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Preface 

The computation of mechanical properties is of increasing importance. The fast 
development of software has enabled many new possibilities. Unfortunately, the 
development of basic modelling of mechanical properties has not taken place at the 
same rate. This should be contrasted with other scientific areas. Prediction of physical 
properties with the help of quantum mechanics methods (ab initio) has made great 
progress in recent years and thousands of papers have been published. Also in the field 
of computational thermodynamics (Calphad), rapid progress has taken place. Phase 
components in the microstructure and their composition can often be predicted with 
good accuracy, which is basic information for the understanding of the development 
of the microstructure. 

The results of ab initio and Calphad computations are often referred to as basic 
or fundamental since they do not involve adjustable parameters to predict prop-
erty values. Considering mechanical properties, on the other hand, computations are 
commonly performed with empirical models with a number of adjustable parame-
ters. The progress in the ab initio and Calphad area has inspired me to try to find 
out if it is possible to predict mechanical properties from physically based models 
without adjustable parameters with results that are sufficiently accurate to be used in 
industrial and scientific work. To be precise, models that satisfy these requirements 
are referred to as basic or fundamental (synonyms) in this book. It is evidently a 
challenging task because the properties depend on the behaviour of the dislocations, 
which is in turn a sensitive function of the microstructure. 

The use of basic models is essential not least due to a number of limitations with 
empirical models. 

1. Models involving adjustable parameters are often quite flexible. It is common 
experience that with say three or more adjustable parameters a wide range of 
data sets can be fitted. Thus, a precise fit does not automatically mean that the 
model represents the physics of the data. 

2. For the same reason as given in 1, it would be very risky to use a model with fitting 
parameters to identify operating mechanisms. Many models could describe the 
same data.

v
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3. When properties are modelled, there is almost invariably a desire to generalise 
and extrapolate the results. That would obviously be very dangerous with empir-
ical models, since almost arbitrary values can be obtained. The exception is 
when the model is fitted to a large data set. The criterion is that the number of 
adjustable parameters must be very much smaller than the number of experi-
ments. A well-known case is the extrapolation of creep rupture data with the 
help of time temperature parameters such as Larson–Miller. It is well established 
that consistent values can be obtained, which is demonstrated in Chap. 14. 

The limitations listed above are well-established and easy to understand. However, 
there are subtler effects as well. Scientists want to get a good agreement between 
model and observations as possible. If a model with adjustable parameters is involved, 
a good agreement is usually easily fixed. In this situation, there is obviously a risk 
that the most flexible model available is chosen or that observations in agreement 
with the model are preferred. In most cases, such decisions are likely to be taken 
intuitively and not on purpose. 

The success of the ab initio and Calphad modelling has been an inspiration for me 
to try to avoid the limitations mentioned above and to try to collect and develop basic 
models also for mechanical properties. With basic models, a number of phenomena 
can be investigated in a more precise way. This will be exemplified next. 

The Bird, Mukherjee and Dorn (BMD) equation that describes the influence of the 
stress and temperature on the stationary creep rate has been very important for creep 
research. It is a semi-empirical model with a physical background. It involves at least 
three adjustable parameters: a proportionality constant, an activation energy and a 
stress exponent. The BMD equation can describe a large fraction of available creep 
rate data and is consequently very valuable. In two early papers, Weertman suggested 
that dislocation climb would give a stress exponent of about five and dislocation 
glide an exponent of three. Even before, modelling of diffusional creep gave a stress 
exponent of one. Unfortunately, these suggestions made people believe that the creep 
mechanism could be identified from the stress exponent. Consequently, much of the 
early creep research focused on the measurement of the stress dependence of the 
secondary creep rate. Nowadays, there are both experiments and modelling results 
that show that dislocation climb can give stress exponents from 1 to 50 making 
it impossible to use the stress exponent to identify the creep mechanism. This is 
discussed in Chaps. 2 and 5. Although it is not accepted by everyone, dislocation 
glide is always faster than dislocation climb and the former process cannot control 
the creep rate, Chap. 2. 

As mentioned in the previous paragraph, the stress exponent as well as the activa-
tion energy have frequently been determined for the secondary creep rate. However, 
the corresponding values during primary creep have more rarely been measured. It 
turns out that both types of values are lower in the primary stage, which has been 
demonstrated both by observations and models. This is in practice quite important 
because if the secondary stage has not been fully reached, both the activation energy 
and the stress exponent can be under-estimated. These findings are particularly impor-
tant at low stresses since it can be quite time-consuming to reach the secondary stage.
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It has been known for a long time that at low stresses, the variation of the creep rate 
during primary creep can be quite helpful in identifying the creep mechanism, but 
this fact has largely been ignored in the literature, Chap. 5. 

A number of the creep models presented in the book are based on a dislocation 
model. Although the dislocation model is properly derived, it is essential that the 
predictions are verified against experiments. From the dislocation model, formulae 
for primary, stationary and tertiary creep as well as stress strain curves are derived. 
The validity of these formulae and a number of others has been demonstrated by 
comparison to experimental data. The basic models for primary and secondary creep 
were first verified for Cu at fairly high stresses close to ambient temperatures. Later, 
it has been demonstrated that the models also work for Al, Ni and, for example, 
austenitic stainless steels. It has been shown that the models also can handle very 
high temperatures and low stresses under conditions that are assumed to be typical 
for diffusion-controlled creep. This verifies that the models can cope with a wide 
range of applications. Moving from high stresses to low stress can involve a change 
in the creep rate by 10 orders of magnitude, which is very strong support for the 
validity of the basic models, Chap. 5. 

This change in stress level can thus imply an effective extrapolation by 10 orders 
of magnitude. This should be contrasted to extrapolation with empirical models that 
are commonly assumed to be able to handle of factor of 3 in time. The extrapolation 
capabilities of basic models are of great technical importance. Modern nuclear plants 
are often designed for a lifetime of 60 years. Considering that the longest creep tests 
are typically performed for about 10 years, an extrapolation by a factor of 3 is not 
enough. A more extreme case is copper canisters for storage of spent nuclear fuel 
in the Swedish KBS-3 system. The canisters should stay intact for 100000 years. 
Without basic creep models such time spans would never be possible to handle. 
Since the author has been working with copper canisters for many years, this was an 
additional reason for the interest in developing basic creep models. 

Stockholm, Sweden Rolf Sandström 
rsand@kth.se

mailto:rsand@kth.se
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Chapter 1 
The Role of Fundamental Modeling 

Abstract The difference between empirical and basic modeling and its significance 
is explained. The types of basic models that have been possible to develop and that 
are describe in the book are summarized. The starting point is a basic model for the 
dislocation density that is used to derive expression for tensile and creep properties. 
It is described how the accuracy of the basic models can be verified. For the creep 
models it is described that they are applicable over a wide range of temperatures and 
stresses that is of great value to identify operating mechanisms. 

1.1 Background 

Modeling and prediction of materials properties have had a rapid development in 
recent years. Ab initio methods are used to compute the electronic structure of crys-
tals based on quantum mechanical methods. The full multi particle problem is not 
possible to solve but a number of first principle procedures such as Density Func-
tional Theory (DFT) are available to handle the problem. By minimizing the total 
energy of the system, lattice parameters and the most stable crystal and surface struc-
tures can be established. A range of physical parameters such as thermal expansion 
coefficient, heat capacity, electric and thermal conductivity can be computed. Inter-
face energies and elastic constants can be derived. This type of modeling is referred 
to as fundamental because it is based on physically well founded algorithms and no 
parameters are fitted to experimental data. 

Computational thermodynamics (CTD) is another area where great progress has 
taken place in recent decades. Its base is unique. Expressions for the free energy are 
fitted to a range of thermophysical properties as a function of alloy content, which is 
referred to as the Calphad approach. The functions determined in this way can then be 
used to find the equilibrium phases for specific amounts of alloying elements. Phase 
diagrams can be generated. By using data also for interface energies and diffusion 
constants the development of microstructure can be predicted, which is the basis 
of much research in materials science. The variation of the interface energies and 
diffusion coefficients with alloying elements can also be derived with CTD, which is
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2 1 The Role of Fundamental Modeling

usually referred to as fundamental in spite of the fitting of the free energy functions 
to experimental data, because once this process is completed no further fitting is 
involved. 

Mechanical properties are of great technical and scientific interest. In spite of 
this, the amount of fundamental modeling that has been performed for mechanical 
properties is much more limited than for ab initio methods and CTD. Mechanical 
properties are primarily controlled by the motion of dislocations and this has created 
a barrier for more fundamental modeling. 

Probably the most common way of measuring mechanical properties is the tensile 
test. It gives a stress strain curve that can be used to assess the yield and tensile 
strengths as well as the ductility in the form of elongation or reduction of area. To 
describe stress strain curves almost exclusively empirical models are used. Some of 
the most well-known models are Hollomon, Ludwik, Voce and Swift. These models 
do not have any physical background. They are simply mathematical expressions 
with a number of adjustable parameters that can be fitted to the data. Only the Voce 
model can readily be derived from basic physical principles. This will be described 
in Chap. 3. 

Also for creep, mainly empirical models are used. The development of them has 
taken place over many decades. A major event was when Norton in his book from 
1929 gave an equation for the stress dependence of the creep rate [1]. This relation is 
now often referred to as the Norton equation. It was the only equation in the book. The 
stress dependence of the creep rate has played a profound role in the development. An 
important result by Bird, Mukherjee and Dorn (BMD) in the 1960ties gave an explicit 
expression for the temperature dependence in the Norton equation [2]. The creep 
rate was assumed to be proportional to an Arrhenius equation of the self-diffusion 
coefficient which is natural when climb is the controlling dislocation mechanism. 
This implies that the activation energy for creep is the same as that for self-diffusion, 
a relation that has been experimentally confirmed for a number of pure metals. Some 
temperature dependence was also incorporated by explicitly taking into account the 
temperature dependence of the shear modulus. This generalization of the Norton 
equation is referred to as the BMD equation. 

The BMD equation can be considered as a semi-empirical equation. The inclusion 
of the self-diffusion constant was based on physical thinking, but the equation still has 
at least two adjustable parameters: a proportionality constant and the stress exponent 
nN. In spite of these limitations the equation is frequently used till this day. The value 
of nN was assumed to be related to the operating mechanisms. Weertman suggested 
that climb control would give nN ≈ 5 and glide control nN ≈ 3 [3, 4]. Together with 
the knowledge that diffusion control gives nN ≈ 1, it was thought that the value of 
nN could be used to identify the operating mechanism. For this reason much focus 
in creep research in the coming decades was on measuring the secondary creep 
rate and determining the stress exponent. This seemed logical at the time but has 
turned out to be unfortunate. It gradually became apparent that the stress exponent 
was not automatically related to the rate controlling creep mechanism [5]. With the 
fundamental models that are presented in this book, it is shown that climb controlled 
creep can be associated with stress exponents from 1 to 50, demonstrating that a
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specific range of stress exponents does not necessarily make it possible to identify 
the creep mechanism. 

For a more detailed modeling of creep deformation, it must be possible to describe 
how the dislocation density is evolving with time and strain. Initially models were 
semi-empirical in nature, but later it has been possible to derive and verify some of 
these models. There are three contributions to the changes in the dislocation density. 
Work hardening involves the generation of dislocation that raises the strength. In the 
50ties and 60ties numerous scientists were engaged in developing models for work 
hardening. For creep of polycrystalline materials, a simple expression derived from 
the Orowan equation has turned out to be useful. This was first utilized by Lagneborg 
[6]. Two recovery processes that reduce the dislocation density are central aspects 
of creep: dynamic recovery that is strain controlled and static recovery that is time 
controlled. The expression for dynamic recovery was first presented by Bergström 
[7]. It was also given in a well-known paper by Kocks [8]. The role of static recovery 
was initially emphasized by Lagneborg [6]. 

What has been described so far is the empirical and semi-empirical modeling of 
creep. Before entering fundamental modeling, it is worth-while to specify what we 
mean by the different types of modeling. These definitions are not supposed to be 
general, but it is essential to clarify what we mean in this book. 

• Empirical models. Models that have limited or no physical basis. They are math-
ematical expressions that are used to fit experimental data. For that purpose a 
number of adjustable parameters are involved. Example, the Norton equation. 

• Semi-empirical models. Models that are at least partially derived from physical 
facts. They include adjustable parameters or constants that are not well defined 
and it is not clear how the constants could be derived in a precise way. Example, 
the BMD equation. 

• Fundamental (or basic) models. The models are fully based on physical facts and 
a scientific derivation is available. No adjustable parameters are involved. All the 
constants can be derived in a precise way. Fundamental and basic models will be 
used as synonyms in this book. Example, ab initio modeling. 

When fundamental models exist they are more valuable tools because they can be 
used to make predictions and generalize results. However, empirical models can be 
quite useful as well. A classic example is the empirical Bohr model for the hydrogen 
atom, where an electron circles around the nucleus as a particle. The Bohr model 
inspired a large number of scientists to perform experiments and to develop models. 
The Bohr model is now superseded by the quantum mechanical description of the 
hydrogen atom. 

Empirical models are usually the first ones to be established for a specific 
phenomenon. The Norton equation is an example of that. It created the understanding 
about some basic facts about creep. It took about three decades before semi-empirical 
improvements started to appear and even further decades before fundamental versions 
were available. There is always a risk to focus too much on empirical or semi-
empirical models. With the help of adjustable parameters, it is usually possible to 
get a good fit to experimental data and that can easily create the impression that
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good understanding of the phenomenon has been established. But it is important 
to recall that it is very difficult to make predictions, generalizations and to identify 
operating mechanisms with empirical and semi-empirical models. The use of the 
BMD equation is unfortunately an example of that in a number of cases. 

The starting point for development of basic creep models concerns diffusion creep. 
In these models the deformation is assumed to take place by diffusion of atoms inside 
the grains [9] or along the grain boundaries [10]. These models are quite simple and 
easy to understand intuitively. They both predict a stress exponent of 1. It was thought 
that these models would be easy to verify experimentally. But this has not turned out 
to be the case. The interpretation of many earlier tests has also been questioned [11– 
13]. One of the main reasons for the difficulty is the assumption that only diffusion 
creep is associated with a stress exponent of 1. It has more recently been shown that 
dislocation creep can give a stress exponent of 1 at low stresses. This has been found 
for aluminum at very high temperatures [14, 15]. In the past a stress exponent of 
1 was observed. But by carrying out the testing until sufficiently high strains were 
reached, a stress exponent of 3 was obtained. Low stress exponents for dislocation 
creep have also been observed for the martensitic 9Cr1Mo steel P91 and for the 
austenitic stainless 17Cr12Ni2Mo steel 316H [16, 17]. Although the tests for these 
steels were performed till 1000 h, the secondary stage was far from reached. If the 
stress exponent is determined in the primary rather than in the secondary stage it can 
give a low value of about unity. 

It is evident from these experimental results and also from modeling findings in 
the present book that dislocations can be of importance at high temperatures and 
low stresses and that contribution from them can even be much larger than that from 
diffusion. When studying diffusion creep it is consequently important to check the 
amount of dislocation creep that is present. A simple way to do that is to observe if 
primary creep occurs, which would be a clear sign that dislocation creep is present. In 
addition, the creep exponent must be unity and the measured creep rate should agree 
with the formulae for diffusion creep. Unfortunately, it is not easy to find studies 
fulfilling these requirements in the literature. This does not mean that diffusion creep 
is not a real effect. However, it seems to be masked by other mechanisms in many 
cases. 

1.2 Description 

Basic modeling of dislocation creep can be said to be started by the formulation 
of the climb mobility by Hirth and Lothe [18]. Climb is by far the most important 
mechanism for controlling the creep rate. This climb mobility has been implemented 
in the expression for static recovery proposed by Lagneborg [6]. Also the parame-
ters in his expression have been derived and the expression validated. The first to 
give a basic modeling of dynamic recovery was Roters et al. [19]. This item is not 
fully settled yet because the modeled dynamic recovery constant ω is not always in 
agreement with experiments. With these achievements a basic differential equation
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for the development of the dislocation density could be established. The equations 
are derived in Chap. 2. 

From the differential equation for the dislocation density, the stationary creep rate 
can be derived. In this way the Norton equation is obtained where all the parameters 
are well defined with given values. In the past many attempts have resulted in expres-
sions with poorly defined back stresses, activation energies or activation areas. This 
is now avoided. The new formulation gives a stress exponent of three or four in its 
simplest form. This is sometimes referred to as the “natural creep law” because it is 
a direct consequence of the balance between work hardening and recovery during 
stationary creep [20, 21]. 

It is well established that the stress exponent is raised when higher stresses and 
lower temperatures are considered. A dramatic increase from the values of nN = 
4–7 in power-law creep is observed, which is often referred to as power-law break 
down. The increase in the stress exponent has been possible to be fully explained by 
taking strain enhanced formation of vacancies into account [22]. This effect is now 
integrated in the expression for the creep mobility and it is taken into account in the 
Norton equation. This will be described in Chap. 2. 

It is natural to assume that stress controlled, load controlled as well as rate 
controlled plastic deformation are governed by the same mechanisms and equations. 
To follow this principle, stress strain curves are described with the same dislocation 
models as for creep. For fcc alloys, the stress strain curves obey the Voce model in 
the most direct derivation. This can give an as accurate representation as empirical 
models for stress strain curves. The dynamic recovery constant ω plays a special 
role because it controls the work hardening behavior of an alloy. The value of this 
parameter as well as stress strain curves are covered in Chap. 3. 

Basic expressions for primary creep have not been derived until recently. In [23] 
a formulation was presented for 9–12%Cr steels and in [24, 25] for copper. In these 
papers, the primary creep rate is derived from dislocation equations without intro-
ducing new quantities. For copper the observed exponential decrease in creep rate 
with increasing strain can be reproduced. With a satisfactory description of primary 
creep, the behavior at very low stresses can be modeled. As discussed below this 
is of importance for analyzing data for diffusion creep. In addition, an accurate 
representation is important in many cases in design at high temperatures. Empirical 
equations for primary creep are typically difficult to generalize and transfer to suit-
able expressions for stress analysis. However, from basic equations this is readily 
possible. Primary creep will be covered in Chap. 4. 

Creep at low stresses and with low stress exponents has always created a special 
interest amongst scientists due to the simple expressions for diffusion creep. With 
the event of basic formulae for primary dislocation creep, it is possible to analyze 
its role at low stresses. Since stationary conditions are rarely reached at very low 
creep stresses, it is essential to take primary creep into account. It is shown in the 
book that dislocation creep can give stress exponents of 1 and that situation is thus 
not restricted to diffusion creep. Examples are given for an austenitic stainless steel, 
for aluminum and for copper. Both for aluminum and copper, the basic creep model 
can accurately represent creep measurements at high temperatures and low stresses
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as well as at low temperatures and high stresses. Thus, the model can handle a wide 
range of conditions in temperature and stress. These findings can be considered as a 
direct verification of the basic creep model. The results are presented in Chap. 5. 

For solid solution hardening (SSH) already Hirth and Lothe [18] derived expres-
sions for slowly diffusion elements. Surprisingly enough, the expressions have not 
been used extensively in the literature. The author has shown that the expressions can 
reproduce experimental results quite well. For fast diffusing elements the mechanism 
is different [26]. The dislocations have to break away from their Cottrell atmospheres 
of elements to move. The most well characterized case is phosphorus in copper where 
ppm quantities have a pronounced effect on the creep strength. SSH will be discussed 
in Chap. 6. 

Precipitation hardening (PH) is a potent method to increase the creep strength of 
alloys. This was realized early on and many scientists were engaged to try to model 
the magnitude of the contributions. They worked from the assumption that there is a 
barrier against climb when the dislocations pass the particles. A number of estimates 
of the size of the barrier were made. However, eventually the values became so low 
that they had no technical interest anymore [27]. With the lack of a proper model 
for a long time, in many papers PH contribution to the creep strength was estimated 
with the Orowan strength, which strongly overestimates the PH contribution and 
in addition gives the wrong temperature dependence. Later, it was assumed that the 
controlling factor was the time it takes for a dislocation to climb across a particle [28, 
29]. This mechanism was used to describe the creep strength of austenitic stainless 
steels [30–32]. These studies had unfortunately the situation that the PH was only a 
smaller part of creep strength. To verify the model, Co particles in Cu were studied 
[33]. The Cu–Co alloys had the advantage that PH was a major part of the creep 
strength and the validity of the model could be verified. The influence of composition 
and heat treatment could be reproduced. PH is analyzed in Chap. 7. 

Cells or subgrains are formed in virtually all materials during plastic deformation 
and are collectively referred to as substructure. If the substructure can be locked with 
the help of particles, it can give a significant contribution to the creep strength. A 
well-known example is the martensitic steel P91 where M23C6 particles can be used 
to stabilize the substructure [23]. Models for the formation of substructure during 
creep and during plastic deformation at near ambient temperatures are presented. 
Unbalanced dislocations can be formed where the presence of opposite Burgers 
vector is absent. This has the consequence that static recovery does not occur and 
the substructure can build up a significant contribution to the creep strength. This is 
an important mechanism for how the creep strength can be raised after cold work 
[25]. The model can accurately describe how cold work can raise the rupture time 
by several orders of magnitude. This can be considered as an additional verification 
of the basic creep models. Substructures are analyzed in Chap. 8. 

Grain boundary sliding (GBS) is assumed to be the main mechanism for initiation 
of creep cavities. The grain boundary displacements have been quantified with the 
help of finite element analysis (FEM) [34, 35]. The displacement is proportional to 
the creep strain with a proportionality constant Cs that can be assessed from the FEM 
results [36, 37]. The amount of data on GBS in the literature is limited. However,
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for copper three types of measurements have been performed, and these measured 
values for Cs are in agreement with the theoretical value. GBS is also believed to 
be the main mechanism for superplasticity. The results for GBS are used to derive a 
basic model for superplasticity. The model can reproduce literature data for Al22Zn. 
GBS is discussed in Chap. 9. 

Nucleation, growth and linkage of creep cavities are the source of crack initia-
tion in many cases and are therefore of considerable technical interest. Nucleation of 
cavities can be well described by assuming that it is controlled by GBS. In particular, 
it gives the number of cavities that is proportional to the creep strain in a way that is in 
quantitative agreement with observations [38]. Cavities are mainly nucleated at parti-
cles or subboundary junctions in the grain boundaries. In the past, attempts have been 
made to base cavity nucleation on classical nucleation theory. However, it suggests 
a strong stress and temperature dependence that is at variance with observations. 

Models for diffusion growth of creep cavities have been available for a long 
time, but the original expressions overestimated the observed growth. This was 
solved by requiring that the growth rate should not be faster than the creep rate 
(constrained growth). However, these modeled growth rates are still higher than the 
experimental values. By analyzing the balance between the cavity growth rate and 
the creep rate with the help of finite element methods (FEM), further improvements 
have been achieved and now the data can be described in a satisfactory way [39]. 
Strain controlled growth of cavities is also analyzed. A number of models can be 
found in the literature. However, several of these models give a very low growth rate 
if the normal size of cavity nuclei is assumed. That makes it difficult to use them for 
prediction of growth rates. In addition, some models do not take constrained growth 
into account. On the other hand for larger initial cavity sizes, the predicted growth 
rates can exceed the observed ones in a pronounced way. One approach that relates 
the growth rate directly to the amount of GBS avoids these problems [40]. Cavitation 
is discussed in Chap. 10. 

Cavitation during cyclic loading is expected to play the same important role for 
rupture prediction as during static creep. To describe the nucleation of cavities, the 
amount of creep during creep-fatigue interaction must be possible to predict. The 
basic models for static creep can be taken over when describing the stress strain 
loops during cycling with one important change. The dynamic recovery parameter 
ω must be increased. The reason is that dislocations encounter each other much 
more frequently during cycling than during static loading, leading to an enhanced 
annihilation of dislocations. The principles for nucleation and growth of cavities 
can essentially be taken over from static loading. This is verified by comparison to 
experiments for 1Cr0.5Mo steel, which is handled in Chap. 11. 

Numerous empirical models for tertiary creep can be found in the literature. They 
are used to describe the creep damage for example during the analysis of residual 
lifetime of components with the help of the continuum damage mechanics (CDM). 
There are many mechanisms that can contribute to tertiary creep such as cavitation as 
well as particle and substructure coarsening. However, recent investigations suggest 
that another mechanism is often the dominating one [41]. The true stress during a 
constant load test increases rapidly with strain. During primary and secondary creep,
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the increase rate in the dislocation stress matches that of the true stress. However 
during tertiary creep this is no longer the case and the creep rate increases. For a 
more complete picture, the role of the substructure must be taken into account as 
well. The model results suggest that necking starts to form right at the beginning 
of the tertiary stage, but the neck is not fully developed until very close to rupture. 
These findings are consistent with available observations [41]. Findings on tertiary 
creep are presented in Chap. 12. 

Modeling of creep ductility is natural to divide between brittle and ductile rupture 
because the failure mechanisms are different. For common creep resistant alloys 
brittle rupture is initiated by cavitation. When the cavitated area fraction in the grain 
boundaries reaches a critical factor, cracking and rupture are initiated. The general 
behavior of the ductility of austenitic steels has been modeled, where the ductility 
decreases with increasing temperature and rupture time. For ductile rupture, the 
modeling suggests that necking activates the failure. So far this has been demonstrated 
for copper and for steels that obey the Omega model, where the logarithm of the strain 
rate is linear in the strain in the tertiary stage. These materials include low alloy steels, 
martensitic 9–12%Cr steels and some austenitic stainless steels. Creep ductility is 
covered in Chap. 13. 

Extrapolation of creep rupture data to longer times is technologically most impor-
tant due to the extended design life of modern high temperature plants of 30 years or 
more. Extrapolation is in most cases performed with empirical statistical methods. In 
particular, time-temperature parameters (TTP) are commonly used. To obtain accu-
rate results a large number of data points must be available and careful post assess-
ment tests must be performed. It is shown that the results are found in a safer way if 
requirements are placed on the derivatives of the creep rupture curves in the analysis. 
A method for the assessment of the errors in the extrapolated values is presented. An 
example is also given of the use of neural networks (NNs) in the assessment of creep 
rupture data. NNs are straightforward to use but stringent requirements on the anal-
yses must be fulfilled to get meaningful results. Fundamental models have reached 
a sufficient degree of development that they can be used to predict creep rupture 
data. This is demonstrated for austenitic stainless steels. The results of fundamental 
models can be generalized and extrapolated. In conventional empirical extrapola-
tion with statistical methods, recently safe extrapolation can reach a factor of 3–5 
in time [42]. This should be contrasted with the use of the basic model for primary 
and secondary creep of copper. It has been demonstrated that the model can describe 
experimental data at low stresses even after extrapolating the creep rate by many 
orders of magnitude [24]. For copper canisters for spent nuclear fuel, the canisters 
should stay intact for 100000 years. In such a situation the use of fundamental models 
is absolutely essential. Even such a large time scale can be covered. Extrapolation is 
discussed in Chap. 14.
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1.3 Objectives 

The starting point for the study of creep can be one of the excellent text books 
by Ilschner [43], Evans and Wilshire [44], Kassner [45] or Zhang [46]. There are 
also many high quality review articles about creep, for example: Sherby and Burke 
[47], Lagneborg [6], Nix and Ilschner [48], Orlova and Cadek [49], Kassner and 
Pérez-Prado [50], and Blum [51]. 

It is not the aim to review the complete literature on creep modeling. It would 
neither be possible nor meaningful. Instead the book is concentrated to models that 
can be derived from physical principles and can give results in quantitative agreement 
with observations. Such models have mainly been presented in recent years. 

The purpose of this book is fourfold 

• To show that it is quite possible to derive models for properties for plastic defor-
mation that are based on physical principles and that avoid the use of adjustable 
parameters. Such models are referred to as fundamental (or basic). 

• To demonstrate that the use of fundamental models has and will give useful 
contributions to creep research and that they can give quantitative predictions 
of properties. 

• To illustrate that there are many situations where the use of fundamental models 
is essential. 

• To stimulate more scientists to get involved in the development of fundamental 
models. There are many areas where further efforts are needed. 

1.4 Layout 

The author has taken a number of steps to make it easier for the reader to understand 
the models that are presented: 

• Each chapter is started with an and abstract and an introduction that describes the 
content of the chapter without using any formulae. 

• In Section 2 of most chapters, common empirical models are summarized and 
applied. The aim is to make the reader find models that he/she is familiar with 
and to illustrate how the empirical and fundamental models are related. 

• In the remaining section(s), basic models are derived, their use is illustrated and 
predictions are compared with experimental data. 

• At the end of each chapter a summary of the findings is given.
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1.5 Supplementary Material 

It is planned to provide supplementary material to the book text. The supplementary 
material will contain values of material constants and other information that would 
simplify repeating some of the computations in the book. This material will be placed 
at the author’s home page. 

https://www.kth.se/profile/rsand 

Or as an SKB report at 

https://skb.se/publications 

The title of the book will be included in the name of the supplementary material. 
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49. A. Orlová, J. Čadek, Dislocation structure in the high temperature creep of metals and solid 
solution alloys: a review. Mater. Sci. Eng. 77, 1–18 (1986) 

50. M.E. Kassner, M.T. Pérez-Prado, Five-power-law creep in single phase metals and alloys. Prog. 
Mater. Sci. 45, 1–102 (2000) 

51. W. Blum, P. Eisenlohr, F. Breutinger, Understanding creep—A review. Metall. Mater. Trans. 
A 33, 291–303 (2002) 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Chapter 2 
Stationary Creep 

Abstract An introduction to creep and its main characterstics are given. Stationary 
creep has been studied extensively in the literature. Stationary creep is a result 
of a balance between work hardening and recovery processes, which allows for 
a continues plastic deformation without raising the stress. The starting point for the 
basic modeling of creep is a differential equation for the dislocation density that 
describes how it varies with strain or time. The model explains how the dislocation 
density is influenced by work hardening and recovery. From the dislocation model, a 
basic equation for the creep rate is derived that is in many respects similar to the clas-
sical Bird, Mukherjee and Dorn (BMD) formula but with the values of the parameters 
given. By taking the role of strain induced vacancies into account, the applicability 
of the BMD equation is widely expanded because the basic model can also handle 
low temperatures and high stresses that is usually referred to as the power-law break 
down regime. It is illustrated that the creep model can represent the creep rate for 
pure metals such as Al and Ni. 

2.1 The Creep Process 

Creep deformation is in general assumed to take place by the motion of dislocations. 
At very low stress and high temperatures creep can also occur by the diffusion of 
individual atoms, which is referred to as diffusion creep. The framework for diffusion 
creep and the competing dislocation creep at very low stresses are discussed in 
Chap. 5. In this chapter the focus will be on dislocation creep. 

Let us consider a specimen in a soft annealed condition. During a creep test the 
few dislocations present initially will rapidly multiply and form a network. This 
network will strengthen the material, which is referred to as work hardening. In a  
polycrystalline metal, the initial phase of the work hardening is characterized by 
an increase in the strength from the dislocations that is proportional to the strain. 
Gradually the dislocation density becomes sufficiently high that more stable and 
energy efficient dislocation structures are formed that reduce the increase in strength. 
During this stage also some dislocations are eliminated due to the interaction with
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other dislocations. Thus there is a process that balances the work hardening and 
removes and stabilizes some dislocations. We will refer to this process as dynamic 
recovery. It is strain controlled in the same way as the work hardening. The stages 
described so far are similar for creep and rate controlled tensile tests. 

Specific for creep is that there is an additional process called static recovery. 
Dislocations with opposite burgers vectors attract each other and if the dislocations 
are free to move, they will eventually eliminate each other. At low temperatures 
dislocations can only move in their glide planes, which is referred to as glide. At 
high temperatures the dislocations can also move perpendicular to the glide planes. 
For edge dislocations this is possible if atoms can diffuse to and from the dislocation 
cores. This mechanism is called climb. The main difference between plastic defor-
mation at low and at high temperatures is that climb of dislocations can take place. 
This enables that dislocations can move both parallel and perpendicular to the glide 
planes. This is crucial during static recovery since the dislocations that are influenced 
by attracting forces can reach each other. This makes it possible for dislocations to 
annihilate each other and that is the basis of static recovery. 

When the dislocation density has reached a certain level during a creep test due 
to work hardening, the static recovery starts to be of importance. There is work 
hardening that raises the dislocation density and recovery that reduce the density. 
The rates of recovery increase faster with time than the rate of work hardening. 
This means that eventually there will be a balance between work hardening and 
recovery. The whole process becomes stationary and the dislocation density becomes 
constant. This is referred to as stationary creep. In the traditional way of describing 
a creep strain versus time curve (“creep curve”), stationary creep is the second stage 
and therefore it is referred to as secondary creep as well. Although stationary and 
secondary creep does not always be exactly the same thing, no distinction between 
the terms will be made in the present book. 

The presence of a stationary stage implies that a specimen can continue to deform 
at constant stress or load, which is one of the most characteristic features of creep, and 
any basic creep model must be able to describe how the stationary stage is reached. 
In creep strain tests, the secondary creep rate is usually measured as the minimum 
creep rate. Even in the secondary stage, the creep rate is not fully constant. The extent 
of the secondary stage is rarely precisely defined and it is up to the one analyzing 
the creep data to determine that. 

Two types of recovery, dynamic and static, are introduced above. In fact, in most 
papers where recovery during creep is discussed no distinction is made between 
dynamic and static recovery. In addition, the nomenclature varies. In this book 
dynamic recovery is strain controlled and static recovery time controlled. This means 
that dynamic recovery only takes place when a specimen is strained whereas static 
recovery can occur even without external load. To describe both tensile and creep 
tests with the same models, both dynamic and static recovery must be taken into 
account. In addition, there are a number of phenomena such as the role of cell struc-
ture and the influence of cold work on creep that would be very difficult to describe 
without taking both types of recovery into account.
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In Sect. 2.2 empirical models for the secondary creep rate are presented. The 
dislocation model that is the basis for the description of both stress controlled (creep) 
and rate controlled (stress strain curves) deformation is derived in Sect. 2.3. Some 
constants that are needed in the creep models are analyzed in Sect. 2.4. The basic 
formula for the secondary creep rate is given in Sect. 2.5. The dislocation mobility 
plays a central role in the modeling, Sect. 2.6. Finally in Sect. 2.7, the analysis is 
applied to aluminum and in Sect. 2.8 to nickel. 

2.2 Empirical Models of Secondary Creep 

It was early on recognized that the creep rate in the secondary stage could be described 
with simple relations. Norton found that stress dependence of the creep rate ε̇sec could 
be described with an exponential expression [1] 

ε̇sec = ANσ nN (2.1) 

where σ is the applied stress AN is a constant. nN is referred to as the stress or Norton 
exponent. Equation (2.1) was later extended by including the temperature and grain 
size dependence [2, 3] 

ε̇sec = 
AN DselfGb 

kBT

(
b 

d

)p( σ 
G

)nN 
(2.2) 

Dself is assumed to be the self-diffusion coefficient represented with an Arrhenius 
expression Ds0 exp (−Qself/RGT ) where Ds0 is a frequency factor, Qself an activation 
energy, and RG the gas constant. G is the shear modulus, b the Burgers vector, kB 
the Boltzmann’s constant, T the absolute temperature, d the grain size, σ the applied 
stress, and AN a constant. The constant p is the grain size exponent that is usually 
close to zero but takes positive values for fine grained materials. AN, p and nN are 
usually considered as adjustable parameters and fitted to experimental data. Unless 
the activation energy is close to that for self-diffusion, it is an additional adjustable 
parameter. Equation (2.2) is often referred to as the Bird, Mukherjee and Dorn (BMD) 
equation. The equation has been much used in creep research in the past decades. It 
has been assumed that from the values of the stress exponent, the activation energy 
and the grain size exponent, the active mechanisms could be identified. This will first 
be analyzed for the stress exponent below. 

Another reason for the importance of Eq. (2.2) is that the creep rate can roughly 
be related to the rupture time with the help of the Monkman-Grant relationship [4] 

ε̇mMG 
sec tR = CMG (2.3) 

where tR is the time to rupture and mMG and CMG are constants. The relation works
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best when the secondary stage is a fairly large fraction of the creep life. An alternative 
way of writing Eq. (2.3) is  

ε̇sectR = εRsec (2.4) 

where εRsec is the total creep strain in the secondary stage. Equation (2.4) is often  
easier to apply than (2.3). 

The understanding of dislocation creep is mainly based on modeling. The prime 
interest has been on secondary creep. The reason is that the stress dependence of 
the rate in the secondary stage has been assumed to reflect the operating creep 
mechanism. In two papers Weertman suggested that stress exponent was about 5 
if climb of dislocations and about 3 if glide of dislocations was controlling [5, 6]. 
This resulted in the anticipation that the value of the stress exponent could be used 
to identify the controlling microstructure mechanism. This was further emphasized 
by the predictions of the diffusion creep models that gave a stress exponent of 1. 

Creep investigations concerning metals have often been performed above half the 
absolute melting point Tm. In Fig.  2.1, the stress dependence of the creep rate is 
illustrated for 0.5Cr0.5Mo0.25V steel at 565 °C over a wide range of stresses. 

The slope of the curve gives the stress exponent nN. At intermediate stresses (and 
temperatures) the stress exponent is usually in the range 3–8. The value in Fig. 2.1 is 
4. The stress exponent is much higher at high stresses (and at low temperatures), in 
the Figure illustrated with nN = 12. The creep rate varies exponentially with stress 
at still higher stresses, which is referred to as power-law breakdown. This can give 
very high stress exponents. At very low stresses, the nN value takes values down to 
unity or even below unity [7]. The steel 0.5Cr0.5Mo0.25V is a precipitation hardened 
material. Other precipitation hardened alloys can show much higher stress exponents 
than in Fig. 2.1. 

Climb of dislocations has in general been considered as the operating mechanism 
at intermediate exponents (3–8). However, glide has also been proposed to control the

Fig. 2.1 Creep rate versus 
stress for 0.5Cr0.5Mo0.25V 
steel at 565 °C. The n value 
is the stress exponent in the 
power-law creep law, Eq. 
(2.2). At large stresses the 
creep rate increases 
exponentially with the stress, 
which is called power-law 
breakdown. Some of the data 
points are extrapolated. After 
Wilshire [7]. Reprinted from 
[8] with permission of 
intechopen 
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Fig. 2.2 Activation energy 
for self-diffusion Qself versus 
the activation energy for 
creep Qcreep. Qcreep is 
obtained by fitting the Q 
value in Eq. (2.2) to creep 
strain rate data. After Sherby 
and Miller [3] 

deformation for certain alloy types. The dominating mechanism at high stresses has 
been suggested as glide. The main mechanism at low stress exponents approaching 
1 has been considered to be diffusion creep. This consistent change of operating 
mechanism with stress has been challenged, see for example [7]. Recent research 
supports that this challenge is relevant. This will be discussed in Sect. 2.6.4. 

It was early on recognized that when the activation energy in Eq. (2.2) was fitted 
to creep strain data for pure metals a value close to the activation energy for self-
diffusion Qself was obtained. This was the reason for having the self-diffusion coef-
ficient in Eq. (2.2). The fitted value is referred to as the activation energy for creep 
Qcreep. The relation between Qcreep and Qself is illustrated in a classical picture in 
Fig. 2.2 [2, 3]. 

The natural explanation of the close relation between Qcreep and Qself is that creep 
is controlled by climb. Since climb requires the diffusion of vacancies, the climb 
rate of pure metals is proportional to the constant for self-diffusion. However, for 
alloyed steels the activation energy for creep can be significantly higher than for 
self-diffusion due to solid solution hardening. There are other mechanisms that give 
a creep rate that is related to the self-diffusion constant. The most well-known one 
is diffusion creep. 

2.3 Dislocation Model 

The most characteristic feature of creep is that there is a continuous deformation at 
constant load or stress. This requires that extensive recovery of dislocations takes 
place that balances the strengthening effect of dislocations due to work hardening. 
Basic creep models must be able to describe this feature. This is the basis of creep 
recovery theories [9]. To provide creep models that can make general predictions, 
the models must be based on basic physical principles and the use of adjustable
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parameters must be avoided. In this chapter such a creep recovery model will be 
presented. 

To describe plastic deformation, the development of the dislocation structure must 
be known. Only recently quantitative basic models have been established that fulfill 
the requirements in the previous paragraph. Such a model will now be presented. In 
later sections and chapters it will be used in a number of applications. 

During plastic deformation three main processes take place. Work hardening raises 
the strength by generation of new dislocations and thereby increases their density. 
The increase of the dislocation density raises the energy content of the material. 
There is a driving force to reduce the energy content. The mechanism that makes this 
possible is called recovery. During recovery dislocations of opposite signs combine 
to form low energy configuration or annihilate each other, which reduces the density 
of dislocations. There are two types of recovery: dynamic recovery that is strain 
dependent and static recovery that is time dependent. 

2.3.1 Work Hardening 

The work hardening of polycrystalline materials can be described with the help of 
the following equation for the dislocation density ρ 

dρ 
dε 

= 
mT 

bLs 
(work hardening) (2.5) 

ε is the strain, mT the Taylor factor, b Burger’s vector and Ls the “spurt” distance which 
the dislocation moves in each elementary release during deformation for example 
from a Frank-Read source. Equation (2.5) can be derived from the Orowan equation 

ε̇ = bρv/mT (2.6) 

ε̇ is the creep rate and v the velocity of the dislocations. If Eq. (2.6) is integrated, one 
obtains 

ε = bρLs/mT (2.7) 

This equation describes how much strain is generated when the dislocations have 
spurted a distance Ls. If we derivate Eq. (2.7) and keep the spurt distance Ls constant, 
we get Eq. (2.5). The Orowan Eq. (2.6) is based only on a geometrical argument and 
not on a specific mechanism, and this applies to Eqs. (2.5) and (2.7) as well. In this 
way these equations have a general applicability. In Eq. (2.5), Ls can be related to the 
barriers in the materials such as grains or subboundaries. The simplest assumption 
is that the spurting dislocations are stopped by the grain boundaries. Ls would then 
be the grain size dg. This would give a grain size dependence in the creep rate that
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is not observed except in special cases. The most common assumption is that Ls 

is controlled by the forest of dislocations, i.e. it is related to the average distance 
between the dislocations 1/ρ1/2. 

Ls = 
cL 

ρ1/2 
(2.8) 

cL is a constant that is much larger than unity. How to find the size of cL will be 
discussed below. If the dislocations are stopped by the subboundaries instead it gives 
an Ls value that is not very different from that in Eq. (2.8) as will be seen below. If 
Eq. (2.8) is inserted into Eq. (2.5) one finds that 

dρ 
dε 

= 
mTρ

1/2 

bcL 
(work hardening) (2.9) 

This form of the work hardening equation appears in many models including 
empirical ones, see for example [10, 11]. As will be seen below, this model can 
describe the initial stages of work hardening in fcc alloys. 

2.3.2 Dynamic Recovery 

When two dislocations during plastic deformation are nearer to each other than a 
critical distance dint a low energy configuration may be formed or annihilation occurs 
reducing the dislocation density. This process is referred to as dynamic recovery. It 
is commonly taken into account with the help of the following equation 

dρ 
dε 

= −ωρ (2.10) 

where ω is a constant. This equation was first proposed by Bergstrom and co-workers 
[12, 13]. Roters et al. [14] gave a basic derivation of Eq. (2.10). They used the 
following argument. During a time increment dt a dislocation travels a distance v 
dt and has to find a suitable dislocation within the distance 2dint. This gives an 
annihilation rate of 

dρ = −ρvdt2dintρ = −  ̇
εmT 

b 
dt2dintρ (2.11) 

In the last step, the Orowan Eq. (2.6) has been applied. This gives an equation 
of the same form as Eq. (2.10). By taking the role of slip planes, dislocation locks 
and dislocation dipoles into account, the following expression for the constant ω was 
obtained [14]



20 2 Stationary Creep

ω = 
mT 

b 
dint

(
2 − 

1 

nslip

)
(2.12) 

nslip is the number of independent slip systems (=12 for fcc metals). Roters et al. 
[14] suggested a high value for dint. But in fact dint is quite small [15]. The simplest 
way to estimate dint is to assume that it is equal to twice the dislocation core radius. 
For example, ab initio calculations for copper give a core radius of r0 = 1.3 b [16], 
and thus dint = 2.6 b. This gives ω = 15 which is quite a good value for copper in 
agreement with observations. To represent dynamic recovery, Eq. (2.10) is a common  
equation to use. Together with Eq. (2.9), work hardening of many materials can be 
described [10, 11]. Equation (2.10) has been used in many papers for representing 
stress strain curves. A list of such papers can be found in [17]. 

2.3.3 Static Recovery 

Dislocations of opposite burgers vector attract each other. Static recovery takes into 
account how climbing (and gliding, see below) dislocations of opposite signs move 
towards each other and finally annihilate. This can be described by the following 
equation 

dρ 
dt  

= −2τL Mρ2 (2.13) 

t is the time, τL the dislocation line tension, and M the dislocation climb mobility. 
The idea behind this equation was suggested by Friedel [18], but he never gave any 
derivation of it in his book. The equation was first used extensively by Lagneborg 
and co-workers [9]. To derive the equation, let us consider a network of dislocations 
with an average spacing of R, which corresponds to a dislocation density of ρ = 1/ 
R2. With the help of the dislocation mobility, the velocity of the dislocations can be 
estimated 

dR  

dt  
= −Mbσ = −Mb 

Gb 

2π R 
ln

(
R 

r0

)
= −  

MτL 

R 
(2.14) 

G is the shear modulus. In the second equality, the expression for the stress from 
a neighboring screw dislocation is introduced. In the third equality, an expression 
for the line tension of a screw dislocation has been applied. If equations for edge 
dislocations or mixed screw and edge dislocations are used instead, the end result is 
the same. The time to eliminate the dislocation pair telim is obtained by integrating 
Eq. (2.14) with respect to time 

telim = R2 

2MτL 
(2.15)
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Fig. 2.3 Dislocation 
dynamics simulation in 2D 
of static recovery. There are 
edge dislocations with four 
Burgers vectors (in the 
directions top, bottom, left, 
right) and screw dislocations 
with two Burgers vectors (in 
the directions down, up). 160 
dislocations remain in the 
simulation 

The average distance between the dislocations changing with time during the 
recovery is obtained from Eq. (2.15) 

dR  

dt  
= 

MτL 

R 
(2.16) 

If now the relation R = 1/√ρ is applied to Eq. (2.16), (2.13) is recovered. 
The derivation of the rate for static recovery, Eq. (2.13), is obviously simplified 

since it considers only a pair of dislocations. To analyze static recovery in a more 
general situation, dislocation dynamic simulations have been performed. Randomly 
distributed parallel dislocations with six different Burgers vectors have been studied, 
see Fig. 2.3. Four of the sets were edge dislocations and two screw dislocations. 
Dislocations of opposite signs attract each other (top, bottom or left, right or down, 
up) and eventually annihilate. 

The result of the analysis is illustrated in Fig. 2.4. In this case 1300 dislocations 
were used in the simulation. In Fig. 2.4 the values from Eq. (2.13) are scaled to the 
same number of initial dislocations.

It is evident from Fig. 2.4 that the validity of Eq. (2.13) is not restricted to a single 
pair of dislocations. 

Equation (2.13) is based on the annihilation of forest dislocations, i.e. dislocations 
in the subgrain interiors. If the static recovery is based on subgrain coarsening instead, 
the recovery rate can be derived with the help of the results in [19]. In fact, the same 
results as before are obtained, i.e. Eq. (2.13) is reproduced. Thus, the role of the 
subgrains cannot be determined from the form of Eq. (2.13). Blum has suggested 
that taking substructure into account would change the recovery process [20]. This 
obviously depends on the details of the assumptions. 

Both dynamic and static recovery are based on the annihilation of dislocations of 
opposite Burgers’ vector or orientation that come close to each other. Although the
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Fig. 2.4 Number of 
dislocations versus time 
during static recovery. 
Dislocation simulation 
results are compared with 
Eq. (2.13)

modelling of dynamic and static recovery are strain and time controlled, respectively, 
and they are based on the different derivations, the two recovery mechanisms are 
not completely unrelated. For some processes, it is essential to take both types of 
recovery into account, for example, for stress strain curves for large strains and 
for primary creep. For more limited strain ranges, dynamic recovery is enough to 
consider for stress strain curves. On the other hand, the stationary creep rate is based 
on static recovery. In some cases, it is even assumed that the two recovery mechanisms 
can give the same results. This is the case in one derivation of the cL parameter. 
Dynamic and static recovery should be considered as different appearances of the 
same phenomenon, and their relative importance depends on the application. Their 
final role should always be verified by comparison to experiments. The varying 
influence of the two types of recovery could be compared with phenomena in quantum 
mechanics, which could be explained in terms of particles or wave packages or both. 

2.3.4 Accumulated Dislocation Model 

To describe how the dislocation density ρ develops during plastic deformation, 
the contributions from work hardening (2.5), dynamic recovery (2.10), and static 
recovery (2.13) are added. 

dρ 
dε 

= 
mT 

bcL 
ρ1/2 − ωρ − 2τL Mρ2 /ε̇ (2.17) 

Notice that we have strain derivatives in (2.5) and (2.10) but a time derivative in 
(2.13). By multiplying or dividing by ε̇, one can make a transformation from one 
type of derivative to the other. Equation (2.17) represents a general basic equation
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for the development of the dislocation density during plastic deformation. We have 
seen above that all parts of Eq. (2.17) have a good basis. 

The validity of the two first two terms on the right hand side (RHS) of Eq. (2.17) 
has been verified by comparison to the work hardening in tensile tests. This will be 
further discussed in Chap. 3. The experimental verification of the last term, the static 
recovery term is done with the help of creep tests. Examples will be given below. 

In many papers in the literature either dynamic or static recovery is taken into 
account but not both. However, there are cases where it is absolutely essential to 
include both. For example, this is the case for the influence of cold working on creep 
properties, which will be treated in Sect. 8.3 [21]. In addition, if the same equation is 
to be used to describe both strain rate and stress controlled tests, both dynamic and 
static recovery must be included. Equation (2.17) has to be expanded for some types 
of materials. A well-known case is martensitic 9 and 12% Cr-steels. For example, to 
describe primary creep more than one type of dislocation density must be taken into 
account [22]. This will be described in Sect. 4.5. 

2.4 The cL Parameter 

The value of the cL parameter can be found from the following analysis. The 
maximum dislocation density ρx that is derived from Eq. (2.17) plays an impor-
tant role because it gives the dislocation contribution to the creep strength during 
stationary conditions and the amount of work hardening during tensile tests. 

The main alternative to derive the value of cL. is to make reference to the substruc-
ture. The spurt distance Ls in Eq. (2.5) can be related to the subgrain or cell diameter 
dsub. 

