
Chapter 8 
Cells and Subgrains. The Role of Cold 
Work 

Abstract In almost all metals and alloys, dislocations are concentrated to narrow 
regions after plastic deformation that divide the material into cells or subgrains. The 
cell walls consist of tangles whereas the subgrains are surrounded by thin regular 
networks of dislocations. The cells are transferred to subgrains with increasing 
temperature. Although these substructures have been analyzed for many years, basic 
models of their development have only appeared recently. Models for substructures 
are presented for plastic deformation at constant stress and at constant strain rate. 
During straining the dislocations can move in opposite directions creating a polarized 
structure, where the possibility for recovery of dislocations is reduced. This can be 
expressed in term of a back stress. Its presence explains why creep curves at near 
ambient temperatures could have an appearance that is similar to that at elevated 
temperatures. It is also the basis for the effect of cold work on creep. The models 
can quantitatively describe why the creep rate can be reduced by up to six orders of 
magnitude for Cu after cold work. 

8.1 General 

Tangles of dislocations are formed in virtually all alloys during plastic deforma-
tion. With increasing strain the tangles form boundaries that divide the materials 
into micrometer sized cells or subgrains, Fig. 8.1. With increasing temperature and 
strain the boundaries become better developed and thinner. At high temperatures 
the boundaries consist of regular networks of dislocations, and are then referred to 
as subboundaries or subgrain boundaries. At lower temperatures the boundaries are 
made up of loose tangles that are called cell boundaries. Expressed in another way 
subgrains are formed in the creep range and cells in the work hardening range [1], 
although there is no sharp transition. For a definition of the work hardening and the 
creep range, see Sect. 3.4. Both cells and subgrains are referred to as substructure. 
In most materials the substructure is well developed already at modest strains. This 
means that the substructure can be observed in tensile and creep tests. However in
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Fig. 8.1 Cell structure in 
Cu-OFP after 24% cold 
working [3] 

some alloys, for example Al–Mg alloys, the development of substructure is delayed 
to higher strains [2]. 

There are excellent reviews on substructure formation in the literature [2, 4, 5]. 
Many results are similar for cells and subgrains so there is no need in general to 
make a clear distinction between them. For example, both the cell and subgrain sizes 
are related to the applied stress in the same way. One question that appeared early 
on was if the substructure contributed to the creep strength [5, 6]. In a number of 
investigations it has been shown that strength contribution from the dislocations in 
the subgrain interiors could account for the full creep strength in single phase alloys, 
see for example Orlova’s paper [7]. However, with the event of Mughrabi’s composite 
model where the subboundaries are considered as hard zones, it is clear that there are 
long range stresses from the subboundaries [8]. In the composite model, the strength 
is taken as a weighted average of the “hard” boundaries and the “soft” subgrain 
interiors. In a single phase alloy, the subgrain size is fully controlled by the applied 
stress and there is no way of varying the strength contribution from the subgrains 
[5]. However, the presence of particles can stabilize the subgrain size. In this way a 
major contribution to the creep strength from subgrains stabilized by M23C6 carbides 
is obtained in modern creep resistant 9–12% Cr steels [9]. 

There are many investigations on the formation of substructure but few of them 
are quantitative. Notable exceptions are work by Blum and Straub and coworkers 
who measured the development of the subgrain size during creep in martensitic steels 
[10–12]. These results could be combined with a basic model for the influence of 
particles on subgrain growth [13] to understand the long term behavior of 9–12% Cr 
steels [9]. 

Dislocations with burgers vectors b and −b in a slip system are moving in opposite 
directions in an applied stress field inside a cell. Dislocations with b and −b end up 
at opposite sides of the cells. If a cell boundary is considered, dislocations with b are 
found on one side of the boundary and those with −b on the other side. This means
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that the cell boundaries become polarized. It has also the consequence that there is a 
boundary between the dislocations with b and −b and recovery of them cannot take 
place. These dislocations are also referred to as unbalanced because in the region 
with b dislocations there are no −b dislocations. This should be contrasted with 
balanced dislocations where dislocations with opposite burgers vectors are present. 
Models for the formation of substructure is presented in Sect. 8.2. 

When unbalanced dislocations are present static recovery is slowed down since 
dislocation with opposite burgers vectors cannot meet and annihilate. The unbalanced 
dislocations are of importance for several properties. Modeling tertiary creep of 
copper has demonstrated that the recovery rate of the substructure gives a main 
contribution to the increasing strain rate [14]. This is likely to be the case for other 
ductile alloys as well. This will be further discussed in Sect. 12.4. Cold work can 
reduce the creep rate by many orders of magnitude. Taking balanced and unbalanced 
dislocations in the subgrain walls into account has made it possible to explain this 
quantitatively for copper [15]. The role of cold work is discussed in Sect. 8.3. 

Most creep tests are performed at constant load. For example, when the creep rate 
is plotted versus stress, usually the engineering stress, i.e. the nominal stress is used, 
not the true stress. At high temperatures when the creep exponent is about 5 this is 
not so critical, but at lower temperatures in the power-law break down regime where 
the creep exponent can be 30–50, the difference between using the engineering and 
the true stress is huge, which can easily be demonstrated. It turned out for copper 
that the engineering stress is still the relevant quantity. It took many years to explain 
this feature, but by considering the role of the substructure it was possible, Sect. 8.4 
[16]. 

