
Chapter 5 
Creep with Low Stress Exponents 

Abstract Primary creep models predict that at low stresses a stress exponent of 1 
can be obtained for dislocation creep. Also experimentally this has been observed for 
an austenitic stainless steel. The time dependence of the primary creep verifies that 
it is dislocation creep. An other example is for Al at very high temperatures (Harper-
Dorn creep), where at sufficiently low stresses, the stress exponent approaches 1. For 
both materials higher stresses give larger stress exponents as expected for dislocation 
creep. Obviously, diffusion and dislocation creep can be competing processes. The 
validity of creep models at low stresses and high temperatures as well as at high 
stresses and low temperatures demonstrates their wide range of usage. Since this in 
reality represents an extensive extrapolation, it can be consider as a direct verification 
of the basic creep models. In cases for Cu and stainless steels, the predicted creep rate 
by diffusion creep (Coble) exceeds the observed creep rate as well as the predicted 
one by dislocation creep by an order of magnitude. The likely explanation is that 
constrained boundary creep is taken place, i.e. the grain boundary creep rate cannot 
be essentially faster than that of the bulk. 

5.1 General 

Creep at low stresses has generated great interest amongst scientists for a long time. 
Expressions for diffusional creep that do not involve dislocations were developed at 
an early stage. First an expression based on bulk diffusion was formulated [1]. This 
is now referred to as Nabarro-Herring creep. The creep takes place by diffusion from 
grain boundaries with low stresses to boundaries located perpendicular to the loading 
direction. An alternative expression was given by Coble [2] where the diffusion is 
assumed to take place in the grain boundaries instead of in the bulk. The difference in 
diffusion mechanism means that Nabarro-Herring creep is proportional to the bulk 
diffusion coefficient and Coble creep to the grain boundary diffusion coefficient. 
The grain size dependence is also different. With bulk diffusion the creep rate is 
inversely proportional to the square of the grain size. With grain boundary diffusion
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the proportionality is instead to the inverse cube of the grain size. Models for diffusion 
creep is summarized in Sect. 5.2. 

The derivations for diffusional creep gave the first basic equations for the creep 
rate. The expressions do not involve any arbitrary or adjustable parameters and the 
equations are fully predictable. For both types of diffusional creep, the rate is propor-
tional to the stress, which means that the stress exponent is 1. Thus diffusional creep 
has a number of characteristic features: well defined dependence of the grain size, 
stress and temperature (through the diffusion coefficient). For a long time it was also 
assumed that a stress exponent of 1 should always be associated with diffusional 
creep. Authors have suggested observations of Herring-Nabarro or Coble creep in 
many metals: Cd, Co, Cu, Fe, Mg and Zr. Kassner has given an excellent review of 
diffusional creep [3] and details about the observations and references can be found 
there. 

Observations of diffusional creep have often been controversial. One reason is that 
observed creep rates have not been in agreement with predicted ones in a number of 
studies [4]. In for examples the excellent studies on βCo and αFe [5, 6], the observed 
creep rate was about two orders of magnitude higher than the predicted ones. The 
identification of diffusional creep is not necessarily based only on the observed creep 
rates. There are also metallographic techniques to distinguish between dislocation 
and diffusional creep. Langdon proposed that if scratches are made parallel to the 
loading direction, the markings would be still continuous across the grain boundaries 
after the test for dislocation creep but not for diffusional creep [7]. This requires 
that no grain boundary sliding occurs along the considered boundaries. Another 
proposal is that diffusional creep gives denuded zones in particle hardened alloys or 
grooves around grain boundaries [8, 9]. For example, McKnee et al. have used these 
techniques to support observations of diffusional creep [10, 11]. The role of denuded 
zones has been questioned in the literature [12]. Ample evidence is now available 
that demonstrates that denuded zones can be formed also during dislocation creep. 
Wadsworth et al. suggest that denuded zones are created at grain boundaries that are 
sliding and migrating simultaneously [13]. 

When recording creep rates during diffusional creep, it is assumed that stationary 
conditions have been reached. In creep testing at higher stress, the deformation can be 
allowed to continue until rupture takes place. Then it is straightforward to determine 
when the stationary stage has been reached. During dislocation creep, a distinct 
primary stage is expected. If such a stage is observed it is an indication that the 
operating mechanism is not diffusional creep. However, as will be discussed in this 
chapter, it is possible that diffusional creep can also show primary creep. It is evident 
that in many cases it is quite difficult to decide when stationary conditions have been 
achieved. If the creep rate is assessed during the primary stage, the measured creep 
rate would typically be much higher than in the secondary stage. In addition, the 
stress exponent can be low also for dislocation creep often approaching a value of 1. 
This makes it easy to mistake it for diffusional creep. Modeling can be quite helpful in 
understanding non-stationary conditions. In this chapter, modeling is presented that 
can assess and interpret creep rates that are measured in the primary stage, Sect. 5.5.
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Harper and Dorn tested aluminum very close to the melting point at very low 
stresses looking for diffusional creep [14]. Their results gave a stress exponent of 
1 but the creep rate was two orders of magnitude higher than the diffusional creep 
models predicted. They draw the conclusion that the mechanism was dislocation 
creep with a stress exponent of 1. This phenomenon is referred to as Harper-Dorn 
creep. It has created large interest. The work in the area is summarized in a paper 
by Kassner et al. [15]. Some authors were able to reproduce the results of Harper 
and Dorn [16, 17], others were not [18]. It was early on suspected that in many 
cases stationary conditions had not been reached. This has been confirmed in a paper 
by Kumar et al. [19] where the testing was carried to somewhat larger strains. The 
stress exponent now took the value of 3. They also found that Harper and Dorn had 
introduced a threshold stress, which Kumar et al. could not find any justification for. 
If the threshold stress is removed also the Harper and Dorn data are consistent with 
a stress exponent of 3 so the whole effect disappears. In Sect. 5.7, creep at very low 
stresses in aluminum is modeled. It is shown that deviations from a stress exponent of 
3 can be explained by taking non-stationary effects into account. Thus, creep at very 
low stresses at high temperature can be fully accounted for with ordinary dislocation 
creep models and there is no need to refer to Harper-Dorn creep as a special effect. 

Tests at very low stresses for the austenitic stainless steel 316H and the martensitic 
steel P91 have given a stress exponent of 1 [20]. Since distinct primary creep is 
observed and stress change experiments gave a stress exponent of 4.5 [21], it is 
concluded that the operation mechanism is dislocation creep. The tests for 316H 
are analyzed with a primary creep model in Sect. 5.6. The non-stationary model 
can quantitatively explain the behavior at low stresses (and at higher stresses). This 
clearly demonstrates that dislocation creep can be of importance also at very low 
stresses. 

Creep tests that have claimed to demonstrate diffusional creep for Cu [9, 22], 
have been analyzed in Sect. 5.8. It is shown that the part of the experimental data 
that has been investigated is possible to reproduce with non-stationary dislocation 
creep. There are pros and cons whether these observations represent diffusional or 
dislocation creep. Further details are given in Sect. 5.8. 

Results for previously unpublished results on creep in Cu between and 1 and 2 MPa 
at 600° C are presented. The tests are unusual for low stress experiments since the 
testing times exceed 12000 h. The results clearly represent dislocation creep, since 
the stress exponent is 3 and distinct primary creep is observed. Furthermore the 
results are in good agreement with the basic model for stationary creep, so any non-
stationary model is not needed. The surprising feature is that the Coble creep model 
suggests a creep rate that exceeds the observations by an order of magnitude or more. 
Although mechanisms have been proposed in the literature that can reduce the Coble 
creep rate, it is difficult to identify such a mechanism in this case that can explain 
the effect. This is further discussed in Sect. 5.8.1. Also for the investigated case for 
316H, Coble creep overestimates the observed creep rates at low stresses (by about 
one order of magnitude). 

