
Chapter 10 
Cavitation 

Abstract Cavitation is of great technical importance. Nucleated cavities grow and 
link to form cracks that can cause rupture. During creep, cavities are initiated in the 
grain boundaries. The nucleation takes place at particles or at subboundary—grain 
boundary junctions. The main mechanism is believed to be grain boundary sliding 
(GBS), Chap. 9. According to the double ledge model, cavities are formed when the 
particles or subboundaries meet other subboundaries. With this assumption quan-
titative models for cavity nucleation can be derived. They show that the nucleated 
number of cavities is proportional to the creep strain in good accordance with obser-
vations. Cavities can grow by diffusion or by straining. It is important to take into 
account that cavities cannot grow faster than the surrounding creeping matrix, which 
is referred to as constrained growth. Otherwise the growth rate can be significantly 
overestimated. Models both for diffusion and strain controlled growth have been 
available for a long time. A recently developed model for strain controlled growth is 
presented based on GBS. It has the advantage that is associated with a well-defined 
initiation size of cavities and that constrained growth is automatically taken into 
account, features that some previous strain controlled models miss. 

10.1 General 

During creep micrometer sized holes are formed in alloys. These holes are called 
cavities. The presence of cavities is technologically important because the cavities 
have a strong influence on the final rupture, in particular at low stresses. Quantitative 
studies of cavitation have mainly been performed in three groups of alloys that will 
be referred to as Group I, Group II and Group III. Group I consists of fcc alloys: 
copper, austenitic stainless steels and nickel-base alloys. Group II includes creep 
resistant low alloy steels typically with a ferritic-bainitic microstructure. Also the 
classical 12%Cr steel (X20) is included in this group because it shows the same type 
of behavior. Group III represents the advanced martensitic 9% Cr creep resistant 
steel. The reason why it is important to distinguish between these groups is that the 
cavitation occurs in different ways. In Group I, the cavities appear mainly in the
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grain boundaries, and in Group II the cavities are found in the prior austenite grain 
boundaries. The main location of cavities in Group III is the lath boundaries in the 
martensite. For a review on earlier work on cavitation during creep, see [1] and for 
more recent work [2]. 

Models for the formation and growth of cavities have primarily been developed 
for Group I and II alloys. The analysis in this chapter will concentrate on these types. 
Much less is known about the martensitic steels in Group III in spite of their extensive 
use in modern fossil fired power plants. Information about Group III steels will be 
summarized in Sect. 10.3. 

The cavitation in Group I and II can be discussed in the same way, just recalling 
that when grain boundaries are discussed they are the genuine grain boundaries in 
Group I but the prior austenite grain boundaries in Group II. 

During creep deformation there is some sliding along grain boundaries. Thus, 
there is a movement between neighboring grains that is called grain boundary sliding 
(GBS), Chap. 9. The distance that neighboring grains move with respect to each other 
is referred to as the amount of GBS. According to finite element work, the amount 
of GBS is proportional to the creep strain. This is further discussed in Chap. 9. 

GBS is believed to be essential for cavity formation. If particles are present in 
the grain boundaries cavities can be created when the boundaries slide. Modeling 
of initiation of creep cavitation was first made with the help of classical nucleation 
theory (CNT) [3]. This approach is however associated with several disadvantages. 
It suggests that cavitation would essentially appear at high stresses, which is in 
contrast to observations for engineering steels where cavitation is primarily observed 
at low stresses. CNT tends to give results that appear as a step function in stress and 
temperature again at variance with observations. With CNT it is very difficult to 
make quantitative predictions since results are sensitive to the exact values of the 
chosen parameters. There are many experiments that give that the number of cavities 
is proportional to the creep strain [4, 5] which is difficult to model with CNT. 

With the help of dislocation pile-ups, large stresses can be introduced that could 
initiate creep cavities [6]. Very large stresses in the GPa range are needed to form 
cavities in this way. Very long pile-ups are required that are rarely observed in the 
presence of creep cavities. High stresses can also be generated with the help of a 
shear crack. Riedel used that approach to model cavity formation with the help of 
CNT [7]. However, both these types of models have the same problems with the 
stress dependence as for CNT models in general. 

