
Chapter 4 
Primary Creep 

Abstract For many materials, primary creep can be described with the phi (φ) model 
and tertiary creep with the Omega (Ω) model (discussed in Chap. 12). According 
to the phi model, the creep rate is linear in strain and time in a double logarithmic 
diagram. When using empirical descriptions of the creep curves, these models are 
recommended. Several basic models for primary creep are derived. They are based 
on the creep rate in the secondary stage. This means that primary creep can be 
derived without any new data. The primary creep models are in agreement with the 
phi model and can describe experimental data. For the martensitic 9–12% Cr steels 
at least two dislocation densities are needed to represent primary creep because the 
initial dislocation density is high contrary to the situation for annealed fcc materials. 

4.1 General 

The classical form of a creep strain versus time curve (“creep curve”) is that there is 
first a primary stage where the creep rate increases but with a continuously decreasing 
rate, a secondary stage where the creep rate is approximately constant and a tertiary 
stage with a continuously increasing strain rate. Surprisingly many materials show 
this behavior but there are many exceptions. In this chapter the primary stage will be 
analyzed. 

The primary stage is technically very important. If there is a limit on the amount 
of strain that a product can accept, primary creep must be considered. Well-known 
examples are blades of gas and steam turbines. If the strain is too large the blades will 
get in contact with other parts of the structure resulting in disaster. Another case is 
where the strains can never become very large. One example is copper canisters for 
nuclear waste. Inside the copper tube there is a cast iron insert. Between the copper 
tube and the iron insert there is only a small gap. Due to the external pressure the 
copper tube creeps towards the insert and when it is reached, creep stops in this part 
of the structure. For some materials the total strain is larger in the primary stage than 
in the secondary stage. If only secondary creep is considered in design which is not 
uncommon, there is a risk that the creep deformation is significantly underestimated.
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Primary creep is also of importance during creep at very low stresses since stationary 
conditions are rarely reached. This is discussed in Chap. 5. 

Secondary creep has been studied much more extensively than primary creep in 
the literature. The reason is that for a long time it was believed that the stress exponent 
in the secondary stage could be used to identify the controlling creep mechanisms. 
As was discussed in Chap. 2 and will be further discussed in Chap. 5, this connection 
is not always true and examples where people are likely to have drawn the wrong 
conclusions are easy to find. 

Primary creep has almost exclusively been analyzed with empirical models. Only 
in recent years, basic models have been presented in the literature. Already in the 
1930’ties, Bailey presented a model for the time dependence of the strain in primary 
creep. This model is still the first hand choice when describing the primary stage. 
The model has later been generalized [1]. We will refer to it as the phi or φ model. 
It gives an exponential decrease in creep rate with increasing time or strain. As will 
be illustrated in the next section several types of materials follow this behavior. 

There are a large number of empirical models for representing creep curves. Only 
a few of them give a reasonable description of primary and tertiary creep separately 
and we will focus on them. For tertiary creep, the correspondence to the phi (φ) 
model is the Omega (Ω) model. These two models can accurately represent primary 
and tertiary creep for the well investigated 9CrMo steels. 

Basic models for primary creep have been developed in recent years. Three of 
these models will be presented in Sects. 4.3–4.5. The first two models are applicable 
to fcc alloys whereas the third one is suitable for CrMo-steels. In some of the models 
it is necessary to distinguish between more than one type of dislocation density. 
In general these models give the same time dependence of the strain as the phi 
(φ) model. Expressed in other words, the phi (φ) model can be derived from basic 
physical principles, which has not been shown for any other of the empirical model 
for primary creep. So this is an additional reason why we concentrate on the phi (φ) 
model, when discussing empirical models for primary creep. 

4.2 Empirical Models for Creep Strain Curves 

In this section models for both primary and tertiary creep will be considered. The 
reason is that many models are designed to handle the entire creep curve rather than 
primary and tertiary creep separately. A large number of empirical models have been 
proposed. Reviews can be found in [2, 3]. Some of the more frequently used methods 
are summarized in Table 4.1. The model that probably has got most attention in the 
literature was developed by the Wilshire group. They referred to it as θ projection. 
In Table 4.1 it is called the θ model. The assumptions in the model are that both 
the primary and the tertiary creep rates are linear in the creep strain. This gives a 
creep rate that decreases exponentially with time in the primary stage and increases 
exponentially in the tertiary stage. To describe the whole creep curve the primary and 
tertiary parts are simply added. Thus, it is not necessary to have a separate contribution
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from secondary creep. However, if primary and tertiary data are analyzed separately, 
the θ model does typically not give a good representation of data. 

Instead the φ model should be used for primary creep data and the Omega (Ω) 
model for tertiary data. This will be illustrated below. The phi (φ) model for primary 
creep gives the following strain rate dependence as a function of strain 

ε̇prim = φ1ε
−φ2 phi model (4.1) 

The creep rate decreases exponentially with increasing strain. Its time dependence 
has the same mathematical form. The Ω model for tertiary creep takes the form 

ε̇tert = Ω3e
Ω4ε Omega model (4.2) 

In Eq. (4.2) the creep rate increases exponentially with strain. This gives a time 
dependence with a singularity, see Table 4.1. The time at this singularity is close to 
the rupture time. 