Ls = nsubdsub (2.18) 

where the constant nsub is close to 3 [23, 24]. It is well established that the subgrain 
or cell size can be related to the dislocation stress 

dsub = 
KsubGb 

σdisl 
(2.19) 

K sub is a constant typically in the range 10–20 [25]. The dislocation stress σdisl is 
given by Taylor’s equation 

σdisl = αmTGbρ1/2 (2.20) 

where σdisl is the strength contributions from the dislocations. This equation gives the 
relation between the strength contribution from the dislocations and the dislocation 
density where α ≈ 0.19 is a constant. Experimentally α takes typically values in
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the range 0.2–0.6 [26]. In this book a computed value α ≈ 0.19 applicable to high 
temperatures will be used, Eq. (3.17). Equation (2.18) can now be rewritten as 

Ls = 
nsubKsubGb 

σdisl 
= 

nsubKsub 

mTαρ1/2 
(2.21) 

Equation (2.21) has the same form as Eq. (2.8) so a  cL value can be obtained 
directly 

cL = 
nsubKsub 

mTα 
(2.22) 

A simple estimate of the cL value can be obtained in the following way. It is 
assumed that the maximum dislocation density ρx is either controlled by the dynamic 
recovery term (ρxdr) or the static recovery term (ρxsr) in Eq.  (2.17) 

ρxdr =
(

mT 

bcL ω

)2 

ρxsr =
(

mTε̇ 
2bcL τL M

)2/3 

(2.23) 

At ambient temperatures, the stress dependence of the recovery terms is such that 
the dynamic recovery term dominates. This means that first of Eq. (2.23) is the one 
that is applicable and can be used to obtain an estimate of cL. 

cL = mT 

bωρ
1/2 
x 

= 
m2 

TαG 

ωσdislx 
≈ 

m2 
TαG 

ω(Rm − σy) 
(2.24) 

where Rm is the tensile strength and σy the yield strength at room temperature. In 
the second equality, Taylor’s Eq. (2.20) has been applied. In the final equality in 
Eq. (2.24), the maximum value of σdisl has been estimated as the difference between 
the tensile strength Rm and the yield strength σy for a material without significant 
contributions from precipitation and solid solution hardening. The ratio between the 
expressions for static and dynamic recovery, Eqs. (2.13) and (2.10), is given by 

2τL Mρ 
ωε̇ 

Apart from constants this is the same ratio as in the creep Eq. (2.28), see below, 
if the ratio is multiplied by ρ1/2. This means that the following ratio is at least 
approximately temperature and stress independent 

2τL M 

ωε̇ 
ρ3/2 

To make Eq. (2.24) valid at higher temperature, we have to multiply it by (ρ(T)/ 
ρ(TRT))1/2 which gives
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cL = mT 

bωρ(T )1/2 
( 

ρ(T ) 
ρ(TRT) 

)1/2 = mT 

bωρ(TRT)1/2 
(2.25) 

where TRT is the room temperature. This expression is identical to Eq. (2.24). This 
means that Eq. (2.24) is valid at elevated temperatures as well. Consequently, cL is 
a temperature independent constant. Eq. (2.22) represents a more physically based 
value than Eq. (2.24), but the values are of the same order. 

Another argument can in a number of cases give a more accurate estimate of cL. It  
is well-known that tensile stress strain tests can give rise to a stationary stress level if 
sufficiently large strains can be reached. This stress level is comparable to the creep 
stress that gives the same strain rate that was used in the tensile test. For many creep 
tests the contribution from the static recovery is dominating that of dynamic recovery. 
On the other hand for stress strain curves, the situation is reversed: dynamic recovery 
is more important than static recovery. But the comparison between the results from 
the tensile and the creep tests gave the same stationary results. A possible assumption 
is then that dynamic recovery and static recovery should generate the same findings. 
Putting it in mathematical terms this means that the two last terms in Eq. (2.17) 
should be the same, which gives 

ωε̇ − 2τLρs Mcl(ρs) (2.26) 

Since the climb mobility Mcl in general depends on the dislocation density, Eq. 
(2.26) has to be solved by iteration to find the stationary dislocation density ρs. This  
argument is only valid if only one of the dynamic or the static recovery term is taken 
into account. If the dynamic recovery term is considered, the first two terms on the 
RHS of Eq. (2.17) have the same value under stationary conditions and the cL value 
can be determined. 

cL= 
mT 

bω 
ρ1/2 
s (2.27) 

This relation will be used in Sect. 3.3 for stress strain curves. 

2.5 Secondary Creep Rate 

The recovery theory is the basis of our understanding of the creep process [9]. For 
secondary creep to take place the recovery rate must be sufficiently fast that the 
dislocation density can be kept constant. In the presence of a continuously rising 
dislocation density, the creep rate will gradually be reduced and eventually vanish, 
which is not in accordance with observations. Thus, the balance between the gener-
ation and the annihilation of dislocations is a crucial feature. The strain derivative 
in Eq. (2.17) vanishes if we assume stationary conditions. The secondary strain rate 
can then be expressed as
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ε̇sec = 
2τLbcL 
mT 

Mclimbρ
3/2 (2.28) 

In Eq. (2.28) only static recovery is taken into account, not dynamic recovery 
to make the equation agree with observations. This was discussed at the end of 
Sect. 2.3.3. 

If other contributions than the dislocation stress is part of the applied stress, Eq. 
(2.20) has to be rewritten as 

σdisl = αmTGbρ1/2 = σ − σi (2.29) 

σdisl is the dislocation stress. σi is an internal stress that was the yield strength above. 
In addition, contributions from solid solution hardening and particle hardening can 
be included. They will be discussed in Chaps. 6 and 7. Equation (2.28) can be 
transformed to stresses with the aid of Taylor’s Eq. (2.29), 

ε̇sec = hsec(σ − σi ) where hsec(σ ) = 
2τLbcL 
mT 

Mclimb(T, σ  )  
σ 3 

(αmTGb)3 
(2.30) 

The mobility M will be given below. At low stresses this expression is almost 
independent of stress, and Eq. (2.28) approximately gives a power-law expression 
with a stress exponent of 3 if there is no internal stress. This is sometimes referred to as 
the natural creep law [27]. This stress exponent is often observed at high temperatures 
for austenitic stainless steels [28]. There are many factors that influence the value 
of the stress exponent nN. If diffusion takes place along dislocations (pipe diffusion) 
instead of in the grains, the stress exponent is increased by 2 [29]. If the dislocation 
network consists of dipoles instead of single dislocations the stress exponent is raised 
by 2, but limited experiments are available to support that [20]. But the most dramatic 
effect is from strain induced vacancies that will be analyzed in detail below. 

According to Eq. (2.29), the applied stress σ is equal to the sum of the strength 
contributions from dislocations σdisl and from other parts σi (solid solution and 
particle hardening). At low temperatures σi can also include the yield strength. Thus, 
for a pure metal the applied stress is equal to the dislocation strength if the yield 
strength is not taken into account. There are other formulations of the creep-recovery 
theory that also involve an effective stress σeff, see for example [30]. This means that 
Eq. (2.29) is replaced by 

σ = σeff + σdisl − σi (2.31) 

Physical arguments have been given for the existence of an effective stress [31]. 
However, the effective stress is a problematic quantity. It has been suggested that 
σeff could be measured in stress drop tests. If the dislocation structure is intact after 
a stress drop, the strain rate would disappear after a sufficiently large stress drop, 
because the back stress from dislocations would be much larger than for the stationary



2.6 Dislocation Mobility 27

level at the new lower stress. However, it is known now from dislocation dynamics 
simulations (DDS) that the forest dislocations adapt to the new stress level within 
milliseconds [32]. The substructure is also likely to partially adapt to the new stress 
level but not completely. So the back stress that is measured is from the unchanged 
part of the substructure. Unfortunately, no detailed studies on the momentary effect 
on the substructure seem to exist. It is evident that what is measured in a stress drop 
test is something that is quite different from what is supposed to be the effective 
stress. Stress drop tests at different laboratories have not in general given consistent 
results [33]. This is not surprising considering the dynamic nature of stress drop 
tests, which makes them very sensitive to the exact experimental setup [34]. In the 
present text, the effective stress will not be considered, since there seems to be no 
well-defined way to measure or model the quantity. 

σeff = 0 (2.32) 

From the results that are presented in this text it will be evident that precise creep 
models can be formulated without introducing an effective stress. 

2.6 Dislocation Mobility 

2.6.1 Climb Mobility 

The dislocation mobility M in Eq. (2.17) describes the velocity v of moving 
dislocations 

v = Mbσ (2.33) 

where σ is the applied stress. Glide of dislocations takes place in their slip planes 
and climb perpendicular to the slip planes. Climb is associated with the emission and 
absorption of vacancies by diffusion. Climb is a slower process than glide. Hirth and 
Lothe [35] derived a basic expression for the climb mobility of pure metals at high 
temperatures (>0.4 Tm where Tm is the melting temperature) 

Mclimb0 = 
Ds0b 

kBT 
e 

σ b3 
kB T e− Qself 

RG T (2.34) 

where T is the absolute temperature, σ the applied stress, Ds0 the pre-exponential coef-
ficient for self-diffusion, Qself the activation energy for self-diffusion, kB Boltzmann’s 
constant, and RG the gas constant. 

At lower temperatures, plastic deformation raises the number of vacancies above 
the equilibrium value. A climbing dislocation will either emit or absorb vacancies. 
Jogs in the form of steps of the length of a Burgers vector are formed on gliding
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dislocations when they cut each other. In general jogs move by climb and hence they 
also emit or absorb vacancies. Since the climb rate is proportional to the number of 
vacancies per unit volume, it is influenced by the excess vacancy concentration. 

Mecking and Estrin [36] have developed a model that describes how the number 
of vacancies is influenced by plastic deformation. They estimated the number of 
vacancies produced mechanically in a unit volume per unit time as 

P = 0.5 
σ ̇ε 
Gb3 

(2.35) 

The quantities in this equation have been explained above. The constant in Eq. 
(2.35) was estimated to 0.1 in [36]. A detailed derivation gives the value 0.5. For the 
excess vacancies the annihilation rate A was found to be 

A = 
Dvac 

λ2 
(c − c0) (2.36) 

where c0 is the equilibrium vacancy concentration,Δc = c – c0 the excess concentra-
tion, Dvac the diffusion constant for the vacancies, and λ the spacing between vacancy 
sinks. Following [36], λ can be related to the cell or subgrain size dsub, Eq.  (2.19) 
if a substructure is present. Combining Eqs. (2.19), (2.35) and (2.36), an expression 
for the excess vacancy concentration is obtained

Δc 

c0 
= 0.5 

√
2K 2 subε̇b

2 

Dself 

G 

σ 
(2.37) 

In finding Eq. (2.37), a relation for the self-diffusion coefficient has been applied 

Dself = c0ΩDvac (2.38) 

where Ω is the atomic volume. In the same way as in [36], the climb rate is assumed 
to be proportional to the total vacancy concentration. Equation (2.37) then gives the 
increase in the climb rate gclimb due to the presence of excess vacancy concentration 

gclimb = 1 + Δc 

c0 
(2.39) 

The total climb mobility Mclimb is obtained by multiplying Eq. (2.34) by  gclimb. 

Mclimb = Mclimb0gclimb (2.40)
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2.6.2 The Glide Mobility 

The glide mobility is very high in a dislocation free crystal. A glide mobility of 
M0 = 1 × 104 1/Pa/s was measured for a copper single crystal by Edington [37]. 
The mobility is much lower in an alloy where a forest of dislocations is present. As 
discussed above, jogs will be formed on the dislocations during deformation. Often 
the jogs will have to move perpendicular to their glide planes. This implies that they 
are sessile, and they have to move by climb [35], and this is a slow process. The 
motion of the jogs is likely to control the glide rate. This will be assumed and this is 
also what Hirth and Lothe did [35]. 

The starting point for the glide mobility is Eq. (2.40), since the jogs are moving 
by climb. However, there is another aspect that must be considered. Jogs are only 
present on a small part of a dislocation. Due to the slow movement of the jogs, the 
forces on the dislocations are localized to the jogs. The average distance between 
jogs can be related to the dislocation density ρ as ljog = 1/√ρ. The Peach-Koehler 
formula F = bσl where l is the length of the dislocation gives the force F on a 
dislocation. F will be the force on each jog if l is chosen as ljog. Thus, the stress on 
the jogs is raised by 

gglide = 
ljog 
b 

= 
1 

b
√

ρ 
(2.41) 

where the length of a jog is set as the burgers vector. Equation (2.41) can be expressed 
in terms of the stress σ with the help of Taylor’s equation 

σ = σy + αmTGb
√

ρ (2.42) 

where σy is the yield strength 

gglide = 
αmTG 

σ − σy 
(2.43) 

Multiplying the climb mobility by gglide gives the glide mobility 

Mglide = Mclimb0gclimbgglide (2.44) 

Equation (2.44) is applicable to both edge and screw dislocations. It is evident that 
the climb and glide mobility are closely related with the assumptions made. gglide is 
approximately equal to the ratio between the shear modulus G and the applied stress 
σ. gglide is always much larger than unity, since G is considerably larger than σ. As  
a consequence, the glide mobility is always larger than the climb mobility. When 
modeling creep, this is also a common starting point.
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2.6.3 Cross-Slip Mobility 

With the help of cross-slip, screw dislocations can change glide plane. This can 
increase the annihilation of dislocations with opposite Burgers vectors and raise the 
rate of recovery. There is an additional activation energy Ecs for cross-slip. Püschl 
gave the following values of Ecs [38]. 

Ecs = 0.012Gb3 
dSFE 
b 

ln

(
2dSFE 
b

)
(2.45) 

dSFE is the width of a stacking fault [35] 

dSFE = Gb2 

8πγSFE 

(2 − νP) 
(1 − νP) 

(2.46) 

where γP is Poisson’s ratio and γSFE the stacking fault energy. Taking copper and 
aluminum as examples with stacking fault energies of 45 mJ/m2 and 166 mJ/m2, 
respectively [39], Eq. (2.45) gives  for  Ecs values of 560 and 40 kJ/mol. This indicates 
strong temperature dependence for copper. Equation (2.45) is derived with the help 
of elasticity theory, which can give imprecise values at the atomic level. However, 
ab initio calculations have recently been carried out with similar results. Du et al. 
found Ecs values of 210 to 270 kJ/mol for Ni–Al alloys and Nöhring and Curtin 60 
kJ/mol for Al–Mg, 160 kJ/mol for Cu–Ni and 180 kJ/mol for Ni–Al [40, 41]. Lower 
energy values have also been obtained in ab initio calculations. Rao et al. found 
values in the range 50–70 kJ/mol for Cu and Ni [42]. The effect of cross-slip on the 
mobility can be expressed as 

gcross-slip = exp(− 
Ecs 

RGT 
) (2.47) 

Mcross-slip = Mclimb0gclimbgglidegcross-slip (2.48) 

The role of cross-slip in dynamic recovery will be analyzed in Sect. 3.4. 

2.6.4 The Climb Glide Mobility 

The results for the dislocation mobilities are recent [8]. It has been known for a 
long time that the climb mobility in Eq. (2.34) underestimated the creep rates at low 
temperatures and high stresses by a wide margin. The main assumption was that glide 
would be the controlling mechanism under these conditions. To handle this situation 
a combined climb and glide mobility was formulated [43]
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Mclimb = Mclimb0 fclglide (2.49) 

where fclglide is given by 

fclglide = exp
(
Qself 

RGT 
( 

σ 
Rmax 

)2
)

(2.50) 

Rmax is the true tensile strength at ambient temperatures. It was work of Kocks et al. 
[44] that suggested the form of Eq. (2.50). They presented an empirical expression 
for the glide mobility. However, the expression had five unknown parameters and 
could therefore not be used directly. According to a suggestion by Nes, an integrated 
climb and glide mobility could be introduced [45]. In this way some of the unknown 
parameters could be found. With the aid of work by Chandler, the other parameters 
could be fixed [46]. 

The introduction of Eq. (2.50) has a number of important implications at low 
temperatures. First, the activation energy for creep is reduced. Second, the creep rate 
is increased by a large factor. Third, the stress exponent is raised in a dramatic way. 
These findings are in excellent accordance with experiments [15, 47]. 

Ideally, to describe creep, the basic models for the dislocation mobilities derived 
above should be used when modeling creep and other types of plastic deformation. 
However, since gclimb involves the strain rate, it is difficult to apply directly. Instead, 
the equations for the mobilities will be used to verify the validity of Eq. (2.50). 
This equation can then be applied to compute the creep rate. gclimb and fclglide are 
compared in Figs. 2.5 and 2.6 for pure aluminum. 

In Fig. 2.5, a continuous set of parameters for temperature and strain rate are 
used whereas in Fig. 2.6 experimental values are applied. It can be seen that the 
enhancement in vacancy concentration due to plastic deformation can fully explain 
the increase in creep rate in relation to the high temperature climb mobility. A second

Fig. 2.5 Climb 
enhancement factor versus 
temperature at five strain 
rates for aluminum. The 
increase in vacancy 
concentration due to plastic 
deformation, Eq. (2.39) is  
compared to the climb-glide 
enhancement factor, Eq. 
(2.50). Redrawn from [8] 
with permission of 
intechopen
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Fig. 2.6 Climb 
enhancement factor versus 
stress at six temperatures for 
aluminum. The increase in 
vacancy concentration due to 
plastic deformation, Eq. 
(2.39) is compared to the 
climb-glide enhancement 
factor, Eq. (2.50). 
Experimental data from [48]. 
Redrawn from [8] with  
permission of intechopen

example of the comparison is given in Figs. 2.7 and 2.8 for copper with 50 ppm P 
(Cu-OFP). 

The two sets of models show an excellent agreement over many orders of magni-
tude of strain rate. The dependence of temperatures, stress and strain rate is well 
covered. It verifies that the expression for the climb-glide enhancement in Eq. (2.50) 
can be fully explained by the increase in vacancy concentration. Since its stress and 
temperature dependence is explicit, it is straightforward to apply. The total formula 
for the climb mobility, Eq. (2.49), with the equations for high temperature climb 
mobility Mclimb0, Eq.  (2.34), and the climb glide factor, Eq. (2.50) is now  

Mclimb(T , σ  )  = 
Ds0b 

kBT 
e 

σ b3 
kB T e− Qself 

RG T fclglide(T, σ  ) (2.51)

Fig. 2.7 Climb 
enhancement factor versus 
temperature at four strain 
rates for copper alloyed with 
50 ppm P (Cu-OFP). The 
increase in vacancy 
concentration due to plastic 
deformation, Eq. (2.39) is  
compared to the climb-glide 
enhancement factor, Eq. 
(2.50)
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Fig. 2.8 Climb 
enhancement factor versus 
stress at six temperatures for 
copper alloyed with 50 ppm 
P (Cu-OFP). The increase in 
vacancy concentration due to 
plastic deformation, Eq. 
(2.39) is compared to the 
climb-glide enhancement 
factor, Eq. (2.50). Redrawn 
from [8] with permission of 
intechopen

This is the expression that should be inserted in the equation for the secondary 
creep rate (2.30) 

ε̇sec = hsec(σ − σi ) where hsec(σ ) = 
2τLbcL 
mT 

Mclimb(T , σ  )  
σ 3 

(αmTGb)3 
(2.52) 

The derivation of the factor fclglide, Eq. (2.50), was originally based on the assump-
tion that it took the effect of glide into account. But the derivation now considers only 
climb. The result is that creep is fully climb controlled even at lower temperatures 
and higher stresses in the power-law breakdown regime. 

2.7 Application to Aluminum 

According to what we know today, static recovery is in general controlled by climb. 
This was analyzed in Sect. 2.3.3. This implies that Eq. (2.40) for the climb mobility 
should be applied in Eq. (2.30). Furthermore it was found that the enhancement factor 
for the climb mobility gclimb due to the increased vacancy concentration in Eq. (2.39) 
agreed with the climb glide enhancement factor fclglide in Eq. (2.50). Further support 
to the use of Eq. (2.40) is found from the successful application of fclglide to model 
experimental data. 

An application of Eq. (2.30) will now be demonstrated for pure aluminum. In 
bcc metals dislocations are exposed to a friction stress, called the Peierls stress. The 
Peierls stress is usually not thought to be of significance for fcc alloys. However, 
it has recently been demonstrated by ab initio calculations that the Peierls stress is 
non-negligible for aluminum. A Peierls stress will be applied for σi. The following
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Fig. 2.9 Secondary creep 
rate versus stress for pure 
aluminum. Equation (2.30) is  
compared to experimental 
data from [50]. Reprinted 
from [8] with permission of 
intechopen 

value for the Peierls stress of edge dislocations σpe was found by Shin and Carter 
[49]. 

σpe = 4.9 × 10−5 G (2.53) 

Screw dislocations gave much smaller values. The application of Eq. (2.30) is  
illustrated in Fig. 2.9. 

The slope of the curves is about 4.5 at intermediate stresses in Fig. 2.9. The slope 
is the value of the stress exponent. The slope increases at higher stresses, indicating 
power-law breakdown. An increase of the stress exponent is also observed at low 
stresses. This is due to the presence of the Peierls stress. It can be seen that the model 
in Eq. (2.30) can obviously handle the experimental data quite well. 

2.8 Application to Nickel 

The factor fclglide in Eq. (2.50) has been found to work with good precision for Al and 
Cu. It is used successfully in many places in this book for example also for austenitic 
stainless steels. It is an expression that is fitted to gclimb in Eqs. (2.37) and (2.39) and 
it may not be completely general. In fact, it has been found for nickel that a different 
expression has to be applied [51]. In this case, the starting point is to use the function 
for the secondary creep rate, Eq. (2.30) without the factor fclglide. 

ε̇sec = 2 
bcL τL 
mT 

Mclimb0(T, σ  )  fSFE 
σ 3 

(αmTGb)3 
(2.54) 

This formula for the creep rate is inserted into Eq. (2.37)
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fclglide = 1 + Δc 

c0 
= 1 +

√
2K 2 sub 
kBT 

bcLτL 
(αmT)3mT 

fSFE 
σ 2 

G2 
e 

σ b3 
kB T (2.55) 

For Ni, pipe diffusion, i.e. diffusion along dislocations is important. To the bulk 
diffusion coefficient in Mclimb0, the pipe diffusion coefficient has to be added [29] 

Deff = Dself + ρ Ad Dd (2.56) 

where ρ is the dislocation density, Ad is the core area of the dislocations, and Dd the 
dislocation diffusion coefficient. For the core radius of the dislocations, a value of 
6 × 10−10 m has been chosen. The values of the activation energy and pre-factor for 
the dislocation diffusion coefficient are 152.4 kJ/mol and 1.56 × 10−4 m2/s [51, 52]. 
The creep rate can now be predicted using Eqs. (2.51), (2.52) and (2.55). Results are 
illustrated in Fig. 2.10. 

There are important differences between Eqs. (2.50) and (2.55). At high stresses, 
Eq. (2.50) gives a stress exponent that increases with decreasing temperature that is 
a characteristic feature of creep in the power-law break down regime. On the other 
hand, Eq. (2.55) is associated with an essentially temperature independent stress 
exponent. In Fig. 2.10, the stress exponent is nN = 7. Equation (2.54) in its basic 
form gives nN = 3. Since pipe diffusion is dominant there is a contribution of 2 from 
the second term in Eq. (2.56), since ρ is proportional to the stress squared according 
to Taylor’s Eq. (2.29). There is also a stress exponent contribution of 2 from Eq. 
(2.55). These contributions to the stress exponent add up to nN = 7.

Fig. 2.10 Secondary creep rate versus temperature at six stresses for pure nickel. Predictions using 
Eqs. (2.51), (2.52) and  (2.55) are compared to experimental data from [53]. Redrawn from [51] 
with permission of ASME 
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2.9 Summary 

• In the past much creep research has been based on the Bird, Mukherjee and Dorn 
(BMD) equation. It describes the creep rate in the secondary stage as a function 
of temperature and stress. With the three to four adjustable parameters, most 
results for the creep rate can be described. It was for a long time assumed that the 
stress exponent and the activation energy would fall in a narrow range for specific 
creep mechanisms and that knowledge could be used to identify the operating 
mechanisms. However that assumption is challenged by more recent findings. 

• The most important quantity in the modeling of creep is the dislocation density 
because it gives a large contribution to the creep strength. There are three main 
processes that control the development of the dislocation density: work hardening, 
dynamic recovery and static recovery. Models for the contribution from these three 
processes are derived. Differential equations for the time and strain derivative for 
the dislocation density are formulated. These equations are the starting point 
for much basic modeling of creep. From the equations, an expression for the 
secondary creep rate can be derived. 

• Dislocation creep is assumed to be controlled by climb. The climb mobility is 
an important quantity in this respect. At low stresses the climb mobility is essen-
tially stress independent and is only a function of the temperature. In this situation 
the models suggest a stress exponent of about three. During creep, strain induced 
vacancies appear. At higher stresses they have a dramatic effect on the stress expo-
nent. Strain induced vacancies can quantitatively explain the high stress exponents 
at least up to 50 during power-law breakdown. This has been demonstrated for 
aluminum and copper. 
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Chapter 3 
Stress Strain Curves 

Abstract Traditionally, stress strain curves for example from tensile testing are 
described with empirical models with a number of adjustable parameters such as 
Hollomon, Ludwik, Voce and Swift. With such models it is difficult or impossible 
to generalize and extrapolate. A model in the form of Voce equation is derived 
from the same basic dislocation model used for the creep models with the values of 
constants computed. The derived model is used to describe stress strain curves for 
Cu including their temperature and strain rate dependence. The dynamic recovery 
constant ω plays a central to show how the work hardening deviates from a linear 
behaviour. The temperature dependence of ω is analyzed and shown to be related 
to that of the shear modulus. In the literature it is frequently assumed that dynamic 
recovery is controlled by cross-slip. However, the measured activation energy for 
dynamic recovery is many times smaller than the energy required to make partial 
dislocations brought together and form a constriction, which is necessary to enable 
cross-slip, so this is an unlikely possibility. 

3.1 General 

Stress strain curves are usually generated with the help of tensile tests. In a tensile 
test a specimen is exposed to a constant length expansion rate at the same time as 
the force is recorded. The expansion rate is transferred to strain by dividing it by 
the initial specimen gauge length. The stress is obtained by dividing the force by the 
initial specimen cross section. In this way a stress versus strain curve is generated 
for the material, which is also referred to as a flow curve. 

Tensile tests are performed on a large scale since the test is used to check the 
properties of batches during metal production. From the stress strain curves the 
strength and ductility of the material can be determined. The strength that is a measure 
of the initiation of plastic deformation, the yield strength, is taken at the linear offset 
by 0.2% strain for most material. The maximum load in the flow curve gives the 
maximum stress a material can take, the tensile strength. It is often thought that the 
strength is the most important property of a material. However, that is not necessarily
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the case. In fact, in order to allow for a more flexible use of a material, it must have 
a certain amount of formability. In a tensile test, the formability can be measured as 
the (total) elongation, which is determined as the strain at failure. In scientific work, 
also the uniform elongation is used, which is the strain at the maximum load in the 
tensile test. The elongation is also referred to as the ductility that can be said to be 
another word for formability. Elongation is not the only way to measure the ductility 
in a tensile test. Another way is to determine the reduction in the specimen cross 
section after failure, reduction of area. 

The ductility is quite an important property. For example, a low ductility makes 
the material sensitive to overloads, fatigue loads and scratches and other marks on 
the surface. This can be exemplified for many ceramic materials that have virtually 
nil ductility. Special design procedures are required to avoid premature failures with 
low ductility. For example, tensile stresses, sharp corners and rough surfaces must 
be avoided. 

In materials production, stress strain curves from tensile tests are recorded but 
not usually modeled. If they are, empirical methods are used. Examples of empirical 
methods for analyzing stress strain curves will be given in Sect. 3.2. In the  same  way  
as for creep tests, basic modeling is needed to safely determine the operating mech-
anisms. This applies also to flow curves from tensile tests. Unfortunately, scientific 
efforts to formulate such models have been quite limited. However, some models 
will be presented in Sect. 3.3. The results from tensile tests and creep tests can be 
assumed to be controlled by the same plastic deformation mechanisms. Thus, the 
data from tensile tests can significantly supplement the information recorded from 
creep tests. The dynamic recovery parameter ω plays an important role for the work 
hardening behavior. In particular, it describes how fast the deviation from a linear 
stress strain curve takes place. Its value and temperature dependence are discussed 
in Sect. 3.4. 

3.2 Empirical Methods to Describe Stress Strain Curves 

To describe stress strain curves, there are many empirical methods in the literature. 
Some of the classical approaches are listed in Eqs. (3.1–3.4). Ludwik’s equation is 
by far the oldest, but the other three have been around since about 1950. References 
to the original papers can be found in [1] 

σ = a1εm1 Hollomon (3.1) 

σ = a1 + a2εm1 Ludwik (3.2) 

σ = a1 − a2e−Ωε Voce (3.3)
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a b  

Fig. 3.1 Stress versus strain for Cu-OFP at room temperature; comparison between four empirical 
models and experimental data; a as received condition (forged); b annealed condition (450 °C, 3 h) 
(unpublished data) 

σ = a1(ε0 + ε)m1 Swift (3.4) 

σ is the stress and ε is the strain. The other quantities are adjustable parameters that 
are fitted to the data. The use of the equations will be illustrated for copper and for 
a stainless steel. In Fig. 3.1 data for phosphorus alloyed pure copper (Cu-OFP) is 
shown in two conditions and compared with fitted curves using Eqs. (3.1)–(3.4). 

The two conditions give quite similar curves. However, there are some small 
differences. In the annealed condition the data have a slightly larger curvature and 
the yield strength is lower in comparison to the as received condition. The reason 
is that a small amount of cold working remains after the forging in the as received 
state. 

In general an acceptable fit to the data is obtained. There are some slight devi-
ations though. The Ludwik and the Swift equations do not fit the data fully in the 
annealed condition. At small strains below 0.02 there are significant deviations for 
both conditions. For the as received condition the Ludwik and the Swift equations 
seem to work best whereas the situation is the opposite for the other condition where 
the Voce and Hollomon methods seem to be somewhat better. 

The situation at small strains can readily be improved by extending the Eqs. 
(3.1)–(3.4) somewhat, A direct way is to combine the Ludwik and Voce expressions, 
Eq. (3.5) 

σ = a1 + a2εm1 + a3e−Ω2ε Ludwik + Voce (3.5) 

Another way is to duplicate the fitting terms. This is illustrated in Eqs. (3.6) and 
(3.7) 

σ = a1 + a2εm1 + a3εm2 Ludwik 2m (3.6)
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σ = a1 + a2e−Ω1ε + a3e−Ω2ε Voce 2Ω (3.7) 

In the literature Ludwigson’s Eq. (3.8) has been cited many times [2]. It is the 
same as Eq. (3.5) but without the constant term. Unfortunately, this turns it out to 
make it more difficult to use the equation. 

σ = a1εm1 + a2e−Ω1ε Ludwigson (3.8) 

The application of Eqs. (3.5)–(3.7) to copper is illustrated in Figs. 3.2 and 3.3. 
It can be seen that with the extended Eqs. (3.5)–(3.7) the fit at low strains can be 

much improved. To see any deviation one has to go to the enlargements in Figs. 3.2 and

a b  

Fig. 3.2 Stress versus strain for Cu-OFP at room temperature in as received condition; a fit to Eqs. 
(3.5)–(3.7); b enlargement of the low strain part of (a) 

a b  

Fig. 3.3 Stress versus strain for Cu-OFP at room temperature in the annealed condition; a fit to 
Eqs. (3.5)–(3.7); b enlargement of the low strain part of (a) 
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3.3. There it can be seen that the best result is obtained for the Voce + Ludwik method 
in the as-received condition and the Voce 2Ω method in the annealed condition. 

In Fig. 3.4, data for the austenitic stainless steel 17Cr12Ni2Mo0.08C (316H) at 
room temperature and 800 °C are illustrated. 

From Fig. 3.4a it is evident that the Hollomon equation does not work very well 
in this case. At 800 °C, Eqs. (3.1), (3.2) and (3.4) are satisfactory but not the Voce 
equation. Handling of low strains is less problematic than for the copper alloys. 
However, if a higher precision is needed the extended equations can be applied for 
the stainless steels as well. This is shown in Figs. 3.5 and 3.6. 

It is evident from Figs. 3.5a and 3.6a, the three extended methods work well for 
the stainless steel both at room temperature and at 800 °C: In Fig. 3.5b, the Voce

a b  

Fig. 3.4 Stress versus strain for the austenitic stainless steel 17Cr12Ni2Mo0.08C (316H); a at 
room temperature; b at 800 °C. Equations (3.1)–(3.4) are compared to experimental data from [1] 

a b  

Fig. 3.5 Comparison to the extended Eqs. (3.5)–(3.7) for the same data for 316H at room 
temperature as in Fig. 3.4a; a full curve; b enlargement of the low strain part of (a)



44 3 Stress Strain Curves

a b  

Fig. 3.6 Comparison to the extended Eqs. (3.5)–(3.7) for the same data for 316H at 800 °C as in 
Fig. 3.4b; a full curve; b enlargement of the low strain part of (a)

2Ω method seems to be the best alternative. At the high temperature all the extended 
methods are satisfactory also at low strains, Fig. 3.6. 

There is a general experience that it is not simple to decide in advance which 
empirical relation would give the best fit. This has also been illustrated by the exam-
ples above. Most of Eqs. (3.1)–(3.7) are purely empirical and cannot be derived from 
basic physical principles. The exception is the Voce equation. This will be demon-
strated in detail in the next section. The other methods are purely empirical. This 
means that they are flexible expressions that are suitable for data fitting. One of 
the risks with empirical expressions is that when you get a good fit to the data it 
is tempting to draw the conclusion that is has physical significance, but that should 
clearly be avoided. 

In Eqs. (3.1)–(3.8) above 2–5 adjustable parameters are present that are to be fitted 
to the experimental data. There are many types of software that can handle that task. 
However, it has been found that the fitting process can be slow in particular when 
the number of adjustable parameters is large. In addition one cannot automatically 
be sure that the parameters converge to the desired result. The situation is different 
if there is only a linear dependence of the parameter. An example of that is the 
determination of constants when a time temperature parameter is used to extrapolate 
creep rupture data. The problem can be formulated in such a way that the function 
to be fitted is linear in the adjustable parameters. In such a case the parameter values 
can be found by solving a linear equation, which is instant. Equations (3.1)–(3.8) are  
linear in a1, a2 and a3, whereas m1, m2,Ω1 andΩ2 are nonlinear parameters. By fitting 
the nonlinear parameters by the optimization software and the linear parameters by 
solving a linear equation, the accuracy and efficiency of the process can be much 
improved.
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3.3 Basic Model 

3.3.1 The Model 

Tensile tests are performed at a constant expansion rate or approximately constant 
strain rate. Creep strain and rupture tests are carried out at constant load or stress. In 
spite of the difference in testing conditions it is assumed that the same mechanisms 
are controlling the plastic deformation in both cases. This means that the equations 
developed in Chap. 2 should be valid also for stress strain curves. The basic expression 
for the development of the dislocation density ρ is given by Eq. (2.17) 

dρ 
dε 

= 
mT 

bcL 
ρ1/2 − ωρ − 2τL Mclρ

2 /ε̇ (3.9) 

where ε is the strain and ε̇ the strain rate, mT the Taylor factor, b burgers vector, cL a 
dimensionless factor, ω the dynamic recovery factor, τL the dislocation line tension, 
and Mcl the dislocation climb mobility. These quantities are further explained in 
Sect. 2.3. The three terms on the right hand side (RHS) of Eq. (3.9) represent the 
contributions from work hardening, dynamic recovery and static recovery. At low 
strains the work hardening term dominates. Thus at this stage the dislocation density 
ρ increases with increasing strain. Due to different dependence on ρ of the three terms 
in Eq. (3.9), the dynamic recovery term increases faster with strain than the work 
hardening term, and the static recovery term faster than the dynamic recovery term. 
This means that the rate of increase in ρ drops with increasing strain. Eventually 
the recovery terms are so large that there is a balance between these terms and the 
work hardening. This balance cannot always be observed in a tensile test, because 
an instability might occur before the balance is reached and the specimen fails. This 
instability will be discussed below. 

For stress strain curves, the last term in Eq. (3.9), the static recovery term is often 
small and can be neglected. The role of this term will still be analyzed below. If the 
static recovery term is ignored, Eq. (3.9) can be integrated directly 

ρ =
(

mT 

bωcL

)2 

(1 − exp(−ωε/2))2 (3.10) 

We find as expected that ρ increases with strain and reaches saturation value at 
large strains. The Taylor equation is used to transfer the dislocation density to strength 

σ = σy + σdisl = σy + mTαGbρ1/2 (3.11) 

where σdisl is the strength contribution from the dislocations, σy the yield strength, α 
≈ 0.19 a constant, and G the shear modulus. If Eq. (3.10) is inserted into Eq. (3.11), 
the strain dependence of the strength is obtained
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σ = σy + 
αGm2 

T 

ωcL 
(1 − exp(−ωε/2)) (3.12) 

It is convenient to introduce the saturation stress σsat 

σsat = σy + 
αGm2 

T 

ωcL 
(3.13) 

By introducing the saturation stress, Eq. (3.12) can be rewritten as 

σ = σy + (σsat − σy)(1 − exp(−ωε/2)) (3.14) 

In Eq. (3.14), the yield strength depends on the temperature and the strain rate. A 
model for this dependence is presented in [3]. 

σy(T , ̇ε) = σy(T0, ̇ε0) 
G(T ) 
G(T0)

(
ε̇ 
ε̇0

)(1/nN) 
(3.15) 

The yield strength is first given at a reference temperature T0 and reference strain 
rate ε̇0 that are usually taken as 20 °C and 1 × 10–4 1/s, respectively. The change in 
the yield strength with temperature is assumed to follow that of the shear modulus G. 
The strain rate dependence is described with a Norton equation. The stress exponent 
nN is determined at the temperature and strain rate in question from the equation 
for the secondary creep rate, Eq. (2.30). The shear modulus G(T ) is assumed to be 
approximately linear in temperature. Equations (3.12) and (3.14) have exactly the 
form of the Voce Eq. (3.3) with 

a1 = σsat a2 = σsat − σy Ω1 = ω/2 (3.16) 

Equation (3.9) has been used for many years to derive the Voce equation, see for 
example [4–6]. In these papers, a number of the constants were used as adjustable 
parameters. This is no longer necessary. All the constants in Eq. (3.16) are  given  
except σy that is taken as an experimental value. σy varies significantly for different 
material batches and cannot be accurately predicted at present. But the full strain 
dependence can be described. The constant α requires a comment. The contribution 
to α can be split into a short range part αS and a long range part αG [7, 8]. The long 
range part has been explicitly derived [8] 

αG = 
1 

2π 
(1 − νP/2) 
(1 − νP) 

(3.17) 

where νP is Poisson’s ratio. With νP = 0.3, αG = 0.19. At elevated temperatures, α 
≈ αG [7]. As a consequence, α = 0.19 is used in this book. 

At the end of Sect. 2.4, a special procedure was described for finding the value of 
the work hardening parameter cL based on the assumption that dynamic and static
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recovery give the same result. An expression for the maximum dislocation density ρs 
in this situation was given in Eq. (2.26). This is equation is now expressed in stress 
instead of the dislocation density with the help of the Taylor Eq. (3.11) 

ωε̇ = 
2τLbcL 

(αGbmT)2 
Mcl(T , σsat − σi)(σsat − σi)2 (3.18) 

τL is dislocation line tension, Mcl the climb mobility and σi the contribution 
from particle and solid solution hardening including the yield strength. In general, 
Eq. (3.18) has to be iterated to find the value of the saturation stress, but the iteration 
usually converges quickly. With Eq. (3.13), the value of cL is obtained 

cL = 
αGm2 

T 

ω(σsat − σi) 
(3.19) 

A plastic instability in a tensile test takes place when Considère’s criterion is 
satisfied 

dσ 
dε 

= σ (3.20) 

Applying Considère’s criterion to Eq. (3.14), the maximum stress σmax in a tensile 
test can be obtained as well as the strain at this position, which is referred to as the 
uniform elongation εu. 

σmax = σsat 
ω 

ω + 2 
(3.21) 

εu = 
2 

ω 
ln

(
(ω + 2)(σsat − σy) 

2σsat

)
(3.22) 

With ω ≈ 15 for copper and some stainless steels [1], the maximum stress σmax 

is about 10% less than the saturation stress σsat. The uniform elongation εu is often 
measured. εu is an important property because it is much easier to predict than the 
total elongation where the role of specimen necking must be taken into account. This 
will be considered in Chap. 12 for tertiary creep. 

3.3.2 Application to Parent Metal 

In Fig. 3.7 tensile data for Cu-OFP at 75 °C are presented. A comparison is made to 
the model that is obtained by integrating Eq. (3.9) and combining it with the Taylor 
equation, Eq. (3.11). To investigate the significance of the static recovery term (the 
last term in Eq. (3.9)), results are shown both with and without this contribution. It 
is evident that static recovery has a negligible influence in this case.
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c) d) 

a) b) 

Fig. 3.7 Stress versus strain for Cu-OFP at 75 °C comparing the model in Eqs. (3.9) and  (3.11) 
with experiments. Data from [3]. To analyze the role of static recovery (last term in Eq. (3.9)), 
results with and without this term are shown; a 1 × 10–4 1/s; b 1 × 10–5 1/s; c 1 × 10–6 1/s; d 1 × 
10–7 1/s 

In Fig. 3.8 results at 125 °C are given. The model results in this case involve all 
the terms in Eq. (3.9) including the static recovery term.

In Fig. 3.9 experimental and model results for Cu-OFP at 175 °C are given. Only 
predicted values for the parameters in Eqs. (3.9) and (3.11) are used. The exception 
is the yield strength. Its value at 75 °C and 1 × 10–4 1/s is taken from experiments. 
The yield strength value at other conditions are derived using the Eq. (3.15).

3.3.3 Application to Welds 

Equations (3.9) and (3.11) have also been applied to friction stir welds in phosphorus 
alloyed oxygen copper Cu-OFP. To describe welds is always challenging since the 
properties can locally vary significantly. The same parameters as for the parent metal
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a) b) 

Fig. 3.8 Stress versus strain for Cu-OFP at 125 °C comparing the model in Eqs. (3.9) and  (3.11) 
with experiments. Data from [3]; a 1 × 10–5 1/s; b 1 × 10–6 1/s

a) b) 

Fig. 3.9 Stress versus strain for Cu-OFP at 175 °C comparing the model in Eqs. (3.9) and  (3.11) 
with experiments. Data from [3]; a 1 × 10–5 1/s; b 1 × 10–6 1/s

have been used except for ω (= 12) and the yield strength where one value has been 
taken from the experiments at 75 °C and 1 × 10–4.Why  the  ω value had to be reduced 
is not understood. In Fig. 3.10 examples are given for the weld zone.

The heat affected zone (HAZ) has also been studied. Examples are presented in 
Fig. 3.11. The behavior of the whole weld (the cross weld) usually has to be derived 
from the properties of the weld zone and the HAZ. However, since the properties 
of the weld are essentially the same and close to those of the parent metal, it is 
reasonable to think that the weld can be handled in the same way and that has been 
assumed. Examples for cross welds are shown in Fig. 3.12.

It can be concluded that the dislocation model in (3.9) and (3.11) can represent 
stress strain curves for both parent metals and welds of Cu-OFP in quite a reasonable
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a) b) 

Fig. 3.10 Stress versus strain for the weld zone in friction stir welds in Cu-OFP comparing the 
model in Eqs. (3.9) and  (3.11) with experiments. Data from [9]; a 20 °C, 1 × 10–4 1/s; b 75 °C, 3 
× 10–6 1/s

a) b) 

Fig. 3.11 Stress versus strain for the heat affected zone (HAZ) in friction stir welds in Cu-OFP at 
75 °C comparing the model in eqs. (3.9) and  (3.11) with experiments. Data from [9]; a 20 °C, 3 × 
10–6 1/s; b 125 °C, 3 × 10–6 1/s

way essentially without the use of adjustable parameters. The analysis above is likely 
to be valid for other fcc alloys as well. However, some parameters and in particular 
ω will take other values. This will analyzed in the next section. 

3.4 The ω Parameter in Dynamic Recovery 

As was emphasized in Sect. 2.3, two types of recovery (dynamic and static) are
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a) b) 

Fig. 3.12 Stress versus strain for cross welds in friction stir welds in Cu-OFP comparing the model 
in Eqs. (3.9) and  (3.11) with experiments. Data from [9]; a 20 °C, 3 × 10–6 1/s; b 75 °C, 3 × 10–6 
1/s

important to take into account when discussing creep. It is also important to distin-
guish between the two types of recovery. The primary role of dynamic recovery is to 
provide the reduction of the work hardening rate with increasing strain in stress strain 
curves. Static recovery reduces the dislocation content during creep, which makes it 
possible for creep deformation to continue at constant load or stress. Static recovery 
must be considered to be well understood. At high temperatures static recovery is 
assumed to control the creep rate and the temperature and stress dependence of the 
creep rate has been studied for many alloys. In this way detailed knowledge about 
static recovery has been gathered indirectly. The models for static recovery are based 
on expressions for a basic model of the climb mobility, which was established many 
years ago. 

Unfortunately, the modeling of dynamic recovery is not at all at the same level. 
This is surprising since it has been seen earlier in this chapter that dynamic recovery is 
an essential part of the description of plastic flow curves at ambient and intermediate 
temperatures. As can be seen for example in Fig. 3.7, the slope of the curve which 
is referred to as the work hardening rate is continuously decreasing with increasing 
strain that is the effect of dynamic recovery. This slope can directly be obtained from 
Eq. (3.12) if the Voce equation is satisfied 

dσ 
dε 

= 
αGm2 

T 

2cL 
exp(−ωε/2) (3.23) 

The initial work hardening rate which is the constant in front of the exponential 
is found to take a value of about G/20 for polycrystalline fcc alloys [4]. The work 
hardening rate in Eq. (3.23) can also be expressed in terms of the stress. By using 
Eqs. (3.12) and (3.13), Eq. (3.23) can be transformed to
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Fig. 3.13 The dynamic 
recovery parameter ω as a 
function of temperature for 
two austenitic stainless 
steels. Data from [1, 11] 

dσ 
dε 

= 
ω 
2 

(σsat − σ) (3.24) 

This linear behavior of the work hardening rate as a function of stress has been 
demonstrated in many papers, see for example [10]. 

According to Eq. (3.9), the amount of dynamic recovery is directly proportional 
to the parameter ω. Consequently, the value of ω is of main importance for under-
standing dynamic recovery. For example, it is evident from Eqs. (3.23) and (3.24) 
that ω has major influence on the work hardening rate. Unfortunately, only limited 
data for ω is available in the literature. Data for austenitic stainless steels are shown 
in Fig. 3.13. 

Different designations for ω can be found in the literature. For stress strain curves
Ω and nV are often used. They are related to ω in the following way

Ω = −nV = ω/2 (3.25) 

It is not uncommon that values for ω and Ω are mixed up so it is wise to check 
the data. 

It is evident from Fig. 3.13 that one should distinguish between two ranges for the 
temperature dependence of ω. At high temperatures in the creep range, the ω values 
are strongly dependent on both temperature and strain rate. For austenitic stainless 
steels, the creep range starts at about 550 °C. At lower temperatures, ω is weakly 
temperature dependent and the strain rate has quite a small effect. This is called the 
work hardening range, because the flow curves are primarily controlled by the work 
hardening rate. This behavior has also been found for aluminum [12]. 

When mechanisms are considered the work hardening and creep range are defined 
in the following way 

σsat < σcreep Work hardening range (3.26)
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Fig. 3.14 Saturation and creep stress as a function of temperature for Cu-OFP at a strain rate of 1 
× 10–5 1/s. A third curve gives the saturation stress multiplied by (G RT /GT )

2 where GRT and GT 
are the shear modulus at room temperature and temperature, respectively 

σsat > σcreep Creep range (3.27) 

σsat is the maximum flow stress in a stress strain curve. For a material satisfying the 
Voce equation, σsat is given by Eq. (3.13). σcreep is the stress in a creep test that gives 
the same strain rate as for the stress strain flow curve. This division is illustrated in 
Fig. 3.14. 

Below about 100 °C, σsat < σcreep and we are in the work hardening range in 
Fig. 3.14. The situation is reversed above this temperature. Below 400 °C (Tm/ 
2 for  Cu,  Tm the absolute melting point) both σsat and σcreep decrease linearly with 
increasing temperature but with different slope. Above 400 °C, σcreep decreases expo-
nentially with increasing temperature, a behavior that is frequently observed for creep 
resistant steels. It is natural to distinguish between three temperature ranges: the high 
temperature range (T > Tm/2), the intermediate range (0.3Tm < T < Tm/2, 130–400 °C 
for Cu) and the low temperature range (T < 0.3Tm). The high temperature range is 
the classical region for studying creep. Dynamic recovery is the dominating recovery 
process only in the low temperature range. 

There is not a sharp transition between the low and intermediate temperature 
ranges. In fact, we can have σsat > σcreep in spite σcreep being above the experimental 
data range in a flow curve in the lower part of the intermediate range. In Fig. 3.15a, ω 
values are shown for Cu-OFP at the transition from the work hardening to the creep 
range. There is temperature dependence but only a weak influence of the strain rate.

According to Eq. (3.13), there is a close relation between ω and the saturation 
stress σsat. 

ω = αGm2 
T 

cL (σsat − σy) 
(3.28)
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Fig. 3.15 Voce parameters for tensile stress strain curves of Cu-OFP as a function of temperatures 
for four strain rates; a dynamic recovery parameter ω; b saturation stress σsat divided by the shear 
modulus G. Data from [3]

Many times the yield strength σy is only a small fraction of σsat and then ω is 
roughly inversely proportional to σsat. As can be seen for Cu-OFP in Fig. 3.15b the  
temperature dependence of σsat is inverted in comparison to that of ω. However, the 
strain rate effect is much larger for σsat in comparison to that of ω. The reason is that 
the yield strength depends on the strain rate and that has a direct influence on σsat. 

In the literature σsat has been studied more frequently than ω. In principle, this 
should not make much difference since σsat and ω are related according to Eq. (3.28). 
However, in a number of cases it has not been checked whether the data points are 
in the work hardening or in the creep range. If attempts to determine σsat are made in 
the creep range, it is in fact σcreep that has been measured, the value of σsat would be 
strongly underestimated and the role of dynamic recovery cannot be assessed. Data 
from [13] have been used in several influential papers to discuss the temperature 
dependence of dynamic recovery [10, 14]. However, most of the data in [13] are  in  
the creep range and a significant fraction even in the high temperature range. This 
has probably contributed to the misconception that dynamic recovery is strongly 
temperature and strain rate dependent. 

Even with the modest temperature dependence of ω that has been observed, 
Figs. 3.13 and 3.14, it is natural to assume that dynamic recovery is a thermally 
activated process, and an Arrhenius expression is formulated 

ω = ωRT exp

(
− 

Qω 

RGT

(
1 

T 
− 

1 

TRT

)
(3.29) 

ωRT is the ω value at room temperature that is determined with the help of Eq. (3.28). 
Qω is an activation energy and TRT room temperature. Expression (3.29) is compared 
to the available experiments for fcc alloys for ω in Fig. 3.16.

By fitting Eq. (3.29) to the experimental data, a value of Qω = 1 kJ/mol was  
found that is two orders of magnitude smaller than typical activation energies for
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Fig. 3.16 The dynamic recovery parameter ω as a function of temperature for fcc materials. Data 
from [1, 11, 15]

self-diffusion. Values for the pure elements Al, Cu and Ni are included in Fig. 3.16a 
from [15]. The values from [15] had to be corrected due to numerical errors in the 
paper, which makes the values uncertain. The same value of Qω could be used for 
the six materials in Fig. 3.16. The expression in Eq. (3.29) is of course only valid 
below the creep range. 

Since the 1950ties there has been an almost unanimous opinion in the literature that 
cross-slip is the controlling mechanism for dynamic recovery, see for example [10, 16, 
17]. Notable exceptions are [18, 19]. Cross-slip has been observed many times during 
work hardening. However, cross-slip is associated with high activation energies. 
Modern ab initio calculations give values from 50 to 300 kJ/mol, see Sect. 2.6.3. 
High energies are required to form the constrictions that are necessary to make the 
extended screw dislocations in fcc alloys cross-slip. Such high activation energies 
are clearly at variance with the low value of Qω found above. 

