
Chapter 2 
Stationary Creep 

Abstract An introduction to creep and its main characterstics are given. Stationary 
creep has been studied extensively in the literature. Stationary creep is a result 
of a balance between work hardening and recovery processes, which allows for 
a continues plastic deformation without raising the stress. The starting point for the 
basic modeling of creep is a differential equation for the dislocation density that 
describes how it varies with strain or time. The model explains how the dislocation 
density is influenced by work hardening and recovery. From the dislocation model, a 
basic equation for the creep rate is derived that is in many respects similar to the clas-
sical Bird, Mukherjee and Dorn (BMD) formula but with the values of the parameters 
given. By taking the role of strain induced vacancies into account, the applicability 
of the BMD equation is widely expanded because the basic model can also handle 
low temperatures and high stresses that is usually referred to as the power-law break 
down regime. It is illustrated that the creep model can represent the creep rate for 
pure metals such as Al and Ni. 

2.1 The Creep Process 

Creep deformation is in general assumed to take place by the motion of dislocations. 
At very low stress and high temperatures creep can also occur by the diffusion of 
individual atoms, which is referred to as diffusion creep. The framework for diffusion 
creep and the competing dislocation creep at very low stresses are discussed in 
Chap. 5. In this chapter the focus will be on dislocation creep. 

Let us consider a specimen in a soft annealed condition. During a creep test the 
few dislocations present initially will rapidly multiply and form a network. This 
network will strengthen the material, which is referred to as work hardening. In a  
polycrystalline metal, the initial phase of the work hardening is characterized by 
an increase in the strength from the dislocations that is proportional to the strain. 
Gradually the dislocation density becomes sufficiently high that more stable and 
energy efficient dislocation structures are formed that reduce the increase in strength. 
During this stage also some dislocations are eliminated due to the interaction with
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14 2 Stationary Creep

other dislocations. Thus there is a process that balances the work hardening and 
removes and stabilizes some dislocations. We will refer to this process as dynamic 
recovery. It is strain controlled in the same way as the work hardening. The stages 
described so far are similar for creep and rate controlled tensile tests. 

Specific for creep is that there is an additional process called static recovery. 
Dislocations with opposite burgers vectors attract each other and if the dislocations 
are free to move, they will eventually eliminate each other. At low temperatures 
dislocations can only move in their glide planes, which is referred to as glide. At 
high temperatures the dislocations can also move perpendicular to the glide planes. 
For edge dislocations this is possible if atoms can diffuse to and from the dislocation 
cores. This mechanism is called climb. The main difference between plastic defor-
mation at low and at high temperatures is that climb of dislocations can take place. 
This enables that dislocations can move both parallel and perpendicular to the glide 
planes. This is crucial during static recovery since the dislocations that are influenced 
by attracting forces can reach each other. This makes it possible for dislocations to 
annihilate each other and that is the basis of static recovery. 

When the dislocation density has reached a certain level during a creep test due 
to work hardening, the static recovery starts to be of importance. There is work 
hardening that raises the dislocation density and recovery that reduce the density. 
The rates of recovery increase faster with time than the rate of work hardening. 
This means that eventually there will be a balance between work hardening and 
recovery. The whole process becomes stationary and the dislocation density becomes 
constant. This is referred to as stationary creep. In the traditional way of describing 
a creep strain versus time curve (“creep curve”), stationary creep is the second stage 
and therefore it is referred to as secondary creep as well. Although stationary and 
secondary creep does not always be exactly the same thing, no distinction between 
the terms will be made in the present book. 

The presence of a stationary stage implies that a specimen can continue to deform 
at constant stress or load, which is one of the most characteristic features of creep, and 
any basic creep model must be able to describe how the stationary stage is reached. 
In creep strain tests, the secondary creep rate is usually measured as the minimum 
creep rate. Even in the secondary stage, the creep rate is not fully constant. The extent 
of the secondary stage is rarely precisely defined and it is up to the one analyzing 
the creep data to determine that. 

Two types of recovery, dynamic and static, are introduced above. In fact, in most 
papers where recovery during creep is discussed no distinction is made between 
dynamic and static recovery. In addition, the nomenclature varies. In this book 
dynamic recovery is strain controlled and static recovery time controlled. This means 
that dynamic recovery only takes place when a specimen is strained whereas static 
recovery can occur even without external load. To describe both tensile and creep 
tests with the same models, both dynamic and static recovery must be taken into 
account. In addition, there are a number of phenomena such as the role of cell struc-
ture and the influence of cold work on creep that would be very difficult to describe 
without taking both types of recovery into account.
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In Sect. 2.2 empirical models for the secondary creep rate are presented. The 
dislocation model that is the basis for the description of both stress controlled (creep) 
and rate controlled (stress strain curves) deformation is derived in Sect. 2.3. Some 
constants that are needed in the creep models are analyzed in Sect. 2.4. The basic 
formula for the secondary creep rate is given in Sect. 2.5. The dislocation mobility 
plays a central role in the modeling, Sect. 2.6. Finally in Sect. 2.7, the analysis is 
applied to aluminum and in Sect. 2.8 to nickel. 

2.2 Empirical Models of Secondary Creep 

It was early on recognized that the creep rate in the secondary stage could be described 
with simple relations. Norton found that stress dependence of the creep rate ε̇sec could 
be described with an exponential expression [1] 

ε̇sec = ANσ nN (2.1) 

where σ is the applied stress AN is a constant. nN is referred to as the stress or Norton 
exponent. Equation (2.1) was later extended by including the temperature and grain 
size dependence [2, 3] 

ε̇sec = 
AN DselfGb 

kBT

(
b 

d

)p( σ 
G

)nN 
(2.2) 

Dself is assumed to be the self-diffusion coefficient represented with an Arrhenius 
expression Ds0 exp (−Qself/RGT ) where Ds0 is a frequency factor, Qself an activation 
energy, and RG the gas constant. G is the shear modulus, b the Burgers vector, kB 
the Boltzmann’s constant, T the absolute temperature, d the grain size, σ the applied 
stress, and AN a constant. The constant p is the grain size exponent that is usually 
close to zero but takes positive values for fine grained materials. AN, p and nN are 
usually considered as adjustable parameters and fitted to experimental data. Unless 
the activation energy is close to that for self-diffusion, it is an additional adjustable 
parameter. Equation (2.2) is often referred to as the Bird, Mukherjee and Dorn (BMD) 
equation. The equation has been much used in creep research in the past decades. It 
has been assumed that from the values of the stress exponent, the activation energy 
and the grain size exponent, the active mechanisms could be identified. This will first 
be analyzed for the stress exponent below. 

Another reason for the importance of Eq. (2.2) is that the creep rate can roughly 
be related to the rupture time with the help of the Monkman-Grant relationship [4] 

ε̇mMG 
sec tR = CMG (2.3) 

where tR is the time to rupture and mMG and CMG are constants. The relation works
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best when the secondary stage is a fairly large fraction of the creep life. An alternative 
way of writing Eq. (2.3) is  

ε̇sectR = εRsec (2.4) 

where εRsec is the total creep strain in the secondary stage. Equation (2.4) is often  
easier to apply than (2.3). 