The three models in Table 4.1 have one term for primary creep and one for tertiary 
creep. In each term there are two adjustable parameters. So for describing a creep 
curve four adjustable parameters are needed. 

Equations (4.1) and (4.2) are illustrated for the 9Cr1Mo steel P91 in Figs. 4.1, 
4.2, 4.3 and 4.4. The steel P91 is common in modern fossil fired power plants.

Table 4.1 Empirical models for describing single creep curves (reproduced from [4] with 
permission of Elsevier) 

Model Parameters Strain rate 
versus strain 

Strain rate versus 
time 

Strain versus 
time 

Refs. 

θ model, 
primary 

θ1, θ2 ε̇prim = 
θ2(θ1 − ε) 

ε̇prim = θ1θ2e−θ2t θ1(1 − e−θ2t ) [5, 6] 

θ model, 
tertiary 

θ3, θ4 ε̇tert = 
θ4(ε + θ3) 

ε̇tert = θ3θ4eθ4t θ3(eθ4t − 1) [5, 7] 

φ model, 
primary 

φ1, φ2 ε̇prim = 
φ1ε

−φ2 

ε̇prim = φ1(φ1(1+ 
φ2)t)−φ2/(1+φ2) 

(φ1(1 + 
φ2)t)1/(1+φ2) 

[1, 8] 

φ model, 
tertiary 

φ3, φ4 ε̇tert = φ3ε
φ4

ε̇tert = φ3(φ3(1 − 
φ4)t)φ4/(1−φ4) 

(φ3(1 − 
φ4)t)1/(1−φ4) 

[8]

Ω model, 
primary

Ω1, Ω2 ε̇prim =
Ω1e−Ω2ε 

ε̇prim = Ω1
Ω1Ω2t+1 

ln(Ω1Ω2t+1)
Ω2 

[9]

Ω model, 
tertiary

Ω3, Ω4 ε̇tert = Ω3eΩ4ε ε̇tert = Ω3 
1−Ω3Ω4t

− ln(1−Ω3Ω4t)
Ω4 

[10–12] 

ε is the creep strain, ε̇ the strain rate, t the time 
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Fig. 4.1 Creep strain versus 
time curves for the 9Cr1Mo 
steel P91 at 600 °C at the 
four stresses 110, 130, 150 
and 180 MPa fitted with the 
φ and Ω models, Eqs. (4.1) 
and (4.2). Data from [1]. 
Reprinted from [13] with  
permission of MDPI 

By using double logarithmic scale for a creep rate versus strain curve, a straight 
line should result in the primary stage if Eq. (4.1) is valid. That this is the case is 
shown in Fig. 4.2. 

The same behavior can be illustrated if the creep rate is plotted versus time. From 
Table 4.1 it can be seen that also the time dependence of the creep rate in the primary 
stage is exponential. It should give a straight line in Fig. 4.3. This is approximately 
the case. However, this way of presenting the data is more sensitive to the scatter in 
the data.

In the tertiary stage a semi logarithmic scale with the creep rate versus strain 
diagram is appropriate to make a comparison to the Omega (Ω) model in Eq. (4.2).

Fig. 4.2 Creep rate versus strain curves for the 9Cr1Mo steel P91 at 600 °C for the same tests as 
in Fig. 4.1. Double logarithmic scale. Reprinted from [13] with permission of MDPI 
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Fig. 4.3 Creep rate versus time curves for the 9Cr1Mo steel P91 at 600 °C for the same tests as in 
Fig. 4.1. Double logarithmic scale 

Fig. 4.4 Creep rate versus 
strain curves for the 9Cr1Mo 
steel P91 at 600 °C for the 
same tests as in Fig. 4.1. 
Semi logarithmic scale. Data 
from [14]. Reprinted from 
[13] with permission of 
MDPI

This is illustrated in Fig. 4.4. Indeed, straight lines give a good representation of the 
data. Some deviations around the minimum creep rate can be observed. 

In Figs. 4.2, 4.3 and 4.4 the contributions from both Eqs. (4.1) and (4.2) are  
included. The maximum value of them is shown. It can be seen that the whole curves 
are quite well represented in this way. 

Also the strain versus time curve in Fig. 4.1 can be handled in this way. For 
the primary stage Eq. (4.1) is used and for the tertiary stage Eq. (4.2). If an even 
better fit is required for the strain versus time curve all the parameters φ1, φ2, Ω3 

and Ω4 can be fitted simultaneously to the data. In fact, if four parameters are fitted 
many combinations of models for primary and tertiary can be used, for example 
different combinations in Table 4.1 such as the θ model or the Ω model for both 
primary and tertiary creep. However, such an approach is not recommended because
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the expressions for the primary and tertiary stages will not be able to describe the 
primary and the tertiary stages separately. 