It has been even more challenging to understand how cavities can be created in 
essentially particle free materials like pure copper. It has been demonstrated that 
the substructure can act as hard zones in the same way as particles. Lim has shown 
that subboundaries interacting with a sliding grain boundary can form cavities and 
that the process is thermodynamically feasible [8]. It is therefore natural to assume 
that the cavity formation around particles that is experimentally well documented is 
associated with the interaction with the substructure. 

Taking into account the role of GBS and the substructure it can directly be 
explained why the number of nucleated cavities is proportional to the creep strain for 
many materials. The proportionality to the strain was first demonstrated by Dyson
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[4] and later surveyed in [5]. Although this empirical rule has been known for many 
years, a basic model was only derived recently based on the so called double ledge 
principle. In this way the value of the proportionality constant could be derived. This 
is shown in Sect. 10.4. 

Already during the 1950ties, Hull and Rimmer derived a model for growth of 
cavities based on diffusion control. However, it was found that their model typically 
exaggerated the growth rate. Dyson realized that the cavities could not grow faster 
than what the creep rate allows [9]. This is referred to as constrained growth. Although 
good models for this effect were derived, they still tended to give a too large growth 
rate. In fact, in models for creep damage development, strain dependent growth is 
often used in spite of the availability of basic diffusion controlled growth models 
[10]. A revised constrained cavity growth model has recently been presented, which 
gives significantly reduced growth rates and solves some of the previous issues. This 
is analyzed in Sect. 10.5. 

After the design life of fossil fired power plants and other high temperature units 
has expired, almost invariably the plant owners want to extend the service time. Then 
it is essential to demonstrate that continued operation is safe. The main life controlling 
factors are related to material properties, not least to creep. Many material properties 
degrade during service. The determination of the degree of property degradation is 
referred to as residual life analysis, which is a major research area today. Concerning 
creep properties, the study of cavitation has and is playing a major role in this 
respect. Neubauer found that the structure of the cavitation changed in components 
during service [11]. It could be followed by taking replicas on components, which 
were studied in the laboratory. First a limited number of single cavities appeared 
in the grain boundaries (category I). Then single cavities were observed in larger 
numbers (category II). Cavities gradually linked to micro-cracks (shorter than a 
grain diameter) (category III). Finally macro-cracks appeared (larger than the grain 
diameter) (category IV). These categories and their interpretation can be found in 
many versions. Their value is that it typically takes a number of years from category 
I to II and from II to III. Only for category IV, immediate action in the form of 
repair or replacement of the component is essential. In this way a system of early 
warning of serious creep damage was established. It has been extensively used. It has 
avoided many fatal accidents and saved many lives. Fatal accidents are fortunately 
rare nowadays. 

The use of replication to follow the development of creep damage is the most used 
traditional method in residual life analysis and also the most successful one. A review 
of non-destructive methods for residual life analysis can be found in [12]. Welded 
joints are particularly prone to creep damage, and in particular the fine grained part 
of the heat affected zone. The Neubauer scheme seems to work well for Group I and 
Group II materials. However, for the modern martensitic steels in Group III, single 
cavities in large extent only appear close to rupture and to find cavities that have 
linked to microcracks is unusual. Early warning of serious creep damage is difficult 
to get. This will be further discussed in Sect. 10.3.
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10.2 Empirical Cavity Nucleation and Growth Models 

As mentioned above, the number of cavities formed during creep ncav was early on 
observed to be approximately proportional to the creep strain ε 

ncav = Bsε (10.1) 

Bs is a constant. This relation was found to be valid for Group I materials 347 
(austenitic stainless steel) and Nimonic 80A (nickel base alloy) and for low alloy 
steels in Group II 1Cr0.5Mo, 0.5Cr0.5Mo0.25 V, 1Cr1Mo0.25 V and 2.25Cr1Mo as 
well as 12CrMoV steels [4, 5]. Notice that there is no constant term in Eq. (10.1). 
The observations show that the formation of cavities starts already at small strains. 

Hull and Rimmer formulated a basic expression for diffusion controlled growth 
of cavities [13]. The equation expresses that the time derivate of the cavity volume 
is proportional to the grain boundary diffusion coefficient and the applied stress. 
As pointed out above the resulting growth rate often greatly exceeded the observed 
values. The situation was much improved when constrained growth was taken into 
account to ensure that cavity growth rate was not faster than the creep rate. A number 
of authors derived models for the reduced stress during constrained growth. For 
example, Rice derived such a model [14]. 

