Skip to main content

Bioink Formulations for 3D Printing of Tissue Scaffolds: A Review of Materials and Printability

  • Conference paper
  • First Online:
TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings (TMS 2024)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 1003 Accesses

Abstract

The remarkable potential of 3D bioprinting in tissue engineering and regenerative medicine hinges on the development of bioink formulations that guide the creation of intricate and functional tissue constructs. This review encapsulates the pivotal role of bioinks in this dynamic field, elucidating key insights and findings. Bioink diversity, ranging from natural biomaterials to synthetic polymers, underpins the versatility and complexity achievable in bioprinting. Achieving accurate 3D bioprinting necessitates a deep comprehension of printability factors encompassing rheological properties, cross-linking mechanisms, and extrudability. Strategies enhancing bioink printability through additives and bioactive agents are emerging, offering avenues for elevating construct precision, and functionality. Tailoring bioink formulations to specific tissue types further fosters tissue-specific differentiation and improved construct functionality. This review underscores the profound significance of bioink formulations as the bedrock of tissue engineering advancement, bridging scientific exploration with transformative solutions for medical practice. As the evolution of bioink formulations continues, the horizon for 3D bioprinting in regenerative medicine remains boundless, promising a future where tissues and organs are tailor-made for healing and restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal S, Saha S, Balla VK, Pal A, Barui A, Bodhak S (2020) Current developments in 3D bioprinting for tissue and organ regeneration—a review. Front Mech Eng 6:589171. https://doi.org/10.3389/fmech.2020.589171

    Article  Google Scholar 

  2. Shopova D, Yaneva A, Bakova D, Mihaylova A, Kasnakova P, Hristozova M, Sbirkov Y, Sarafian V, Semerdzhieva M (2023) (Bio)printing in personalized medicine—opportunities and potential benefits. Bioengineering (Basel) 10(3):287. https://doi.org/10.3390/bioengineering10030287

    Article  PubMed  Google Scholar 

  3. Yaneva A, Shopova D, Bakova D, Mihaylova A, Kasnakova P, Hristozova M, Semerdjieva M (2023) The progress in bioprinting and its potential impact on health-related quality of life. Bioengineering 10:910. https://doi.org/10.3390/bioengineering10080910

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR (2018) Bioinks for 3D bioprinting: an overview. Biomater Sci 6(5):915–946. https://doi.org/10.1039/c7bm00765e

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ghosh S, Yi HG (2022) A review on bioinks and their application in plant bioprinting. Int J Bioprint 8(4):612. https://doi.org/10.18063/ijb.v8i4.612

  6. Pan RL, Martyniak K, Karimzadeh M et al (2022) Systematic review on the application of 3D-bioprinting technology in orthoregeneration: current achievements and open challenges. J Exp Orthop 9:95. https://doi.org/10.1186/s40634-022-00518-3

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gopinathan J, Noh I (2018) Recent trends in bioinks for 3D printing. Biomater Res 22:11. https://doi.org/10.1186/s40824-018-0122-1

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ashammakhi N, Ahadian S, Xu C, Montazerian H, Ko H, Nasiri R, Barros N, Khademhosseini A (2019) Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio 1:100008. https://doi.org/10.1016/j.mtbio.2019.100008

    Article  PubMed  PubMed Central  Google Scholar 

  9. Benwood C, Chrenek J, Kirsch RL, Masri NZ, Richards H, Teetzen K, Willerth SM (2021) Natural biomaterials and their use as bioinks for printing tissues. Bioengineering (Basel) 8(2):27. https://doi.org/10.3390/bioengineering8020027

    Article  PubMed  Google Scholar 

  10. Brovold M, Almeida JI, Pla-Palacín I, Sainz-Arnal P, Sánchez-Romero N, Rivas JJ, Almeida H, Dachary PR, Serrano-Aulló T, Soker S, Baptista PM (2018) Naturally derived biomaterials for tissue engineering applications. Adv Exp Med Biol 1077:421–449. https://doi.org/10.1007/978-981-13-0947-2_23

    Article  PubMed  PubMed Central  Google Scholar 

  11. He Y, Wang C, Wang C, Xiao Y, Lin W (2021) An overview on collagen and gelatin-based cryogels: fabrication, classification, properties and biomedical applications. Polymers 13(14):2299. https://doi.org/10.3390/polym13142299

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mathew-Steiner SS, Roy S, Sen CK (2021) Collagen in wound healing. Bioengineering (Basel) 8(5):63. https://doi.org/10.3390/bioengineering8050063

    Article  PubMed  Google Scholar 

  13. Zhang H, Cheng J, Ao Q (2021) Preparation of alginate-based biomaterials and their applications in biomedicine. Mar Drugs 19(5):264. https://doi.org/10.3390/md19050264

