
Chapter 11 
The Role of Cavitation in Creep-Fatigue 
Interaction 

Abstract There are many empirical models for the development of creep and fatigue 
damage. The perhaps most well-known ones are Robison’s and Miner’s damage 
summation rules. They are based on the mechanical behavior during monotonous and 
cyclic loading. To improve the accuracy of the damage assessment, it is important 
to analyze the changes in the microstructure as well, not least the cavitation. To 
describe cyclic loading, special empirical models have often been used in the past, 
some with numerous adjustable parameters. Recently, a model for cyclic loading 
has been formulated that is based on the corresponding expressions for monotonous 
loading. The main change is that the value of the dynamic recovery constant is 
increased. In this way, cyclic hysteresis loops can be reproduced without adjustable 
parameters. Cavitation is believed to be of the same technical importance during 
cyclic as during static loading. In spite of this, the number of studies of cavitation 
during cyclic loading is quite limited. One set of data exists for a 1Cr0.5Mo steel. The 
static cavitation models have been transferred to cyclic conditions. It is demonstrated 
that these models can describe the cavitation both during low cycle fatigue (LCF) 
and combined creep and LCF. 

11.1 General 

High temperature plants are often exposed to a combination of creep and fatigue. 
A common feature is thermal fatigue where components are exposed to straining 
during start-ups and shut-downs. During operation primary stresses (direct loading) 
as well as secondary stresses (self-equilibrium stresses) appear that give rise to creep 
damage. Although some types of plants like steam and gas turbines are particularly 
exposed to cyclic loading, both creep and fatigue are of importance in many plants. 
In recent years significant contributions from solar and wind power have been added 
to the electric supply. Since the amount of power of these renewable sources depends 
on the weather, additional basic power is needed. This has implied that many fossil 
fired power plants have been put into standby and are operated intermittently. This
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means that number of start-ups and shut-downs are increased and thereby the amount 
of cyclic loading. 

Different types of damage appear depending on the relative amounts of creep and 
fatigue. If there is limited creep due to short loading times at high temperatures, 
the life time is controlled by fatigue [1]. Pure fatigue is dominated by transgranular 
crack initiation, Fig. 11.1a. On the other hand if there is modest amount of fatigue, 
the damage will be dominated by creep. Creep gives rise to cavitation in the grain 
boundaries, Fig. 11.1b. If fatigue and creep take place sequentially, the main cracks 
changes from transgranular to intergranular, Fig. 11.1c. If creep and fatigue loading 
occur simultaneously, the creep damage in the grain boundaries provides easy paths 
for the fatigue cracks, Fig. 11.1d. 

Creep-fatigue interactions have traditionally been studied with low cycle fatigue 
(LCF) at a temperature close to the maximum operation temperature [3]. To observe 
any influence of creep, it is essential to include hold times in the load cycles [1]. 
However, it has turned out that LCF typically gives a lower amount of damage 
than is found in components. For simulating the role of straining during start-ups 
and shut-downs, thermal mechanical fatigue (TMF) is often used where both the 
loading and temperature are varied during the cycle. It is important that the minimum 
temperature in the cycle is low, since a significant part of the damage is generated at 
low temperatures [4]. LCF and TMF are commonly performed under strain control. 
A number of tests are carried out with a sequence of different maximum strains in the 
cycles. Hold times are introduced at the maximum and/or minimum strains. During

Fig. 11.1 Appearance of creep-fatigue damage mechanisms; a fatigue controlled; b creep 
controlled; c creep-fatigue interaction (sequential); d creep-fatigue interaction (simultaneous). 
Reprinted from [2] with permission of Taylor & Francis 
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the hold times the strain level is fixed during which the stress is relaxing due to creep. 
An alternative is to have hold times at a fixed stress. Since the absolute value of the 
average stress is larger during the hold times in this case, it gives rise to more creep 
damage than for a hold time at constant strain. The amount of creep damage can be 
increased by raising the length of the hold time or by lowering the strain rate in the 
cycle. 

It is well-known that formation of creep cavities plays an important role during 
creep-fatigue interaction. This is illustrated in Fig. 11.1. In spite of the importance of 
creep cavities during creep-fatigue, only limited efforts to generate basic modeling 
of the phenomenon have been taken [5]. Instead, reference has to be made to brittle 
creep rupture during static conditions. It can be assumed that many of the mechanisms 
are similar for cyclic and static loading. The main mechanism for creep damage is 
believed to be initiation and growth of creep cavities in the grain boundaries. When 
the cavitated area fraction in the grain boundaries has reached a certain level, cracks 
are formed and rupture is close in common specimens [6]. In larger specimens and 
components the crack propagation stage is also of major importance [7]. 

Grain boundary sliding (GBS) is commonly assumed to give rise to cavity forma-
tion. This is a natural assumption. Considering for example particles in the grain 
boundaries. GBS will generate extensive shearing around the particles that can easily 
initiate cavities. However, cavities can also be formed in grain boundaries where very 
few particles are present such as in pure copper. Lim provided a model for this situ-
ation by taking into account the presence of substructure [8]. Cavities can form at 
the intersection between grain boundaries and the substructure. He showed that this 
process is thermodynamically feasible and there is an energy gain when cavities are 
formed. Quantitative models for cavity nucleation could now be formulated. 

It has been shown experimentally and with the help of finite element methods 
(FEM) that the amount GBS is proportional to the creep strain [8, 9]. The FEM 
modeling also gives the proportionality constant, so it can be used for quantita-
tive predictions. Using these findings and the assumption that cavities can nucleate 
at particles and subgrain-grain boundary junctions, the double ledge model was 
formulated [10]. This model gives that the number of cavities is proportional to the 
creep strain and the results are in quantitative agreement with observations [11]. It 
is assumed that these principles can be taken over for cyclic loading, Sect. 11.4. 

Models for diffusion controlled growth of creep cavities have been available for 
many years. Unfortunately, these models typically predict much higher growth rates 
than the observed ones. It was however realized that cavities inside a material (not on 
the surface) cannot grow faster than the creep rate of the surrounding material. This 
is referred to as constrained growth in contrast to the unconstrained models [12]. 
Models for constrained growth were quickly developed and gave a better agreement 
with observations, see for example [13]. The models still tended to overestimate the 
growth rate. For this reason, the models were reanalyzed and with the help of FEM 
studies. A new and improved model could be established that is in better agreement 
with experiments [14]. 

Strain controlled growth of creep cavities can also take place in addition to diffu-
sion growth. There are number of models based on plastic straining in the literature.
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Unfortunately, most of these models do not consider constrained growth contrary to 
the situation for diffusion growth, which means that the predicted grow rate can give 
quite large cavity growth during creep. Recently, a model that takes the criterion for 
constraint growth into account has been presented which is of importance during 
creep [5]. During cyclic deformation, constrained cavity growth is not expected to 
be significant due to the often small creep strain in the cycles. This will be discussed 
in Sect. 11.4.2. 

