Skip to main content

Challenges and Future Perspectives of Biomimetic Materials for Biomedical Applications: Bridging the Gap Between Nature and Medicine

  • Conference paper
  • First Online:
TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings (TMS 2024)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

Abstract

This study explores the challenges and prospects of biomimetic materials in biomedical applications, focusing on their role in bridging the gap between nature and medicine. The challenges encountered in developing these materials have fostered innovation and collaboration across disciplines. Looking ahead, biomimetic materials hold transformative potential, enabling personalized medicine through precise constructs. The integration of biological and synthetic elements in biohybrid systems promises groundbreaking advancements, while sustainability concerns are addressed by eco-friendly solutions. The convergence of biomimetic materials with neural interfaces and regenerative medicine offers transformative possibilities. This journey is characterized by collective efforts, guiding the future of biomimetic materials in reshaping medical landscapes. As we navigate this juncture of challenges and potential, biomimetic materials emerge as conduits for harmonizing nature's elegance and human ingenuity. This synthesis represents hope, resilience, and exploration—a journey where biomimetic materials intricately weave the tapestry of nature and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mokobia KE, Ifijen IH, Ikhuoria EU (2023) ZnO-NPs-coated implants with osteogenic properties for enhanced osseointegration. In: TMS 2023 152nd annual meeting & exhibition supplemental proceedings. The minerals, metals & materials series. Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_27

  2. Omoruyi IC, Omoruyi JI, Aghedo ON, Archibong UD, Ifijen IH (2023) Application of magnetic iron oxide nanostructures in drug delivery: a compact review. In: TMS 2023 152nd annual meeting & exhibition supplemental proceedings. The minerals, metals & materials series. Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_22

  3. Afsharian OY, Rahimnejad M (2021) Bioactive electrospun scaffolds for wound healing applications: a comprehensive review. Polym Test 93:106952. https://doi.org/10.1016/j.polymertesting.2020.106952

    Article  Google Scholar 

  4. Jonathan EM, Ohifuemen AO, Jacob JN, Isaac AY, Ifijen IH (2023) Polymeric biodegradable biomaterials for tissue bioengineering and bone rejuvenation. In: TMS 2023 152nd annual meeting & exhibition supplemental proceedings. The minerals, metals & materials series. Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_25

  5. Govindaraju DT, Chen C-H, Shalumon KT, Kao H-H, Chen J-P (2023) Bioactive nanostructured scaffold-based approach for tendon and ligament tissue engineering. Nanomaterials 13:1847. https://doi.org/10.3390/nano13121847

    Article  PubMed  PubMed Central  Google Scholar 

  6. He S, Walimbe T, Chen H, Gao K, Kumar P, Wei Y, Wang A (2021) Bioactive extracellular matrix scaffolds engineered with proangiogenic proteoglycan mimetics and loaded with endothelial progenitor cells promote neovascularization and diabetic wound healing. Bioact Mater 10:460–473. https://doi.org/10.1016/j.bioactmat.2021.08.017

  7. Stratton S, Shelke NB, Hoshino K, Rudraiah S, Kumbar SG (2016) Bioactive polymeric scaffolds for tissue engineering. Bioact Mater 1(2):93–108. https://doi.org/10.1016/j.bioactmat.2016.11.001

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zeng W, Rong M, Hu X, Xiao W, Qi F, Huang J, Zhang X (2014) Incorporation of chitosan microspheres into collagen-chitosan scaffolds for the controlled release of nerve growth factor. PLoS ONE 9:e101300. https://doi.org/10.1371/journal.pone.0101300

  9. Dayem AA, Lee SB, Lim KM, Kim A, Shin HJ, Vellingiri B, Kim YB, Cho SG (2023) Bioactive peptides for boosting stem cell culture platform: Methods and applications. Biomed Pharmacother 160:114376. https://doi.org/10.1016/j.biopha.2023.114376

    Article  Google Scholar 

  10. Geevarghese R, Sajjadi SS, Hudecki A, Sajjadi S, Jalal NR, Madrakian T, Ahmadi M, Włodarczyk-Biegun MK, Ghavami S, Likus W, Siemianowicz K, Łos MJ (2022) Biodegradable and non-biodegradable biomaterials and their effect on cell differentiation. Int J Mol Sci 23(24):16185. https://doi.org/10.3390/ijms232416185

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bohara S, Suthakorn J (2022) Surface coating of orthopedic implant to enhance the osseointegration and reduction of bacterial colonization: a review. Biomater Res 26(1):26. https://doi.org/10.1186/s40824-022-00269-3

    Article  PubMed  PubMed Central  Google Scholar 

  12. Elani Y (2020) Exploring the emerging frontier of interfacing living and synthetic cells in synthetic biology. Angewandte Chemie Int Edn 60(11):5602–5611. https://doi.org/10.1002/anie.202006941

  13. Bhushan B (2009) Biomimetics: lessons from nature–an overview. Philos Trans Roy Soc A: Math, Phys Eng Sci 367(1893):1445–1486. https://doi.org/10.1098/rsta.2009.0011