The understanding of dislocation creep is mainly based on modeling. The prime 
interest has been on secondary creep. The reason is that the stress dependence of 
the rate in the secondary stage has been assumed to reflect the operating creep 
mechanism. In two papers Weertman suggested that stress exponent was about 5 
if climb of dislocations and about 3 if glide of dislocations was controlling [5, 6]. 
This resulted in the anticipation that the value of the stress exponent could be used 
to identify the controlling microstructure mechanism. This was further emphasized 
by the predictions of the diffusion creep models that gave a stress exponent of 1. 

Creep investigations concerning metals have often been performed above half the 
absolute melting point Tm. In Fig.  2.1, the stress dependence of the creep rate is 
illustrated for 0.5Cr0.5Mo0.25V steel at 565 °C over a wide range of stresses. 

The slope of the curve gives the stress exponent nN. At intermediate stresses (and 
temperatures) the stress exponent is usually in the range 3–8. The value in Fig. 2.1 is 
4. The stress exponent is much higher at high stresses (and at low temperatures), in 
the Figure illustrated with nN = 12. The creep rate varies exponentially with stress 
at still higher stresses, which is referred to as power-law breakdown. This can give 
very high stress exponents. At very low stresses, the nN value takes values down to 
unity or even below unity [7]. The steel 0.5Cr0.5Mo0.25V is a precipitation hardened 
material. Other precipitation hardened alloys can show much higher stress exponents 
than in Fig. 2.1. 

Climb of dislocations has in general been considered as the operating mechanism 
at intermediate exponents (3–8). However, glide has also been proposed to control the

Fig. 2.1 Creep rate versus 
stress for 0.5Cr0.5Mo0.25V 
steel at 565 °C. The n value 
is the stress exponent in the 
power-law creep law, Eq. 
(2.2). At large stresses the 
creep rate increases 
exponentially with the stress, 
which is called power-law 
breakdown. Some of the data 
points are extrapolated. After 
Wilshire [7]. Reprinted from 
[8] with permission of 
intechopen 
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Fig. 2.2 Activation energy 
for self-diffusion Qself versus 
the activation energy for 
creep Qcreep. Qcreep is 
obtained by fitting the Q 
value in Eq. (2.2) to creep 
strain rate data. After Sherby 
and Miller [3] 

deformation for certain alloy types. The dominating mechanism at high stresses has 
been suggested as glide. The main mechanism at low stress exponents approaching 
1 has been considered to be diffusion creep. This consistent change of operating 
mechanism with stress has been challenged, see for example [7]. Recent research 
supports that this challenge is relevant. This will be discussed in Sect. 2.6.4. 

It was early on recognized that when the activation energy in Eq. (2.2) was fitted 
to creep strain data for pure metals a value close to the activation energy for self-
diffusion Qself was obtained. This was the reason for having the self-diffusion coef-
ficient in Eq. (2.2). The fitted value is referred to as the activation energy for creep 
Qcreep. The relation between Qcreep and Qself is illustrated in a classical picture in 
Fig. 2.2 [2, 3]. 

The natural explanation of the close relation between Qcreep and Qself is that creep 
is controlled by climb. Since climb requires the diffusion of vacancies, the climb 
rate of pure metals is proportional to the constant for self-diffusion. However, for 
alloyed steels the activation energy for creep can be significantly higher than for 
self-diffusion due to solid solution hardening. There are other mechanisms that give 
a creep rate that is related to the self-diffusion constant. The most well-known one 
is diffusion creep. 

2.3 Dislocation Model 

The most characteristic feature of creep is that there is a continuous deformation at 
constant load or stress. This requires that extensive recovery of dislocations takes 
place that balances the strengthening effect of dislocations due to work hardening. 
Basic creep models must be able to describe this feature. This is the basis of creep 
recovery theories [9]. To provide creep models that can make general predictions, 
the models must be based on basic physical principles and the use of adjustable
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parameters must be avoided. In this chapter such a creep recovery model will be 
presented. 

To describe plastic deformation, the development of the dislocation structure must 
be known. Only recently quantitative basic models have been established that fulfill 
the requirements in the previous paragraph. Such a model will now be presented. In 
later sections and chapters it will be used in a number of applications. 

During plastic deformation three main processes take place. Work hardening raises 
the strength by generation of new dislocations and thereby increases their density. 
The increase of the dislocation density raises the energy content of the material. 
There is a driving force to reduce the energy content. The mechanism that makes this 
possible is called recovery. During recovery dislocations of opposite signs combine 
to form low energy configuration or annihilate each other, which reduces the density 
of dislocations. There are two types of recovery: dynamic recovery that is strain 
dependent and static recovery that is time dependent. 

2.3.1 Work Hardening 

The work hardening of polycrystalline materials can be described with the help of 
the following equation for the dislocation density ρ 

dρ 
dε 

= 
mT 

bLs 
(work hardening) (2.5) 

ε is the strain, mT the Taylor factor, b Burger’s vector and Ls the “spurt” distance which 
the dislocation moves in each elementary release during deformation for example 
from a Frank-Read source. Equation (2.5) can be derived from the Orowan equation 

ε̇ = bρv/mT (2.6) 

ε̇ is the creep rate and v the velocity of the dislocations. If Eq. (2.6) is integrated, one 
obtains 

ε = bρLs/mT (2.7) 

This equation describes how much strain is generated when the dislocations have 
spurted a distance Ls. If we derivate Eq. (2.7) and keep the spurt distance Ls constant, 
we get Eq. (2.5). The Orowan Eq. (2.6) is based only on a geometrical argument and 
not on a specific mechanism, and this applies to Eqs. (2.5) and (2.7) as well. In this 
way these equations have a general applicability. In Eq. (2.5), Ls can be related to the 
barriers in the materials such as grains or subboundaries. The simplest assumption 
is that the spurting dislocations are stopped by the grain boundaries. Ls would then 
be the grain size dg. This would give a grain size dependence in the creep rate that
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is not observed except in special cases. The most common assumption is that Ls 

is controlled by the forest of dislocations, i.e. it is related to the average distance 
between the dislocations 1/ρ1/2. 

Ls = 
cL 

ρ1/2 
(2.8) 

cL is a constant that is much larger than unity. How to find the size of cL will be 
discussed below. If the dislocations are stopped by the subboundaries instead it gives 
an Ls value that is not very different from that in Eq. (2.8) as will be seen below. If 
Eq. (2.8) is inserted into Eq. (2.5) one finds that 

dρ 
dε 

= 
mTρ

1/2 

bcL 
(work hardening) (2.9) 

This form of the work hardening equation appears in many models including 
empirical ones, see for example [10, 11]. As will be seen below, this model can 
describe the initial stages of work hardening in fcc alloys. 