For creep failure it is important to distinguish between ductile and brittle rupture. 
Ductile rupture has been shown to occur after ductility exhaustion or after plastic 
instability has taken place (in specimens necking) [15]. Brittle rupture in many engi-
neering materials takes place after the cavitated area fraction in the grain bound-
aries has reached a certain level. To predict creep rupture, the development of the 
microstructure must be possible to model including the dislocation structure, particle 
structure and the fraction of elements in solid solution. In this way the dislocation 
strengthening, particle hardening and solid solution hardening can be computed. In 
addition, quantitative models for cavity nucleation and growth must be available. 
Such models have been established and the creep rupture behavior has successfully 
been predicted for austenitic stainless steels without the use of adjustable parameters, 
see for example [16]. 

For monotonous loading these principles are well established. However, data and 
parameter values cannot be applied to cyclic loading directly and basic models for 
this case are only available to a limited extent. For example, the value of the dynamic 
recovery constant is much larger during cyclic than during static loading [5]. This 
will be analyzed in Sect. 11.3. Models for cavitation during low cycle fatigue will 
be presented in Sect. 11.4 and compared to experimental data for 1Cr0.5Mo steel. 

11.2 Empirical Principles for Development 
of Creep-Fatigue Damage 

11.2.1 Fatigue and Creep Damage 

Basic models for describing creep rupture are available. Several models have been 
given in this book. However, for cyclic loading basic models do not seem to have 
been developed. However, many empirical models can be found. A model that is 
applicable to many materials is the Coffin-Manson equation 

Ninit = CCM(Δεpl)
−βCM (11.1) 

where N init is the number of cycle to crack initiation and Δεpl the plastic strain range 
in the load cycle. CCM and βCM are constants that are fitted to the observations. 
Equations of type in (11.1) can sometimes also be used for the elastic and total strain 
range. The use of Eq. (11.1) is illustrated in Fig. 11.2.
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Fig. 11.2 Relation between 
the number of cycles to crack 
initiation and the total, 
plastic and elastic strain 
ranges for 1Cr0.5Mo during 
continuous cycling (CC). 
Experimental data from [17]. 
Redrawn from [18] with  
permission of Taylor & 
Francis 

The influence of pre-creep before LCF and/or hold time during the LCF is illus-
trated in Fig. 11.3. With increasing amount of creep, the elastic strain range at a given 
number of cycles to crack initiation is significantly reduced. However, the effect of 
creep on the plastic strain range relation is not very pronounced. 

The total fatigue damage DF is often determined with the help of Miner’s law. It 
is based on linear summation of the damage over individual cycles 

DF =
∑

i 

ni 
Ninit(Δεpl(i )) 

(11.2)

a b  

Fig. 11.3 Influence of 5% pre-creep strain and/or 5 min hold time on the number of cycles to crack 
initiation as a function of strain range for 1Cr0.5Mo. Experimental data from [17]; a elastic strain 
range; b plastic strain range 



210 11 The Role of Cavitation in Creep-Fatigue Interaction

where ni is the number of cycles when the plastic strain range is Δεpl(i) giving 
a number of cycles to crack initiation of N init(Δεpl(i)). When the damage reaches 
unity, failure is assumed to take place. 

There are many expressions for the creep damage DC. The classical principle is 
based on linear time fractions (Robinson rule) 

DC = 
t∫

0 

dt1 
tR(T (t1), σ (t1)) 

(11.3) 

where tR(T, σ) is the rupture time at temperature T and stress σ as a function of time 
t. An alternative way is to base the damage on ductility exhaustion 

DC = 
t∫

0 

dε 
dt  (T (t1), σ (t1))dt1 
εR(T (t1), σ (t1)) 

(11.4) 

where the accumulated creep strain is compared to the rupture ductility. A simple 
assumption of how to combine DF and DC would be to just add them. This means 
that rupture is predicted to occur when 

DF + DC = 1 (11.5) 

However, detailed experiments have shown that such a relation is not conservative 
enough. In fact, bilinear equations have been demonstrated to agree with observations 
and have also been standardized by ASME 

DF = 1 − 
1 − αFC 

αFC 
DC DF ≥ DC 

DC = 1 − 
1 − αFC 

αFC 
DF DC ≥ DF 

(11.6) 

The constant αFC has been found to be material dependent. Holdsworth [7] gives  
the following values: for the austenitic stainless steels 18Cr10Ni and 17Cr12Ni2Mo, 
αFC = 0.33, for 20Cr30NiTi, αFC = 0.11, for 9Cr1Mo (P91), αFC = 0.25 and for 
2.25Cr1Mo, αFC = 0.11. The bilinear relation in Eq. (11.6) is illustrated in Fig. 11.4. 
For comparison Eq. (11.5) would give a straight line between (0, 1) and (1, 0). 
Equation (11.6) is thus considerably more conservative than Eq. (11.5).

For plain specimens of parent metal, Eq. (11.6) is very well supported. However, 
already by considering multi-axial stresses, the prediction of the rupture time in 
Eq. (11.3) becomes an issue. Hayhurst [19] proposed that the rupture stress σR under 
multi-axial conditions could be represented by 

σR = γ1σ1 + γ2σh + γ3σe (11.7)
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Fig. 11.4 Bilinear criterion 
for failure with combined 
fatigue and creep damage 
according to Eq. (11.6) with 
αFC = 0.25. Below the 
criterion line no cracking 
should take place

where σ1 is the maximum principal stress, σh the average of the principal stresses 
and σe the effective stress. γ1, γ2 and γ3 are constants that are fitted to creep rupture 
data under multi-axial conditions. It has been shown that Eq. (11.7) can be used to 
describe experimental data in a number of cases. However, it turns out that different 
authors give different values for γ1, γ2 and γ3. Since the results of Eq. (11.7) are  very  
sensitive to the values of these constants, it is difficult to use Eq. (11.7) to estimate 
the rupture stress. The issues with Eq. (11.7) have been discussed by Wen et al. [20]. 
This is one of the reasons why the ductility exhaustion expression for creep damage 
Eq. (11.4) is preferred by many authors to the estimate of the damage by integration 
over the rupture time, Eq. (11.3) [2]. The influence of multiaxiality on the creep rate 
can be described directly with the Odqvist equation [21] 

ε̇i j  = 
3 

2 

si j  
σe 

h(σe) (11.8) 

The stress dependence of the creep rate h(σ) in the secondary stage can be found 
in Eq. (5.31). The stress deviator sij and the effective stress σe are given by 

si j  = σi j  − σhδi j (11.9) 

σe =
√(

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2
)
/2 (11.10) 

where σij is the stress tensor, δij the Kronecker delta, σ1, σ2 and σ3 the principal 
stresses, and σh the hydrostatic stress (the average of the principal stresses). i and j 
runs over the coordinate directions 1, 2 and 3. By considering uniaxial conditions 
(σ1 = σ, σ2 = σ3 = 0), it can easily be shown that the expected creep rates ε̇11 = 
ε̇u, ε̇22 = −ε̇u/2, ε̇33 = −ε̇u/2 are reproduced, where ε̇u is the uniaxial creep rate.
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For the creep ductility, the influence of multiaxiality has been characterized quite 
well and there is a fair agreement between several models and experiments at least 
for notched bars. This is analyzed in Sect. 13.4.4. For example, the model by Wen 
and Tu seems to represent many sets of experimental data [22]. 