The classical diffusional models are briefly derived and summarized in Sect. 5.2. 
To explain the effect of alloying elements on the diffusional creep rate, several authors
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assume that mobile grain boundary dislocations are a prerequisite for diffusional 
creep. For this reason a recovery creep model for grain boundary dislocations is 
formulated in Sect. 5.3. It is demonstrated that the grain boundary dislocations can 
give rise to quite a high creep rate, a phenomenon that does not seem to be covered 
in the literature. Some results suggest that creep along the grain boundaries must 
be accompanied with simultaneous deformation in the grains. This is covered in 
Sect. 5.4. It is referred to as constrained grain boundary creep. In Sect. 5.5, the  
primary creep model that is used to describe non-stationary dislocation creep at low 
stresses is summarized. Applications of the primary creep model at low stresses for 
an austenitic stainless steel are given in Sect. 5.6, for aluminum in Sect. 5.7, and for 
copper in Sect. 5.8. 

5.2 Model for Diffusional Creep 

Detailed models for diffusional creep were already presented in the original papers 
for Nabarro-Herring and Coble creep [1, 2]. Here, only a simplified derivation will 
be given. During Nabarro-Herring creep in tension, matter is transported to grain 
boundaries oriented perpendicular to the loading direction from grain boundaries 
parallel to the loading direction. This is possible by migration of vacancies in the 
opposite direction. It is assumed that the sources and sinks of the vacancies are at the 
grain boundaries. This is opposite to dislocation creep where the sinks and sources are 
primarily at the dislocations. The difference in vacancy concentration Δcv between 
the boundaries that are exposed to a stress σ and the others is

Δcv = exp
(

− 
QF 

kBT

)(
exp

(
σvatom 

kBT

)
− 1

)
(5.1) 

QF is the vacancy formation energy and vatom the atomic volume. The first factor 
in Eq. (5.1) is the thermal equilibrium concentration of vacancies. The second factor 
describes the increase in vacancy concentration due to the presence of the stress. 
Since only low stresses are considered, Eq. (5.1) can be rewritten as

Δcv = cv0 
σvatom 

kBT 
(5.2) 

A notation cv0 has been introduced for the equilibrium vacancy concentration. 
The flow of vacancies J can be expressed as 

J = −  
Dv 

vatom

Δcv 
deff 

= −Dv 
cv0 
deff 

σ 
kBT 

(5.3) 

Dv is the vacancy diffusion coefficient and deff the effective diffusion distance. For 
a simple grain structure, deff can be estimated. Let us assume that we have coordinates
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x and y on perpendicular grain boundaries in a quadratic grain 

deff = 1 

d2 
grain 

dgrain/2∫
0 

dgrain/2∫
0 

√
x2 + y2dxdy  = 0.1dgrain = 

dgrain 
ANH 

(5.4) 

The constant ANH has been introduced to mark that its value depends on the 
geometry of the grains. The vacancy flux gives rise to a change in the grain size 
along the loading direction 

ddgrain 
dt

= −J vatom (5.5) 

This corresponds to a creep rate ε̇NH of 

ε̇NH = 
1 

dgrain 

ddgrain 
dt  

= 
J vatom 

dgrain 
= ANH Dv 

cv0 
d2 
grain 

σvatom 

kBT 
(5.6) 

where Eq. (5.3) has been inserted for J. The expression for deff in Eq. (5.4) has also 
been used where ANH = 10. The vacancy diffusion coefficient Dv is related to the 
self-diffusion coefficient Dlatt 

Dlatt = Dvcv0 (5.7) 

If this expression is applied the final expression for the Nabarro-Herring creep 
rate is obtained. 

ε̇NH = ANH 
Dlatt 

d2 
grain 

σvatom 

kBT 
(5.8) 

The result in Eq. (5.8) is identical to the original expression derived by Herring for 
quadratic grains [1]. However, it is more common to use the expression for spherical 
grains and then ANH = 14 instead of 10 [1, 23]. Greenwood has presented expressions 
for Nabarro-Herring creep for more general grain structures [24]. 

It is possible to extend the equation to Coble creep by introducing an effective 
diffusion coefficient Deff that takes both lattice diffusion and grain boundary diffusion 
into account 

Deff = Dlatt

(
1 + 

πδGB 

dgrain 

DGB 

Dlatt

)
= Dlatt

(
1 + π 

dgrain 

δ DGB 

Dlatt

)
(5.9) 

where δGB is the grain boundary width. In this book the grain boundary diffusion 
coefficient is represented by δDGB that includes the grain boundary width and has 
the unit m3/s. This is the quantity that is most often measured. But Eq. (5.9) is also  
expressed in terms of the grain boundary diffusion coefficient DGB that does not
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include δGB and has the unit m2/s. The factor π in front of δDGB can take different 
values in different sources but π is the most common choice. If Dlatt is replaced by 
Deff in Eq. (5.8), Coble creep is covered by the second term in the brackets 

ε̇diffcreep = ANH 
σvatom 

kBTd2 
grain 

Dlatt

(
1 + π 

dgrain 

δ DGB 

Dlatt

)
(5.10) 

5.3 Grain Boundary Creep 

As will be seen in Sects. 5.6 and 5.8, the classical model for Coble creep can over-
estimate the observed creep rates by at least an order of magnitude. This means that 
diffusional creep must be blocked by one or more processes. Such processes have 
been proposed. A survey of earlier work is provided by Arzt et al. [25]. The diffusion 
process in the grain boundary can be affected. However, it is difficult to see how such 
processes can provide mechanisms that are sufficient large to explain the mentioned 
observations. In a number of papers including [25], it assumed that dislocation activ-
ities are needed to make grain boundaries involved in diffusional creep and provide 
the necessary sources and sinks of vacancies. This gives a way to explain the large 
blocking effects. Another mechanism that does not seem to have been raised in the 
literature, is that the dislocations in the grain boundaries can give a direct contribu-
tion to the creep rate without involving diffusional creep. In this section, a model is 
presented for this contribution. In the derivation, due to the lack of access, specific 
properties for grain boundary dislocations will not be used. Instead, parameters for 
bulk dislocations will be applied. 

The first step is to formulate a model for development of the dislocation density 
during creep in the grain boundaries equivalent to Eq. (2.17). In the same way as for 
deformation in the bulk, the starting point is the Orowan Eq. (2.6). It has a different 
form for GB dislocations [26] 

ε̇ = 
bnρvdisl 

mTdgrain 
(5.11) 

where bn is the component of the Burgers vector perpendicular to the GB, ρ the dislo-
cation density and vdisl the velocity of the dislocations. Equation (5.11) is integrated  
and derivated with respect to the strain to give 

dρ 
dε 

= 
mTdgrain 
bnLs 

(5.12) 

Ls is the spurt distance, cf. Eq. (2.5) and it is assumed that it can be expressed in 
the subgrain diameter dsub. In the same way as for bulk deformation
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Ls = nsubdsub (5.13) 

where the constant nsub is close to 3 [27, 28]. The subgrain size can be related to the 
dislocation stress 

dsub = 
KsubGb 

σdisl 
(5.14) 

K sub is a constant typically in the range 10–20. The expression for the Taylor 
Eq. (2.20) has to be modified [25] 

σdisl = αmTGbρ = σ − σi (5.15) 

The dislocation stress σdisl is now linear in the density. σi is the back stress from 
solid solution and particle hardening. By combining Eqs. (5.11)–(5.15) it is found 
that the change in the dislocation density contributing to the work hardening is given 
by 

dρ 
dε 

= 
mTdgrain 
bcL 

ρ (work hardening) (5.16) 

where 

cL = 
nsubKsub 

mTα 
(5.17) 

In comparison to the bulk Eq. (2.9), the difference is that the work hardening 
contribution is linear in the dislocation density. Since the dislocation stress σdisl is 
linear in the dislocation density, the strain dependence of σdisl is also linear. 

dσdisl 

dε
= 

mTdgrain 
cLbn 

σdisl (work hardening) (5.18) 

For the elastic properties and the Burgers vector for example in Eq. (5.15), grain 
boundary values should be applied. However, for metals the values of the elastic 
properties are of the order of 93% of the bulk values [29]. Considering the uncer-
tainties involved in modeling grain boundary properties, these replacements have not 
been made. 