Attempts to quantitatively model cross-slip are rare and apparently not very 
successful [18]. The role of cross-slip for dynamic recovery should not be completely 
ruled out. It is well-known that cross-slip takes place in deformation stage I in fcc 
single crystals. In this stage the stresses are very low and if high activation energies 
would be required, cross-slip would simply not take place [18, 19]. Another possible 
mechanism for dynamic recovery is the formation of dislocation tangles on secondary 
glide planes which is known to take place in early stages of work hardening [10]. 
Argon has suggested an entirely different mechanism for dynamic recovery [19]. As 
discussed in Sect. 2.4, gliding dislocations are expected to pass through about two 
cell boundaries when they are released. When moving through cell boundaries, they 
would remove dislocation locks and other dislocations configurations from the cell 
boundaries thus reducing the dislocation content. 

If cross-slip of extended dislocations is active it is natural that the stacking fault 
energy plays a major role. Argon and Moffatt have derived an expression for how 
much the climb rate for extended dislocations is slowed down in comparison to 
perfect dislocations [20]
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gSFE = 2
(
8π(1 − νP) 
2 + νP

)2(γSFE 

Gb

)2 
(3.30) 

γSFE is the stacking fault energy. The main factor in this expression is the dimen-
sionless quantity

(
γSFE 
Gb

)2 
. The factor 8 was originally 24, but has been changed due 

to an error in [20]. The influence on gliding dislocations is the same as for climbing 
ones since it is the jogs on the dislocations that control their speed, see Sect. 2.6.2. 
The three elements in Fig. 3.16 have quite different values of γSFE. No effect of 
γSFE is thus observed in the Figure. However, the shear modulus seems to have an 
impact. In Fig. 3.14, the predicted ω value is also divided by the shear modulus 
squared following Eq. (3.30). As can be seen ω is approximately proportional to 
one over the shear modulus squared at least below the creep range. This means that 
the temperature dependence of ω is of the same type as that of G. The influence of 
temperature on the shear modulus can be modeled with ab initio methods taking the 
role of phonons into account. The value of ω during cyclic loading is discussed in 
Chap. 11. 

3.5 Summary 

• Stress strain curves are mostly described by well-known empirical models such 
as Hollomon, Ludwik, Voce and Swift. With the available parameters in these 
models, there is in general little problem to obtain a good fit to the data. As with 
most empirical models, it is difficult or impossible to generalize the results. Only 
the Voce model has been possible to derive from basic principles. 

• With the basic models for dislocation creep, accurate descriptions of the stress 
strain curves can be obtained. This is natural since the basic models should be 
applicable whether the deformation is load, stress or strain rate controlled. 

• The dynamic recovery parameter ω plays a special role because it describes 
how the increase in the dislocation stress deviates from a linear behavior and 
tends to a saturation value. The temperature dependence of ω has been analysed. 
Although the amount of data is limited, it suggests that ω has the same temperature 
dependence as the inverse of the shear modulus squared. 

• It has been proposed in many places in the literature that dynamic recovery 
is controlled by cross-slip. However, this requires that partial dislocations can 
be brought together and form a constriction. This would require an activation 
energy of about 50 kJ/mol or more that would give the dynamic recovery param-
eter a strong temperature dependence. However, this is in direct conflict with 
observations, see previous bullet. The role of cross-slip remains unexplained.
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Chapter 4 
Primary Creep 

Abstract For many materials, primary creep can be described with the phi (φ) model 
and tertiary creep with the Omega (Ω) model (discussed in Chap. 12). According 
to the phi model, the creep rate is linear in strain and time in a double logarithmic 
diagram. When using empirical descriptions of the creep curves, these models are 
recommended. Several basic models for primary creep are derived. They are based 
on the creep rate in the secondary stage. This means that primary creep can be 
derived without any new data. The primary creep models are in agreement with the 
phi model and can describe experimental data. For the martensitic 9–12% Cr steels 
at least two dislocation densities are needed to represent primary creep because the 
initial dislocation density is high contrary to the situation for annealed fcc materials. 

4.1 General 

The classical form of a creep strain versus time curve (“creep curve”) is that there is 
first a primary stage where the creep rate increases but with a continuously decreasing 
rate, a secondary stage where the creep rate is approximately constant and a tertiary 
stage with a continuously increasing strain rate. Surprisingly many materials show 
this behavior but there are many exceptions. In this chapter the primary stage will be 
analyzed. 

The primary stage is technically very important. If there is a limit on the amount 
of strain that a product can accept, primary creep must be considered. Well-known 
examples are blades of gas and steam turbines. If the strain is too large the blades will 
get in contact with other parts of the structure resulting in disaster. Another case is 
where the strains can never become very large. One example is copper canisters for 
nuclear waste. Inside the copper tube there is a cast iron insert. Between the copper 
tube and the iron insert there is only a small gap. Due to the external pressure the 
copper tube creeps towards the insert and when it is reached, creep stops in this part 
of the structure. For some materials the total strain is larger in the primary stage than 
in the secondary stage. If only secondary creep is considered in design which is not 
uncommon, there is a risk that the creep deformation is significantly underestimated.
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Primary creep is also of importance during creep at very low stresses since stationary 
conditions are rarely reached. This is discussed in Chap. 5. 

Secondary creep has been studied much more extensively than primary creep in 
the literature. The reason is that for a long time it was believed that the stress exponent 
in the secondary stage could be used to identify the controlling creep mechanisms. 
As was discussed in Chap. 2 and will be further discussed in Chap. 5, this connection 
is not always true and examples where people are likely to have drawn the wrong 
conclusions are easy to find. 

Primary creep has almost exclusively been analyzed with empirical models. Only 
in recent years, basic models have been presented in the literature. Already in the 
1930’ties, Bailey presented a model for the time dependence of the strain in primary 
creep. This model is still the first hand choice when describing the primary stage. 
The model has later been generalized [1]. We will refer to it as the phi or φ model. 
It gives an exponential decrease in creep rate with increasing time or strain. As will 
be illustrated in the next section several types of materials follow this behavior. 

There are a large number of empirical models for representing creep curves. Only 
a few of them give a reasonable description of primary and tertiary creep separately 
and we will focus on them. For tertiary creep, the correspondence to the phi (φ) 
model is the Omega (Ω) model. These two models can accurately represent primary 
and tertiary creep for the well investigated 9CrMo steels. 

Basic models for primary creep have been developed in recent years. Three of 
these models will be presented in Sects. 4.3–4.5. The first two models are applicable 
to fcc alloys whereas the third one is suitable for CrMo-steels. In some of the models 
it is necessary to distinguish between more than one type of dislocation density. 
In general these models give the same time dependence of the strain as the phi 
(φ) model. Expressed in other words, the phi (φ) model can be derived from basic 
physical principles, which has not been shown for any other of the empirical model 
for primary creep. So this is an additional reason why we concentrate on the phi (φ) 
model, when discussing empirical models for primary creep. 

4.2 Empirical Models for Creep Strain Curves 

In this section models for both primary and tertiary creep will be considered. The 
reason is that many models are designed to handle the entire creep curve rather than 
primary and tertiary creep separately. A large number of empirical models have been 
proposed. Reviews can be found in [2, 3]. Some of the more frequently used methods 
are summarized in Table 4.1. The model that probably has got most attention in the 
literature was developed by the Wilshire group. They referred to it as θ projection. 
In Table 4.1 it is called the θ model. The assumptions in the model are that both 
the primary and the tertiary creep rates are linear in the creep strain. This gives a 
creep rate that decreases exponentially with time in the primary stage and increases 
exponentially in the tertiary stage. To describe the whole creep curve the primary and 
tertiary parts are simply added. Thus, it is not necessary to have a separate contribution
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from secondary creep. However, if primary and tertiary data are analyzed separately, 
the θ model does typically not give a good representation of data. 

Instead the φ model should be used for primary creep data and the Omega (Ω) 
model for tertiary data. This will be illustrated below. The phi (φ) model for primary 
creep gives the following strain rate dependence as a function of strain 

ε̇prim = φ1ε
−φ2 phi model (4.1) 

The creep rate decreases exponentially with increasing strain. Its time dependence 
has the same mathematical form. The Ω model for tertiary creep takes the form 

ε̇tert = Ω3e
Ω4ε Omega model (4.2) 

In Eq. (4.2) the creep rate increases exponentially with strain. This gives a time 
dependence with a singularity, see Table 4.1. The time at this singularity is close to 
the rupture time. 

The three models in Table 4.1 have one term for primary creep and one for tertiary 
creep. In each term there are two adjustable parameters. So for describing a creep 
curve four adjustable parameters are needed. 

Equations (4.1) and (4.2) are illustrated for the 9Cr1Mo steel P91 in Figs. 4.1, 
4.2, 4.3 and 4.4. The steel P91 is common in modern fossil fired power plants.

Table 4.1 Empirical models for describing single creep curves (reproduced from [4] with 
permission of Elsevier) 

Model Parameters Strain rate 
versus strain 

Strain rate versus 
time 

Strain versus 
time 

Refs. 

θ model, 
primary 

θ1, θ2 ε̇prim = 
θ2(θ1 − ε) 

ε̇prim = θ1θ2e−θ2t θ1(1 − e−θ2t ) [5, 6] 

θ model, 
tertiary 

θ3, θ4 ε̇tert = 
θ4(ε + θ3) 

ε̇tert = θ3θ4eθ4t θ3(eθ4t − 1) [5, 7] 

φ model, 
primary 

φ1, φ2 ε̇prim = 
φ1ε

−φ2 

ε̇prim = φ1(φ1(1+ 
φ2)t)−φ2/(1+φ2) 

(φ1(1 + 
φ2)t)1/(1+φ2) 

[1, 8] 

φ model, 
tertiary 

φ3, φ4 ε̇tert = φ3ε
φ4

ε̇tert = φ3(φ3(1 − 
φ4)t)φ4/(1−φ4) 

(φ3(1 − 
φ4)t)1/(1−φ4) 

[8]

Ω model, 
primary

Ω1, Ω2 ε̇prim =
Ω1e−Ω2ε 

ε̇prim = Ω1
Ω1Ω2t+1 

ln(Ω1Ω2t+1)
Ω2 

[9]

Ω model, 
tertiary

Ω3, Ω4 ε̇tert = Ω3eΩ4ε ε̇tert = Ω3 
1−Ω3Ω4t

− ln(1−Ω3Ω4t)
Ω4 

[10–12] 

ε is the creep strain, ε̇ the strain rate, t the time 
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Fig. 4.1 Creep strain versus 
time curves for the 9Cr1Mo 
steel P91 at 600 °C at the 
four stresses 110, 130, 150 
and 180 MPa fitted with the 
φ and Ω models, Eqs. (4.1) 
and (4.2). Data from [1]. 
Reprinted from [13] with  
permission of MDPI 

By using double logarithmic scale for a creep rate versus strain curve, a straight 
line should result in the primary stage if Eq. (4.1) is valid. That this is the case is 
shown in Fig. 4.2. 

The same behavior can be illustrated if the creep rate is plotted versus time. From 
Table 4.1 it can be seen that also the time dependence of the creep rate in the primary 
stage is exponential. It should give a straight line in Fig. 4.3. This is approximately 
the case. However, this way of presenting the data is more sensitive to the scatter in 
the data.

In the tertiary stage a semi logarithmic scale with the creep rate versus strain 
diagram is appropriate to make a comparison to the Omega (Ω) model in Eq. (4.2).

Fig. 4.2 Creep rate versus strain curves for the 9Cr1Mo steel P91 at 600 °C for the same tests as 
in Fig. 4.1. Double logarithmic scale. Reprinted from [13] with permission of MDPI 
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Fig. 4.3 Creep rate versus time curves for the 9Cr1Mo steel P91 at 600 °C for the same tests as in 
Fig. 4.1. Double logarithmic scale 

Fig. 4.4 Creep rate versus 
strain curves for the 9Cr1Mo 
steel P91 at 600 °C for the 
same tests as in Fig. 4.1. 
Semi logarithmic scale. Data 
from [14]. Reprinted from 
[13] with permission of 
MDPI

This is illustrated in Fig. 4.4. Indeed, straight lines give a good representation of the 
data. Some deviations around the minimum creep rate can be observed. 

In Figs. 4.2, 4.3 and 4.4 the contributions from both Eqs. (4.1) and (4.2) are  
included. The maximum value of them is shown. It can be seen that the whole curves 
are quite well represented in this way. 

Also the strain versus time curve in Fig. 4.1 can be handled in this way. For 
the primary stage Eq. (4.1) is used and for the tertiary stage Eq. (4.2). If an even 
better fit is required for the strain versus time curve all the parameters φ1, φ2, Ω3 

and Ω4 can be fitted simultaneously to the data. In fact, if four parameters are fitted 
many combinations of models for primary and tertiary can be used, for example 
different combinations in Table 4.1 such as the θ model or the Ω model for both 
primary and tertiary creep. However, such an approach is not recommended because
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the expressions for the primary and tertiary stages will not be able to describe the 
primary and the tertiary stages separately. 

It is well established that high chromium steels like P91 follows the φ model in 
the primary stage and theΩmodel in the tertiary stage at least approximately. This is 
well documented in the literature. For example, Abe has written several papers about 
it [15–18]. The phi (φ) and Omega (Ω) models are also applicable to other types of 
materials. This will be illustrated in Figs. 4.5, 4.6, 4.7 and 4.8 for the high alloyed 
creep resistant austenitic stainless steel Sanicro 25 (22Cr25Ni4W1.5Co3CuNbN) 
developed by Sandvik. 

Creep strain versus time curves are shown in Fig. 4.5. It can be noticed that the 
appearance of the creep curves is quite different from those of P91. The amount of 
primary creep is quite small and tertiary creep starts early on and dominates the creep 
curve. 

In Fig. 4.6, strain rate versus time curves with a double logarithmic scale are 
given. The presence of the straight lines in the primary stage illustrates that the phi 
(φ) model is satisfied for three of the stresses. 

Also in creep rate versus time curves the validity of the φ model can be demon-
strated, see Fig. 4.7. Due to scatter in the experimental data the agreement is not 
complete. 

For the primary stage only a limited number of data points on the creep curves are 
available in [19]. For the tertiary stage the data situation is much better. It is evident 
in Fig. 4.8 that the tertiary is well represented by the Omega (Ω) model.

Fig. 4.5 Creep strain versus time curves for the 22Cr25Ni4W1.5Co3CuNbN austenitic stainless 
steel Sanicro 25 at 750 °C at the four stresses 180, 200, 220 and 240 MPa fitted with the φ and Ω

models, Eqs. (4.1) and  (4.2). Data from [19]. Reprinted from [13] with permission of MDPI
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Fig. 4.6 Creep rate versus strain curves for the 22Cr25Ni4W1.5Co3CuNbN austenitic stainless 
steel Sanicro 25 at 750 °C for the same tests as in Fig. 4.5. Double logarithmic scale 

Fig. 4.7 Creep rate versus time curves for the 22Cr25Ni4W1.5Co3CuNbN austenitic stainless steel 
Sanicro 25 at 750 °C for the same tests as in Fig. 4.5. Double logarithmic scale. Reprinted from 
[13] with permission of MDPI

The creep rates in Figs. 4.6, 4.7 and 4.8 show deviations to phi (φ) and Omega 
(Ω) model around the minimum creep rate. This is a common effect for many creep 
curves. The experimental values in the range are lower than the model values. These 
deviations are not large enough to show up in the creep strain curves in Fig. 4.5.
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Fig. 4.8 Creep rate versus 
strain curves for the 
22Cr25Ni4W1.5Co3CuNbN 
austenitic stainless steel 
Sanicro 25 at 750 °C for the 
same tests as in Fig. 4.5. 
Semi logarithmic scale. 
Redrawn from [14] with  
permission of Taylor & 
Francis

The reason of modeling creep strain is in general to try to extrapolate the results 
to other conditions. This is typically very difficult with empirical methods. The 
background is that the fitting parameters practically always vary in a complex way 
that is challenging to analyze. Instead, the basic models that are described in the next 
three sections are readily useful to generalize the results to new conditions. 

4.3 Dislocation Controlled Primary Creep 

In Chap. 2, an expression for the creep rate in the secondary stage was derived, Eqs. 
(2.30) and (2.29) 

ε̇ = h(σ − σi) with h(σ ) = 
2τLbcL 
mT 

M(T , σ  )  
σ 3 

(αmTGb)3 
(4.3) 

σdisl = αmTGbρ1/2 = σ − σi (4.4) 

where ε̇ is the strain rate, σ the applied stress, mT the Taylor factor, b burgers vector, G 
the shear modulus, cL and α dimensionless factors, ω the dynamic recovery constant, 
τL the dislocation line tension and M the dislocation mobility. σdisl is the dislocation 
stress, ρ the dislocation density, σi is an internal stress that will be discussed below. 
Contributions from solid solution hardening and particle hardening can be included 
in σi. The validity of these equations was demonstrated in Chap. 2. 

To derive the time dependence of the creep strain, the corresponding time 
dependence of the dislocation density must be known. Eq. (2.17) describes this 
variation
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dρ 
dε 

= 
mT 

bcL 
ρ1/2 − ωρ − 2τL Mρ2 /ε̇ (4.5) 

where ε is the strain. The other quantities were explained above. 
The common behavior in the primary creep stage is that there is a continuously 

decreasing creep rate with increasing time until the secondary stage is reached. At the 
same time it is assumed that there is a gradually increasing density of dislocations. 
This is a natural assumption since the dislocation density is low at the start of the 
creep test for soft hot worked materials. The density reaches a stationary value in the 
secondary stage. There are many possible alternative scenarios for example with a 
hard cold worked material or continuous precipitation in the primary stage. However, 
we will only consider the main one. 

To describe primary creep several assumptions are made [20]: 

• The stress dependence of the creep rate is the same in the primary and in 
the secondary stage. This means that the function h(σ) in Eq.  (4.3) should be 
applicable. 

• The development of the dislocation density can be described with the same equa-
tion, Eq. (4.5) that was used to derive the equation for the secondary creep 
rate. 

• When starting from a low dislocation density at the start of the creep, Eq. (4.5) 
gives an increasing dislocation density. This density is assumed to generate a 
dislocation back stress according to Eq. (4.4). 

• The creep rate in the primary stage is given by 

ε̇ = h(σ + σdisl sec − σdisl − σi) (4.6) 

where σdisl sec is the stress due to the dislocations (dislocation stress) in the 
secondary stage. In comparison to Eq. (4.3), the effective stress in Eq. (4.6) is  
raised by what we can call the primary stress σprim 

σprim = σdisl sec − σdisl (4.7) 

The presence of σprim in Eq. (4.6) raises the creep rate in comparison to the 
secondary stage, which is a characteristic feature of primary creep. When the 
secondary stage is reached, the dislocation stress σdisl is equal to σdisl sec and σprim 

vanishes as it should. σprim is a help quantity which makes it possible to model the 
creep rate in the primary stage. The applied stress σ is still constant. 

• In the secondary stage there is a balance between the applied stress σ and the back 
stress from the dislocations σdislsec plus the internal stress σi 

σ = σdisl sec + σi (4.8) 

If Eq. (4.8) is applied, Eq. (4.6) can be rewritten as
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ε̇ = h(2(σ − σi) − σdisl) (4.9) 

The internal stress σi has several contributions 

σi = σy(T , ε̇) + σSSH + σPH (4.10) 

where σy is the temperature and strain rate dependent yield strength, σSSH and σPH 

the contributions from solid solution hardening and precipitation hardening that 
will be discussed in Chaps. 6 And 7. 

It is important to recognize that the five assumptions do not involve any new 
functions or new parameters. It is simply assumed that the same basic dislocation 
mechanisms control both the primary and the secondary stage. A number of quantities 
such as the dislocation stresses σdisl and σdislsec and contributions to the internal stress 
σSSH and σPH are mathematical quantities that are useful in the modeling. These 
quantities can be defined in different ways. It is important to recognize that these 
quantities cannot be measured and they are not meaningful unless they are precisely 
defined. For example, there are many ways of defining a back or internal stress. A 
general discussion about a back stress without a proper definition does not make 
sense. 

In the contribution to the internal stress in Eq. (4.10), the yield strength has been 
included. It is possible to make exactly the same analysis about primary creep without 
taking the yield strength into account. It is material dependent if the yield strength 
should be taken into account. 

The use of the model will now be illustrated for two creep tests of Cu-OFP. In 
Fig. 4.9 the development of the dislocation density, Eq. (4.5) and the dislocation 
stress, Eq. (4.4) are  shown.  

a b  

Fig. 4.9 Creep test of Cu-OFP at 75 °C and 160 MPa. The creep test was interrupted after 12000 
h; a dislocation density versus strain according to Eq. (4.5); b dislocation stress versus strain for 
the dislocation density in a according to Eq. (4.4)
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The dislocation density increases approximately linearly with increasing strain 
over most of the strain range considered. When the dislocation density has reached a 
sufficiently high level, the third (static recovery) term gives a contribution. Eventually 
there is a balance between the two contributions. The secondary stage has been 
reached. At this stage the dislocation density becomes independent of strain. The 
dislocation stress, Eq. (4.4) is also continuously raised until a plateau in the secondary 
stage is reached. In the secondary stage the dislocation stress is the difference between 
the applied stress, 160 MPa, and the internal stress, Eq. (4.8). The internal stress 
consists of the yield strength and the solid solution hardening due to phosphorus and 
these quantities take the values 57 and 6 MPa, respectively at the temperature and 
strain rate of the test. The used model for solid solution hardening is presented in 
Chap. 6. In Fig.  4.9 the maximum dislocation stress is 97 MPa. These three values 
add up to the applied stress as they should according to Eq. (4.8). 

In Fig. 4.10a the creep strain versus time curve for the same test is shown. It can 
be seen that the model can reproduce the observations even for the fast initial stage 
of the test. 

The creep rate versus time is given in Fig. 4.10b. Also in this Figure it is evident that 
the model can describe the measurements. When the strain had reached a sufficiently 
high value in the test, the test had to be reloaded several times to avoid that the dead 
weights hit the floor. This is the reason for the spikes in the experimental curves. 

In Fig. 4.10b with a double logarithmic scale, the data lie along a straight line 
in the primary stage. This indicates that copper in addition to P91 and Sanicro 25 
follows the φ model, Eq. (4.1). It is evident that also the model, Eq. (4.9), shows this 
behavior. 

The results for another creep test that has run until rupture are given Fig. 4.11. 
The general appearance of creep strain and creep rate curves is not very different 
from that in Fig. 4.10. Both the primary and secondary stages are reproduced by the 
model. The modeling of the tertiary stage which is not taken into account here will

a b  

Fig. 4.10 Creep test of Cu-OFP at 75 °C and 160 MPa. The creep test was interrupted after 12000 
h; a creep strain versus time; b creep rate versus time; Eq. (4.9). Redrawn from [20] with permission 
of Elsevier 
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a b  

Fig. 4.11 Creep test of Cu-OFP at 75 °C and 175 MPa. The creep test was run until rupture; a creep 
strain versus time; b creep rate versus time; Eq. (4.9) 

be discussed in Chap. 12. Again the data and the model follow closely the phi (φ) 
model in the primary stage. 

4.4 Stress Adaptation 

4.4.1 Model 

In Sect. 3.3 it was demonstrated that a stress strain curve which had the form of a 
Voce equation could be derived from Eq. (4.5) 

σ = σy + (σsat − σy)(1 − exp(−ωε/2)) (4.11) 

This relation can be rewritten as 

σsat = σy + σ − σy 

1 − e−ωε/2 
(4.12) 

The saturation stress σsat is closely related to the stationary creep stress. With this 
background, Eq. (4.12) is now generalized and transformed and considered as the 
driving stress for primary creep [4] 

σprimSA = σy(T , ε̇) + 
σ − σy(T , ε̇) 
1 − e−Ωε/2 

(4.13) 

This expression is then inserted in Eq. (4.3) for the secondary creep rate
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dε 
dt  

= h(σy(T , ε̇) + 
σ − σy(T, ε̇) 
1 − e−Ωε/2 

, T ) (4.14) 

TheΩvalue was originally identical to the dynamic recovery constant ω. However, 
it has been found that at situation far from stationary conditions, Ω might have to be 
chosen in a different way and that is discussed below. For this reason ω is replace byΩ

in Eqs. (4.13) and (4.14). In Eq. (4.14) the yield strength depends on the temperature 
and the strain rate. The following dependence is assumed, Eq. (3.15). 

σy(T , ε̇) = σy(T0, ε̇0) 
G(T ) 
G(T0)

(
ε̇ 
ε̇0

)(1/nN ) 
(4.15) 

T 0 is a reference temperature and ε̇0 a reference strain rate that are usually taken 
as 20 °C and 1 × 10−4 1/s, respectively. The temperature dependence of the yield 
strength follows that of the shear modulus G. The strain rate dependence is described 
with a Norton equation. nN is the stress exponent determined at the temperature and 
strain rate in question from the equation for the secondary creep rate, Eq. (2.30). 

The expression for σprimSA is quite different from that of σprim given in Sect. 4.3. 
Two features of Eq. (4.13) are important to recognize. When the strain increases 
σprimSA tends towards the applied stress and Eq. (4.14) is back to the expression for 
secondary creep. At small strains σprimSA can be expanded in the strain. If a Norton 
expression with a stress exponent is assumed, it can be shown that Eq. (4.14) takes 
the same form as Eq. (4.1) for  the  φ model. This means that if the φ model is valid for 
very small strains, Eq. (4.14) may be applicable. Equation (4.14) cannot be expected 
to be as general as the model in Sect. 4.3. Special assumptions are made and eq. 
(4.14) is based on the Voce equation that is not valid for all alloys. The strain rate 
and temperature dependence of the yield strength must be taken into account and 
they are not always known. 

4.4.2 Numerical Integration 

Equation (4.14) is numerically complicated to integrate. The reason is that the yield 
strength depends on the strain rate. Thus in each integration step an iteration has to 
be performed. This way of direct integration is quite feasible. It is referred to as stress 
adaptation since to determine the stress σprimSA iteration is required in each step. 

There are alternative ways to perform the integration. A brief summary is given 
here. For further details, see [21]. One way is to represent the function h(σ, T ) by a  
Norton equation 

dε 
dt  

= h(σ, T ) = AN(T )σ nN (4.16) 

Using Eqs. (4.15) and (4.16), Eq. (4.14) can be rewritten as
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(
ε̇ 
AN

)1/nN 

= σy(T, ε̇0) 
G(T ) 
G(T0) 

( 
ε̇ 
ε̇0 

)(1/nN) + 
σ − σy(T , ε̇0) G(T ) 

G(T0) ( 
ε̇ 
ε̇0 

)(1/nN) 

1 − e−Ωε/2 
(4.17) 

The following abbreviations are introduced 

aN = A1/nN 
N bN = σy(T, ε̇0) 

G(T ) 
G(T0) 

/ε̇
1/nN 
0 (4.18) 

Using these abbreviations and solving for ε̇ gives 

ε̇1/nN = 1 

1/aN − bN + bN 
1−e−Ωε/2 

σ 
1 − e−Ωε/2 

(4.19) 

From this expression, the formula for the yield strength can be obtained directly 

σy(T , ε̇) = σy(T , ε̇0) 
G(T ) 
G(T0)

(
ε̇ 
ε̇0

)1/nN 

= bNε̇1/nN = σ 
( 1 
aNbN 

− 1)(1 − e−Ωε/2) + 1 
(4.20) 

The strain rate has now been eliminated so the integration of Eq. (4.14) can be 
performed directly. This procedure is referred to as expansion integration. 

Another problem in the numerical integration is the singularity for small strains 
in Eqs. (4.14) and (4.20). This singularity can be eliminated by modifying the model 
in the following way [22]. In Eq. (4.13) the strain rate dependence is extracted 

σ = [
σy(T ) + K (T )(1 − e−ωε/2 )

]
( 

ε̇ 
ε̇k 

)1/nN (4.21) 

σy and K are assumed to have the same strain rate dependence, which is approximately 
the case. The reference strain rate ε̇k is only known for the maximum stress, which 
also defines K 

ε̇k = AN(σy(T ) + K (T ))nN (4.22) 

AN and nN are determined from the total stress σprimSA in Eq. (4.13) in the  same  
way as in the previous integration alternative. From Eq. (4.21) an expression for the 
strain rate can be obtained 

ε̇ 
ε̇k 

=
(

σ 
σy(T ) + K (T )(1 − e−Ωε/2)

)nN 

(4.23) 

Equations (4.22) and (4.23) give  

ε̇ = AN

(
σ(σy(T ) + K (T )) 

σy(T ) + K (T )(1 − e−Ωε/2)

)nN 

(4.24)
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The Norton Eq.  (4.24) can be replaced by an equation of the original form, Eq. 
(4.14) 

ε̇ = h
(

σ(σy(T ) + K (T )) 
σy(T ) + K (T )(1 − e−Ωε/2) 

, T
)

(4.25) 

In Eq. (4.25) the singularity at small strains has been removed. This procedure is 
referred to as max stress integration. 

A simplistic variant of Eq. (4.25) will be given to illustrate how the model works 
[23]. The formula in Eq. (4.25) will be expressed as a Norton equation with the 
constants A and n. Considering small strains (Ωε/2 < 1), the exponential can be 
expanded 

ε̇prim = A
(

σ(1 + σy/K ) 
σy/K + Ωε/2)

)n 

(4.26) 

Equation (4.26) is integrated with respect to time t. Assuming the initial strain to 
be zero, one finds that 

ε = {(1 + n)A}1/(n+1)

(
2σ(1 + σy/K )

Ω

) n 
n+1 

t 
1 

n+1 − 
2σy 

KΩ
(4.27) 

The time derivative of Eq. (4.27) is  

dε 
dt  

= 
{(1 + n)A}1/(n+1) 

n + 1

(
2σ(1 + σy/K )

Ω

) n 
n+1 

t− n 
n+1 (4.28) 

Although Eqs. (4.26) and (4.28) are both derivatives of Eq. (4.27), they are not 
identical because Eq. (4.26) is a function of strain and Eq. (4.28) a function of time. 

According to the simplistic model, the stress exponent is n/(n+1), i.e. close to 1 
provided n is not small. The time dependence is also of importance. The φ model is 
valid for many materials in the primary stage 

ε̇primφ = Aφ t
−φ (4.29) 

where t is the time and Aφ and φ are parameters. Further details about the φ model 
can be found in Sect. 4.2 and in [22]. From (4.28) it can be seen that the simplistic 
model agrees with the φ model where φ = n/(n+1). This requires that the last term 
in (4.27) is small is relation to the value of the strain. This can be expressed in terms 
of the following criterion 

σy 

K 
<

Ωε 
2 

(4.30)
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It can be shown that this criterion must also be fulfilled for the full model in Eq. 
(4.25). 

If the primary creep is near its end and approaching stationary conditions, Ω can 
be replaced with the dynamic recovery constant ω. The temperature correction for ω 
introduced in Sect. 3.4, (G(RT)/G(T ))2, where G(T ) and G(RT) are the shear modulus 
at temperature and room temperature respectively, should be considered. However, 
if the primary creep is far from stationary conditions, Ω has to be determined in an 
other way [22]. At low strains the work hardening can be found from Eq. (3.12) 

dσdisl 

dε 
= 

αGm2 
T 

2cL 
(4.31) 

The dislocation stress can never be larger than the applied stress. When the dislo-
cation stress is approaching the applied stress, a semi-stationary condition may be 
said to be reached. The strain has then the value 

εsemi stat = (σ − σi) 
2cL 

αGm2 
T 

(4.32) 

At this stage the exponential in Eq. (4.25) must be small, say 0.05, which gives

Ω ≈ 3 

εsemi stat 
= 3αGm2 

T 

2cL(σ − σi) 
(4.33) 

where σi includes strength contributions, for example, from solid solution and precip-
itation hardening. The applicability of Eq. (4.33) is shown for example in Sect. 5.8 
and [22] for applications at a wide range of temperatures for copper. 

4.4.3 Applications 

The use of Eq. (4.14) will now be illustrated. Two examples for creep tests of Cu-
OFP at 75 °C are shown. The results for a test at a stress of 180 MPa are shown in 
Fig. 4.12.

It can be seen that the creep strain and creep strain rate versus time are approxi-
mately reproduced. The three integration methods stress adaptation, expansion inte-
gration and max stress integration give closely the same result. The straight line in 
Fig. 4.12b indicates that the phi (φ) model is followed down to fairly short times. 

Another example is presented in Fig. 4.13. Again the experimental results for the 
creep strain and the creep rate are modeled in a general way. It is clear that the model 
in the present section gives a less precise description of the data than the model 
in Sect. 4.3. However, the model is useful to describe results at very low stresses, 
Chap. 5.
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a b  

Fig. 4.12 Creep test of Cu-OFP at 75 °C and 180 MPa. The creep test was run until rupture; a creep 
strain versus time; b creep rate versus time; Eq. (4.14)

a b  

Fig. 4.13 Creep test of Cu-OFP at 75 °C and 175 MPa. The creep test was run until rupture; a creep 
strain versus time; b creep rate versus time; Eq. (4.14) 

4.5 12% Cr Steels 

4.5.1 Dislocation Model 

The creep models presented in Sects. 4.3 and 4.4 as well as in Chap. 2 are based on 
a single dislocation density. However, there are materials for which more than one 
type of dislocation density must be introduced to fully take into account the role of 
the substructure. For the type of material, 9–12% Cr steels, that will be analyzed 
in this section, this is essential. In models with a single dislocation density, it is 
increased gradually from low values in the primary stage until it reaches the stationary 
value in the secondary stage. For 9–12% Cr steels, the initial microstructure is an 
annealed martensitic structure. It is characterized by well-developed subgrains with
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subboundaries full of dislocations. This implies that the initial dislocation density is 
high. But the creep behavior of the 9–12% Cr steels in the primary stage is not very 
different from that in the fcc-alloys. 

To handle this situation, a distinction is made between free and immobile dislo-
cations. The free dislocations are located in the subgrain interiors and the immobile 
ones primarily in the subboundaries. The following equations are formulated for the 
densities of the free dislocations ρf and the immobile dislocations ρim [24, 25] 

dρf 

dε 
= 

1 

Ls 

mT 

b 
− (ω1 + ω2)ρf (4.34) 

dρim 

dε 
= ω2ρf − 2MτLρ

2 
im/ε̇ (4.35) 

ε is the strain, ε̇ the creep rate, Ls the mean spurt distance of dislocations, mT the 
Taylor factor, b Burgers vector, M the climb mobility, and τL the dislocation line 
tension. The first term on the right hand side of Eq. (4.34) gives the work hardening. 
Only the free dislocations contribute to the work hardening. There are two types 
of dynamic recovery. A free dislocation will interact with a dislocation of opposite 
Burgers creating a dipole with a spacing ddip that can annihilate each other 

ddip = mT 

8π (1 − νP) 
Gb 

σ 
(4.36) 

This gives a recovery constant ω1 

ω1 = 
2mT 

b 

ddip 
nslip 

(4.37) 

nslip is the number of active slip systems. Dislocations can also form locks, when 
dislocations with different Burgers vector at a distance of dlock interact. dlock has 
about the same size as ddip. This is another recovery effect that transfers the free 
dislocations to immobile ones. 

ω2 = 
4mT 

b 

dlock
(
nslip − 1

)
nslip 

(4.38) 

Thus this type of recovery reduces the free dislocation density and increases 
the immobile dislocation density. It gives no net change in the total dislocation 
density. The immobile dislocations can only be removed by static recovery. The 
static recovery term is the last term in Eq. (4.35) and it has the same form as in Eq. 
(4.5). 

Only the immobile dislocations are included in Eq. (4.39) for the dislocation stress 

σdisl = αmTGbρ1/2 
im (4.39)
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It is now possible to describe what happens during primary creep. Initially, ρf has 
a high value and ρim a low value. This gives a high total dislocation density, but the 
dislocation stress is low. To compute the strain rate, σdisl should be inserted in Eq. 
(4.9). With a low value of σdisl, the creep rate will be high. With increasing strain, 
the free dislocations are transferred to immobile ones, σdisl is increased and the creep 
rate reduced. With Eqs. (4.34) and (4.35) the established features of primary creep 
are reproduced. 

The internal stress is an important quantity for 9–12% Cr-steels. Particles increase 
the creep strength in two ways. Fine carbo-nitrides give a direct increase in the creep 
strength. Coarse M23C6 carbides stabilize the subboundaries and thereby reduce 
the recovery rate of the immobile dislocations. This implies a high value of the 
dislocation strength can be kept that decreases the creep rate. Only the role of the 
fine carbo-nitrides will be discussed briefly here. Further details are given in Chap. 7 
on precipitation hardening. Only particles with a radius larger than a critical size 
contribute to the creep strength, Eq. (7.12) 

rcrit = Mclimb(T, σ  )b2 σλs 
ρf 

ε̇secmT 
(4.40) 

where λs is the interparticle spacing for all the carbo-nitrides. The particles give the 
following contribution to the internal stress 

σi = σpart = 
COGbmT 

λcrit 
(4.41) 

where CO = 0.8 and λcrit is the interparticle spacing for particles larger than rcrit. 
Equation (4.41) is the expression for the Orowan strength except that λs is replaced 
by λcrit. Together with σdisl, σi should be inserted in Eq. (4.9) to find the creep rate. 

4.5.2 Simulated Creep Curves 

Results for creep strain curves of 12Cr1MoV steels (X20) will be presented. The 
creep curves have been published in [9]. Two heats CL and CT are considered. The 
particles in this steel are primarily M23C6 carbides. M stands mainly for Cr and Fe. 
The size distribution of the carbides has been measured [26]. The result is presented 
in Fig. 4.14.

In the semi logarithmic scale in Fig. 4.14, the size distributions are approximately 
linear except for small particle sizes. The deviation for small particles is often due 
to the difficulty to make accurate measurements for such particles. Otherwise the 
Figure shows that the number of particles per unit area npart decreases exponentially 
with increasing carbide radius rpart 

npart = n0e−βrpart (4.42)
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Fig. 4.14 Number of M23C6 
carbides per unit area versus 
carbide radius for two heats 
CL and CT for a 12Cr1MoV 
steels. From [27]
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where n0 and β are constants. The values of β for the heats CL and CT in Fig. 4.14 
are 3.2 × 107 and 6.0 × 107 1/m, respectively. 

The initial values of the dislocation densities ρf and ρim have been taken as 8 
× 1013 and 1 × 1011 1/m2 from two doctorial theses from Erlangen on 9 to 12% 
Cr-steels (Polcik 1998; Sailer 1998). 

Experimental creep strain versus time curves are compared to the model in 
Figs. 4.15 and 4.16. The model curves only include primary and secondary creep 
since tertiary creep is not considered. In the primary and the secondary stages the 
experimental data is reasonably well reproduced. 

This is further illustrated in Fig. 4.17 where the experimental and modeled 
minimum creep rates are compared. The Figure shows that the deviation is about a 
factor of two, which can be considered as acceptable. Again it is shown that primary 
creep can be accurately modeled without the use of adjustable parameters

Fig. 4.15 Creep strain 
versus time curves for 
12CrMoV steel at 600 °C for 
stresses between 70 and 155 
MPa. Experimental data 
from [9]. Heat CT. From [27]
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Fig. 4.16 Creep strain 
versus time curves for 
12CrMoV steel at 
600–650 °C for a stress of 80 
or 90 MPa. Experimental 
data from [9]. Heat CL. 
From [27]

Fig. 4.17 Comparison of 
minimum creep strain rates 
between the experimental 
and model curves in 
Figs. 4.15 and 4.16. From  
[27] 
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4.6 Summary 

• Many empirical models exist for representing creep curves, i.e. creep strain versus 
time curves. With four or more parameters almost any of these models can give 
a good fit to the curves. To get a better basis for selection of models, primary 
and tertiary creep should be handled separately. Then it is enough to involve just 
two parameters for primary creep and two for tertiary. For many types of steels 
primary creep can be represented with the phi model and tertiary creep with the 
Omega model. The phi model gives a linear curve in a double logarithmic strain 
rate versus time diagram. The Omega-model provides a linear curve when the 
logarithmic of the strain rate is shown as a function of the strain. The two models 
can be added to describe the whole creep curve. It is usually not necessary to have 
a separate term for secondary creep.
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• Several basic models for primary creep are derived in the chapter. The modeling 
is based on the assumption that the dislocation density has initially a low value 
that increases during the primary stage until a stationary value is reached in the 
secondary stage that can be described with the basic dislocation models. The 
dislocation density is associated with a dislocation stress according to Taylor’s 
equation. In one of the models an effective creep stress is introduced which is 
twice the applied stress minus the dislocation stress. This effective stress can be 
introduced in the expression for the secondary creep rate to find the creep rate 
in the primary stage. The expression can be generalized to include also tertiary 
creep, see Sect. 12.4. 

• The use of the basic models for primary creep demonstrates that they can describe 
experimental creep curves. These modelled creep curves follow the phi model. 

• For martensitic 9–12% Cr steels the situation is somewhat more complicated. Due 
to the martensitic microstructure the initial dislocation density is high. To handle 
this case at least two types of dislocation densities must be introduced; free and 
immobile. As a consequence, the development of both types of dislocations must 
be taken into account but the principles are the same. 
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Chapter 5 
Creep with Low Stress Exponents 

Abstract Primary creep models predict that at low stresses a stress exponent of 1 
can be obtained for dislocation creep. Also experimentally this has been observed for 
an austenitic stainless steel. The time dependence of the primary creep verifies that 
it is dislocation creep. An other example is for Al at very high temperatures (Harper-
Dorn creep), where at sufficiently low stresses, the stress exponent approaches 1. For 
both materials higher stresses give larger stress exponents as expected for dislocation 
creep. Obviously, diffusion and dislocation creep can be competing processes. The 
validity of creep models at low stresses and high temperatures as well as at high 
stresses and low temperatures demonstrates their wide range of usage. Since this in 
reality represents an extensive extrapolation, it can be consider as a direct verification 
of the basic creep models. In cases for Cu and stainless steels, the predicted creep rate 
by diffusion creep (Coble) exceeds the observed creep rate as well as the predicted 
one by dislocation creep by an order of magnitude. The likely explanation is that 
constrained boundary creep is taken place, i.e. the grain boundary creep rate cannot 
be essentially faster than that of the bulk. 

5.1 General 

Creep at low stresses has generated great interest amongst scientists for a long time. 
Expressions for diffusional creep that do not involve dislocations were developed at 
an early stage. First an expression based on bulk diffusion was formulated [1]. This 
is now referred to as Nabarro-Herring creep. The creep takes place by diffusion from 
grain boundaries with low stresses to boundaries located perpendicular to the loading 
direction. An alternative expression was given by Coble [2] where the diffusion is 
assumed to take place in the grain boundaries instead of in the bulk. The difference in 
diffusion mechanism means that Nabarro-Herring creep is proportional to the bulk 
diffusion coefficient and Coble creep to the grain boundary diffusion coefficient. 
The grain size dependence is also different. With bulk diffusion the creep rate is 
inversely proportional to the square of the grain size. With grain boundary diffusion
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the proportionality is instead to the inverse cube of the grain size. Models for diffusion 
creep is summarized in Sect. 5.2. 

The derivations for diffusional creep gave the first basic equations for the creep 
rate. The expressions do not involve any arbitrary or adjustable parameters and the 
equations are fully predictable. For both types of diffusional creep, the rate is propor-
tional to the stress, which means that the stress exponent is 1. Thus diffusional creep 
has a number of characteristic features: well defined dependence of the grain size, 
stress and temperature (through the diffusion coefficient). For a long time it was also 
assumed that a stress exponent of 1 should always be associated with diffusional 
creep. Authors have suggested observations of Herring-Nabarro or Coble creep in 
many metals: Cd, Co, Cu, Fe, Mg and Zr. Kassner has given an excellent review of 
diffusional creep [3] and details about the observations and references can be found 
there. 

Observations of diffusional creep have often been controversial. One reason is that 
observed creep rates have not been in agreement with predicted ones in a number of 
studies [4]. In for examples the excellent studies on βCo and αFe [5, 6], the observed 
creep rate was about two orders of magnitude higher than the predicted ones. The 
identification of diffusional creep is not necessarily based only on the observed creep 
rates. There are also metallographic techniques to distinguish between dislocation 
and diffusional creep. Langdon proposed that if scratches are made parallel to the 
loading direction, the markings would be still continuous across the grain boundaries 
after the test for dislocation creep but not for diffusional creep [7]. This requires 
that no grain boundary sliding occurs along the considered boundaries. Another 
proposal is that diffusional creep gives denuded zones in particle hardened alloys or 
grooves around grain boundaries [8, 9]. For example, McKnee et al. have used these 
techniques to support observations of diffusional creep [10, 11]. The role of denuded 
zones has been questioned in the literature [12]. Ample evidence is now available 
that demonstrates that denuded zones can be formed also during dislocation creep. 
Wadsworth et al. suggest that denuded zones are created at grain boundaries that are 
sliding and migrating simultaneously [13]. 

When recording creep rates during diffusional creep, it is assumed that stationary 
conditions have been reached. In creep testing at higher stress, the deformation can be 
allowed to continue until rupture takes place. Then it is straightforward to determine 
when the stationary stage has been reached. During dislocation creep, a distinct 
primary stage is expected. If such a stage is observed it is an indication that the 
operating mechanism is not diffusional creep. However, as will be discussed in this 
chapter, it is possible that diffusional creep can also show primary creep. It is evident 
that in many cases it is quite difficult to decide when stationary conditions have been 
achieved. If the creep rate is assessed during the primary stage, the measured creep 
rate would typically be much higher than in the secondary stage. In addition, the 
stress exponent can be low also for dislocation creep often approaching a value of 1. 
This makes it easy to mistake it for diffusional creep. Modeling can be quite helpful in 
understanding non-stationary conditions. In this chapter, modeling is presented that 
can assess and interpret creep rates that are measured in the primary stage, Sect. 5.5.
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Harper and Dorn tested aluminum very close to the melting point at very low 
stresses looking for diffusional creep [14]. Their results gave a stress exponent of 
1 but the creep rate was two orders of magnitude higher than the diffusional creep 
models predicted. They draw the conclusion that the mechanism was dislocation 
creep with a stress exponent of 1. This phenomenon is referred to as Harper-Dorn 
creep. It has created large interest. The work in the area is summarized in a paper 
by Kassner et al. [15]. Some authors were able to reproduce the results of Harper 
and Dorn [16, 17], others were not [18]. It was early on suspected that in many 
cases stationary conditions had not been reached. This has been confirmed in a paper 
by Kumar et al. [19] where the testing was carried to somewhat larger strains. The 
stress exponent now took the value of 3. They also found that Harper and Dorn had 
introduced a threshold stress, which Kumar et al. could not find any justification for. 
If the threshold stress is removed also the Harper and Dorn data are consistent with 
a stress exponent of 3 so the whole effect disappears. In Sect. 5.7, creep at very low 
stresses in aluminum is modeled. It is shown that deviations from a stress exponent of 
3 can be explained by taking non-stationary effects into account. Thus, creep at very 
low stresses at high temperature can be fully accounted for with ordinary dislocation 
creep models and there is no need to refer to Harper-Dorn creep as a special effect. 

Tests at very low stresses for the austenitic stainless steel 316H and the martensitic 
steel P91 have given a stress exponent of 1 [20]. Since distinct primary creep is 
observed and stress change experiments gave a stress exponent of 4.5 [21], it is 
concluded that the operation mechanism is dislocation creep. The tests for 316H 
are analyzed with a primary creep model in Sect. 5.6. The non-stationary model 
can quantitatively explain the behavior at low stresses (and at higher stresses). This 
clearly demonstrates that dislocation creep can be of importance also at very low 
stresses. 

Creep tests that have claimed to demonstrate diffusional creep for Cu [9, 22], 
have been analyzed in Sect. 5.8. It is shown that the part of the experimental data 
that has been investigated is possible to reproduce with non-stationary dislocation 
creep. There are pros and cons whether these observations represent diffusional or 
dislocation creep. Further details are given in Sect. 5.8. 

Results for previously unpublished results on creep in Cu between and 1 and 2 MPa 
at 600° C are presented. The tests are unusual for low stress experiments since the 
testing times exceed 12000 h. The results clearly represent dislocation creep, since 
the stress exponent is 3 and distinct primary creep is observed. Furthermore the 
results are in good agreement with the basic model for stationary creep, so any non-
stationary model is not needed. The surprising feature is that the Coble creep model 
suggests a creep rate that exceeds the observations by an order of magnitude or more. 
Although mechanisms have been proposed in the literature that can reduce the Coble 
creep rate, it is difficult to identify such a mechanism in this case that can explain 
the effect. This is further discussed in Sect. 5.8.1. Also for the investigated case for 
316H, Coble creep overestimates the observed creep rates at low stresses (by about 
one order of magnitude). 

The classical diffusional models are briefly derived and summarized in Sect. 5.2. 
To explain the effect of alloying elements on the diffusional creep rate, several authors
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assume that mobile grain boundary dislocations are a prerequisite for diffusional 
creep. For this reason a recovery creep model for grain boundary dislocations is 
formulated in Sect. 5.3. It is demonstrated that the grain boundary dislocations can 
give rise to quite a high creep rate, a phenomenon that does not seem to be covered 
in the literature. Some results suggest that creep along the grain boundaries must 
be accompanied with simultaneous deformation in the grains. This is covered in 
Sect. 5.4. It is referred to as constrained grain boundary creep. In Sect. 5.5, the  
primary creep model that is used to describe non-stationary dislocation creep at low 
stresses is summarized. Applications of the primary creep model at low stresses for 
an austenitic stainless steel are given in Sect. 5.6, for aluminum in Sect. 5.7, and for 
copper in Sect. 5.8. 

5.2 Model for Diffusional Creep 

Detailed models for diffusional creep were already presented in the original papers 
for Nabarro-Herring and Coble creep [1, 2]. Here, only a simplified derivation will 
be given. During Nabarro-Herring creep in tension, matter is transported to grain 
boundaries oriented perpendicular to the loading direction from grain boundaries 
parallel to the loading direction. This is possible by migration of vacancies in the 
opposite direction. It is assumed that the sources and sinks of the vacancies are at the 
grain boundaries. This is opposite to dislocation creep where the sinks and sources are 
primarily at the dislocations. The difference in vacancy concentration Δcv between 
the boundaries that are exposed to a stress σ and the others is

Δcv = exp
(

− 
QF 

kBT

)(
exp

(
σvatom 

kBT

)
− 1

)
(5.1) 

QF is the vacancy formation energy and vatom the atomic volume. The first factor 
in Eq. (5.1) is the thermal equilibrium concentration of vacancies. The second factor 
describes the increase in vacancy concentration due to the presence of the stress. 
Since only low stresses are considered, Eq. (5.1) can be rewritten as

Δcv = cv0 
σvatom 

kBT 
(5.2) 

A notation cv0 has been introduced for the equilibrium vacancy concentration. 
The flow of vacancies J can be expressed as 

J = −  
Dv 

vatom

Δcv 
deff 

= −Dv 
cv0 
deff 

σ 
kBT 

(5.3) 

Dv is the vacancy diffusion coefficient and deff the effective diffusion distance. For 
a simple grain structure, deff can be estimated. Let us assume that we have coordinates
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x and y on perpendicular grain boundaries in a quadratic grain 

deff = 1 

d2 
grain 

dgrain/2∫
0 

dgrain/2∫
0 

√
x2 + y2dxdy  = 0.1dgrain = 

dgrain 
ANH 

(5.4) 

The constant ANH has been introduced to mark that its value depends on the 
geometry of the grains. The vacancy flux gives rise to a change in the grain size 
along the loading direction 

ddgrain 
dt

= −J vatom (5.5) 

This corresponds to a creep rate ε̇NH of 

ε̇NH = 
1 

dgrain 

ddgrain 
dt  

= 
J vatom 

dgrain 
= ANH Dv 

cv0 
d2 
grain 

σvatom 

kBT 
(5.6) 

where Eq. (5.3) has been inserted for J. The expression for deff in Eq. (5.4) has also 
been used where ANH = 10. The vacancy diffusion coefficient Dv is related to the 
self-diffusion coefficient Dlatt 

Dlatt = Dvcv0 (5.7) 

If this expression is applied the final expression for the Nabarro-Herring creep 
rate is obtained. 