It is well established that high chromium steels like P91 follows the φ model in 
the primary stage and theΩmodel in the tertiary stage at least approximately. This is 
well documented in the literature. For example, Abe has written several papers about 
it [15–18]. The phi (φ) and Omega (Ω) models are also applicable to other types of 
materials. This will be illustrated in Figs. 4.5, 4.6, 4.7 and 4.8 for the high alloyed 
creep resistant austenitic stainless steel Sanicro 25 (22Cr25Ni4W1.5Co3CuNbN) 
developed by Sandvik. 

Creep strain versus time curves are shown in Fig. 4.5. It can be noticed that the 
appearance of the creep curves is quite different from those of P91. The amount of 
primary creep is quite small and tertiary creep starts early on and dominates the creep 
curve. 

In Fig. 4.6, strain rate versus time curves with a double logarithmic scale are 
given. The presence of the straight lines in the primary stage illustrates that the phi 
(φ) model is satisfied for three of the stresses. 

Also in creep rate versus time curves the validity of the φ model can be demon-
strated, see Fig. 4.7. Due to scatter in the experimental data the agreement is not 
complete. 

For the primary stage only a limited number of data points on the creep curves are 
available in [19]. For the tertiary stage the data situation is much better. It is evident 
in Fig. 4.8 that the tertiary is well represented by the Omega (Ω) model.

Fig. 4.5 Creep strain versus time curves for the 22Cr25Ni4W1.5Co3CuNbN austenitic stainless 
steel Sanicro 25 at 750 °C at the four stresses 180, 200, 220 and 240 MPa fitted with the φ and Ω

models, Eqs. (4.1) and  (4.2). Data from [19]. Reprinted from [13] with permission of MDPI
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Fig. 4.6 Creep rate versus strain curves for the 22Cr25Ni4W1.5Co3CuNbN austenitic stainless 
steel Sanicro 25 at 750 °C for the same tests as in Fig. 4.5. Double logarithmic scale 

Fig. 4.7 Creep rate versus time curves for the 22Cr25Ni4W1.5Co3CuNbN austenitic stainless steel 
Sanicro 25 at 750 °C for the same tests as in Fig. 4.5. Double logarithmic scale. Reprinted from 
[13] with permission of MDPI

The creep rates in Figs. 4.6, 4.7 and 4.8 show deviations to phi (φ) and Omega 
(Ω) model around the minimum creep rate. This is a common effect for many creep 
curves. The experimental values in the range are lower than the model values. These 
deviations are not large enough to show up in the creep strain curves in Fig. 4.5.
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Fig. 4.8 Creep rate versus 
strain curves for the 
22Cr25Ni4W1.5Co3CuNbN 
austenitic stainless steel 
Sanicro 25 at 750 °C for the 
same tests as in Fig. 4.5. 
Semi logarithmic scale. 
Redrawn from [14] with  
permission of Taylor & 
Francis

The reason of modeling creep strain is in general to try to extrapolate the results 
to other conditions. This is typically very difficult with empirical methods. The 
background is that the fitting parameters practically always vary in a complex way 
that is challenging to analyze. Instead, the basic models that are described in the next 
three sections are readily useful to generalize the results to new conditions. 

4.3 Dislocation Controlled Primary Creep 

In Chap. 2, an expression for the creep rate in the secondary stage was derived, Eqs. 
(2.30) and (2.29) 

ε̇ = h(σ − σi) with h(σ ) = 
2τLbcL 
mT 

M(T , σ  )  
σ 3 

(αmTGb)3 
(4.3) 

σdisl = αmTGbρ1/2 = σ − σi (4.4) 

where ε̇ is the strain rate, σ the applied stress, mT the Taylor factor, b burgers vector, G 
the shear modulus, cL and α dimensionless factors, ω the dynamic recovery constant, 
τL the dislocation line tension and M the dislocation mobility. σdisl is the dislocation 
stress, ρ the dislocation density, σi is an internal stress that will be discussed below. 
Contributions from solid solution hardening and particle hardening can be included 
in σi. The validity of these equations was demonstrated in Chap. 2. 

To derive the time dependence of the creep strain, the corresponding time 
dependence of the dislocation density must be known. Eq. (2.17) describes this 
variation
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dρ 
dε 

= 
mT 

bcL 
ρ1/2 − ωρ − 2τL Mρ2 /ε̇ (4.5) 

where ε is the strain. The other quantities were explained above. 
The common behavior in the primary creep stage is that there is a continuously 

decreasing creep rate with increasing time until the secondary stage is reached. At the 
same time it is assumed that there is a gradually increasing density of dislocations. 
This is a natural assumption since the dislocation density is low at the start of the 
creep test for soft hot worked materials. The density reaches a stationary value in the 
secondary stage. There are many possible alternative scenarios for example with a 
hard cold worked material or continuous precipitation in the primary stage. However, 
we will only consider the main one. 