In the paper by Wen et al. [20] it is quite well documented that ductility exhaustion, 
Eq. (11.4) gives a considerably safer prediction than that based on the life fraction 
rule, Eq. (11.3). Even for ductility exhaustion, they demonstrate that the predicted 
damage typically deviates a factor of three up or down. 

These results confirm many earlier results that it is not safe to base damage esti-
mates solely on mechanical properties. It is also important to predict the microstruc-
ture development in terms of particle coarsening, subgrain growth, cavitation, etc. 
and compare the findings with observations. If it can be done with continuum damage 
mechanics that is fine, but it is strongly recommended to use basic models of the 
type formulated in this book. 

A third way to estimate the damage is to compute the cavitated area fraction Acav 

in the grain boundaries (Eq. (13.8)) 

Acav = 
t∫

0 

dncav 
dt '

(t ')π R2 
cav(t, t

')dt ' (11.11) 

where ncav is the number of creep cavities per unit grain boundary area and Rcav their 
radius. The amount of damage is then 

DC = Acav/Acavcrit (11.12) 

Acavcrit is the amount of cavitation when cracks are initiated. If it is possible to 
record the cavitation, it is usually the safest way to assess the amount of damage. 
The modeling of ncav and Rcav during cyclic loading is handled in Sect. 11.4. 

11.2.2 Loops During Cyclic Loading 

During cyclic loading the stress versus strain curves form loops that are called 
hysteresis loops. Perhaps the most common way of describing a hysteresis loop 
is with the Ramberg-Osgood equation 

εa = 
σa 

E 
+

(
σa 

Klp

)γlp 

(11.13) 

where εa is the strain, σa is stress, and E the elastic modulus. K lp and γlp are 
adjustable parameters that are fitted to the experimental data. There are more complex 
approaches based on the assumption that the loops are due to the build-up of residual
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stresses. The first such approach was due to Masing but models based on the 
superposition of a distribution of yield strengths have also been proposed [23]. 

The creep damage in a stress strain loop is primarily due to the stress relaxation 
during a hold time and thereby the amount of creep strain. To describe the stress 
relaxation during a hold time, the Feltham equation is often used for this purpose 

σrel = σst(1 − σ0 Brel log(1 + brelt)) (11.14) 

where σst is the start stress, σrel is the stress after relaxation and t the relaxation time. 
Brel, brel and σ0 are adjustable parameters. References to the original papers can be 
found in [24] where also some applications of the equations are given. 

11.3 Deformation During Cyclic Loading 

11.3.1 Basic Model for Hysteresis Loops 

Empirical models for representing hysteresis loops are readily available. A few exam-
ples were mentioned in Sect. 11.2.2. Adjustable parameters in these models are fitted 
to the experimental data. Often a reasonable fit to the data can easily be obtained. 
There are however drawbacks with the empirical approaches. Typically a good fit 
can be found with many mathematical expressions and then it is difficult to know 
which one represents the correct mechanism. It is practically always desirable to 
extrapolate the results to new condition but if the operating mechanisms are not 
safely identified, generalization of the results becomes quite uncertain unless a large 
set of experimental data is available. Phrased in another way, empirical models are 
not predictable. 

For creep under non-cyclic conditions, basic models have been presented in several 
chapters in the book and also in publications, for a survey, see [25]. The models 
are formulated from basic physical principles and have been shown to reproduce 
experimental data for copper, aluminum and austenitic stainless steels in a satisfactory 
way without using adjustable parameters. Such models are referred to as basic in this 
book. Only limited attempts have been made to perform the corresponding derivation 
for cyclic deformation, which involves elastic, plastic and creep deformation. The 
procedure described in [5] will be followed. The Voce equation can describe the 
plastic flow curve for a number of materials. This equation is given in Eq. (3.14) and 
can also be found in [26]. 

σ = σy + (σmax flow − σy)(1 − e−ωεpl/2 ) (11.15) 

where σ is the applied stress, εpl the plastic strain, σy the yield strength, σmax flow 

the maximum flow stress, and ω the dynamic recovery constant. The deviation from 
linear behavior of the work hardening is controlled by ω. The plastic strain rate can
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be obtained from Eq. (11.15) 

dεpl 

dt  
= 2 

ω(σmax flow − σ)  
dσ 
dt  

(11.16) 

The creep rate in the secondary stage ε̇sec is given in Eq. (4.3). The original 
derivation can be found in [27] 

h(σ ) = 
2bcL 
mT 

Dself0bτL 
kBT

( σ 
αGb

)3 
e 

σ b3 
kB T e

− Qself 
RG T

[
1−( σ 

σimax 
)2

]

e− Qsol 
RT (11.17) 

dεsec 

dt  
= h(σ − σi) (11.18) 

where T is the absolute temperature, σ the applied stress, Ds0 the pre-exponential 
coefficient for self-diffusion, Qself the activation energy for self-diffusion, kB Boltz-
mann’s constant, RG the gas constant, mT the Taylor factor, b Burger’s vector, τL the 
dislocation line tension, σimax the maximum flow stress, and cL a work hardening 
constant. Solid solution hardening gives an additional contribution Qsol to the acti-
vation energy. σi is an internal stress that includes contributions from solid solution 
hardening and particle hardening. The stress exponent is about 3 at low stresses, but 
increases rapidly with increasing stress. According to Eq. (4.6), the primary creep 
rate is given by 

dεprim 

dt  
= h(σ + σdisl sec − σdisl − σi) (11.19) 

In comparison to (11.18) an extra stress has been introduced 

σprim = σdisl sec − σdisl (11.20) 

For this model for primary creep that was described in Sect. 4.3, primary creep is fully 
accounted for just by introducing the extra stress in Eq. (11.20). It is the difference 
between the dislocation stress in the secondary stage σdisl sec and that in the primary 
stage σdisl. Since the dislocation density in the primary stage is normally much lower 
than that in the secondary stage, consequently σdisl sec is much higher than σdisl. The  
result is that the creep rate is much higher in the primary stage than in the secondary 
stage as it should. This is also directly evident from Eq. (11.19). 

In a hysteresis loop, the stress is not stationary but varies all the time. It goes 
through the cycle so the creep process is restarted in every half cycle. This means 
that primary creep is involved. But in fact, Eq. (11.18) is still valid [28]. This can be 
seen from Eqs. (11.20) and (11.21). In these equations, σ + σprim correspond to the 
stress during cyclic loading. The result is simply 

dεprim 

dt  
= h(σ − sgn(ε̇tot)σi) (11.21)
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This equation is obviously identical to Eq. (11.18) apart from the different sign 
in front of σi in the compression and the tension going part of the cycle. 

