J.A., 2023. Reducing Peri-Implant Capsule Thickness in Submuscular Rodent Model of Breast Reconstruction with Delayed Radiotherapy. Journal of Surgical Research, 291, pp.158-166.

    Article  Google Scholar 

  13. Rostam, H.M., Fisher, L.E., Hook, A.L., Burroughs, L., Luckett, J.C., Figueredo, G.P., Mbadugha, C., Teo, A.C., Latif, A., Kämmerling, L. and Day, M., 2020. Immune-instructive polymers control macrophage phenotype and modulate the foreign body response in vivo. Matter, 2(6), pp.1564-1581.

    Article  Google Scholar 

  14. Alobaid, M.A., Richards, S.J., Alexander, M.R., Gibson, M.I. and Ghaemmaghami, A.M., 2020. Developing immune-regulatory materials using immobilized monosaccharides with immune-instructive properties. Materials Today Bio, 8, p.100080.

    Article  Google Scholar 

  15. Kou, P.M., Pallassana, N., Bowden, R., Cunningham, B., Joy, A., Kohn, J. and Babensee, J.E., 2012. Predicting biomaterial property-dendritic cell phenotype relationships from the multivariate analysis of responses to polymethacrylates. Biomaterials33(6), pp.1699-1713.

    Article  Google Scholar 

  16. Kajahn, J., Franz, S., Rueckert, E., Forstreuter, I., Hintze, V., Moeller, S. and Simon, J.C., 2012. Artificial extracellular matrices composed of collagen I and high sulfated hyaluronan modulate monocyte to macrophage differentiation under conditions of sterile inflammation. Biomatter2(4), pp.226-273.

    Article  Google Scholar 

  17. Brown, B.N., Londono, R., Tottey, S., Zhang, L., Kukla, K.A., Wolf, M.T., Daly, K.A., Reing, J.E. and Badylak, S.F., 2012. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials [Acta Biomaterialia 8 (2012) 978–987]. Acta biomaterialia8(7), p.2871.

    Article  Google Scholar 

  18. Dziki, J.L., Huleihel, L., Scarritt, M.E. and Badylak, S.F., 2017. Extracellular matrix bioscaffolds as immunomodulatory biomaterials. Tissue Engineering Part A23(19-20), pp.1152-1159.

    Article  Google Scholar 

  19. Yesilyurt, V., Veiseh, O., Doloff, J.C., Li, J., Bose, S., Xie, X., Bader, A.R., Chen, M., Webber, M.J., Vegas, A.J. and Langer, R., 2017. A facile and versatile method to endow biomaterial devices with zwitterionic surface coatings. Advanced healthcare materials, 6(4), p.1601091.

    Article  Google Scholar 

  20. Jiang, S. and Cao, Z., 2010. Ultralow‐fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Advanced materials22(9), pp.920-932.

    Article  Google Scholar 

  21. Chen, A., Chen, D., Lv, K., Li, G., Pan, J., Ma, D., Tang, J. and Zhang, H., 2023. Zwitterionic polymer/polydopamine coating of electrode arrays reduces fibrosis and residual hearing loss after cochlear implantation. Advanced Healthcare Materials, 12(1), p.2200807.

    Article  Google Scholar 

  22. Golabchi, A., Wu, B., Cao, B., Bettinger, C.J. and Cui, X.T., 2019. Zwitterionic polymer/polydopamine coating reduce acute inflammatory tissue responses to neural implants. Biomaterials, 225, p.119519.

    Article  Google Scholar 

  23. X Xie, J. Doloff1, V. Yesilyurt, A. Sadraei, J. McGarrigle, M. Omami, O. Veiseh, S. Farah, D. Isa, S. Ghani, I. Joshi, A. Vegas, J. Li, W. Wang, A. Bader, H. Tam, J. Tao, H. Chen, B. Yang, K. Williamson, J. Oberholzer, R. Langer, D. Anderson, Nat Biomed Eng., 2018, 2, 894.

    Google Scholar 

  24. McWhorter, F.Y., Wang, T., Nguyen, P., Chung, T. and Liu, W.F., 2013. Modulation of macrophage phenotype by cell shape. Proceedings of the National Academy of Sciences110(43), pp.17253-17258.