To describe primary creep several assumptions are made [20]: 

• The stress dependence of the creep rate is the same in the primary and in 
the secondary stage. This means that the function h(σ) in Eq.  (4.3) should be 
applicable. 

• The development of the dislocation density can be described with the same equa-
tion, Eq. (4.5) that was used to derive the equation for the secondary creep 
rate. 

• When starting from a low dislocation density at the start of the creep, Eq. (4.5) 
gives an increasing dislocation density. This density is assumed to generate a 
dislocation back stress according to Eq. (4.4). 

• The creep rate in the primary stage is given by 

ε̇ = h(σ + σdisl sec − σdisl − σi) (4.6) 

where σdisl sec is the stress due to the dislocations (dislocation stress) in the 
secondary stage. In comparison to Eq. (4.3), the effective stress in Eq. (4.6) is  
raised by what we can call the primary stress σprim 

σprim = σdisl sec − σdisl (4.7) 

The presence of σprim in Eq. (4.6) raises the creep rate in comparison to the 
secondary stage, which is a characteristic feature of primary creep. When the 
secondary stage is reached, the dislocation stress σdisl is equal to σdisl sec and σprim 

vanishes as it should. σprim is a help quantity which makes it possible to model the 
creep rate in the primary stage. The applied stress σ is still constant. 

• In the secondary stage there is a balance between the applied stress σ and the back 
stress from the dislocations σdislsec plus the internal stress σi 

σ = σdisl sec + σi (4.8) 

If Eq. (4.8) is applied, Eq. (4.6) can be rewritten as
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ε̇ = h(2(σ − σi) − σdisl) (4.9) 

The internal stress σi has several contributions 

σi = σy(T , ε̇) + σSSH + σPH (4.10) 

where σy is the temperature and strain rate dependent yield strength, σSSH and σPH 

the contributions from solid solution hardening and precipitation hardening that 
will be discussed in Chaps. 6 And 7. 

It is important to recognize that the five assumptions do not involve any new 
functions or new parameters. It is simply assumed that the same basic dislocation 
mechanisms control both the primary and the secondary stage. A number of quantities 
such as the dislocation stresses σdisl and σdislsec and contributions to the internal stress 
σSSH and σPH are mathematical quantities that are useful in the modeling. These 
quantities can be defined in different ways. It is important to recognize that these 
quantities cannot be measured and they are not meaningful unless they are precisely 
defined. For example, there are many ways of defining a back or internal stress. A 
general discussion about a back stress without a proper definition does not make 
sense. 

In the contribution to the internal stress in Eq. (4.10), the yield strength has been 
included. It is possible to make exactly the same analysis about primary creep without 
taking the yield strength into account. It is material dependent if the yield strength 
should be taken into account. 

The use of the model will now be illustrated for two creep tests of Cu-OFP. In 
Fig. 4.9 the development of the dislocation density, Eq. (4.5) and the dislocation 
stress, Eq. (4.4) are  shown.  

a b  

Fig. 4.9 Creep test of Cu-OFP at 75 °C and 160 MPa. The creep test was interrupted after 12000 
h; a dislocation density versus strain according to Eq. (4.5); b dislocation stress versus strain for 
the dislocation density in a according to Eq. (4.4)
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The dislocation density increases approximately linearly with increasing strain 
over most of the strain range considered. When the dislocation density has reached a 
sufficiently high level, the third (static recovery) term gives a contribution. Eventually 
there is a balance between the two contributions. The secondary stage has been 
reached. At this stage the dislocation density becomes independent of strain. The 
dislocation stress, Eq. (4.4) is also continuously raised until a plateau in the secondary 
stage is reached. In the secondary stage the dislocation stress is the difference between 
the applied stress, 160 MPa, and the internal stress, Eq. (4.8). The internal stress 
consists of the yield strength and the solid solution hardening due to phosphorus and 
these quantities take the values 57 and 6 MPa, respectively at the temperature and 
strain rate of the test. The used model for solid solution hardening is presented in 
Chap. 6. In Fig.  4.9 the maximum dislocation stress is 97 MPa. These three values 
add up to the applied stress as they should according to Eq. (4.8). 

In Fig. 4.10a the creep strain versus time curve for the same test is shown. It can 
be seen that the model can reproduce the observations even for the fast initial stage 
of the test. 

The creep rate versus time is given in Fig. 4.10b. Also in this Figure it is evident that 
the model can describe the measurements. When the strain had reached a sufficiently 
high value in the test, the test had to be reloaded several times to avoid that the dead 
weights hit the floor. This is the reason for the spikes in the experimental curves. 

In Fig. 4.10b with a double logarithmic scale, the data lie along a straight line 
in the primary stage. This indicates that copper in addition to P91 and Sanicro 25 
follows the φ model, Eq. (4.1). It is evident that also the model, Eq. (4.9), shows this 
behavior. 