The total strain rate ε̇tot has contributions from the elastic ε̇el, plastic ε̇pl, and creep 
strain rate ε̇prim. The sum of the elastic, plastic, and creep strain rate is equal to the 
external strain rate 

dεel 

dt  
+ 

dεpl 

dt  
+ 

dεprim 

dt  
= 

dεtot 

dt  
(11.22) 

where the elastic strain rate ε̇el is 

dεel 

dt  
= 

dσ 
dt  

1 

E 
(11.23) 

and E is the elastic modulus. By combining Eqs. (11.16), (11.21), (11.22) and (11.23), 
the stress rate that gives the hysteresis loops is found 

dσ 
dt  

= 1 

1/E + 2/
[
ω(σmax flow − sgn(ε̇tot)σ )

]
[
dεtot 

dt  
− h(σ − sgn(ε̇tot)σi)

]

(11.24) 

The sign function sgn in Eq. (11.21) is necessary to make the equation valid for 
both the tension and compression going parts of the loop. 

When applying Eq. (11.24) for hysteresis loops, the starting point is that the 
properties used in monotonous loading should be taken over to as large extent as 
possible. Creep properties can be found for many materials. However, tensile prop-
erties at elevated temperatures are often more difficult to locate. The temperature 
dependence of the maximum flow stress below the creep range is approximately 
related to that of the elastic modulus (unpublished results) 

σmax flow(T ) = σmax flow(RT)

[
E(T ) 
E(RT)

]2 

(11.25) 

where T and RT represent the value at temperature and room temperature, respec-
tively. The dynamic recovery constant ω has also a related temperature dependence. 
But there is also another effect. ω describes how fast dislocations of opposite burgers’ 
vectors on the same slip plane annihilate when they meet. But during cyclic defor-
mation dislocations meet much more frequently that raises the value of ω. Each half 
cycle in the hysteresis loop can in this respect be considered equivalent to the strain 
to uniform elongation in the monotonous case. The resulting equation for ω is then 

ω(T ) = ω(RT) 
εu 

εr

[
E(RT) 
E(T )

]2 

(11.26)
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where εu is the uniform elongation during monotonous loading and εr the strain 
range during cycling. Observe that the influence of the temperature dependence of 
the elastic modulus is opposite for σmax flow and ω. 

11.3.2 Application of the Cycling Model 

A model for the hysteresis loop is given in Eq. (11.24) based on the same principles as 
for stationary deformation. Elastic, plastic and creep deformation are considered. It 
involves parameter values for monotonous loading except for the dynamic recovery 
constant ω which has to be raised due to the frequent encounter of dislocations during 
cyclic deformation according to Eq. (11.26). 

Equation (11.24) is applied in Fig. 11.5 to the 21Cr11Ni austenitic stainless steel 
253 MA, that has rare earth metal additions to improve the oxidation resistance and 
can therefore be used up to 1000 °C. A loop for continuous cycling is illustrated. 

An acceptable description of the loop is obtained. Data for the studied material 
can be found in [29]. 

The high value of ω is quite important. If the monotonous value for ω is used 
(ω = 15 at room temperature) without taking the loop factor εu/εr into account, the 
observed type of loop cannot be reproduced. This is shown in Fig. 11.6. Obviously, 
a reasonably formed looped cannot be formed.

In Sect. 11.4 on cavitation, the steel 1Cr0.5Mo will be studied. Since creep rate 
data for the steel have not been found, the model values have been compared to 
rupture data assuming that the Monkman-Grant relationship is valid. The rupture 
data is shown in Fig. 11.7.

An Arrhenius expression is fitted to the data

Fig. 11.5 Hysteresis loop 
for low cycle fatigue (LCF) 
of the austenitic stainless 
steel 253 MA at 750 °C. 
Experimental data are 
compared with the model in 
Eq. (11.24). Redrawn from 
[18] with permission of 
Taylor & Francis 
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Fig. 11.6 Simulated 
hysteresis loop for low cycle 
fatigue (LCF) with the same 
parameter values except that 
a low  ω (=15 at room 
temperature) value 
characteristic of monotonous 
deformation is used

Fig. 11.7 Creep rupture 
data for 1Cr0.5Mo steel [30] 
fitted to an Arrhenius  
expression. Redrawn from 
[18] with permission of 
Taylor & Francis

1 

tR 
= CR exp

(
− 

QR 

kBT

)
σ nN (11.27) 

The data for stresses above 300 MPa are ignored since they are not of importance 
for the hysteresis loops. The values of the constants are QR = 391 kJ/mol, nN = 4.4 
and CR = 1.0 × 1012 with the rupture time tR in hours. Equation (11.27) is transferred 
to strain rate with the help of the modified Monkman-Grant relation. 

ε̇ = 
εR 

tR 
(11.28)
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Fig. 11.8 Creep rate model values for 1Cr0.5Mo steel according to Eqs. (11.17) and  (11.18) 
compared creep rupture data [30] fitted to an Arrhenius expression as well as to experimental 
creep rate values from [17] 

The rupture ductility εR is taken as 0.1. The strain rate according to the model 
in Eqs. (11.17) and (11.18) is compared to that in Eq. (11.28) in Fig.  11.8. A few  
experimental data points for the creep rate from [17] are also included. 

A precise agreement in Fig. 11.8 is not to be expected because the Monkman-
Grant equation is only an approximate relation. In addition, the activation energy 
for the rupture is quite high, 390 kJ/mol. This should be compared to the activation 
energy for self-diffusion for ferrite that is 240 kJ/mol. For the creep rate this value is 
raised by the contribution from solid solution hardening that has been taken as 50 kJ/ 
mol. The difference in activation energy between creep rupture and rate is still quite 
significant. The modelled strain rate are anyway of the right order around 550 °C, 
where the results are used for modeling hysteresis loops. 

Four modeled loops for 1Cr0.5Mo steels are compared to experimental data in 
Figs. 11.9 and 11.10.

In Fig. 11.9, two loops cycled at 535 °C with and without pre-creep are compared. 
Pre-creep reduces the stress range probably due to softening of the microstructure 
during the creep process. In Fig. 11.10, the influence of a hold time is illustrated 
that decreases the stress range further. Pre-creep reduces the stress range also in this 
case. It is evident that the model in Eq. (11.24) can at least approximately describe 
the influence of pre-creep and hold time on the hysteresis loops. 