Cavitation models are extensively used in continuum damage mechanics (CDM) 
to assess the (remaining) creep life of components. Three of the common approaches 
in CDM that are supposed to be based on physical constitutive equations are given in 
[15–17]. A review of the models can be found in [10]. In all three papers an empirical 
combination of cavity nucleation and growth is used. 

ω̇cav = C ε̇e

(
σ1 

σe

)ν 
(10.2) 

where ω̇cav is the creep damage due to the cavities, ε̇e the effective creep rate, σ1 

the maximum principal stress, σe the effective stress, and C and ν are constants. 
Equation (10.2) was originally proposed by Cane [18]. There is no indication in the 
papers [15–17] why the empirical Eq. (10.2) was chosen and not the basic constrained 
growth models that were available at the time. There are cases where the growth rate is 
proportional to the creep strain but that cannot be considered to be a general solution. 
This will be further discussed in Sect. 10.5. 

10.3 Cavitation in 9% Cr Steels 

Cavitation has been studied quantitatively to a less extent for modern 9Cr steels (P91, 
P92) in Group III in comparison to materials in Group I and II. This is surprising 
considering that they are common materials in pipes and tubes in modern fossil fired
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power plants. Much of the data has been collected from ruptured specimens with 
welds or failed welded components. For a survey, see [19]. 

In 9Cr steels cavities are primarily formed at lath boundaries, but also at prior 
austenite grain boundaries. The cavities appear as single units even close to fracture. 
This should be contrasted to the Group I and II materials where even at fairly low 
fraction of the rupture life the cavities are arranged in rows at the grain boundaries 
(“pearls on string”). At higher life fraction the cavities link and form microcracks 
and then macrocracks. These three later stages are absent in Group III materials. In 
addition the cavities in Group III materials are observed only very close to the fine 
grained zone in the HAZ, where the failure takes place (type IV cracking). All these 
facts make is more difficult to locate the cavitation. 

Siefert and Parker [19] made an attempt to estimate the number of cavities ncav 
as a function of the life fraction t/tR 

ncav 
ncavR 

=
(
1 − 

t 

tR

)μcav 

(10.3) 

where ncavR is the number of cavities close to rupture that is estimated to be about 
800 cavities per mm2. μcav is a constant. For materials with a low creep ductility μcav 

= 0.5. Although the majority of casts of P91 has a high ductility, there is a significant 
fraction where the reduction of area at rupture is less than 20%. μcav is reduced with 
increasing ductility, which means that the cavitation appears later in life. This has to 
be taken into account in residual life time analysis. 

It has been found that it is often more difficult to observe cavities metallographi-
cally for Group III than for the other Groups. This applies both to replication and direct 
observation in the lab (Charman, personal communication 2021). It is recommended 
to use laser microscopy to safely observe the cavities. 

In Sects. 10.4 and 10.5 basic models for cavity nucleation and growth are intro-
duced. These models are based on the assumption that the cavities are located at the 
grain boundaries. Since this is not always the case for Group III materials, the models 
are not automatically satisfied. Since suitable data for the strain and time dependence 
of cavitation of 9Cr steels cannot be located, it is not possible to be more specific 
about the applicability of the models for the Group III materials. 

10.4 Basic Model for Cavity Nucleation 

10.4.1 Thermodynamic Considerations 

In the past a number of mechanisms have been proposed for the formation of creep 
cavities. One idea is that atomic bonds are ruptured. However, this requires very 
high stresses and even if such stresses would be initiated they would quickly relax 
in a creeping material [6]. Another suggestion is that the accumulation of vacancies
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can be handled with classical nucleation theory [3]. This gives a very strong stress 
dependence suggesting that cavities would almost exclusively appear at high stresses 
[20]. This is at variance with observations since most cavities are formed at low 
stresses. High stresses can appear at grain boundary ledges, triple points and particles. 
A common assumption is that cavities are formed by decohesion at particles. High 
stresses are required in most models. A threshold must be exceeded and an incubation 
time is required [3, 21]. Contrary to these suggestions, observations demonstrate that 
cavity nucleation is strain controlled rather than by stress and cavitation is particularly 
frequent at low stresses as pointed out above. Statements in the literature have also 
concluded that earlier theories are not successful [22, 23]. These papers also give 
excellent reviews of earlier work. 