    Article  Google Scholar 

  14. Mazzoleni I (2013) Architecture follows nature-biomimetic principles for innovative design, 1st ed. CRC Press. https://doi.org/10.1201/b14573

  15. Williams DF (2019) Challenges with the development of biomaterials for sustainable tissue engineering. Front Bioeng Biotechnol. 31(7):127. https://doi.org/10.3389/fbioe.2019.00127

    Article  Google Scholar 

  16. Antony S, Anju TR, Thomas B (2022) Nature-inspired biomimetic polymeric materials and their applications. In: Thomas S, AR A, Jose Chirayil C, Thomas B (eds) Handbook of biopolymers. Springer, Singapore. https://doi.org/10.1007/978-981-16-6603-2_50-1

  17. Del Bakhshayesh AR, Asadi N, Alihemmati A, Abdolalipour H, Montaseri A, Zarrintaj P, Ganjali MR, Saeb MR, Mozafari M, Saeb MR (2019) An overview of advanced biocompatible and biomimetic materials for creation of replacement structures in the musculoskeletal systems: focusing on cartilage tissue engineering. J Biol Eng 13:85. https://doi.org/10.1186/s13036-019-0209-9

    Article  PubMed  PubMed Central  Google Scholar 

  18. Budharaju H, Suresh S, Sekar MP, De Vega B, Sethuraman S, Sundaramurthi D, Kalaskar DM (2023) Ceramic materials for 3D printing of biomimetic bone scaffolds—current state-of-the-art & future perspectives. Mater Des 231:112064. https://doi.org/10.1016/j.matdes.2023.112064

    Article  Google Scholar 

  19. Zhang J, Tao A (2015) Antigenicity, immunogenicity, allergenicity. allergy. Bioinformatics 8:175–186. https://doi.org/10.1007/978-94-017-7444-4_11

    Article  Google Scholar 

  20. Roth GA, Picece VCTM, Ou BS et al (2022) Designing spatial and temporal control of vaccine responses. Nat Rev Mater 7:174–195. https://doi.org/10.1038/s41578-021-00372-2

    Article  PubMed  Google Scholar 

  21. Alsaleh NB, Brown JM (2018) Immune responses to engineered nanomaterials: current understanding and challenges. Curr Opin Toxicol 10:8–14. https://doi.org/10.1016/j.cotox.2017.11.011

    Article  PubMed  Google Scholar 

  22. Zhong J, Huang W, Zhou H (2023) Multifunctionality in nature: structure-function relationships in biological materials. Biomimetics 8:284. https://doi.org/10.3390/biomimetics8030284

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fratzl P (2007) Biomimetic materials research: what can we really learn from nature’s structural materials? J R Soc Interface 4(15):637–642. https://doi.org/10.1098/rsif.2007.0218

    Article  PubMed  PubMed Central  Google Scholar 

  24. Green JJ, Elisseeff JH (2016) Mimicking biological functionality with polymers for biomedical applications. Nature 540(7633):386–394. https://doi.org/10.1038/nature21005

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kuru A, Oldfield P, Bonser S, Fiorito F (2019) Biomimetic adaptive building skins: energy and environmental regulation in buildings. Energy and Buildings 205:109544. https://doi.org/10.1016/j.enbuild.2019.109544

    Article  Google Scholar 

  26. Banken E, Oeffner J (2022) Biomimetics for innovative and future-oriented space applications—a review. Front Space Technol Sec. Space Explor 3. https://doi.org/10.3389/frspt.2022.1000788

  27. Koch K, Bhushan B, Barthlott W (2009) Multifunctional surface structures of plants: an inspiration for biomimetics. Prog Mater Sci 54(2):137–178. https://doi.org/10.1016/j.pmatsci.2008.07.003

    Article  Google Scholar 

  28. Bonardd S, Nandi M, Hernández García JI, Maiti B, Abramov A, Díaz Díaz D (2023) Self-healing polymeric soft actuators. Chem Rev 123(2):736–810. https://doi.org/10.1021/acs.chemrev.2c00418

    Article  PubMed  Google Scholar 

  29. Liu S, Yu JM, Gan YC, Qiu XZ, Gao ZC, Wang H, Hou HH (2023) Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications. Mil Med Res 10(1):16. https://doi.org/10.1186/s40779-023-00448-w

  30. Clegg JR, Wagner AM, Shin SR, Hassan S, Khademhosseini A, Peppas NA (2019) Modular fabrication of intelligent material-tissue interfaces for bioinspired and biomimetic devices. Prog Mater Sci 106:100589. https://doi.org/10.1016/j.pmatsci.2019.100589

    Article  PubMed  PubMed Central  Google Scholar 

  31. Carotenuto F, Politi S, Ul Haq A, De Matteis F, Tamburri E, Terranova ML, Teodori L, Pasquo A, Di Nardo P (2022) From soft to hard biomimetic materials: tuning micro/nano-architecture of scaffolds for tissue regeneration. Micromachines 13:780. https://doi.org/10.3390/mi13050780