To illustrate the applicability of the model in Eq. (11.24) quite a different case 
where creep has the main influence on the hysteresis loops is considered. This 
should be contrasted to Figs. 11.9 and 11.10 where the dominant influence on the 
loops is from cycling. Loops have been computed for alloy PM2000, which is a 
ferritic oxide dispersion strengthened (ODS) alloy with the approximate composi-
tion 20Cr5Al0.4Ti0.5Y2O3 [31]. Loops are presented in Fig. 11.11 at 1200 °C for 
two different strain rates. The dominance of creep is demonstrated by the flat upper
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a b  

Fig. 11.9 Hysteresis loop for low cycle fatigue (LCF) of the ferritic-bainitic steel 1Cr0.5Mo at 
535 °C. Experimental data from [17] are compared with the model in Eq. (11.24). a Tempered 
condition; b pre-crept to 5% strain at 600 °C. Redrawn from [18] with permission of Taylor & 
Francis 

a b 

Fig. 11.10 Hysteresis loop for low cycle fatigue (LCF) of the bainitic steel 1Cr0.5Mo at 535 °C 
with a hold time of 5 min. Experimental data from [17] are compared with the model in Eq. (11.24). 
a Tempered condition; b pre-crept to 5% strain at 560 °C. Redrawn from [18] with permission of 
Taylor & Francis

and lower parts of the loops. The high temperature is the origin of the strong role of 
creep. The creep strain is of importance at lower stresses. This means that the vertical 
parts of the loops are controlled by the initial straighter part of the work hardening. 
The main effect of the lower strain rate in Fig. 11.11b is that it reduces the stress 
range somewhat.

In Fig. 11.12 a loop for thermo-mechanical fatigue (TMF) is presented. The 
thermal cycling is between 800 and 1200 °C with strain and temperature in phase, 
i.e. the maximum strain and temperature appear together. This is quite a severe test of 
the model in Eq. (11.24). The upper and lower parts of the loop are again controlled 
by creep. Since the temperature is increasing in parallel to the increasing strain in
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a b  

Fig. 11.11 Hysteresis loop for low cycle fatigue (LCF) of the ferritic ODS alloy at 1200 °C. 
Experimental data from [31] are compared with the model in Eq. (11.24); a strain rate 7 × 10–4 1/ 
s; b strain rate 5 × 10–5 1/s. Reprinted from [5] with permission of Springer

the upper part of the loop, the stress is gradually decreasing. For the same reason the 
absolute value of the creep stress increases with decreasing strain in the lower part 
of the loop when the temperature is reduced. 

Previously, the loops in Figs. 11.11 and 11.12 have been represented with an 
empirical model involving a number of adjustable parameters [31]. Such analysis is 
restricted to measured loops, and generalizing the results, for example, for computa-
tion of the fatigue and creep damage is difficult to manage in a safe way. However with 
the basic model for the hysteresis loop, the situation is different. It has been demon-
strated that the model can handle different cases without using adjustable parame-
ters. The possibility to extrapolate the results to new situations is then dramatically 
improved. In the past it has often been assumed that the shape of the hysteresis loops 
is due to the presence of a complex state of residual stresses that can be described 
with the Masing model or a distribution of yield strengths [23]. However, the results

Fig. 11.12 Hysteresis loop 
for thermo-mechanical 
fatigue (TMF) of the ferritic 
ODS alloy PM2000 between 
800 and 1200 °C in phase. 
Strain rate 5 × 10–5 1/s. 
Experimental data from [31] 
are compared with the model 
in Eq. (11.24). Reprinted 
from [5] with permission of 
Springer 
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in this section demonstrate that monotonous and cyclic loading can be handled in 
the same way just by modifying the value of the dynamic recovery constant. 

11.4 Cavitation 

11.4.1 Nucleation of Cavities 

The basic principles for nucleation of creep cavities are assumed to be the same in 
cycling and monotonous loading. Basic mechanisms for nucleation are discussed in 
10.4 and in [6]. Although a number of mechanisms for nucleation have been proposed 
in the literature, the experimental data are fully consistent with the starting point that 
cavities are formed by grain boundary sliding (GBS). Cavities open up at particles or 
at subboundary—grain boundary junctions in sliding grain boundaries. The amount 
of GBS uGBS is proportional to the creep strain, Eq. (9.11) 

uGBS = Csε (11.29) 

The value of the proportionality constant Cs has been determined with the help 
of FEM modeling [32], Eq. (9.12) 

Cs = u̇GBS/ε̇ = 
3φ 
2ξ 

dg (11.30) 

where dg is the grain size, φ = 0.15–0.33 (the value increases with the creep stress 
exponent) and ξ ≈ 1.4 are constants. With the help of the so called double ledge model, 
the nucleation rate can be related to the amount of creep strain [10]. According to 
this model, nucleation is assumed to take place when a subboundary on one side of 
a sliding grain boundary meets a subboundary on the other side or a particle. The 
result is the following nucleation rate, Eq. (10.8) 

dncav 
dt

= 
0.9Cs 

dsub

(
gsub 
d2 
sub 

+ 
gpart 
λ2

)
ε̇ = Bsε̇ (11.31) 

where ncav is the number of cavities nucleated per unit grain boundary area, and 
dsub is the subgrain diameter. dsub is inversely proportional to the dislocation stress 
that is in general close to the applied stress. λ is the interparticle spacing in the grain 
boundary. gpart and gsub are the fractions of particles and subboundary junctions where 
cavitation takes place. The averaging over different orientations gives the factor 0.9. 
Equation (11.31) has been verified successfully by comparison to experiments for 
austenitic stainless steels [11] and copper [33]. 

A 1Cr0.5Mo ferritic-bainitic steel will be used to illustrate cavitation during LCF 
[17, 18]. Some of the specimens were creep tested before the LCF to study the
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Fig. 11.13 Number of 
cavities versus creep strain 
for specimens later used in 
LCF testing. Experimental 
data from [17] are compared 
with the model in 
Eq. (11.31). Redrawn from 
[18] with permission of 
Taylor & Francis 

combined influence of creep and cycling. The creep testing was performed at a stress 
of 100 MPa and was terminated when a creep strain of 5% was reached. The creep 
testing temperatures were 560 and 600 °C. The amount of cavitation is illustrated in 
Fig. 11.13. 

The cavities are assumed to be nucleated around the carbides in the grain bound-
aries. By comparing the distribution of cavities and particles in the grain boundaries 
at 560 °C where micrographs are available, it turns out that one particle out of 5 
initiated a cavity. This means that gpart is 0.2. It is not possible to predict the value 
of gpart. The grain size dgrain was 12 μm and the creep exponent nN = 4.4. Equa-
tion (11.30) then gives a Cs value of 2.5 × 10–6 m. These parameter values are used 
in the modeling also for LCF. 