8.2 Modeling of Subgrain Formation 

8.2.1 The Stress from Dislocations 

In previous chapters, the Taylor equation has been applied to describe the contribution 
to the strength from the dislocations, Eq. (2.28) 

σdisl = αmTGb
√

ρ (8.1) 

where α is constant, mT the Taylor factor, G the shear modulus and b burgers vector. 
In the presence of substructure the relation has to be modified because the α value is 
different for dislocations in the cell boundary. This can be illustrated by an expression 
for α given by Kuhlmann-Wilsdorf [17] 

αKW = 
(1 − νP/2) 
6π(1 − νP) 

log 
RCO 

b 
(8.2)



148 8 Cells and Subgrains. The Role of Cold Work

νP is Poisson’s ratio and RCO a cut-off ratio that is taken as the spacing between 
dislocations. This spacing is of the order of 10−7 m and 10−8 m in the cell interior 
and the cell boundaries respectively. This gives that α is close to a factor of 2 larger 
for dislocations in the cell interior than for dislocations in the cell boundaries. For 
this reason Eq. (8.1) is replaced by the following expression 

σdisl = αmTGb
√

ρint + 
1 

2 
αmTGb 

√
ρbound (8.3) 

where ρint is the dislocation density in the cell interior and ρbound the dislocation 
density in the cell boundaries. The value for αKW will not be used in the present book, 
since there is an expression that is adapted to elevated temperatures, Eq. (3.17). As 
discussed in Sect. 8.1, there are many different results in the literature for the influence 
of boundary dislocations on the strength. Rather than trying to select between the 
various experimental results, a direct derivation has been chosen. 

There is a well-established relation between the cell or subgrain size dsub and the 
stress 

dsub = 
KsubGb 

σdisl 
(8.4) 

K sub is a dimensionless constant that typically takes values in the interval 10 to 
20. The first ones to propose an equation of this form were Staker and Holt [18]. It 
is assumed that it is the dislocation stress that is used in Eq. (8.4) [17]. Eq. (8.4) was  
already given in Sect. 2.4. It has been suggested that Eq. (8.4) is general and does not 
only apply to stationary conditions [19]. There are two well-known derivations of 
Eq. (8.4) in the literature. In the first one a spinodal decomposition of a set of parallel 
screw dislocations was considered [20]. In the second one the energy of a substructure 
was assumed to be the sum of the dislocation line energy and the dislocation cell 
stresses. By minimizing the sum of these two contributions, Eq. (8.4) was obtained 
[17]. 

The distance between dislocations in the cell walls which is referred to as the 
dislocation separation can be estimated in the following way. For the sake of argu-
ment, the cell walls are assumed to consist of one layer of μ sets of dislocations and 
cells arranged as packed cubes. The density of boundary dislocations is then given 
by 

ρbnd = 
3μd2 

sub 

d3 
sublsep 

(8.5) 

where lsep is the dislocation separation. Each corner in the arrangements of the cube 
substructure is associated with three cube sides and that is the reason for the factor 
3 in Eq.  (8.5). The density is taken as the average over the volume of each cell d3 

sub. 
Equation (8.5) will be used below to obtain an estimate for the dislocation separation.
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8.2.2 Formation of Subgrains During Creep 

In most materials well-formed subgrains are present in the secondary stage. This 
means that the subgrains are created during primary creep. There are exceptions. In 
Al-Mg alloys at around 300 °C, subgrains are not formed until a strain of about 1 
[2]. In addition, in some stainless steels a homogeneous dislocation structure appears 
under certain conditions. For 17Cr12Ni2Mo subgrains appeared at 704 °C but not 
at 593 °C [21]. For 17Cr12Ni2MoN no subgrains were present at higher N content 
[22]. A possible qualitative explanation to these observations is that the stacking fault 
energy γSFE plays a role and that the subgrain formation increases with the value of 
γSFE. For 17Cr12Ni2Mo there is a dramatic increase in γSFE with temperature [23], 
which could explain the observations in [21]. The results of the influence of N on 
γSFE in the literature are far from unanimous but a recent analysis of existing data 
[24] suggests that N reduces γSFE and this could be a reason for the findings in [22]. 
For Al–Mg, the value of γSFE is considerably lower than for Al, but if this is of 
importance for the substructure formation is uncertain. 