ε̇NH = ANH 
Dlatt 

d2 
grain 

σvatom 

kBT 
(5.8) 

The result in Eq. (5.8) is identical to the original expression derived by Herring for 
quadratic grains [1]. However, it is more common to use the expression for spherical 
grains and then ANH = 14 instead of 10 [1, 23]. Greenwood has presented expressions 
for Nabarro-Herring creep for more general grain structures [24]. 

It is possible to extend the equation to Coble creep by introducing an effective 
diffusion coefficient Deff that takes both lattice diffusion and grain boundary diffusion 
into account 

Deff = Dlatt

(
1 + 

πδGB 

dgrain 

DGB 

Dlatt

)
= Dlatt

(
1 + π 

dgrain 

δ DGB 

Dlatt

)
(5.9) 

where δGB is the grain boundary width. In this book the grain boundary diffusion 
coefficient is represented by δDGB that includes the grain boundary width and has 
the unit m3/s. This is the quantity that is most often measured. But Eq. (5.9) is also  
expressed in terms of the grain boundary diffusion coefficient DGB that does not
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include δGB and has the unit m2/s. The factor π in front of δDGB can take different 
values in different sources but π is the most common choice. If Dlatt is replaced by 
Deff in Eq. (5.8), Coble creep is covered by the second term in the brackets 

ε̇diffcreep = ANH 
σvatom 

kBTd2 
grain 

Dlatt

(
1 + π 

dgrain 

δ DGB 

Dlatt

)
(5.10) 

5.3 Grain Boundary Creep 

As will be seen in Sects. 5.6 and 5.8, the classical model for Coble creep can over-
estimate the observed creep rates by at least an order of magnitude. This means that 
diffusional creep must be blocked by one or more processes. Such processes have 
been proposed. A survey of earlier work is provided by Arzt et al. [25]. The diffusion 
process in the grain boundary can be affected. However, it is difficult to see how such 
processes can provide mechanisms that are sufficient large to explain the mentioned 
observations. In a number of papers including [25], it assumed that dislocation activ-
ities are needed to make grain boundaries involved in diffusional creep and provide 
the necessary sources and sinks of vacancies. This gives a way to explain the large 
blocking effects. Another mechanism that does not seem to have been raised in the 
literature, is that the dislocations in the grain boundaries can give a direct contribu-
tion to the creep rate without involving diffusional creep. In this section, a model is 
presented for this contribution. In the derivation, due to the lack of access, specific 
properties for grain boundary dislocations will not be used. Instead, parameters for 
bulk dislocations will be applied. 

The first step is to formulate a model for development of the dislocation density 
during creep in the grain boundaries equivalent to Eq. (2.17). In the same way as for 
deformation in the bulk, the starting point is the Orowan Eq. (2.6). It has a different 
form for GB dislocations [26] 

ε̇ = 
bnρvdisl 

mTdgrain 
(5.11) 

where bn is the component of the Burgers vector perpendicular to the GB, ρ the dislo-
cation density and vdisl the velocity of the dislocations. Equation (5.11) is integrated  
and derivated with respect to the strain to give 

dρ 
dε 

= 
mTdgrain 
bnLs 

(5.12) 

Ls is the spurt distance, cf. Eq. (2.5) and it is assumed that it can be expressed in 
the subgrain diameter dsub. In the same way as for bulk deformation



5.3 Grain Boundary Creep 89

Ls = nsubdsub (5.13) 

where the constant nsub is close to 3 [27, 28]. The subgrain size can be related to the 
dislocation stress 

dsub = 
KsubGb 

σdisl 
(5.14) 

K sub is a constant typically in the range 10–20. The expression for the Taylor 
Eq. (2.20) has to be modified [25] 

σdisl = αmTGbρ = σ − σi (5.15) 

The dislocation stress σdisl is now linear in the density. σi is the back stress from 
solid solution and particle hardening. By combining Eqs. (5.11)–(5.15) it is found 
that the change in the dislocation density contributing to the work hardening is given 
by 

dρ 
dε 

= 
mTdgrain 
bcL 

ρ (work hardening) (5.16) 

where 

cL = 
nsubKsub 

mTα 
(5.17) 

In comparison to the bulk Eq. (2.9), the difference is that the work hardening 
contribution is linear in the dislocation density. Since the dislocation stress σdisl is 
linear in the dislocation density, the strain dependence of σdisl is also linear. 

dσdisl 

dε
= 

mTdgrain 
cLbn 

σdisl (work hardening) (5.18) 

For the elastic properties and the Burgers vector for example in Eq. (5.15), grain 
boundary values should be applied. However, for metals the values of the elastic 
properties are of the order of 93% of the bulk values [29]. Considering the uncer-
tainties involved in modeling grain boundary properties, these replacements have not 
been made. 

For the static recovery, the starting point is Eq. (2.16). 

dR  

dt  
= 

MBτL 

R 
(5.19) 

where R is the spacing between dislocations and τL the dislocation line tension. The 
boundary climb mobility is given by
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MB = 
bDGB 

kBT 
(5.20) 

Notice the difference between the two grain boundary diffusion coefficients 

δ DGB = δGB DGB (5.21) 

δDGB and DGB have the units m3/s and m2/s, respectively. δGB is the grain boundary 
width that is usually taken as 5 × 10–10 m. The dislocation spacing R in the boundary 
is 

R = 1/ρ (5.22) 

Inserting Eq. (5.22) into (5.19) gives  

dρ 
dt  

= −τL MBρ3 (static recovery) (5.23) 

There are two differences between Eq. (5.23) and the bulk version, Eq. (2.13). 
First, the factor of 2 is missing and the dislocation density appears to the third order. 
By summing the contributions from Eqs. (5.16) and (5.23), an expression for the 
strain dependence of the dislocation density is obtained 

dρ 
dε 

= 
mTdgrain 
bcL 

ρ − τL MBρ3 /ε̇B (5.24) 

The time derivative in Eq. (5.23) has been changed to a strain derivative by dividing 
by the strain rate. ε̇B is the local creep rate in the grain boundary. During stationary 
condition the strain derivative of the dislocation density vanishes and the creep rate 
can be found directly. The overall grain boundary creep rate ε̇GB is given by 

ε̇GB = 
δGB 

dgrain 
ε̇B = 

δGBbcL τL MBρ2 

d2 
grainmT 

(5.25) 

With the modified Taylor, Eqs. (5.15) and (5.25) can be expressed in terms of 
stress 

ε̇GB = 
δGBbcL τL MB(σ − σi)

2 

d2 
grainmT(αmTGb)2 

(5.26) 

The grain boundary creep rate is inversely proportional to the square of the grain 
size and has a stress exponent of about 2 at low stresses. At higher stresses the role 
of pipe diffusion, strain induced vacancies, etc. should be taken into account in the 
same way as for creep in the bulk. Equation (5.26) has the same temperature, stress
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and grain size dependence as the creep rate during superplastic deformation due to 
GBS, Eq. (9.20), but the equations are not identical. 

Equation (5.26) can give quite a high strain rate. The grain boundary diffusion 
coefficient is much larger than the bulk diffusion coefficient and that is only compen-
sated to some extent by the ratio δGB/dgrain. It is important to take into account the 
role of cross-slip. If the grain boundaries are fully straight, cross-slip has to take 
place at the triple points. However, the boundaries are often curved, and then cross-
slip is continuous. With cross-slip an extra activation energy has to be introduced, 
Eq. (2.47) 

gcross-slip = exp
(

− 
Ecs 

RGT

)
(5.27) 

Equation (5.26) is multiplied by Eq. (5.27). The problem is that the value of the 
activation energy for cross-slip is uncertain. As summarized in Sect. 2.6.3, ab initio 
values for the activation energy vary from 50 to 270 kJ/mol. The values for alloys 
appear to be larger than for pure metals. The role of cross-slip remains an open issue. 

5.4 Constrained Grain Boundary Creep 

Creep in the grain boundaries without plastic deformation in the neighboring grain 
interiors is not possible. Perhaps, the most obvious effect is for superplasticity. In 
this case the main deformation takes place by GB sliding. However, extensive defor-
mation cannot occur in a material without the grain interiors being affected. In other 
words, creep in the grain boundaries must always be accompanied by creep in the 
whole grains as well. This phenomenon will be referred to as constrained grain 
boundary creep. The term is taken from growth of creep cavities that inside a material 
growth cannot be faster than the creep deformation, see Sect. 10.5.2. 

Grain boundary creep according to Eq. (5.26) can give quite a high creep rate, in 
many cases higher than bulk dislocation creep, but such a phenomenon has not been 
reported in the literature. It is assumed that the grain boundary creep rate ε̇GB cannot 
exceed the creep rate in the bulk ε̇bulk significantly. The bulk creep mechanism is 
practically always dislocation creep but could in principle also be Nabarro-Herring 
creep. If the grain boundary creep rate ε̇GB is estimated to be higher than the bulk 
creep rate, the creep rates must be matched approximately 

ε̇GB(σred) ≈ ε̇bulk(σ ) (5.28) 

Thus, the stress controlling the grain boundary creep rate must be reduced to 
ensure that the creep rates match. 

In Sects. 5.6 and 5.8.1 it is shown that the Coble creep model rates can exceed 
the observations by more than an order of magnitude. Several mechanisms have 
been proposed that could retard diffusional creep. These are in general based on the
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assumption that the creep rate is controlled by GB dislocations [25]. For Nabarro-
Herring creep, they can account for that GBs are not perfect sources and sinks for 
vacancies. For Coble creep the GB dislocations assure that atoms and vacancies 
can leave the GBs to avoid that they are getting saturated. Many mechanisms are 
available that can reduce the mobility of GB dislocations. Further details are given 
in the mentioned sections. 

If the estimated Coble creep rate is still higher than the bulk creep rate, constrained 
GB creep is active. This means that Eq. (5.28) must be satisfied for Coble creep as 
well 

ε̇Coble(σred) ≈ ε̇bulk(σ ) (5.29) 

Thus, if the Coble creep rate is nominally higher than the bulk creep rate, matching 
of the two creep rates must take place and the stress driving Coble creep is reduced. 
Exceptions to this principle can be found for hypothetical grain structures. A grain 
structure consisting of identical rectangular prisms where there is a homogeneous 
padding of atoms on the planes perpendicular to the loading directions is an example 
where bulk deformation may not take place. Such cases have of course no practical 
relevance. 

When the bulk creep rate is controlled by dislocation creep, it shows a higher 
creep rate in the primary stage and this allows Coble creep to have a higher creep 
rate initially as well. This means that Coble creep can have a primary stage. The main 
conclusion of this section is that any creep deformation mechanism that is entirely 
concentrated to the GBs cannot be significantly faster than the bulk creep rate. 

5.5 Primary Creep at Low Stresses 

One major concern when making creep tests at low stresses is whether stationary 
conditions have been reached. Most creep models refer to the stationary creep rate 
when identifying creep mechanisms. If the creep test has not been carried out long 
enough the wrong conclusions can be drawn. At low stresses, the interesting ques-
tion is often if diffusional or dislocation creep is observed. The stress exponent for 
diffusional creep is always assumed to be 1 according to the models for Nabarro-
Herring and Coble creep. A possible exception exists for nanocrystalline alloys. It 
has been proposed that Coble creep can appear also at higher stresses and with a 
stress exponent larger than unity [30]. This possibility will not be considered here. 
If stationary creep has been reached, the stress exponent is 3 or more for dislocation 
creep. The known exception is superplasticity where the stress exponent can be 2. 
This is discussed in Sect. 9.4. Then it is straightforward to distinguish between diffu-
sional and dislocation creep. However, if dislocation creep is in the primary stage, 
the stress exponent can be lower and the identification can be difficult. 

In recent years basic models for primary creep have been developed. They are 
described in Chap. 4. With the help of these models a better understanding of the
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creep behavior during non-stationary conditions can be established. Low stresses are 
often associated with low strains. The appropriate model is given in Eqs. (4.13) and 
(4.14). The model is called stress adaptation. In the same way as for the other models 
for primary creep in Chap. 4, the starting point is the creep rate in the stationary stage 
and the rate in the primary stage is related to that in the stationary stage. The only 
change is that an effective stress is introduced that is higher than the stationary stress, 
which can represent the higher creep rate in the primary stage. In the stress adaption 
model the effective stress is given by [31] 

σprimSA = σy(T , ε̇) + 
σ − σy(T , ε̇) 
1 − e−Ωε/2 

(5.30) 

The quantity σy is the yield strength that depends on temperature and the strain 
rate ε̇, Ω is related to the dynamic recovery constant, and σ the applied stress in the 
creep test. One requirement on the effective stress is that it tends to the applied stress 
at large strains. This is obviously the case in Eq. (5.30). The second part of the model 
is the rate for stationary creep, Eq. (4.3) 

ε̇ = h(σ − σi) with h(σ ) = 
2τLbcL M(T, σ  )  

mT 

σ 3 

(αmTGb)3 
(5.31) 

where mT is the Taylor factor, b burgers vector, G the shear modulus, cL and α 
dimensionless constants, τL the dislocation line tension and M the dislocation climb 
mobility. σi is an internal stress that includes contributions from solid solution hard-
ening and particle hardening. If the effective stress in Eq. (5.30) is inserted into (5.31), 
an expression for the creep rate is obtained that is valid for primary and stationary 
creep 

dε 
dt  

= h
(

σy(T , ε̇) + 
σ − σy(T , ε̇) 
1 − e−Ωε/2 

− σi, T
)

(5.32) 

Equation (5.32) is complicated but not impossible to integrate, since σy depends 
on the strain rate. This means that the equation has to be solved by iteration in each 
integration step. In addition, the primary stress in Eq. (5.30) is singular at small 
strains. However, it was demonstrated in Sect. 4.4.2 that these difficulties can be 
avoided. Equation (5.32) can be reformulated and the most suitable form is given in 
Eq. (4.25) 

ε̇ = h
(

σ(σy(T ) + K (T )) 
σy(T ) + K (T )(1 − e−Ωε/2) 

− σi, T
)

(5.33) 

where K(T ) is given by 

K (T ) = 
αGm2 

T 

ωcL 
= σsat(T ) − σy(T ) (5.34)
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The saturation stress (maximum stress) σsat during plastic deformation at constant 
strain rate is the sum of σy(T ) and K(T ). In Eq. (5.33), the strain rate dependence of 
σy(T ) and K(T ) has been eliminated. These quantities are assumed to be influenced 
by the strain rate in the same way. This means that their values can in principle be 
selected at any strain rate. 

Up to the creep range, the temperature dependence of σy and K are at least approx-
imately known. The temperature dependence of the yield strength is proportional to 
that of the shear modulus, Eq. (3.15). The temperature dependence of the dynamic 
recovery constant ω is inversely proportional to that of the square of the shear 
modulus. However, in the creep range the increase in ω can be much faster with 
temperature. This is illustrated in Fig. 3.13. The role of Ω is that it describes how 
large the strain must be before the stationary or semi-stationary stage is reached. If 
the primary data are close to stationary conditions, the value of Ω can be assumed to 
be equal that of ω. However, if this is not the case, Ω is given by another expression, 
Eq. (4.33)

Ω ≈ 
3 

εstat 
= 3αGm2 

T 

2cL(σ − σi) 
(5.35) 

To understand the behavior of Eq. (5.33) a simplified version is presented in 
Sect. 4.4.2. The strain dependence follows the φ model with a φ value of nN/(nN + 
1). Some requirements must be fulfilled. In particular, the following criterion must 
be satisfied, Eq. (4.30) 

σy 

K 
<

Ωε 
2 

(5.36) 

5.6 Creep at Low Stresses in an Austenitic Stainless Steel 

In this section, creep of the austenitic stainless 17Cr12Ni2Mo steel 316H will be 
analyzed at low stresses. The creep data is taken from a paper of Kloc et al. [20] and 
the analysis from [32]. Very low stresses could be reached with the help of a helicoid 
spring specimen technique. Some of the experimental results are shown in Fig. 5.1.

The creep strain rate versus stress is given in Fig. 5.1. Two distinct regions of 
stress dependence are evident. At low stresses the stress exponent is about 1. At 
higher stresses, the stress exponent is 7, i.e. in the range for power-law creep. With 
a stress exponent of 1, it was initially thought that diffusional creep was observed. 
However, the presence of primary creep, see Fig. 5.1b suggests that dislocation creep 
is the controlling mechanism also at low stresses. In [20] similar creep tests were also 
performed for the 9Cr1Mo (P91) steel at 650 °C demonstrating a stress exponent of 
1 at low stresses and a stress exponent of 12 at high stresses. For P91 stress change 
experiments were performed resulting in a stress exponent of 4.5 verifying dislocation
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a b  

Fig. 5.1 Creep data for the austenitic stainless 17Cr12Ni2Mo steel 316H; a strain rate versus stress 
at 650–750 °C (exp.) and Coble creep model; b creep strain versus time at 700 °C for six stresses 
(creep data from [20]). Redrawn from [32] with permission of Elsevier

creep [21]. It can be expected that similar results would have been obtained for 316H 
if stress change experiments had been carried out. The creep rates at low stresses 
were assessed after testing for 1000 h. The natural interpretation of these results is 
that 1000 h is not long enough to reach stationary conditions. The consequences of 
this will be analyzed below. 

In Fig. 5.1, predictions with the classical Coble model, Eq. (5.10) are included. It 
can be seen that the Coble model over predicts the observations by about one order of 
magnitude. The grain boundary diffusion coefficient from Smith and Gibbs has been 
used [33]. Their measurements are in the same temperature range as the creep data. 
However, the results are sensitive to the choice of diffusion coefficient. If the value 
from Mizouchi et al. [34] is chosen instead, the Coble predictions would be three 
orders of magnitude above the observations. Nabarro-Herring creep is not marked 
in the Figure but it gives values about an order of magnitude below the experimental 
data. Several papers in the literature address the problem that the diffusional models 
can overestimate the creep rate. A summary of early work is given by [25]. In these 
papers it is in general assumed that the required vacancies during diffusional creep 
are generated by the motion of GB dislocations. In some papers, a related concept 
of disconnections is considered, but the equations and effects are not very different 
from those of GB dislocations [35] and no distinctions between these concepts will 
be made here. 

The main idea in these papers is that for Nabarro-Herring creep, GB disloca-
tions are needed to emit and absorb vacancies at the GBs, since the GBs cannot be 
assumed to be perfect sources and sinks for vacancies. If the motion of GB dislo-
cations is slowed down, it will impair the access of vacancies and reduce the creep 
rate. For Coble creep, the GB must be able to emit and absorb atoms and vacancies 
to avoid being over-saturated. This role of GB dislocations makes it easy to explain
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deviations from the classical models. Mo in 316H gives a large solid solution hard-
ening effect that reduces the creep rate dramatically. The influence of Mo has not 
yet been predicted but it can be assumed that it is of the same order as that of W, 
which raises the activation energy by about 50 kJ/mol [36]. This might seem like a 
high value but if the creep activation energy is assessed from the NIMS data [37], a 
value of 487 kJ/mol is obtained which should be compared with the activation energy 
for self-diffusion of 293 kJ/mol for 316H. Thus, the activation energy for creep is 
almost 200 kJ/mol higher than that for self-diffusion. The largest contribution to this 
increase comes from Mo. Therefore, a value of 50 kJ/mol for Mo that gives an Arrhe-
nius factor of 0.002 at 700 °C is likely to underestimate its effect. The solid solution 
hardening effect can be assumed to be about the same for GB and bulk dislocations. 
As a consequence solid solution hardening alone can explain the deviation from the 
classical expression for Coble creep. 

Particles can also influence the motion of dislocations in the grain boundaries. 
Arzt et al. suggest that a threshold stress σth is formed of about [25] 

σth ≈ 0.1σO (5.37) 

where σO is Orowan stress, Eq. (7.3). If typical values for M23C6 carbides are assumed 
with a volume fraction of 0.005 and particle radius of 0.1 mm, a σth value of 1.6 MPa is 
obtained. Such a threshold stress would certainly influence the prediction, but would 
not have a dramatic effect on the results. However, for other austenitic stainless 
steels the Orowan stress could be much higher. This could block diffusional creep 
completely if Eq. (5.37) describes the situation correctly and climb across particles 
is ignored. There are further constraints on grain boundary dislocations. But they are 
primarily of interest for pure metals. These constraints will be discussed in connection 
with creep of copper at low stresses in Sect. 5.8. 

If the Coble creep rate taking these effects into account would still be higher 
than the dislocation creep rate, constrained GB creep would be active and adjust this 
situation, see Sect. 5.4. 

From now on in this section, it will be assumed that the creep data in Fig. 5.1 are 
controlled by dislocation creep. Since primary creep data are available at 700 °C, 
the analysis will be concentrated to that temperature. First a model is needed for 
stationary creep. Strain induced vacancies are taken into account according to 
Eq. (2.37)

Δc 

c0 
= 0.5 

√
2K 2 subε̇b

2 

Dself 

G 

σ 
(5.38) 

K sub provides a relation between the subgrain size and the stress, Eq. (8.4). The 
strain rate in Eq. (5.31) is used in Eq.  (5.38). Austenitic stainless have typically a 
low stacking fault energy which is important to take into account with the help of 
Eq. (3.30). These assumptions are the same as in a model for pure Ni, Sect. 2.8 [38], 
which is expected to have similar properties. The effect of dislocation dipoles have 
been taken into account. It increases the climb mobility by a factor f dip
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fdip = 1 + 2ρd2 
dip (5.39) 

where ddip is the distance between the dislocations in a dipole which is set to 1 × 
10–7 m. In Sect. 2.8, pipe-diffusion is taken into account instead, which gives an 
almost identical effect. This effect is of special importance at high stresses. This 
expression can be derived in the same way as Eq. (2.13). The constant term in 
Eq. (5.39) raises the stress exponent at higher stresses by 2. The solid solution 
hardening due to Mo is taken into account by adding 50 kJ/mol to the activation 
energy following the discussion above. In the model for the non-stationary behavior, 
Eq. (5.32), the value for σy/K(T ) = 0.02 has been selected to satisfy the criterion 
(5.36). The Ω value in the exponent in Eq. (5.32) has been determined with the help 
of Eq. (5.35). Quite a high value of Ω = 800 is obtained. 

Predictions of the creep strain during primary creep with the help of Eq. (5.33) 
are given in Fig. 5.2. 

As can be seen that a reasonable representation of the experimental data is 
obtained. The strain rate versus time is shown in Fig. 5.3a.

Fully straight lines are found in the double logarithmic diagram in Fig. 5.3a 
indicating that the phi-model is satisfied, see Sect. 3.2. The slope of the strain rate 
versus time curves is 0.8. The stress exponent is 1. The corresponding strain rate 
versus strain curves are presented in Fig. 5.3b. Approximately straight lines are 
obtained. However, the slope is considerably higher than for the time dependence 
varying from 2 to 4.5. The stress exponent is close to 7 so it is the same as for 
stationary creep. 

Results for strain rates as a function of stress are given in Fig. 5.4.
The stationary model has a stress exponent of 7 at high stresses. At low stresses 

the non-stationary primary creep models gives a stress exponent of 1 in agreement

Fig. 5.2 Creep strain versus time at 700 °C for the austenitic stainless 17Cr12Ni2Mo steel 316H 
at low stresses during primary creep. Non-stationary model rates according to Eq. (5.33) compared 
to experimental data from [20]. Redrawn from [32] with permission of Elsevier 
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a b  

Fig. 5.3 Strain rate at 700 °C for the austenitic stainless 17Cr12Ni2Mo steel 316H at low stresses 
during primary creep. Non-stationary model rates according to Eq. (5.33); a strain rate versus time; 
b strain rate versus strain. a is redrawn from [32] with permission of Elsevier

Fig. 5.4 Strain rate versus 
stress at 700 °C for the 
austenitic stainless 
17Cr12Ni2Mo steel 316H 
with creep data from [20]. 
The full model line 
represents stationary creep 
rates and the dashed line 
non-stationary rates 
according to Eq. (5.33). 
Redrawn from [32] with  
permission of Elsevier

with observations. In Fig. 5.5 the time dependence of the strain rate versus stress 
curves is illustrated.

The strain rate decreases with increasing time in the primary stage. But even 
the longest time gives strain rates that are orders of magnitude above the stationary 
values, Fig. 5.4. At low stresses the activation energy in the model is 60 kJ/mol which 
is considerably less than the experimental value which is 140 kJ/mol. This value is 
almost the same as for grain boundary diffusion, which is 150 kJ/mol [34]. This is 
the expected value if Coble creep would have been the operating mechanism. The 
activation energy for stationary creep in the model is 340 kJ/mol, which is about 
50 kJ/mol above the value for self-diffusion. The observed value is 420 kJ/mol. As 
discussed above that are good reasons to select a higher value than 50 kJ/mol for 
solid solution hardening, but due to lack of data this has not been done.
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Fig. 5.5 Time dependence 
of the strain rate versus stress 
at 700 °C for the austenitic 
stainless 17Cr12Ni2Mo steel 
316H at low stresses. 
Non-stationary model rates 
according to Eq. (5.33)

In summary, primary creep curves and their stress dependence of the creep rate can 
be described quite well with the model assuming dislocation creep. Thus, the model 
can explain the observations in a satisfactory way. It is clearly demonstrated that 
the stress exponent can be much lower during primary creep than during stationary 
creep. The activation energy is also lower during primary than during stationary creep 
although the model exaggerates the effect. 

5.7 Creep in Aluminium at Very Low Stresses 
(Harper-Dorn Creep) 

Creep at very low stresses and at very high temperatures in aluminum has received 
considerable interest in the scientific literature. The reason is that Harper and Dorn 
[14] looking for diffusional creep, in fact observed a stress exponent of 1 as expected 
but a creep rate that was about two orders of magnitude higher than the predicted one 
for diffusional creep. They drew the conclusion that they had observed dislocation 
creep with a stress exponent of 1. In two more recent papers available data have been 
summarized and analyzed [15, 19]. Kumar et al. [19] made also new tests for high 
purity aluminum to reduce the effect of non-stationary conditions. They could give a 
satisfactory explanation to most of the existing data. They found a creep exponent of 
3 clearly indicating dislocation creep. The Harper and Dorn data also give this stress 
exponent when a threshold stress that they introduced was removed. Any indication 
of a threshold stress has not been found in more recent data. 

In this section both stationary and non-stationary modeling will be presented taken 
from [32]. It has always been assumed that the controlling mechanism is dislocation 
creep. For stationary creep, the same model for aluminum as in Chap. 2 has been used, 
Eq. (5.31). The classical value for the self-diffusion coefficient with an activation 
energy of 142 kJ/mol has been applied. In the non-stationary model, Eq. (5.33), the
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choice Ω = 40 is taken directly from the formulae in Chap. 3. To satisfy the criterion 
(5.36) a value of  σy/K = 0.01 has been chosen. 

The results for the stress dependence of strain rate are given in Fig. 5.6. 
The stationary creep model with a stress exponent of 3 can describe the bulk 

of creep of data. The only data that deviate significantly from the stationary curve 
are those of Barrett et al. [16]. They used testing times of 300–1000 h. In the other 
investigations longer testing times were utilized, which makes the results lying closer 
to the stationary values. It is evident that the modest deviations from the stationary 
curve can be well represented by the non-stationary model. How the results are 
approaching stationary conditions is illustrated in Fig. 5.7. 

Fig. 5.6 Strain rate versus 
stress at 650 °C for pure 
aluminum. The full model 
line represents stationary 
creep rates and the dashed 
line non-stationary rates at 
three times according to 
Eq. (5.33). The five sources 
of the experimental data can 
be found in [19]. Redrawn 
from [32] with permission of 
Elsevier 

Fig. 5.7 Stress exponent 
versus stress at 650 °C for 
pure aluminum during 
non-stationary conditions at 
four times according to 
Eq. (5.33). Redrawn from 
[32] with permission of 
Elsevier
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It can be seen from Fig. 5.7 that the values are close to stationary conditions. For 
stresses larger than 0.3, stationary creep has been reached even for the shortest time 
and the stress exponent is 3. Only for stresses below 0.03 MPa, stress exponents below 
1.5 are found. The stress exponent clearly increases with increasing observation time. 

Creep strain versus time curves are shown in Fig. 5.8. 
The linear behaviour except at the highest stress is consistent with the phi-model. 

The variation of the strain rate with time and strain is demonstrated in Fig. 5.9. 
The approximate straight lines again show that the phi-model is obeyed. The 

exception is the higher stresses where stationary conditions are reached at longer 
times or larger strains. This is the same behavior that is observed in Fig. 5.7.

Fig. 5.8 Creep strain versus time at 650 °C for pure aluminum at different stresses according to 
Eq. (5.33) 

a b  

Fig. 5.9 Creep strain versus time a and versus strain b at 650 °C for pure aluminum at four stresses 
according to Eq. (5.33). a is redrawn from [32] with permission of Elsevier 
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These results above suggest that the high temperature creep of aluminum can be 
fully explained quantitatively based on ordinary dislocation creep. There is no need 
to refer to any special Harper-Dorn creep. 

From Fig. 5.6 it can be seen that the basic creep model in Eq. (5.31) can describe 
the stationary creep rate quite accurately at least down to 0.02 MPa at 650 °C. The 
same model can represent creep data at 27 °C up to 50 MPa [39]. If the stress is raised 
from 0.02 to 50 MPa at 27 °C, the creep rate is increased by 21 orders of magnitude, 
see Table 5.1. The corresponding increase at 650 °C is 13 orders of magnitude. In the 
same way if the temperature is raised from 27 to 650 °C at 0.02 MPa, the creep rate is 
enhanced 17 orders of magnitude. At 50 MPa the increase is 9 orders of magnitude. 
Thus, Eq. (5.31) can cope with very large variation in the strain rate over a range of 
conditions. This is clearly strong justification for the validity of the creep model. 

More recently, annealing experiments have been performed for aluminum single 
crystals by Smith et al. [40]. Even after long annealing times the dislocation density 
never fell below 1 × 109 1/m2. With the help of the Orowan equation for the defor-
mation, they suggest that this would give a stress exponent of 1, recovering Harper-
Dorn creep. A constant dislocation density would imply that recovery of dislocations 
would be blocked. But if recovery is blocked, creep is not possible. Without recovery 
there would be a continuous increase in the dislocation density until the deformation 
stops as observed for many alloys at ambient temperatures. In addition, several other 
studies (some of which are summarized in [40]) have observed that the dislocation 
density varies with stress and that the dislocation density can be much below 1 × 109 
1/m2, see for example [19]. Furthermore, creep of aluminum can quantitatively be 
described from ambient temperatures, Sect. 2.7 to close to the melting temperature, 
see above, with the help of the creep-recovery theory. The observations in [40] cannot 
be explained at present.

Table 5.1 Creep rate ratios of aluminum 

Temperature, °C Stress, MPa Creep rate ratio, stress Creep rate ratio, temperature 

27 0.02 → 50 2 × 1021 

650 0.02 → 50 6 × 1013 

27–>650 0.02 1 × 1017 

27–>650 50 4 × 109 
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5.8 Creep in Copper at Low Stresses 

5.8.1 Creep of Cu-OFP at 600 °C 

Creep tests of copper at very low stresses at 600 °C were performed at the author’s 
laboratory many years ago but the results have only been published recently [41]. 
The material used was oxygen free copper alloyed with 54 wt. ppm P, Cu-OFP. The 
material had good purity. All other elements than Cu and P had a total amount of 30 
wt. ppm. The batch had the designation 500. The detailed composition of the batch 
can be found in [42]. The grain size of the material was 100 μm. Three tests were 
carried out at 1, 1.5 and 2 MPa. The testing times were between 12000 and 17000 h. 
The conditions were selected to be well inside the stress range for diffusional creep. 
Results for the stress dependence of the strain rate are shown in Fig. 5.10. 

The experimental data give a stress exponent of 3. A comparison to the model for 
stationary creep for Cu-OFP, Eq. (5.31) is given. It is evident that the model gives 
strain rate values that are quite close but with a slightly higher stress exponent of 4. 
For pure Cu without P the creep rate according to the stationary model is almost an 
order of magnitude higher and the stress exponent is 3. 

In the primary creep model, Eq. (5.33), Ω has been selected according Eq. (5.35). 
For σy and K the room temperature values in [42] have been used. These values 
for σy and K satisfy the criterion (5.36). In Fig. 5.11, the strain rate versus time is 
illustrated for the test at 1.5 MPa.

Distinct primary creep is observed. Both the experiments and the predictions 
follow the phi-model. Thus, there are three ways that demonstrate that dislocation 
creep is involved; (i) a stress exponent of 3; (ii) the results are in agreement with 
the predictions for stationary dislocation creep; (iii) well-developed primary creep 
is present.

Fig. 5.10 Creep rate versus 
stress at 600 °C for Cu-OFP. 
Model values for stationary 
creep for Cu-OFP and for 
pure Cu without P (Cu-OF). 
Model results for diffusional 
creep are also included 



104 5 Creep with Low Stress Exponents

Fig. 5.11 Creep rate versus 
time at 600 °C and 1.5 MPa 
for Cu-OFP. Model values 
according to (5.33)

The basic stationary creep can describe creep rate values down to 1 MPa at 600 °C, 
Fig. 5.10. The model can also represent creep data at 75 °C up to 180 MPa, Fig. 6.6. 
This involves a large variation in the creep rate. Raising the stress from 1 to 180 MPa 
increases the creep rate by 21 orders of magnitude according to Eq. (5.31), Table 5.2. 
The corresponding increase at 600 °C is 13 orders of magnitude. There is also an 
increase due to change in temperature, which is 15 order of magnitude at 1 MPa and 
9 orders of magnitude at 180 MPa. 

These wide ranges of creep rate are of the same order as those for aluminum, 
Table 5.1. Which of the ratios in Tables 5.1 or 5.2 that is chosen is not important. 
The high ratios demonstrate that the basic creep model can cope with a wide range 
of conditions. Since the model was originally developed for creep close to ambient 
temperature at high stresses [31], the applicability at high temperatures and low 
stresses can be seen as a possibility to extrapolate over many order of magnitude in 
creep rate. It is clearly a strong justification for the validity of the basic creep model. 

In Fig. 5.10, the classical models for diffusional creep are compared with the 
observations. It is evident that the model for Coble creep significantly overestimates 
the creep rate and that applies to Nabarro-Herring creep as well but to a less extent. 
Consequently, there must be one or more mechanisms that strongly block the diffu-
sional processes. Such a diffusion mechanism is not easy to identify. P is known to 
raise the diffusion coefficients in both the bulk and in the grain boundaries [43], so

Table 5.2 Creep rate ratios of copper 

Temperature, °C Stress, MPa Creep rate ratio, stress Creep rate ratio, temperature 

75 1 → 180 4 × 1021 

600 1 → 180 2 × 1013 

75 → 600 1 6 × 1015 

75 → 600 180 2 × 109 
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that effect works in the wrong way. Zhevnenko shows that surface active elements 
like P reduces the diffusional creep rate, but fairly large amounts of alloying elements 
are needed to give a significant effect [44]. Solid solution hardening due to P gives 
a back stress of 0.4 MPa at 600 °C [45]. This is the main reason why the stationary 
curve for Cu-OFP in Fig. 5.10 is lower than that for pure Cu. If dislocations control 
the amount of vacancies that escapes the grain boundaries, the solid solution hard-
ening would be expected to be the same in the bulk and the grain boundaries. This 
effect is represented by the difference in the stationary creep rate between Cu with 
and without P. Thus, this would explain a part of the blocking of diffusional creep. P 
is fully in solid solution so there is no effect of particles. It has been suggested that if 
the curvature of the dislocation is too small, the grain boundary dislocations become 
immobile. This gives a back stress of [25, 46] 

σcurv = τL 

bdgrain 
(5.40) 

where τL is the dislocation line tension. For the case in Fig. 5.10, σcurv is equal to 
0.05 MPa, which is negligible. The remaining discrepancy for Coble creep is possibly 
due to constrained grain boundary creep, Sect. 5.4. 

5.8.2 Creep of Copper at 820 °C 

In one of the first attempts to measure diffusional creep, Burton and Greenwood 
studied pure copper at 820 °C [22]. Some of their results for a grain size of 35 μm 
are shown in Fig. 5.12. 

Below 5 MPa their data gave a stress exponent close to 1. Above 5 MPa, the 
stress exponent is 5. The values for the classical Coble and Nabarro-Herring models

Fig. 5.12 Creep rate versus 
stress at 820 °C for Cu. 
Experimental data from [22]. 
Coble and Nabarro-Herring 
creep according to 
Eq. (5.10), stationary creep 
model according to (5.31). 
Redrawn from [41] with  
permission of Elsevier 
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Fig. 5.13 Creep rate versus 
stress at 820 °C for Cu. 
Experimental data from [22]. 
Stationary and 
non-stationary creep models 
according to (5.31) and  
(5.33). Redrawn from [41] 
with permission of Elsevier 

are quite close to the experimental data at low stresses. Burton and Greenwood 
suggested that the low stress behavior was controlled by Nabarro-Herring creep 
but with the diffusion coefficients that are available today, the Coble creep values 
are even closer. With a stress exponent of 5 at stresses above 5 MPa, dislocation 
creep must be controlling. It is interesting to note that the stationary creep model in 
Eq. (5.31) matches the position of the change in stress exponent quite well, but the 
stress exponent in the stationary model is 3. 

It will now be analyzed whether non-stationary conditions could have been of 
importance in this study [41]. Detailed analysis shows that transition to the semi-
stationary stage occurs later than given by Eq. (5.35) so theΩ value has been reduced 
by a factor of 2 to satisfy these findings in the non-stationary model (5.33). For σy/K 
a value of 0.01 has been chosen to ensure that the criterion (5.36) is fulfilled. In [22] 
very short testing times were used of about 0.4 h. The results for stress dependence 
of the creep rate are given in Fig. 5.13. 

Results for testing times between 0.2 and 0.9 h are shown. The non-stationary 
values fall in the same range as the experimental data. The variation of the stress 
exponent is presented in Fig. 5.14.

Below 1 MPa, the stress exponent is close to unity. From 1 to 5 MPa the stress 
exponent increases to the stationary value of 3. The strain variation with time is 
reproduced in Fig. 5.15a.

The creep curves are consistent with the observation in [22], see [41]. For example, 
a strain of 0.002 is reached after 0.5 h for a stress of 1 MPa. In Fig. 5.15b the time 
dependence of the strain rate is given. It is evident that stationary conditions are 
reached at the two highest stresses at “longer” times. 

It is clear that the data in Fig. 5.12 can be explained either with diffusional creep 
or with non-stationary dislocation creep. One argument against diffusional creep 
is the short testing times that would give non-stationary effects. Another argument 
is that the purity of the investigated alloy is modest with a total impurity content 
of 167 wt. ppm. This should be compared with the copper in Sect. 5.8.1, where
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Fig. 5.14 Stress exponent 
versus stress at 820 °C in Cu 
at four testing times. 
Non-stationary creep models 
according to Eq. (5.33). 
Redrawn from [41] with  
permission of Elsevier

a b  

Fig. 5.15 Strain a and strain rate b versus time at 820 °C in Cu at seven stresses. Non-stationary 
creep model according to (5.33)

the impurity content was 30 wt. ppm and the P content 54 wt. ppm. Why would 
diffusional creep be blocked by element additions in the latter but not in the former 
case? The paper [22] has been criticized in the literature, for example, for being 
performed in a temperature range where the microstructure is not stable [4, 12]. This 
might not be important due to the short testing times. However, there are arguments 
in [22] in favor of diffusional creep. For example, the correct grain size dependence 
if Nabarro-Herring creep is controlling (which however is not the case if Coble creep 
is controlling). It is not possible to decide which creep mechanisms that is the correct 
one and it is not the aim of this book to try to make that decision. Instead, the main 
message is that dislocation creep often occurs in parallel and in competition with 
diffusional creep.
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5.8.3 Creep of Copper at 480 °C 

McKnee et al. have made creep tests of copper at low stresses [9]. Most tests were 
performed at 480 ºC probably for the same material used by Burton and Greenwood 
but with a grain size of 55 μm. These results are compared with the non-stationary 
model, Eq. (5.33). The parameter values are taken directly from the basic model (σy 

= 0.01 MPa, K(T ) = 69 MPa, Ω = 32). The results in [9] are compared to the model 
in Fig. 5.16. 

Below 3 MPa the results by McKnee et al. give a stress exponent of 1 and above 
3 MPa a stress exponent of 2. They attribute this change of stress exponent to a 
transition from diffusional creep to dislocation creep. A comparison to stationary 
creep is provided in Fig. 5.17. 

Fig. 5.16 Creep rate versus 
stress at 480 °C for Cu. 
Experimental data from [9]. 
Non-stationary creep model 
according to Eq. (5.33) 

Fig. 5.17 Creep rate versus 
stress at 480 °C for Cu. 
Experimental data from [9]. 
Stationary and 
non-stationary creep models 
according to Eqs. (5.31) and  
(5.33). Classical diffusional 
creep models are given, 
Eq. (5.10)
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Fig. 5.18 Stress exponent 
for the creep rate versus 
stress at 480 °C for Cu for 
three testing times. 
Non-stationary creep model 
according to Eq. (5.33) 

Results for stationary creep according to Eq. (5.31) are 1.5 orders of magnitude 
or more below the results in [9]. Considering the precision of the prediction of 
stationary creep in Fig. 5.10, the results in [9] must represent non-stationary creep. 
The non-stationary model, Eq. (5.33), generates values that are in agreement with 
the observations in [9] considering the length of testing times that were used in 
that investigation. The stress exponent in the non-stationary model is illustrated in 
Fig. 5.18. 

The stress exponent in the range of data of [9] is about 1. There is a slight increase 
with stress but it is not enough to explain the observed increase to 2. The stationary 
creep values are simply too far below the observation to give such an increase. The 
Coble results in Fig. 5.17 are close to both the values in [9] and the non-stationary 
results. The activation energy predicted from the non-stationary model, Eq. (5.33) is  
shown in Fig. 5.19.

In the model, lattice diffusion with an activation energy of 198 kJ/mol from [47] 
is used. In spite of this, the non-stationary model gives a value of about 70 kJ/mol 
at 480 °C. Via step change tests, McKnee et al. found a creep activation energy of 
99 ± 5 kJ/mol. Both these values are close to the accepted value for grain boundary 
diffusion of 84.5 kJ/mol [48] which is the relevant value for Coble creep. It can be 
seen that the mechanical data in [9] can be explained at least partially with the help 
of non-stationary dislocation creep. 

5.9 Summary

• One issue when performing creep tests at low stresses is to ensure that stationary 
conditions have been reached. At normal stresses when tests run to failure the 
minimum creep rate usually gives a good estimate of the stationary rate. However, 
creep tests at low stresses when the stress exponent is close to unity practically
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Fig. 5.19 Activation energy 
for the creep rate versus 
temperature for Cu at three 
testing times. Non-stationary 
creep model according to 
Eq. (5.33)

never are taken to failure. Often this is simply not possible because the estimated 
rupture time could be 10 years or more.

• Stationary creep rates have traditionally been the basis of identifying operating 
mechanisms, for example for distinguishing between diffusional creep, power-
law dislocation creep and power-law break-down. For a long time only empirical 
dislocation creep models were available but this identification could still be made 
as long as stationary conditions could be ascertained. However, at low stresses it 
must in general be assumed that a stationary state has not been reached during the 
testing. It is then essential to use non-stationary models. 

• In recent years basic dislocation creep models that can cope also with the primary 
stage have been formulated. These models are at least partially predictable and 
that is essential to analyze the data. During the primary stage the creep rate drops 
quickly. Where in the primary stage the test is stopped must be determined. 

• Traditionally it has been assumed that a stress exponent close to 1 should imply 
that diffusional creep is active. The classical models for diffusional creep are 
simple and well established. They give well-defined stress, temperature and grain 
size dependence. In spite of this it has been difficult to obtain agreement with the 
models in many cases. In several classical studies for pure metals, the diffusional 
models overestimate the creep rate by two orders of magnitude. Since quite accu-
rate diffusion coefficients are available, the deviations cannot be accounted for 
by lack of precision. Two alternatives then remain. Either the observations are 
non-stationary dislocation creep or non-stationary diffusional creep. 

• Experimental results for an austenitic stainless at 700 °C gave a stress exponent 
of 1, but the presence of primary creep and a stress exponent of 4.5 in related 
stress change tests clearly demonstrated that dislocation creep was the operating 
mechanism. The same results were found for Cu at 600 °C since the observed 
stress exponent was 3 and distinct primary creep was observed. In spite of these 
quite clear verifications that dislocation creep was the controlling mechanism,
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the classical Coble creep model predicted creep rates one order of magnitude 
higher than the observed ones. Consequently, Coble creep must be blocked by 
one or more mechanisms. If Coble creep is controlled solely by diffusion in the 
grain boundaries, this is virtually impossible to account for. Several authors have 
proposed that the motion of vacancies is controlled by grain boundary dislocations. 
If this assumption is correct, and the amount of solid solution hardening is the same 
for GB and bulk dislocations, the observations are at least partially possible to 
explain although very large blocking effects would be required since the mobility 
of the grain boundary dislocations is very high. The more likely explanation is 
due to constrained grain boundary creep. see next bullet [41]. 

• Any creep mechanism that is located in the grain boundaries is proposed to be 
accompanied by bulk deformation. Such mechanisms are superplasticity due to 
grain boundary sliding, grain boundary dislocation creep and Coble creep. Thus, 
the bulk creep rate must be at least of the same magnitude as the creep in the grain 
boundaries to accommodate local strain changes. This is referred to as constrained 
grain boundary creep. This has important implications. The Coble creep rate can 
never exceed the bulk creep rate by a significant margin. In addition, since the 
Coble creep rate must be adapted to the bulk rate, it will show primary creep. 

• A primary creep model has been used to describe dislocation creep with low creep 
exponents. The model has been applied successfully to an austenitic stainless steel, 
to pure Al and to pure Cu. It is shown that dislocation creep can be active in stress 
and temperature ranges that traditionally have been attributed only to diffusional 
creep. The low stress exponents observed is a result of stationary conditions not 
being reached. It is demonstrated that if non-stationary conditions are assessed the 
apparent activation energy can be much lower than the lattice diffusion activation 
energy used in the model. 

• Creep at very high temperature and low stresses for pure Al has in the past been 
considered as a special case with the designation Harper-Dorn after the researchers 
that first proposed it. For the first time a basic model has been used to describe data 
from a number of investigations for this type of creep. The model successfully 
shows that the bulk of data can be represented by a stationary model giving a 
stress exponent of 3 in agreement with observations. The data that deviate from 
this behavior can be handled with the non-stationary model. In agreement with 
results in the literature, there is no longer any need to consider this phenomenon 
as something special, since the dislocation creep model can describe these results 
in a similar way as for other alloys. 

• It has been demonstrated that the basic models for primary and secondary creep 
can accurately describe experimental data at high temperatures and low stresses. 
For secondary creep the model parameters are identical to the ones used at lower 
temperature. Thus, for aluminum the application of the basic creep model has 
been verified from 50 MPa at room temperature to 0.02 MPa at 650 °C. For 
copper the corresponding range is from 180 MPa at 75 °C to at least 1 MPa at 
600 °C. For both the stress and temperature ranges, they represent a variation of 
in the creep rate over many orders of magnitude. For copper primary creep is 
accurately represented in the same range also without any change of parameter
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values. These facts clearly show that the basic creep model can handle a wide range 
of experimental conditions. Primary creep of aluminum has not been investigated 
at ambient temperatures. 
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21. L. Kloc, V. Sklenička, Confirmation of low stress creep regime in 9% chromium steel by stress 

change creep experiments. Mater. Sci. Eng. A 387–389, 633–638 (2004) 
22. B. Burton, G.W. Greenwood, The contribution of grain-boundary diffusion to creep at low 

stresses. Metal Sci. J. 4, 215–218 (1970) 
23. M.F. Ashby, R.A. Verrall, Diffusion-accommodated flow and superplasticity. Acta Metall. 21, 

149–163 (1973) 
24. G.W. Greenwood, A formulation for anisotropy in diffusional creep, Proc. Roy. Soc. A A436, 

187–196 (1992)



References 113

25. E. Arzt, M.F. Ashby, R.A. Verrall, Interface controlled diffusional creep. Acta Metall. 31, 
1977–1989 (1983) 

26. M.F. Ashby, On interface-reaction control of Nabarro-Herring creep and sintering. Scr. Metall. 
3, 837–842 (1969) 

27. D. Francke, W. Pantleon, P. Klimanek, Modelling the occurrence of disorientations in 
dislocation structures. Comp. Mater. Sci. 5, 111–125 (1996) 

28. P. Ambrosi, C. Schwink, Slip line length of copper single crystals oriented along [100] and 
[111]. Scr. Metall. 12, 303–308 (1978) 

29. L.C. Lim, On the elastic properties of grain boundary dislocations. Acta Metall. 35, 163–169 
(1987) 

30. A.H. Chokshi, Unusual stress and grain size dependence for creep in nanocrystalline materials. 
Scripta Mater. 61, 96–99 (2009) 

31. R. Sandstrom, Basic model for primary and secondary creep in copper. Acta Mater. 60, 314–322 
(2012) 

32. R. Sandström, Creep at low stresses in aluminium (Harper-Dorn) and in an austenitic stainless 
steel with a stress exponent of 1. Mater. Today Commun. 36, 106556 (2023) 

33. A.F. Smith, G.B. Gibbs, The volume and grain-boundary diffusion of iron in 20 Cr/25 Ni/Nb 
stainless steel. Metal Sci. J. 2, 47–50 (1968) 

34. M. Mizouchi, Y. Yamazaki, Y. Iijima, K. Arioka, Low temperature grain boundary diffusion 
of chromium in SUS316 and 316L stainless steels. Mater. Trans. 45, 2945–2950 (2004) 

35. F. Delannay, Contribution of the nucleation and recovery of disconnections to shear viscosity 
in diffusional creep. Materialia 20 (2021) 

36. P.A. Korzhavyi, R. Sandström, First-principles evaluation of the effect of alloying elements on 
the lattice parameter of a 23Cr25NiWCuCo austenitic stainless steel to model solid solution 
hardening contribution to the creep strength. Mater. Sci. Eng. A 626, 213–219 (2015) 

37. Data Sheet on the Elevated-Temperature Properties of 18Cr–8Ni–Mo Stainless Steel Tubes for 
Boiler and Heat Exchangers (SUS 316H TB), National Research Institute for Metals Tokyo, 
Japan, Report No. 6B (2000) 

38. R. Sandström, J. Zhang, Modeling the creep of nickel. J. Eng. Mater. Technol. 143(4), 041011–1 
(2021) 

39. S. Spigarelli, R. Sandström, Basic creep modelling of aluminium. Mater. Sci. Eng. A 711, 
343–349 (2018) 

40. K.K. Smith, M.E. Kassner, P. Kumar, Long-term annealing of high purity aluminum single 
crystals: new insights into Harper-Dorn creep. Mater. Sci. Eng. A 705, 1–5 (2017) 

41. R. Sandström, Primary creep at low stresses in copper. Mater. Sci. Eng.: A 873, 144950 (2023) 
42. R. Sandstrom, Extrapolation of creep strain data for pure copper. J. Test. Eval. 27, 31–35 (1999) 
43. R. Sandström, R. Wu, J. Hagström, Grain boundary sliding in copper and its relation to cavity 

formation during creep. Mater. Sci. Eng. A 651, 259–268 (2016) 
44. S.N. Zhevnenko, Effect of surface-active metallic impurities on diffusion creep of polycrys-

talline copper. Mater. Lett. 282 (2021) 
45. R. Sandstrom, H.C.M. Andersson, The effect of phosphorus on creep in copper. J. Nucl. Mater. 