The nucleation rate at 600 °C is clearly lower than at 560 °C. This has been 
interpreted as a result of particle coarsening. Since no basic creep model is available 
for the 1Cr0.5Mo steel, the amount of coarsening has to be estimated indirectly. With 
the help of Norton equations, the creep rates ε̇560 at 560 and ε̇600 at 600 °C can be 
expressed as 

ε̇560 = AN exp(−Qcreep/RGT560)(σ − σp560)
nN (11.32) 

ε̇600 = AN exp(−Qcreep/RGT600)(σ − σp600)
nN (11.33) 

Since the creep rates have been measured, their ratio 21.3 is known. Since also the 
activation energy Qcreep = 290 kJ/mol and the stress exponent nN = 4.4 are known, 
the ratio between the particle strengths σp560 and σp600 at 560 and 600 °C can be 
determined from Eqs. (11.32) and (11.33). It is found that the particle strengthening 
at 600 °C is 70% of that at 560 °C. Assuming that this is a consequence of differences 
in particle spacing according to model in Sect. 7.3, the corresponding differences in 
nucleation rate can be estimated. These results are applied in Fig. 11.13. It can be
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seen that the observations for a creep strain of 0.05 can be reproduced in a reasonable 
way. 

In [17] LCF tests with and without a hold time in tension were carried out at 
535 °C. The length of the hold time was 5 min. Some of the tests were exposed to 
static creep before LCF as described above. The number of cavities was recorded 
before and after LCF. Only tests with a hold time significantly influenced the number 
of creep cavities. For this reason, the analysis will be focused on the tests with hold 
times. Seven such tests were performed. Some data for these tests can be found in 
Table 11.1.

The six left most columns in Table 11.1 give experimental data for the tests: total 
strain range εtot, stress range σrange, number of cycles to failure Ncycl, number of 
cycles to crack initiation N init, and the number of measured cavities per unit area 
ncav after the test. Properties for the loops have been computed with the model in 
Sect. 11.3.1. Results are presented in the four right most columns in Table 11.1: 
stress drop due to relaxation during the hold time Δεhold, amount of creep strain 
during the hold time Δεhold, amount of creep strain during the tension going part of 
the cycle Δεcr_tens (excluding the strain during the hold time), and amount of creep 
strain during the compression going part of the cycle Δεcr_cmpr. The stress relaxation 
during the hold time varies from 50 to 90 MPa. The corresponding creep strain lies 
between 0.00038 and 0.00067. The amounts of creep strain in the compression and 
tension going part of the cycle are almost two orders of magnitude smaller. Only 
the first of these four quantities can be compared with the experimental data. It was 
demonstrated in Sect. 11.3.2 that this could be accomplished in a successful way. 

It is assumed that amount of cavitation during cycling can be based on Eq. (11.31), 
i.e. on the total creep strain. The total creep strain is the amount of creep strain in each 
cycle multiplied by the number of cycles Ncycl. There are three contributions to the 
creep strain in each cycle: (i) during the hold timeΔεhold, (ii) during the compression 
going part of the cycle Δεcr_cmpr and (iii) during the tension going part Δεcr_tens. 
These contributions are directly added. The result is the following expression for the 
number of cavities ncav 

ncav = Bs(1 − fclose)(Δεhold + Δεcr_tens + Δεcr_cmpr)Ncycl (11.34) 

The total creep strain in each cycle is the expression within brackets in Eq. (11.34). 
The main part of the creep strain appears during the hold time.Δεcr_tens andΔεcr_cmpr 

are much smaller. In addition they have opposite signs so they cancel each other to a 
significant extent. In cycles with hold time in tension, the absolute value of Δεcr_cmpr 

is larger than that ofΔεcr_tens so the overall effect is that the creep during the hold time 
is marginally reduced in the remainder of the cycle. The creep strain is multiplied by 
the Bs constant, Eq. (11.31). Some cavities may close during the compression going 
part of the cycle. This is taken into account with the help of the constant fclose which 
is the fraction of cavities that are closed in each cycle. The value of fclose will be 
estimated in Sect. 11.4.2.
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The application of Eq. (11.34) is compared to experimental data in Figs. 11.14 
and 11.15. The difference between the Figures is that in Fig. 11.15, the specimens 
were exposed to creep before the LCF testing. 

For the modeling the same values as in Fig. 11.13 have been used with Cs = 
2.5 μm and dgrain = 12 μm. The subgrain size dsub was determined at the average 
stress in the tension and compression going part of the cycles. The resulting values

Fig. 11.14 Number of cavities versus number of cycles after LCF testing of 1Cr0.5Mo steels at 
535 °C with 5 min hold time in the cycle. Total strain ranges between 0.64 and 1.53%. Experimental 
data from [17] are compared with the model in Eq. (11.34). Redrawn from [18] with permission of 
Taylor & Francis 

Fig. 11.15 Number of cavities versus number of cycles after LCF testing of 1Cr0.5Mo steels at 
535 °C with 5 min hold time in the cycle. Total strain ranges between 0.55 and 1.11%. The specimens 
were exposed to 5% creep strain before the LCF testing. Experimental data from [17] are compared 
with the model in Eq. (11.34). Redrawn from [18] with permission of Taylor & Francis 
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are about dsub = 2 μm. In Fig. 11.15, the number of cavities from the pre-creep in 
Fig. 11.13 has been added to the results. It seems that the cavitation model gives an 
acceptable result for most of the specimens. 

11.4.2 Cavity Growth 

Already in the 1950ties, Hull and Rimmer derived an expression for diffusion 
controlled growth of creep cavities. The expression was later modified by several 
authors to give it a more practical form. For example, Beere and Speight [34] derived 
the following formula that is of the form commonly used today, Eq. (10.11) 

dRcav 

dt
= 2D0K f (σ − σ0) 

1 

R2 
cav 

(11.35) 

where Rcav is the cavity radius in the grain boundary plane, dRcav/dt its growth rate, 
σ0 the sintering stress, 2γs sin(α)/Rcav, where γs is the surface energy of the cavity 
per unit area and α the cavity tip angle. If the cavities are sufficiently small, they will 
shrink rather than grow after nucleation. The sintering stress avoids that the formula 
predicts growth in such cases. DGB the grain boundary self-diffusion coefficient, and
Ωa the atomic volume are combined into a grain boundary diffusion parameter D0, 
D0 = δDGBΩa/kBT. kB is the Boltzmann’s constant and T the absolute temperature. 
K f ≈ 0.1 is approximately a constant. 

As discussed in Sect. 10.5, Eq.  (11.35) typically overestimates the growth rates 
during creep. This problem was solved by introducing the requirement that the growth 
rate should not be higher than the creep rate of the surrounding matrix. This is referred 
to as constrained growth [12]. This means that equilibrium is established between 
the cavity growth and the creep deformation. Without this condition, the growth is 
referred to as unconstrained, and the growth rate in this case is given by Eq. (11.35). 
However, it is difficult to imagine that equilibrium can be established during the 
short cycle time and the small creep strain in common LCF tests. As illustrated in 
Table 11.1, the creep strains in each cycle are quite small. It must be assumed that 
unconstrained growth applies in LCF. 