The normal case where subgrains are present in the secondary stage will now 
be considered. The changes of the substructure have been quantitatively studied for 
an Al5Zn alloy at a temperature of 250 °C and an applied stress of 16 MPa. The 
study was performed by Blum and co-workers. The original papers are not readily 
available anymore, but fortunately the results are reproduced in other sources [2, 25]. 
In Sect. 4.3, a model for primary creep is presented. The creep rate is given by Eqs. 
(4.3) and (4.9) 

ε̇ = h(2(σ − σi) − σdisl) (8.6) 

where 

h(σ ) = 2τL M(T , σ  )  
σ 3 

(αmTGb)3 
/

(
mT 

bcL 
− ω 

σ 
αmTGb

)
(8.7) 

In Eq. (8.6), there is an effective stress that controls the creep rate in the primary 
stage 

σeff = 2(σ − σi) − σdisl (8.8) 

As can be seen from Eq. (4.10), there is a contribution from solid solution hard-
ening. For Al5Zn, this contribution comes from the Zn content. The linear misfit for 
Zn in Al is −0.02. The drag stress from the Zn content is given by (Eq. (6.20)) 

σ drag i = 
vclimbci0β2 

bDi kBT 
I (z0) (8.9)
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The resulting value of σi is 4.6 MPa. For h(σ) values for Al are used, see Sect. 2. 
7. The creep strain and the strain rate are illustrated Fig. 8.2. 

The creep rate versus strain follows the φ-model, Sect. 4.2, although the slope is 
not quite the same in the experiments and the model. 

Since the effective stress controls the primary creep rate, it is natural to assume 
that it also governs the subgrain size. By applying Eq. (8.8) in Eq.  (8.4) a simple  
model is obtained. The findings are shown in Fig. 8.3a. 

The variation of the dislocation density with strain can also be derived with the 
help of Eq. (4.5). The result is given in Fig. 8.3b. Once the dislocation density is 
known, the dislocation separation in the subgrain boundaries can be obtained with 
the help of Eq. (8.5). It is assumed that most of the dislocations are located in the 
boundaries. The result is demonstrated in Fig. 8.4.

a b  

Fig. 8.2 Creep strain versus time a and creep rate versus strain b for Al5Zn at 250 °C and 16 MPa. 
Experimental data from [2, 25]. Redrawn from [26] with permission of MDPI 

a b  

Fig. 8.3 Subgrain size a and dislocation density b versus strain for Al5Zn at 250 °C and 16 MPa. 
Experimental data from [2, 25]. Redrawn from [26] with permission of MDPI 
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Fig. 8.4 Dislocation 
separation in the subgrain 
boundaries versus strain for 
Al5Zn at 250 °C and 16 
MPa. Experimental data 
from [2, 25]. Redrawn from 
[26] with permission of 
MDPI 

It is clear that the model presented here can predict the general behavior of the 
subgrain formation in Figs. 8.3 and 8.4 although the details are not fully accurate. 

8.2.3 Cell Formation at Constant Strain Rate 

Dislocation cells are formed in virtually all alloys during tensile and compression 
testing at ambient temperatures. A brief survey is given by Koneva et al. [27]. In the 
same way as during creep, the cell diameter decreases with increasing strain. They 
summarize findings that the cell diameter is proportional to the inverse of the square 
root of the dislocation density. 

dsub = Krhoρ
−1/2 (8.10) 

This is consistent with Eq. (8.4). This is seen by combining Eqs. (8.3) and (8.4) 
with (8.10) 

Krho = 
Ksubμsub 

αmT 
(8.11) 

where μsub = 1 and 2 for dislocation densities in the subgrain interior and walls 
respectively. A value of K rho = 15 was found for Cu which is in reasonable agreement 
with K sub = 10, since α ≈ 0.19 and mT ≈ 3.1. The location of dislocation in cell 
interiors or boundaries was not specified. Their results for K rho for Cu–Al (2–5) 
and for Cu–Mn (2–5) illustrate that K rho can be significantly smaller for alloys in 
comparison to pure metals. In [27] early investigations for K rho are also referenced 
but these results are difficult to match to K sub values.
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Subgrain boundaries have essentially zero width in particular at high temperatures. 
Cell walls on the other hand have a significant width wcell. This means that Eq. (8.5) 
must be replaced by 

ρbnd = 
3μwcell 

dsubl2 sep 
(8.12) 

In Eq. (8.12), the separation distance between dislocations is assumed to be the 
same in the boundary plane and perpendicular to the plane. In the boundary several 
types of dislocations must be taken into account [15]. This will be explained in detail 
in Sect. 8.2.3, where the equations for the dislocation densities will be given. Using 
these equations the developments of dislocation densities and the corresponding 
dislocation stress, Eq. (8.3), can be computed. Once the dislocation stress is known, 
the cell size can be obtained with the help of Eq. (8.4). The variation of the cell 
size as a function of strain is illustrated in Fig. 8.5. The cell diameter decreases with 
increasing strain and tends towards a stationary value at larger strains. 