2.3.2 Dynamic Recovery 

When two dislocations during plastic deformation are nearer to each other than a 
critical distance dint a low energy configuration may be formed or annihilation occurs 
reducing the dislocation density. This process is referred to as dynamic recovery. It 
is commonly taken into account with the help of the following equation 

dρ 
dε 

= −ωρ (2.10) 

where ω is a constant. This equation was first proposed by Bergstrom and co-workers 
[12, 13]. Roters et al. [14] gave a basic derivation of Eq. (2.10). They used the 
following argument. During a time increment dt a dislocation travels a distance v 
dt and has to find a suitable dislocation within the distance 2dint. This gives an 
annihilation rate of 

dρ = −ρvdt2dintρ = −  ̇
εmT 

b 
dt2dintρ (2.11) 

In the last step, the Orowan Eq. (2.6) has been applied. This gives an equation 
of the same form as Eq. (2.10). By taking the role of slip planes, dislocation locks 
and dislocation dipoles into account, the following expression for the constant ω was 
obtained [14]
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ω = 
mT 

b 
dint

(
2 − 

1 

nslip

)
(2.12) 

nslip is the number of independent slip systems (=12 for fcc metals). Roters et al. 
[14] suggested a high value for dint. But in fact dint is quite small [15]. The simplest 
way to estimate dint is to assume that it is equal to twice the dislocation core radius. 
For example, ab initio calculations for copper give a core radius of r0 = 1.3 b [16], 
and thus dint = 2.6 b. This gives ω = 15 which is quite a good value for copper in 
agreement with observations. To represent dynamic recovery, Eq. (2.10) is a common  
equation to use. Together with Eq. (2.9), work hardening of many materials can be 
described [10, 11]. Equation (2.10) has been used in many papers for representing 
stress strain curves. A list of such papers can be found in [17]. 

2.3.3 Static Recovery 

Dislocations of opposite burgers vector attract each other. Static recovery takes into 
account how climbing (and gliding, see below) dislocations of opposite signs move 
towards each other and finally annihilate. This can be described by the following 
equation 

dρ 
dt  

= −2τL Mρ2 (2.13) 

t is the time, τL the dislocation line tension, and M the dislocation climb mobility. 
The idea behind this equation was suggested by Friedel [18], but he never gave any 
derivation of it in his book. The equation was first used extensively by Lagneborg 
and co-workers [9]. To derive the equation, let us consider a network of dislocations 
with an average spacing of R, which corresponds to a dislocation density of ρ = 1/ 
R2. With the help of the dislocation mobility, the velocity of the dislocations can be 
estimated 

dR  

dt  
= −Mbσ = −Mb 

Gb 

2π R 
ln

(
R 

r0

)
= −  

MτL 

R 
(2.14) 

G is the shear modulus. In the second equality, the expression for the stress from 
a neighboring screw dislocation is introduced. In the third equality, an expression 
for the line tension of a screw dislocation has been applied. If equations for edge 
dislocations or mixed screw and edge dislocations are used instead, the end result is 
the same. The time to eliminate the dislocation pair telim is obtained by integrating 
Eq. (2.14) with respect to time 

telim = R2 

2MτL 
(2.15)
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Fig. 2.3 Dislocation 
dynamics simulation in 2D 
of static recovery. There are 
edge dislocations with four 
Burgers vectors (in the 
directions top, bottom, left, 
right) and screw dislocations 
with two Burgers vectors (in 
the directions down, up). 160 
dislocations remain in the 
simulation 

The average distance between the dislocations changing with time during the 
recovery is obtained from Eq. (2.15) 

dR  

dt  
= 

MτL 

R 
(2.16) 

If now the relation R = 1/√ρ is applied to Eq. (2.16), (2.13) is recovered. 
The derivation of the rate for static recovery, Eq. (2.13), is obviously simplified 

since it considers only a pair of dislocations. To analyze static recovery in a more 
general situation, dislocation dynamic simulations have been performed. Randomly 
distributed parallel dislocations with six different Burgers vectors have been studied, 
see Fig. 2.3. Four of the sets were edge dislocations and two screw dislocations. 
Dislocations of opposite signs attract each other (top, bottom or left, right or down, 
up) and eventually annihilate. 

The result of the analysis is illustrated in Fig. 2.4. In this case 1300 dislocations 
were used in the simulation. In Fig. 2.4 the values from Eq. (2.13) are scaled to the 
same number of initial dislocations.

It is evident from Fig. 2.4 that the validity of Eq. (2.13) is not restricted to a single 
pair of dislocations. 

Equation (2.13) is based on the annihilation of forest dislocations, i.e. dislocations 
in the subgrain interiors. If the static recovery is based on subgrain coarsening instead, 
the recovery rate can be derived with the help of the results in [19]. In fact, the same 
results as before are obtained, i.e. Eq. (2.13) is reproduced. Thus, the role of the 
subgrains cannot be determined from the form of Eq. (2.13). Blum has suggested 
that taking substructure into account would change the recovery process [20]. This 
obviously depends on the details of the assumptions. 

Both dynamic and static recovery are based on the annihilation of dislocations of 
opposite Burgers’ vector or orientation that come close to each other. Although the
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Fig. 2.4 Number of 
dislocations versus time 
during static recovery. 
Dislocation simulation 
results are compared with 
Eq. (2.13)

modelling of dynamic and static recovery are strain and time controlled, respectively, 
and they are based on the different derivations, the two recovery mechanisms are 
not completely unrelated. For some processes, it is essential to take both types of 
recovery into account, for example, for stress strain curves for large strains and 
for primary creep. For more limited strain ranges, dynamic recovery is enough to 
consider for stress strain curves. On the other hand, the stationary creep rate is based 
on static recovery. In some cases, it is even assumed that the two recovery mechanisms 
can give the same results. This is the case in one derivation of the cL parameter. 
Dynamic and static recovery should be considered as different appearances of the 
same phenomenon, and their relative importance depends on the application. Their 
final role should always be verified by comparison to experiments. The varying 
influence of the two types of recovery could be compared with phenomena in quantum 
mechanics, which could be explained in terms of particles or wave packages or both. 

2.3.4 Accumulated Dislocation Model 

To describe how the dislocation density ρ develops during plastic deformation, 
the contributions from work hardening (2.5), dynamic recovery (2.10), and static 
recovery (2.13) are added. 

dρ 
dε 

= 
mT 

bcL 
ρ1/2 − ωρ − 2τL Mρ2 /ε̇ (2.17) 

Notice that we have strain derivatives in (2.5) and (2.10) but a time derivative in 
(2.13). By multiplying or dividing by ε̇, one can make a transformation from one 
type of derivative to the other. Equation (2.17) represents a general basic equation
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for the development of the dislocation density during plastic deformation. We have 
seen above that all parts of Eq. (2.17) have a good basis. 

The validity of the two first two terms on the right hand side (RHS) of Eq. (2.17) 
has been verified by comparison to the work hardening in tensile tests. This will be 
further discussed in Chap. 3. The experimental verification of the last term, the static 
recovery term is done with the help of creep tests. Examples will be given below. 

In many papers in the literature either dynamic or static recovery is taken into 
account but not both. However, there are cases where it is absolutely essential to 
include both. For example, this is the case for the influence of cold working on creep 
properties, which will be treated in Sect. 8.3 [21]. In addition, if the same equation is 
to be used to describe both strain rate and stress controlled tests, both dynamic and 
static recovery must be included. Equation (2.17) has to be expanded for some types 
of materials. A well-known case is martensitic 9 and 12% Cr-steels. For example, to 
describe primary creep more than one type of dislocation density must be taken into 
account [22]. This will be described in Sect. 4.5. 

2.4 The cL Parameter 

The value of the cL parameter can be found from the following analysis. The 
maximum dislocation density ρx that is derived from Eq. (2.17) plays an impor-
tant role because it gives the dislocation contribution to the creep strength during 
stationary conditions and the amount of work hardening during tensile tests. 