New ideas for nucleation mechanisms came from the studies on copper. It is well 
established that extensive cavitation can take place in copper during creep [24]. It is 
noticeable that the number of particles is typically so low that they cannot contribute 
significantly to the cavitation. A model by Lim gave a possible explanation [25]. 
He assumed that a sliding grain boundary can form cavities where subboundaries 
reach the boundary. Grain boundary dislocations formed pile ups that exerted suffi-
cient stress on the grain boundary–subboundary intersection that a cavity could be 
nucleated. He made a thermodynamic analysis of the situation and showed that an 
energy gain was obtained when a cavity was formed. In his model, the high stress is 
a result of a stationary creep process and avoids the problem with stress relaxation. 
The change in free energy during the formation of a cavity can be expressed as

ΔG = −r3 Fvσappl + r2 Fsγs − r2 FGBγGB − (ΔG1 + ΔG2 + ΔG3) (10.4) 

γs and γGB are the surface and grain boundary energies per unit area and 

Fv = 2π/3(2 − 3cosα + cos3 α) 

Fs = 4π(1 − cosα) 

FGB = πsin2 α 

where α is half the tip angle of the cavity. The first term in Eq. (10.4) is the  work  
done by the applied stress. The second and third terms represent the modification in 
the surface and grain boundary energies when a cavity is formed. The fourth term is 
the decrease in the strain energy. ΔG1 is the change in the line energy of the grain 
boundary dislocations (GBD). ΔG2 is the interaction energy between the remaining 
and the consumed GBD. The strain energy ΔG3 is the reduction of the strain energy 
of GBDs outside the cavity. Details of the application of Lim’s fairly complex model 
can be found in [26, 27]. 

Cavitation in copper and austenitic stainless steels has been analyzed with Lim’s 
model. If ΔG in Eq. (10.4) is negative, cavitation can take place. When the applied 
stress σappl is raisedΔG becomes more negative and cavitation is more likely. On the
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Fig. 10.1 Minimum stress 
to form cavities at cell 
boundaries versus 
temperature for oxygen free 
pure Cu-OF and phosphorus 
alloyed copper Cu-OFP. For 
comparison the stress that 
gives creep rupture after one 
year (10000 h) is included. 
From [28]. Reproduced with 
the permission of Elsevier 

other hand if σappl is reduced cavitation does not readily occur. This is precisely as 
expected. When σappl is below a minimum valueΔG becomes positive and cavitation 
is no longer possible. This minimum cavitation stress for Cu is shown as a function 
of temperature in Fig. 10.1. The main temperature dependence is due to the last term 
in Eq. (10.4). 

A comparison is made in Fig. 10.1 to the creep rupture strength for copper for 
10000 h. The rupture strength are higher than the minimum cavitation stresses. 
Since the rupture strength is used in design (with a safety factor), this demonstrates 
that cavitation at the intersections between subboundaries and grain boundaries is a 
thermodynamically feasible process. 

It is well documented that oxygen free copper Cu-OF can have a much lower creep 
ductility than the same alloy with 50 wt. ppm P, Cu-OFP [29]. It has therefore been 
decided to use Cu-OFP but not Cu-OF in copper canisters for disposal of spent nuclear 
fuel [30]. The origin of the low creep ductility of Cu-OF is the extensive formation 
of creep cavities [30]. It is evident from Fig. 10.1 that the minimum cavitation stress 
is much lower for Cu-OF than for Cu-OFP, which explains the difference in creep 
ductility between the materials, Sect. 13.3.1. 

It can also be demonstrated that the minimum cavitation stress is well below 
the rupture strength for common austenitic stainless steels 304H (18Cr10Ni), 316H 
(17Cr12Ni2Mo), 321H (18Cr12NiTi), 347H (18Cr12NiNb) [31]. This is illustrated 
for 347H in Fig. 10.2. The ratio between the rupture strength and the minimum 
cavitation stress is reduced with increasing temperature, which would suggest that 
the amount of cavitation would be reduced with increasing temperature contrary to 
observations. It is likely that Lim’s model does not fully give the correct temperature 
dependence.
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Fig. 10.2 Minimum 
cavitation stress versus 
temperature for TP347H 
austenitic stainless steel. 
10000 h rupture data from 
ECCC for 347H are shown 
for comparison. Redrawn 
from [2] with permission of 
intechopen 