In addition to the overall dislocation density in the boundary ρbnd, there is a 
formation of dislocation locks that are believed to create the stability of the boundary. 
The density of the locks is designated ρlock. Following [15] the cell wall width is 
related to the lock density 

wcell = 1 

lsepρlock 
(8.13) 

If Eqs. (8.12) and (8.13) are combined, expressions for the dislocation separation 
and wall width in terms of the dislocation densities are obtained 

lsep =
(

3μ 
dsubρbndρlock

)1/3 

(8.14)

Fig. 8.5 Cell diameters as a 
function of strain for 
Cu-OFP at 75 °C and 1 × 
10−5 1/s [15]. Experimental 
data from [3]. Redrawn from 
[15] with permission of 
Elsevier 
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a b  

Fig. 8.6 a Dislocation separation in the cell boundaries and b cell boundary width as a function of 
strain for Cu-OFP at 75 °C and 1 × 10−5 1/s [15]. Redrawn from [15] with permission of Elsevier 

wcell =
(
dsubρbnd 

3μρ2 
lock

)1/3 

(8.15) 

Equations (8.14) and (8.15) are compared to experimental data in Fig. 8.6. 
In the same way as for the cell size, the dislocation separation and cell boundary 

width decrease with strain. The variation of the dislocation separation and cell 
boundary width with strain is more rapid than for the cell size. These results are 
not consistent with those of Koneva et al., who suggest a constant ratio between the 
cell boundary width and the cell diameter. 

In a test series for 18Cr8Ni austenitic stainless at 865 °C, the formation of 
subgrains as a function of strain at constant strain rate is studied in [2]. In the same 
way as for Al5Zn and Cu-OFP above, it is demonstrated that the subgrain size and 
dislocation separation in subgrain walls decrease and tend to stationary values with 
increasing strain. The dislocation density rapidly increases with strain and also levels 
off to a stationary value. Since the variation of the stress with strain can be predicted, it 
was thought that the results should be possible to model. Unfortunately, the published 
stress strain curve is not consistent with the creep models. 

8.3 Influence of Cold Work on the Creep Rate 

The influence of cold deformation on the creep rate and creep rupture is a clas-
sical problem. During primary creep of annealed material, the dislocation density 
is normally raised from a low value to a stationary one when the secondary stage 
is reached. This is a direct outcome of the creep recovery theory and it is well 
described by the basic dislocation equation used in this book, Eq. (4.5). On the 
other hand for a cold deformed material, the initial dislocation density is high.
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If Eq. (4.5) is applied, the dislocation density would be reduced during primary 
creep and the same stationary dislocation density as for an annealed material would 
be found and no effect of the cold deformation would remain. This is in direct at 
variance with observations for example for fcc alloys. For a number of austenitic 
stainless steels the creep strength can be increased significantly [28–31]. A review 
is given in [32]. If the temperature is too high or the strain is too large the effect of 
cold work disappears. The reason is that the dislocation structure is not sufficiently 
stable under such conditions and recrystallization may appear. 

In this section the influence of cold work on the creep of Cu-OFP will be analyzed. 
Results for creep rupture data are shown in Fig. 8.7. 

Values for 0, 12 and 24% cold work are compared. It is evident that the cold work 
has a dramatic effect on the rupture time. For 12% cold work the rupture time is 
increased by more than three orders of magnitude. For 24% cold work the rupture 
time is raised by six orders of magnitude. This effect is only observed if the cold 
work is performed in tension. If the cold work is in compression only quite a small 
increase in the rupture time is found. The creep testing was carried out in tension. 
Thus if the deformation direction is reversed between the cold work and creep testing 
only a limited effect is observed. 

With increasing cold deformation, the creep ductility is practically always 
reduced. This is clearly found for Cu-OFP, Fig. 8.8.

For Cu-OFP without cold work the rupture elongation is typically quite high, 
above 40%. For 12% cold deformation in tension the rupture elongation is still high, 
30% and above. For 24% cold deformation, the rupture elongation is a little bit 
above 10%. It is interesting to note that the creep ductility of Cu-OFP deformed in 
compression is low in spite of the small increase in the rupture time. 

It has now been found that the role of the substructure must be taken into account to 
understand the influence of cold working [15]. This has also been suggested in the past 
but without any basic analysis that could predict the magnitude of the effect [4, 33]. 
As described in Sects. 8.1 and 8.2 a cell structure is formed in practically all alloys

Fig. 8.7 Stress versus 
rupture time for 12 and 24% 
cold deformed Cu-OFP at 
75 °C. For comparison data 
for material without cold 
deformation is included. The 
lines are  fitted to the  
experimental data to 
illustrate the influence of 
rupture time. Experimental 
data from [3]. Redrawn from 
[15] with permission of 
Elsevier 
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Fig. 8.8 Rupture elongation 
versus rupture time for 12 
and 24% cold deformed 
Cu-OFP at 75 °C. For 
comparison data for material 
without cold deformation is 
included. Experimental data 
from [3]. Redrawn from [26] 
with permission of MDPI

during deformation at ambient temperatures. A large fraction of the dislocations 
moves to the cell boundaries and in this way they create the cell structure. During 
the deformation all dislocations do not behave in the same way. Dislocations with 
opposite burgers vectors move in opposite directions in a given stress field. This 
can be seen from the Peach-Koehler formula for the force F on a dislocation with 
direction ξ and burgers vector b 

F = (bσ)  × ξ (8.16) 

If the direction of the burgers vector is changed to the opposite one (−b), this is 
the same as changing the sign of the burgers vector. For this reason, burgers vectors 
of opposite directions will also be referred to as burgers vectors of opposite signs. 
From Eq. (8.16), it can be seen that if the direction of the burgers vector is changed to 
the opposite one, the sign and the direction of the force is also changed. Dislocations 
of opposite signs on the same glide plane move to different ends of the cell. With 
opposite signs at different ends of the cell, the dislocations are said to be polarized. 
Not all dislocations are polarized. It is assumed that the outer layers of the boundaries 
are polarized. 