The main alternative to derive the value of cL. is to make reference to the substruc-
ture. The spurt distance Ls in Eq. (2.5) can be related to the subgrain or cell diameter 
dsub. 

Ls = nsubdsub (2.18) 

where the constant nsub is close to 3 [23, 24]. It is well established that the subgrain 
or cell size can be related to the dislocation stress 

dsub = 
KsubGb 

σdisl 
(2.19) 

K sub is a constant typically in the range 10–20 [25]. The dislocation stress σdisl is 
given by Taylor’s equation 

σdisl = αmTGbρ1/2 (2.20) 

where σdisl is the strength contributions from the dislocations. This equation gives the 
relation between the strength contribution from the dislocations and the dislocation 
density where α ≈ 0.19 is a constant. Experimentally α takes typically values in
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the range 0.2–0.6 [26]. In this book a computed value α ≈ 0.19 applicable to high 
temperatures will be used, Eq. (3.17). Equation (2.18) can now be rewritten as 

Ls = 
nsubKsubGb 

σdisl 
= 

nsubKsub 

mTαρ1/2 
(2.21) 

Equation (2.21) has the same form as Eq. (2.8) so a  cL value can be obtained 
directly 

cL = 
nsubKsub 

mTα 
(2.22) 

A simple estimate of the cL value can be obtained in the following way. It is 
assumed that the maximum dislocation density ρx is either controlled by the dynamic 
recovery term (ρxdr) or the static recovery term (ρxsr) in Eq.  (2.17) 

ρxdr =
(

mT 

bcL ω

)2 

ρxsr =
(

mTε̇ 
2bcL τL M

)2/3 

(2.23) 

At ambient temperatures, the stress dependence of the recovery terms is such that 
the dynamic recovery term dominates. This means that first of Eq. (2.23) is the one 
that is applicable and can be used to obtain an estimate of cL. 

cL = mT 

bωρ
1/2 
x 

= 
m2 

TαG 

ωσdislx 
≈ 

m2 
TαG 

ω(Rm − σy) 
(2.24) 

where Rm is the tensile strength and σy the yield strength at room temperature. In 
the second equality, Taylor’s Eq. (2.20) has been applied. In the final equality in 
Eq. (2.24), the maximum value of σdisl has been estimated as the difference between 
the tensile strength Rm and the yield strength σy for a material without significant 
contributions from precipitation and solid solution hardening. The ratio between the 
expressions for static and dynamic recovery, Eqs. (2.13) and (2.10), is given by 

2τL Mρ 
ωε̇ 

Apart from constants this is the same ratio as in the creep Eq. (2.28), see below, 
if the ratio is multiplied by ρ1/2. This means that the following ratio is at least 
approximately temperature and stress independent 

2τL M 

ωε̇ 
ρ3/2 

To make Eq. (2.24) valid at higher temperature, we have to multiply it by (ρ(T)/ 
ρ(TRT))1/2 which gives
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cL = mT 

bωρ(T )1/2 
( 

ρ(T ) 
ρ(TRT) 

)1/2 = mT 

bωρ(TRT)1/2 
(2.25) 

where TRT is the room temperature. This expression is identical to Eq. (2.24). This 
means that Eq. (2.24) is valid at elevated temperatures as well. Consequently, cL is 
a temperature independent constant. Eq. (2.22) represents a more physically based 
value than Eq. (2.24), but the values are of the same order. 

Another argument can in a number of cases give a more accurate estimate of cL. It  
is well-known that tensile stress strain tests can give rise to a stationary stress level if 
sufficiently large strains can be reached. This stress level is comparable to the creep 
stress that gives the same strain rate that was used in the tensile test. For many creep 
tests the contribution from the static recovery is dominating that of dynamic recovery. 
On the other hand for stress strain curves, the situation is reversed: dynamic recovery 
is more important than static recovery. But the comparison between the results from 
the tensile and the creep tests gave the same stationary results. A possible assumption 
is then that dynamic recovery and static recovery should generate the same findings. 
Putting it in mathematical terms this means that the two last terms in Eq. (2.17) 
should be the same, which gives 

ωε̇ − 2τLρs Mcl(ρs) (2.26) 

Since the climb mobility Mcl in general depends on the dislocation density, Eq. 
(2.26) has to be solved by iteration to find the stationary dislocation density ρs. This  
argument is only valid if only one of the dynamic or the static recovery term is taken 
into account. If the dynamic recovery term is considered, the first two terms on the 
RHS of Eq. (2.17) have the same value under stationary conditions and the cL value 
can be determined. 

cL= 
mT 

bω 
ρ1/2 
s (2.27) 

This relation will be used in Sect. 3.3 for stress strain curves. 

2.5 Secondary Creep Rate 

The recovery theory is the basis of our understanding of the creep process [9]. For 
secondary creep to take place the recovery rate must be sufficiently fast that the 
dislocation density can be kept constant. In the presence of a continuously rising 
dislocation density, the creep rate will gradually be reduced and eventually vanish, 
which is not in accordance with observations. Thus, the balance between the gener-
ation and the annihilation of dislocations is a crucial feature. The strain derivative 
in Eq. (2.17) vanishes if we assume stationary conditions. The secondary strain rate 
can then be expressed as
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ε̇sec = 
2τLbcL 
mT 

Mclimbρ
3/2 (2.28) 

In Eq. (2.28) only static recovery is taken into account, not dynamic recovery 
to make the equation agree with observations. This was discussed at the end of 
Sect. 2.3.3. 

If other contributions than the dislocation stress is part of the applied stress, Eq. 
(2.20) has to be rewritten as 

σdisl = αmTGbρ1/2 = σ − σi (2.29) 

σdisl is the dislocation stress. σi is an internal stress that was the yield strength above. 
In addition, contributions from solid solution hardening and particle hardening can 
be included. They will be discussed in Chaps. 6 and 7. Equation (2.28) can be 
transformed to stresses with the aid of Taylor’s Eq. (2.29), 

ε̇sec = hsec(σ − σi ) where hsec(σ ) = 
2τLbcL 
mT 

Mclimb(T, σ  )  
σ 3 

(αmTGb)3 
(2.30) 

The mobility M will be given below. At low stresses this expression is almost 
independent of stress, and Eq. (2.28) approximately gives a power-law expression 
with a stress exponent of 3 if there is no internal stress. This is sometimes referred to as 
the natural creep law [27]. This stress exponent is often observed at high temperatures 
for austenitic stainless steels [28]. There are many factors that influence the value 
of the stress exponent nN. If diffusion takes place along dislocations (pipe diffusion) 
instead of in the grains, the stress exponent is increased by 2 [29]. If the dislocation 
network consists of dipoles instead of single dislocations the stress exponent is raised 
by 2, but limited experiments are available to support that [20]. But the most dramatic 
effect is from strain induced vacancies that will be analyzed in detail below. 