The results for another creep test that has run until rupture are given Fig. 4.11. 
The general appearance of creep strain and creep rate curves is not very different 
from that in Fig. 4.10. Both the primary and secondary stages are reproduced by the 
model. The modeling of the tertiary stage which is not taken into account here will

a b  

Fig. 4.10 Creep test of Cu-OFP at 75 °C and 160 MPa. The creep test was interrupted after 12000 
h; a creep strain versus time; b creep rate versus time; Eq. (4.9). Redrawn from [20] with permission 
of Elsevier 
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a b  

Fig. 4.11 Creep test of Cu-OFP at 75 °C and 175 MPa. The creep test was run until rupture; a creep 
strain versus time; b creep rate versus time; Eq. (4.9) 

be discussed in Chap. 12. Again the data and the model follow closely the phi (φ) 
model in the primary stage. 

4.4 Stress Adaptation 

4.4.1 Model 

In Sect. 3.3 it was demonstrated that a stress strain curve which had the form of a 
Voce equation could be derived from Eq. (4.5) 

σ = σy + (σsat − σy)(1 − exp(−ωε/2)) (4.11) 

This relation can be rewritten as 

σsat = σy + σ − σy 

1 − e−ωε/2 
(4.12) 

The saturation stress σsat is closely related to the stationary creep stress. With this 
background, Eq. (4.12) is now generalized and transformed and considered as the 
driving stress for primary creep [4] 

σprimSA = σy(T , ε̇) + 
σ − σy(T , ε̇) 
1 − e−Ωε/2 

(4.13) 

This expression is then inserted in Eq. (4.3) for the secondary creep rate
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dε 
dt  

= h(σy(T , ε̇) + 
σ − σy(T, ε̇) 
1 − e−Ωε/2 

, T ) (4.14) 

TheΩvalue was originally identical to the dynamic recovery constant ω. However, 
it has been found that at situation far from stationary conditions, Ω might have to be 
chosen in a different way and that is discussed below. For this reason ω is replace byΩ

in Eqs. (4.13) and (4.14). In Eq. (4.14) the yield strength depends on the temperature 
and the strain rate. The following dependence is assumed, Eq. (3.15). 

σy(T , ε̇) = σy(T0, ε̇0) 
G(T ) 
G(T0)

(
ε̇ 
ε̇0

)(1/nN ) 
(4.15) 

T 0 is a reference temperature and ε̇0 a reference strain rate that are usually taken 
as 20 °C and 1 × 10−4 1/s, respectively. The temperature dependence of the yield 
strength follows that of the shear modulus G. The strain rate dependence is described 
with a Norton equation. nN is the stress exponent determined at the temperature and 
strain rate in question from the equation for the secondary creep rate, Eq. (2.30). 

The expression for σprimSA is quite different from that of σprim given in Sect. 4.3. 
Two features of Eq. (4.13) are important to recognize. When the strain increases 
σprimSA tends towards the applied stress and Eq. (4.14) is back to the expression for 
secondary creep. At small strains σprimSA can be expanded in the strain. If a Norton 
expression with a stress exponent is assumed, it can be shown that Eq. (4.14) takes 
the same form as Eq. (4.1) for  the  φ model. This means that if the φ model is valid for 
very small strains, Eq. (4.14) may be applicable. Equation (4.14) cannot be expected 
to be as general as the model in Sect. 4.3. Special assumptions are made and eq. 
(4.14) is based on the Voce equation that is not valid for all alloys. The strain rate 
and temperature dependence of the yield strength must be taken into account and 
they are not always known. 

4.4.2 Numerical Integration 

Equation (4.14) is numerically complicated to integrate. The reason is that the yield 
strength depends on the strain rate. Thus in each integration step an iteration has to 
be performed. This way of direct integration is quite feasible. It is referred to as stress 
adaptation since to determine the stress σprimSA iteration is required in each step. 

There are alternative ways to perform the integration. A brief summary is given 
here. For further details, see [21]. One way is to represent the function h(σ, T ) by a  
Norton equation 

dε 
dt  

= h(σ, T ) = AN(T )σ nN (4.16) 

Using Eqs. (4.15) and (4.16), Eq. (4.14) can be rewritten as
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(
ε̇ 
AN

)1/nN 

= σy(T, ε̇0) 
G(T ) 
G(T0) 

( 
ε̇ 
ε̇0 

)(1/nN) + 
σ − σy(T , ε̇0) G(T ) 

G(T0) ( 
ε̇ 
ε̇0 

)(1/nN) 

1 − e−Ωε/2 
(4.17) 

The following abbreviations are introduced 

aN = A1/nN 
N bN = σy(T, ε̇0) 

G(T ) 
G(T0) 

/ε̇
1/nN 
0 (4.18) 

Using these abbreviations and solving for ε̇ gives 

ε̇1/nN = 1 

1/aN − bN + bN 
1−e−Ωε/2 

σ 
1 − e−Ωε/2 

(4.19) 

From this expression, the formula for the yield strength can be obtained directly 

σy(T , ε̇) = σy(T , ε̇0) 
G(T ) 
G(T0)

(
ε̇ 
ε̇0

)1/nN 

= bNε̇1/nN = σ 
( 1 
aNbN 

− 1)(1 − e−Ωε/2) + 1 
(4.20) 

The strain rate has now been eliminated so the integration of Eq. (4.14) can be 
performed directly. This procedure is referred to as expansion integration. 