The polarization of dislocations has a pronounced effect on the recovery. Since 
dislocations with opposite burgers vectors cannot be found amongst polarized dislo-
cations, static recovery is not possible. Polarized dislocations are referred to as unbal-
anced since dislocations with opposite burgers vector are not present. For unpolarized 
dislocations, dislocations with opposite burgers vectors can be found and they are 
therefore referred to as balanced. 

In the model for the development of the cell structure, the following dislocation 
densities in the cell boundaries are taken into account: balanced dislocation density 
ρbnd, the unbalanced dislocation density ρbnde, and the density of the locks ρlock [15]. 
Most of the dislocations are in the boundaries, and the content in the cell interiors is
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neglected. The equation for the balanced dislocation density ρbnd is almost identical 
to Eq. (2.17) 

dρbnd 

dε 
= kbnd 

mρ
1/2 
bnd 

bcL 
− ωρbnd − 2τL Mρ2 

bnd/ε̇ (8.17) 

Work hardening, dynamic recovery and static recovery are considered. The only 
difference is the introduction of the factor kbnd. It takes into account since Eq. (8.3) 
is modified in comparison to the ordinary version of the Taylor equation. For the 
unbalanced content ρbnde, the equation corresponding to (8.17) is  

dρbnde 

dε
= kbnde 

m(ρ
1/2 
bnd + ρ1/2 

bnde) 
bcL 

− ωρbnde (8.18) 

There are two significant differences between (8.17) and (8.18). There is no static 
recovery term in Eq. (8.18). Unbalanced dislocations cannot annihilate by combining 
with dislocations of opposite signs, since such dislocations are not present. The other 
difference is that both balanced and unbalanced contribute to the generation of the 
unbalanced content since both types move across the cell interiors. 

The traditional view is that dynamic recovery is due to dislocations coming suffi-
ciently close that they can combine with dislocations of opposite sign and annihilate 
[34]. This assumption tends to overestimate the recovery rate, see Sect. 2.3.2. In addi-
tion, the mechanisms for dynamic and static recovery would be similar although their 
temperature and time dependencies are quite different. Argon has instead suggested 
that the dynamic recovery is due to the interaction between dislocations generated 
during work hardening and the cell boundaries [35]. It is known experimentally that 
spurting dislocations are moving a distance of about three cell diameters [36] and 
consequently they will pass through more than one cell boundary. During this passage 
boundary dislocations will be removed. When the dislocations hit the boundaries low 
energy configurations will be formed and this is part of the dynamic recovery process. 
Some of these low energy configurations are locks that are dominated by Cottrell-
Lomer locks. They are created when partial dislocations cross. The formation of 
locks are assumed to be controlled by the following equation 

dρlock 

dε
= klockω(ρbnd + ρbnde) − ωρlock − 2τL Mρ2 

lock/ε̇ (8.19) 

This equation describes how both balanced and unbalanced dislocations contribute 
to the formation of locks. Dynamic recovery influences the number of locks since 
spurting dislocations passing through the boundaries remove locks. The locks can 
also be eliminated by static recovery since this process reduces the energy even for 
complex dislocation configurations. 

In Sect. 3.3, experimental stress strain curves for Cu-OFP were accurately repro-
duced using Eq. (2.17) assuming a homogenous distribution of dislocations. If now
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the dislocations are considered to be located in the cell boundaries and Eqs. (8.17)– 
(8.19) are used, the stress should be computed with the help of Eq. (8.3) with ρbound 
equal to the sum of ρbnd, ρbnde and ρlock. The results for the stress strain curves should 
be the same. With kbnd =

√
2 and kbnde =

√
2 this is the case. The value of klock 

should be considerably smaller than the value for kbnd. A value of  klock = 0.1 has 
been assumed. With Eq. (8.14), this gives a value for the separation distance of the 
dislocations in the cell walls of about 20 nm that is in accordance with experiments 
for several materials, see Sect. 8.2. The selection of klock also affects the values kbnd 
and kbnde. Values kbnd = 1.7, kbnde = 0.2 and klock = 0.1 reproduce the stress strain 
curves [15]. 

The results for the influence of cold work in Fig. 8.7 will now be analyzed. 
12% and 24% cold deformation at ambient temperature gives stresses of 154 and 
191 MPa, respectively. Assuming the dislocations are located in cell boundaries in 
agreement with observations [3], and using the modified Taylor Eq. (8.3), this gives 
total densities of dislocations in the cell walls of 8.7 × 1014 and 1.5 × 1015 1/m2. 
The development of the dislocation densities according to in Eqs. (8.17)–(8.19) is  
shown in Fig. 8.9. In this case the balanced dislocations dominate the total content. It 
should be emphasized that the stresses from the cold work are much higher than even 
the dramatic increase in creep strength demonstrated in Fig. 8.7. Extensive recovery 
is taken place but not to such an extent that the stationary state for annealed material 
is reached. 