10.4.2 Strain Dependence 

Most researchers today assume that the nucleation of cavities is due to grain boundary 
sliding (GBS). There are several reasons for this. In many materials cavities are 
formed around particles in the grain boundaries. It has often been found experimen-
tally that the number of cavities is proportional to the creep strain, Eq. (10.1). In 
addition, the amount of GBS is also proportional to the creep strain, Eq. (9.11) 

uGBS = Csε (10.5) 

The constant Cs is given by, Eq. (9.12) 

Cs = u̇GBS/ε̇ = 
3φ 
2ξ 

dg (10.6) 

where dg is the grain size, φ and ξ are constants. 
To explain the experimental observations that the nucleation rate is proportional 

to the creep strain rate, Eq. (10.1), Sandström and Wu proposed the so called double 
ledge model [30]. Following the ideas in Lim’s model [25], nucleation is assumed 
to take place when a subboundary on one side of a sliding grain boundary meets 
another subboundary on the opposite side. The position where a subboundary meets 
a grain boundary is referred to as a subgrain corner. The nucleation rate then takes 
the form 

dncav 
dt  

= 
u̇GBS 
dsub 

1 

d2 
sub 

(10.7)



10.4 Basic Model for Cavity Nucleation 193

where dsub is the subgrain diameter. dsub is inversely proportional to the dislocation 
stress that is in general close to the applied stress, Eq. (8.4). Equation (10.7) gives  
the nucleation rate per unit grain boundary area. It must also be added to Eq. (10.7) 
that at most one nucleus is formed in each subgrain. Equation (10.7) describes the 
situation for a particle free material. If particles are present, nucleation is assumed to 
occur when a subboundary hits a particle on a sliding grain boundary. Considering the 
nucleation at both particles and subgrain corners, the nucleation rate can be expressed 
as [31] 

dncav 
dt  

= 
0.9Cs 

dsub

(
gsub 
d2 
sub 

+ 
gpart 
λ2

)
ε̇ = Bsε̇ (10.8) 

where λ is the interparticle spacing in the grain boundary. In Eq. (10.8), factors gsub 
and gpart are introduced for the fraction of subgrain corners and particles where cavity 
nucleation takes place. The values of gsub and gpart will be discussed below. 0.9 is a 
factor that takes into account the averaging of different orientation. The derivation 
is comparatively lengthy. For this reason the derivation is not presented here [31]. 

10.4.3 Comparison to Experiments for Copper 

Das et al. have recently presented measurements on nucleation of creep cavities 
in copper using small angle neutron scattering (SANS) [32]. Their results will be 
compared with the model in Sect. 10.4.2. They give values for the spacing λcav 

between cavities in the grain boundaries. The spacing can be transferred to the number 
of cavities ncav per unit grain boundary area as 

ncav = 1/λ2 
cav (10.9) 

The results for ncav as a function of stress is shown in Fig. 10.3.
In Fig. 10.3 the model values are about a factor of 4 below the experimental ones 

but show the same stress dependence. The ratio between the tests at the two times 
is about the same. There is also another way to determine the cavity density in [32] 
from their volume fraction f V and the cavity radii Rcav 

ncav = 
fV 

π R2 
cav 

(10.10) 

The values from Eq. (10.10) fall below the model values contrary to the values 
according to Eq. (10.9). Since it is more difficult to measure the volume fraction 
and the cavity radius than the cavity spacing, the values from Eq. (10.10) are more 
uncertain and are not shown in Fig. 10.3. 

Das el al. evaluated the parameter Bs in Eq. (10.8), i.e. the ratio between the 
nucleation rate and the creep rate or expressed in another way the ratio between the
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Fig. 10.3 Modeling and 
experimental number of 
cavities per unit grain 
boundary area as a function 
of stress for two testing 
times. Model values from 
Eq. (10.8) and experiments 
from [32]

cavity density and the creep strain. The experimental and the model values are given 
in Fig. 10.4. Unfortunately data are not available for exactly the testing time as in 
Fig. 10.3. 

The model values are a factor of 2 above the experimental data this time. The stress 
dependence is about the same in the model and the experiments. It should be noticed 
that with the same model in the Figures, model values are above the experimental 
ones in Fig. 10.4 contrary to those in Fig. 10.3. This indicates an uncertainty in the 
experimental data and the consistency between models and observations is acceptable 
considering this effect. It is valuable that the fairly dramatic stress dependence in the 
model (σ3) is reproduced in the observations.