In addition for diffusion, plastic deformation can also give rise to growth of 
creep cavities. This was discussed in Sect. 10.5.3. A model where the cavity growth 
is proportional to the amount of grain boundary sliding (GBS) will be used [5], 
Eq. (10.24) 

Rcav = Csε (11.36) 

Again the constant Cs is given by Eq. (11.30). After nucleation for example 
around particles, the cavities can continue to expand due to GBS. Elongated creep 
cavities in grain boundaries are often observed. It was demonstrated in Fig. 10.10
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a b  

Fig. 11.16 Cavity radius versus the cycle where the cavity was nucleated. Two examples from 
the tests in Table 11.1 for 1Cr0.5Mo steel. Model values for diffusion controlled growth according 
to Eq. (11.35) and strain controlled growth, Eq. (11.36). Redrawn from [18] with permission of 
Taylor & Francis 

that Eq. (11.36) could describe cavity growth for a 12CrMo steel and an austenitic 
stainless steel TP347 (17Cr12NiNb). 

Equations (11.35) and (11.36) are applied in Fig. 11.16 to two cases in Table 11.1 
for the 1Cr0.5Mo steel. 

Figure 11.16 illustrates how a distribution of cavity sizes is obtained. The cavities 
that are nucleated early are larger since they are more exposed to growth processes. 
The two types of growth mechanisms give different behavior as a function of initiation 
cycle. Diffusion growth shows a rapid increase in cavity radius initially and a slower 
growth later. Strain controlled growth on the other hand has a constant increase with 
cycle number. No detailed measurement of the cavity size was performed in [17]. 
This would have been difficult anyway since the specimens were etched. Taking this 
into account, the computed cavity radii are consistent with the observations. 

In the case of constrained growth, the values from diffusion and strain controlled 
growth should definitely not be added since the two mechanisms give each the 
maximum possible growth rates. This was discussed in Sect. 10.5.3. However, for 
unconstrained growth this conclusion is no longer self-evident. However, it turns out 
in the studied cases for 1Cr0.5Mo that if the two contributions are added quite large 
cavity radii of up to 10 μm are obtained which is not in agreement with observations. 
Adding the two contributions should therefore be avoided. 

Equation (11.35) should in principle be possible to use to estimate the fraction of 
cavities that are closed during the compression going part of the LCF cycle. If it is 
applied directly it does not work. This can be seen in the following way. According 
to Eq. (11.36), in the first cycle a cavity with a radius of about 1 × 10–9 m is formed. 
With Eq. (11.35), such a cavity would disappear in fractions of a second. As a 
consequence, no cavities would be formed contrary to the observations. To make the 
result sensible, another case has to be considered. It is possible that the GBS does 
not take place in each cycle but occurs stepwise. It has been shown for copper during
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static creep that the nucleated cavity size is in accordance with [33] 

Rcavmin = 2γs sin(α)/σ (11.37) 

This relation is obtained by putting σ = σ0 in Eq. (11.35). For the 1Cr0.5Mo 
steel, Rcavmin is about 1.5 × 10–8 m. With a strain rate of 0.003/s, in the compression 
part the cycle time is about 3 s. Using Eq. (11.35) one can derive that cavities that 
are smaller than about Rcavmin/2.5 are dissolved during this time. If it is assumed 
that the formed cavities have initially a size in the interval 0–2 Rcavmin, about a fifth 
of the cavities are closed during the compression part of the cycle. If this value is 
representative, f close in Eq. (11.34) would be 0.2. However, this value is uncertain 
and it has not been applied in the computation of the nucleation rate in Figs. 11.14 
and 11.15. 

11.5 Summary 

• Many plants that are operating at high temperatures are exposed to both creep and 
fatigue. A number of fossil-fired plants are running under intermittent loading 
while in the past they were adapted to base loading. The reason is that renewable 
sun and wind units do not supply power continuously and have to be backed up 
by conventional plants. As a consequence, fossil-fired power plants experience 
often combined creep and fatigue loading nowadays. 

• Numerous empirical methods are available for assessing the material damage 
in plants. The classical Robinson’s and Miner’s damage summation rules have 
been extensively tested. Some results suggest that the damage typically can vary 
from being underestimated by a factor of three to being overestimated by the same 
factor. From a practical point of view such a large uncertainty is not acceptable. To 
base damage assessment just on mechanical properties is consequently difficult. 
It is also important to analyze the changes in the microstructure such as particle 
and substructure coarsening and formation of creep cavities and compare these 
findings with models. In this respect continuum damage mechanics can be quite 
useful. 

• Many empirical models for damage assessment can predict both the development 
of mechanical properties and the microstructure. However, as for all empirical 
models, they have to be adapted to specific cases to give meaningful results. The 
alternative is to use basic models for both mechanical properties and microstruc-
ture. Such models are readily available also for the development of the microstruc-
ture as described in this book. Although basic models are somewhat more complex 
to program, the predictions are far safer. 

• For analyzing creep damage, the assessment of cavitation has been quite useful. 
In recent years basic quantitative models for cavitation have been established that 
are directly applicable in this context. However, the situation has been different 
for cyclic loading. Two essential features have been missing. Prediction of stress
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strain loops has been based on empirical approaches meaning that the results are 
restricted to the experimental case(s) under investigation. It is demonstrated in 
this chapter that many of the basic models applied in non-cyclic situations can 
be transferred to cyclic cases. The main parameter that has to be changed is the 
dynamic recovery constant. The reason for this is simple. During cyclic deforma-
tion dislocations encounter each other much more frequently than in monotonous 
cases and it increases the rate of recovery. Therefore, the recovery constant must 
take a higher value. 

• The other missing feature has been the absence of models for the development 
of cavitation. It is expected that cavitation plays the same important role during 
creep-fatigue interaction as during plain creep. With the help of the models for 
the stress strain loops, the amount of creep strain in each cycle can be computed. 
By applying this in the formula for cavity nucleation, the number of cavities after 
LCF and after combined creep and LCF for a 1Cr0.5Mo steel have been possible 
to compute in an acceptable way. 

• The cavity growth rate for the 1Cr0.5Mo steel has also been analyzed. Both models 
for diffusion controlled and strain controlled growth have been considered. Since 
quite small creep strains appear in each cycle unconstrained diffusion growth 
has been used. The reason is that it is assumed to be unrealistic that equilibrium 
between the cavity growth and the creep deformation could be established. The 
strain controlled growth is based on the assumption that the amount of growth is 
equal to the amount of grain boundary sliding. This assumption has previously 
worked well for two steels during creep where data are available. Although the 
diffusion growth is faster initially, the total growth is about the same as for strain 
controlled growth of the 1Cr0.5Mo steel. The final cavity size is in the interval 
from 0.1 to 1 μm, which seems reasonable. These results should be considered 
as tentative since detailed experiments are not available. 