For the static recovery, the starting point is Eq. (2.16). 

dR  

dt  
= 

MBτL 

R 
(5.19) 

where R is the spacing between dislocations and τL the dislocation line tension. The 
boundary climb mobility is given by
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MB = 
bDGB 

kBT 
(5.20) 

Notice the difference between the two grain boundary diffusion coefficients 

δ DGB = δGB DGB (5.21) 

δDGB and DGB have the units m3/s and m2/s, respectively. δGB is the grain boundary 
width that is usually taken as 5 × 10–10 m. The dislocation spacing R in the boundary 
is 

R = 1/ρ (5.22) 

Inserting Eq. (5.22) into (5.19) gives  

dρ 
dt  

= −τL MBρ3 (static recovery) (5.23) 

There are two differences between Eq. (5.23) and the bulk version, Eq. (2.13). 
First, the factor of 2 is missing and the dislocation density appears to the third order. 
By summing the contributions from Eqs. (5.16) and (5.23), an expression for the 
strain dependence of the dislocation density is obtained 

dρ 
dε 

= 
mTdgrain 
bcL 

ρ − τL MBρ3 /ε̇B (5.24) 

The time derivative in Eq. (5.23) has been changed to a strain derivative by dividing 
by the strain rate. ε̇B is the local creep rate in the grain boundary. During stationary 
condition the strain derivative of the dislocation density vanishes and the creep rate 
can be found directly. The overall grain boundary creep rate ε̇GB is given by 

ε̇GB = 
δGB 

dgrain 
ε̇B = 

δGBbcL τL MBρ2 

d2 
grainmT 

(5.25) 

With the modified Taylor, Eqs. (5.15) and (5.25) can be expressed in terms of 
stress 

ε̇GB = 
δGBbcL τL MB(σ − σi)

2 

d2 
grainmT(αmTGb)2 

(5.26) 

The grain boundary creep rate is inversely proportional to the square of the grain 
size and has a stress exponent of about 2 at low stresses. At higher stresses the role 
of pipe diffusion, strain induced vacancies, etc. should be taken into account in the 
same way as for creep in the bulk. Equation (5.26) has the same temperature, stress
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and grain size dependence as the creep rate during superplastic deformation due to 
GBS, Eq. (9.20), but the equations are not identical. 

Equation (5.26) can give quite a high strain rate. The grain boundary diffusion 
coefficient is much larger than the bulk diffusion coefficient and that is only compen-
sated to some extent by the ratio δGB/dgrain. It is important to take into account the 
role of cross-slip. If the grain boundaries are fully straight, cross-slip has to take 
place at the triple points. However, the boundaries are often curved, and then cross-
slip is continuous. With cross-slip an extra activation energy has to be introduced, 
Eq. (2.47) 

gcross-slip = exp
(

− 
Ecs 

RGT

)
(5.27) 

Equation (5.26) is multiplied by Eq. (5.27). The problem is that the value of the 
activation energy for cross-slip is uncertain. As summarized in Sect. 2.6.3, ab initio 
values for the activation energy vary from 50 to 270 kJ/mol. The values for alloys 
appear to be larger than for pure metals. The role of cross-slip remains an open issue. 

5.4 Constrained Grain Boundary Creep 

Creep in the grain boundaries without plastic deformation in the neighboring grain 
interiors is not possible. Perhaps, the most obvious effect is for superplasticity. In 
this case the main deformation takes place by GB sliding. However, extensive defor-
mation cannot occur in a material without the grain interiors being affected. In other 
words, creep in the grain boundaries must always be accompanied by creep in the 
whole grains as well. This phenomenon will be referred to as constrained grain 
boundary creep. The term is taken from growth of creep cavities that inside a material 
growth cannot be faster than the creep deformation, see Sect. 10.5.2. 

Grain boundary creep according to Eq. (5.26) can give quite a high creep rate, in 
many cases higher than bulk dislocation creep, but such a phenomenon has not been 
reported in the literature. It is assumed that the grain boundary creep rate ε̇GB cannot 
exceed the creep rate in the bulk ε̇bulk significantly. The bulk creep mechanism is 
practically always dislocation creep but could in principle also be Nabarro-Herring 
creep. If the grain boundary creep rate ε̇GB is estimated to be higher than the bulk 
creep rate, the creep rates must be matched approximately 

ε̇GB(σred) ≈ ε̇bulk(σ ) (5.28) 

Thus, the stress controlling the grain boundary creep rate must be reduced to 
ensure that the creep rates match. 

In Sects. 5.6 and 5.8.1 it is shown that the Coble creep model rates can exceed 
the observations by more than an order of magnitude. Several mechanisms have 
been proposed that could retard diffusional creep. These are in general based on the
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assumption that the creep rate is controlled by GB dislocations [25]. For Nabarro-
Herring creep, they can account for that GBs are not perfect sources and sinks for 
vacancies. For Coble creep the GB dislocations assure that atoms and vacancies 
can leave the GBs to avoid that they are getting saturated. Many mechanisms are 
available that can reduce the mobility of GB dislocations. Further details are given 
in the mentioned sections. 

If the estimated Coble creep rate is still higher than the bulk creep rate, constrained 
GB creep is active. This means that Eq. (5.28) must be satisfied for Coble creep as 
well 

ε̇Coble(σred) ≈ ε̇bulk(σ ) (5.29) 

Thus, if the Coble creep rate is nominally higher than the bulk creep rate, matching 
of the two creep rates must take place and the stress driving Coble creep is reduced. 
Exceptions to this principle can be found for hypothetical grain structures. A grain 
structure consisting of identical rectangular prisms where there is a homogeneous 
padding of atoms on the planes perpendicular to the loading directions is an example 
where bulk deformation may not take place. Such cases have of course no practical 
relevance. 

When the bulk creep rate is controlled by dislocation creep, it shows a higher 
creep rate in the primary stage and this allows Coble creep to have a higher creep 
rate initially as well. This means that Coble creep can have a primary stage. The main 
conclusion of this section is that any creep deformation mechanism that is entirely 
concentrated to the GBs cannot be significantly faster than the bulk creep rate. 