    Article  PubMed  PubMed Central  Google Scholar 

  32. Green DW, Goto TK, Kim KS, Jung HS (2014) Calcifying tissue regeneration via biomimetic materials chemistry. J R Soc Interface 11(100):20140537. https://doi.org/10.1098/rsif.2014.0537

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang K, Wang S, Zhou C et al (2018) Advanced smart biomaterials and constructs for hard tissue engineering and regeneration. Bone Res 6:31. https://doi.org/10.1038/s41413-018-0032-9

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang Y, Naleway SE, Wang B (2020) Biological and bioinspired materials: structure leading to functional and mechanical performance. Bioact Mater 5(4):745–757. https://doi.org/10.1016/j.bioactmat.2020.06.003

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gebeshuber IC (2023) Biomimetic nanotechnology Vol 3. Biomimetics 8:102. https://doi.org/10.3390/biomimetics8010102

  36. De Chiffre L, Kunzmann H, Peggs GN, Lucca DA (2003) Surfaces in precision engineering, microengineering and nanotechnology. CIRP Ann 52(2):561–577. https://doi.org/10.1016/S0007-8506(07)60204-2

    Article  Google Scholar 

  37. Ifijen IH, Maliki M, Udokpoh NU, Odiachi IJ, Atoe B (2023) A concise review of the antibacterial action of gold nanoparticles against various bacteria. In: TMS 2023 152nd annual meeting & exhibition supplemental proceedings. The minerals, metals & materials series. Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_58

  38. Ifijen IH, Udokpoh NU, Maliki M, Ikhuoria EU, Obazee EO (2023) A review of nanovanadium compounds for cancer cell therapy. In TMS 2023 152nd annual meeting & exhibition supplemental proceedings. The minerals, metals & materials series. Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_59

  39. Maliki M, Omorogbe SO, Ifijen IH, Aghedo ON, Ighodaro A (2023) Incisive review on magnetic iron oxide nanoparticles and their use in the treatment of bacterial infections. In: TMS 2023 152nd annual meeting & exhibition supplemental proceedings. The minerals, metals & materials series. Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_44

  40. Omoruyi IC, Omoruyi JI, Aghedo ON, Archibong UD, Ifijen IH (2023) Application of magnetic iron oxide nanostructures in drug delivery: a compact review. In TMS 2023 152nd annual meeting & exhibition supplemental proceedings. The minerals, metals & materials series. Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_22

  41. Ekun RO, Jonathan EM, Emmanuel OI, Atoe B, Ifijen IH (2023) An overview of graphene-based nanomaterials in electronic skin biosensing. In: TMS 2023 152nd annual meeting & exhibition supplemental proceedings. The minerals, metals & materials series. Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_1

  42. Udokpoh NU, Jacob JN, Archibong UD, Onaiwu GE, Ifijen IH (2023) Utilizations of graphene-based nanomaterials for the detection and treatment of mycobacterium tuberculosis. In: TMS 2023 152nd annual meeting & exhibition supplemental proceedings. The minerals, metals & materials series. Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_5

  43. Ifijen IH, Ikhuoria EU, Omorogbe SO, Anegbe B, Jonathan EM, Chikaodili DI (2023) Chemical, plant and microbial mediated synthesis of tin oxide nanoparticles: antimicrobial and anticancer potency. Braz J Chem Eng. https://doi.org/10.1007/s43153-023-00315-0

  44. Ifijen IH, Atoe B, Ekun RO, Ighodaro A, Odiachi IJ (2023) Treatments of mycobacterium tuberculosis and toxoplasma gondii with selenium nanoparticles. BioNanoScience. https://doi.org/10.1007/s12668-023-01059-4

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ifijen IH, Maliki M, Anegbe B (2022) Synthesis, photocatalytic degradation and antibacterial properties of selenium or silver doped zinc oxide nanoparticles: a detailed review. Open Nano 8:100082

    Google Scholar 

  46. Ifijen IH, Maliki M (2022) A comprehensive review on the synthesis and photothermal cancer therapy of titanium nitride nanostructures. Inorg Nano-Metal Chem. Taylor and Francis 5:211–225; 1–22. https://doi.org/10.1080/24701556.2022.2068596

  47. Jonathan EM, Ifijen IH, Mokobia KE, Okeke EI, Omoruyi CI, Anegbe B (2022) A review on the heightened mechanical features of nanosilica-based concrete and the response of human fibroblasts to nanosilica. Biomed Mater Dev. https://doi.org/10.1007/s44174-022-00013-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikhazuagbe H. Ifijen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ighodaro, A., Osarobo, J.A., Onuguh, I.C., Ogbeide, O.K., Ifijen, I.H. (2024). Challenges and Future Perspectives of Biomimetic Materials for Biomedical Applications: Bridging the Gap Between Nature and Medicine. In: TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings. TMS 2024. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-50349-8_76

Download citation

Publish with us

Policies and ethics