• It is often assumed that some closure of cavities takes place during the compres-
sion part of the load cycle. With the help of the model for diffusion controlled 
growth, it should in principle be possible to predict the amount of closure. Unfor-
tunately, meaningful results are not obtained unless special assumptions are made. 
Therefore, the amount of cavity closure remains an open issue. In the prediction 
of cavity nucleation for 1Cr0.5Mo, no account of cavity closure has been taken 
into account. Satisfactory predictions have been obtained anyway indicating that 
the amount of cavity closure must be limited. 

References 

1. D.A. Miller, R.H. Priest, E.G. Ellison, Review of material response and life prediction tech-
niques under fatigue-creep loading conditions. High Temp. Mater. Process. (London) 6, 
155–194 (1984) 

2. S. Holdsworth, Creep-fatigue interaction in power plant steels. Mater. High Temp. 28, 197–204 
(2011)



230 11 The Role of Cavitation in Creep-Fatigue Interaction

3. L. Lundberg, R. Sandstrom, Application of low cycle fatigue data to thermal fatigue cracking. 
Scand. J. Metall. 11, 85–104 (1982) 

4. J.J. Moverare, A. Sato, S. Johansson, M. Hasselqvist, R.C. Reed, J. Kanesund, K. Simonsson, 
On localized deformation and recrystallization as damage mechanisms during thermomechan-
ical fatigue of single crystal nickel-based superalloys, in Advanced Materials Research (2011), 
pp. 357–362 

5. R. Sandström, Basic creep-fatigue models considering cavitation. Trans. Indian Natl. Acad. 
Eng. 7(2), 583–591 (2021) 

6. R. Sandström, J. He, Survey of creep cavitation in fcc metals, in Study of Grain Boundary 
Character (inTech, 2017), pp. 19–42 

7. S.R. Holdsworth, Creep-fatigue properties of high temperature turbine steels. Mater. High 
Temp. 18, 261–265 (2001) 

8. L.C. Lim, Cavity nucleation at high temperatures involving pile-ups of grain boundary 
dislocations. Acta Metall. 35, 1663–1673 (1987) 

9. D. McLean, M.H. Farmer, The relation during creep between grain-boundary sliding, sub-
crystal size, and extension. J. Inst. Met. 85, 41–50 (1957) 

10. R. Sandström, R. Wu, Influence of phosphorus on the creep ductility of copper. J. Nucl. Mater. 
441, 364–371 (2013) 

11. J. He, R. Sandström, Formation of creep cavities in austenitic stainless steels. J. Mater. Sci. 51, 
6674–6685 (2016) 

12. B.F. Dyson, Constraints on diffusional cavity growth rates. Metal Sci. 10, 349–353 (1976) 
13. J.R. Rice, Constraints on the diffusive cavitation of isolated grain boundary facets in creeping 

polycrystals. Acta Metall. 29, 675–681 (1981) 
14. J. He, R. Sandström, Creep cavity growth models for austenitic stainless steels. Mater. Sci. 

Eng. A 674, 328–334 (2016) 
15. R. Sandström, J.-J. He, Prediction of creep ductility for austenitic stainless steels and copper. 

Mater. High Temp. 39(6), 427–435 (2022) 
16. J. He, R. Sandström, Basic modelling of creep rupture in austenitic stainless steels. Theoret. 

Appl. Fract. Mech. 89, 139–146 (2017) 
17. J. Storesund, R. Sandstrom, Interaction of creep damage and low cycle fatique damage in a 

1Cr0.5Mo steel. Isij Int. 30, 875–884 (1990) 
18. R. Sandström, Cavitation during creep-fatigue loading. Mater. High Temp. 40, 174–183 (2023) 
19. D.R. Hayhurst, Creep rupture under multi-axial states of stress. J. Mech. Phys. Solids 20, 

381–382 (1972) 
20. J.-F. Wen, S.-T. Tu, F.-Z. Xuan, X.-W. Zhang, X.-L. Gao, Effects of stress level and stress state 

on creep ductility: evaluation of different models. J. Mater. Sci. Technol. 32, 695–704 (2016) 
21. F.K.G. Odqvist, Mathematical Theory of Creep and Creep Rupture (Clarendon Press, 1966) 
22. J.-F. Wen, S.-T. Tu, A multiaxial creep-damage model for creep crack growth considering 

cavity growth and microcrack interaction. Eng. Fract. Mech. 123, 197–210 (2014) 
23. R.P. Skelton, H.J. Maier, H.J. Christ, The Bauschinger effect, Masing model and the Ramberg-

Osgood relation for cyclic deformation in metals. Mater. Sci. Eng. A 238, 377–390 (1997) 
24. S.R. Holdsworth, Creep-fatigue crack growth from a stress concentration. Mater. High Temp. 

15, 111–116 (1998) 
25. R. Sandström, Fundamental models for the creep of metals, in Creep (inTech, 2017) 
26. R. Sandström, J. Hallgren, The role of creep in stress strain curves for copper. J. Nucl. Mater. 

422, 51–57 (2012) 
27. R. Sandstrom, Basic model for primary and secondary creep in copper. Acta Mater. 60, 314–322 

(2012) 
28. F. Sui, R. Sandström, Basic modelling of tertiary creep of copper. J. Mater. Sci. 53, 6850–6863 

(2018) 
29. H.C.M. Andersson, R. Sandstrom, D. Debord, Low cycle fatigue of four stainless steels in 20% 

CO-80% H-2. Int. J. Fatigue 29, 119–127 (2007) 
30. Data sheets on the elevated-temperature properties of normalized and tempered 1Cr-0.5Mo 

steel plates for pressure vessels (SCMT 2 NT) National Research Institute for Metals Tokyo, 
Japan (2002)



References 231

31. R. Sandstrom, H.C.M. Andersson, Modelling of hysteresis loops during thermomechanical 
fatigue, in ASTM Special Technical Publication (2003), pp. 31–44 

32. F. Ghahremani, Effect of grain boundary sliding on steady creep of polycrystals. Int. J. Solids 
Struct. 16, 847–862 (1980) 

33. Y. Das, A. Fernandez-Caballero, E. Elmukashfi, H. Jazaeri, A. Forsey, M.T. Hutchings, R. 
Schweins, P.J. Bouchard, Stress driven creep deformation and cavitation damage in pure copper. 
Mater. Sci. Eng. A 833 (2021) 

34. W. Beere, M.V. Speight, Creep cavitation by vacancy diffusion in plastically deforming solid. 
Metal Sci. 21, 172–176 (1978) 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	11 The Role of Cavitation in Creep-Fatigue Interaction
	11.1 General
	11.2 Empirical Principles for Development of Creep-Fatigue Damage
	11.2.1 Fatigue and Creep Damage
	11.2.2 Loops During Cyclic Loading

	11.3 Deformation During Cyclic Loading
	11.3.1 Basic Model for Hysteresis Loops
	11.3.2 Application of the Cycling Model

	11.4 Cavitation
	11.4.1 Nucleation of Cavities
	11.4.2 Cavity Growth

	11.5 Summary
	References