Another problem in the numerical integration is the singularity for small strains 
in Eqs. (4.14) and (4.20). This singularity can be eliminated by modifying the model 
in the following way [22]. In Eq. (4.13) the strain rate dependence is extracted 

σ = [
σy(T ) + K (T )(1 − e−ωε/2 )

]
( 

ε̇ 
ε̇k 

)1/nN (4.21) 

σy and K are assumed to have the same strain rate dependence, which is approximately 
the case. The reference strain rate ε̇k is only known for the maximum stress, which 
also defines K 

ε̇k = AN(σy(T ) + K (T ))nN (4.22) 

AN and nN are determined from the total stress σprimSA in Eq. (4.13) in the  same  
way as in the previous integration alternative. From Eq. (4.21) an expression for the 
strain rate can be obtained 

ε̇ 
ε̇k 

=
(

σ 
σy(T ) + K (T )(1 − e−Ωε/2)

)nN 

(4.23) 

Equations (4.22) and (4.23) give  

ε̇ = AN

(
σ(σy(T ) + K (T )) 

σy(T ) + K (T )(1 − e−Ωε/2)

)nN 

(4.24)
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The Norton Eq.  (4.24) can be replaced by an equation of the original form, Eq. 
(4.14) 

ε̇ = h
(

σ(σy(T ) + K (T )) 
σy(T ) + K (T )(1 − e−Ωε/2) 

, T
)

(4.25) 

In Eq. (4.25) the singularity at small strains has been removed. This procedure is 
referred to as max stress integration. 

A simplistic variant of Eq. (4.25) will be given to illustrate how the model works 
[23]. The formula in Eq. (4.25) will be expressed as a Norton equation with the 
constants A and n. Considering small strains (Ωε/2 < 1), the exponential can be 
expanded 

ε̇prim = A
(

σ(1 + σy/K ) 
σy/K + Ωε/2)

)n 

(4.26) 

Equation (4.26) is integrated with respect to time t. Assuming the initial strain to 
be zero, one finds that 

ε = {(1 + n)A}1/(n+1)

(
2σ(1 + σy/K )

Ω

) n 
n+1 

t 
1 

n+1 − 
2σy 

KΩ
(4.27) 

The time derivative of Eq. (4.27) is  

dε 
dt  

= 
{(1 + n)A}1/(n+1) 

n + 1

(
2σ(1 + σy/K )

Ω

) n 
n+1 

t− n 
n+1 (4.28) 

Although Eqs. (4.26) and (4.28) are both derivatives of Eq. (4.27), they are not 
identical because Eq. (4.26) is a function of strain and Eq. (4.28) a function of time. 

According to the simplistic model, the stress exponent is n/(n+1), i.e. close to 1 
provided n is not small. The time dependence is also of importance. The φ model is 
valid for many materials in the primary stage 

ε̇primφ = Aφ t
−φ (4.29) 

where t is the time and Aφ and φ are parameters. Further details about the φ model 
can be found in Sect. 4.2 and in [22]. From (4.28) it can be seen that the simplistic 
model agrees with the φ model where φ = n/(n+1). This requires that the last term 
in (4.27) is small is relation to the value of the strain. This can be expressed in terms 
of the following criterion 

σy 

K 
<

Ωε 
2 

(4.30)
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It can be shown that this criterion must also be fulfilled for the full model in Eq. 
(4.25). 

If the primary creep is near its end and approaching stationary conditions, Ω can 
be replaced with the dynamic recovery constant ω. The temperature correction for ω 
introduced in Sect. 3.4, (G(RT)/G(T ))2, where G(T ) and G(RT) are the shear modulus 
at temperature and room temperature respectively, should be considered. However, 
if the primary creep is far from stationary conditions, Ω has to be determined in an 
other way [22]. At low strains the work hardening can be found from Eq. (3.12) 

dσdisl 

dε 
= 

αGm2 
T 

2cL 
(4.31) 

The dislocation stress can never be larger than the applied stress. When the dislo-
cation stress is approaching the applied stress, a semi-stationary condition may be 
said to be reached. The strain has then the value 

εsemi stat = (σ − σi) 
2cL 

αGm2 
T 

(4.32) 

At this stage the exponential in Eq. (4.25) must be small, say 0.05, which gives

Ω ≈ 3 

εsemi stat 
= 3αGm2 

T 

2cL(σ − σi) 
(4.33) 

where σi includes strength contributions, for example, from solid solution and precip-
itation hardening. The applicability of Eq. (4.33) is shown for example in Sect. 5.8 
and [22] for applications at a wide range of temperatures for copper. 