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dovedytis M, Liu ZJ, Bartlett S (2020) Hyaluronic acid and its biomedical applications: a review. Eng Regen 1:102–113. https://doi.org/10.1016/j.engreg.2020.10.001

    Article  Google Scholar 

  15. Liu F, Wang X (2020) Synthetic polymers for organ 3D printing. Polymers 12:1765. https://doi.org/10.3390/polym12081765

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kumar S (2021) Synthetic polymer-derived single-network inks/bioinks for extrusion-based 3D printing towards bioapplications. Mater Adv 2:6928–6941. https://doi.org/10.1039/D1MA00525A

    Article  Google Scholar 

  17. Balla E, Daniilidis V, Karlioti G, Kalamas T, Stefanidou M, Bikiaris ND, Vlachopoulos A, Koumentakou I, Bikiaris DN (2021) Poly(lactic acid): a versatile biobased polymer for the future with multifunctional properties-from monomer synthesis, polymerization techniques and molecular weight increase to PLA applications. Polymers 13(11):1822. https://doi.org/10.3390/polym13111822

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dias JR, Sousa A, Augusto A, Bártolo PJ, Granja PL (2022) Electrospun polycaprolactone (PCL) degradation: an in vitro and in vivo study. Polymers 14(16):3397. https://doi.org/10.3390/polym14163397

    Article  PubMed  PubMed Central  Google Scholar 

  19. D’souza AA, Shegokar R (2016) Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv 13(9):1257–1275. https://doi.org/10.1080/17425247.2016.1182485

    Article  PubMed  Google Scholar 

  20. Khoeini R, Nosrati H, Akbarzadeh A, Eftekhari A, Kavetskyy T, Khalilov R, Ahmadian E, Nasibova A, Datta P, Roshangar L et al (2021) Natural and synthetic bioinks for 3D bioprinting. Adv NanoBiomed Res 1(8):2000097. https://doi.org/10.1002/anbr.202000097

    Article  Google Scholar 

  21. Vanaei S, Parizi MS, Vanaei S, Salemizadehparizi F, Vanaei HR (2021) An overview on materials and techniques in 3D bioprinting toward biomedical application. Eng Regen 2:1–18. https://doi.org/10.1016/j.engreg.2020.12.001

    Article  Google Scholar 

  22. Saini G, Segaran N, Mayer JL, Saini A, Albadawi H, Oklu R (2021) Applications of 3D bioprinting in tissue engineering and regenerative medicine. J Clin Med 10(21):4966. https://doi.org/10.3390/jcm10214966

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jain P, Kathuria H, Dubey N (2022) Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials 287:121639. https://doi.org/10.1016/j.biomaterials.2022.121639

    Article  PubMed  Google Scholar 

  24. Mao H, Yang L, Zhu H, Wu L, Ji P, Yang J, Gu Z (2020) Recent advances and challenges in materials for 3D bioprinting. Prog Nat Sci Mater Int 30(5):618–634. https://doi.org/10.1016/j.pnsc.2020.09.015

    Article  Google Scholar 

  25. Fang Y, Guo Y, Liu T, Xu R, Mao S, Mo X, Zhang T, Ouyang L, Xiong Z, Sun W (2022) Advances in 3D bioprinting. Chin J Mech Eng Addit Manuf Front 1(1):100011. https://doi.org/10.1016/j.cjmeam.2022.100011

    Article  Google Scholar 

  26. Ho TC, Chang CC, Chan HP, Chung TW, Shu CW, Chuang KP, Duh TH, Yang MH, Tyan YC (2022) Hydrogels: properties and applications in biomedicine. Molecules 27(9):2902. https://doi.org/10.3390/molecules27092902

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103(4):655–663. https://doi.org/10.1002/bit.22361

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li X, Sun Q, Li Q, Kawazoe N, Chen G (2018) Functional hydrogels with tunable structures and properties for tissue engineering applications. Front Chem 6, Article 499. https://doi.org/10.3389/fchem.2018.00499

  29. Dzobo K, Motaung KSCM, Adesida A (2019) Recent trends in decellularized extracellular matrix bioinks for 3D printing: an updated review. Int J Mol Sci 20(18):4628. https://doi.org/10.3390/ijms20184628

    Article  PubMed  PubMed Central  Google Scholar 

  30. Park W, Gao G, Cho DW (2021) Tissue-specific decellularized extracellular matrix bioinks for musculoskeletal tissue regeneration and modeling using 3D bioprinting technology. Int J Mol Sci 22(15):7837. https://doi.org/10.3390/ijms22157837

    Article  PubMed  PubMed Central  Google Scholar 

  31. Loukelis K, Helal ZA, Mikos AG, Chatzinikolaidou M (2023) Nanocomposite bioprinting for tissue engineering applications. Gels 9(2):103. https://doi.org/10.3390/gels9020103