The key to understanding the influence of cold work is the unbalanced dislocation 
density ρbnde that is not exposed to static recovery. It is assumed to give rise to a back 
stress that reduces the creep rate 

σback = 
mαGb 

2 
√

ρbnde (8.20)

Fig. 8.9 Densities of 
balanced, unbalanced and 
lock dislocations in the cell 
boundaries as a function of 
strain for Cu-OFP. Redrawn 
from [15] with permission of 
Elsevier 
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If the secondary creep rate for undeformed material is ε̇sec(σ ), the corresponding 
value for cold worked material is 

ε̇sec CW(σ ) = ε̇sec(σ − σback) (8.21) 

where σ is the applied creep stress. It might be thought that the back stress could 
be measured in a stress drop test by reducing the applied stress until the creep rate 
vanishes. However, this is not possible. The stress drop is in general based on the 
assumption that the dislocation structure is essentially unchanged after the reduction 
in stress. With dislocation dynamics it has been demonstrated that the dislocation 
structure is adapted to the new stress level within milliseconds [37]. This applies 
both to the dislocations in the cell interior and in the cell walls. On the other hand it 
takes a longer time before the cell size corresponds to the new stress level. Thus the 
dislocation structure after a stress drop neither represents the old stress level nor the 
new one. Back stresses can be quite useful in modeling, but to measure them would 
require quite a sophisticated analysis to interpret the results. 

The stress dependence of the secondary creep rate according to Eq. (4.3) is given  
by 

h(σ ) = 2τL M(T , σ  )  
σ 3 

(αmTGb)3 
/

(
mT 

bcL 
− ω 

σ 
αmTGb

)
(8.22) 

which is inserted into Eq. (8.21) 

ε̇sec CW(σ ) = h(σ − σback) (8.23) 

To handle primary creep, Eqs. (4.6) and (4.7) are applied 

σprim = σdisl sec − σdisl (8.24) 

ε̇ = h(σ + σdisl sec − σdisl − σback) (8.25) 

σdisl is the stress created by the dislocations. In the secondary stage this stress takes 
the value σdislsec. Thus, in the secondary stage, Eq. (8.25) is identical to Eq. (8.21). 

The use of Eq. (8.25) with no cold work present has been illustrated for Cu-OFP 
in Fig. 4.10. It was demonstrated that the primary creep could be well reproduced 
and that both the experimental and the model results followed the φ-model. 

Two examples of creep-strain curves for 12% cold-work Cu-OFP are shown in 
Fig. 8.10.

Both the experimental and model curves show distinct primary and secondary 
stages. The model exaggerates somewhat the size of the primary stage and reaches 
the secondary stage too soon. The model accurately reproduces the creep rate in the 
secondary stage in spite of the fact that the creep rate is three orders of magnitude 
lower than without cold work. This would not be possible unless the recovery rate
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a b  

Fig. 8.10 Creep strain versus time for 12% cold worked Cu-OFP at 75 °C, a 205 MPa and b 192 
MPa. Model results from integration of Eq. (8.25). Redrawn from [15] with permission of Elsevier

of the unbalanced dislocations would be much lower than for the other types of 
dislocations. The amount of tertiary creep is very limited in the experimental data 
and the tertiary stage appears late in the test. It is probably caused by necking [14]. 
Since necking is not taken into account in the creep model, it is then natural that 
tertiary creep is absent in the model curves. 

For one of the cases in Fig. 8.10, the creep rate as a function of time is given in 
Fig. 8.11. 

In the same way as in Fig. 4.10b the experiment and the model obeys the φ-model 
at least approximately. The drop in strain rate with increasing time is however much 
more dramatic in Fig. 8.11 in comparison to Fig. 4.10b. 

Creep strain curves for 24% cold deformed Cu-OFP are illustrated in Fig. 8.12.

Fig. 8.11 Creep strain rate 
versus time for 12% 
cold-work Cu-OFP at 75 °C 
and 192 MPa. Model results 
from Eq. (8.25). Redrawn 
from [15] with permission of 
Elsevier 
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a b  

Fig. 8.12 Creep strain versus time for 24% cold-work Cu-OFP at 75 °C, a 235 MPa and b 223 
MPa. Model results from integration of Eq. (8.25). Redrawn from [15] with permission of Elsevier 

It is immediately evident that that creep strain curves for 24% cold deformed 
material are very different from those of 12% cold deformed. In Fig. 8.12, primary  
and secondary creep is only present to a limited extent and tertiary creep is totally 
dominating. It is striking that the model can reproduce the creep strain curves also in 
this case. The cell sizes are smaller, the boundaries are narrower and the dislocations 
in the walls are closer for 24% cold deformed materials in comparison to 12% cold 
deformed, see Figs. 8.5 and 8.6. It is believed that the continuously increasing creep 
rate is due to enhanced recovery [14]. Tertiary creep will be further discussed in 
Chap. 12. 