According to Eq. (2.29), the applied stress σ is equal to the sum of the strength 
contributions from dislocations σdisl and from other parts σi (solid solution and 
particle hardening). At low temperatures σi can also include the yield strength. Thus, 
for a pure metal the applied stress is equal to the dislocation strength if the yield 
strength is not taken into account. There are other formulations of the creep-recovery 
theory that also involve an effective stress σeff, see for example [30]. This means that 
Eq. (2.29) is replaced by 

σ = σeff + σdisl − σi (2.31) 

Physical arguments have been given for the existence of an effective stress [31]. 
However, the effective stress is a problematic quantity. It has been suggested that 
σeff could be measured in stress drop tests. If the dislocation structure is intact after 
a stress drop, the strain rate would disappear after a sufficiently large stress drop, 
because the back stress from dislocations would be much larger than for the stationary
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level at the new lower stress. However, it is known now from dislocation dynamics 
simulations (DDS) that the forest dislocations adapt to the new stress level within 
milliseconds [32]. The substructure is also likely to partially adapt to the new stress 
level but not completely. So the back stress that is measured is from the unchanged 
part of the substructure. Unfortunately, no detailed studies on the momentary effect 
on the substructure seem to exist. It is evident that what is measured in a stress drop 
test is something that is quite different from what is supposed to be the effective 
stress. Stress drop tests at different laboratories have not in general given consistent 
results [33]. This is not surprising considering the dynamic nature of stress drop 
tests, which makes them very sensitive to the exact experimental setup [34]. In the 
present text, the effective stress will not be considered, since there seems to be no 
well-defined way to measure or model the quantity. 

σeff = 0 (2.32) 

From the results that are presented in this text it will be evident that precise creep 
models can be formulated without introducing an effective stress. 

2.6 Dislocation Mobility 

2.6.1 Climb Mobility 

The dislocation mobility M in Eq. (2.17) describes the velocity v of moving 
dislocations 

v = Mbσ (2.33) 

where σ is the applied stress. Glide of dislocations takes place in their slip planes 
and climb perpendicular to the slip planes. Climb is associated with the emission and 
absorption of vacancies by diffusion. Climb is a slower process than glide. Hirth and 
Lothe [35] derived a basic expression for the climb mobility of pure metals at high 
temperatures (>0.4 Tm where Tm is the melting temperature) 

Mclimb0 = 
Ds0b 

kBT 
e 

σ b3 
kB T e− Qself 

RG T (2.34) 

where T is the absolute temperature, σ the applied stress, Ds0 the pre-exponential coef-
ficient for self-diffusion, Qself the activation energy for self-diffusion, kB Boltzmann’s 
constant, and RG the gas constant. 

At lower temperatures, plastic deformation raises the number of vacancies above 
the equilibrium value. A climbing dislocation will either emit or absorb vacancies. 
Jogs in the form of steps of the length of a Burgers vector are formed on gliding



28 2 Stationary Creep

dislocations when they cut each other. In general jogs move by climb and hence they 
also emit or absorb vacancies. Since the climb rate is proportional to the number of 
vacancies per unit volume, it is influenced by the excess vacancy concentration. 

Mecking and Estrin [36] have developed a model that describes how the number 
of vacancies is influenced by plastic deformation. They estimated the number of 
vacancies produced mechanically in a unit volume per unit time as 

P = 0.5 
σ ̇ε 
Gb3 

(2.35) 

The quantities in this equation have been explained above. The constant in Eq. 
(2.35) was estimated to 0.1 in [36]. A detailed derivation gives the value 0.5. For the 
excess vacancies the annihilation rate A was found to be 

A = 
Dvac 

λ2 
(c − c0) (2.36) 

where c0 is the equilibrium vacancy concentration,Δc = c – c0 the excess concentra-
tion, Dvac the diffusion constant for the vacancies, and λ the spacing between vacancy 
sinks. Following [36], λ can be related to the cell or subgrain size dsub, Eq.  (2.19) 
if a substructure is present. Combining Eqs. (2.19), (2.35) and (2.36), an expression 
for the excess vacancy concentration is obtained

Δc 

c0 
= 0.5 

√
2K 2 subε̇b

2 

Dself 

G 

σ 
(2.37) 

In finding Eq. (2.37), a relation for the self-diffusion coefficient has been applied 

Dself = c0ΩDvac (2.38) 

where Ω is the atomic volume. In the same way as in [36], the climb rate is assumed 
to be proportional to the total vacancy concentration. Equation (2.37) then gives the 
increase in the climb rate gclimb due to the presence of excess vacancy concentration 

gclimb = 1 + Δc 

c0 
(2.39) 

The total climb mobility Mclimb is obtained by multiplying Eq. (2.34) by  gclimb. 

Mclimb = Mclimb0gclimb (2.40)
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2.6.2 The Glide Mobility 

The glide mobility is very high in a dislocation free crystal. A glide mobility of 
M0 = 1 × 104 1/Pa/s was measured for a copper single crystal by Edington [37]. 
The mobility is much lower in an alloy where a forest of dislocations is present. As 
discussed above, jogs will be formed on the dislocations during deformation. Often 
the jogs will have to move perpendicular to their glide planes. This implies that they 
are sessile, and they have to move by climb [35], and this is a slow process. The 
motion of the jogs is likely to control the glide rate. This will be assumed and this is 
also what Hirth and Lothe did [35]. 

The starting point for the glide mobility is Eq. (2.40), since the jogs are moving 
by climb. However, there is another aspect that must be considered. Jogs are only 
present on a small part of a dislocation. Due to the slow movement of the jogs, the 
forces on the dislocations are localized to the jogs. The average distance between 
jogs can be related to the dislocation density ρ as ljog = 1/√ρ. The Peach-Koehler 
formula F = bσl where l is the length of the dislocation gives the force F on a 
dislocation. F will be the force on each jog if l is chosen as ljog. Thus, the stress on 
the jogs is raised by 

gglide = 
ljog 
b 

= 
1 

b
√

ρ 
(2.41) 

where the length of a jog is set as the burgers vector. Equation (2.41) can be expressed 
in terms of the stress σ with the help of Taylor’s equation 

σ = σy + αmTGb
√

ρ (2.42) 

where σy is the yield strength 

gglide = 
αmTG 

σ − σy 
(2.43) 

Multiplying the climb mobility by gglide gives the glide mobility 

Mglide = Mclimb0gclimbgglide (2.44) 

Equation (2.44) is applicable to both edge and screw dislocations. It is evident that 
the climb and glide mobility are closely related with the assumptions made. gglide is 
approximately equal to the ratio between the shear modulus G and the applied stress 
σ. gglide is always much larger than unity, since G is considerably larger than σ. As  
a consequence, the glide mobility is always larger than the climb mobility. When 
modeling creep, this is also a common starting point.
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2.6.3 Cross-Slip Mobility 

With the help of cross-slip, screw dislocations can change glide plane. This can 
increase the annihilation of dislocations with opposite Burgers vectors and raise the 
rate of recovery. There is an additional activation energy Ecs for cross-slip. Püschl 
gave the following values of Ecs [38]. 