Fig. 10.4 Modeling and 
experimental values for the 
ratio Bs between the number 
of cavities per unit grain 
boundary area and the creep 
strain as a function of stress 
for a testing time of 17.5 h. 
Model values (line) from 
Eq. (10.8) and experiments 
(points) from [32] 
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Fig. 10.5 Modeling and 
experimental number of 
cavities per unit grain 
boundary area as a function 
of creep strain for austenitic 
stainless steel collected from 
literature. Redrawn from [31] 
with permission of Springer 

10.4.4 Comparison to Experiment for Austenitic Stainless 
Steels 

A comparison of the model in Eq. (10.8) to experimental data for austenitic stainless 
is given in Fig. 10.5. Data for TP347 (17Cr12NiNb), TP304 (18Cr10Ni) and TP321 
(17Cr10NiTi) are presented. Nucleation at both subgrain corners and particles are 
taken into account. Considering the scatter in the data, the observations give good 
support to the model. In Fig. 10.5, the factors gsub and gpart are taken as unity. Thus 
every subgrain corner and particle is assumed to contribute to the nucleation. This 
cannot always be assumed to be the case but systematic studies have not been found. 

10.5 Models for Cavity Growth 

10.5.1 Unconstrained Cavity Growth Model 

Once the cavities have been nucleated they can start to grow if they exceed a critical 
size. Growth of creep cavities are in general assumed to be controlled by diffusion. 
There can also be contributions from straining. Strain controlled growth is considered 
in Sect. 10.5.3. A diffusion controlled growth model was first proposed by Hull and 
Rimmer [13]. Beere and Speight simplified this formulation [33] and this is the 
version that is used nowadays 

dRcav 

dt  
= 2D0Kf(σ − σ0) 

1 

R2 
cav 

(10.11)
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Rcav is the cavity radius in the grain boundary plane, dRcav/dt its growth rate, 
σ the applied stress, σ0 the sintering stress 2γs sin(α)/Rcav, where γs is the surface 
energy of the cavity per unit area and α the cavity tip angle. The presence of the 
sintering stress σ0 ensures that only cavities that are larger than a critical size grow. 
δ the grain boundary width, DGB the grain boundary self-diffusion coefficient, Ω

the atomic volume are combined into a grain boundary diffusion parameter D0, D0 

= δDGBΩ/kBT. kB is the Boltzmann’s constant and T the absolute temperature. The 
factor K f was introduced in [34]. It takes into account the role of the size of the cavity 
in relation to that of the surrounding area that can deliver vacancies for the growth 
of the cavity. It is a function of the cavitated grain boundary area fraction f a = (2R/ 
λcav)2 

Kf = −1/
[
2 log  fa + (1 − fa)(3 − fa)

]
(10.12) 

λcav is the spacing between cavities in the grain boundary. It can be determined from 
number of cavities per unit grain boundary area ncav, cf.  Eq. (10.9) 

λcav = 1/ 
√
ncav (10.13) 

ncav is derived with the nucleation relation, Eq. (10.8). 
The cavities cannot grow unless the stress is larger than the sintering stress σ0. 

This means that the cavity radius must have reached a certain size for growth to take 
place, which is referred to as the nucleation radius Rnucl. From the expression for the 
sintering stress, Rnucl can be found 

Rnucl = 
2γs sin(α) 

σ 
(10.14) 

Das et al. give data for the cavity radius for short creep testing times measured 
with small angle neutron scattering (SANS) [32]. The cavity radii should be close to 
Rnucl. A comparison between their data and Eq. (10.14) is illustrated in Fig. 10.6.

In Fig. 10.6, a cavity tip angle of 55° has been assumed. A precise value of the 
tip angle is not known but in the literature values of 50–70° are often used. It can be 
seen that the nucleation radius is well represented by Eq. (10.14). The mechanisms 
for the initial growth of creep cavities are not well established. But it is likely that 
it takes place by GBS, see Sect. 10.5.4. Since the cavities are initiated by GBS, it is 
reasonable that the first growth also occurs by this mechanism. 