It can be concluded that by taking the back stress from the unbalanced dislocations 
into account, Eq. (8.12), the main features for cold deformed Cu-OFP can be well 
described. Thus, the reduction of the creep rate by three and six orders of magnitude 
for 12 and 24% can be modeled. The whole creep curves can be reproduced in a 
reasonable way. In the argument above the model was analyzed for primary and 
secondary creep. It will be seen in Chap. 12 on tertiary creep that Eq. (8.25) is also  
valid for tertiary creep. This is also clearly demonstrated in Fig. 8.12. 

In the analysis above it has been assumed that the substructure is stabilized by the 
presence of unbalanced dislocation. An alternative way is to use particles to stabilize 
the substructure. This is extensively utilized for modern 9%Cr steels [38]. For the 
influence of cold work on the creep rate of austenitic stainless steels it has been 
suggested that particles can lock the substructure and prevent that the effect of cold 
work is lost [28, 29]. However, no detailed analysis of the role of the particles has 
been performed.
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8.4 Formation of a Dislocation Back Stress 

Cu-OFP close to ambient temperatures show creep curves that have the same appear-
ance as at much higher temperatures with distinct primary, secondary and tertiary 
creep. One example is given in Fig. 8.13. 

The cusp on the experimental curve is due to the necessity to reload the creep 
machine. Thus, the creep curves have many characteristics in common with typical 
creep curves at higher temperatures at about half the melting point. However, there is 
one aspect that is different. It is in general assumed that the true creep rate is constant 
in the secondary stage. This is frequently a starting point in stress analysis with finite 
element programs. To check if that is the case for the creep curve in Fig. 8.13, it is  
assumed for simplicity that the creep rate can be described with a Norton equation 

dε 
dt  

= A0(σ0e
ε )nN (8.26) 

where A0 is a constant and σ0 is the nominal applied stress. The stress exponent nN is 
about 70 for the case in Fig. 8.13. The factor eε takes into account the increase in the 
true stress when the specimen cross section is reduced during straining. A0 is chosen 
so the Norton expression crosses the experimental at 600 h, which is about half the 
rupture time. Equation (8.26) is now integrated starting with ε0 = 0.17 to simulate 
the influence of primary creep. The result is included in Fig. 8.13. It is obvious that 
Eq. (8.26) cannot represent the creep curve in Fig. 8.13. This conclusion is in no way 
affected by the choice of parameter values in Eq. (8.26). 

The creep exponent exp(nN ε) in Eq.  (8.26) has a dramatic effect on the strain 
rate giving a creep curve with rapidly increasing slope that is fully inconsistent with 
observations. The effect is in fact quite large. For example, for ε = 0.1, exp(nN ε) is  
equal to 1100. This enormous increase has never been observed in creep curves and

Fig. 8.13 Creep strain 
versus time for Cu-OFP at 
75 °C and 175 MPa. Forged 
material. The model curve is 
derived with Eq. (8.25). 
Redrawn from [16] with  
permission of Elsevier 



162 8 Cells and Subgrains. The Role of Cold Work

one can conclude that the simple assumption of a constant true strain is strongly at 
variance with observations. 

Instead there must be a back stress that prevents the rapid increase in the strain 
rate. The back stress must be built up in the dislocation structure 

σback = σdisl − σ0 (8.27) 

σdisl is given by Eq. (8.3). σ0 is again the nominal applied stress. It is related to the 
true applied stress σ as 

σ = σ0 exp(ε) (8.28) 

The stress σcreep that drives the creep deformation is given by 

σcreep = σ − σback = σ + σ0 − σdisl (8.29) 

In the second equality, Eq. (8.27) has been applied. Thus by applying Eq. (4.6), 
the creep rate is given by 

ε̇ = h(σ + σ0 − σdisl) (8.30) 

It is interesting to compare this equation with the simplified version in Eq. (4. 
9). In Eq. (4.9), the applied stress is the nominal one but at the same time the full 
impact of substructure on σdisl is not included. For primary and secondary creep these 
differences are not very important. However, Eq. (4.9) cannot describe tertiary creep 
contrary to Eq. (8.30), which will be explained now. 

The development of the balanced and unbalanced dislocation densities ρbnd and 
ρbnde for the case in Fig. 8.13 is illustrated in Fig. 8.14. Equations (8.17) and (8.18) 
are used. The small contribution from ρlock is neglected in this case. Since the relation 
between ρbnd and ρbnde is not known, the relation between kbnd and kbnde cannot be 
determined. It is assumed that kbnd = kbnde with a value of

√
2 that reproduces the 

results of Sect. 4.3.
As can be seen from Fig. 8.14a, the balanced dislocation density reaches an 

approximately constant value in the secondary stage whereas the unbalanced content 
increases continuously even during the secondary stage. The implication for the 
dislocation stresses is shown in Fig. 8.14b. The total stress from the balanced and 
the unbalanced dislocation stresses are marked as ‘all’. This total dislocation stress 
matches the true applied stress σ in the secondary stage. This is the reason why the 
creep rate does not increase in an uncontrolled way. This balance is possible due 
to the increase in the unbalanced stress. The difference between the starting value 
of the applied stress of 150 MPa and the test stress of 175 MPa is the value of the 
yield strength. With increasing strain the total dislocation stress cannot match the 
true applied stress anymore. Then the tertiary stage is reached and the creep rate 
increases.

https://doi.org/10.1007/978-3-031-49507-6_4
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a b  

Fig. 8.14 Model results for the same case as in Fig. 8.13 (Cu-OFP at 75 °C and 175 MPa). a Dislo-
cation densities versus time; b dislocation stresses versus strain. Redrawn from [16] with permission 
of Elsevier

It can be seen from Fig. 8.13 that tertiary creep is reasonably well represented. This 
can also be demonstrated by plotting the strain rate as a function of time, Fig. 8.15. 