Ecs = 0.012Gb3 
dSFE 
b 

ln

(
2dSFE 
b

)
(2.45) 

dSFE is the width of a stacking fault [35] 

dSFE = Gb2 

8πγSFE 

(2 − νP) 
(1 − νP) 

(2.46) 

where γP is Poisson’s ratio and γSFE the stacking fault energy. Taking copper and 
aluminum as examples with stacking fault energies of 45 mJ/m2 and 166 mJ/m2, 
respectively [39], Eq. (2.45) gives  for  Ecs values of 560 and 40 kJ/mol. This indicates 
strong temperature dependence for copper. Equation (2.45) is derived with the help 
of elasticity theory, which can give imprecise values at the atomic level. However, 
ab initio calculations have recently been carried out with similar results. Du et al. 
found Ecs values of 210 to 270 kJ/mol for Ni–Al alloys and Nöhring and Curtin 60 
kJ/mol for Al–Mg, 160 kJ/mol for Cu–Ni and 180 kJ/mol for Ni–Al [40, 41]. Lower 
energy values have also been obtained in ab initio calculations. Rao et al. found 
values in the range 50–70 kJ/mol for Cu and Ni [42]. The effect of cross-slip on the 
mobility can be expressed as 

gcross-slip = exp(− 
Ecs 

RGT 
) (2.47) 

Mcross-slip = Mclimb0gclimbgglidegcross-slip (2.48) 

The role of cross-slip in dynamic recovery will be analyzed in Sect. 3.4. 

2.6.4 The Climb Glide Mobility 

The results for the dislocation mobilities are recent [8]. It has been known for a 
long time that the climb mobility in Eq. (2.34) underestimated the creep rates at low 
temperatures and high stresses by a wide margin. The main assumption was that glide 
would be the controlling mechanism under these conditions. To handle this situation 
a combined climb and glide mobility was formulated [43]
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Mclimb = Mclimb0 fclglide (2.49) 

where fclglide is given by 

fclglide = exp
(
Qself 

RGT 
( 

σ 
Rmax 

)2
)

(2.50) 

Rmax is the true tensile strength at ambient temperatures. It was work of Kocks et al. 
[44] that suggested the form of Eq. (2.50). They presented an empirical expression 
for the glide mobility. However, the expression had five unknown parameters and 
could therefore not be used directly. According to a suggestion by Nes, an integrated 
climb and glide mobility could be introduced [45]. In this way some of the unknown 
parameters could be found. With the aid of work by Chandler, the other parameters 
could be fixed [46]. 

The introduction of Eq. (2.50) has a number of important implications at low 
temperatures. First, the activation energy for creep is reduced. Second, the creep rate 
is increased by a large factor. Third, the stress exponent is raised in a dramatic way. 
These findings are in excellent accordance with experiments [15, 47]. 

Ideally, to describe creep, the basic models for the dislocation mobilities derived 
above should be used when modeling creep and other types of plastic deformation. 
However, since gclimb involves the strain rate, it is difficult to apply directly. Instead, 
the equations for the mobilities will be used to verify the validity of Eq. (2.50). 
This equation can then be applied to compute the creep rate. gclimb and fclglide are 
compared in Figs. 2.5 and 2.6 for pure aluminum. 

In Fig. 2.5, a continuous set of parameters for temperature and strain rate are 
used whereas in Fig. 2.6 experimental values are applied. It can be seen that the 
enhancement in vacancy concentration due to plastic deformation can fully explain 
the increase in creep rate in relation to the high temperature climb mobility. A second

Fig. 2.5 Climb 
enhancement factor versus 
temperature at five strain 
rates for aluminum. The 
increase in vacancy 
concentration due to plastic 
deformation, Eq. (2.39) is  
compared to the climb-glide 
enhancement factor, Eq. 
(2.50). Redrawn from [8] 
with permission of 
intechopen



32 2 Stationary Creep

Fig. 2.6 Climb 
enhancement factor versus 
stress at six temperatures for 
aluminum. The increase in 
vacancy concentration due to 
plastic deformation, Eq. 
(2.39) is compared to the 
climb-glide enhancement 
factor, Eq. (2.50). 
Experimental data from [48]. 
Redrawn from [8] with  
permission of intechopen

example of the comparison is given in Figs. 2.7 and 2.8 for copper with 50 ppm P 
(Cu-OFP). 

The two sets of models show an excellent agreement over many orders of magni-
tude of strain rate. The dependence of temperatures, stress and strain rate is well 
covered. It verifies that the expression for the climb-glide enhancement in Eq. (2.50) 
can be fully explained by the increase in vacancy concentration. Since its stress and 
temperature dependence is explicit, it is straightforward to apply. The total formula 
for the climb mobility, Eq. (2.49), with the equations for high temperature climb 
mobility Mclimb0, Eq.  (2.34), and the climb glide factor, Eq. (2.50) is now  

Mclimb(T , σ  )  = 
Ds0b 

kBT 
e 

σ b3 
kB T e− Qself 

RG T fclglide(T, σ  ) (2.51)

Fig. 2.7 Climb 
enhancement factor versus 
temperature at four strain 
rates for copper alloyed with 
50 ppm P (Cu-OFP). The 
increase in vacancy 
concentration due to plastic 
deformation, Eq. (2.39) is  
compared to the climb-glide 
enhancement factor, Eq. 
(2.50)
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Fig. 2.8 Climb 
enhancement factor versus 
stress at six temperatures for 
copper alloyed with 50 ppm 
P (Cu-OFP). The increase in 
vacancy concentration due to 
plastic deformation, Eq. 
(2.39) is compared to the 
climb-glide enhancement 
factor, Eq. (2.50). Redrawn 
from [8] with permission of 
intechopen

This is the expression that should be inserted in the equation for the secondary 
creep rate (2.30) 

ε̇sec = hsec(σ − σi ) where hsec(σ ) = 
2τLbcL 
mT 

Mclimb(T , σ  )  
σ 3 

(αmTGb)3 
(2.52) 

The derivation of the factor fclglide, Eq. (2.50), was originally based on the assump-
tion that it took the effect of glide into account. But the derivation now considers only 
climb. The result is that creep is fully climb controlled even at lower temperatures 
and higher stresses in the power-law breakdown regime. 

2.7 Application to Aluminum 

According to what we know today, static recovery is in general controlled by climb. 
This was analyzed in Sect. 2.3.3. This implies that Eq. (2.40) for the climb mobility 
should be applied in Eq. (2.30). Furthermore it was found that the enhancement factor 
for the climb mobility gclimb due to the increased vacancy concentration in Eq. (2.39) 
agreed with the climb glide enhancement factor fclglide in Eq. (2.50). Further support 
to the use of Eq. (2.40) is found from the successful application of fclglide to model 
experimental data. 

An application of Eq. (2.30) will now be demonstrated for pure aluminum. In 
bcc metals dislocations are exposed to a friction stress, called the Peierls stress. The 
Peierls stress is usually not thought to be of significance for fcc alloys. However, 
it has recently been demonstrated by ab initio calculations that the Peierls stress is 
non-negligible for aluminum. A Peierls stress will be applied for σi. The following
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Fig. 2.9 Secondary creep 
rate versus stress for pure 
aluminum. Equation (2.30) is  
compared to experimental 
data from [50]. Reprinted 
from [8] with permission of 
intechopen 

value for the Peierls stress of edge dislocations σpe was found by Shin and Carter 
[49]. 

σpe = 4.9 × 10−5 G (2.53) 

Screw dislocations gave much smaller values. The application of Eq. (2.30) is  
illustrated in Fig. 2.9. 