10.5.2 Constrained Cavity Growth 

It was early on found that the expression for diffusion growth in Eq. (10.11) often  
exceeded observed values. Dyson noticed that the predicted growth rate many times 
was larger than the creep strain rate which he considered to be unphysical [9]. He
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Fig. 10.6 Modeling and 
experimental values for the 
cavity nucleation radius as a 
function of stress for the 
testing time 17.5 h for Cu. 
Model values from 
Eq. (10.14) and experiments 
from [32]

suggested that the growth rate should always be less than the creep rate that is referred 
to as constrained growth. Here the expression for constrained growth derived by Rice 
will be used [14] 

dRcav 

dt  
= 2D0Kf(σred − σ0) 

1 

R2 
cav 

(10.15) 

The only difference between Eqs. (10.11) and (10.15) is that the applied stress is 
replaced by a reduced stress σred 

σred = σ0 + 1 
1 
σ + 32D0 Kf 

λ2 
cavdgβ ̇ε(σ ) 

(10.16) 

where β is a material constant (β = 1.8 for homogeneous materials), and dg the grain 
diameter. Equation (10.15) satisfies the criterion formulated by Dyson. 

In Rice’s paper an assumption was made about linear viscoplastic opening of a 
crack. In a reanalysis, He and Sandström did not make the assumption about linearity 
[35]. A grain structure with a pillar of height h and width corresponding to the grain 
size dg was set up. The creep deformation in this pillar in the loading direction z can 
be expressed as 

dz  

dt  
= 4π D0Kf(σred − σ0)ncav + hε̇(σred) = hε̇(σ ) (10.17) 

ε̇(σred) and ε̇(σ ) are the creep rates at the reduced and applied stress, respectively. 
In the first expression for dz  dt  the first term is the volume growth rate of a cavity 
multiplied by the number of cavities per unit grain boundary area. The second term 
is the creep displacement of the pillar at the reduced stress. The second expression for 
dz  
dt  is the displacement of the surrounding material at the applied stress. According
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Fig. 10.7 Reduced stresses 
according to Eq. (10.16) 
(dash-dotted) and (10.18) 
(dashed) versus time for the 
austenitic stainless steel 
18Cr10 Ni (TP304) at 
727 °C and 100 MPa. 
Redrawn from [36] with  
permission of Elsevier 

to Eq. (10.17), the cavity growth rate plus the creep rate around the cavity matches 
the average creep rate. This is a stronger criterion than the original requirement on 
constraint. The height of the pillar h was determined with finite element analysis. 
The finding was that the pillar height was related to the cavity radius h ≈ 2Rcav [35]. 
With this result, Eq. (10.17) takes the form 

2π D0Kf(σred − σ0)/L
2 Rcav + ε̇(σred) = ε̇(σ ) (10.18) 

To find σred, the equation has to be solved by iteration. This new value for σred is 
lower than what the expression (10.16) gives. An illustration of this is presented in 
Fig. 10.7. In particular, the difference is significant at longer times. 

These reduced stresses are quite important when describing experimental data. A 
comparison to experimental data for common austenitic stainless steel is shown in 
Fig. 10.8. Data for 18Cr10Ni steel with and without Nb or Ti are illustrated. This 
new model for constrained growth clearly gives an improved description of data.

10.5.3 Strain Controlled Cavity Growth 

A contribution from plastic deformation to cavity growth can also be obtained. The 
most well established model is due to Cocks and Ashby [37]. They analyze how the 
area fraction f h of cavities in a grain boundary perpendicular to the loading direction 
increases with strain. They derived the following time derivatives for f h and the axial 
strain εa in the loading direction 

d fh 
dt  

= 
ε̇ss 

αh

(
1 

(1 − fh)nN 
− (1 − fh)

)
(10.19)
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Fig. 10.8 Cavity radius as a 
function of creep time for 
18Cr10Ni without or with 
Nb (347) or Ti (321) 
austenitic stainless steels. 
The creep tests were 
performed at temperatures in 
the interval of 650–812 °C. 
Redrawn from [36] with  
permission of Elsevier

dεa 

dt  
= ε̇ss

(
1 + 

2Rh 

αhdg

(
1 

(1 − fh)nN 
− (1 − fh)

))
(10.20) 

where the stationary creep is given by 

ε̇ss = ε̇0

(
σe 

σ0

)nN 
(10.21) 

and 

αh = 1/ sinh
(

(nN − 1/2) 
(nN + 1/2) 

σh 

σe

)
(10.22) 

Rh is the initial cavity radius, dg the grain size, σe the effective stress and σh 

the hydrostatic stress. ε̇0, σ0, and nN are constants describing the creep rate. By 
integrating Eqs. (10.19) and (10.20) the cavitated area fraction can be obtained. An 
example is shown in Fig. 10.9. An initial cavitated area fraction of 0.001 is assumed.