5.5 Primary Creep at Low Stresses 

One major concern when making creep tests at low stresses is whether stationary 
conditions have been reached. Most creep models refer to the stationary creep rate 
when identifying creep mechanisms. If the creep test has not been carried out long 
enough the wrong conclusions can be drawn. At low stresses, the interesting ques-
tion is often if diffusional or dislocation creep is observed. The stress exponent for 
diffusional creep is always assumed to be 1 according to the models for Nabarro-
Herring and Coble creep. A possible exception exists for nanocrystalline alloys. It 
has been proposed that Coble creep can appear also at higher stresses and with a 
stress exponent larger than unity [30]. This possibility will not be considered here. 
If stationary creep has been reached, the stress exponent is 3 or more for dislocation 
creep. The known exception is superplasticity where the stress exponent can be 2. 
This is discussed in Sect. 9.4. Then it is straightforward to distinguish between diffu-
sional and dislocation creep. However, if dislocation creep is in the primary stage, 
the stress exponent can be lower and the identification can be difficult. 

In recent years basic models for primary creep have been developed. They are 
described in Chap. 4. With the help of these models a better understanding of the
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creep behavior during non-stationary conditions can be established. Low stresses are 
often associated with low strains. The appropriate model is given in Eqs. (4.13) and 
(4.14). The model is called stress adaptation. In the same way as for the other models 
for primary creep in Chap. 4, the starting point is the creep rate in the stationary stage 
and the rate in the primary stage is related to that in the stationary stage. The only 
change is that an effective stress is introduced that is higher than the stationary stress, 
which can represent the higher creep rate in the primary stage. In the stress adaption 
model the effective stress is given by [31] 

σprimSA = σy(T , ε̇) + 
σ − σy(T , ε̇) 
1 − e−Ωε/2 

(5.30) 

The quantity σy is the yield strength that depends on temperature and the strain 
rate ε̇, Ω is related to the dynamic recovery constant, and σ the applied stress in the 
creep test. One requirement on the effective stress is that it tends to the applied stress 
at large strains. This is obviously the case in Eq. (5.30). The second part of the model 
is the rate for stationary creep, Eq. (4.3) 

ε̇ = h(σ − σi) with h(σ ) = 
2τLbcL M(T, σ  )  

mT 

σ 3 

(αmTGb)3 
(5.31) 

where mT is the Taylor factor, b burgers vector, G the shear modulus, cL and α 
dimensionless constants, τL the dislocation line tension and M the dislocation climb 
mobility. σi is an internal stress that includes contributions from solid solution hard-
ening and particle hardening. If the effective stress in Eq. (5.30) is inserted into (5.31), 
an expression for the creep rate is obtained that is valid for primary and stationary 
creep 

dε 
dt  

= h
(

σy(T , ε̇) + 
σ − σy(T , ε̇) 
1 − e−Ωε/2 

− σi, T
)

(5.32) 

Equation (5.32) is complicated but not impossible to integrate, since σy depends 
on the strain rate. This means that the equation has to be solved by iteration in each 
integration step. In addition, the primary stress in Eq. (5.30) is singular at small 
strains. However, it was demonstrated in Sect. 4.4.2 that these difficulties can be 
avoided. Equation (5.32) can be reformulated and the most suitable form is given in 
Eq. (4.25) 

ε̇ = h
(

σ(σy(T ) + K (T )) 
σy(T ) + K (T )(1 − e−Ωε/2) 

− σi, T
)

(5.33) 

where K(T ) is given by 

K (T ) = 
αGm2 

T 

ωcL 
= σsat(T ) − σy(T ) (5.34)
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The saturation stress (maximum stress) σsat during plastic deformation at constant 
strain rate is the sum of σy(T ) and K(T ). In Eq. (5.33), the strain rate dependence of 
σy(T ) and K(T ) has been eliminated. These quantities are assumed to be influenced 
by the strain rate in the same way. This means that their values can in principle be 
selected at any strain rate. 

Up to the creep range, the temperature dependence of σy and K are at least approx-
imately known. The temperature dependence of the yield strength is proportional to 
that of the shear modulus, Eq. (3.15). The temperature dependence of the dynamic 
recovery constant ω is inversely proportional to that of the square of the shear 
modulus. However, in the creep range the increase in ω can be much faster with 
temperature. This is illustrated in Fig. 3.13. The role of Ω is that it describes how 
large the strain must be before the stationary or semi-stationary stage is reached. If 
the primary data are close to stationary conditions, the value of Ω can be assumed to 
be equal that of ω. However, if this is not the case, Ω is given by another expression, 
Eq. (4.33)

Ω ≈ 
3 

εstat 
= 3αGm2 

T 

2cL(σ − σi) 
(5.35) 

To understand the behavior of Eq. (5.33) a simplified version is presented in 
Sect. 4.4.2. The strain dependence follows the φ model with a φ value of nN/(nN + 
1). Some requirements must be fulfilled. In particular, the following criterion must 
be satisfied, Eq. (4.30) 

σy 

K 
<

Ωε 
2 

(5.36) 

5.6 Creep at Low Stresses in an Austenitic Stainless Steel 

In this section, creep of the austenitic stainless 17Cr12Ni2Mo steel 316H will be 
analyzed at low stresses. The creep data is taken from a paper of Kloc et al. [20] and 
the analysis from [32]. Very low stresses could be reached with the help of a helicoid 
spring specimen technique. Some of the experimental results are shown in Fig. 5.1.

The creep strain rate versus stress is given in Fig. 5.1. Two distinct regions of 
stress dependence are evident. At low stresses the stress exponent is about 1. At 
higher stresses, the stress exponent is 7, i.e. in the range for power-law creep. With 
a stress exponent of 1, it was initially thought that diffusional creep was observed. 
However, the presence of primary creep, see Fig. 5.1b suggests that dislocation creep 
is the controlling mechanism also at low stresses. In [20] similar creep tests were also 
performed for the 9Cr1Mo (P91) steel at 650 °C demonstrating a stress exponent of 
1 at low stresses and a stress exponent of 12 at high stresses. For P91 stress change 
experiments were performed resulting in a stress exponent of 4.5 verifying dislocation
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a b  

Fig. 5.1 Creep data for the austenitic stainless 17Cr12Ni2Mo steel 316H; a strain rate versus stress 
at 650–750 °C (exp.) and Coble creep model; b creep strain versus time at 700 °C for six stresses 
(creep data from [20]). Redrawn from [32] with permission of Elsevier

creep [21]. It can be expected that similar results would have been obtained for 316H 
if stress change experiments had been carried out. The creep rates at low stresses 
were assessed after testing for 1000 h. The natural interpretation of these results is 
that 1000 h is not long enough to reach stationary conditions. The consequences of 
this will be analyzed below. 

In Fig. 5.1, predictions with the classical Coble model, Eq. (5.10) are included. It 
can be seen that the Coble model over predicts the observations by about one order of 
magnitude. The grain boundary diffusion coefficient from Smith and Gibbs has been 
used [33]. Their measurements are in the same temperature range as the creep data. 
However, the results are sensitive to the choice of diffusion coefficient. If the value 
from Mizouchi et al. [34] is chosen instead, the Coble predictions would be three 
orders of magnitude above the observations. Nabarro-Herring creep is not marked 
in the Figure but it gives values about an order of magnitude below the experimental 
data. Several papers in the literature address the problem that the diffusional models 
can overestimate the creep rate. A summary of early work is given by [25]. In these 
papers it is in general assumed that the required vacancies during diffusional creep 
are generated by the motion of GB dislocations. In some papers, a related concept 
of disconnections is considered, but the equations and effects are not very different 
from those of GB dislocations [35] and no distinctions between these concepts will 
be made here. 