372, 66–75 (2008) 
46. B. Burton, Grain boundary dislocation geometry during diffusional creep. Mater. Sci. Technol. 

(United Kingdom) 2, 1202–1204 (1986) 
47. G. Neumann, V. Tölle, C. Tuijn, Monovacancies and divacancies in copper Reanalysis of 

experimental data. Phys. B 271, 21–27 (1999) 
48. T. Surholt, C. Herzig, Grain boundary self-diffusion in Cu polycrystals of different purity. Acta 

Mater. 45, 3817–3823 (1997)



114 5 Creep with Low Stress Exponents

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Chapter 6 
Solid Solution Hardening 

Abstract The size and modulus misfit between solute and parent atoms gives rise 
to strengthening, solid solution hardening (SSH). With the development of Argon’s 
expression for the interaction energies for solute atoms and dislocations for size 
and modulus misfit, both effects can now be modeled without the introduction of 
adjustable or arbitrary parameters. These expressions are used to derive models for 
SSH during creep. Although the constants for the modulus misfit can be an order 
larger than those for size misfit, the latter effect is still dominating. The interaction 
energy gives a direct contribution to the activation energy for creep. The solutes form 
Cottrell atmospheres around the dislocations. For slowly diffusion elements, these 
atmospheres give rise to a drag force that slows down the motion of the dislocations. 
Fast diffusing elements have to break away from the dislocations to enable their 
motion. This creates a break stress that is the source of SSH in this case. 

6.1 General 

Elements in solid solution are used in many alloy systems to increase the strength 
and that is referred to as solid solution hardening (SSH). When the size of the solute 
atoms is different from that of the parent metal atoms, it makes it more difficult for 
the dislocations to propagate and that raises the strength. SSH is in fact one of the 
major ways to increase the strength of creep resistant alloys. 

The size misfit is not the only way that solute atoms can affect the strength. If 
the shear modulus of the solutes is different from that of the parent metal, it is also 
of importance for SSH. This will be analyzed in the present chapter. This effect 
is less easy to understand intuitively than that of the size misfit. The most direct 
way to recognize the significance of this effect is to consider that the expression for 
interaction energy between a solute and a dislocation is proportional to the shear 
modulus. Any change in the value of shear modulus would affect the size of the 
interaction energy. There are a number of other mechanisms that can influence SSH. 
Examples are the presence of stacking faults, short range order of solutes (solutes are 
not fully randomly distributed), and the solutes from more or less complex defects.
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These cases will not be covered here. When the solutes agglomerate in particles, it is 
considered outside SSH and will be discussed in Chap. 7 on precipitation hardening. 

SSH at ambient temperatures and at lower temperatures have been covered exten-
sively in the literature. There are excellent reviews on SSH on this topic. The texts 
by Haasen [1], Suzuki et al. [2] and Argon [3] can be mentioned. At elevated temper-
atures and particularly for creep the number of publications is much more limited. 
Primarily solid solution hardened aluminum alloys have been studied. We will cover 
this literature below. 

At low temperatures, SSH is assessed as the force that the solutes give on the 
dislocations. This is in principle the force acting on the dislocation at 0 K. In several 
papers, semi-empirical temperature dependencies have been introduced (summarized 
in [1, 3]) to find values at ambient temperatures. In some of the models for binary 
alloys, SSH is proportional to c1/2 in some models, and to c2/3 in others, where c 
is the concentration of the solute. In engineering applications where more than one 
alloying element is involved, SSH is often linear in c [4, 5]. At elevated tempera-
tures, it is the interaction energy between the solutes and the dislocations that is of 
interest. This interaction energy has the consequence that the solutes gather around 
the dislocations and form so-called Cottrell atmospheres. The Cottrell atmospheres 
slow down the motion of the climbing dislocation and thereby strengthening the 
alloy. The mechanisms for SSH are different at ambient and high temperatures. We 
will focus on the creep case at high temperatures. 

In many alloy systems, SSH is of high significance for raising the creep strength. 
Thus, SSH is extensively used in creep resistant austenitic stainless steels, superalloys 
(both Co and Ni based) and titanium alloys. Many experiments on the role of Mg 
in Al–Mg have been published. They have in general been analyzed according to 
Weertman’s original proposals [6, 7]. This is referred to as the classical picture, 
which is presented in Sect. 6.2. Basic models for the influence of lattice and shear 
modulus misfit on SSH are given in Sect. 6.3. In Sect. 6.4, the role of the drag stress 
is discussed. The mechanisms for slow and fast diffusion elements are different. The 
first case is covered in Sect. 6.3 and the latter case in Sect. 6.5. 

6.2 The Classical Picture 

6.2.1 Observations 

In the analysis of the influence of solid solution hardening on creep much focus 
has been devoted to Al–Mg alloys. The reason is that there is a change in the stress 
exponent for the secondary creep rate with stress above 300 °C. As was discussed 
in Chap. 2, change in the stress exponent has often been associated with a change in 
creep mechanism. The effect of magnesium on the creep rate is illustrated in Fig. 6.1.

With increasing Mg content, the creep rate rapidly decreases. The creep exponent 
of pure aluminum is n = 5, as marked with the number 5 on the curve. At least for
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Fig. 6.1 Observed creep 
rate versus applied stress for 
Al–Mg alloys between 300 
and 400 °C. Mg content from 
0.5 to 5%. Values for pure 
aluminum are shown for 
comparison [8]. Data for 
Al–Mg alloys from [9–11]. 
The approximate values for 
the creep exponent are 
marked

some of the Al–Mg alloys, the creep exponent at low stresses is 5 but it is reduced 
to 3 at slightly higher stresses. At still higher stresses the creep exponent increases 
again first in some cases to 5 and then to still higher values. 

Al–Mg alloys are rarely used above 150 °C. All the interest in the Al–Mg alloys is 
thus mechanistic. For Al–Mg alloys the classic assumption is that the various creep 
exponents are due to different creep mechanisms. Two papers of Weertman from 
1957 suggested that n = 3 and n = 5 correspond to dislocation glide and climb, 
respectively [6, 7]. 

The unusual transition from n = 5 and n = 3 is attributed to a sudden introduction 
of viscous glide of dislocations where solute atmospheres (Cottrell atmospheres) 
are dragged along with the dislocations. In general, dislocation climb is slower than 
glide, and is therefore expected to control the creep rate. However, the drag was 
assumed to slow down the gliding dislocations sufficiently to make them control the 
creep process. At high stresses, the gliding dislocations could break away from the 
solute atmospheres. This would make the gliding dislocations move faster and climb 
would become controlling. Hence, a transition from n = 3 and n = 5 is expected. 
Friedel has given a model for such a break away [12]. 

The distinction between glide and climb controlled alloys is considered so impor-
tant that they are described as Class I and Class II alloys, respectively. In Class 
I alloys the dislocations interact with the solutes forming atmospheres around the 
dislocations. Since the solutes follow the dislocation through diffusion which is a 
slow process and slower than the glide velocity, the dislocations are slowed down 
and creep can be controlled by glide. The dislocations are dragged by the solutes and 
hence the designation solute drag. 

When no solute atmospheres are formed, glide will take place without any effect 
of solutes, and the glide velocity will be high. Creep will be climb controlled in the 
same way as for pure metals. Such materials are referred to as Class II materials. Most
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alloys for example stainless steels and superalloys are of Class II type. In addition 
to Al–Mg some Fe–Mo alloys are of Class I type. Another distinction that is often 
mentioned is that Class II form substructure during creep whereas Class I do not. 
However, this is not general since Fe–Mo alloys also form substructure [13]. 

6.2.2 Issues with the Classical Picture 

There are a number of problems with the classical pictures 

• We saw in Chap. 2 that in many cases there is a continuous increase in the creep 
exponent with stress if a sufficiently large interval of stresses is considered. This 
applies to aluminum as well [14]. The change in creep exponent is therefore not 
necessarily associated with a change in creep mechanism. 

• Even Weertman who was the first to suggest a difference in creep exponent 
between glide and climb, made the statement that practically all creep laws based 
on creep recovery give n = 3, which is referred to as the natural mode [8]. Although 
this statement is not correct, it illustrates that it is not directly possible to use the 
creep exponent to distinguish between glide and climb. 

• The Class I alloy Fe–1.8Mo shows the same type of behavior as Al–Mg [15]. 
However, creep exponent in the assumed glide region is n = 4, not n = 3. 

• The influence of solid solution on glide and climb is now well understood, see 
below. As demonstrated in Chap. 2, glide is always faster than climb. Solutes are 
now believed to influence climb and glide in the same way. Consequently, the 
transition from n = 5 to  n = 3 cannot be explained by the presence of solutes. 

• If the dislocations move fast enough, they will break away from their Cottrell 
atmospheres. The required stress for the breakaway was first derived by Friedel 
[12]. A numerical more precise solution has then been given by Hirth and Lothe 
[16], Eqs. 18–131. 

σmax = 
mTc0β2

Ωab2kBT 
(6.1) 

where mT is the Taylor factor, c0 the concentration of the solute in at.%, Ωa 

is atomic volume, β is the solute strengthening parameter (defined below), b is 
Burgers’ vector and kB T has its usual meaning. The values of c0 and β are given 
in Sect. 6.4. For the alloys in Fig. 6.1, the following values are obtained from 
Eq. (6.1): 55, 120, 226, 359 and 640 MPa. They are all outside the range of the 
experimental data and cannot explain the observed change in stress exponent. 

One can conclude that many of the classical assumptions about creep of Al–Mg 
alloys are questionable. There are clear distinctions between pure aluminum and 
Al–Mg alloys with respect to creep. The origin of these differences is less clear than 
what has been assumed in the past. An alternative way of explaining the observations 
will be presented below.
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6.3 Modeling of Solid Solution Hardening. Slowly Diffusing 
Elements 

For slowly diffusing solutes, the solutes form Cottrell atmosphere that follow the 
dislocations as described above. This creates a back stress on the dislocations that 
slows down their motion. This is referred to as solute drag. Slowly diffusing elements 
are often major alloying elements that are in solid solution. 

Fast diffusing elements like the interstitial elements C and N in steel also raise the 
creep strength but the mechanism is different. These elements can lock the disloca-
tions and they have to break away to contribute to the straining. The critical quantity 
is the break stress which is needed to make the dislocations move. The break stress 
is derived in Sect. 6.5. 

6.3.1 Lattice and Modulus Misfit 

If the atomic radius of solutes that are present in the lattice is different from that in 
the matrix, it creates an interaction between the solutes and the dislocations. This is 
referred to as lattice misfit. It generates a friction stress that influences the motion of 
the dislocations and thereby increases the strength of the alloy. A difference in the 
modulus also influences the forces on the dislocations. 

The lattice misfit can be expressed in terms of the difference in atomic volume 
between the solute and the host matrix. The atomic volumes can be obtained from the 
lattice parameters ai as Ωi = a3 i /4 (for fcc). These volumes are linearly expanded 
(as a function of concentration) around the host composition. The linear misfit δi is 
given by: 

δi = 
1 

3Ω

∂Ω

∂ci 
≈ 

1 

3Ω

Ωi − Ω0 

ci 
(6.2) 

where Ω0 is the atomic volume of the matrix, Ωi the atomic volume of the solute of 
element i and ci the concentration of the solute. It can also be related to the change 
in the lattice parameter, 

δi = 
1 

a 

∂a 

∂ci 
≈ 

1 

a 

ai − a 
ci 

(6.3) 

where ai and a are the lattice parameters of the solute and the matrix, respectively. 
The linear misfit is a third of the volume misfit as shown in Eq. (6.2). The modulus 
misfit μi can be expressed as 

μi = 
1 

G 

∂G 

∂ci 
≈ 

1 

G 

Gi − G 
ci 

(6.4)
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where Gi and G are the shear modulus in the solute and the matrix, respectively. 
Values for experimental lattice spacings and misfit parameters can be found in 

Pearson’s handbook [17] and in King’s paper [18]. The interaction of solutes with 
stacking faults (Suzuki effect) can also contribute to the creep strength. However, 
models for these interactions are currently unavailable. For example, for aluminum 
King gives the following values for the linear misfit δCu = −0.13, δMg = 0.12, and 
δMn = −0.19. Experimental modulus misfit values are less readily available in the 
literature, and in general modulus misfits have to be computed with ab initio methods. 

6.3.2 Solute Atmospheres 

The dislocation-solute interaction can be estimated from elasticity theory by 
assuming the solute to be a dilation center. Due to the interaction, solute agglomer-
ates around the dislocation. The concentration around a dislocation can be expressed 
as [16] 

ci = c0 i exp
(

−Ui (r) 
kB T

)
(6.5) 

where c0 i is the mean concentration of the solute i, ci the local concentration of the 
solute and Ui(r) at position r from the dislocation. The interaction energies take the 
values [3] 

Ueδ 
i = 

1 

π 
(1 + νP) 
(1 − νP) 

GΩδi 
by 

r2 
(6.6) 

Usδ 
i = 

1 

2π2 

(1 + νP)B 
(1 − 2νP) 

GΩδi 
b2 

r2 
(6.7) 

Ueμ 
i = 

1 

8π2 

1 

(1 − νP)2 
GΩμi 

b2z2 

r4 
(6.8) 

Usμ 
i = 

1 

8π2 
GΩμi 

b2 

r2 
(6.9) 

where G is the shear modulus, and νP is the Poisson’s ratio of the material. The 
indices for U i refer to edge (e) and screw (s) dislocations and size (δ) and modulus 
(μ) misfit.  r is the overall distance from the dislocation core, y the distance above the 
dislocation, and z the distance in the plane. The expressions (6.6)–(6.9) are illustrated 
in Fig. 6.2. The  value of  y is set to correspond to the distance to the second plane of 
atoms, in fcc y = √

3/2b. The first atom plane cuts the dislocation core and gives a 
weaker interaction.
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Fig. 6.2 The interaction 
energies in Eqs. (6.6)–(6.9) 
versus the distance z/b from 
the dislocation core. The 
interaction energies are 
normalized with respect to 
GΩ and the misfit 
parameters δi or μi 

In Fig. 6.2, the interaction energies are normalized with respect to GΩ and the 
misfit parameters δi or μi. In this way the result is material independent. In spite of 
the fact that μi is often 10 times larger than δi, it is evident from Fig. 6.2 that the 
lattice misfit for edge dislocations, Eq. (6.6), gives the largest interaction energy 

Umax 
i = 

1 

π 
(1 + νP) 
(1 − νP) 

GΩ0δi (6.10) 

The dislocations that are slowed down mostly by the interaction with the solutes 
will also control the magnitude of SSH. Consequently, it is the interaction energy in 
Eq. (6.10) that is the important quantity. 

Due to the interaction energy, it is energetically favorably for the solutes to be 
located close to the dislocations. Therefore, atmospheres of solutes are created around 
the dislocations. If the dislocations are not moving (they are static), the concentration 
of solute atoms cstat  i is given by Eq. (6.5). The concentration of solutes around 
a moving dislocation can be derived from the following diffusion equations [16], 
Eqs. 18–10 

Dsol 
i 

∂2ci 
∂y2 

+ 
Dsol 

i 

kB T 

∂ 
∂ y 

ci 
∂Ui (y, z) 

∂y
+ v 

∂ci 
∂ y 

= 0 (6.11) 

This is just Fick’s second law taking into account the dislocation-solute interaction 
in the second and the moving frame with a velocity v in the third term. Dsol 

i is 
the diffusion coefficient for the solute i in the matrix. The Cartesian coordinates 
represent the position of the solute relative to an edge dislocation that is climbing in 
the y-direction. Equation (6.11) can be integrated directly. 

Dsol 
i 

∂ci 
∂y 

+ 
Dsol 

i 

kBT 
ci 

∂Ui (y, z) 
∂ y

+ v(ci − c0) = 0 (6.12)
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By solving Eq. (6.12), the concentration cdyn  i of solutes around a dislocation 
moving in the y-direction can be obtained [16, 19] 

cdyn i = 
vc0 i 
Dsol 

i

(
e
− Ui (y,z) 

kT  − vy 

Dsol 
i

) y∫
−∞ 

e 
Ui (y

' ,z) 
kT  + vy'

Dsol 
i dy' (6.13) 

The quantities β and ri are introduced that will be used below 

βi = bUmax 
i ri = 

βi 

kBT 
(6.14) 

βi is the maximum force of the dislocation from individual solutes, and ri the radius 
of the Cottrell atmosphere or cloud of solutes around the dislocations. The velocity 
of a climbing dislocation v is given by 

vclimb = Mclimbbσ (6.15) 

Mclimb is the climb mobility and σ the applied stress. Mclimb can be expressed in 
terms of the coefficient of self-diffusion Dself, Eq.  (2.34), and the activation energy 
for the solutes Qsol. 

Mclimb = 
Dselfb 

kT  
e 

σb3 

kB T exp(−Qsol 

kT  
) (6.16) 

The size of  Qsol is taken as Umax 
i , Eq.  (6.10), for the element that has the largest 

solid solution hardening effect on the creep strength. At lower temperatures, the 
climb enhancement factor gclimb, Eq.  (2.37) should be taken into account. For gliding 
dislocations, the velocity is given by Eqs. (2.39) and (2.42) 

vglide = Mglidebσ = Mclimbgglidebσ = Mclimb 
1 

b 
√

ρ 
bσ (6.17) 

again ignoring the climb enhancement factor. ρ is the dislocation density. Since gglide 
is much larger than unity, the glide velocity is always higher than the climb velocity. 
The distribution of solutes around dislocations is illustrated in Fig. 6.3.

For a climbing dislocation there is agglomeration of solutes on one side and deple-
tion on the other side. For a gliding dislocation the static distribution is symmetric in 
the direction of the motion. The concentration in the static model is slightly higher 
than according to the dynamic model for climbing dislocations, Fig. 6.3a. For glide 
the dynamic concentration is much lower than the static one, Fig. 6.3b. The reason 
is the much higher glide velocity in comparison to the climb velocity. 

By integrating over the profiles, the agglomeration of solutes can be determined. 
For the case corresponding to Fig. 6.3a, the agglomeration is 25 and 27 for the static 
and dynamic distribution, respectively. For the gliding dislocation, the agglomeration
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a b  

Fig. 6.3 Agglomeration of Mg solutes in Al3.25 Mg at 327 °C around a dislocation that is climbing 
a or gliding b in the positive y-direction. Results are given for a static distribution, Eq. (6.5) and  a  
dynamic distribution, Eq. (6.13). The coordinates are those in these equations

is 128 and 1.2 for the static and dynamic distribution, respectively. The agglomeration 
factor can be interpreted in two ways. If all the additional atoms are placed at the 
dislocation core over a distance of a Burgers vector, the concentration there of the 
solute would be enhanced by the agglomeration factor. Alternatively, it can be taken 
as the distance in terms of Burgers vectors over which the concentration is more than 
twice the average solute concentration. 

6.4 Drag Stress 

For slowly moving dislocations, the solutes exert a drag stress on the dislocations 
that is the source of SSH. The drag stress can be derived numerically from Eq. (6.13) 
[16]. 

σ
drag 
i = 

kB T vclimb 

b2 Di

∫
cdyn i dz (6.18) 

Alternatively the drag stress can be expressed as 

σ
drag 
i = −

∫
cdyn i 

∂U (y, z) 
∂z 

dz (6.19) 

It is important that the dynamic solution is used in Eqs. (6.18) and (6.19). The static 
solution in Eq. (6.5) cannot be utilized because it does not give the correct behavior 
at large z. The need to use the dynamic expression makes the full solution fairly 
complex. An approximate solution was derived in [16]. The approximate solution
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illustrates important features of SSH and will be summarized below. A common form 
of the drag stress σdrag 

i for element i is 

σ
drag 
i = 

vclimbci0β2 i 
bDi kB T 

I (z0) (6.20) 

where 

I (z0) = 
z0∫
1 

2 
√
2π 

3z2.5 
ez dz (6.21) 

vclimb is the dislocation climb speed, cf. Equation (6.15), ci0 is the concentration of 
solute i, and Di the diffusion constant for solute i. I(z0) is an integral of  z0 = b/r0kBT 
where r0 is the dislocation core radius. I(z0) often has values of about 3. βi is the 
force in Eq.  (6.14). 

If the radius of the static cloud ri is less than the burgers’ vector b or if Di/vclimb is 
larger than the average distance between the dislocations Rdisl, Eq.  (6.20) is replaced 
by 

σ
drag 
i = 

vclimbci0β2 i 
bDi kBT 

log

(
Di 

vclimbb

)
ri < b or Di > vclimb Rdisl (6.22) 

Finally, if ri > Rdisl the expression for σ
drag 
i takes the form 

σ
drag 
i = 

vclimbci0β2 i 
bDi kBT 

log

(
Di 

vclimbri

)
Di > vclimb Rdisl (6.23) 

The four alternative expressions are not very different. Only the final (logarithmic) 
factor varies. The situation is another if the dislocation speed vdisl is high and the 
motion of the solute cloud is no longer diffusion controlled. 

σ
drag 
i = π Di ci0β2 i 

kB T b2vclimb 
vdisl  > 4Di kB T /βi (6.24) 

or 

σ
drag 
i = πci0βi ri >

√
Di βi /vdislkB T (6.25) 

The dependence of vdisl/Di is inverted in Eq. (6.24) and absent in Eq. (6.25). 
In the computation of the secondary creep, the drag stress is added to the internal 

stress σi in Eq. (2.29). An application of the drag stress is illustrated in Fig. 6.4. The  
contribution from Qsol in Eq. (6.15) to the creep activation energy is also taken into 
account. This increases the activation energy by Umax 

i . i is the element Mg in this 
case. In Fig. 6.4, Eq.  (6.20) for the drag stress was used.
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a b  

Fig. 6.4 Secondary creep rate versus stress for Al–Mg alloys at around 330 °C. The stress contribu-
tion to the internal stress is from Eq. (6.20) and the increase in activation energy from Eq. (6.16). The 
model results are compared to experimental data [9–11]; a Alloys Al0.9 Mg, Al2.0 Mg, Al3.25 Mg; 
b Alloys Al3.25 Mg, Al3.0 Mg, Al5.0 Mg. a Redrawn from [20] with permission of intechopen 

Three stages of stress dependence can be found in Fig. 6.4. At low stresses there 
is a slight increase in the stress exponent nN due to the presence of the Peierls 
stress. Its value is the same as for pure aluminum used in Fig. 2.9. For stresses in 
the middle range a power-law behavior is observed. At higher stresses the stress 
exponent increases and a tendency to power-law break down is found. 

The modeling in Fig. 6.4 is based on climb and it is assumed that climb is the 
controlling mechanism. It has been suggested many times in the literature that glide 
should be controlling for Al–Mg in part of the studied stress range, see Sect. 6.2. The  
background is that the stress exponent in the middle stress range is about three and 
that is what Weertman suggested for glide control in his original paper on the topic. 
However, it is evident from the analysis in Chap. 2 that climb control often gives the 
same stress exponent at modest stress levels. According to the classical picture, see 
Sect. 6.2, two changes in models and mechanisms have to be assumed to represent 
the stress dependence in Fig. 6.4. The absence of substructure in Al–Mg has been 
taken as one reason for not considering climb as the controlling mechanism. But 
that could also be a consequence of the presence of the alloying element. Increasing 
amounts of alloying elements tend to reduce the stacking fault energy and give a 
more planar dislocation structure [3]. It is demonstrated in Fig. 6.4 that the present 
model can describe the experimental data. In the same way as for other comparison 
with experiments in this book no adjustable parameters are involved. In summary, a 
single climb based model can accurately reproduce the creep data for Al–Mg. There 
is no need to assume that glide is controlling in part of the stress range which avoids 
a number of the difficulties discussed in Sect. 6.2.
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6.5 Modeling of Solid Solution Hardening. Fast Diffusing 
Elements 

Fast diffusing elements can have a dramatic effect on the creep rate and the rupture 
strength. Addition of 50 ppm phosphorus to pure copper reduces the creep rate and 
increases the creep rupture strength. Phosphorus reduces the experimentally observed 
creep rate by about a factor of 100 at 75 °C. This will be illustrated below. At the 
same time the creep strength at 10000 h rupture time is raised from about 140 to 
170 MPa at the same temperature [21]. Another example is nitrogen in solid solution 
in austenitic stainless steel. An addition of 0.1% N can reduce the creep rate by an 
order of magnitude and increase the rupture strength at 650 °C for a rupture time of 
10000 h by about 40 MPa [22]. 

These pronounced effects of small additions of alloying elements cannot be 
explained by solute drag. To get a significant contribution from solute drag to SSH, 
fairly large amounts of alloying elements are needed. We will concentrate on the 
influence of P on Cu. There are two reasons for that. The influence of P on creep in 
copper has been analyzed in detail [19]. In addition the low amount of P is clearly 
in solid solution so there are no particles present that can disturb the analysis. In 
[19] it has been demonstrated that the solute drag stress is at most 1 MPa. If the 
accurate expression in Eq. (6.18) is evaluated numerically, the solute drag value is 
even several orders of magnitude below 1 MPa. It can be concluded that solute drag 
cannot explain the influence of P on creep in Cu. 

In [19] a model is presented that can explain the effect of P on creep quantitatively. 
It is assumed that the P atoms are agglomerated at the dislocations in the same way 
as for elements in solute drag and that the distribution of P atoms can be described 
by Eq. (6.5) for the static distribution and by Eq. (6.13) for the dynamic distribution. 
These distributions are illustrated in Fig. 6.5. 

a b  

Fig. 6.5 Agglomeration of P solutes in oxygen free copper with 50 ppm P (Cu-OFP) at 75 °C 
around a dislocation that is climbing a or gliding b in the positive z-direction. Results are given for 
a static distribution, Eq. (6.5) or a dynamic distribution, Eq. (6.13). After [19]
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The general behavior of these profiles is the same as for Al–Mg in Fig. 6.3. 
However, there are differences. The diffusion rate for P is so fast that even in the 
glide case, the dynamic distribution is virtually identical to the static one. In the 
climb case the agglomeration is even higher in the dynamic distribution than in the 
static one. 

The main difference to the solute drag model is that the P atoms are assumed to lock 
the dislocations [19]. For the dislocations to move they must break away from the P 
atmospheres. But since the P atoms are rapidly moving, they will immediately catch 
up with the dislocations and lock them again. So there is a continuously repeating 
break away and locking process. When dislocations are more permanently breaking 
away from solute locking, serrated yielding is often observed. However, since the 
breakaway—locking is taking place continuously for P in Cu no serrated yielding is 
observed. 

The stress needed to move a dislocation σbreak can be determined from an energy 
balance [19]. According to Peach-Koehler’s formula the force F on a dislocation 
length segment 2L is F = σbreak2Lb. If the dislocation is moved by one burgers’ 
vector, the consumed energy is Fb/2. This energy corresponds to the maximum 
binding energy Umax 

i 

σbreakLb
2 = Umax 

i (6.26) 

The average distance L between solute pinning points on a dislocation is 

L = b∫
cdyn i dz  

(6.27) 

Combining Eqs. (6.26) and (6.27) gives an expression for σbreak 

σbreak = 
Umax 

i 

b3

∫
cdyn i dz (6.28) 

The index i refers in this case to the element P. 
To find the influence of σbreak on the creep rate, σbreak is added to the internal stress 

in Eq. (2.29). The creep rate versus stress for oxygen free copper with (Cu-OFP) and 
without P (Cu-OF) is shown in Fig. 6.6.

As stated above, the presence of 50 ppm P reduces the creep rate by two orders 
of magnitude and this can be fully accounted for by the model for the break stress in 
Eq. (6.28).
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Fig. 6.6 Secondary creep 
rate versus stress for oxygen 
free copper with 50 ppm P 
(Cu-OFP) and without P 
(Cu-OF) at 75 °C. Modeling 
values are derived with the 
help of Eq. (2.28) where  
σbreak is chosen according to 
Eq. (6.28) has been added to 
σi in Eq. (2.29) for  Cu-OFP.  
The model values are 
compared to experimental 
data. Redrawn from [20] 
with permission of 
intechopen

6.6 Summary 

• Solid solution hardening (SSH) is a result of the misfit between solutes and the 
matrix with respect to lattice parameters and elastic moduli. This makes it more 
difficult for the dislocation to move in the lattice which results in a hardening effect. 
The interaction energies between dislocations and solutes are proportional to the 
misfit in the lattice parameters and in the elastic moduli. In spite of the fact that the 
misfit parameters are larger for the elastic moduli than for the lattice parameters, 
the former give lower interaction energies and can in general be neglected. 

• The interaction energies between dislocations and solutes give a direct contribu-
tion to the activation energy for creep. This is the main reason why alloys typically 
have higher activation energy for creep than that for self-diffusion. 

• Slowly diffusion solute elements give rise to a drag stress. This drag stress is 
proportional to the interaction energies squared and inversely proportional to the 
diffusion coefficient of the solutes. 

• Since the diffusion coefficient appears in the denominator in the expression for 
solute drag, the effect is small or negligible for fast diffusion elements like inter-
stitial elements. Instead the dislocations must break away from the fast diffusing 
elements to be able to move. 

• To verify the models it is suitable to study systems with only one main solute 
that contributes to the creep strength and without particles present. For slowly 
diffusion solutes the system Al–Mg alloys at around 300 °C has been chosen. 
The model can accurately describe the complex dependence on the creep stress 
and the Mg content. In the past it was necessary to involve several changes in the 
creep mechanisms which is no longer the case. 

• For fast diffusion elements, P in copper has been considered. The addition of 
50 ppm P raises the creep strength significantly and that is possible to model quite 
well.
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Chapter 7 
Precipitation Hardening 

Abstract Models for precipitation hardening (PH) at room temperature have been 
available for a long time. In spite of the importance of PH, it took a long time to 
establish models for elevated temperatures. In fact, empirically the room temperature 
models have also been used at higher temperatures. This gives the wrong temperature 
dependence and overestimates PH. It was for a long time thought that it was an 
energy barrier for climb across particles that was the controlling mechanism, but 
it was gradually appearing that this effect was so small that it could be neglected. 
Instead it is time it takes for dislocations to climb across particles that is the critical 
factor. Small particles are readily passed and do not contribute to the strengthening. 
Particles larger than a critical size have to be passed by the Orowan mechanism, 
because there is not time enough for dislocations to climb across these particles. 
This mechanism was finally verified for Cu–Co alloys. 

7.1 General 

The precipitation of phases in the form of particles is probably the most effective 
way of increasing the creep strength in alloys. Precipitation hardening is utilized in 
many types of steels and Ni-base alloys. Because of its technical significance there 
are a large number of publications on precipitation hardening in these alloy systems. 
The role of carbides and nitrides in Cr–Mo steels and γ' in Ni-base alloys has been 
extensively studied. It is well established that the presence of fine precipitates in 
these systems is essential to get good creep strength. 

The understanding of precipitation hardening (PH) at ambient temperatures has 
been well established for a long time. However, in spite of its technical importance, 
this has not been the case for the role of precipitation hardening during creep. Only 
recently, a satisfactory description has been formulated. In fact, many scientists 
have tried to use models developed for applications at ambient temperatures for 
PH at elevated temperatures. This does not work well because methods at ambient 
temperatures are essentially temperature independent. The temperature dependence 
they involve is often only that of the shear modulus and that is weak. However, the
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creep rate and strength typically decrease exponentially with increasing temperature 
(see Chap. 2) and this is strongly at variance with models for applications at ambient 
temperatures. 

It was early on recognized that climb must play an important role for describing 
PH. It was thought that there is a significant energy barrier for dislocations to climb 
across particles. More and more accurate models for the energy barrier were devel-
oped. However, at the same time the predicted size of the energy barrier decreased 
when new models were presented. Eventually the magnitude became so small that 
they were no longer near to explain the large size of PH observed in commercial 
alloys. This development will briefly be summarized in Sect. 7.2. 

It was evident that an entirely new principle was needed to understand PH. The 
solution was to assume that it is the time for a dislocation to climb across a particle 
rather than the size of the energy barrier that is the controlling factor [1]. A critical 
particle size is introduced. If a particle is large enough, there will not be sufficient 
time to get across it and the particle will block the motion of the dislocation. This 
gives a contribution to the creep strength. On the other hand if the particles are small 
they will readily be climbed across and they will not contribute to the creep strength. 
With this model is has been possible to describe PH of 9 and 12Cr steels, austenitic 
stainless steels and Cu–Co alloys [2–4]. The model development will be presented 
in Sect. 7.3. The application to Cu–Co alloys is covered in Sect. 7.4. 

7.2 Previous Models for the Influence of Particles 
on the Creep Strength 

7.2.1 Threshold Stress 

At about half the absolute melting point Tm, many particle free materials have a 
stress exponent nN for the creep rate in the interval 4–7. Particle strengthened alloys 
typically have a higher stress exponent. This can be rationalized if the creep rate ε̇ is 
expressed as 

ε̇ = An(σ − σi)
ni (7.1) 

σ is the applied stress, σi the internal stress from the particles, and An and ni constants. 
With this formulation, the stress exponent ni is smaller than nN. As can be seen from 
the analysis in Chap. 2, an equation of the type in Eq. (7.1) can be derived from basic 
principles so the equation has a good basis. In a number of papers, σi, An and ni have 
been used as adjustable parameters to make Eq. (7.1) fit the experiments and to have 
ni to fall in the range 4–7. A special procedure called the Lagneborg-Bergman plot 
was developed for this purpose [5]. 

Assuming that σi is constant which was frequently done, it implies that σi is a 
threshold stress and below this stress no creep will take place. For oxide dispersion
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strengthened alloys (ODS) such a threshold stress has been observed [6, 7], but there 
are also ODS where a threshold is not found. However, for most particle strength-
ened materials for example the common CrMo steels, no threshold stress has been 
recorded. By analyzing Eq. (7.1), it is found that the stress exponent nN decreases 
with increasing stress. This behavior is observed for a few ODS alloys [7], but not 
for most particle strengthened alloys, which is a drawback of the model. 

The reasons for the failure of the assumption with a constant threshold stress are 
now well understood. It is now possible to derive σi directly. In fact, it is shown later 
in this chapter that σi is not a constant. It depends on both temperature and stress and 
there is no indication that it will tend to a limiting value at low stresses. 

7.2.2 Orowan Model 

Dislocations can pass particles by cutting through them, by flowing around them 
or climbing across them. At ambient temperatures only the first two are usually 
considered. Particle cutting will not be analyzed in the present text because as we 
will see later in this chapter, it is unlikely that it is of importance in creep exposed 
materials except in special cases. For a summary of mechanisms for particle cutting, 
see [8]. 

The Orowan model for dislocation looping of particles will briefly be described 
here because it is needed in Sect. 7.3. When the stress increases for a dislocation 
attached to particles, the dislocation will eventually almost meet itself around the 
particles. The maximum force F that the dislocation can take is 2τL ≈ 2Gb2/2 where 
τL is the dislocation line tension. The external force F on a dislocation segment of 
length λ is (Peach-Koehler formula) 

F = σλb/mT (7.2) 

where σ is the external stress and mT is the Taylor factor. By equating the two forces 
the critical stress is obtained. This is the stress for Orowan looping σO 

σO = 
mTCOGb 

λ 
(7.3) 

Many refinements of this expression are available in the literature. However, they 
can approximately be taken into account by adding a factor CO = 0.8 [9]. The 
precision in the prediction of PH does not justify that a more elaborate formulation 
is needed. λ is usually assumed to be taken as the nearest neighbor distance for 
randomly distributed spherical particles of radius r and a volume fraction of f V. This 
distance is usually referred to as the planar lattice square spacing λs 

λs = r (2π/3 fV )
1/2 (7.4)
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As can be seen from Eqs. (7.3) and (7.4), the Orowan strength increases with 
decreasing particle radius and increasing volume fraction of particles. 

As pointed out above, the Orowan strength has been used many times to esti-
mate the influence of particles on the creep strength. This overestimates the strength 
contribution since Eq. (7.3) is only weakly temperature dependent through the shear 
modulus G, which decreases approximately linearly with temperature. 

7.2.3 The Role of the Energy Barrier 

Many attempts were made in the past to generalize the Orowan model by taking climb 
into account. For a review, see [7, 10]. Initial attempts to determine the size of the 
energy barrier and the associated value for σi were made by Brown and Ham [9] and 
by Lagneborg [11]. They found a value for internal stress σi of about half the Orowan 
stress, which was in agreement with observations for some materials. However, they 
assumed the presence of local dislocations that were attached to the particles and that 
the dislocations remained in the glide planes between the particles. This introduces 
sharp bends on the dislocations that are easily relaxed. Further modeling therefore 
concentrated to general dislocations that are only attached to a single point on the 
particles and have more general degrees of freedom. The assumption about climb 
of general dislocations rather than of local dislocations is clearly more realistic. 
However, with this approach the values for σi turned out to be quite small and tended 
to decrease with each investigation [6, 7, 12]. The best estimate for the minimum 
climb stress σclmin is [6, 7] 

σclmin 

σO 
= αcl 

αcl + 2CO 
(7.5) 

where 

αcl = 
2r 

3λs 
=

√
2 fV 
3π 

(7.6) 

αcl is called the climb resistance. This gives a value of 0.02–0.06 for σclmin of the 
Orowan stress for common particle volume fractions of f V = 1 to 5%.  

The predicted energy barriers are so low that they are of little practical value to 
describe the significant PH in engineering alloys. One possibility is that there is an 
attractive interaction between the dislocations and the particles. Such an interaction 
has been observed for ODS [13, 14] but not in general for other PH systems. This 
behavior has also been modeled [15, 16]. The dilemma with this model is that the 
interaction strength is considered as an adjustable parameter and this means that the 
model is not predictive. The nature of the interaction cannot therefore be ascertained.
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Clearly, the energy barriers against climb cannot be used as a basis for explaining 
PH. Instead another approach will be presented in Sect. 7.3 that is based on the time 
it takes for a dislocation to climb across a particle. 

7.3 Precipitation Hardening Based on Time Control 

It is evident from the summary in Sect. 7.2.3 that an energy barrier against climb 
cannot be the controlling factor for the role of precipitates during creep. For 
this reason, an alternative approach is considered. The following assumptions are 
involved [1, 2, 4] 

• Precipitation hardening is considered but not oxide dispersion strengthening 
(ODS). This means that the attractive interaction that sometimes appears for ODS 
alloys is not taken into account. 

• The controlling mechanism is assumed to be the time it takes for a dislocation to 
climb across a particle, not an energy barrier. It is this time that decides whether 
a particle will be climbed or not. 

• The critical particles radius rcrit is taken for the largest particle where there is 
sufficient time for the dislocation to climb across. 

• For particles smaller than rcrit they will freely be climbed across and will not 
contribute to the creep strength. 

• Particle shearing is not taken into account since small particles will be passed by 
climb anyway. 

• Particles larger than rcrit have to be passed by Orowan bowing and this determines 
their contribution to the creep strength. 

These principles for PH have for example been used for austenitic stainless steel 
[3, 17–19]. The total creep strength has been possible to predict in a precise way. 

For climb to be of importance, the climb time tclimb must be as long as the glide 
time tglide between particles. This criterion can be used to find the critical particle 
radius 

tclimb = tglide (7.7) 

The critical radius rcrit is equal to the climb time multiplied by the climb velocity 
vclimb 

tclimb = 
rcrit 

vclimb 
(7.8) 

The climb velocity can be derived from the climb mobility, Eq. (2.29) 

vclimb = Mclimb(T , σ)bσ (7.9)
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where σ is the applied stress. The glide time tglide is controlled by the average distance 
between particles λs 

tglide = λs 

vglide 
(7.10) 

The Orowan equation for the creep rate gives the glide velocity 

ε̇ = vglide 
bρ 
mT 

(7.11) 

where ρ is the dislocation density. From Eqs. (7.7) to (7.11) an expression for the 
critical radius can be derived. 

rcrit = Mclimb(T , σ)b2 σλF 
ρ 

ε̇secmT 
(7.12) 

The secondary creep rate ε̇sec is given by Eq. (2.30). In Eq. (7.12) the Friedel 
spacing between the particles λF has been introduced. It is thought that it is the 
best way of representing the average distance between the pinning points along the 
dislocations and it is a better alternative than the planar lattice square spacing λs [7, 
8]. λF can be related to the force acting on a climbing segment

(
λs 

λF

)2 

= 
F 

2τL 
= 

σclminbλF 

2mTτL 
= 

σclmin 

σO 

λF 

λs 
(7.13) 

In deriving Eq. (7.13), Eqs. (7.2) and (7.3) have been used. By applying also 
Eq. (7.5), we find that

(
λs 

λF

)3 

= αcl 

αcl + 2CO 
(7.14) 

With the help of Eqs. (7.4), (7.6) and (7.14), the Friedel spacing can be derived. 
To determine the contribution from the particles to the strength, their size distri-

bution must be known. Particles of significance in creep resistant materials often 
follow an exponential size distribution [2, 18]. Then the number of particles per unit 
area NA can be expressed as 

NA = NA0e
−k(r−r0) (7.15) 

where NA0 = 1/λ2 
s , and r is the particle radius. r0 takes into account that there are 

often no accurate observations at small particle sizes; r0 is taken as 1 μm for scanning 
microscopy. k is related to the average particle size r as k = 1/(r − r0). As pointed 
out above only particles larger than rcrit contribute to the creep strength. Thus the 
average spacing between these particles λcrit is an important quantity
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λcrit = 
√
NA0e

−k(rcrit−r0)/2 (7.16) 

The contribution to the creep strength can then be expressed as 

σpart = 
COGbmT 

λcrit 
= σOe−k(rcrit−r0)/2 (7.17) 

This contribution is added to σi in Eq. (2.30). The critical radius depends on 
temperature and stress and consequently, so does σpart. 

7.4 Application of the Precipitation Hardening Model 

7.4.1 Analyzed Materials 

The model in Sect. 7.3 was first published in 2000 and was successfully applied both 
to Cr–Mo steels [2] and to austenitic stainless steels [1, 3, 17]. In these applications, 
PH is not the dominating contribution to the creep strength. Therefore they could not 
be considered as full verification of the PH model. In this section results on creep in 
Cu–Co alloys published by Wilshire and coworkers will be analyzed [20, 21]. This 
system has the advantage that the particles have a large influence on the creep rate. 
In addition, several ageing conditions with different particle size distributions were 
studied, so the influence of the particles can safely be ascertained. A valuable feature 
is that the effect of solid solution hardening in these studies is negligible small as 
will be shown and will not interfere with the analysis. 

The analyzed alloys and conditions are summarized in Table 7.1. 
Three alloys were included in the study with 0.88, 2.48 and 4.04 wt.% Co. In 

their main condition the alloys were fully aged at 600 and 700 °C generating a 
stable particle structure. These temperatures were sufficiently high that no particle

Table 7.1 Investigated Cu–Co alloys 

Co, 
wt.% 

Heat 
treatment 
temperature, 
°C 

Heat 
treatment 
type 

Particle 
volume 
fraction 

Co in solid 
solution, 
wt.% 

Particle 
radius, 
nm 

Particle 
spacing, 
nm 

Orowan 
stress, 
MPa 

0.88 600 Underaged 0.00567 0.33 1.2 41 593 

0.88 600 Aged 0.00567 0.33 4.2 98 250 

0.88 600 Overaged 0.00567 0.33 17.2 405 60 

2.48 600 Aged 0.0222 0.33 7.6 90 272 

4.04 700* Aged 0.0344 0.33* 22.6 215 113 

* Stabilized at 600 °C after heat treatment at 700 °C 
Reprinted from [4] with permission of Springer 
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coarsening took place during the creep testing at 439 °C. In addition, underaged and 
overaged conditions were covered for the 0.88 wt.% alloy. 

The volume fraction of particles for the different alloys and the amount of Co 
were calculated with the thermodynamic software Thermo-Calc, see Table 7.1. The  
particle sizes were measured with transmission electron microscopy [20, 21]. Using 
the expression for the square lattice spacing, Eq. (7.4), the particle spacing was deter-
mined. With the help of Eq. (7.3) the Orowan strength for the alloys was computed, 
see Table 7.1. The Orowan strength significantly exceeds the creep strength of the 
alloys as will be seen. 

The amount of solid solution hardening of the alloys was evaluated with the help 
of Eq. (6.22). Some of the Co is in solid solution, Table 7.1. The computed solute 
drag stress was in the interval from 0.15 to 0.25 MPa, which is negligible in the 
context. 

7.4.2 Pure Copper 

To demonstrate the validity of PH model, it is essential to verify that strength contri-
bution from the dislocations can be described with the model in Chap. 2. This is  
tested for pure copper. Some creep data for pure copper can be found in [20, 21]. 
In addition creep data have been taken from [22] where tests were performed at 
400–500 °C that are close to the test temperature for the Cu–Co alloys. The creep 
rate versus applied stress is shown in Fig. 7.1. 

From Fig. 7.1 it can be seen that the predicted temperature dependence is larger 
than the observed one. The reason is that the activation energy for creep is lower 
than the activation energy of self-diffusion which is used in the prediction. That the

Fig. 7.1 Modeling of 
stationary creep rate 
(Eq. (2.29)) for Cu-OF at 
different test temperatures 
compared with experimental 
data [20–22]. Redrawn from 
[4] with permission of 
Springer 
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Fig. 7.2 Critical radius, 
Eq. (7.12) versus applied 
stress for three Cu–Co 
alloys. The average particle 
radiir are included for 
comparison, Table 7.1 

activation energy for creep is lower than that for self-diffusion is unusual. This has 
been discussed by Raj and Langdon [22]. The stress exponent, i.e. the slope of the 
curves in Fig. 7.1 is in acceptable agreement with the observations. The model and 
experimental values at 439 and 450 °C are in close agreement. 

7.4.3 Cu–Co Alloys 

Only particles larger than the critical size contribute to the creep strength. Such 
particles have to be passed by Orowan bowing. The critical particles radius is given 
by Eq. (7.12). The critical particle radii for the three Cu–Co alloys is illustrated in 
Fig. 7.2. 

In Fig. 7.2 in addition to the critical radii, the average particle sizes are shown. 
Both the typical radii and the critical radii increase with the Co content. At low 
stresses the critical radii are about a factor of four larger than the average particle 
radii. At larger stresses the difference is smaller. For the two lower Co contents it is a 
factor of two. For the highest Co content, there is no longer any difference anymore. 
This means that all particles contribute to the creep strength. 

When the volume fraction and the average radius are known, the size distribution 
can be estimated with the help of Eq. (7.15). The result is illustrated in Fig. 7.3.

Exponential size distributions imply that the number of particles per unit area can 
decrease quite rapidly with increasing radius. The Co content has a large impact on 
the slope of the size distributions. The critical radii are marked in Fig. 7.3 for different 
applied stresses. As is evident from Fig. 7.2, the largest critical radii correspond to 
the lowest stresses.
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Fig. 7.3 Particle size 
distributions, Eq. (7.15) for  
the three Cu–Co alloys in 
aged condition with critical 
radii marked, Eq. (7.12)

The influence of particles on the creep strength is via the critical Orowan strength 
in Eq. (7.17). This strength is added to internal stress in Eq. (2.29). The critical 
Orowan strength is shown in Fig. 7.4. 

The critical strength increases with the applied stress. It might be thought that 
if the Co content is raised it would automatically enhance PH. From Fig. 7.4 it is 
clear that this is not the case. In fact, the alloy with 2.48 wt.% Co gives the highest 
strength. The predicted creep rate as a function of applied stress is shown in Fig. 7.5.

The Co particles reduce the creep rate by about two orders of magnitude in relation 
to that of pure copper. It is evident that the model can reproduce this behavior quite 
well. The ranking of the three Cu–Co alloys is also in accordance with experiments. 
The stress dependence is handled in an acceptable way. 

If Figs. 7.4 and 7.5 are compared, the difference in critical Orowan stress is directly 
related to the observed relations between the creep rates as proposed by the model.

Fig. 7.4 Critical Orowan 
stress, Eq. (7.17) versus 
applied stress for three 
Cu–Co alloys. For 
comparison, a 1:1 line for the 
applied stress is included in 
the diagram. Redrawn from 
[4] with permission of 
Springer 
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Fig. 7.5 Modeling of 
stationary creep rate for three 
Cu–Co alloys and pure 
copper compared with 
experimental data from [20]. 
Redrawn from [4] with  
permission of Springer

If the values for the Orowan strength at room temperature (Table 7.1) would be used  
to rank the creep strength it would suggest that Cu0.88Co and Cu2.48Co would have 
about the same creep strength and would be significantly better than Cu4.04Co. This 
is clearly not consistent with the model or with the experimental results. Another 
way of demonstrating that creep strength is not close related to the Orowan strength 
is illustrated in Fig. 7.6. 

It can be seen that the ratio between the critical Orowan strength and room 
temperature Orowan strength varies with applied stress and alloy composition.

Fig. 7.6 Critical Orowan 
stress, Eq. (7.17), divided by 
the room temperature 
Orowan stress, Eq. (7.3) 
versus applied stress for 
three Cu–Co alloys. 
Redrawn from [4] with  
permission of Springer 
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In [20] there is also a comparison between underaged, aged and overaged condi-
tions for the Cu0.88Co alloy. The computed size distributions for these conditions 
are shown in Fig. 7.7. 

There is obviously a large difference between these conditions which makes it 
an interesting additional test of the model. Furthermore the size distributions are 
different from those in Fig. 7.3. The strain rate versus stress curves are presented in 
Fig. 7.8. 

As can be seen in the Figure, the model can describe the experimental data fairly 
well. The difference between the conditions can be accounted for, and the stress 
dependence is well reproduced.

Fig. 7.7 Size distributions, 
Eq. (7.15) for Cu0.88Co 
particles in aged, underaged 
and overaged conditions 
with critical radii marked, 
Eq. (7.12). Redrawn from [4] 
with permission of Springer 

Fig. 7.8 Modeling of 
stationary creep rate, 
Eq. (2.29) with the internal 
stress taken from Eq. (7.17) 
for Cu0.88Co in underaged, 
aged and overaged 
conditions compared with 
experimental data from [20]. 
Redrawn from [4] with  
permission of Springer 
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7.5 Summary 

• Empirical models for the influence of particles on the creep strength have 
often simply used the Orowan model. This has the consequence that the strong 
temperature dependence is almost completely neglected and hardening effect is 
exaggerated. 

• Traditional systematic models for precipitation hardening during creep have been 
based on energy barriers. However, assessment of the size of the energy barriers 
has shown that it is negligibly small. Instead the modeling in this chapter is starting 
from the assumption that the time it takes for a particle to be climbed is the factor 
that controls if the particle contributes to the creep strength or not. 

• A critical particle size is introduced. Particles that are smaller than the critical 
size do not contribute to the creep strength. Particles larger than the critical size 
must pass particles by Orowan bowing and they contribute to the creep strength. 

• To find the critical particle size, the particle size distribution must be known. 
Exponential size distributions have been assumed. Such distributions have been 
found a number of times for creep resistant steels. 

• A critical test has been performed for Cu–Co alloys. This is a suitable system since 
the amount of solid solution hardening is quite small. The model can account for 
the reduction in creep rate due to the presence of Co particles in Cu. 

• Observed effects of Co content, heat treatment condition and stress dependence 
on the creep rate can be satisfactorily reproduced. 