Although the cusps in the experimental data do not make a detailed comparison 
possible, it is evident that the overall picture reproduces both the primary and tertiary 
stages in a good way. 

It can be concluded that the presence of back stress from the unbalanced disloca-
tions, prevents the creep rate from increasing in an uncontrolled way that would be 
suggested if a constant true strain rate in the secondary would be assumed. In addition, 
the introduction of this back stress makes it possible to model tertiary creep. 

Also stress strain curves seem to be affected by the back stress. One example is 
illustrated in Fig. 8.16. A stress strain curve for 15% cold worked Cu-OFP is shown. 
A model curve using Eqs. (8.3), (8.17) and (8.18) is also included in Fig. 8.16a.

Fig. 8.15 Creep rate versus 
time for the curve in 
Fig. 8.13 (Cu-OFP, 75 °C 
and 175 MPa). Forged 
material. Redrawn from [16] 
with permission of Elsevier 
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a b  

Fig. 8.16 Stress strain curve for 15% cold worked Cu-OFP at 125 °C and 1 × 10−4 1/s; a the 
experimental curve is compared to modeling results with Eqs. (8.3), (8.17) and  (8.18) for balanced 
and unbalanced boundary dislocations; b balanced and unbalanced boundary (wall) dislocation 
density. Experiments from [39]. Redrawn from [16] with permission of Elsevier 

It is assumed that the stress strain relations are controlled by the same equations 
as the creep curves in the same way as in other parts of this book. This means that 
the stress level at higher strains should correspond to the stationary stress in a creep 
test. This stress is given by 

σstat = σstat0e
ε (8.31) 

where σstat0 and σstat are the nominal and the true stationary stress that give the same 
strain rate as in the stress strain curve (1 × 10−4 1/s at 125 °C). The stationary stress 
is not identical to the stress strain curve but it is very close to supporting the assumed 
principle. 

The strain dependence of the dislocation densities is given in Fig. 8.16b. The 
balanced and unbalanced dislocation densities are assumed to be the same at zero 
strain. Using these assumptions, the values of kbnd and kbnde can be determined, see 
[16] for details. It can be seen from Fig. 8.16b that the unbalanced dislocation density 
increases with strain and compensates for the increase in the true stationary stress. 

It has been seen above that both creep curves and stress strain curves are strongly 
affected by the back stress from the unbalanced dislocation content. In particular for 
creep, it was demonstrated above that the effect is huge and cannot be ignored. This is 
especially important to take into account in stress analysis with finite element methods 
(FEM). There are two straight forward alternative ways to handle the problem. The 
first way is to take the back stress into account explicitly. This requires however the 
development of special software. The other alternative is to replace the true stress 
σ with σ exp(−ε). This alternative represents no practical problem but there is a
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psychological barrier because it is not in accordance with what people have been 
trained to do. However, ignoring it will give rise to large errors. 

The dramatic effect of the back stress has only been verified for copper at lower 
temperatures. There are no reasons to believe that it should not applicable to other 
materials as well because there is nothing in the derivation that is specific for copper. 
The open question is to what temperature the effect survives. At a sufficiently high 
temperature the back stress from the unbalanced dislocations cannot be expected to 
be stable anymore. This section is mainly taken from [16] where further detail can 
be found. 

8.5 Summary 

• Dislocation cells are formed in virtually all alloys during plastic deformation at 
ambient or near ambient temperatures. Typically the cells and the surrounding cell 
walls are well developed after a plastic strain of about 0.3. At elevated temperatures 
subgrains are formed instead at least for alloys where the stacking fault energy 
is not too low. The subboundaries consist of thin networks of dislocations. The 
presence of cells or subgrains is referred to as substructure. 

• Although the presence of the substructure has been discussed in many contexts 
in the literature, the development of substructure has only been modeled recently. 
Models for subgrain formation during creep and creation of cells during plastic 
deformation are presented in the chapter. The models can describe the limited 
amount of data that are available. 

• During plastic deformation dislocations with opposite burgers vectors move in 
opposite directions in cells with the results that some parts of the cell walls have 
only one type of dislocations. This is referred to as unbalanced dislocations. 

• The unbalanced dislocations are not exposed to static recovery since they cannot 
meet a dislocation of opposite sign. As a consequence the dislocation density and 
creep strength can continue to grow. This is believed to be the main mechanism 
behind the sometimes dramatic increase of the creep strength after cold work. 

• The presence of unbalanced dislocations can also explain why creep curves at 
near ambient temperatures have a similar appearance as at much higher temper-
atures. The unbalanced dislocations form a massive back stress that counteracts 
the rapidly increasing true applied stress with increasing strain. 
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