The main idea in these papers is that for Nabarro-Herring creep, GB disloca-
tions are needed to emit and absorb vacancies at the GBs, since the GBs cannot be 
assumed to be perfect sources and sinks for vacancies. If the motion of GB dislo-
cations is slowed down, it will impair the access of vacancies and reduce the creep 
rate. For Coble creep, the GB must be able to emit and absorb atoms and vacancies 
to avoid being over-saturated. This role of GB dislocations makes it easy to explain
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deviations from the classical models. Mo in 316H gives a large solid solution hard-
ening effect that reduces the creep rate dramatically. The influence of Mo has not 
yet been predicted but it can be assumed that it is of the same order as that of W, 
which raises the activation energy by about 50 kJ/mol [36]. This might seem like a 
high value but if the creep activation energy is assessed from the NIMS data [37], a 
value of 487 kJ/mol is obtained which should be compared with the activation energy 
for self-diffusion of 293 kJ/mol for 316H. Thus, the activation energy for creep is 
almost 200 kJ/mol higher than that for self-diffusion. The largest contribution to this 
increase comes from Mo. Therefore, a value of 50 kJ/mol for Mo that gives an Arrhe-
nius factor of 0.002 at 700 °C is likely to underestimate its effect. The solid solution 
hardening effect can be assumed to be about the same for GB and bulk dislocations. 
As a consequence solid solution hardening alone can explain the deviation from the 
classical expression for Coble creep. 

Particles can also influence the motion of dislocations in the grain boundaries. 
Arzt et al. suggest that a threshold stress σth is formed of about [25] 

σth ≈ 0.1σO (5.37) 

where σO is Orowan stress, Eq. (7.3). If typical values for M23C6 carbides are assumed 
with a volume fraction of 0.005 and particle radius of 0.1 mm, a σth value of 1.6 MPa is 
obtained. Such a threshold stress would certainly influence the prediction, but would 
not have a dramatic effect on the results. However, for other austenitic stainless 
steels the Orowan stress could be much higher. This could block diffusional creep 
completely if Eq. (5.37) describes the situation correctly and climb across particles 
is ignored. There are further constraints on grain boundary dislocations. But they are 
primarily of interest for pure metals. These constraints will be discussed in connection 
with creep of copper at low stresses in Sect. 5.8. 

If the Coble creep rate taking these effects into account would still be higher 
than the dislocation creep rate, constrained GB creep would be active and adjust this 
situation, see Sect. 5.4. 

From now on in this section, it will be assumed that the creep data in Fig. 5.1 are 
controlled by dislocation creep. Since primary creep data are available at 700 °C, 
the analysis will be concentrated to that temperature. First a model is needed for 
stationary creep. Strain induced vacancies are taken into account according to 
Eq. (2.37)

Δc 

c0 
= 0.5 

√
2K 2 subε̇b

2 

Dself 

G 

σ 
(5.38) 

K sub provides a relation between the subgrain size and the stress, Eq. (8.4). The 
strain rate in Eq. (5.31) is used in Eq.  (5.38). Austenitic stainless have typically a 
low stacking fault energy which is important to take into account with the help of 
Eq. (3.30). These assumptions are the same as in a model for pure Ni, Sect. 2.8 [38], 
which is expected to have similar properties. The effect of dislocation dipoles have 
been taken into account. It increases the climb mobility by a factor f dip
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fdip = 1 + 2ρd2 
dip (5.39) 

where ddip is the distance between the dislocations in a dipole which is set to 1 × 
10–7 m. In Sect. 2.8, pipe-diffusion is taken into account instead, which gives an 
almost identical effect. This effect is of special importance at high stresses. This 
expression can be derived in the same way as Eq. (2.13). The constant term in 
Eq. (5.39) raises the stress exponent at higher stresses by 2. The solid solution 
hardening due to Mo is taken into account by adding 50 kJ/mol to the activation 
energy following the discussion above. In the model for the non-stationary behavior, 
Eq. (5.32), the value for σy/K(T ) = 0.02 has been selected to satisfy the criterion 
(5.36). The Ω value in the exponent in Eq. (5.32) has been determined with the help 
of Eq. (5.35). Quite a high value of Ω = 800 is obtained. 

Predictions of the creep strain during primary creep with the help of Eq. (5.33) 
are given in Fig. 5.2. 

As can be seen that a reasonable representation of the experimental data is 
obtained. The strain rate versus time is shown in Fig. 5.3a.

Fully straight lines are found in the double logarithmic diagram in Fig. 5.3a 
indicating that the phi-model is satisfied, see Sect. 3.2. The slope of the strain rate 
versus time curves is 0.8. The stress exponent is 1. The corresponding strain rate 
versus strain curves are presented in Fig. 5.3b. Approximately straight lines are 
obtained. However, the slope is considerably higher than for the time dependence 
varying from 2 to 4.5. The stress exponent is close to 7 so it is the same as for 
stationary creep. 

Results for strain rates as a function of stress are given in Fig. 5.4.
The stationary model has a stress exponent of 7 at high stresses. At low stresses 

the non-stationary primary creep models gives a stress exponent of 1 in agreement

Fig. 5.2 Creep strain versus time at 700 °C for the austenitic stainless 17Cr12Ni2Mo steel 316H 
at low stresses during primary creep. Non-stationary model rates according to Eq. (5.33) compared 
to experimental data from [20]. Redrawn from [32] with permission of Elsevier 



98 5 Creep with Low Stress Exponents

a b  

Fig. 5.3 Strain rate at 700 °C for the austenitic stainless 17Cr12Ni2Mo steel 316H at low stresses 
during primary creep. Non-stationary model rates according to Eq. (5.33); a strain rate versus time; 
b strain rate versus strain. a is redrawn from [32] with permission of Elsevier

Fig. 5.4 Strain rate versus 
stress at 700 °C for the 
austenitic stainless 
17Cr12Ni2Mo steel 316H 
with creep data from [20]. 
The full model line 
represents stationary creep 
rates and the dashed line 
non-stationary rates 
according to Eq. (5.33). 
Redrawn from [32] with  
permission of Elsevier

with observations. In Fig. 5.5 the time dependence of the strain rate versus stress 
curves is illustrated.

The strain rate decreases with increasing time in the primary stage. But even 
the longest time gives strain rates that are orders of magnitude above the stationary 
values, Fig. 5.4. At low stresses the activation energy in the model is 60 kJ/mol which 
is considerably less than the experimental value which is 140 kJ/mol. This value is 
almost the same as for grain boundary diffusion, which is 150 kJ/mol [34]. This is 
the expected value if Coble creep would have been the operating mechanism. The 
activation energy for stationary creep in the model is 340 kJ/mol, which is about 
50 kJ/mol above the value for self-diffusion. The observed value is 420 kJ/mol. As 
discussed above that are good reasons to select a higher value than 50 kJ/mol for 
solid solution hardening, but due to lack of data this has not been done.
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Fig. 5.5 Time dependence 
of the strain rate versus stress 
at 700 °C for the austenitic 
stainless 17Cr12Ni2Mo steel 
316H at low stresses. 
Non-stationary model rates 
according to Eq. (5.33)

In summary, primary creep curves and their stress dependence of the creep rate can 
be described quite well with the model assuming dislocation creep. Thus, the model 
can explain the observations in a satisfactory way. It is clearly demonstrated that 
the stress exponent can be much lower during primary creep than during stationary 
creep. The activation energy is also lower during primary than during stationary creep 
although the model exaggerates the effect. 