• The predicted increase in the creep strength is significantly smaller than the 
Orowan strength (except at high stress and high alloy content). The ratio between 
the predicted increase in strength and the Orowan strength varies with applied 
stress, Co-content and ageing condition. 
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Chapter 8 
Cells and Subgrains. The Role of Cold 
Work 

Abstract In almost all metals and alloys, dislocations are concentrated to narrow 
regions after plastic deformation that divide the material into cells or subgrains. The 
cell walls consist of tangles whereas the subgrains are surrounded by thin regular 
networks of dislocations. The cells are transferred to subgrains with increasing 
temperature. Although these substructures have been analyzed for many years, basic 
models of their development have only appeared recently. Models for substructures 
are presented for plastic deformation at constant stress and at constant strain rate. 
During straining the dislocations can move in opposite directions creating a polarized 
structure, where the possibility for recovery of dislocations is reduced. This can be 
expressed in term of a back stress. Its presence explains why creep curves at near 
ambient temperatures could have an appearance that is similar to that at elevated 
temperatures. It is also the basis for the effect of cold work on creep. The models 
can quantitatively describe why the creep rate can be reduced by up to six orders of 
magnitude for Cu after cold work. 

8.1 General 

Tangles of dislocations are formed in virtually all alloys during plastic deforma-
tion. With increasing strain the tangles form boundaries that divide the materials 
into micrometer sized cells or subgrains, Fig. 8.1. With increasing temperature and 
strain the boundaries become better developed and thinner. At high temperatures 
the boundaries consist of regular networks of dislocations, and are then referred to 
as subboundaries or subgrain boundaries. At lower temperatures the boundaries are 
made up of loose tangles that are called cell boundaries. Expressed in another way 
subgrains are formed in the creep range and cells in the work hardening range [1], 
although there is no sharp transition. For a definition of the work hardening and the 
creep range, see Sect. 3.4. Both cells and subgrains are referred to as substructure. 
In most materials the substructure is well developed already at modest strains. This 
means that the substructure can be observed in tensile and creep tests. However in

© The Author(s) 2024 
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Fig. 8.1 Cell structure in 
Cu-OFP after 24% cold 
working [3] 

some alloys, for example Al–Mg alloys, the development of substructure is delayed 
to higher strains [2]. 

There are excellent reviews on substructure formation in the literature [2, 4, 5]. 
Many results are similar for cells and subgrains so there is no need in general to 
make a clear distinction between them. For example, both the cell and subgrain sizes 
are related to the applied stress in the same way. One question that appeared early 
on was if the substructure contributed to the creep strength [5, 6]. In a number of 
investigations it has been shown that strength contribution from the dislocations in 
the subgrain interiors could account for the full creep strength in single phase alloys, 
see for example Orlova’s paper [7]. However, with the event of Mughrabi’s composite 
model where the subboundaries are considered as hard zones, it is clear that there are 
long range stresses from the subboundaries [8]. In the composite model, the strength 
is taken as a weighted average of the “hard” boundaries and the “soft” subgrain 
interiors. In a single phase alloy, the subgrain size is fully controlled by the applied 
stress and there is no way of varying the strength contribution from the subgrains 
[5]. However, the presence of particles can stabilize the subgrain size. In this way a 
major contribution to the creep strength from subgrains stabilized by M23C6 carbides 
is obtained in modern creep resistant 9–12% Cr steels [9]. 

There are many investigations on the formation of substructure but few of them 
are quantitative. Notable exceptions are work by Blum and Straub and coworkers 
who measured the development of the subgrain size during creep in martensitic steels 
[10–12]. These results could be combined with a basic model for the influence of 
particles on subgrain growth [13] to understand the long term behavior of 9–12% Cr 
steels [9]. 

Dislocations with burgers vectors b and −b in a slip system are moving in opposite 
directions in an applied stress field inside a cell. Dislocations with b and −b end up 
at opposite sides of the cells. If a cell boundary is considered, dislocations with b are 
found on one side of the boundary and those with −b on the other side. This means
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that the cell boundaries become polarized. It has also the consequence that there is a 
boundary between the dislocations with b and −b and recovery of them cannot take 
place. These dislocations are also referred to as unbalanced because in the region 
with b dislocations there are no −b dislocations. This should be contrasted with 
balanced dislocations where dislocations with opposite burgers vectors are present. 
Models for the formation of substructure is presented in Sect. 8.2. 

When unbalanced dislocations are present static recovery is slowed down since 
dislocation with opposite burgers vectors cannot meet and annihilate. The unbalanced 
dislocations are of importance for several properties. Modeling tertiary creep of 
copper has demonstrated that the recovery rate of the substructure gives a main 
contribution to the increasing strain rate [14]. This is likely to be the case for other 
ductile alloys as well. This will be further discussed in Sect. 12.4. Cold work can 
reduce the creep rate by many orders of magnitude. Taking balanced and unbalanced 
dislocations in the subgrain walls into account has made it possible to explain this 
quantitatively for copper [15]. The role of cold work is discussed in Sect. 8.3. 

Most creep tests are performed at constant load. For example, when the creep rate 
is plotted versus stress, usually the engineering stress, i.e. the nominal stress is used, 
not the true stress. At high temperatures when the creep exponent is about 5 this is 
not so critical, but at lower temperatures in the power-law break down regime where 
the creep exponent can be 30–50, the difference between using the engineering and 
the true stress is huge, which can easily be demonstrated. It turned out for copper 
that the engineering stress is still the relevant quantity. It took many years to explain 
this feature, but by considering the role of the substructure it was possible, Sect. 8.4 
[16]. 

8.2 Modeling of Subgrain Formation 

8.2.1 The Stress from Dislocations 

In previous chapters, the Taylor equation has been applied to describe the contribution 
to the strength from the dislocations, Eq. (2.28) 

σdisl = αmTGb
√

ρ (8.1) 

where α is constant, mT the Taylor factor, G the shear modulus and b burgers vector. 
In the presence of substructure the relation has to be modified because the α value is 
different for dislocations in the cell boundary. This can be illustrated by an expression 
for α given by Kuhlmann-Wilsdorf [17] 

αKW = 
(1 − νP/2) 
6π(1 − νP) 

log 
RCO 

b 
(8.2)
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νP is Poisson’s ratio and RCO a cut-off ratio that is taken as the spacing between 
dislocations. This spacing is of the order of 10−7 m and 10−8 m in the cell interior 
and the cell boundaries respectively. This gives that α is close to a factor of 2 larger 
for dislocations in the cell interior than for dislocations in the cell boundaries. For 
this reason Eq. (8.1) is replaced by the following expression 

σdisl = αmTGb
√

ρint + 
1 

2 
αmTGb 

√
ρbound (8.3) 

where ρint is the dislocation density in the cell interior and ρbound the dislocation 
density in the cell boundaries. The value for αKW will not be used in the present book, 
since there is an expression that is adapted to elevated temperatures, Eq. (3.17). As 
discussed in Sect. 8.1, there are many different results in the literature for the influence 
of boundary dislocations on the strength. Rather than trying to select between the 
various experimental results, a direct derivation has been chosen. 

There is a well-established relation between the cell or subgrain size dsub and the 
stress 

dsub = 
KsubGb 

σdisl 
(8.4) 

K sub is a dimensionless constant that typically takes values in the interval 10 to 
20. The first ones to propose an equation of this form were Staker and Holt [18]. It 
is assumed that it is the dislocation stress that is used in Eq. (8.4) [17]. Eq. (8.4) was  
already given in Sect. 2.4. It has been suggested that Eq. (8.4) is general and does not 
only apply to stationary conditions [19]. There are two well-known derivations of 
Eq. (8.4) in the literature. In the first one a spinodal decomposition of a set of parallel 
screw dislocations was considered [20]. In the second one the energy of a substructure 
was assumed to be the sum of the dislocation line energy and the dislocation cell 
stresses. By minimizing the sum of these two contributions, Eq. (8.4) was obtained 
[17]. 

The distance between dislocations in the cell walls which is referred to as the 
dislocation separation can be estimated in the following way. For the sake of argu-
ment, the cell walls are assumed to consist of one layer of μ sets of dislocations and 
cells arranged as packed cubes. The density of boundary dislocations is then given 
by 

ρbnd = 
3μd2 

sub 

d3 
sublsep 

(8.5) 

where lsep is the dislocation separation. Each corner in the arrangements of the cube 
substructure is associated with three cube sides and that is the reason for the factor 
3 in Eq.  (8.5). The density is taken as the average over the volume of each cell d3 

sub. 
Equation (8.5) will be used below to obtain an estimate for the dislocation separation.
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8.2.2 Formation of Subgrains During Creep 

In most materials well-formed subgrains are present in the secondary stage. This 
means that the subgrains are created during primary creep. There are exceptions. In 
Al-Mg alloys at around 300 °C, subgrains are not formed until a strain of about 1 
[2]. In addition, in some stainless steels a homogeneous dislocation structure appears 
under certain conditions. For 17Cr12Ni2Mo subgrains appeared at 704 °C but not 
at 593 °C [21]. For 17Cr12Ni2MoN no subgrains were present at higher N content 
[22]. A possible qualitative explanation to these observations is that the stacking fault 
energy γSFE plays a role and that the subgrain formation increases with the value of 
γSFE. For 17Cr12Ni2Mo there is a dramatic increase in γSFE with temperature [23], 
which could explain the observations in [21]. The results of the influence of N on 
γSFE in the literature are far from unanimous but a recent analysis of existing data 
[24] suggests that N reduces γSFE and this could be a reason for the findings in [22]. 
For Al–Mg, the value of γSFE is considerably lower than for Al, but if this is of 
importance for the substructure formation is uncertain. 

The normal case where subgrains are present in the secondary stage will now 
be considered. The changes of the substructure have been quantitatively studied for 
an Al5Zn alloy at a temperature of 250 °C and an applied stress of 16 MPa. The 
study was performed by Blum and co-workers. The original papers are not readily 
available anymore, but fortunately the results are reproduced in other sources [2, 25]. 
In Sect. 4.3, a model for primary creep is presented. The creep rate is given by Eqs. 
(4.3) and (4.9) 

ε̇ = h(2(σ − σi) − σdisl) (8.6) 

where 

h(σ ) = 2τL M(T , σ  )  
σ 3 

(αmTGb)3 
/

(
mT 

bcL 
− ω 

σ 
αmTGb

)
(8.7) 

In Eq. (8.6), there is an effective stress that controls the creep rate in the primary 
stage 

σeff = 2(σ − σi) − σdisl (8.8) 

As can be seen from Eq. (4.10), there is a contribution from solid solution hard-
ening. For Al5Zn, this contribution comes from the Zn content. The linear misfit for 
Zn in Al is −0.02. The drag stress from the Zn content is given by (Eq. (6.20)) 

σ drag i = 
vclimbci0β2 

bDi kBT 
I (z0) (8.9)
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The resulting value of σi is 4.6 MPa. For h(σ) values for Al are used, see Sect. 2. 
7. The creep strain and the strain rate are illustrated Fig. 8.2. 

The creep rate versus strain follows the φ-model, Sect. 4.2, although the slope is 
not quite the same in the experiments and the model. 

Since the effective stress controls the primary creep rate, it is natural to assume 
that it also governs the subgrain size. By applying Eq. (8.8) in Eq.  (8.4) a simple  
model is obtained. The findings are shown in Fig. 8.3a. 

The variation of the dislocation density with strain can also be derived with the 
help of Eq. (4.5). The result is given in Fig. 8.3b. Once the dislocation density is 
known, the dislocation separation in the subgrain boundaries can be obtained with 
the help of Eq. (8.5). It is assumed that most of the dislocations are located in the 
boundaries. The result is demonstrated in Fig. 8.4.

a b  

Fig. 8.2 Creep strain versus time a and creep rate versus strain b for Al5Zn at 250 °C and 16 MPa. 
Experimental data from [2, 25]. Redrawn from [26] with permission of MDPI 

a b  

Fig. 8.3 Subgrain size a and dislocation density b versus strain for Al5Zn at 250 °C and 16 MPa. 
Experimental data from [2, 25]. Redrawn from [26] with permission of MDPI 

https://doi.org/10.1007/978-3-031-49507-6_2
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Fig. 8.4 Dislocation 
separation in the subgrain 
boundaries versus strain for 
Al5Zn at 250 °C and 16 
MPa. Experimental data 
from [2, 25]. Redrawn from 
[26] with permission of 
MDPI 

It is clear that the model presented here can predict the general behavior of the 
subgrain formation in Figs. 8.3 and 8.4 although the details are not fully accurate. 

8.2.3 Cell Formation at Constant Strain Rate 

Dislocation cells are formed in virtually all alloys during tensile and compression 
testing at ambient temperatures. A brief survey is given by Koneva et al. [27]. In the 
same way as during creep, the cell diameter decreases with increasing strain. They 
summarize findings that the cell diameter is proportional to the inverse of the square 
root of the dislocation density. 

dsub = Krhoρ
−1/2 (8.10) 

This is consistent with Eq. (8.4). This is seen by combining Eqs. (8.3) and (8.4) 
with (8.10) 

Krho = 
Ksubμsub 

αmT 
(8.11) 

where μsub = 1 and 2 for dislocation densities in the subgrain interior and walls 
respectively. A value of K rho = 15 was found for Cu which is in reasonable agreement 
with K sub = 10, since α ≈ 0.19 and mT ≈ 3.1. The location of dislocation in cell 
interiors or boundaries was not specified. Their results for K rho for Cu–Al (2–5) 
and for Cu–Mn (2–5) illustrate that K rho can be significantly smaller for alloys in 
comparison to pure metals. In [27] early investigations for K rho are also referenced 
but these results are difficult to match to K sub values.
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Subgrain boundaries have essentially zero width in particular at high temperatures. 
Cell walls on the other hand have a significant width wcell. This means that Eq. (8.5) 
must be replaced by 

ρbnd = 
3μwcell 

dsubl2 sep 
(8.12) 

In Eq. (8.12), the separation distance between dislocations is assumed to be the 
same in the boundary plane and perpendicular to the plane. In the boundary several 
types of dislocations must be taken into account [15]. This will be explained in detail 
in Sect. 8.2.3, where the equations for the dislocation densities will be given. Using 
these equations the developments of dislocation densities and the corresponding 
dislocation stress, Eq. (8.3), can be computed. Once the dislocation stress is known, 
the cell size can be obtained with the help of Eq. (8.4). The variation of the cell 
size as a function of strain is illustrated in Fig. 8.5. The cell diameter decreases with 
increasing strain and tends towards a stationary value at larger strains. 

In addition to the overall dislocation density in the boundary ρbnd, there is a 
formation of dislocation locks that are believed to create the stability of the boundary. 
The density of the locks is designated ρlock. Following [15] the cell wall width is 
related to the lock density 

wcell = 1 

lsepρlock 
(8.13) 

If Eqs. (8.12) and (8.13) are combined, expressions for the dislocation separation 
and wall width in terms of the dislocation densities are obtained 

lsep =
(

3μ 
dsubρbndρlock

)1/3 

(8.14)

Fig. 8.5 Cell diameters as a 
function of strain for 
Cu-OFP at 75 °C and 1 × 
10−5 1/s [15]. Experimental 
data from [3]. Redrawn from 
[15] with permission of 
Elsevier 
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a b  

Fig. 8.6 a Dislocation separation in the cell boundaries and b cell boundary width as a function of 
strain for Cu-OFP at 75 °C and 1 × 10−5 1/s [15]. Redrawn from [15] with permission of Elsevier 

wcell =
(
dsubρbnd 

3μρ2 
lock

)1/3 

(8.15) 

Equations (8.14) and (8.15) are compared to experimental data in Fig. 8.6. 
In the same way as for the cell size, the dislocation separation and cell boundary 

width decrease with strain. The variation of the dislocation separation and cell 
boundary width with strain is more rapid than for the cell size. These results are 
not consistent with those of Koneva et al., who suggest a constant ratio between the 
cell boundary width and the cell diameter. 

In a test series for 18Cr8Ni austenitic stainless at 865 °C, the formation of 
subgrains as a function of strain at constant strain rate is studied in [2]. In the same 
way as for Al5Zn and Cu-OFP above, it is demonstrated that the subgrain size and 
dislocation separation in subgrain walls decrease and tend to stationary values with 
increasing strain. The dislocation density rapidly increases with strain and also levels 
off to a stationary value. Since the variation of the stress with strain can be predicted, it 
was thought that the results should be possible to model. Unfortunately, the published 
stress strain curve is not consistent with the creep models. 

8.3 Influence of Cold Work on the Creep Rate 

The influence of cold deformation on the creep rate and creep rupture is a clas-
sical problem. During primary creep of annealed material, the dislocation density 
is normally raised from a low value to a stationary one when the secondary stage 
is reached. This is a direct outcome of the creep recovery theory and it is well 
described by the basic dislocation equation used in this book, Eq. (4.5). On the 
other hand for a cold deformed material, the initial dislocation density is high.
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If Eq. (4.5) is applied, the dislocation density would be reduced during primary 
creep and the same stationary dislocation density as for an annealed material would 
be found and no effect of the cold deformation would remain. This is in direct at 
variance with observations for example for fcc alloys. For a number of austenitic 
stainless steels the creep strength can be increased significantly [28–31]. A review 
is given in [32]. If the temperature is too high or the strain is too large the effect of 
cold work disappears. The reason is that the dislocation structure is not sufficiently 
stable under such conditions and recrystallization may appear. 

In this section the influence of cold work on the creep of Cu-OFP will be analyzed. 
Results for creep rupture data are shown in Fig. 8.7. 

Values for 0, 12 and 24% cold work are compared. It is evident that the cold work 
has a dramatic effect on the rupture time. For 12% cold work the rupture time is 
increased by more than three orders of magnitude. For 24% cold work the rupture 
time is raised by six orders of magnitude. This effect is only observed if the cold 
work is performed in tension. If the cold work is in compression only quite a small 
increase in the rupture time is found. The creep testing was carried out in tension. 
Thus if the deformation direction is reversed between the cold work and creep testing 
only a limited effect is observed. 

With increasing cold deformation, the creep ductility is practically always 
reduced. This is clearly found for Cu-OFP, Fig. 8.8.

For Cu-OFP without cold work the rupture elongation is typically quite high, 
above 40%. For 12% cold deformation in tension the rupture elongation is still high, 
30% and above. For 24% cold deformation, the rupture elongation is a little bit 
above 10%. It is interesting to note that the creep ductility of Cu-OFP deformed in 
compression is low in spite of the small increase in the rupture time. 

It has now been found that the role of the substructure must be taken into account to 
understand the influence of cold working [15]. This has also been suggested in the past 
but without any basic analysis that could predict the magnitude of the effect [4, 33]. 
As described in Sects. 8.1 and 8.2 a cell structure is formed in practically all alloys

Fig. 8.7 Stress versus 
rupture time for 12 and 24% 
cold deformed Cu-OFP at 
75 °C. For comparison data 
for material without cold 
deformation is included. The 
lines are  fitted to the  
experimental data to 
illustrate the influence of 
rupture time. Experimental 
data from [3]. Redrawn from 
[15] with permission of 
Elsevier 
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Fig. 8.8 Rupture elongation 
versus rupture time for 12 
and 24% cold deformed 
Cu-OFP at 75 °C. For 
comparison data for material 
without cold deformation is 
included. Experimental data 
from [3]. Redrawn from [26] 
with permission of MDPI

during deformation at ambient temperatures. A large fraction of the dislocations 
moves to the cell boundaries and in this way they create the cell structure. During 
the deformation all dislocations do not behave in the same way. Dislocations with 
opposite burgers vectors move in opposite directions in a given stress field. This 
can be seen from the Peach-Koehler formula for the force F on a dislocation with 
direction ξ and burgers vector b 

F = (bσ)  × ξ (8.16) 

If the direction of the burgers vector is changed to the opposite one (−b), this is 
the same as changing the sign of the burgers vector. For this reason, burgers vectors 
of opposite directions will also be referred to as burgers vectors of opposite signs. 
From Eq. (8.16), it can be seen that if the direction of the burgers vector is changed to 
the opposite one, the sign and the direction of the force is also changed. Dislocations 
of opposite signs on the same glide plane move to different ends of the cell. With 
opposite signs at different ends of the cell, the dislocations are said to be polarized. 
Not all dislocations are polarized. It is assumed that the outer layers of the boundaries 
are polarized. 

The polarization of dislocations has a pronounced effect on the recovery. Since 
dislocations with opposite burgers vectors cannot be found amongst polarized dislo-
cations, static recovery is not possible. Polarized dislocations are referred to as unbal-
anced since dislocations with opposite burgers vector are not present. For unpolarized 
dislocations, dislocations with opposite burgers vectors can be found and they are 
therefore referred to as balanced. 

In the model for the development of the cell structure, the following dislocation 
densities in the cell boundaries are taken into account: balanced dislocation density 
ρbnd, the unbalanced dislocation density ρbnde, and the density of the locks ρlock [15]. 
Most of the dislocations are in the boundaries, and the content in the cell interiors is
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neglected. The equation for the balanced dislocation density ρbnd is almost identical 
to Eq. (2.17) 

dρbnd 

dε 
= kbnd 

mρ
1/2 
bnd 

bcL 
− ωρbnd − 2τL Mρ2 

bnd/ε̇ (8.17) 

Work hardening, dynamic recovery and static recovery are considered. The only 
difference is the introduction of the factor kbnd. It takes into account since Eq. (8.3) 
is modified in comparison to the ordinary version of the Taylor equation. For the 
unbalanced content ρbnde, the equation corresponding to (8.17) is  

dρbnde 

dε
= kbnde 

m(ρ
1/2 
bnd + ρ1/2 

bnde) 
bcL 

− ωρbnde (8.18) 

There are two significant differences between (8.17) and (8.18). There is no static 
recovery term in Eq. (8.18). Unbalanced dislocations cannot annihilate by combining 
with dislocations of opposite signs, since such dislocations are not present. The other 
difference is that both balanced and unbalanced contribute to the generation of the 
unbalanced content since both types move across the cell interiors. 

The traditional view is that dynamic recovery is due to dislocations coming suffi-
ciently close that they can combine with dislocations of opposite sign and annihilate 
[34]. This assumption tends to overestimate the recovery rate, see Sect. 2.3.2. In addi-
tion, the mechanisms for dynamic and static recovery would be similar although their 
temperature and time dependencies are quite different. Argon has instead suggested 
that the dynamic recovery is due to the interaction between dislocations generated 
during work hardening and the cell boundaries [35]. It is known experimentally that 
spurting dislocations are moving a distance of about three cell diameters [36] and 
consequently they will pass through more than one cell boundary. During this passage 
boundary dislocations will be removed. When the dislocations hit the boundaries low 
energy configurations will be formed and this is part of the dynamic recovery process. 
Some of these low energy configurations are locks that are dominated by Cottrell-
Lomer locks. They are created when partial dislocations cross. The formation of 
locks are assumed to be controlled by the following equation 

dρlock 

dε
= klockω(ρbnd + ρbnde) − ωρlock − 2τL Mρ2 

lock/ε̇ (8.19) 

This equation describes how both balanced and unbalanced dislocations contribute 
to the formation of locks. Dynamic recovery influences the number of locks since 
spurting dislocations passing through the boundaries remove locks. The locks can 
also be eliminated by static recovery since this process reduces the energy even for 
complex dislocation configurations. 

In Sect. 3.3, experimental stress strain curves for Cu-OFP were accurately repro-
duced using Eq. (2.17) assuming a homogenous distribution of dislocations. If now
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the dislocations are considered to be located in the cell boundaries and Eqs. (8.17)– 
(8.19) are used, the stress should be computed with the help of Eq. (8.3) with ρbound 
equal to the sum of ρbnd, ρbnde and ρlock. The results for the stress strain curves should 
be the same. With kbnd =

√
2 and kbnde =

√
2 this is the case. The value of klock 

should be considerably smaller than the value for kbnd. A value of  klock = 0.1 has 
been assumed. With Eq. (8.14), this gives a value for the separation distance of the 
dislocations in the cell walls of about 20 nm that is in accordance with experiments 
for several materials, see Sect. 8.2. The selection of klock also affects the values kbnd 
and kbnde. Values kbnd = 1.7, kbnde = 0.2 and klock = 0.1 reproduce the stress strain 
curves [15]. 

The results for the influence of cold work in Fig. 8.7 will now be analyzed. 
12% and 24% cold deformation at ambient temperature gives stresses of 154 and 
191 MPa, respectively. Assuming the dislocations are located in cell boundaries in 
agreement with observations [3], and using the modified Taylor Eq. (8.3), this gives 
total densities of dislocations in the cell walls of 8.7 × 1014 and 1.5 × 1015 1/m2. 
The development of the dislocation densities according to in Eqs. (8.17)–(8.19) is  
shown in Fig. 8.9. In this case the balanced dislocations dominate the total content. It 
should be emphasized that the stresses from the cold work are much higher than even 
the dramatic increase in creep strength demonstrated in Fig. 8.7. Extensive recovery 
is taken place but not to such an extent that the stationary state for annealed material 
is reached. 

The key to understanding the influence of cold work is the unbalanced dislocation 
density ρbnde that is not exposed to static recovery. It is assumed to give rise to a back 
stress that reduces the creep rate 

σback = 
mαGb 

2 
√

ρbnde (8.20)

Fig. 8.9 Densities of 
balanced, unbalanced and 
lock dislocations in the cell 
boundaries as a function of 
strain for Cu-OFP. Redrawn 
from [15] with permission of 
Elsevier 
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If the secondary creep rate for undeformed material is ε̇sec(σ ), the corresponding 
value for cold worked material is 

ε̇sec CW(σ ) = ε̇sec(σ − σback) (8.21) 

where σ is the applied creep stress. It might be thought that the back stress could 
be measured in a stress drop test by reducing the applied stress until the creep rate 
vanishes. However, this is not possible. The stress drop is in general based on the 
assumption that the dislocation structure is essentially unchanged after the reduction 
in stress. With dislocation dynamics it has been demonstrated that the dislocation 
structure is adapted to the new stress level within milliseconds [37]. This applies 
both to the dislocations in the cell interior and in the cell walls. On the other hand it 
takes a longer time before the cell size corresponds to the new stress level. Thus the 
dislocation structure after a stress drop neither represents the old stress level nor the 
new one. Back stresses can be quite useful in modeling, but to measure them would 
require quite a sophisticated analysis to interpret the results. 

The stress dependence of the secondary creep rate according to Eq. (4.3) is given  
by 

h(σ ) = 2τL M(T , σ  )  
σ 3 

(αmTGb)3 
/

(
mT 

bcL 
− ω 

σ 
αmTGb

)
(8.22) 

which is inserted into Eq. (8.21) 

ε̇sec CW(σ ) = h(σ − σback) (8.23) 

To handle primary creep, Eqs. (4.6) and (4.7) are applied 

σprim = σdisl sec − σdisl (8.24) 

ε̇ = h(σ + σdisl sec − σdisl − σback) (8.25) 

σdisl is the stress created by the dislocations. In the secondary stage this stress takes 
the value σdislsec. Thus, in the secondary stage, Eq. (8.25) is identical to Eq. (8.21). 

The use of Eq. (8.25) with no cold work present has been illustrated for Cu-OFP 
in Fig. 4.10. It was demonstrated that the primary creep could be well reproduced 
and that both the experimental and the model results followed the φ-model. 

Two examples of creep-strain curves for 12% cold-work Cu-OFP are shown in 
Fig. 8.10.

Both the experimental and model curves show distinct primary and secondary 
stages. The model exaggerates somewhat the size of the primary stage and reaches 
the secondary stage too soon. The model accurately reproduces the creep rate in the 
secondary stage in spite of the fact that the creep rate is three orders of magnitude 
lower than without cold work. This would not be possible unless the recovery rate
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a b  

Fig. 8.10 Creep strain versus time for 12% cold worked Cu-OFP at 75 °C, a 205 MPa and b 192 
MPa. Model results from integration of Eq. (8.25). Redrawn from [15] with permission of Elsevier

of the unbalanced dislocations would be much lower than for the other types of 
dislocations. The amount of tertiary creep is very limited in the experimental data 
and the tertiary stage appears late in the test. It is probably caused by necking [14]. 
Since necking is not taken into account in the creep model, it is then natural that 
tertiary creep is absent in the model curves. 

For one of the cases in Fig. 8.10, the creep rate as a function of time is given in 
Fig. 8.11. 

In the same way as in Fig. 4.10b the experiment and the model obeys the φ-model 
at least approximately. The drop in strain rate with increasing time is however much 
more dramatic in Fig. 8.11 in comparison to Fig. 4.10b. 

Creep strain curves for 24% cold deformed Cu-OFP are illustrated in Fig. 8.12.

Fig. 8.11 Creep strain rate 
versus time for 12% 
cold-work Cu-OFP at 75 °C 
and 192 MPa. Model results 
from Eq. (8.25). Redrawn 
from [15] with permission of 
Elsevier 
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a b  

Fig. 8.12 Creep strain versus time for 24% cold-work Cu-OFP at 75 °C, a 235 MPa and b 223 
MPa. Model results from integration of Eq. (8.25). Redrawn from [15] with permission of Elsevier 

It is immediately evident that that creep strain curves for 24% cold deformed 
material are very different from those of 12% cold deformed. In Fig. 8.12, primary  
and secondary creep is only present to a limited extent and tertiary creep is totally 
dominating. It is striking that the model can reproduce the creep strain curves also in 
this case. The cell sizes are smaller, the boundaries are narrower and the dislocations 
in the walls are closer for 24% cold deformed materials in comparison to 12% cold 
deformed, see Figs. 8.5 and 8.6. It is believed that the continuously increasing creep 
rate is due to enhanced recovery [14]. Tertiary creep will be further discussed in 
Chap. 12. 

It can be concluded that by taking the back stress from the unbalanced dislocations 
into account, Eq. (8.12), the main features for cold deformed Cu-OFP can be well 
described. Thus, the reduction of the creep rate by three and six orders of magnitude 
for 12 and 24% can be modeled. The whole creep curves can be reproduced in a 
reasonable way. In the argument above the model was analyzed for primary and 
secondary creep. It will be seen in Chap. 12 on tertiary creep that Eq. (8.25) is also  
valid for tertiary creep. This is also clearly demonstrated in Fig. 8.12. 

In the analysis above it has been assumed that the substructure is stabilized by the 
presence of unbalanced dislocation. An alternative way is to use particles to stabilize 
the substructure. This is extensively utilized for modern 9%Cr steels [38]. For the 
influence of cold work on the creep rate of austenitic stainless steels it has been 
suggested that particles can lock the substructure and prevent that the effect of cold 
work is lost [28, 29]. However, no detailed analysis of the role of the particles has 
been performed.
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8.4 Formation of a Dislocation Back Stress 

Cu-OFP close to ambient temperatures show creep curves that have the same appear-
ance as at much higher temperatures with distinct primary, secondary and tertiary 
creep. One example is given in Fig. 8.13. 

The cusp on the experimental curve is due to the necessity to reload the creep 
machine. Thus, the creep curves have many characteristics in common with typical 
creep curves at higher temperatures at about half the melting point. However, there is 
one aspect that is different. It is in general assumed that the true creep rate is constant 
in the secondary stage. This is frequently a starting point in stress analysis with finite 
element programs. To check if that is the case for the creep curve in Fig. 8.13, it is  
assumed for simplicity that the creep rate can be described with a Norton equation 

dε 
dt  

= A0(σ0e
ε )nN (8.26) 

where A0 is a constant and σ0 is the nominal applied stress. The stress exponent nN is 
about 70 for the case in Fig. 8.13. The factor eε takes into account the increase in the 
true stress when the specimen cross section is reduced during straining. A0 is chosen 
so the Norton expression crosses the experimental at 600 h, which is about half the 
rupture time. Equation (8.26) is now integrated starting with ε0 = 0.17 to simulate 
the influence of primary creep. The result is included in Fig. 8.13. It is obvious that 
Eq. (8.26) cannot represent the creep curve in Fig. 8.13. This conclusion is in no way 
affected by the choice of parameter values in Eq. (8.26). 

The creep exponent exp(nN ε) in Eq.  (8.26) has a dramatic effect on the strain 
rate giving a creep curve with rapidly increasing slope that is fully inconsistent with 
observations. The effect is in fact quite large. For example, for ε = 0.1, exp(nN ε) is  
equal to 1100. This enormous increase has never been observed in creep curves and

Fig. 8.13 Creep strain 
versus time for Cu-OFP at 
75 °C and 175 MPa. Forged 
material. The model curve is 
derived with Eq. (8.25). 
Redrawn from [16] with  
permission of Elsevier 
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one can conclude that the simple assumption of a constant true strain is strongly at 
variance with observations. 

Instead there must be a back stress that prevents the rapid increase in the strain 
rate. The back stress must be built up in the dislocation structure 

σback = σdisl − σ0 (8.27) 

σdisl is given by Eq. (8.3). σ0 is again the nominal applied stress. It is related to the 
true applied stress σ as 

σ = σ0 exp(ε) (8.28) 

The stress σcreep that drives the creep deformation is given by 

σcreep = σ − σback = σ + σ0 − σdisl (8.29) 

In the second equality, Eq. (8.27) has been applied. Thus by applying Eq. (4.6), 
the creep rate is given by 

ε̇ = h(σ + σ0 − σdisl) (8.30) 

It is interesting to compare this equation with the simplified version in Eq. (4. 
9). In Eq. (4.9), the applied stress is the nominal one but at the same time the full 
impact of substructure on σdisl is not included. For primary and secondary creep these 
differences are not very important. However, Eq. (4.9) cannot describe tertiary creep 
contrary to Eq. (8.30), which will be explained now. 

The development of the balanced and unbalanced dislocation densities ρbnd and 
ρbnde for the case in Fig. 8.13 is illustrated in Fig. 8.14. Equations (8.17) and (8.18) 
are used. The small contribution from ρlock is neglected in this case. Since the relation 
between ρbnd and ρbnde is not known, the relation between kbnd and kbnde cannot be 
determined. It is assumed that kbnd = kbnde with a value of

√
2 that reproduces the 

results of Sect. 4.3.
As can be seen from Fig. 8.14a, the balanced dislocation density reaches an 

approximately constant value in the secondary stage whereas the unbalanced content 
increases continuously even during the secondary stage. The implication for the 
dislocation stresses is shown in Fig. 8.14b. The total stress from the balanced and 
the unbalanced dislocation stresses are marked as ‘all’. This total dislocation stress 
matches the true applied stress σ in the secondary stage. This is the reason why the 
creep rate does not increase in an uncontrolled way. This balance is possible due 
to the increase in the unbalanced stress. The difference between the starting value 
of the applied stress of 150 MPa and the test stress of 175 MPa is the value of the 
yield strength. With increasing strain the total dislocation stress cannot match the 
true applied stress anymore. Then the tertiary stage is reached and the creep rate 
increases.

https://doi.org/10.1007/978-3-031-49507-6_4
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a b  

Fig. 8.14 Model results for the same case as in Fig. 8.13 (Cu-OFP at 75 °C and 175 MPa). a Dislo-
cation densities versus time; b dislocation stresses versus strain. Redrawn from [16] with permission 
of Elsevier

It can be seen from Fig. 8.13 that tertiary creep is reasonably well represented. This 
can also be demonstrated by plotting the strain rate as a function of time, Fig. 8.15. 

Although the cusps in the experimental data do not make a detailed comparison 
possible, it is evident that the overall picture reproduces both the primary and tertiary 
stages in a good way. 

It can be concluded that the presence of back stress from the unbalanced disloca-
tions, prevents the creep rate from increasing in an uncontrolled way that would be 
suggested if a constant true strain rate in the secondary would be assumed. In addition, 
the introduction of this back stress makes it possible to model tertiary creep. 

Also stress strain curves seem to be affected by the back stress. One example is 
illustrated in Fig. 8.16. A stress strain curve for 15% cold worked Cu-OFP is shown. 
A model curve using Eqs. (8.3), (8.17) and (8.18) is also included in Fig. 8.16a.

Fig. 8.15 Creep rate versus 
time for the curve in 
Fig. 8.13 (Cu-OFP, 75 °C 
and 175 MPa). Forged 
material. Redrawn from [16] 
with permission of Elsevier 
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a b  

Fig. 8.16 Stress strain curve for 15% cold worked Cu-OFP at 125 °C and 1 × 10−4 1/s; a the 
experimental curve is compared to modeling results with Eqs. (8.3), (8.17) and  (8.18) for balanced 
and unbalanced boundary dislocations; b balanced and unbalanced boundary (wall) dislocation 
density. Experiments from [39]. Redrawn from [16] with permission of Elsevier 

It is assumed that the stress strain relations are controlled by the same equations 
as the creep curves in the same way as in other parts of this book. This means that 
the stress level at higher strains should correspond to the stationary stress in a creep 
test. This stress is given by 

σstat = σstat0e
ε (8.31) 

where σstat0 and σstat are the nominal and the true stationary stress that give the same 
strain rate as in the stress strain curve (1 × 10−4 1/s at 125 °C). The stationary stress 
is not identical to the stress strain curve but it is very close to supporting the assumed 
principle. 

The strain dependence of the dislocation densities is given in Fig. 8.16b. The 
balanced and unbalanced dislocation densities are assumed to be the same at zero 
strain. Using these assumptions, the values of kbnd and kbnde can be determined, see 
[16] for details. It can be seen from Fig. 8.16b that the unbalanced dislocation density 
increases with strain and compensates for the increase in the true stationary stress. 

It has been seen above that both creep curves and stress strain curves are strongly 
affected by the back stress from the unbalanced dislocation content. In particular for 
creep, it was demonstrated above that the effect is huge and cannot be ignored. This is 
especially important to take into account in stress analysis with finite element methods 
(FEM). There are two straight forward alternative ways to handle the problem. The 
first way is to take the back stress into account explicitly. This requires however the 
development of special software. The other alternative is to replace the true stress 
σ with σ exp(−ε). This alternative represents no practical problem but there is a
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psychological barrier because it is not in accordance with what people have been 
trained to do. However, ignoring it will give rise to large errors. 

The dramatic effect of the back stress has only been verified for copper at lower 
temperatures. There are no reasons to believe that it should not applicable to other 
materials as well because there is nothing in the derivation that is specific for copper. 
The open question is to what temperature the effect survives. At a sufficiently high 
temperature the back stress from the unbalanced dislocations cannot be expected to 
be stable anymore. This section is mainly taken from [16] where further detail can 
be found. 

8.5 Summary 

• Dislocation cells are formed in virtually all alloys during plastic deformation at 
ambient or near ambient temperatures. Typically the cells and the surrounding cell 
walls are well developed after a plastic strain of about 0.3. At elevated temperatures 
subgrains are formed instead at least for alloys where the stacking fault energy 
is not too low. The subboundaries consist of thin networks of dislocations. The 
presence of cells or subgrains is referred to as substructure. 

• Although the presence of the substructure has been discussed in many contexts 
in the literature, the development of substructure has only been modeled recently. 
Models for subgrain formation during creep and creation of cells during plastic 
deformation are presented in the chapter. The models can describe the limited 
amount of data that are available. 

• During plastic deformation dislocations with opposite burgers vectors move in 
opposite directions in cells with the results that some parts of the cell walls have 
only one type of dislocations. This is referred to as unbalanced dislocations. 

• The unbalanced dislocations are not exposed to static recovery since they cannot 
meet a dislocation of opposite sign. As a consequence the dislocation density and 
creep strength can continue to grow. This is believed to be the main mechanism 
behind the sometimes dramatic increase of the creep strength after cold work. 

• The presence of unbalanced dislocations can also explain why creep curves at 
near ambient temperatures have a similar appearance as at much higher temper-
atures. The unbalanced dislocations form a massive back stress that counteracts 
the rapidly increasing true applied stress with increasing strain. 
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Chapter 9 
Grain Boundary Sliding 

Abstract During plastic deformation at elevated temperatures, grains move relative 
to each other which is referred to as grain boundary sliding (GBS). The amount 
of GBS is proportional to the creep strain with a proportionality constant that is 
known from finite element analyses, and found to agree with experiments for Cu. 
The most import effect of GBS is that it gives rise to the initiation of creep cavities, 
Chap. 10. GBS is also the main mechanism for superplasticity. A basic model for 
superplasticity is presented. 

9.1 General 

During creep neighboring grains are displaced along the grain boundaries (GB) 
relative to each other when they are exposed to shear stresses. This is referred to 
as grain boundary sliding (GBS). GBS can easily be observed by metallography by 
introducing scribe lines or a micro grid before the test. The principle is illustrated in 
Fig. 9.1. Using scribe lines on a polished and etched surface, the shear offset under 
application of stress can be observed and measured where the lines cross the grain 
boundary (GB).

The appearance of GBS in a micrograph is shown in Fig. 9.2.
The displacement of the scribe line in Fig. 9.2 was about 5 μm, which is the 

amount of GBS. For a flat GB, the sliding itself experiences little resistance but 
significant stresses appear at the triple points in the grain boundary corners, which 
have to be relaxed by creep deformation. Sometimes the stresses are large enough to 
initiate micro-cracks at the triple points. This is illustrated in Fig. 9.3.

GBS can also result in grains moving perpendicular to the surface. This has the 
consequence that the specimen surface appears wavy. This has often been observed 
for pure Al, see for example [2]. However, using the GB offset technique illustrated 
in Fig. 9.1, the GBS events are only found locally at a limited number of GBs [1, 3]. 
Unfortunately, only a limited number of studies where a systematic measurement of 
the GB offsets has been performed are available.
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Fig. 9.1 Schematic illustration of observation and measurement of GBS; a before test; b after test

Fig. 9.2 SEM observations of GBS in Cu-OFP after 507 h in a creep test at 125ºC, 47 MPa. The 
strain was 20.8%. The grain boundary goes from northeast to southwest. The scribe line is almost 
perpendicular to the grain boundary. Reprinted from [1] with permission of Elsevier

What is causing GBS is not understood in detail. From TEM observations on Al, 
Kokawa et al. have suggested that it is only random grain boundaries that slide. Lattice 
dislocations move into the GBs and introduce the sliding. Ordered GBs (coincidence 
sites) contain extrinsic GB dislocations but they do not contribute to the sliding [4]. 

One sometimes distinguishes between two types of GBS: Rachinger sliding and 
Lifshitz sliding that occur during dislocation creep and diffusion creep, respectively 
[5]. Unfortunately, it has turned out to be difficult to distinguish between dislocation 
creep and diffusion creep experimentally even if the principles are straightforward.
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Fig. 9.3 SEM observation of a micro-crack at a triple point after GBS. The same specimen as in 
Fig. 9.2 [1]

There are numerous scientific papers discussing this issue. The simple principle 
that will be followed in this book is that it is Rachinger sliding when we discuss 
dislocation creep and Lifshitz sliding when diffusion creep is analyzed but without 
being explicit about the type of sliding. 

GBS gives a contribution to the overall creep strain. In general, this contribution is 
expected to be limited. The model analysis in Sect. 9.3 suggests that the contribution is 
about 15% if all the grain boundaries are active in GBS. However, since only a limited 
number of GBs give GBS offsets, the effective contribution is likely to be much 
smaller. However, there is one main exception, superplasticity. The main mechanism 
for superplastic deformation is believed to be GBS of a fine grained structure, where 
more or less all grain boundaries participate. This means that the deformation takes 
place by the sliding of grains against each other without the grains being elongated. 
In this way large elongation values can be obtained during superplasticity. Empirical 
modeling of superplasticity will be discussed in Sect. 9.2. In Sect. 9.3, a basic model 
for grain boundary sliding is presented. This result is used in Sect. 9.4 to find a basic 
model for superplasticity. Another case where GBS plays a major role is for nano-
crystalline materials. The reason is the same as for superplastic materials. The GBs 
constitute a large fraction of the nano-crystalline structures, and GBS is an important 
deformation mechanism [6]. However, it has turned out that the behavior is complex 
and the topic will not be dealt with here. 

During creep, the formation and growth of cavities generate creep damage and 
often initiate failure. In the past, it was believed that creep cavities were nucleated 
due to the presence of large local stresses. However, detailed analysis demonstrated



172 9 Grain Boundary Sliding

that this would require very high stresses and in addition these high stresses would 
relax very quickly during creep. Nowadays, most scientists are convinced that GBS is 
the main mechanism for forming cavities. For example, it can quantitatively explain 
the strain dependence of the number of creep cavities and why creep cavities can be 
formed at low creep stresses. Initiation and growth of cavities will be discussed in 
Chap. 10. The required model for GBS will be presented in Sect. 9.3. 

9.2 Empirical Modeling of GBS During Superplasticity 

Discussion of various aspects of GBS can be found in many papers. However, 
the number of direct measurements of GBS is limited. Results for copper will be 
presented in Sect. 9.3 together with basic modeling. The only area where numerous 
measurements can be found is for superplasticity, where stress strain curves and 
creep rates have been determined. In general, it is assumed that superplasticity is 
controlled by GBS. 

Superplasticity is a mechanism where elongations of several hundred percent can 
be achieved. This makes it possible to produce deeper drawings and more complex 
shapes than in ordinary sheet pressing. There are a number of requirements on the 
alloy to enable superplasticity [7]. The grain size must be fine, less than 10 μm and 
equiaxed. The pressing must be performed at temperatures above half the absolute 
melting point (>Tm/2). The strain rate should lie in the interval 1 × 10−5 to 1 × 10−1 

1/s. The lower limit is to ensure that pressings can be carried out in a reasonable time. 
The upper limit is to prevent damage formation such as the development of cavities. 
Finally the strain rate sensitive mr 

mr = 
∂ ln σ 
∂ ln ε̇ 

should be about 0.5. Under stationary condition, mr is the inverse of the stress 
exponent nN 

mr = 1/nN (9.1) 

The choice of temperature is critical. If the temperature is too low, climb will 
be slow and the pressing would require a long time. A too high temperature will 
initiate grain growth that will destroy the superplastic properties. Often a two-phase 
structure is used to prevent grain growth. An alternative is to have a fine distribution 
of particles that acts as grain refiner. Both these alternatives are associated with the 
risk that abnormal grain growth is initiated implying that some very large grains are 
created, which is totally unacceptable [8]. 

Superplastic formed parts are nowadays used in many applications [9]. High 
strength alloys are typically difficult to form with conventional techniques because of
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limited ductility. Then superplastic forming can be quite helpful. In particular, appli-
cations in aero planes, trains and cars are common. Special high strength aluminum 
alloys probably cover most of the market. However, there are many components 
produced in Mg, Ti and Ni base alloys as well. The total number of commonly used 
alloys for superplastic forming is not very large. Barnes lists 13 alloys [9]. 

After superplastic deformation, the grain shape is still equiaxed. The only imag-
inable mechanism that can accomplish this is GBS. Detailed measurements of the 
amount of GBS during superplasticity confirm that GBS can account for almost all 
of the strain [10]. Creep deformation inside the grains must also take place to accom-
modate local strains. First, bulk dislocations moving towards the GBs are the basis of 
GBS. Secondly, the grains must constantly adapt their shape during the deformation 
and this takes place by intragranular creep. 

A number of authors have used empirical relations to describe the strain rate 
during superplasticity as a function of temperature, stress and grain size, see for 
example [11, 12]. The most common form is 

ε̇ = A 
bDGB 

GkBT

(
b 

dg

)2 

σ 2 (9.2) 

where ε̇ is the strain rate, σ the applied stress, b burgers vector, G the shear modulus, 
dg the grain size, DGB the grain boundary diffusion coefficient and A a dimension-
less factor. For GBS it is natural to assume that it is grain boundary diffusion that 
supplies the vacancies although the contribution from the lattice dislocation is also 
of importance. Eq. (9.2) gives a stress exponent of 2 and exponent of −2 for  the  
grain size. It is not possible to intuitively understand the values of these exponents. 
However, it will be explained in Sect. 9.4 that detailed modeling actually gives these 
exponents. 

Data for a superplastic Zn22%Al alloy is illustrated in Fig. 9.4. 

Fig. 9.4 Creep rate versus 
stress for at Zn22%Al alloy 
at 190 °C at the three grain 
sizes 1.3, 2.6. and 3.9 μm. 
Data from [13]. The grain 
sizes in [13] have been 
transferred to linear intercept 
values
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In Fig. 9.4, there are two different levels of the stress exponent. At low stresses, 
the stress exponent is 4, at higher stresses 2. It is the high stress range where the 
superplastic behavior appears. The lower stress range is nowadays assumed to be due 
to the presence of impurities [5]. This range will be discussed further in Sect. 9.4. 
In the superplastic range the grain size dependence has an exponent of about −2 
again in accordance with Eq. (9.2). A comparison of the data with modeling will be 
presented in Sect. 9.4. 

9.3 Grain Boundary Sliding in Copper 

Crossman and Ashby [14] formulated a model for the contribution from GBS to 
the overall creep strain. The basic steps in this model will be followed. The inverse 
relation namely the amount of GBS generated by an amount of creep strain is equally 
interesting. The relative displacement uGB of neighboring grains is controlled by 
viscous flow. If the GB is exposed to a shear stress, the displacement rate can then 
be expressed as 

duGB 
dt  

= 
δGB 

ηGB  
τ (9.3) 

where δ is the width of the grain boundaries (taken as 2 b, where b is burgers’ vector; 
a common assumption) and τ is the shear stress acting on the grain boundary. ηGB is 
the viscosity of a flat grain boundary 

ηGB = 
kBT 

8bDGB 
(9.4) 

kB is Boltzmann’s constant, T the absolute temperature and DGB the grain boundary 
diffusion coefficient. If ledges with the height hL are present, the viscosity in Eq. 
(9.4) for a flat GB is increased by a factor of (hL/b)2 [15] 

ηGB = 
kBTh2 L 
8b3 DGB 

(9.5) 

Presence of a distribution of particles also increases the viscosity [15] 

ηGB = 
kBT fAd2 

part 

8b3 DGB 
(9.6) 

where f A and dpart are the area fraction and diameter of particles in the boundary. 
Equations (9.5)–(9.7) thus represent three different types of GBs. A finite element 
analysis was performed for hexagonal grains with sliding boundaries and grains 
following power-law creep [14]. The sliding of the boundaries is so fast that in
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general they can be considered as flaws. The overall creep rate could be described 
by introducing a stress enhancement factor f c 

ε̇ = ε̇0

(
fc 

σ 
σ0

)n 

(9.7) 

σ is the applied stress and n is the creep exponent. ε̇0 and σ0 are constants. Crossman 
and Ashby [14] gave a value of  f c = 1.1. Ghahremani refined the analysis and found 
a value of f c = 1.16–1.3 [16]. Also Hsia et al. [17] repeated the analysis and got 
f c = 1.17 for the same geometry. In [14, 16] also the contribution to the overall 
displacement rate was assessed 

φ = 
U̇GBS 

U̇All 
(9.8) 

U̇All is the total displacement rate, which must be precisely defined in relation to 
the grain structure. The φ values found were from 0.15 (nN = 1) to 0.33 (nN = ∞) 
depending on the creep exponent [16]. Both U̇All and U̇GBS are proportional to the 
creep rate ε̇. The finite element analysis [14] shows that the overall displacement rate 
can be expressed as 

U̇All = 
3dgε̇ 
2ξ 

(9.9) 

where dg is the linear intercept grain size and ξ is a factor that gives the relation to 
the side length ahex of the hexagonal grains [1]. 

ξ = dg/ahex = π/4 tan(π/6) = 1.36 (9.10) 

It was early on recognized that the displacement due to GBS is proportional to 
the creep strain [18] 

uGBS = Csε (9.11) 

From Eqs. (9.8), (9.9), and (9.11), the constant Cs can be expressed as 

Cs = U̇GBS/ε̇ = 
3φ 
2ξ 

dg (9.12) 

The model results above will now be compared with experiments for oxygen 
free copper with P (Cu-OFP) and without P (Cu-OF). Observed values from three 
investigations are shown in Fig. 9.5.