4.4.3 Applications 

The use of Eq. (4.14) will now be illustrated. Two examples for creep tests of Cu-
OFP at 75 °C are shown. The results for a test at a stress of 180 MPa are shown in 
Fig. 4.12.

It can be seen that the creep strain and creep strain rate versus time are approxi-
mately reproduced. The three integration methods stress adaptation, expansion inte-
gration and max stress integration give closely the same result. The straight line in 
Fig. 4.12b indicates that the phi (φ) model is followed down to fairly short times. 

Another example is presented in Fig. 4.13. Again the experimental results for the 
creep strain and the creep rate are modeled in a general way. It is clear that the model 
in the present section gives a less precise description of the data than the model 
in Sect. 4.3. However, the model is useful to describe results at very low stresses, 
Chap. 5.
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a b  

Fig. 4.12 Creep test of Cu-OFP at 75 °C and 180 MPa. The creep test was run until rupture; a creep 
strain versus time; b creep rate versus time; Eq. (4.14)

a b  

Fig. 4.13 Creep test of Cu-OFP at 75 °C and 175 MPa. The creep test was run until rupture; a creep 
strain versus time; b creep rate versus time; Eq. (4.14) 

4.5 12% Cr Steels 

4.5.1 Dislocation Model 

The creep models presented in Sects. 4.3 and 4.4 as well as in Chap. 2 are based on 
a single dislocation density. However, there are materials for which more than one 
type of dislocation density must be introduced to fully take into account the role of 
the substructure. For the type of material, 9–12% Cr steels, that will be analyzed 
in this section, this is essential. In models with a single dislocation density, it is 
increased gradually from low values in the primary stage until it reaches the stationary 
value in the secondary stage. For 9–12% Cr steels, the initial microstructure is an 
annealed martensitic structure. It is characterized by well-developed subgrains with
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subboundaries full of dislocations. This implies that the initial dislocation density is 
high. But the creep behavior of the 9–12% Cr steels in the primary stage is not very 
different from that in the fcc-alloys. 

To handle this situation, a distinction is made between free and immobile dislo-
cations. The free dislocations are located in the subgrain interiors and the immobile 
ones primarily in the subboundaries. The following equations are formulated for the 
densities of the free dislocations ρf and the immobile dislocations ρim [24, 25] 

dρf 

dε 
= 

1 

Ls 

mT 

b 
− (ω1 + ω2)ρf (4.34) 

dρim 

dε 
= ω2ρf − 2MτLρ

2 
im/ε̇ (4.35) 

ε is the strain, ε̇ the creep rate, Ls the mean spurt distance of dislocations, mT the 
Taylor factor, b Burgers vector, M the climb mobility, and τL the dislocation line 
tension. The first term on the right hand side of Eq. (4.34) gives the work hardening. 
Only the free dislocations contribute to the work hardening. There are two types 
of dynamic recovery. A free dislocation will interact with a dislocation of opposite 
Burgers creating a dipole with a spacing ddip that can annihilate each other 

ddip = mT 

8π (1 − νP) 
Gb 

σ 
(4.36) 

This gives a recovery constant ω1 

ω1 = 
2mT 

b 

ddip 
nslip 

(4.37) 

nslip is the number of active slip systems. Dislocations can also form locks, when 
dislocations with different Burgers vector at a distance of dlock interact. dlock has 
about the same size as ddip. This is another recovery effect that transfers the free 
dislocations to immobile ones. 

ω2 = 
4mT 

b 

dlock
(
nslip − 1

)
nslip 

(4.38) 

Thus this type of recovery reduces the free dislocation density and increases 
the immobile dislocation density. It gives no net change in the total dislocation 
density. The immobile dislocations can only be removed by static recovery. The 
static recovery term is the last term in Eq. (4.35) and it has the same form as in Eq. 
(4.5). 

Only the immobile dislocations are included in Eq. (4.39) for the dislocation stress 

σdisl = αmTGbρ1/2 
im (4.39)
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It is now possible to describe what happens during primary creep. Initially, ρf has 
a high value and ρim a low value. This gives a high total dislocation density, but the 
dislocation stress is low. To compute the strain rate, σdisl should be inserted in Eq. 
(4.9). With a low value of σdisl, the creep rate will be high. With increasing strain, 
the free dislocations are transferred to immobile ones, σdisl is increased and the creep 
rate reduced. With Eqs. (4.34) and (4.35) the established features of primary creep 
are reproduced. 