5.7 Creep in Aluminium at Very Low Stresses 
(Harper-Dorn Creep) 

Creep at very low stresses and at very high temperatures in aluminum has received 
considerable interest in the scientific literature. The reason is that Harper and Dorn 
[14] looking for diffusional creep, in fact observed a stress exponent of 1 as expected 
but a creep rate that was about two orders of magnitude higher than the predicted one 
for diffusional creep. They drew the conclusion that they had observed dislocation 
creep with a stress exponent of 1. In two more recent papers available data have been 
summarized and analyzed [15, 19]. Kumar et al. [19] made also new tests for high 
purity aluminum to reduce the effect of non-stationary conditions. They could give a 
satisfactory explanation to most of the existing data. They found a creep exponent of 
3 clearly indicating dislocation creep. The Harper and Dorn data also give this stress 
exponent when a threshold stress that they introduced was removed. Any indication 
of a threshold stress has not been found in more recent data. 

In this section both stationary and non-stationary modeling will be presented taken 
from [32]. It has always been assumed that the controlling mechanism is dislocation 
creep. For stationary creep, the same model for aluminum as in Chap. 2 has been used, 
Eq. (5.31). The classical value for the self-diffusion coefficient with an activation 
energy of 142 kJ/mol has been applied. In the non-stationary model, Eq. (5.33), the
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choice Ω = 40 is taken directly from the formulae in Chap. 3. To satisfy the criterion 
(5.36) a value of  σy/K = 0.01 has been chosen. 

The results for the stress dependence of strain rate are given in Fig. 5.6. 
The stationary creep model with a stress exponent of 3 can describe the bulk 

of creep of data. The only data that deviate significantly from the stationary curve 
are those of Barrett et al. [16]. They used testing times of 300–1000 h. In the other 
investigations longer testing times were utilized, which makes the results lying closer 
to the stationary values. It is evident that the modest deviations from the stationary 
curve can be well represented by the non-stationary model. How the results are 
approaching stationary conditions is illustrated in Fig. 5.7. 

Fig. 5.6 Strain rate versus 
stress at 650 °C for pure 
aluminum. The full model 
line represents stationary 
creep rates and the dashed 
line non-stationary rates at 
three times according to 
Eq. (5.33). The five sources 
of the experimental data can 
be found in [19]. Redrawn 
from [32] with permission of 
Elsevier 

Fig. 5.7 Stress exponent 
versus stress at 650 °C for 
pure aluminum during 
non-stationary conditions at 
four times according to 
Eq. (5.33). Redrawn from 
[32] with permission of 
Elsevier
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It can be seen from Fig. 5.7 that the values are close to stationary conditions. For 
stresses larger than 0.3, stationary creep has been reached even for the shortest time 
and the stress exponent is 3. Only for stresses below 0.03 MPa, stress exponents below 
1.5 are found. The stress exponent clearly increases with increasing observation time. 

Creep strain versus time curves are shown in Fig. 5.8. 
The linear behaviour except at the highest stress is consistent with the phi-model. 

The variation of the strain rate with time and strain is demonstrated in Fig. 5.9. 
The approximate straight lines again show that the phi-model is obeyed. The 

exception is the higher stresses where stationary conditions are reached at longer 
times or larger strains. This is the same behavior that is observed in Fig. 5.7.

Fig. 5.8 Creep strain versus time at 650 °C for pure aluminum at different stresses according to 
Eq. (5.33) 

a b  

Fig. 5.9 Creep strain versus time a and versus strain b at 650 °C for pure aluminum at four stresses 
according to Eq. (5.33). a is redrawn from [32] with permission of Elsevier 
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These results above suggest that the high temperature creep of aluminum can be 
fully explained quantitatively based on ordinary dislocation creep. There is no need 
to refer to any special Harper-Dorn creep. 

From Fig. 5.6 it can be seen that the basic creep model in Eq. (5.31) can describe 
the stationary creep rate quite accurately at least down to 0.02 MPa at 650 °C. The 
same model can represent creep data at 27 °C up to 50 MPa [39]. If the stress is raised 
from 0.02 to 50 MPa at 27 °C, the creep rate is increased by 21 orders of magnitude, 
see Table 5.1. The corresponding increase at 650 °C is 13 orders of magnitude. In the 
same way if the temperature is raised from 27 to 650 °C at 0.02 MPa, the creep rate is 
enhanced 17 orders of magnitude. At 50 MPa the increase is 9 orders of magnitude. 
Thus, Eq. (5.31) can cope with very large variation in the strain rate over a range of 
conditions. This is clearly strong justification for the validity of the creep model. 

More recently, annealing experiments have been performed for aluminum single 
crystals by Smith et al. [40]. Even after long annealing times the dislocation density 
never fell below 1 × 109 1/m2. With the help of the Orowan equation for the defor-
mation, they suggest that this would give a stress exponent of 1, recovering Harper-
Dorn creep. A constant dislocation density would imply that recovery of dislocations 
would be blocked. But if recovery is blocked, creep is not possible. Without recovery 
there would be a continuous increase in the dislocation density until the deformation 
stops as observed for many alloys at ambient temperatures. In addition, several other 
studies (some of which are summarized in [40]) have observed that the dislocation 
density varies with stress and that the dislocation density can be much below 1 × 109 
1/m2, see for example [19]. Furthermore, creep of aluminum can quantitatively be 
described from ambient temperatures, Sect. 2.7 to close to the melting temperature, 
see above, with the help of the creep-recovery theory. The observations in [40] cannot 
be explained at present.

Table 5.1 Creep rate ratios of aluminum 

Temperature, °C Stress, MPa Creep rate ratio, stress Creep rate ratio, temperature 

27 0.02 → 50 2 × 1021 

650 0.02 → 50 6 × 1013 

27–>650 0.02 1 × 1017 

27–>650 50 4 × 109 
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5.8 Creep in Copper at Low Stresses 

5.8.1 Creep of Cu-OFP at 600 °C 

Creep tests of copper at very low stresses at 600 °C were performed at the author’s 
laboratory many years ago but the results have only been published recently [41]. 
The material used was oxygen free copper alloyed with 54 wt. ppm P, Cu-OFP. The 
material had good purity. All other elements than Cu and P had a total amount of 30 
wt. ppm. The batch had the designation 500. The detailed composition of the batch 
can be found in [42]. The grain size of the material was 100 μm. Three tests were 
carried out at 1, 1.5 and 2 MPa. The testing times were between 12000 and 17000 h. 
The conditions were selected to be well inside the stress range for diffusional creep. 
Results for the stress dependence of the strain rate are shown in Fig. 5.10. 

The experimental data give a stress exponent of 3. A comparison to the model for 
stationary creep for Cu-OFP, Eq. (5.31) is given. It is evident that the model gives 
strain rate values that are quite close but with a slightly higher stress exponent of 4. 
For pure Cu without P the creep rate according to the stationary model is almost an 
order of magnitude higher and the stress exponent is 3. 

In the primary creep model, Eq. (5.33), Ω has been selected according Eq. (5.35). 
For σy and K the room temperature values in [42] have been used. These values 
for σy and K satisfy the criterion (5.36). In Fig. 5.11, the strain rate versus time is 
illustrated for the test at 1.5 MPa.

Distinct primary creep is observed. Both the experiments and the predictions 
follow the phi-model. Thus, there are three ways that demonstrate that dislocation 
creep is involved; (i) a stress exponent of 3; (ii) the results are in agreement with 
the predictions for stationary dislocation creep; (iii) well-developed primary creep 
is present.