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kannayiram G, Sendilvelan S, Priya RM (2023) Importance of nanocomposites in 3D bioprinting: an overview. Bioprinting 32:e00280. https://doi.org/10.1016/j.bprint.2023.e00280

    Article  Google Scholar 

  33. Jiang W, Li M, Chen Z, Leong KW (2016) Cell-laden microfluidic microgels for tissue regeneration. Lab Chip 16(23):4482–4506. https://doi.org/10.1039/c6lc01193d

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mohamed MGA, Ambhorkar P, Samanipour R, Yang A, Ghafoor A, Kim K (2020) Microfluidics-based fabrication of cell-laden microgels. Biomicrofluidics 14(2):021501. https://doi.org/10.1063/1.5134060

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shahbazi M, Jäger H, Ettelaie R, Mohammadi A, Asghartabar Kashi P (2023) Multimaterial 3D printing of self-assembling smart thermo-responsive polymers into 4D printed objects: a review. Addit Manuf 71:103598. https://doi.org/10.1016/j.addma.2023.103598

    Article  Google Scholar 

  36. Gu Z, Fu J, Lin H, He Y (2020) Development of 3D bioprinting: from printing methods to biomedical applications. Asian J Pharm Sci 15(5):529–557. https://doi.org/10.1016/j.ajps.2019.11.003

    Article  PubMed  Google Scholar 

  37. Naranjo-Alcazar R, Bendix S, Groth T, Gallego Ferrer G (2023) Research progress in enzymatically cross-linked hydrogels as injectable systems for bioprinting and tissue engineering. Gels 9(3):230. https://doi.org/10.3390/gels9030230

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ramadan Q, Zourob M (2021) 3D bioprinting at the frontier of regenerative medicine, pharmaceutical, and food industries. Front Med Technol 2:607648. https://doi.org/10.3389/fmedt.2020.607648

    Article  PubMed  PubMed Central  Google Scholar 

  39. Agarwal K, Srinivasan V, Lather V et al (2023) Insights of 3D bioprinting and focusing the paradigm shift towards 4D printing for biomedical applications. J Mater Res 38:112–141. https://doi.org/10.1557/s43578-022-00524-2

    Article  Google Scholar 

  40. Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J (2020) Printability and shape fidelity of bioinks in 3D bioprinting. Chem Rev 120(19):11028–11055. https://doi.org/10.1021/acs.chemrev.0c00084

    Article  PubMed  Google Scholar 

  41. Bercea M (2023) Rheology as a tool for fine-tuning the properties of printable bioinspired gels. Molecules 28:2766. https://doi.org/10.3390/molecules28062766

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8(3):032002. https://doi.org/10.1088/1758-5090/8/3/032002

    Article  PubMed  Google Scholar 

  43. Li N, Guo R, Zhang ZJ (2021) Bioink formulations for bone tissue regeneration. Front Bioeng Biotechnol 9:630488. https://doi.org/10.3389/fbioe.2021.630488

    Article  PubMed  PubMed Central  Google Scholar 

  44. Naghieh S, Chen X (2021) Printability—a key issue in extrusion-based bioprinting. J Pharm Anal 11(5):564–579. https://doi.org/10.1016/j.jpha.2021.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang Q, Backman O, Nuopponen M, Xu C, Wang X (2021) Rheological and printability assessments on biomaterial inks of nanocellulose/photo-crosslinkable biopolymer in light-aided 3D printing. Front Chem Eng 3:723429. https://doi.org/10.3389/fceng.2021.723429

    Article  Google Scholar 

  46. Wang Y, Yuan X, Yao B, Zhu S, Zhu P, Huang S (2022) Tailoring bioinks of extrusion-based bioprinting for cutaneous wound healing. Bioact Mater 17:178–194. https://doi.org/10.1016/j.bioactmat.2022.01.024

    Article  PubMed  PubMed Central  Google Scholar 

  47. Montelongo SA, Chiou G, Ong JL, Bizios R, Guda T (2021) Development of bioinks for 3D printing microporous, sintered calcium phosphate scaffolds. J Mater Sci Mater Med 32(94). https://doi.org/10.1007/s10856-021-06569-9

  48. Wu Z, Li Q, Xie S, Shan X, Cai Z (2020) In vitro and in vivo biocompatibility evaluation of a 3D bioprinted gelatin-sodium alginate/rat Schwann-cell scaffold. Mater Sci Eng C Mater Biol Appl 109:110530. https://doi.org/10.1016/j.msec.2019.110530

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikhazuagbe Hilary Ifijen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Osazee, F.O., Ohifuemen, A.O., Omoruyi, J.I., Ifijen, I.H., Otabor, G. (2024). Bioink Formulations for 3D Printing of Tissue Scaffolds: A Review of Materials and Printability. In: TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings. TMS 2024. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-50349-8_41

Download citation

Publish with us

Policies and ethics