    Article  Google Scholar 

  25. Chen, S., Jones, J.A., Xu, Y., Low, H.Y., Anderson, J.M. and Leong, K.W., 2010. Characterization of topographical effects on macrophage behavior in a foreign body response model. Biomaterials, 31(13), pp.3479-3491.

    Article  Google Scholar 

  26. Doloff, J.C., Veiseh, O., de Mezerville, R., Sforza, M., Perry, T.A., Haupt, J., Jamiel, M., Chambers, C., Nash, A., Aghlara-Fotovat, S. and Stelzel, J.L., 2021. The surface topography of silicone breast implants mediates the foreign body response in mice, rabbits and humans. Nature biomedical engineering, 5(10), pp.1115-1130.

    Article  Google Scholar 

  27. Alfarsi, M.A., Hamlet, S.M. and Ivanovski, S., 2014. Titanium surface hydrophilicity modulates the human macrophage inflammatory cytokine response. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials102(1), pp.60-67.

    Article  Google Scholar 

  28. Vassey, M.J., Figueredo, G.P., Scurr, D.J., Vasilevich, A.S., Vermeulen, S., Carlier, A., Luckett, J., Beijer, N.R., Williams, P., Winkler, D.A. and de Boer, J., 2020. Immune modulation by design: using topography to control human monocyte attachment and macrophage differentiation. Advanced Science7(11), p. 1903392. [30] S. Shirazi, S. Ravindran, L. Cooper biomaterial., 2022, 291, 121903.

    Google Scholar 

  29. Matlaga, B.F., Yasenchak, L.P. and Salthouse, T.N., 1976. Tissue response to implanted polymers: the significance of sample shape. Journal of biomedical materials research10(3), pp.391-397.

    Article  Google Scholar 

  30. O. Veiseh, J. Doloff, M. Ma, A. Vegas, H. Tam, A. Bader, J. Li, E. Langan, J. Wyckoff, W. Loo, S. Jhunjhunwala, A. Chiu, S. Siebert, K. Tang, J. Lock, S. Dasilva, M. Bochenek, J. Elias, Y. Wang, M. Qi, D. Lavin, M. Chen, N. Dholakia, R. Thakrar, I Lacík, G. Weir, J. Oberholzer, D. Greiner, R. Langer, D. Anderson. Nat Mater., 2015, 14, 643.

    Article  Google Scholar 

  31. Rajyalakshmi, A., Ercan, B., Balasubramanian, K. and Webster, T.J., 2011. Reduced adhesion of macrophages on anodized titanium with select nanotube surface features. International journal of nanomedicine, pp. 1765–1771.

    Google Scholar 

  32. Wang, L., Wang, C., Wu, S., Fan, Y. and Li, X., 2020. Influence of the mechanical properties of biomaterials on degradability, cell behaviors and signaling pathways: current progress and challenges. Biomaterials science8(10), pp.2714-2733.

    Article  Google Scholar 

  33. Guimarães, C.F., Gasperini, L., Marques, A.P. and Reis, R.L., 2020. The stiffness of living tissues and its implications for tissue engineering. Nature Reviews Materials5(5), pp.351-370.

    Article  Google Scholar 

  34. Atcha, A. Jairaman, J. Holt, V. Meli, R. Nagalla, P. Veerasubramanian, K. Brumm, H. Lim, S. Othy, M. Cahalan, M. Pathak, W. Liu, Nat Commun., 2021, 12, 3256.

    Google Scholar 

  35. Blakney, A.K., Swartzlander, M.D. and Bryant, S.J., 2012. The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly (ethylene glycol)-based hydrogels. Journal of biomedical materials research. Part A100(6), p.1375.

    Article  Google Scholar 

  36. Zhu, Y., Deng, S., Ma, Z., Kong, L., Li, H. and Chan, H.F., 2021. Macrophages activated by akermanite/alginate composite hydrogel stimulate migration of bone marrow-derived mesenchymal stem cells. Biomedical Materials16(4), p.045004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Mukherjee .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukherjee, S. (2024). Immunomodulation Strategies Using Biomaterial Chemistry and Physical Properties. In: Immunomodulatory Biomaterials for Cell Therapy and Tissue Engineering. Synthesis Lectures on Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-50844-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50844-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50843-1

  • Online ISBN: 978-3-031-50844-8

  • eBook Packages: Synthesis Collection of Technology (R0)

Publish with us

Policies and ethics