The values in Fig. 9.5 represent three types of tests: creep at constant load [19], 
creep at constant loading rate [1] and slow strain rate tests at constant strain rate 
[20]. Pettersson’s values increase faster with strain in particular in comparison to the
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Fig. 9.5 Observed 
displacements at grain 
boundaries as a function of 
strain in Cu-OF and Cu-OFP. 
Data from [1, 19, 20]. 
Redrawn from [1] with  
permission of Elsevier

data from [19]. Considering that a wide range of temperatures and strain rates are 
covered, it is not surprising that the values differ. But they are clearly of the same 
order. 

In Fig. 9.6, the displacement in Fig. 9.5 are divided by the strain to obtain the 
values for the constant Cs in Eq. (9.11). 

The constant Cs depends on the strain. Cs is higher at lower strains in all three 
studies. There is a tendency that the rate of decrease is slower at higher strains. This

Fig. 9.6 Observed 
displacements at grain 
boundaries as a function of 
strain in Cu-OF and Cu-OFP 
divided by the creep strain 
giving the constant Cs, Eq.  
(9.11). Data from [1, 19, 20]. 
Redrawn from [1] with  
permission of Elsevier 
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Fig. 9.7 Comparison of 
modeled and observed values 
for the constant Cs, Eq.  
(9.11). Modeled values 
according to Eq. (9.12). Data 
from [1, 19, 20]. Redrawn 
from [1] with permission of 
Elsevier 

decrease in slope has also been found for austenitic stainless steels, although the 
absolute value of Cs is smaller [21]. A complicating factor is that at large strains new 
grains are frequently formed [22]. 

The observed values for Cs are compared to the model in Eq. (9.12) in Fig.  9.7. 
Since the model does not take the strain dependence into account, experimental values 
for all strains are included in the Figure. The model values are at the lower end of 
the slow strain rate data, but at the upper end for the other data. One complication 
is that both large and fine grains were present in the copper in [1]. Since the model 
values are proportional to the grain size, the use of an average grain size does not 
take this variation into account. Results on stainless steels demonstrate that the effect 
is weaker than the model suggests. If this is the case also for copper, the Cs values 
would be underestimated in [20] where grain size is smaller and overestimated in 
[19] where the grain size is larger. This is consistent with the results in Fig. 9.7. 

Although there is considerable variation, a general approximate value of 50 μm 
for Cs seems reasonable, taking into account that it covers a range of temperatures, 
strain rates and three testing techniques. No significant difference between Cu-OF 
and Cu-OFP has been observed. 

9.4 Superplasticity 

As was explained in Sect. 9.2, studies of superplasticity show that the strain rate 
during this process can be described by an empirical equation given in Eq. (9.2). 
According to this equation, the strain rate is proportional to the grain boundary 
diffusion coefficient DGB, it has a stress exponent of 2 and the exponent for the
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grain size dependence is −2. The controlling mechanism is well established. Intu-
itively this is obvious because an equiaxed grain structure remains equiaxed even 
after larger strain, and this would be difficult to reconcile unless GBS is the control-
ling mechanism. The fact that GBS is highly active has also been demonstrated in 
metallographic studies [10]. 

In spite of the fact that the mechanisms are well established and the process is 
well described, no basic model of the creep strain rate during superplasticity has been 
found in the literature. An attempt will be made here is to formulate such a model. 

Grain boundaries (GBs) are normally considered as good sources and sinks for 
dislocations. For superplastic alloys that are fine grained, the recovery of disloca-
tions at the grain boundaries must be taken into account. This is referred to as GB 
annihilation recovery. The rate for this mechanism can be represented as 

dρ 
dt  

= −  
2ρvcl 

dg 
= −  

2ρ 
dg 

MGB 
cl bσ (9.13) 

where ρ is the dislocation density, vcl the climb velocity and MGB 
cl the climb mobility. 

A dislocation has to travel a distance of half the grain size to reach a GB and to 
be annihilated. Since GBS is the controlling mechanism, the dislocations are active 
close to the GB. Consequently, the climb mobility MGB 

cl involves GB diffusion. The 
effective contribution from GB to the diffusion coefficient can be expressed as 

DGBeff = 
πδGB 

dg 
DGB = 

πδGB 

dg 
DGB0e

− QGB 
RG T (9.14) 

where δGB is the width of the grain boundary (taken as 2 b), DGB is the GB diffusion 
coefficient, DGB0 the pre-exponential factor of DGB and QGB the activation energy 
for grain boundary diffusion. To find MGB 

cl Eq. (9.14) for the effective grain boundary 
diffusion coefficient should replace the lattice diffusion coefficient in the expression 
for the climb mobility in Eq. (2.34) 

MGB 
cl = 

πδGB 

dg 

DGBb 

kBT 
e 

σ b3 
kB T (9.15) 

The contribution to the recovery in Eq. (9.14), can now be added to the total 
expression for time derivative in Eq. (2.17) 

dρ 
dt  

= 
mT 

bcL 
ρ1/2ε̇ − ωρ ̇ε − 2τL Mclρ

2 − 
2ρ 
dg 

MGB 
cl bσ (9.16) 

In Eq. (9.16), a time derivative instead of the strain derivative in Eq. (2.15) is  
used. This is achieved by multiplying the equation by the strain rate. There are three 
recovery terms (with minus sign) on the right hand side of Eq. (9.16): dynamic, static 
and GB annihilation recovery. The role of the dynamic recovery is small and that 
term is dropped in Eq. (9.16).
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Considering stationary conditions where the time derivative disappears, an 
expression for the stationary creep rate can be obtained from Eq. (9.16) 

ε̇sec = (2τL Mclρ
3/2 + 

2ρ1/2 

dg 
MGB 

cl bσ)/(  
mT 

bcL 
) (9.17) 

To transfer Eq. (9.17) to stresses, the Taylor Eq. (2.29) is used  

αmTGbρ1/2 = σ − σi (9.18) 

where α is the deformation hardening constant and σi the internal stress from other 
contributions such as precipitation hardening. Inserting Eqs. (9.15) and (9.18) into  
(9.17) gives  

ε̇sec =
(
2τL Mcl

(
(σ − σi ) 
αmTGb

)3 

+ 
2(σ − σi )

2 

(αmTGb) 
πδGB 

d2 
g 

DGBb2 

kBT 
e 

σ b3 
kB T

)
/

(
mT 

bcL

)
(9.19) 

Equation (9.19) includes contributions from both creep in the bulk and GBS. To 
analyze the contribution from GBS, it is given separately 

ε̇GBS sec = 
2bcL 
αm2 

T 

(σ − σi )
2 

G 

πδGB 

d2 
g 

DGBb 

kBT 
(9.20) 

Equation (9.20) gives a stress exponent of 2 and exponent of −2 for the grain size 
dependence. The creep rate in this equation is proportional to the grain boundary 
diffusion coefficient. These features are the same as in the empirical Eq. (9.2). Equa-
tion (9.20) is compared to experimental data for the eutectoid alloy Zn22%Al in 
Fig. 9.8.

The creep rate is shown as a function of stress for five grain sizes at 230 °C. In the 
model a grain boundary diffusion coefficient for Zn is used [23]. The experimental 
curves have two slopes. The slope at the lower range of stresses is believed to be due 
to the presence of impurities [5]. This could be handled in the model by introducing 
a small internal stress in the same way as was done for aluminum for the Peierls 
stress, see Sect. 2.7. However, since the magnitude of the internal stress would not 
be known, it would be meaningless to take it into account. The part with the higher 
slope at low stresses is ignored. In the GBS range for larger stresses, both the stress 
and grain size dependencies are well represented by the model. 

In Fig. 9.9 the corresponding data for Zn22Al are presented at 190 °C. There is a 
difference between Figs. 9.8 and 9.9. In the latter Figure, there is a third stress range 
at higher stress where the slope of the curves increases. This is believed to be due to 
ordinary lattice diffusion controlled creep that is starting to contribute. In this case, 
Eq. (9.19) is used in the model where both GBS and creep by lattice dislocations are 
taken into account. The lattice diffusion coefficient for Zn is used [24].
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Fig. 9.8 Creep rate during superplasticity in Zn22Al for the five grain sizes 1.2, 1.8, 2.5, 3.3 and 
4.3 μm at 230 °C. Model according to Eq. (9.20). Data from [13]

Fig. 9.9 Creep rate during 
superplasticity in Zn22Al for 
the three grain sizes 1.3, 2.6 
and 3.9 μm at 190 °C. Model 
according to Eq. (9.19). 
Experimental data from [13] 

Again both the stress and grain size dependence can be represented by the model. 
From Figs. 9.8 and 9.9, it is apparent that the experimental stress exponent is slightly 
larger than 2 and the absolute value of the exponent for the grain size dependence is 
somewhat larger than 2. This was already observed in the original work [13]. It has 
also been found for other superplastic alloys [11]. 

To illustrate the temperature dependence of the GBS rate, results at 130 °C are 
illustrated in Fig. 9.10.

It can be seen that the model yields values that are higher than the experi-
mental values. This suggests that the grain boundary diffusion coefficient is slightly 
overestimated in the model. However, the stress dependence is well described. 

It has been shown in Figs. 9.9 and 9.10 that there is a transition from GBS to lattice 
creep at high stresses. Langdon has suggested that this corresponds to a situation
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Fig. 9.10 Creep rate during 
superplasticity in Zn22Al for 
the grain size 2.5 μm at  
130 °C. Model according to 
Eq. (9.19). Experimental 
data from [13]

where the grain size goes from being smaller than the subgrain size to being bigger. 
If the grain size is smaller than the nominal subgrain size according to Eq. (9.21), no 
subgrains are present. The subgrain size dsub can be directly related to the dislocation 
stress, Eq. (2.18) 

dsub = 
KsubGb 

σdisl 
(9.21) 

K sub is a non-dimensional constant that typically takes values between 10 and 20. 
Since no value has been found for Zn, the value 18 for Al has been used. The idea 
that the subgrain size is of importance for GBS is natural. In alloys with normal grain 
sizes, dislocations can move 1–3 subgrain diameters. If the grain size is smaller than 
the subgrain size, the dislocations are clearly influenced. In particular, the recovery 
is affected. Annihilation at GBs becomes of importance. In addition, the recovery at 
the subgrains disappears which is equivalent to ordinary static recovery in the bulk. 

In Fig. 9.11 the subgrain size is shown as a function of stress. The range of grain 
sizes from [13] is also presented. The grain size is equal to the subgrain size for 
stresses between 50 and 200 MPa. This is in good qualitative agreement with the 
transitions in Figs. 9.9 and 9.10. The equivalence of the grain size and the subgrain 
size cannot be considered as a general principle since the exact position of the tran-
sition depends for example on the ratio between the diffusion coefficients for grain 
boundary and lattice diffusion. So the precise position must be analyzed for each 
specific experimental case.
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Fig. 9.11 Subgrain size for 
Zn22Al versus stress. The 
range of grain size from [13] 
is included for reference 

9.5 Summary 

• Grain boundary sliding (GBS) is believed to constitute the main mechanism for 
nucleation of creep cavities and to some extent growth of cavities, see Chap. 10. 
GBS is therefore of considerable scientific and technical significance. 

• According to finite element simulations, the amount of GBS is directly propor-
tional to the overall creep strain with a constant Cs that is known. 

• Detailed measurements of GBS have been performed for copper with three tech-
niques; creep at constant load, creep at constant loading rate, and slow strain rate 
tests at constant strain rate over a range of temperatures and strain rates. In spite of 
the varying testing conditions, the measured values for Cs are in close agreement 
with the theoretical value of 50 μm. 

• A basic model for superplasticity is presented. It can successfully describe 
published data for Al22Zn. The form of the basic model is not very different from 
an earlier presented empirical model, but in the basic derivation of the model, 
parameter values could be fixed. 
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Chapter 10 
Cavitation 

Abstract Cavitation is of great technical importance. Nucleated cavities grow and 
link to form cracks that can cause rupture. During creep, cavities are initiated in the 
grain boundaries. The nucleation takes place at particles or at subboundary—grain 
boundary junctions. The main mechanism is believed to be grain boundary sliding 
(GBS), Chap. 9. According to the double ledge model, cavities are formed when the 
particles or subboundaries meet other subboundaries. With this assumption quan-
titative models for cavity nucleation can be derived. They show that the nucleated 
number of cavities is proportional to the creep strain in good accordance with obser-
vations. Cavities can grow by diffusion or by straining. It is important to take into 
account that cavities cannot grow faster than the surrounding creeping matrix, which 
is referred to as constrained growth. Otherwise the growth rate can be significantly 
overestimated. Models both for diffusion and strain controlled growth have been 
available for a long time. A recently developed model for strain controlled growth is 
presented based on GBS. It has the advantage that is associated with a well-defined 
initiation size of cavities and that constrained growth is automatically taken into 
account, features that some previous strain controlled models miss. 

10.1 General 

During creep micrometer sized holes are formed in alloys. These holes are called 
cavities. The presence of cavities is technologically important because the cavities 
have a strong influence on the final rupture, in particular at low stresses. Quantitative 
studies of cavitation have mainly been performed in three groups of alloys that will 
be referred to as Group I, Group II and Group III. Group I consists of fcc alloys: 
copper, austenitic stainless steels and nickel-base alloys. Group II includes creep 
resistant low alloy steels typically with a ferritic-bainitic microstructure. Also the 
classical 12%Cr steel (X20) is included in this group because it shows the same type 
of behavior. Group III represents the advanced martensitic 9% Cr creep resistant 
steel. The reason why it is important to distinguish between these groups is that the 
cavitation occurs in different ways. In Group I, the cavities appear mainly in the
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grain boundaries, and in Group II the cavities are found in the prior austenite grain 
boundaries. The main location of cavities in Group III is the lath boundaries in the 
martensite. For a review on earlier work on cavitation during creep, see [1] and for 
more recent work [2]. 

Models for the formation and growth of cavities have primarily been developed 
for Group I and II alloys. The analysis in this chapter will concentrate on these types. 
Much less is known about the martensitic steels in Group III in spite of their extensive 
use in modern fossil fired power plants. Information about Group III steels will be 
summarized in Sect. 10.3. 

The cavitation in Group I and II can be discussed in the same way, just recalling 
that when grain boundaries are discussed they are the genuine grain boundaries in 
Group I but the prior austenite grain boundaries in Group II. 

During creep deformation there is some sliding along grain boundaries. Thus, 
there is a movement between neighboring grains that is called grain boundary sliding 
(GBS), Chap. 9. The distance that neighboring grains move with respect to each other 
is referred to as the amount of GBS. According to finite element work, the amount 
of GBS is proportional to the creep strain. This is further discussed in Chap. 9. 

GBS is believed to be essential for cavity formation. If particles are present in 
the grain boundaries cavities can be created when the boundaries slide. Modeling 
of initiation of creep cavitation was first made with the help of classical nucleation 
theory (CNT) [3]. This approach is however associated with several disadvantages. 
It suggests that cavitation would essentially appear at high stresses, which is in 
contrast to observations for engineering steels where cavitation is primarily observed 
at low stresses. CNT tends to give results that appear as a step function in stress and 
temperature again at variance with observations. With CNT it is very difficult to 
make quantitative predictions since results are sensitive to the exact values of the 
chosen parameters. There are many experiments that give that the number of cavities 
is proportional to the creep strain [4, 5] which is difficult to model with CNT. 

With the help of dislocation pile-ups, large stresses can be introduced that could 
initiate creep cavities [6]. Very large stresses in the GPa range are needed to form 
cavities in this way. Very long pile-ups are required that are rarely observed in the 
presence of creep cavities. High stresses can also be generated with the help of a 
shear crack. Riedel used that approach to model cavity formation with the help of 
CNT [7]. However, both these types of models have the same problems with the 
stress dependence as for CNT models in general. 

It has been even more challenging to understand how cavities can be created in 
essentially particle free materials like pure copper. It has been demonstrated that 
the substructure can act as hard zones in the same way as particles. Lim has shown 
that subboundaries interacting with a sliding grain boundary can form cavities and 
that the process is thermodynamically feasible [8]. It is therefore natural to assume 
that the cavity formation around particles that is experimentally well documented is 
associated with the interaction with the substructure. 

Taking into account the role of GBS and the substructure it can directly be 
explained why the number of nucleated cavities is proportional to the creep strain for 
many materials. The proportionality to the strain was first demonstrated by Dyson
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[4] and later surveyed in [5]. Although this empirical rule has been known for many 
years, a basic model was only derived recently based on the so called double ledge 
principle. In this way the value of the proportionality constant could be derived. This 
is shown in Sect. 10.4. 

Already during the 1950ties, Hull and Rimmer derived a model for growth of 
cavities based on diffusion control. However, it was found that their model typically 
exaggerated the growth rate. Dyson realized that the cavities could not grow faster 
than what the creep rate allows [9]. This is referred to as constrained growth. Although 
good models for this effect were derived, they still tended to give a too large growth 
rate. In fact, in models for creep damage development, strain dependent growth is 
often used in spite of the availability of basic diffusion controlled growth models 
[10]. A revised constrained cavity growth model has recently been presented, which 
gives significantly reduced growth rates and solves some of the previous issues. This 
is analyzed in Sect. 10.5. 

After the design life of fossil fired power plants and other high temperature units 
has expired, almost invariably the plant owners want to extend the service time. Then 
it is essential to demonstrate that continued operation is safe. The main life controlling 
factors are related to material properties, not least to creep. Many material properties 
degrade during service. The determination of the degree of property degradation is 
referred to as residual life analysis, which is a major research area today. Concerning 
creep properties, the study of cavitation has and is playing a major role in this 
respect. Neubauer found that the structure of the cavitation changed in components 
during service [11]. It could be followed by taking replicas on components, which 
were studied in the laboratory. First a limited number of single cavities appeared 
in the grain boundaries (category I). Then single cavities were observed in larger 
numbers (category II). Cavities gradually linked to micro-cracks (shorter than a 
grain diameter) (category III). Finally macro-cracks appeared (larger than the grain 
diameter) (category IV). These categories and their interpretation can be found in 
many versions. Their value is that it typically takes a number of years from category 
I to II and from II to III. Only for category IV, immediate action in the form of 
repair or replacement of the component is essential. In this way a system of early 
warning of serious creep damage was established. It has been extensively used. It has 
avoided many fatal accidents and saved many lives. Fatal accidents are fortunately 
rare nowadays. 

The use of replication to follow the development of creep damage is the most used 
traditional method in residual life analysis and also the most successful one. A review 
of non-destructive methods for residual life analysis can be found in [12]. Welded 
joints are particularly prone to creep damage, and in particular the fine grained part 
of the heat affected zone. The Neubauer scheme seems to work well for Group I and 
Group II materials. However, for the modern martensitic steels in Group III, single 
cavities in large extent only appear close to rupture and to find cavities that have 
linked to microcracks is unusual. Early warning of serious creep damage is difficult 
to get. This will be further discussed in Sect. 10.3.
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10.2 Empirical Cavity Nucleation and Growth Models 

As mentioned above, the number of cavities formed during creep ncav was early on 
observed to be approximately proportional to the creep strain ε 

ncav = Bsε (10.1) 

Bs is a constant. This relation was found to be valid for Group I materials 347 
(austenitic stainless steel) and Nimonic 80A (nickel base alloy) and for low alloy 
steels in Group II 1Cr0.5Mo, 0.5Cr0.5Mo0.25 V, 1Cr1Mo0.25 V and 2.25Cr1Mo as 
well as 12CrMoV steels [4, 5]. Notice that there is no constant term in Eq. (10.1). 
The observations show that the formation of cavities starts already at small strains. 

Hull and Rimmer formulated a basic expression for diffusion controlled growth 
of cavities [13]. The equation expresses that the time derivate of the cavity volume 
is proportional to the grain boundary diffusion coefficient and the applied stress. 
As pointed out above the resulting growth rate often greatly exceeded the observed 
values. The situation was much improved when constrained growth was taken into 
account to ensure that cavity growth rate was not faster than the creep rate. A number 
of authors derived models for the reduced stress during constrained growth. For 
example, Rice derived such a model [14]. 

Cavitation models are extensively used in continuum damage mechanics (CDM) 
to assess the (remaining) creep life of components. Three of the common approaches 
in CDM that are supposed to be based on physical constitutive equations are given in 
[15–17]. A review of the models can be found in [10]. In all three papers an empirical 
combination of cavity nucleation and growth is used. 

ω̇cav = C ε̇e

(
σ1 

σe

)ν 
(10.2) 

where ω̇cav is the creep damage due to the cavities, ε̇e the effective creep rate, σ1 

the maximum principal stress, σe the effective stress, and C and ν are constants. 
Equation (10.2) was originally proposed by Cane [18]. There is no indication in the 
papers [15–17] why the empirical Eq. (10.2) was chosen and not the basic constrained 
growth models that were available at the time. There are cases where the growth rate is 
proportional to the creep strain but that cannot be considered to be a general solution. 
This will be further discussed in Sect. 10.5. 

10.3 Cavitation in 9% Cr Steels 

Cavitation has been studied quantitatively to a less extent for modern 9Cr steels (P91, 
P92) in Group III in comparison to materials in Group I and II. This is surprising 
considering that they are common materials in pipes and tubes in modern fossil fired
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power plants. Much of the data has been collected from ruptured specimens with 
welds or failed welded components. For a survey, see [19]. 

In 9Cr steels cavities are primarily formed at lath boundaries, but also at prior 
austenite grain boundaries. The cavities appear as single units even close to fracture. 
This should be contrasted to the Group I and II materials where even at fairly low 
fraction of the rupture life the cavities are arranged in rows at the grain boundaries 
(“pearls on string”). At higher life fraction the cavities link and form microcracks 
and then macrocracks. These three later stages are absent in Group III materials. In 
addition the cavities in Group III materials are observed only very close to the fine 
grained zone in the HAZ, where the failure takes place (type IV cracking). All these 
facts make is more difficult to locate the cavitation. 

Siefert and Parker [19] made an attempt to estimate the number of cavities ncav 
as a function of the life fraction t/tR 

ncav 
ncavR 

=
(
1 − 

t 

tR

)μcav 

(10.3) 

where ncavR is the number of cavities close to rupture that is estimated to be about 
800 cavities per mm2. μcav is a constant. For materials with a low creep ductility μcav 

= 0.5. Although the majority of casts of P91 has a high ductility, there is a significant 
fraction where the reduction of area at rupture is less than 20%. μcav is reduced with 
increasing ductility, which means that the cavitation appears later in life. This has to 
be taken into account in residual life time analysis. 

It has been found that it is often more difficult to observe cavities metallographi-
cally for Group III than for the other Groups. This applies both to replication and direct 
observation in the lab (Charman, personal communication 2021). It is recommended 
to use laser microscopy to safely observe the cavities. 

In Sects. 10.4 and 10.5 basic models for cavity nucleation and growth are intro-
duced. These models are based on the assumption that the cavities are located at the 
grain boundaries. Since this is not always the case for Group III materials, the models 
are not automatically satisfied. Since suitable data for the strain and time dependence 
of cavitation of 9Cr steels cannot be located, it is not possible to be more specific 
about the applicability of the models for the Group III materials. 

10.4 Basic Model for Cavity Nucleation 

10.4.1 Thermodynamic Considerations 

In the past a number of mechanisms have been proposed for the formation of creep 
cavities. One idea is that atomic bonds are ruptured. However, this requires very 
high stresses and even if such stresses would be initiated they would quickly relax 
in a creeping material [6]. Another suggestion is that the accumulation of vacancies
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can be handled with classical nucleation theory [3]. This gives a very strong stress 
dependence suggesting that cavities would almost exclusively appear at high stresses 
[20]. This is at variance with observations since most cavities are formed at low 
stresses. High stresses can appear at grain boundary ledges, triple points and particles. 
A common assumption is that cavities are formed by decohesion at particles. High 
stresses are required in most models. A threshold must be exceeded and an incubation 
time is required [3, 21]. Contrary to these suggestions, observations demonstrate that 
cavity nucleation is strain controlled rather than by stress and cavitation is particularly 
frequent at low stresses as pointed out above. Statements in the literature have also 
concluded that earlier theories are not successful [22, 23]. These papers also give 
excellent reviews of earlier work. 

New ideas for nucleation mechanisms came from the studies on copper. It is well 
established that extensive cavitation can take place in copper during creep [24]. It is 
noticeable that the number of particles is typically so low that they cannot contribute 
significantly to the cavitation. A model by Lim gave a possible explanation [25]. 
He assumed that a sliding grain boundary can form cavities where subboundaries 
reach the boundary. Grain boundary dislocations formed pile ups that exerted suffi-
cient stress on the grain boundary–subboundary intersection that a cavity could be 
nucleated. He made a thermodynamic analysis of the situation and showed that an 
energy gain was obtained when a cavity was formed. In his model, the high stress is 
a result of a stationary creep process and avoids the problem with stress relaxation. 
The change in free energy during the formation of a cavity can be expressed as

ΔG = −r3 Fvσappl + r2 Fsγs − r2 FGBγGB − (ΔG1 + ΔG2 + ΔG3) (10.4) 

γs and γGB are the surface and grain boundary energies per unit area and 

Fv = 2π/3(2 − 3cosα + cos3 α) 

Fs = 4π(1 − cosα) 

FGB = πsin2 α 

where α is half the tip angle of the cavity. The first term in Eq. (10.4) is the  work  
done by the applied stress. The second and third terms represent the modification in 
the surface and grain boundary energies when a cavity is formed. The fourth term is 
the decrease in the strain energy. ΔG1 is the change in the line energy of the grain 
boundary dislocations (GBD). ΔG2 is the interaction energy between the remaining 
and the consumed GBD. The strain energy ΔG3 is the reduction of the strain energy 
of GBDs outside the cavity. Details of the application of Lim’s fairly complex model 
can be found in [26, 27]. 

Cavitation in copper and austenitic stainless steels has been analyzed with Lim’s 
model. If ΔG in Eq. (10.4) is negative, cavitation can take place. When the applied 
stress σappl is raisedΔG becomes more negative and cavitation is more likely. On the
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Fig. 10.1 Minimum stress 
to form cavities at cell 
boundaries versus 
temperature for oxygen free 
pure Cu-OF and phosphorus 
alloyed copper Cu-OFP. For 
comparison the stress that 
gives creep rupture after one 
year (10000 h) is included. 
From [28]. Reproduced with 
the permission of Elsevier 

other hand if σappl is reduced cavitation does not readily occur. This is precisely as 
expected. When σappl is below a minimum valueΔG becomes positive and cavitation 
is no longer possible. This minimum cavitation stress for Cu is shown as a function 
of temperature in Fig. 10.1. The main temperature dependence is due to the last term 
in Eq. (10.4). 

A comparison is made in Fig. 10.1 to the creep rupture strength for copper for 
10000 h. The rupture strength are higher than the minimum cavitation stresses. 
Since the rupture strength is used in design (with a safety factor), this demonstrates 
that cavitation at the intersections between subboundaries and grain boundaries is a 
thermodynamically feasible process. 

It is well documented that oxygen free copper Cu-OF can have a much lower creep 
ductility than the same alloy with 50 wt. ppm P, Cu-OFP [29]. It has therefore been 
decided to use Cu-OFP but not Cu-OF in copper canisters for disposal of spent nuclear 
fuel [30]. The origin of the low creep ductility of Cu-OF is the extensive formation 
of creep cavities [30]. It is evident from Fig. 10.1 that the minimum cavitation stress 
is much lower for Cu-OF than for Cu-OFP, which explains the difference in creep 
ductility between the materials, Sect. 13.3.1. 

It can also be demonstrated that the minimum cavitation stress is well below 
the rupture strength for common austenitic stainless steels 304H (18Cr10Ni), 316H 
(17Cr12Ni2Mo), 321H (18Cr12NiTi), 347H (18Cr12NiNb) [31]. This is illustrated 
for 347H in Fig. 10.2. The ratio between the rupture strength and the minimum 
cavitation stress is reduced with increasing temperature, which would suggest that 
the amount of cavitation would be reduced with increasing temperature contrary to 
observations. It is likely that Lim’s model does not fully give the correct temperature 
dependence.
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Fig. 10.2 Minimum 
cavitation stress versus 
temperature for TP347H 
austenitic stainless steel. 
10000 h rupture data from 
ECCC for 347H are shown 
for comparison. Redrawn 
from [2] with permission of 
intechopen 

10.4.2 Strain Dependence 

Most researchers today assume that the nucleation of cavities is due to grain boundary 
sliding (GBS). There are several reasons for this. In many materials cavities are 
formed around particles in the grain boundaries. It has often been found experimen-
tally that the number of cavities is proportional to the creep strain, Eq. (10.1). In 
addition, the amount of GBS is also proportional to the creep strain, Eq. (9.11) 

uGBS = Csε (10.5) 

The constant Cs is given by, Eq. (9.12) 

Cs = u̇GBS/ε̇ = 
3φ 
2ξ 

dg (10.6) 

where dg is the grain size, φ and ξ are constants. 
To explain the experimental observations that the nucleation rate is proportional 

to the creep strain rate, Eq. (10.1), Sandström and Wu proposed the so called double 
ledge model [30]. Following the ideas in Lim’s model [25], nucleation is assumed 
to take place when a subboundary on one side of a sliding grain boundary meets 
another subboundary on the opposite side. The position where a subboundary meets 
a grain boundary is referred to as a subgrain corner. The nucleation rate then takes 
the form 

dncav 
dt  

= 
u̇GBS 
dsub 

1 

d2 
sub 

(10.7)
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where dsub is the subgrain diameter. dsub is inversely proportional to the dislocation 
stress that is in general close to the applied stress, Eq. (8.4). Equation (10.7) gives  
the nucleation rate per unit grain boundary area. It must also be added to Eq. (10.7) 
that at most one nucleus is formed in each subgrain. Equation (10.7) describes the 
situation for a particle free material. If particles are present, nucleation is assumed to 
occur when a subboundary hits a particle on a sliding grain boundary. Considering the 
nucleation at both particles and subgrain corners, the nucleation rate can be expressed 
as [31] 

dncav 
dt  

= 
0.9Cs 

dsub

(
gsub 
d2 
sub 

+ 
gpart 
λ2

)
ε̇ = Bsε̇ (10.8) 

where λ is the interparticle spacing in the grain boundary. In Eq. (10.8), factors gsub 
and gpart are introduced for the fraction of subgrain corners and particles where cavity 
nucleation takes place. The values of gsub and gpart will be discussed below. 0.9 is a 
factor that takes into account the averaging of different orientation. The derivation 
is comparatively lengthy. For this reason the derivation is not presented here [31]. 

10.4.3 Comparison to Experiments for Copper 

Das et al. have recently presented measurements on nucleation of creep cavities 
in copper using small angle neutron scattering (SANS) [32]. Their results will be 
compared with the model in Sect. 10.4.2. They give values for the spacing λcav 

between cavities in the grain boundaries. The spacing can be transferred to the number 
of cavities ncav per unit grain boundary area as 

ncav = 1/λ2 
cav (10.9) 

The results for ncav as a function of stress is shown in Fig. 10.3.
In Fig. 10.3 the model values are about a factor of 4 below the experimental ones 

but show the same stress dependence. The ratio between the tests at the two times 
is about the same. There is also another way to determine the cavity density in [32] 
from their volume fraction f V and the cavity radii Rcav 

ncav = 
fV 

π R2 
cav 

(10.10) 

The values from Eq. (10.10) fall below the model values contrary to the values 
according to Eq. (10.9). Since it is more difficult to measure the volume fraction 
and the cavity radius than the cavity spacing, the values from Eq. (10.10) are more 
uncertain and are not shown in Fig. 10.3. 

Das el al. evaluated the parameter Bs in Eq. (10.8), i.e. the ratio between the 
nucleation rate and the creep rate or expressed in another way the ratio between the
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Fig. 10.3 Modeling and 
experimental number of 
cavities per unit grain 
boundary area as a function 
of stress for two testing 
times. Model values from 
Eq. (10.8) and experiments 
from [32]

cavity density and the creep strain. The experimental and the model values are given 
in Fig. 10.4. Unfortunately data are not available for exactly the testing time as in 
Fig. 10.3. 

The model values are a factor of 2 above the experimental data this time. The stress 
dependence is about the same in the model and the experiments. It should be noticed 
that with the same model in the Figures, model values are above the experimental 
ones in Fig. 10.4 contrary to those in Fig. 10.3. This indicates an uncertainty in the 
experimental data and the consistency between models and observations is acceptable 
considering this effect. It is valuable that the fairly dramatic stress dependence in the 
model (σ3) is reproduced in the observations.

Fig. 10.4 Modeling and 
experimental values for the 
ratio Bs between the number 
of cavities per unit grain 
boundary area and the creep 
strain as a function of stress 
for a testing time of 17.5 h. 
Model values (line) from 
Eq. (10.8) and experiments 
(points) from [32] 
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Fig. 10.5 Modeling and 
experimental number of 
cavities per unit grain 
boundary area as a function 
of creep strain for austenitic 
stainless steel collected from 
literature. Redrawn from [31] 
with permission of Springer 

10.4.4 Comparison to Experiment for Austenitic Stainless 
Steels 

A comparison of the model in Eq. (10.8) to experimental data for austenitic stainless 
is given in Fig. 10.5. Data for TP347 (17Cr12NiNb), TP304 (18Cr10Ni) and TP321 
(17Cr10NiTi) are presented. Nucleation at both subgrain corners and particles are 
taken into account. Considering the scatter in the data, the observations give good 
support to the model. In Fig. 10.5, the factors gsub and gpart are taken as unity. Thus 
every subgrain corner and particle is assumed to contribute to the nucleation. This 
cannot always be assumed to be the case but systematic studies have not been found. 

10.5 Models for Cavity Growth 

10.5.1 Unconstrained Cavity Growth Model 

Once the cavities have been nucleated they can start to grow if they exceed a critical 
size. Growth of creep cavities are in general assumed to be controlled by diffusion. 
There can also be contributions from straining. Strain controlled growth is considered 
in Sect. 10.5.3. A diffusion controlled growth model was first proposed by Hull and 
Rimmer [13]. Beere and Speight simplified this formulation [33] and this is the 
version that is used nowadays 

dRcav 

dt  
= 2D0Kf(σ − σ0) 

1 

R2 
cav 

(10.11)
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Rcav is the cavity radius in the grain boundary plane, dRcav/dt its growth rate, 
σ the applied stress, σ0 the sintering stress 2γs sin(α)/Rcav, where γs is the surface 
energy of the cavity per unit area and α the cavity tip angle. The presence of the 
sintering stress σ0 ensures that only cavities that are larger than a critical size grow. 
δ the grain boundary width, DGB the grain boundary self-diffusion coefficient, Ω

the atomic volume are combined into a grain boundary diffusion parameter D0, D0 

= δDGBΩ/kBT. kB is the Boltzmann’s constant and T the absolute temperature. The 
factor K f was introduced in [34]. It takes into account the role of the size of the cavity 
in relation to that of the surrounding area that can deliver vacancies for the growth 
of the cavity. It is a function of the cavitated grain boundary area fraction f a = (2R/ 
λcav)2 

Kf = −1/
[
2 log  fa + (1 − fa)(3 − fa)

]
(10.12) 

λcav is the spacing between cavities in the grain boundary. It can be determined from 
number of cavities per unit grain boundary area ncav, cf.  Eq. (10.9) 

λcav = 1/ 
√
ncav (10.13) 

ncav is derived with the nucleation relation, Eq. (10.8). 
The cavities cannot grow unless the stress is larger than the sintering stress σ0. 

This means that the cavity radius must have reached a certain size for growth to take 
place, which is referred to as the nucleation radius Rnucl. From the expression for the 
sintering stress, Rnucl can be found 

Rnucl = 
2γs sin(α) 

σ 
(10.14) 

Das et al. give data for the cavity radius for short creep testing times measured 
with small angle neutron scattering (SANS) [32]. The cavity radii should be close to 
Rnucl. A comparison between their data and Eq. (10.14) is illustrated in Fig. 10.6.

In Fig. 10.6, a cavity tip angle of 55° has been assumed. A precise value of the 
tip angle is not known but in the literature values of 50–70° are often used. It can be 
seen that the nucleation radius is well represented by Eq. (10.14). The mechanisms 
for the initial growth of creep cavities are not well established. But it is likely that 
it takes place by GBS, see Sect. 10.5.4. Since the cavities are initiated by GBS, it is 
reasonable that the first growth also occurs by this mechanism. 

10.5.2 Constrained Cavity Growth 

It was early on found that the expression for diffusion growth in Eq. (10.11) often  
exceeded observed values. Dyson noticed that the predicted growth rate many times 
was larger than the creep strain rate which he considered to be unphysical [9]. He
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Fig. 10.6 Modeling and 
experimental values for the 
cavity nucleation radius as a 
function of stress for the 
testing time 17.5 h for Cu. 
Model values from 
Eq. (10.14) and experiments 
from [32]

suggested that the growth rate should always be less than the creep rate that is referred 
to as constrained growth. Here the expression for constrained growth derived by Rice 
will be used [14] 

dRcav 

dt  
= 2D0Kf(σred − σ0) 

1 

R2 
cav 

(10.15) 

The only difference between Eqs. (10.11) and (10.15) is that the applied stress is 
replaced by a reduced stress σred 

σred = σ0 + 1 
1 
σ + 32D0 Kf 

λ2 
cavdgβ ̇ε(σ ) 

(10.16) 

where β is a material constant (β = 1.8 for homogeneous materials), and dg the grain 
diameter. Equation (10.15) satisfies the criterion formulated by Dyson. 

In Rice’s paper an assumption was made about linear viscoplastic opening of a 
crack. In a reanalysis, He and Sandström did not make the assumption about linearity 
[35]. A grain structure with a pillar of height h and width corresponding to the grain 
size dg was set up. The creep deformation in this pillar in the loading direction z can 
be expressed as 

dz  

dt  
= 4π D0Kf(σred − σ0)ncav + hε̇(σred) = hε̇(σ ) (10.17) 

ε̇(σred) and ε̇(σ ) are the creep rates at the reduced and applied stress, respectively. 
In the first expression for dz  dt  the first term is the volume growth rate of a cavity 
multiplied by the number of cavities per unit grain boundary area. The second term 
is the creep displacement of the pillar at the reduced stress. The second expression for 
dz  
dt  is the displacement of the surrounding material at the applied stress. According
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Fig. 10.7 Reduced stresses 
according to Eq. (10.16) 
(dash-dotted) and (10.18) 
(dashed) versus time for the 
austenitic stainless steel 
18Cr10 Ni (TP304) at 
727 °C and 100 MPa. 
Redrawn from [36] with  
permission of Elsevier 

to Eq. (10.17), the cavity growth rate plus the creep rate around the cavity matches 
the average creep rate. This is a stronger criterion than the original requirement on 
constraint. The height of the pillar h was determined with finite element analysis. 
The finding was that the pillar height was related to the cavity radius h ≈ 2Rcav [35]. 
With this result, Eq. (10.17) takes the form 

2π D0Kf(σred − σ0)/L
2 Rcav + ε̇(σred) = ε̇(σ ) (10.18) 

To find σred, the equation has to be solved by iteration. This new value for σred is 
lower than what the expression (10.16) gives. An illustration of this is presented in 
Fig. 10.7. In particular, the difference is significant at longer times. 

These reduced stresses are quite important when describing experimental data. A 
comparison to experimental data for common austenitic stainless steel is shown in 
Fig. 10.8. Data for 18Cr10Ni steel with and without Nb or Ti are illustrated. This 
new model for constrained growth clearly gives an improved description of data.

10.5.3 Strain Controlled Cavity Growth 

A contribution from plastic deformation to cavity growth can also be obtained. The 
most well established model is due to Cocks and Ashby [37]. They analyze how the 
area fraction f h of cavities in a grain boundary perpendicular to the loading direction 
increases with strain. They derived the following time derivatives for f h and the axial 
strain εa in the loading direction 

d fh 
dt  

= 
ε̇ss 

αh

(
1 

(1 − fh)nN 
− (1 − fh)

)
(10.19)
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Fig. 10.8 Cavity radius as a 
function of creep time for 
18Cr10Ni without or with 
Nb (347) or Ti (321) 
austenitic stainless steels. 
The creep tests were 
performed at temperatures in 
the interval of 650–812 °C. 
Redrawn from [36] with  
permission of Elsevier

dεa 

dt  
= ε̇ss

(
1 + 

2Rh 

αhdg

(
1 

(1 − fh)nN 
− (1 − fh)

))
(10.20) 

where the stationary creep is given by 

ε̇ss = ε̇0

(
σe 

σ0

)nN 
(10.21) 

and 

αh = 1/ sinh
(

(nN − 1/2) 
(nN + 1/2) 

σh 

σe

)
(10.22) 

Rh is the initial cavity radius, dg the grain size, σe the effective stress and σh 

the hydrostatic stress. ε̇0, σ0, and nN are constants describing the creep rate. By 
integrating Eqs. (10.19) and (10.20) the cavitated area fraction can be obtained. An 
example is shown in Fig. 10.9. An initial cavitated area fraction of 0.001 is assumed.

The increase in cavitated area fraction is much larger if a larger initial value is 
assumed, which does not seem to be realistic. If the plastic growth is combined with 
diffusion growth, significant contributions can be obtained. The problem with the 
model is that it is not consistent with the principle of constrained growth. The strain 
rate around the cavities can become many times larger than the average creep rate 
and that should not be the situation during constrained growth. This effect is however 
small for low cavitated area fractions, so the results in Fig. 10.9 are still valid. 

Describing the growth rate due to plastic deformation can be handled with a model 
that has been developed by Danavas and Solomon [38]
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Fig. 10.9 Cavitated area 
fraction in grain boundary as 
a function of strain according 
to Eqs. (10.19) and  (10.20). 
Creep exponent nN = 7

dRcav 

dt  
= sin2 (αtip) 

αtip − sin(αtip) cos(αtip) 
exp

(
3σH 

2σe 
− 

1 

2

)
Rcav 

3 
ε̇(σred) (10.23) 

where αtip is the tip angle of the cavity. An important modification has been made in 
Eq. (10.23) in comparison to the original model in [38]. The creep rate is computed 
for the reduced stress, not for the applied stress to make it consistent with Eq. (10.18). 
The expression gives a modest increase in the cavity size except if multiaxial stress 
states are taken into account. In Eq. (10.23) this is considered with the help of an 
expression from Rice and Tracey [39]. There are several alternative ways that have 
been proposed for the influence of multiaxial stress state derived from cavity growth 
during ductile fracture. The role of multiaxial stress cannot be considered to be fully 
settled. 

10.5.4 Growth Due to Grain Boundary Sliding 

It is well established that cavities are often elongated in the plane of the grain 
boundary. As has been analyzed in detail above, it is natural to assume that cavi-
ties are nucleated due to grain boundary sliding (GBS). Once the cavities have been 
nucleated for example around particles, the cavities will be exposed to shearing due 
to the continuing GBS. It is possible that some cavities expand at the same rate as 
the GBS. From Eq. (10.5) this will give a cavity size of 

Rcav = Csε (10.24) 

where Cs is again given by Eq. (10.6), This expression is compared with data for a 
12CrMo steel and a TP347 (17Cr12NiNb) austenitic stainless steel in Fig. 10.10.
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a b  

Fig. 10.10 Cavity radius versus strain. Model according Eq. (10.24); a 12CrMo steel (X20). Data 
from [40]; b TP347 (17Cr12NiNb). Data from [41]. b Redrawn from [42] with permission of 
Taylor & Francis 

The results give a reasonable description of the cavity growth data for the two 
steels. The amount of data to make comparisons to the model is limited. Since the 
constant Cs is proportional to the grain size, the model predicts large cavity radii 
when the grain size is large, which might not be realistic. 

10.6 Summary 

• Nucleation of creep cavities is assumed to take place at particles and subboundary 
junctions in the grain boundaries by grain boundary sliding (GBS). This assump-
tion makes it possible to quantitatively explain the observed strain dependence 
of the number of cavities. In the past attempts have been made to use classical 
nucleation theory, but it gives essentially a step function in stress that is in direct 
variance with observations. 

• Diffusion controlled growth of cavities can satisfactorily describe observations 
for austenitic stainless steels if recent modeling for constrained growth is taken 
into account. Constrained growth ensures that the cavities are not expanding faster 
than the creep rate of the matrix. 

• Several expressions for strain controlled growth exist that are derived from basic 
physical principles. However, these expressions are difficult to verify experimen-
tally since the starting cavity size has a significant effect on the result and there 
is no well-defined way of choosing the size. In addition, some expressions do 
not fulfil the requirements on constrained growth which can give overestimated 
growth rates. A recent model based on GBS avoids these difficulties. The model 
reproduces the limited experimental data that are available.
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Chapter 11 
The Role of Cavitation in Creep-Fatigue 
Interaction 

Abstract There are many empirical models for the development of creep and fatigue 
damage. The perhaps most well-known ones are Robison’s and Miner’s damage 
summation rules. They are based on the mechanical behavior during monotonous and 
cyclic loading. To improve the accuracy of the damage assessment, it is important 
to analyze the changes in the microstructure as well, not least the cavitation. To 
describe cyclic loading, special empirical models have often been used in the past, 
some with numerous adjustable parameters. Recently, a model for cyclic loading 
has been formulated that is based on the corresponding expressions for monotonous 
loading. The main change is that the value of the dynamic recovery constant is 
increased. In this way, cyclic hysteresis loops can be reproduced without adjustable 
parameters. Cavitation is believed to be of the same technical importance during 
cyclic as during static loading. In spite of this, the number of studies of cavitation 
during cyclic loading is quite limited. One set of data exists for a 1Cr0.5Mo steel. The 
static cavitation models have been transferred to cyclic conditions. It is demonstrated 
that these models can describe the cavitation both during low cycle fatigue (LCF) 
and combined creep and LCF. 

11.1 General 

High temperature plants are often exposed to a combination of creep and fatigue. 
A common feature is thermal fatigue where components are exposed to straining 
during start-ups and shut-downs. During operation primary stresses (direct loading) 
as well as secondary stresses (self-equilibrium stresses) appear that give rise to creep 
damage. Although some types of plants like steam and gas turbines are particularly 
exposed to cyclic loading, both creep and fatigue are of importance in many plants. 
In recent years significant contributions from solar and wind power have been added 
to the electric supply. Since the amount of power of these renewable sources depends 
on the weather, additional basic power is needed. This has implied that many fossil 
fired power plants have been put into standby and are operated intermittently. This
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means that number of start-ups and shut-downs are increased and thereby the amount 
of cyclic loading. 

Different types of damage appear depending on the relative amounts of creep and 
fatigue. If there is limited creep due to short loading times at high temperatures, 
the life time is controlled by fatigue [1]. Pure fatigue is dominated by transgranular 
crack initiation, Fig. 11.1a. On the other hand if there is modest amount of fatigue, 
the damage will be dominated by creep. Creep gives rise to cavitation in the grain 
boundaries, Fig. 11.1b. If fatigue and creep take place sequentially, the main cracks 
changes from transgranular to intergranular, Fig. 11.1c. If creep and fatigue loading 
occur simultaneously, the creep damage in the grain boundaries provides easy paths 
for the fatigue cracks, Fig. 11.1d. 

Creep-fatigue interactions have traditionally been studied with low cycle fatigue 
(LCF) at a temperature close to the maximum operation temperature [3]. To observe 
any influence of creep, it is essential to include hold times in the load cycles [1]. 
However, it has turned out that LCF typically gives a lower amount of damage 
than is found in components. For simulating the role of straining during start-ups 
and shut-downs, thermal mechanical fatigue (TMF) is often used where both the 
loading and temperature are varied during the cycle. It is important that the minimum 
temperature in the cycle is low, since a significant part of the damage is generated at 
low temperatures [4]. LCF and TMF are commonly performed under strain control. 
A number of tests are carried out with a sequence of different maximum strains in the 
cycles. Hold times are introduced at the maximum and/or minimum strains. During

Fig. 11.1 Appearance of creep-fatigue damage mechanisms; a fatigue controlled; b creep 
controlled; c creep-fatigue interaction (sequential); d creep-fatigue interaction (simultaneous). 
Reprinted from [2] with permission of Taylor & Francis 
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the hold times the strain level is fixed during which the stress is relaxing due to creep. 
An alternative is to have hold times at a fixed stress. Since the absolute value of the 
average stress is larger during the hold times in this case, it gives rise to more creep 
damage than for a hold time at constant strain. The amount of creep damage can be 
increased by raising the length of the hold time or by lowering the strain rate in the 
cycle. 

It is well-known that formation of creep cavities plays an important role during 
creep-fatigue interaction. This is illustrated in Fig. 11.1. In spite of the importance of 
creep cavities during creep-fatigue, only limited efforts to generate basic modeling 
of the phenomenon have been taken [5]. Instead, reference has to be made to brittle 
creep rupture during static conditions. It can be assumed that many of the mechanisms 
are similar for cyclic and static loading. The main mechanism for creep damage is 
believed to be initiation and growth of creep cavities in the grain boundaries. When 
the cavitated area fraction in the grain boundaries has reached a certain level, cracks 
are formed and rupture is close in common specimens [6]. In larger specimens and 
components the crack propagation stage is also of major importance [7]. 

Grain boundary sliding (GBS) is commonly assumed to give rise to cavity forma-
tion. This is a natural assumption. Considering for example particles in the grain 
boundaries. GBS will generate extensive shearing around the particles that can easily 
initiate cavities. However, cavities can also be formed in grain boundaries where very 
few particles are present such as in pure copper. Lim provided a model for this situ-
ation by taking into account the presence of substructure [8]. Cavities can form at 
the intersection between grain boundaries and the substructure. He showed that this 
process is thermodynamically feasible and there is an energy gain when cavities are 
formed. Quantitative models for cavity nucleation could now be formulated. 

It has been shown experimentally and with the help of finite element methods 
(FEM) that the amount GBS is proportional to the creep strain [8, 9]. The FEM 
modeling also gives the proportionality constant, so it can be used for quantita-
tive predictions. Using these findings and the assumption that cavities can nucleate 
at particles and subgrain-grain boundary junctions, the double ledge model was 
formulated [10]. This model gives that the number of cavities is proportional to the 
creep strain and the results are in quantitative agreement with observations [11]. It 
is assumed that these principles can be taken over for cyclic loading, Sect. 11.4. 

Models for diffusion controlled growth of creep cavities have been available for 
many years. Unfortunately, these models typically predict much higher growth rates 
than the observed ones. It was however realized that cavities inside a material (not on 
the surface) cannot grow faster than the creep rate of the surrounding material. This 
is referred to as constrained growth in contrast to the unconstrained models [12]. 
Models for constrained growth were quickly developed and gave a better agreement 
with observations, see for example [13]. The models still tended to overestimate the 
growth rate. For this reason, the models were reanalyzed and with the help of FEM 
studies. A new and improved model could be established that is in better agreement 
with experiments [14]. 

Strain controlled growth of creep cavities can also take place in addition to diffu-
sion growth. There are number of models based on plastic straining in the literature.
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Unfortunately, most of these models do not consider constrained growth contrary to 
the situation for diffusion growth, which means that the predicted grow rate can give 
quite large cavity growth during creep. Recently, a model that takes the criterion for 
constraint growth into account has been presented which is of importance during 
creep [5]. During cyclic deformation, constrained cavity growth is not expected to 
be significant due to the often small creep strain in the cycles. This will be discussed 
in Sect. 11.4.2. 

For creep failure it is important to distinguish between ductile and brittle rupture. 
Ductile rupture has been shown to occur after ductility exhaustion or after plastic 
instability has taken place (in specimens necking) [15]. Brittle rupture in many engi-
neering materials takes place after the cavitated area fraction in the grain bound-
aries has reached a certain level. To predict creep rupture, the development of the 
microstructure must be possible to model including the dislocation structure, particle 
structure and the fraction of elements in solid solution. In this way the dislocation 
strengthening, particle hardening and solid solution hardening can be computed. In 
addition, quantitative models for cavity nucleation and growth must be available. 
Such models have been established and the creep rupture behavior has successfully 
been predicted for austenitic stainless steels without the use of adjustable parameters, 
see for example [16]. 