The increase in cavitated area fraction is much larger if a larger initial value is 
assumed, which does not seem to be realistic. If the plastic growth is combined with 
diffusion growth, significant contributions can be obtained. The problem with the 
model is that it is not consistent with the principle of constrained growth. The strain 
rate around the cavities can become many times larger than the average creep rate 
and that should not be the situation during constrained growth. This effect is however 
small for low cavitated area fractions, so the results in Fig. 10.9 are still valid. 

Describing the growth rate due to plastic deformation can be handled with a model 
that has been developed by Danavas and Solomon [38]
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Fig. 10.9 Cavitated area 
fraction in grain boundary as 
a function of strain according 
to Eqs. (10.19) and  (10.20). 
Creep exponent nN = 7

dRcav 

dt  
= sin2 (αtip) 

αtip − sin(αtip) cos(αtip) 
exp

(
3σH 

2σe 
− 

1 

2

)
Rcav 

3 
ε̇(σred) (10.23) 

where αtip is the tip angle of the cavity. An important modification has been made in 
Eq. (10.23) in comparison to the original model in [38]. The creep rate is computed 
for the reduced stress, not for the applied stress to make it consistent with Eq. (10.18). 
The expression gives a modest increase in the cavity size except if multiaxial stress 
states are taken into account. In Eq. (10.23) this is considered with the help of an 
expression from Rice and Tracey [39]. There are several alternative ways that have 
been proposed for the influence of multiaxial stress state derived from cavity growth 
during ductile fracture. The role of multiaxial stress cannot be considered to be fully 
settled. 

10.5.4 Growth Due to Grain Boundary Sliding 

It is well established that cavities are often elongated in the plane of the grain 
boundary. As has been analyzed in detail above, it is natural to assume that cavi-
ties are nucleated due to grain boundary sliding (GBS). Once the cavities have been 
nucleated for example around particles, the cavities will be exposed to shearing due 
to the continuing GBS. It is possible that some cavities expand at the same rate as 
the GBS. From Eq. (10.5) this will give a cavity size of 

Rcav = Csε (10.24) 

where Cs is again given by Eq. (10.6), This expression is compared with data for a 
12CrMo steel and a TP347 (17Cr12NiNb) austenitic stainless steel in Fig. 10.10.
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a b  

Fig. 10.10 Cavity radius versus strain. Model according Eq. (10.24); a 12CrMo steel (X20). Data 
from [40]; b TP347 (17Cr12NiNb). Data from [41]. b Redrawn from [42] with permission of 
Taylor & Francis 

The results give a reasonable description of the cavity growth data for the two 
steels. The amount of data to make comparisons to the model is limited. Since the 
constant Cs is proportional to the grain size, the model predicts large cavity radii 
when the grain size is large, which might not be realistic. 

10.6 Summary 

• Nucleation of creep cavities is assumed to take place at particles and subboundary 
junctions in the grain boundaries by grain boundary sliding (GBS). This assump-
tion makes it possible to quantitatively explain the observed strain dependence 
of the number of cavities. In the past attempts have been made to use classical 
nucleation theory, but it gives essentially a step function in stress that is in direct 
variance with observations. 

• Diffusion controlled growth of cavities can satisfactorily describe observations 
for austenitic stainless steels if recent modeling for constrained growth is taken 
into account. Constrained growth ensures that the cavities are not expanding faster 
than the creep rate of the matrix. 

• Several expressions for strain controlled growth exist that are derived from basic 
physical principles. However, these expressions are difficult to verify experimen-
tally since the starting cavity size has a significant effect on the result and there 
is no well-defined way of choosing the size. In addition, some expressions do 
not fulfil the requirements on constrained growth which can give overestimated 
growth rates. A recent model based on GBS avoids these difficulties. The model 
reproduces the limited experimental data that are available.
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