Fig. 5.10 Creep rate versus 
stress at 600 °C for Cu-OFP. 
Model values for stationary 
creep for Cu-OFP and for 
pure Cu without P (Cu-OF). 
Model results for diffusional 
creep are also included 
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Fig. 5.11 Creep rate versus 
time at 600 °C and 1.5 MPa 
for Cu-OFP. Model values 
according to (5.33)

The basic stationary creep can describe creep rate values down to 1 MPa at 600 °C, 
Fig. 5.10. The model can also represent creep data at 75 °C up to 180 MPa, Fig. 6.6. 
This involves a large variation in the creep rate. Raising the stress from 1 to 180 MPa 
increases the creep rate by 21 orders of magnitude according to Eq. (5.31), Table 5.2. 
The corresponding increase at 600 °C is 13 orders of magnitude. There is also an 
increase due to change in temperature, which is 15 order of magnitude at 1 MPa and 
9 orders of magnitude at 180 MPa. 

These wide ranges of creep rate are of the same order as those for aluminum, 
Table 5.1. Which of the ratios in Tables 5.1 or 5.2 that is chosen is not important. 
The high ratios demonstrate that the basic creep model can cope with a wide range 
of conditions. Since the model was originally developed for creep close to ambient 
temperature at high stresses [31], the applicability at high temperatures and low 
stresses can be seen as a possibility to extrapolate over many order of magnitude in 
creep rate. It is clearly a strong justification for the validity of the basic creep model. 

In Fig. 5.10, the classical models for diffusional creep are compared with the 
observations. It is evident that the model for Coble creep significantly overestimates 
the creep rate and that applies to Nabarro-Herring creep as well but to a less extent. 
Consequently, there must be one or more mechanisms that strongly block the diffu-
sional processes. Such a diffusion mechanism is not easy to identify. P is known to 
raise the diffusion coefficients in both the bulk and in the grain boundaries [43], so

Table 5.2 Creep rate ratios of copper 

Temperature, °C Stress, MPa Creep rate ratio, stress Creep rate ratio, temperature 

75 1 → 180 4 × 1021 

600 1 → 180 2 × 1013 

75 → 600 1 6 × 1015 

75 → 600 180 2 × 109 
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that effect works in the wrong way. Zhevnenko shows that surface active elements 
like P reduces the diffusional creep rate, but fairly large amounts of alloying elements 
are needed to give a significant effect [44]. Solid solution hardening due to P gives 
a back stress of 0.4 MPa at 600 °C [45]. This is the main reason why the stationary 
curve for Cu-OFP in Fig. 5.10 is lower than that for pure Cu. If dislocations control 
the amount of vacancies that escapes the grain boundaries, the solid solution hard-
ening would be expected to be the same in the bulk and the grain boundaries. This 
effect is represented by the difference in the stationary creep rate between Cu with 
and without P. Thus, this would explain a part of the blocking of diffusional creep. P 
is fully in solid solution so there is no effect of particles. It has been suggested that if 
the curvature of the dislocation is too small, the grain boundary dislocations become 
immobile. This gives a back stress of [25, 46] 

σcurv = τL 

bdgrain 
(5.40) 

where τL is the dislocation line tension. For the case in Fig. 5.10, σcurv is equal to 
0.05 MPa, which is negligible. The remaining discrepancy for Coble creep is possibly 
due to constrained grain boundary creep, Sect. 5.4. 

5.8.2 Creep of Copper at 820 °C 

In one of the first attempts to measure diffusional creep, Burton and Greenwood 
studied pure copper at 820 °C [22]. Some of their results for a grain size of 35 μm 
are shown in Fig. 5.12. 

Below 5 MPa their data gave a stress exponent close to 1. Above 5 MPa, the 
stress exponent is 5. The values for the classical Coble and Nabarro-Herring models

Fig. 5.12 Creep rate versus 
stress at 820 °C for Cu. 
Experimental data from [22]. 
Coble and Nabarro-Herring 
creep according to 
Eq. (5.10), stationary creep 
model according to (5.31). 
Redrawn from [41] with  
permission of Elsevier 
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Fig. 5.13 Creep rate versus 
stress at 820 °C for Cu. 
Experimental data from [22]. 
Stationary and 
non-stationary creep models 
according to (5.31) and  
(5.33). Redrawn from [41] 
with permission of Elsevier 

are quite close to the experimental data at low stresses. Burton and Greenwood 
suggested that the low stress behavior was controlled by Nabarro-Herring creep 
but with the diffusion coefficients that are available today, the Coble creep values 
are even closer. With a stress exponent of 5 at stresses above 5 MPa, dislocation 
creep must be controlling. It is interesting to note that the stationary creep model in 
Eq. (5.31) matches the position of the change in stress exponent quite well, but the 
stress exponent in the stationary model is 3. 

It will now be analyzed whether non-stationary conditions could have been of 
importance in this study [41]. Detailed analysis shows that transition to the semi-
stationary stage occurs later than given by Eq. (5.35) so theΩ value has been reduced 
by a factor of 2 to satisfy these findings in the non-stationary model (5.33). For σy/K 
a value of 0.01 has been chosen to ensure that the criterion (5.36) is fulfilled. In [22] 
very short testing times were used of about 0.4 h. The results for stress dependence 
of the creep rate are given in Fig. 5.13. 

Results for testing times between 0.2 and 0.9 h are shown. The non-stationary 
values fall in the same range as the experimental data. The variation of the stress 
exponent is presented in Fig. 5.14.

Below 1 MPa, the stress exponent is close to unity. From 1 to 5 MPa the stress 
exponent increases to the stationary value of 3. The strain variation with time is 
reproduced in Fig. 5.15a.

The creep curves are consistent with the observation in [22], see [41]. For example, 
a strain of 0.002 is reached after 0.5 h for a stress of 1 MPa. In Fig. 5.15b the time 
dependence of the strain rate is given. It is evident that stationary conditions are 
reached at the two highest stresses at “longer” times. 

It is clear that the data in Fig. 5.12 can be explained either with diffusional creep 
or with non-stationary dislocation creep. One argument against diffusional creep 
is the short testing times that would give non-stationary effects. Another argument 
is that the purity of the investigated alloy is modest with a total impurity content 
of 167 wt. ppm. This should be compared with the copper in Sect. 5.8.1, where
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Fig. 5.14 Stress exponent 
versus stress at 820 °C in Cu 
at four testing times. 
Non-stationary creep models 
according to Eq. (5.33). 
Redrawn from [41] with  
permission of Elsevier

a b  

Fig. 5.15 Strain a and strain rate b versus time at 820 °C in Cu at seven stresses. Non-stationary 
creep model according to (5.33)

the impurity content was 30 wt. ppm and the P content 54 wt. ppm. Why would 
diffusional creep be blocked by element additions in the latter but not in the former 
case? The paper [22] has been criticized in the literature, for example, for being 
performed in a temperature range where the microstructure is not stable [4, 12]. This 
might not be important due to the short testing times. However, there are arguments 
in [22] in favor of diffusional creep. For example, the correct grain size dependence 
if Nabarro-Herring creep is controlling (which however is not the case if Coble creep 
is controlling). It is not possible to decide which creep mechanisms that is the correct 
one and it is not the aim of this book to try to make that decision. Instead, the main 
message is that dislocation creep often occurs in parallel and in competition with 
diffusional creep.
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5.8.3 Creep of Copper at 480 °C 

McKnee et al. have made creep tests of copper at low stresses [9]. Most tests were 
performed at 480 ºC probably for the same material used by Burton and Greenwood 
but with a grain size of 55 μm. These results are compared with the non-stationary 
model, Eq. (5.33). The parameter values are taken directly from the basic model (σy 

= 0.01 MPa, K(T ) = 69 MPa, Ω = 32). The results in [9] are compared to the model 
in Fig. 5.16. 