The internal stress is an important quantity for 9–12% Cr-steels. Particles increase 
the creep strength in two ways. Fine carbo-nitrides give a direct increase in the creep 
strength. Coarse M23C6 carbides stabilize the subboundaries and thereby reduce 
the recovery rate of the immobile dislocations. This implies a high value of the 
dislocation strength can be kept that decreases the creep rate. Only the role of the 
fine carbo-nitrides will be discussed briefly here. Further details are given in Chap. 7 
on precipitation hardening. Only particles with a radius larger than a critical size 
contribute to the creep strength, Eq. (7.12) 

rcrit = Mclimb(T, σ  )b2 σλs 
ρf 

ε̇secmT 
(4.40) 

where λs is the interparticle spacing for all the carbo-nitrides. The particles give the 
following contribution to the internal stress 

σi = σpart = 
COGbmT 

λcrit 
(4.41) 

where CO = 0.8 and λcrit is the interparticle spacing for particles larger than rcrit. 
Equation (4.41) is the expression for the Orowan strength except that λs is replaced 
by λcrit. Together with σdisl, σi should be inserted in Eq. (4.9) to find the creep rate. 

4.5.2 Simulated Creep Curves 

Results for creep strain curves of 12Cr1MoV steels (X20) will be presented. The 
creep curves have been published in [9]. Two heats CL and CT are considered. The 
particles in this steel are primarily M23C6 carbides. M stands mainly for Cr and Fe. 
The size distribution of the carbides has been measured [26]. The result is presented 
in Fig. 4.14.

In the semi logarithmic scale in Fig. 4.14, the size distributions are approximately 
linear except for small particle sizes. The deviation for small particles is often due 
to the difficulty to make accurate measurements for such particles. Otherwise the 
Figure shows that the number of particles per unit area npart decreases exponentially 
with increasing carbide radius rpart 

npart = n0e−βrpart (4.42)
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Fig. 4.14 Number of M23C6 
carbides per unit area versus 
carbide radius for two heats 
CL and CT for a 12Cr1MoV 
steels. From [27]
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where n0 and β are constants. The values of β for the heats CL and CT in Fig. 4.14 
are 3.2 × 107 and 6.0 × 107 1/m, respectively. 

The initial values of the dislocation densities ρf and ρim have been taken as 8 
× 1013 and 1 × 1011 1/m2 from two doctorial theses from Erlangen on 9 to 12% 
Cr-steels (Polcik 1998; Sailer 1998). 

Experimental creep strain versus time curves are compared to the model in 
Figs. 4.15 and 4.16. The model curves only include primary and secondary creep 
since tertiary creep is not considered. In the primary and the secondary stages the 
experimental data is reasonably well reproduced. 

This is further illustrated in Fig. 4.17 where the experimental and modeled 
minimum creep rates are compared. The Figure shows that the deviation is about a 
factor of two, which can be considered as acceptable. Again it is shown that primary 
creep can be accurately modeled without the use of adjustable parameters

Fig. 4.15 Creep strain 
versus time curves for 
12CrMoV steel at 600 °C for 
stresses between 70 and 155 
MPa. Experimental data 
from [9]. Heat CT. From [27]
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Fig. 4.16 Creep strain 
versus time curves for 
12CrMoV steel at 
600–650 °C for a stress of 80 
or 90 MPa. Experimental 
data from [9]. Heat CL. 
From [27]

Fig. 4.17 Comparison of 
minimum creep strain rates 
between the experimental 
and model curves in 
Figs. 4.15 and 4.16. From  
[27] 
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4.6 Summary 

• Many empirical models exist for representing creep curves, i.e. creep strain versus 
time curves. With four or more parameters almost any of these models can give 
a good fit to the curves. To get a better basis for selection of models, primary 
and tertiary creep should be handled separately. Then it is enough to involve just 
two parameters for primary creep and two for tertiary. For many types of steels 
primary creep can be represented with the phi model and tertiary creep with the 
Omega model. The phi model gives a linear curve in a double logarithmic strain 
rate versus time diagram. The Omega-model provides a linear curve when the 
logarithmic of the strain rate is shown as a function of the strain. The two models 
can be added to describe the whole creep curve. It is usually not necessary to have 
a separate term for secondary creep.
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• Several basic models for primary creep are derived in the chapter. The modeling 
is based on the assumption that the dislocation density has initially a low value 
that increases during the primary stage until a stationary value is reached in the 
secondary stage that can be described with the basic dislocation models. The 
dislocation density is associated with a dislocation stress according to Taylor’s 
equation. In one of the models an effective creep stress is introduced which is 
twice the applied stress minus the dislocation stress. This effective stress can be 
introduced in the expression for the secondary creep rate to find the creep rate 
in the primary stage. The expression can be generalized to include also tertiary 
creep, see Sect. 12.4. 

• The use of the basic models for primary creep demonstrates that they can describe 
experimental creep curves. These modelled creep curves follow the phi model. 

• For martensitic 9–12% Cr steels the situation is somewhat more complicated. Due 
to the martensitic microstructure the initial dislocation density is high. To handle 
this case at least two types of dislocation densities must be introduced; free and 
immobile. As a consequence, the development of both types of dislocations must 
be taken into account but the principles are the same. 
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