The slope of the curves is about 4.5 at intermediate stresses in Fig. 2.9. The slope 
is the value of the stress exponent. The slope increases at higher stresses, indicating 
power-law breakdown. An increase of the stress exponent is also observed at low 
stresses. This is due to the presence of the Peierls stress. It can be seen that the model 
in Eq. (2.30) can obviously handle the experimental data quite well. 

2.8 Application to Nickel 

The factor fclglide in Eq. (2.50) has been found to work with good precision for Al and 
Cu. It is used successfully in many places in this book for example also for austenitic 
stainless steels. It is an expression that is fitted to gclimb in Eqs. (2.37) and (2.39) and 
it may not be completely general. In fact, it has been found for nickel that a different 
expression has to be applied [51]. In this case, the starting point is to use the function 
for the secondary creep rate, Eq. (2.30) without the factor fclglide. 

ε̇sec = 2 
bcL τL 
mT 

Mclimb0(T, σ  )  fSFE 
σ 3 

(αmTGb)3 
(2.54) 

This formula for the creep rate is inserted into Eq. (2.37)
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fclglide = 1 + Δc 

c0 
= 1 +

√
2K 2 sub 
kBT 

bcLτL 
(αmT)3mT 

fSFE 
σ 2 

G2 
e 

σ b3 
kB T (2.55) 

For Ni, pipe diffusion, i.e. diffusion along dislocations is important. To the bulk 
diffusion coefficient in Mclimb0, the pipe diffusion coefficient has to be added [29] 

Deff = Dself + ρ Ad Dd (2.56) 

where ρ is the dislocation density, Ad is the core area of the dislocations, and Dd the 
dislocation diffusion coefficient. For the core radius of the dislocations, a value of 
6 × 10−10 m has been chosen. The values of the activation energy and pre-factor for 
the dislocation diffusion coefficient are 152.4 kJ/mol and 1.56 × 10−4 m2/s [51, 52]. 
The creep rate can now be predicted using Eqs. (2.51), (2.52) and (2.55). Results are 
illustrated in Fig. 2.10. 

There are important differences between Eqs. (2.50) and (2.55). At high stresses, 
Eq. (2.50) gives a stress exponent that increases with decreasing temperature that is 
a characteristic feature of creep in the power-law break down regime. On the other 
hand, Eq. (2.55) is associated with an essentially temperature independent stress 
exponent. In Fig. 2.10, the stress exponent is nN = 7. Equation (2.54) in its basic 
form gives nN = 3. Since pipe diffusion is dominant there is a contribution of 2 from 
the second term in Eq. (2.56), since ρ is proportional to the stress squared according 
to Taylor’s Eq. (2.29). There is also a stress exponent contribution of 2 from Eq. 
(2.55). These contributions to the stress exponent add up to nN = 7.

Fig. 2.10 Secondary creep rate versus temperature at six stresses for pure nickel. Predictions using 
Eqs. (2.51), (2.52) and  (2.55) are compared to experimental data from [53]. Redrawn from [51] 
with permission of ASME 
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2.9 Summary 

• In the past much creep research has been based on the Bird, Mukherjee and Dorn 
(BMD) equation. It describes the creep rate in the secondary stage as a function 
of temperature and stress. With the three to four adjustable parameters, most 
results for the creep rate can be described. It was for a long time assumed that the 
stress exponent and the activation energy would fall in a narrow range for specific 
creep mechanisms and that knowledge could be used to identify the operating 
mechanisms. However that assumption is challenged by more recent findings. 

• The most important quantity in the modeling of creep is the dislocation density 
because it gives a large contribution to the creep strength. There are three main 
processes that control the development of the dislocation density: work hardening, 
dynamic recovery and static recovery. Models for the contribution from these three 
processes are derived. Differential equations for the time and strain derivative for 
the dislocation density are formulated. These equations are the starting point 
for much basic modeling of creep. From the equations, an expression for the 
secondary creep rate can be derived. 

• Dislocation creep is assumed to be controlled by climb. The climb mobility is 
an important quantity in this respect. At low stresses the climb mobility is essen-
tially stress independent and is only a function of the temperature. In this situation 
the models suggest a stress exponent of about three. During creep, strain induced 
vacancies appear. At higher stresses they have a dramatic effect on the stress expo-
nent. Strain induced vacancies can quantitatively explain the high stress exponents 
at least up to 50 during power-law breakdown. This has been demonstrated for 
aluminum and copper. 

References 

1. F.H. Norton, The creep of steel at high temperatures (McGraw-Hill Book Co., New York, 1929) 
2. J.E. Bird, A.K. Mukherjee, J.E. Dorn, Quantitative relation between properties and microstruc-

ture, in ed. by A.R.D.G. Brandon (Israel Universities Press, 1969), p. 255 
3. O.D. Sherby, A.K. Miller, Combining phenomenology and physics in describing the high 

temperature mechanical behavior of crystalline solids. J. Eng. Mater. Technol. Trans. ASME 
101, 387–395 (1979) 

4. F.C. Monkman, N.J. Grant, An empirical relationship between rupture life and minimum creep 
rate in creep-rupture tests. ASTM Proc. 1956(56), 593–620 (1956) 

5. J. Weertman, Steady-state creep through dislocation climb. J. Appl. Phys. 28, 362–364 (1957) 
6. J. Weertman, Steady-state creep of crystals. J. Appl. Phys. 28, 1185–1189 (1957) 
7. B. Wilshire, Observations, theories, and predictions of high-temperature creep behavior. Metall. 

Mater. Trans. A 33, 241–248 (2002) 
8. R. Sandström, Fundamental models for the creep of metals, in Creep, inTech (2017) 
9. R. Lagneborg, Dislocation mechanisms in creep. Int. Metallur. Rev. 17, 130–146 (1972) 
10. U.F. Kocks, Laws for work-hardening and low-temperature creep. J. Eng. Mater. Technol. 

Trans. ASME, 98 Ser H, 76–85 (1976)



References 37

11. W. Roberts, Y. Bergström, The stress-strain behaviour of single crystals and polycrystals of 
face-centered cubic metals—A new dislocation treatment. Acta Metall. 21, 457–469 (1973) 

12. Y. Bergström, A dislocation model for the stress-strain behaviour of polycrystalline α-Fe with 
special emphasis on the variation of the densities of mobile and immobile dislocations. Mater. 
Sci. Eng. 5, 193–200 (1970) 

13. Y. Bergström, W. Roberts, A dislocation model for dynamical strain ageing of α-iron in the 
jerky-flow region. Acta Metall. 19, 1243–1251 (1971) 

14. F. Roters, D. Raabe, G. Gottstein, Work hardening in heterogeneous alloys—A microstructural 
approach based on three internal state variables. Acta Mater. 48, 4181–4189 (2000) 

15. R. Sandstrom, Basic model for primary and secondary creep in copper. Acta Mater. 60, 314–322 
(2012) 

16. R. Wang, S. Wang, X. Wu, Edge dislocation core structures in FCC metals determined from 
ab initio calculations combined with the improved Peierls-Nabarro equation. Phys. Script. 83 
(2011) 

17. S. Mohamadnejad, A. Basti, R. Ansari, Analyses of dislocation effects on plastic deformation. 
Multiscale Sci. Eng. 2, 69–89 (2020) 

18. J. Friedel, Dislocations (Addison-Wesley, Reading (MA), USA, 1964) 
19. R. Sandstrom, Subgrain growth occurring by boundary migration. Acta Metall. Mater. 25, 

905–911 (1977) 
20. W. Blum, P. Eisenlohr, Dislocation mechanics of creep. Mater. Sci. Eng. A 510–511, 7–13 

(2009) 
21. R. Sandström, The role of cell structure during creep of cold worked copper. Mater. Sci. Eng. 