Below 3 MPa the results by McKnee et al. give a stress exponent of 1 and above 
3 MPa a stress exponent of 2. They attribute this change of stress exponent to a 
transition from diffusional creep to dislocation creep. A comparison to stationary 
creep is provided in Fig. 5.17. 

Fig. 5.16 Creep rate versus 
stress at 480 °C for Cu. 
Experimental data from [9]. 
Non-stationary creep model 
according to Eq. (5.33) 

Fig. 5.17 Creep rate versus 
stress at 480 °C for Cu. 
Experimental data from [9]. 
Stationary and 
non-stationary creep models 
according to Eqs. (5.31) and  
(5.33). Classical diffusional 
creep models are given, 
Eq. (5.10)
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Fig. 5.18 Stress exponent 
for the creep rate versus 
stress at 480 °C for Cu for 
three testing times. 
Non-stationary creep model 
according to Eq. (5.33) 

Results for stationary creep according to Eq. (5.31) are 1.5 orders of magnitude 
or more below the results in [9]. Considering the precision of the prediction of 
stationary creep in Fig. 5.10, the results in [9] must represent non-stationary creep. 
The non-stationary model, Eq. (5.33), generates values that are in agreement with 
the observations in [9] considering the length of testing times that were used in 
that investigation. The stress exponent in the non-stationary model is illustrated in 
Fig. 5.18. 

The stress exponent in the range of data of [9] is about 1. There is a slight increase 
with stress but it is not enough to explain the observed increase to 2. The stationary 
creep values are simply too far below the observation to give such an increase. The 
Coble results in Fig. 5.17 are close to both the values in [9] and the non-stationary 
results. The activation energy predicted from the non-stationary model, Eq. (5.33) is  
shown in Fig. 5.19.

In the model, lattice diffusion with an activation energy of 198 kJ/mol from [47] 
is used. In spite of this, the non-stationary model gives a value of about 70 kJ/mol 
at 480 °C. Via step change tests, McKnee et al. found a creep activation energy of 
99 ± 5 kJ/mol. Both these values are close to the accepted value for grain boundary 
diffusion of 84.5 kJ/mol [48] which is the relevant value for Coble creep. It can be 
seen that the mechanical data in [9] can be explained at least partially with the help 
of non-stationary dislocation creep. 

5.9 Summary

• One issue when performing creep tests at low stresses is to ensure that stationary 
conditions have been reached. At normal stresses when tests run to failure the 
minimum creep rate usually gives a good estimate of the stationary rate. However, 
creep tests at low stresses when the stress exponent is close to unity practically



110 5 Creep with Low Stress Exponents

Fig. 5.19 Activation energy 
for the creep rate versus 
temperature for Cu at three 
testing times. Non-stationary 
creep model according to 
Eq. (5.33)

never are taken to failure. Often this is simply not possible because the estimated 
rupture time could be 10 years or more.

• Stationary creep rates have traditionally been the basis of identifying operating 
mechanisms, for example for distinguishing between diffusional creep, power-
law dislocation creep and power-law break-down. For a long time only empirical 
dislocation creep models were available but this identification could still be made 
as long as stationary conditions could be ascertained. However, at low stresses it 
must in general be assumed that a stationary state has not been reached during the 
testing. It is then essential to use non-stationary models. 

• In recent years basic dislocation creep models that can cope also with the primary 
stage have been formulated. These models are at least partially predictable and 
that is essential to analyze the data. During the primary stage the creep rate drops 
quickly. Where in the primary stage the test is stopped must be determined. 

• Traditionally it has been assumed that a stress exponent close to 1 should imply 
that diffusional creep is active. The classical models for diffusional creep are 
simple and well established. They give well-defined stress, temperature and grain 
size dependence. In spite of this it has been difficult to obtain agreement with the 
models in many cases. In several classical studies for pure metals, the diffusional 
models overestimate the creep rate by two orders of magnitude. Since quite accu-
rate diffusion coefficients are available, the deviations cannot be accounted for 
by lack of precision. Two alternatives then remain. Either the observations are 
non-stationary dislocation creep or non-stationary diffusional creep. 

• Experimental results for an austenitic stainless at 700 °C gave a stress exponent 
of 1, but the presence of primary creep and a stress exponent of 4.5 in related 
stress change tests clearly demonstrated that dislocation creep was the operating 
mechanism. The same results were found for Cu at 600 °C since the observed 
stress exponent was 3 and distinct primary creep was observed. In spite of these 
quite clear verifications that dislocation creep was the controlling mechanism,
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the classical Coble creep model predicted creep rates one order of magnitude 
higher than the observed ones. Consequently, Coble creep must be blocked by 
one or more mechanisms. If Coble creep is controlled solely by diffusion in the 
grain boundaries, this is virtually impossible to account for. Several authors have 
proposed that the motion of vacancies is controlled by grain boundary dislocations. 
If this assumption is correct, and the amount of solid solution hardening is the same 
for GB and bulk dislocations, the observations are at least partially possible to 
explain although very large blocking effects would be required since the mobility 
of the grain boundary dislocations is very high. The more likely explanation is 
due to constrained grain boundary creep. see next bullet [41]. 

• Any creep mechanism that is located in the grain boundaries is proposed to be 
accompanied by bulk deformation. Such mechanisms are superplasticity due to 
grain boundary sliding, grain boundary dislocation creep and Coble creep. Thus, 
the bulk creep rate must be at least of the same magnitude as the creep in the grain 
boundaries to accommodate local strain changes. This is referred to as constrained 
grain boundary creep. This has important implications. The Coble creep rate can 
never exceed the bulk creep rate by a significant margin. In addition, since the 
Coble creep rate must be adapted to the bulk rate, it will show primary creep. 

• A primary creep model has been used to describe dislocation creep with low creep 
exponents. The model has been applied successfully to an austenitic stainless steel, 
to pure Al and to pure Cu. It is shown that dislocation creep can be active in stress 
and temperature ranges that traditionally have been attributed only to diffusional 
creep. The low stress exponents observed is a result of stationary conditions not 
being reached. It is demonstrated that if non-stationary conditions are assessed the 
apparent activation energy can be much lower than the lattice diffusion activation 
energy used in the model. 

• Creep at very high temperature and low stresses for pure Al has in the past been 
considered as a special case with the designation Harper-Dorn after the researchers 
that first proposed it. For the first time a basic model has been used to describe data 
from a number of investigations for this type of creep. The model successfully 
shows that the bulk of data can be represented by a stationary model giving a 
stress exponent of 3 in agreement with observations. The data that deviate from 
this behavior can be handled with the non-stationary model. In agreement with 
results in the literature, there is no longer any need to consider this phenomenon 
as something special, since the dislocation creep model can describe these results 
in a similar way as for other alloys. 

• It has been demonstrated that the basic models for primary and secondary creep 
can accurately describe experimental data at high temperatures and low stresses. 
For secondary creep the model parameters are identical to the ones used at lower 
temperature. Thus, for aluminum the application of the basic creep model has 
been verified from 50 MPa at room temperature to 0.02 MPa at 650 °C. For 
copper the corresponding range is from 180 MPa at 75 °C to at least 1 MPa at 
600 °C. For both the stress and temperature ranges, they represent a variation of 
in the creep rate over many orders of magnitude. For copper primary creep is 
accurately represented in the same range also without any change of parameter
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values. These facts clearly show that the basic creep model can handle a wide range 
of experimental conditions. Primary creep of aluminum has not been investigated 
at ambient temperatures. 
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