A 674, 318–327 (2016) 
22. H. Magnusson, R. Sandstrom, Creep strain modeling of 9–12 pct Cr steels based on 

microstructure evolution. Metall. Mater. Trans. A 38A, 2033–2039 (2007) 
23. D. Francke, W. Pantleon, P. Klimanek, Modelling the occurrence of disorientations in 

dislocation structures. Comp. Mater. Sci. 5, 111–125 (1996) 
24. P. Ambrosi, C. Schwink, Slip line length of copper single crystals oriented along [100] and 

[111]. Scr. Metall. 12, 303–308 (1978) 
25. M.R. Staker, D.L. Holt, The dislocation cell size and dislocation density in copper deformed 

at temperatures between 25 and 700 °C. Acta Metall. 20, 569–579 (1972) 
26. H. Wiedersich, Hardening mechanisms and the theory of deformation. JOM 16, 425–430 (1964) 
27. W. Blum, P. Eisenlohr, F. Breutinger, Understanding creep—A review. Metall. Mater. Trans. 

A 33, 291–303 (2002) 
28. S. Vujic, R. Sandstrom, C. Sommitsch, Precipitation evolution and creep strength modelling 

of 25Cr20NiNbN austenitic steel. Mater. High Temp. 32, 607–618 (2015) 
29. O.A. Ruano, A.K. Miller, O.D. Sherby, Influence of pipe diffusion on the creep of fine-grained 

materials. Mater. Sci. Eng. 51, 9–16 (1981) 
30. H. Magnusson, R. Sandstrom, The role of dislocation climb across particles at creep conditions 

in 9 to 12 pct Cr steels. Metall. Mater. Trans. A 38A, 2428–2434 (2007) 
31. P. Ostrom, R. Lagneborg, Recovery-athermal glide creep model. J. Eng. Mater. Technol. Trans. 

ASME 98 Ser H, 114–124 (1976) 
32. A.H. Delandar, R. Sandström, P. Korzhavyi, The role of glide during creep of copper at low 

temperatures. Metals 8 (2018) 
33. M. Biberger, J.C. Gibeling, Analysis of creep transients in pure metals following stress changes. 

Acta Metall. Mater. 43, 3247–3260 (1995) 
34. B. Wilshire, M. Willis, Mechanisms of strain accumulation and damage development during 

creep of prestrained 316 stainless steels. Metall. Mater. Trans. A: Phys. Metallur. Mater. Sci. 
35 A, 563–571 (2004) 

35. J.P. Hirth, J. Lothe, Theory of dislocations (Krieger, Malabar, Florida, 1982) 
36. H. Mecking, Y. Estrin, The effect of vacancy generation on plastic deformation. Scr. Metall. 

14, 815–819 (1980) 
37. J.W. Edington, The influence of strain rate on the mechanical properties and dislocation 

substructure in deformed copper single crystals. Phil. Mag. 19, 1189–1206 (1969)



38 2 Stationary Creep

38. W. Püschl, Models for dislocation cross-slip in close-packed crystal structures: a critical review. 
Prog. Mater. Sci. 47, 415–461 (2002) 

39. X.-Z. Wu, R. Wang, S.-F. Wang, Q.-Y. Wei, Ab initio calculations of generalized-stacking-fault 
energy surfaces and surface energies for FCC metals. Appl. Surf. Sci. 256, 6345–6349 (2010) 

40. J.-P. Du, C.-Y. Wang, T. Yu, Cross-slip process in model Ni(Al) solid solution: an embedded-
atom method study. Comp. Mater. Sci. 91, 192–199 (2014) 

41. W.G. Nöhring, W.A. Curtin, Dislocation cross-slip in fcc solid solution alloys. Acta Mater. 
128, 135–148 (2017) 

42. S.I. Rao, D.M. Dimiduk, T.A. Parthasarathy, J. El-Awady, C. Woodward, M.D. Uchic, Calcu-
lations of intersection cross-slip activation energies in fcc metals using nudged elastic band 
method. Acta Mater. 59, 7135–7144 (2011) 

43. R. Sandstrom, H.C.M. Andersson, Creep in phosphorus alloyed copper during power-law 
breakdown. J. Nucl. Mater. 372, 76–88 (2008) 

44. U.F. Kocks, Argon A.S., Ashby, M.F., Thermodynamics and kinetics of slip. Prog. Mater. Sci. 
19, 1 (1975) 

45. E. Nes, K. Marthinsen, Modeling the evolution in microstructure and properties during plastic 
deformation of f.c.c.-metals and alloys—An approach towards a unified model. Mater. Sci. 
Eng.: A 322, 176–193 (2002) 

46. H.D. Chandler, Effect of unloading time on interrupted creep in copper. Acta Metall. Mater. 
42, 2083–2087 (1994) 

47. R. Sandström, Fundamental models for creep properties of steels and copper. Trans. Indian 
Inst. Met. 69, 197–202 (2016) 

48. H. Mecking, A. Styczynski, Y. Estrin, Steady state and transient plastic flow of aluminium 
and aluminium alloys, in strength of metals and alloys (ICSMA 8) (Pergamon, Oxford, 1989), 
pp.989–994 

49. I. Shin, E.A. Carter, Possible origin of the discrepancy in Peierls stresses of fcc metals: first-
principles simulations of dislocation mobility in aluminum. Phys. Rev. B—Condensed Matter 
Mater. Phys. 88 (2013). 

50. I.S. Servi, N.J. Grant, Creep and stress rupture behaviour of aluminium as a function of purity. 
Trans. AIME 191, 909–916 (1951) 

51. R. Sandström, J. Zhang, Modeling the creep of nickel. J. Eng. Mater. Technol. 143 (2021) 
52. S. Soltani, N. Abdolrahim, P. Sepehrband, Mechanism of intrinsic diffusion in the core of 

screw dislocations in FCC metals—A molecular dynamics study. Comp. Mater. Sci. 144, 50–55 
(2018) 

53. E.C. Norman, S.A. Duran, Steady-state creep of pure polycrystalline nickel from 0.3 to 0.55 
Tm. Acta Metall. 18, 723–731 (1970) 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	2 Stationary Creep
	2.1 The Creep Process
	2.2 Empirical Models of Secondary Creep
	2.3 Dislocation Model
	2.3.1 Work Hardening
	2.3.2 Dynamic Recovery
	2.3.3 Static Recovery
	2.3.4 Accumulated Dislocation Model

	2.4 The cL Parameter
	2.5 Secondary Creep Rate
	2.6 Dislocation Mobility
	2.6.1 Climb Mobility
	2.6.2 The Glide Mobility
	2.6.3 Cross-Slip Mobility
	2.6.4 The Climb Glide Mobility

	2.7 Application to Aluminum
	2.8 Application to Nickel
	2.9 Summary
	References