For monotonous loading these principles are well established. However, data and 
parameter values cannot be applied to cyclic loading directly and basic models for 
this case are only available to a limited extent. For example, the value of the dynamic 
recovery constant is much larger during cyclic than during static loading [5]. This 
will be analyzed in Sect. 11.3. Models for cavitation during low cycle fatigue will 
be presented in Sect. 11.4 and compared to experimental data for 1Cr0.5Mo steel. 

11.2 Empirical Principles for Development 
of Creep-Fatigue Damage 

11.2.1 Fatigue and Creep Damage 

Basic models for describing creep rupture are available. Several models have been 
given in this book. However, for cyclic loading basic models do not seem to have 
been developed. However, many empirical models can be found. A model that is 
applicable to many materials is the Coffin-Manson equation 

Ninit = CCM(Δεpl)
−βCM (11.1) 

where N init is the number of cycle to crack initiation and Δεpl the plastic strain range 
in the load cycle. CCM and βCM are constants that are fitted to the observations. 
Equations of type in (11.1) can sometimes also be used for the elastic and total strain 
range. The use of Eq. (11.1) is illustrated in Fig. 11.2.
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Fig. 11.2 Relation between 
the number of cycles to crack 
initiation and the total, 
plastic and elastic strain 
ranges for 1Cr0.5Mo during 
continuous cycling (CC). 
Experimental data from [17]. 
Redrawn from [18] with  
permission of Taylor & 
Francis 

The influence of pre-creep before LCF and/or hold time during the LCF is illus-
trated in Fig. 11.3. With increasing amount of creep, the elastic strain range at a given 
number of cycles to crack initiation is significantly reduced. However, the effect of 
creep on the plastic strain range relation is not very pronounced. 

The total fatigue damage DF is often determined with the help of Miner’s law. It 
is based on linear summation of the damage over individual cycles 

DF =
∑

i 

ni 
Ninit(Δεpl(i )) 

(11.2)

a b  

Fig. 11.3 Influence of 5% pre-creep strain and/or 5 min hold time on the number of cycles to crack 
initiation as a function of strain range for 1Cr0.5Mo. Experimental data from [17]; a elastic strain 
range; b plastic strain range 
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where ni is the number of cycles when the plastic strain range is Δεpl(i) giving 
a number of cycles to crack initiation of N init(Δεpl(i)). When the damage reaches 
unity, failure is assumed to take place. 

There are many expressions for the creep damage DC. The classical principle is 
based on linear time fractions (Robinson rule) 

DC = 
t∫

0 

dt1 
tR(T (t1), σ (t1)) 

(11.3) 

where tR(T, σ) is the rupture time at temperature T and stress σ as a function of time 
t. An alternative way is to base the damage on ductility exhaustion 

DC = 
t∫

0 

dε 
dt  (T (t1), σ (t1))dt1 
εR(T (t1), σ (t1)) 

(11.4) 

where the accumulated creep strain is compared to the rupture ductility. A simple 
assumption of how to combine DF and DC would be to just add them. This means 
that rupture is predicted to occur when 

DF + DC = 1 (11.5) 

However, detailed experiments have shown that such a relation is not conservative 
enough. In fact, bilinear equations have been demonstrated to agree with observations 
and have also been standardized by ASME 

DF = 1 − 
1 − αFC 

αFC 
DC DF ≥ DC 

DC = 1 − 
1 − αFC 

αFC 
DF DC ≥ DF 

(11.6) 

The constant αFC has been found to be material dependent. Holdsworth [7] gives  
the following values: for the austenitic stainless steels 18Cr10Ni and 17Cr12Ni2Mo, 
αFC = 0.33, for 20Cr30NiTi, αFC = 0.11, for 9Cr1Mo (P91), αFC = 0.25 and for 
2.25Cr1Mo, αFC = 0.11. The bilinear relation in Eq. (11.6) is illustrated in Fig. 11.4. 
For comparison Eq. (11.5) would give a straight line between (0, 1) and (1, 0). 
Equation (11.6) is thus considerably more conservative than Eq. (11.5).

For plain specimens of parent metal, Eq. (11.6) is very well supported. However, 
already by considering multi-axial stresses, the prediction of the rupture time in 
Eq. (11.3) becomes an issue. Hayhurst [19] proposed that the rupture stress σR under 
multi-axial conditions could be represented by 

σR = γ1σ1 + γ2σh + γ3σe (11.7)
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Fig. 11.4 Bilinear criterion 
for failure with combined 
fatigue and creep damage 
according to Eq. (11.6) with 
αFC = 0.25. Below the 
criterion line no cracking 
should take place

where σ1 is the maximum principal stress, σh the average of the principal stresses 
and σe the effective stress. γ1, γ2 and γ3 are constants that are fitted to creep rupture 
data under multi-axial conditions. It has been shown that Eq. (11.7) can be used to 
describe experimental data in a number of cases. However, it turns out that different 
authors give different values for γ1, γ2 and γ3. Since the results of Eq. (11.7) are  very  
sensitive to the values of these constants, it is difficult to use Eq. (11.7) to estimate 
the rupture stress. The issues with Eq. (11.7) have been discussed by Wen et al. [20]. 
This is one of the reasons why the ductility exhaustion expression for creep damage 
Eq. (11.4) is preferred by many authors to the estimate of the damage by integration 
over the rupture time, Eq. (11.3) [2]. The influence of multiaxiality on the creep rate 
can be described directly with the Odqvist equation [21] 

ε̇i j  = 
3 

2 

si j  
σe 

h(σe) (11.8) 

The stress dependence of the creep rate h(σ) in the secondary stage can be found 
in Eq. (5.31). The stress deviator sij and the effective stress σe are given by 

si j  = σi j  − σhδi j (11.9) 

σe =
√(

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2
)
/2 (11.10) 

where σij is the stress tensor, δij the Kronecker delta, σ1, σ2 and σ3 the principal 
stresses, and σh the hydrostatic stress (the average of the principal stresses). i and j 
runs over the coordinate directions 1, 2 and 3. By considering uniaxial conditions 
(σ1 = σ, σ2 = σ3 = 0), it can easily be shown that the expected creep rates ε̇11 = 
ε̇u, ε̇22 = −ε̇u/2, ε̇33 = −ε̇u/2 are reproduced, where ε̇u is the uniaxial creep rate.
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For the creep ductility, the influence of multiaxiality has been characterized quite 
well and there is a fair agreement between several models and experiments at least 
for notched bars. This is analyzed in Sect. 13.4.4. For example, the model by Wen 
and Tu seems to represent many sets of experimental data [22]. 

In the paper by Wen et al. [20] it is quite well documented that ductility exhaustion, 
Eq. (11.4) gives a considerably safer prediction than that based on the life fraction 
rule, Eq. (11.3). Even for ductility exhaustion, they demonstrate that the predicted 
damage typically deviates a factor of three up or down. 

These results confirm many earlier results that it is not safe to base damage esti-
mates solely on mechanical properties. It is also important to predict the microstruc-
ture development in terms of particle coarsening, subgrain growth, cavitation, etc. 
and compare the findings with observations. If it can be done with continuum damage 
mechanics that is fine, but it is strongly recommended to use basic models of the 
type formulated in this book. 

A third way to estimate the damage is to compute the cavitated area fraction Acav 

in the grain boundaries (Eq. (13.8)) 

Acav = 
t∫

0 

dncav 
dt '

(t ')π R2 
cav(t, t

')dt ' (11.11) 

where ncav is the number of creep cavities per unit grain boundary area and Rcav their 
radius. The amount of damage is then 

DC = Acav/Acavcrit (11.12) 

Acavcrit is the amount of cavitation when cracks are initiated. If it is possible to 
record the cavitation, it is usually the safest way to assess the amount of damage. 
The modeling of ncav and Rcav during cyclic loading is handled in Sect. 11.4. 

11.2.2 Loops During Cyclic Loading 

During cyclic loading the stress versus strain curves form loops that are called 
hysteresis loops. Perhaps the most common way of describing a hysteresis loop 
is with the Ramberg-Osgood equation 

εa = 
σa 

E 
+

(
σa 

Klp

)γlp 

(11.13) 

where εa is the strain, σa is stress, and E the elastic modulus. K lp and γlp are 
adjustable parameters that are fitted to the experimental data. There are more complex 
approaches based on the assumption that the loops are due to the build-up of residual
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stresses. The first such approach was due to Masing but models based on the 
superposition of a distribution of yield strengths have also been proposed [23]. 

The creep damage in a stress strain loop is primarily due to the stress relaxation 
during a hold time and thereby the amount of creep strain. To describe the stress 
relaxation during a hold time, the Feltham equation is often used for this purpose 

σrel = σst(1 − σ0 Brel log(1 + brelt)) (11.14) 

where σst is the start stress, σrel is the stress after relaxation and t the relaxation time. 
Brel, brel and σ0 are adjustable parameters. References to the original papers can be 
found in [24] where also some applications of the equations are given. 

11.3 Deformation During Cyclic Loading 

11.3.1 Basic Model for Hysteresis Loops 

Empirical models for representing hysteresis loops are readily available. A few exam-
ples were mentioned in Sect. 11.2.2. Adjustable parameters in these models are fitted 
to the experimental data. Often a reasonable fit to the data can easily be obtained. 
There are however drawbacks with the empirical approaches. Typically a good fit 
can be found with many mathematical expressions and then it is difficult to know 
which one represents the correct mechanism. It is practically always desirable to 
extrapolate the results to new condition but if the operating mechanisms are not 
safely identified, generalization of the results becomes quite uncertain unless a large 
set of experimental data is available. Phrased in another way, empirical models are 
not predictable. 

For creep under non-cyclic conditions, basic models have been presented in several 
chapters in the book and also in publications, for a survey, see [25]. The models 
are formulated from basic physical principles and have been shown to reproduce 
experimental data for copper, aluminum and austenitic stainless steels in a satisfactory 
way without using adjustable parameters. Such models are referred to as basic in this 
book. Only limited attempts have been made to perform the corresponding derivation 
for cyclic deformation, which involves elastic, plastic and creep deformation. The 
procedure described in [5] will be followed. The Voce equation can describe the 
plastic flow curve for a number of materials. This equation is given in Eq. (3.14) and 
can also be found in [26]. 

σ = σy + (σmax flow − σy)(1 − e−ωεpl/2 ) (11.15) 

where σ is the applied stress, εpl the plastic strain, σy the yield strength, σmax flow 

the maximum flow stress, and ω the dynamic recovery constant. The deviation from 
linear behavior of the work hardening is controlled by ω. The plastic strain rate can
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be obtained from Eq. (11.15) 

dεpl 

dt  
= 2 

ω(σmax flow − σ)  
dσ 
dt  

(11.16) 

The creep rate in the secondary stage ε̇sec is given in Eq. (4.3). The original 
derivation can be found in [27] 

h(σ ) = 
2bcL 
mT 

Dself0bτL 
kBT

( σ 
αGb

)3 
e 

σ b3 
kB T e

− Qself 
RG T

[
1−( σ 

σimax 
)2

]

e− Qsol 
RT (11.17) 

dεsec 

dt  
= h(σ − σi) (11.18) 

where T is the absolute temperature, σ the applied stress, Ds0 the pre-exponential 
coefficient for self-diffusion, Qself the activation energy for self-diffusion, kB Boltz-
mann’s constant, RG the gas constant, mT the Taylor factor, b Burger’s vector, τL the 
dislocation line tension, σimax the maximum flow stress, and cL a work hardening 
constant. Solid solution hardening gives an additional contribution Qsol to the acti-
vation energy. σi is an internal stress that includes contributions from solid solution 
hardening and particle hardening. The stress exponent is about 3 at low stresses, but 
increases rapidly with increasing stress. According to Eq. (4.6), the primary creep 
rate is given by 

dεprim 

dt  
= h(σ + σdisl sec − σdisl − σi) (11.19) 

In comparison to (11.18) an extra stress has been introduced 

σprim = σdisl sec − σdisl (11.20) 

For this model for primary creep that was described in Sect. 4.3, primary creep is fully 
accounted for just by introducing the extra stress in Eq. (11.20). It is the difference 
between the dislocation stress in the secondary stage σdisl sec and that in the primary 
stage σdisl. Since the dislocation density in the primary stage is normally much lower 
than that in the secondary stage, consequently σdisl sec is much higher than σdisl. The  
result is that the creep rate is much higher in the primary stage than in the secondary 
stage as it should. This is also directly evident from Eq. (11.19). 

In a hysteresis loop, the stress is not stationary but varies all the time. It goes 
through the cycle so the creep process is restarted in every half cycle. This means 
that primary creep is involved. But in fact, Eq. (11.18) is still valid [28]. This can be 
seen from Eqs. (11.20) and (11.21). In these equations, σ + σprim correspond to the 
stress during cyclic loading. The result is simply 

dεprim 

dt  
= h(σ − sgn(ε̇tot)σi) (11.21)
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This equation is obviously identical to Eq. (11.18) apart from the different sign 
in front of σi in the compression and the tension going part of the cycle. 

The total strain rate ε̇tot has contributions from the elastic ε̇el, plastic ε̇pl, and creep 
strain rate ε̇prim. The sum of the elastic, plastic, and creep strain rate is equal to the 
external strain rate 

dεel 

dt  
+ 

dεpl 

dt  
+ 

dεprim 

dt  
= 

dεtot 

dt  
(11.22) 

where the elastic strain rate ε̇el is 

dεel 

dt  
= 

dσ 
dt  

1 

E 
(11.23) 

and E is the elastic modulus. By combining Eqs. (11.16), (11.21), (11.22) and (11.23), 
the stress rate that gives the hysteresis loops is found 

dσ 
dt  

= 1 

1/E + 2/
[
ω(σmax flow − sgn(ε̇tot)σ )

]
[
dεtot 

dt  
− h(σ − sgn(ε̇tot)σi)

]

(11.24) 

The sign function sgn in Eq. (11.21) is necessary to make the equation valid for 
both the tension and compression going parts of the loop. 

When applying Eq. (11.24) for hysteresis loops, the starting point is that the 
properties used in monotonous loading should be taken over to as large extent as 
possible. Creep properties can be found for many materials. However, tensile prop-
erties at elevated temperatures are often more difficult to locate. The temperature 
dependence of the maximum flow stress below the creep range is approximately 
related to that of the elastic modulus (unpublished results) 

σmax flow(T ) = σmax flow(RT)

[
E(T ) 
E(RT)

]2 

(11.25) 

where T and RT represent the value at temperature and room temperature, respec-
tively. The dynamic recovery constant ω has also a related temperature dependence. 
But there is also another effect. ω describes how fast dislocations of opposite burgers’ 
vectors on the same slip plane annihilate when they meet. But during cyclic defor-
mation dislocations meet much more frequently that raises the value of ω. Each half 
cycle in the hysteresis loop can in this respect be considered equivalent to the strain 
to uniform elongation in the monotonous case. The resulting equation for ω is then 

ω(T ) = ω(RT) 
εu 

εr

[
E(RT) 
E(T )

]2 

(11.26)
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where εu is the uniform elongation during monotonous loading and εr the strain 
range during cycling. Observe that the influence of the temperature dependence of 
the elastic modulus is opposite for σmax flow and ω. 

11.3.2 Application of the Cycling Model 

A model for the hysteresis loop is given in Eq. (11.24) based on the same principles as 
for stationary deformation. Elastic, plastic and creep deformation are considered. It 
involves parameter values for monotonous loading except for the dynamic recovery 
constant ω which has to be raised due to the frequent encounter of dislocations during 
cyclic deformation according to Eq. (11.26). 

Equation (11.24) is applied in Fig. 11.5 to the 21Cr11Ni austenitic stainless steel 
253 MA, that has rare earth metal additions to improve the oxidation resistance and 
can therefore be used up to 1000 °C. A loop for continuous cycling is illustrated. 

An acceptable description of the loop is obtained. Data for the studied material 
can be found in [29]. 

The high value of ω is quite important. If the monotonous value for ω is used 
(ω = 15 at room temperature) without taking the loop factor εu/εr into account, the 
observed type of loop cannot be reproduced. This is shown in Fig. 11.6. Obviously, 
a reasonably formed looped cannot be formed.

In Sect. 11.4 on cavitation, the steel 1Cr0.5Mo will be studied. Since creep rate 
data for the steel have not been found, the model values have been compared to 
rupture data assuming that the Monkman-Grant relationship is valid. The rupture 
data is shown in Fig. 11.7.

An Arrhenius expression is fitted to the data

Fig. 11.5 Hysteresis loop 
for low cycle fatigue (LCF) 
of the austenitic stainless 
steel 253 MA at 750 °C. 
Experimental data are 
compared with the model in 
Eq. (11.24). Redrawn from 
[18] with permission of 
Taylor & Francis 
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Fig. 11.6 Simulated 
hysteresis loop for low cycle 
fatigue (LCF) with the same 
parameter values except that 
a low  ω (=15 at room 
temperature) value 
characteristic of monotonous 
deformation is used

Fig. 11.7 Creep rupture 
data for 1Cr0.5Mo steel [30] 
fitted to an Arrhenius  
expression. Redrawn from 
[18] with permission of 
Taylor & Francis

1 

tR 
= CR exp

(
− 

QR 

kBT

)
σ nN (11.27) 

The data for stresses above 300 MPa are ignored since they are not of importance 
for the hysteresis loops. The values of the constants are QR = 391 kJ/mol, nN = 4.4 
and CR = 1.0 × 1012 with the rupture time tR in hours. Equation (11.27) is transferred 
to strain rate with the help of the modified Monkman-Grant relation. 

ε̇ = 
εR 

tR 
(11.28)
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Fig. 11.8 Creep rate model values for 1Cr0.5Mo steel according to Eqs. (11.17) and  (11.18) 
compared creep rupture data [30] fitted to an Arrhenius expression as well as to experimental 
creep rate values from [17] 

The rupture ductility εR is taken as 0.1. The strain rate according to the model 
in Eqs. (11.17) and (11.18) is compared to that in Eq. (11.28) in Fig.  11.8. A few  
experimental data points for the creep rate from [17] are also included. 

A precise agreement in Fig. 11.8 is not to be expected because the Monkman-
Grant equation is only an approximate relation. In addition, the activation energy 
for the rupture is quite high, 390 kJ/mol. This should be compared to the activation 
energy for self-diffusion for ferrite that is 240 kJ/mol. For the creep rate this value is 
raised by the contribution from solid solution hardening that has been taken as 50 kJ/ 
mol. The difference in activation energy between creep rupture and rate is still quite 
significant. The modelled strain rate are anyway of the right order around 550 °C, 
where the results are used for modeling hysteresis loops. 

Four modeled loops for 1Cr0.5Mo steels are compared to experimental data in 
Figs. 11.9 and 11.10.

In Fig. 11.9, two loops cycled at 535 °C with and without pre-creep are compared. 
Pre-creep reduces the stress range probably due to softening of the microstructure 
during the creep process. In Fig. 11.10, the influence of a hold time is illustrated 
that decreases the stress range further. Pre-creep reduces the stress range also in this 
case. It is evident that the model in Eq. (11.24) can at least approximately describe 
the influence of pre-creep and hold time on the hysteresis loops. 

To illustrate the applicability of the model in Eq. (11.24) quite a different case 
where creep has the main influence on the hysteresis loops is considered. This 
should be contrasted to Figs. 11.9 and 11.10 where the dominant influence on the 
loops is from cycling. Loops have been computed for alloy PM2000, which is a 
ferritic oxide dispersion strengthened (ODS) alloy with the approximate composi-
tion 20Cr5Al0.4Ti0.5Y2O3 [31]. Loops are presented in Fig. 11.11 at 1200 °C for 
two different strain rates. The dominance of creep is demonstrated by the flat upper
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a b  

Fig. 11.9 Hysteresis loop for low cycle fatigue (LCF) of the ferritic-bainitic steel 1Cr0.5Mo at 
535 °C. Experimental data from [17] are compared with the model in Eq. (11.24). a Tempered 
condition; b pre-crept to 5% strain at 600 °C. Redrawn from [18] with permission of Taylor & 
Francis 

a b 

Fig. 11.10 Hysteresis loop for low cycle fatigue (LCF) of the bainitic steel 1Cr0.5Mo at 535 °C 
with a hold time of 5 min. Experimental data from [17] are compared with the model in Eq. (11.24). 
a Tempered condition; b pre-crept to 5% strain at 560 °C. Redrawn from [18] with permission of 
Taylor & Francis

and lower parts of the loops. The high temperature is the origin of the strong role of 
creep. The creep strain is of importance at lower stresses. This means that the vertical 
parts of the loops are controlled by the initial straighter part of the work hardening. 
The main effect of the lower strain rate in Fig. 11.11b is that it reduces the stress 
range somewhat.

In Fig. 11.12 a loop for thermo-mechanical fatigue (TMF) is presented. The 
thermal cycling is between 800 and 1200 °C with strain and temperature in phase, 
i.e. the maximum strain and temperature appear together. This is quite a severe test of 
the model in Eq. (11.24). The upper and lower parts of the loop are again controlled 
by creep. Since the temperature is increasing in parallel to the increasing strain in
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a b  

Fig. 11.11 Hysteresis loop for low cycle fatigue (LCF) of the ferritic ODS alloy at 1200 °C. 
Experimental data from [31] are compared with the model in Eq. (11.24); a strain rate 7 × 10–4 1/ 
s; b strain rate 5 × 10–5 1/s. Reprinted from [5] with permission of Springer

the upper part of the loop, the stress is gradually decreasing. For the same reason the 
absolute value of the creep stress increases with decreasing strain in the lower part 
of the loop when the temperature is reduced. 

Previously, the loops in Figs. 11.11 and 11.12 have been represented with an 
empirical model involving a number of adjustable parameters [31]. Such analysis is 
restricted to measured loops, and generalizing the results, for example, for computa-
tion of the fatigue and creep damage is difficult to manage in a safe way. However with 
the basic model for the hysteresis loop, the situation is different. It has been demon-
strated that the model can handle different cases without using adjustable parame-
ters. The possibility to extrapolate the results to new situations is then dramatically 
improved. In the past it has often been assumed that the shape of the hysteresis loops 
is due to the presence of a complex state of residual stresses that can be described 
with the Masing model or a distribution of yield strengths [23]. However, the results

Fig. 11.12 Hysteresis loop 
for thermo-mechanical 
fatigue (TMF) of the ferritic 
ODS alloy PM2000 between 
800 and 1200 °C in phase. 
Strain rate 5 × 10–5 1/s. 
Experimental data from [31] 
are compared with the model 
in Eq. (11.24). Reprinted 
from [5] with permission of 
Springer 
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in this section demonstrate that monotonous and cyclic loading can be handled in 
the same way just by modifying the value of the dynamic recovery constant. 

11.4 Cavitation 

11.4.1 Nucleation of Cavities 

The basic principles for nucleation of creep cavities are assumed to be the same in 
cycling and monotonous loading. Basic mechanisms for nucleation are discussed in 
10.4 and in [6]. Although a number of mechanisms for nucleation have been proposed 
in the literature, the experimental data are fully consistent with the starting point that 
cavities are formed by grain boundary sliding (GBS). Cavities open up at particles or 
at subboundary—grain boundary junctions in sliding grain boundaries. The amount 
of GBS uGBS is proportional to the creep strain, Eq. (9.11) 

uGBS = Csε (11.29) 

The value of the proportionality constant Cs has been determined with the help 
of FEM modeling [32], Eq. (9.12) 

Cs = u̇GBS/ε̇ = 
3φ 
2ξ 

dg (11.30) 

where dg is the grain size, φ = 0.15–0.33 (the value increases with the creep stress 
exponent) and ξ ≈ 1.4 are constants. With the help of the so called double ledge model, 
the nucleation rate can be related to the amount of creep strain [10]. According to 
this model, nucleation is assumed to take place when a subboundary on one side of 
a sliding grain boundary meets a subboundary on the other side or a particle. The 
result is the following nucleation rate, Eq. (10.8) 

dncav 
dt

= 
0.9Cs 

dsub

(
gsub 
d2 
sub 

+ 
gpart 
λ2

)
ε̇ = Bsε̇ (11.31) 

where ncav is the number of cavities nucleated per unit grain boundary area, and 
dsub is the subgrain diameter. dsub is inversely proportional to the dislocation stress 
that is in general close to the applied stress. λ is the interparticle spacing in the grain 
boundary. gpart and gsub are the fractions of particles and subboundary junctions where 
cavitation takes place. The averaging over different orientations gives the factor 0.9. 
Equation (11.31) has been verified successfully by comparison to experiments for 
austenitic stainless steels [11] and copper [33]. 

A 1Cr0.5Mo ferritic-bainitic steel will be used to illustrate cavitation during LCF 
[17, 18]. Some of the specimens were creep tested before the LCF to study the
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Fig. 11.13 Number of 
cavities versus creep strain 
for specimens later used in 
LCF testing. Experimental 
data from [17] are compared 
with the model in 
Eq. (11.31). Redrawn from 
[18] with permission of 
Taylor & Francis 

combined influence of creep and cycling. The creep testing was performed at a stress 
of 100 MPa and was terminated when a creep strain of 5% was reached. The creep 
testing temperatures were 560 and 600 °C. The amount of cavitation is illustrated in 
Fig. 11.13. 

The cavities are assumed to be nucleated around the carbides in the grain bound-
aries. By comparing the distribution of cavities and particles in the grain boundaries 
at 560 °C where micrographs are available, it turns out that one particle out of 5 
initiated a cavity. This means that gpart is 0.2. It is not possible to predict the value 
of gpart. The grain size dgrain was 12 μm and the creep exponent nN = 4.4. Equa-
tion (11.30) then gives a Cs value of 2.5 × 10–6 m. These parameter values are used 
in the modeling also for LCF. 

The nucleation rate at 600 °C is clearly lower than at 560 °C. This has been 
interpreted as a result of particle coarsening. Since no basic creep model is available 
for the 1Cr0.5Mo steel, the amount of coarsening has to be estimated indirectly. With 
the help of Norton equations, the creep rates ε̇560 at 560 and ε̇600 at 600 °C can be 
expressed as 

ε̇560 = AN exp(−Qcreep/RGT560)(σ − σp560)
nN (11.32) 

ε̇600 = AN exp(−Qcreep/RGT600)(σ − σp600)
nN (11.33) 

Since the creep rates have been measured, their ratio 21.3 is known. Since also the 
activation energy Qcreep = 290 kJ/mol and the stress exponent nN = 4.4 are known, 
the ratio between the particle strengths σp560 and σp600 at 560 and 600 °C can be 
determined from Eqs. (11.32) and (11.33). It is found that the particle strengthening 
at 600 °C is 70% of that at 560 °C. Assuming that this is a consequence of differences 
in particle spacing according to model in Sect. 7.3, the corresponding differences in 
nucleation rate can be estimated. These results are applied in Fig. 11.13. It can be
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seen that the observations for a creep strain of 0.05 can be reproduced in a reasonable 
way. 

In [17] LCF tests with and without a hold time in tension were carried out at 
535 °C. The length of the hold time was 5 min. Some of the tests were exposed to 
static creep before LCF as described above. The number of cavities was recorded 
before and after LCF. Only tests with a hold time significantly influenced the number 
of creep cavities. For this reason, the analysis will be focused on the tests with hold 
times. Seven such tests were performed. Some data for these tests can be found in 
Table 11.1.

The six left most columns in Table 11.1 give experimental data for the tests: total 
strain range εtot, stress range σrange, number of cycles to failure Ncycl, number of 
cycles to crack initiation N init, and the number of measured cavities per unit area 
ncav after the test. Properties for the loops have been computed with the model in 
Sect. 11.3.1. Results are presented in the four right most columns in Table 11.1: 
stress drop due to relaxation during the hold time Δεhold, amount of creep strain 
during the hold time Δεhold, amount of creep strain during the tension going part of 
the cycle Δεcr_tens (excluding the strain during the hold time), and amount of creep 
strain during the compression going part of the cycle Δεcr_cmpr. The stress relaxation 
during the hold time varies from 50 to 90 MPa. The corresponding creep strain lies 
between 0.00038 and 0.00067. The amounts of creep strain in the compression and 
tension going part of the cycle are almost two orders of magnitude smaller. Only 
the first of these four quantities can be compared with the experimental data. It was 
demonstrated in Sect. 11.3.2 that this could be accomplished in a successful way. 

It is assumed that amount of cavitation during cycling can be based on Eq. (11.31), 
i.e. on the total creep strain. The total creep strain is the amount of creep strain in each 
cycle multiplied by the number of cycles Ncycl. There are three contributions to the 
creep strain in each cycle: (i) during the hold timeΔεhold, (ii) during the compression 
going part of the cycle Δεcr_cmpr and (iii) during the tension going part Δεcr_tens. 
These contributions are directly added. The result is the following expression for the 
number of cavities ncav 

ncav = Bs(1 − fclose)(Δεhold + Δεcr_tens + Δεcr_cmpr)Ncycl (11.34) 

The total creep strain in each cycle is the expression within brackets in Eq. (11.34). 
The main part of the creep strain appears during the hold time.Δεcr_tens andΔεcr_cmpr 

are much smaller. In addition they have opposite signs so they cancel each other to a 
significant extent. In cycles with hold time in tension, the absolute value of Δεcr_cmpr 

is larger than that ofΔεcr_tens so the overall effect is that the creep during the hold time 
is marginally reduced in the remainder of the cycle. The creep strain is multiplied by 
the Bs constant, Eq. (11.31). Some cavities may close during the compression going 
part of the cycle. This is taken into account with the help of the constant fclose which 
is the fraction of cavities that are closed in each cycle. The value of fclose will be 
estimated in Sect. 11.4.2.



224 11 The Role of Cavitation in Creep-Fatigue Interaction

Ta
bl
e 
11
.1
 
D
at
a 
fo
r 
hy
st
er
es
is
 lo

op
s 
w
ith

 h
ol
d 
tim

e 
fo
r 
1C

r0
.5
M
o 
(R
ep
ri
nt
ed
 f
ro
m
 [
17
] 
w
ith

 p
er
m
is
si
on

 o
f 
Ta
yl
or
 &

 F
ra
nc
is
) 

Pr
e-
cr
ee
p

ε t
ot
,%

σ
ra
ng

e 
M
Pa

N
cy
cl

N
in
it

n c
av
 1
/m

m
2

Δ
σ
ho

ld
 M

Pa
Δ

ε h
ol
d 

× 
10

–2
%

Δ
ε c
r_
te
ns
 ×

 1
0–

4
%

Δ
ε c
r_
cm

pr
 ×

 1
0–

4
%
 

N
o

0.
92

59
0

72
0

54
0

90
5

62
4.
5

6.
2

−8
.2
 

N
o

0.
64

55
9

15
90

12
83

10
97

52
3.
8

2.
8

−4
.4
 

N
o

1.
2

65
5

49
0

34
8

17
3

86
6.
3

9.
7

−1
3 

N
o

1.
53

66
9

40
9

33
4

11
56

91
6.
7

14
−1

8 

Y
es

0.
55

44
7

17
10

14
89

32
02

60
4.
4

4.
3

−6
.5
 

Y
es

0.
83

49
4

67
1

56
8

33
59

79
5.
8

9.
1

−1
4 

Y
es

1.
11

50
2

57
6

51
7

22
33

82
6.
0

15
−2

1



11.4 Cavitation 225

The application of Eq. (11.34) is compared to experimental data in Figs. 11.14 
and 11.15. The difference between the Figures is that in Fig. 11.15, the specimens 
were exposed to creep before the LCF testing. 

For the modeling the same values as in Fig. 11.13 have been used with Cs = 
2.5 μm and dgrain = 12 μm. The subgrain size dsub was determined at the average 
stress in the tension and compression going part of the cycles. The resulting values

Fig. 11.14 Number of cavities versus number of cycles after LCF testing of 1Cr0.5Mo steels at 
535 °C with 5 min hold time in the cycle. Total strain ranges between 0.64 and 1.53%. Experimental 
data from [17] are compared with the model in Eq. (11.34). Redrawn from [18] with permission of 
Taylor & Francis 

Fig. 11.15 Number of cavities versus number of cycles after LCF testing of 1Cr0.5Mo steels at 
535 °C with 5 min hold time in the cycle. Total strain ranges between 0.55 and 1.11%. The specimens 
were exposed to 5% creep strain before the LCF testing. Experimental data from [17] are compared 
with the model in Eq. (11.34). Redrawn from [18] with permission of Taylor & Francis 
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are about dsub = 2 μm. In Fig. 11.15, the number of cavities from the pre-creep in 
Fig. 11.13 has been added to the results. It seems that the cavitation model gives an 
acceptable result for most of the specimens. 

11.4.2 Cavity Growth 

Already in the 1950ties, Hull and Rimmer derived an expression for diffusion 
controlled growth of creep cavities. The expression was later modified by several 
authors to give it a more practical form. For example, Beere and Speight [34] derived 
the following formula that is of the form commonly used today, Eq. (10.11) 

dRcav 

dt
= 2D0K f (σ − σ0) 

1 

R2 
cav 

(11.35) 

where Rcav is the cavity radius in the grain boundary plane, dRcav/dt its growth rate, 
σ0 the sintering stress, 2γs sin(α)/Rcav, where γs is the surface energy of the cavity 
per unit area and α the cavity tip angle. If the cavities are sufficiently small, they will 
shrink rather than grow after nucleation. The sintering stress avoids that the formula 
predicts growth in such cases. DGB the grain boundary self-diffusion coefficient, and
Ωa the atomic volume are combined into a grain boundary diffusion parameter D0, 
D0 = δDGBΩa/kBT. kB is the Boltzmann’s constant and T the absolute temperature. 
K f ≈ 0.1 is approximately a constant. 

As discussed in Sect. 10.5, Eq.  (11.35) typically overestimates the growth rates 
during creep. This problem was solved by introducing the requirement that the growth 
rate should not be higher than the creep rate of the surrounding matrix. This is referred 
to as constrained growth [12]. This means that equilibrium is established between 
the cavity growth and the creep deformation. Without this condition, the growth is 
referred to as unconstrained, and the growth rate in this case is given by Eq. (11.35). 
However, it is difficult to imagine that equilibrium can be established during the 
short cycle time and the small creep strain in common LCF tests. As illustrated in 
Table 11.1, the creep strains in each cycle are quite small. It must be assumed that 
unconstrained growth applies in LCF. 

In addition for diffusion, plastic deformation can also give rise to growth of 
creep cavities. This was discussed in Sect. 10.5.3. A model where the cavity growth 
is proportional to the amount of grain boundary sliding (GBS) will be used [5], 
Eq. (10.24) 

Rcav = Csε (11.36) 

Again the constant Cs is given by Eq. (11.30). After nucleation for example 
around particles, the cavities can continue to expand due to GBS. Elongated creep 
cavities in grain boundaries are often observed. It was demonstrated in Fig. 10.10
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a b  

Fig. 11.16 Cavity radius versus the cycle where the cavity was nucleated. Two examples from 
the tests in Table 11.1 for 1Cr0.5Mo steel. Model values for diffusion controlled growth according 
to Eq. (11.35) and strain controlled growth, Eq. (11.36). Redrawn from [18] with permission of 
Taylor & Francis 

that Eq. (11.36) could describe cavity growth for a 12CrMo steel and an austenitic 
stainless steel TP347 (17Cr12NiNb). 

Equations (11.35) and (11.36) are applied in Fig. 11.16 to two cases in Table 11.1 
for the 1Cr0.5Mo steel. 

Figure 11.16 illustrates how a distribution of cavity sizes is obtained. The cavities 
that are nucleated early are larger since they are more exposed to growth processes. 
The two types of growth mechanisms give different behavior as a function of initiation 
cycle. Diffusion growth shows a rapid increase in cavity radius initially and a slower 
growth later. Strain controlled growth on the other hand has a constant increase with 
cycle number. No detailed measurement of the cavity size was performed in [17]. 
This would have been difficult anyway since the specimens were etched. Taking this 
into account, the computed cavity radii are consistent with the observations. 

In the case of constrained growth, the values from diffusion and strain controlled 
growth should definitely not be added since the two mechanisms give each the 
maximum possible growth rates. This was discussed in Sect. 10.5.3. However, for 
unconstrained growth this conclusion is no longer self-evident. However, it turns out 
in the studied cases for 1Cr0.5Mo that if the two contributions are added quite large 
cavity radii of up to 10 μm are obtained which is not in agreement with observations. 
Adding the two contributions should therefore be avoided. 

Equation (11.35) should in principle be possible to use to estimate the fraction of 
cavities that are closed during the compression going part of the LCF cycle. If it is 
applied directly it does not work. This can be seen in the following way. According 
to Eq. (11.36), in the first cycle a cavity with a radius of about 1 × 10–9 m is formed. 
With Eq. (11.35), such a cavity would disappear in fractions of a second. As a 
consequence, no cavities would be formed contrary to the observations. To make the 
result sensible, another case has to be considered. It is possible that the GBS does 
not take place in each cycle but occurs stepwise. It has been shown for copper during
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static creep that the nucleated cavity size is in accordance with [33] 

Rcavmin = 2γs sin(α)/σ (11.37) 

This relation is obtained by putting σ = σ0 in Eq. (11.35). For the 1Cr0.5Mo 
steel, Rcavmin is about 1.5 × 10–8 m. With a strain rate of 0.003/s, in the compression 
part the cycle time is about 3 s. Using Eq. (11.35) one can derive that cavities that 
are smaller than about Rcavmin/2.5 are dissolved during this time. If it is assumed 
that the formed cavities have initially a size in the interval 0–2 Rcavmin, about a fifth 
of the cavities are closed during the compression part of the cycle. If this value is 
representative, f close in Eq. (11.34) would be 0.2. However, this value is uncertain 
and it has not been applied in the computation of the nucleation rate in Figs. 11.14 
and 11.15. 

11.5 Summary 

• Many plants that are operating at high temperatures are exposed to both creep and 
fatigue. A number of fossil-fired plants are running under intermittent loading 
while in the past they were adapted to base loading. The reason is that renewable 
sun and wind units do not supply power continuously and have to be backed up 
by conventional plants. As a consequence, fossil-fired power plants experience 
often combined creep and fatigue loading nowadays. 

• Numerous empirical methods are available for assessing the material damage 
in plants. The classical Robinson’s and Miner’s damage summation rules have 
been extensively tested. Some results suggest that the damage typically can vary 
from being underestimated by a factor of three to being overestimated by the same 
factor. From a practical point of view such a large uncertainty is not acceptable. To 
base damage assessment just on mechanical properties is consequently difficult. 
It is also important to analyze the changes in the microstructure such as particle 
and substructure coarsening and formation of creep cavities and compare these 
findings with models. In this respect continuum damage mechanics can be quite 
useful. 

• Many empirical models for damage assessment can predict both the development 
of mechanical properties and the microstructure. However, as for all empirical 
models, they have to be adapted to specific cases to give meaningful results. The 
alternative is to use basic models for both mechanical properties and microstruc-
ture. Such models are readily available also for the development of the microstruc-
ture as described in this book. Although basic models are somewhat more complex 
to program, the predictions are far safer. 

• For analyzing creep damage, the assessment of cavitation has been quite useful. 
In recent years basic quantitative models for cavitation have been established that 
are directly applicable in this context. However, the situation has been different 
for cyclic loading. Two essential features have been missing. Prediction of stress
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strain loops has been based on empirical approaches meaning that the results are 
restricted to the experimental case(s) under investigation. It is demonstrated in 
this chapter that many of the basic models applied in non-cyclic situations can 
be transferred to cyclic cases. The main parameter that has to be changed is the 
dynamic recovery constant. The reason for this is simple. During cyclic deforma-
tion dislocations encounter each other much more frequently than in monotonous 
cases and it increases the rate of recovery. Therefore, the recovery constant must 
take a higher value. 

• The other missing feature has been the absence of models for the development 
of cavitation. It is expected that cavitation plays the same important role during 
creep-fatigue interaction as during plain creep. With the help of the models for 
the stress strain loops, the amount of creep strain in each cycle can be computed. 
By applying this in the formula for cavity nucleation, the number of cavities after 
LCF and after combined creep and LCF for a 1Cr0.5Mo steel have been possible 
to compute in an acceptable way. 

• The cavity growth rate for the 1Cr0.5Mo steel has also been analyzed. Both models 
for diffusion controlled and strain controlled growth have been considered. Since 
quite small creep strains appear in each cycle unconstrained diffusion growth 
has been used. The reason is that it is assumed to be unrealistic that equilibrium 
between the cavity growth and the creep deformation could be established. The 
strain controlled growth is based on the assumption that the amount of growth is 
equal to the amount of grain boundary sliding. This assumption has previously 
worked well for two steels during creep where data are available. Although the 
diffusion growth is faster initially, the total growth is about the same as for strain 
controlled growth of the 1Cr0.5Mo steel. The final cavity size is in the interval 
from 0.1 to 1 μm, which seems reasonable. These results should be considered 
as tentative since detailed experiments are not available. 

• It is often assumed that some closure of cavities takes place during the compres-
sion part of the load cycle. With the help of the model for diffusion controlled 
growth, it should in principle be possible to predict the amount of closure. Unfor-
tunately, meaningful results are not obtained unless special assumptions are made. 
Therefore, the amount of cavity closure remains an open issue. In the prediction 
of cavity nucleation for 1Cr0.5Mo, no account of cavity closure has been taken 
into account. Satisfactory predictions have been obtained anyway indicating that 
the amount of cavity closure must be limited. 

References 

1. D.A. Miller, R.H. Priest, E.G. Ellison, Review of material response and life prediction tech-
niques under fatigue-creep loading conditions. High Temp. Mater. Process. (London) 6, 
155–194 (1984) 

2. S. Holdsworth, Creep-fatigue interaction in power plant steels. Mater. High Temp. 28, 197–204 
(2011)



230 11 The Role of Cavitation in Creep-Fatigue Interaction

3. L. Lundberg, R. Sandstrom, Application of low cycle fatigue data to thermal fatigue cracking. 
Scand. J. Metall. 11, 85–104 (1982) 

4. J.J. Moverare, A. Sato, S. Johansson, M. Hasselqvist, R.C. Reed, J. Kanesund, K. Simonsson, 
On localized deformation and recrystallization as damage mechanisms during thermomechan-
ical fatigue of single crystal nickel-based superalloys, in Advanced Materials Research (2011), 
pp. 357–362 

5. R. Sandström, Basic creep-fatigue models considering cavitation. Trans. Indian Natl. Acad. 
Eng. 7(2), 583–591 (2021) 

6. R. Sandström, J. He, Survey of creep cavitation in fcc metals, in Study of Grain Boundary 
Character (inTech, 2017), pp. 19–42 

7. S.R. Holdsworth, Creep-fatigue properties of high temperature turbine steels. Mater. High 
Temp. 18, 261–265 (2001) 

8. L.C. Lim, Cavity nucleation at high temperatures involving pile-ups of grain boundary 
dislocations. Acta Metall. 35, 1663–1673 (1987) 

9. D. McLean, M.H. Farmer, The relation during creep between grain-boundary sliding, sub-
crystal size, and extension. J. Inst. Met. 85, 41–50 (1957) 

10. R. Sandström, R. Wu, Influence of phosphorus on the creep ductility of copper. J. Nucl. Mater. 
441, 364–371 (2013) 

11. J. He, R. Sandström, Formation of creep cavities in austenitic stainless steels. J. Mater. Sci. 51, 
6674–6685 (2016) 

12. B.F. Dyson, Constraints on diffusional cavity growth rates. Metal Sci. 10, 349–353 (1976) 
13. J.R. Rice, Constraints on the diffusive cavitation of isolated grain boundary facets in creeping 

polycrystals. Acta Metall. 29, 675–681 (1981) 
14. J. He, R. Sandström, Creep cavity growth models for austenitic stainless steels. Mater. Sci. 

Eng. A 674, 328–334 (2016) 
15. R. Sandström, J.-J. He, Prediction of creep ductility for austenitic stainless steels and copper. 

Mater. High Temp. 39(6), 427–435 (2022) 
16. J. He, R. Sandström, Basic modelling of creep rupture in austenitic stainless steels. Theoret. 

Appl. Fract. Mech. 89, 139–146 (2017) 
17. J. Storesund, R. Sandstrom, Interaction of creep damage and low cycle fatique damage in a 

1Cr0.5Mo steel. Isij Int. 30, 875–884 (1990) 
18. R. Sandström, Cavitation during creep-fatigue loading. Mater. High Temp. 40, 174–183 (2023) 
19. D.R. Hayhurst, Creep rupture under multi-axial states of stress. J. Mech. Phys. Solids 20, 

381–382 (1972) 
20. J.-F. Wen, S.-T. Tu, F.-Z. Xuan, X.-W. Zhang, X.-L. Gao, Effects of stress level and stress state 

on creep ductility: evaluation of different models. J. Mater. Sci. Technol. 32, 695–704 (2016) 
21. F.K.G. Odqvist, Mathematical Theory of Creep and Creep Rupture (Clarendon Press, 1966) 
22. J.-F. Wen, S.-T. Tu, A multiaxial creep-damage model for creep crack growth considering 

cavity growth and microcrack interaction. Eng. Fract. Mech. 123, 197–210 (2014) 
23. R.P. Skelton, H.J. Maier, H.J. Christ, The Bauschinger effect, Masing model and the Ramberg-

Osgood relation for cyclic deformation in metals. Mater. Sci. Eng. A 238, 377–390 (1997) 
24. S.R. Holdsworth, Creep-fatigue crack growth from a stress concentration. Mater. High Temp. 

15, 111–116 (1998) 
25. R. Sandström, Fundamental models for the creep of metals, in Creep (inTech, 2017) 
26. R. Sandström, J. Hallgren, The role of creep in stress strain curves for copper. J. Nucl. Mater. 

422, 51–57 (2012) 
27. R. Sandstrom, Basic model for primary and secondary creep in copper. Acta Mater. 60, 314–322 

(2012) 
28. F. Sui, R. Sandström, Basic modelling of tertiary creep of copper. J. Mater. Sci. 53, 6850–6863 

(2018) 
29. H.C.M. Andersson, R. Sandstrom, D. Debord, Low cycle fatigue of four stainless steels in 20% 

CO-80% H-2. Int. J. Fatigue 29, 119–127 (2007) 
30. Data sheets on the elevated-temperature properties of normalized and tempered 1Cr-0.5Mo 

steel plates for pressure vessels (SCMT 2 NT) National Research Institute for Metals Tokyo, 
Japan (2002)



References 231

31. R. Sandstrom, H.C.M. Andersson, Modelling of hysteresis loops during thermomechanical 
fatigue, in ASTM Special Technical Publication (2003), pp. 31–44 

32. F. Ghahremani, Effect of grain boundary sliding on steady creep of polycrystals. Int. J. Solids 
Struct. 16, 847–862 (1980) 

33. Y. Das, A. Fernandez-Caballero, E. Elmukashfi, H. Jazaeri, A. Forsey, M.T. Hutchings, R. 
Schweins, P.J. Bouchard, Stress driven creep deformation and cavitation damage in pure copper. 
Mater. Sci. Eng. A 833 (2021) 

34. W. Beere, M.V. Speight, Creep cavitation by vacancy diffusion in plastically deforming solid. 
Metal Sci. 21, 172–176 (1978) 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Chapter 12 
Tertiary Creep 

Abstract In the tertiary stage, the creep rate is continously increasing eventually 
leading to rupture. Many mechanisms can contribute to the increasing creep rate such 
as particle coarsening, substructure coarsening, cavitation, changes in the dislocation 
density and necking. A large number of empirical models exist for the description 
of tertiary creep and the development of creep damage not least in the context of 
continuum damage mechanics (CDM). However, there are also basic models. An 
equation is presented that can describe the whole creep strain versus time curve. 
Only parameters that are already defined for secondary creep are needed. During the 
tertiary stage the true applied stress increases rapidly and faster than the counteracting 
dislocation strength, which is one main reason for the increase in the creep rate during 
the tertiary stage. Cavitation is of importance, but the cavitation is often local and 
therefore gives a modest contribution to the creep rate. According Hart’s criterion, 
necking starts right at the beginning of the tertiary stage. But the necking is not fully 
developed until close to rupture. This is demonstrated both by uniaxial and multiaxial 
models and it is also consistent with available experimental data. 

12.1 General 

Most creep tests are performed as tensile tests at constant load or stress. In a creep 
strain test the strain is recorded as a function of test time, and the result is referred to as 
a creep strain curve. As discussed in detail in Chap. 4, the common form of the creep 
strain curves is that the slope decreases in the primary stage, reaches a minimum in 
the secondary stage and increases in the tertiary stage. In the secondary stage the 
microstructure is assumed to be essentially constant. Changes in the microstructure 
contribute to the increase in the creep rate that is observed in the tertiary stage. These 
changes will be analyzed in this chapter. 

In the scientific literature, much focus has been on secondary creep, primarily 
because that data have been used to identify the operating creep mechanisms. 
However, primary and tertiary creep are technically also of major importance, but 
the number of systematic studies is much more limited. A significant fraction of the

© The Author(s) 2024 
R. Sandström, Basic Modeling and Theory of Creep of Metallic 
Materials, Springer Series in Materials Science 339, 
https://doi.org/10.1007/978-3-031-49507-6_12 

233

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49507-6_12&domain=pdf
https://doi.org/10.1007/978-3-031-49507-6_12


234 12 Tertiary Creep

creep strain in fcc alloys occurs in the primary stage. The key to the understanding 
of creep rupture is the behavior during the tertiary stage. 

The changes in the microstructure that give rise to the acceleration of the creep 
rate in the tertiary stage are traditionally referred to as creep damage [1]. Many 
mechanisms are known that contribute to the creep damage [2]. The most discussed 
ones are particle coarsening and dissolution, formation of creep cavities, recovery of 
dislocations and subgrain growth. In creep resistant martensitic steels microstructure 
degradation has often been observed to induce creep rupture. Fine carbonitrides (e.g. 
MX) coarsen and dissolve during long-term creep. New brittle phases can be created 
(e.g. Z-phase, Laves phase, M6X carbides). The fine particles give a significant 
contribution to the creep strength which is reduced when their number decreases. 
The creep strength and in particular the creep ductility are lowered further when new 
coarse phases are present and act as crack nucleation sites [3–5]. 

Basic models for particle coarsening [6] and subgrain growth have been available 
for a long time. This includes the effect of Zener pinning of subboundaries [7]. This is 
of importance for stabilizing the substructure in martensitic creep resistant steels. For 
cavitation the situation has been less satisfactory. A basic model for cavity nucleation 
has only appeared recently [8, 9]. The models for cavity growth needed improvement 
to describe experimental data, Chap. 10 [10]. Also the dislocation models were 
necessary to extend and take substructure into account to understand why essentially 
the same creep strain behavior is observed at low and high temperatures, Sect. 8.4 
[11, 12]. 

There is extensive literature on modeling of creep damage, not least in the connec-
tion of continuum damage mechanics (CDM) where the models are used to analyze 
the behavior of components. Reviews are given in [13, 14]. Practically all commonly 
used models are empirical or partially based on physical principles with a number 
of adjustable parameters involved. It is important to recognize the limitations with 
the use of adjustable parameters. Empirical models for tertiary creep were analyzed 
in [15]. Only two adjustable parameters were needed for some models to represent 
tertiary creep data in a satisfactory way and with three or four parameters almost any 
of the available models can give a good fit, Sect. 4.2. The important conclusion is that 
a good description with an empirical model does not ensure physical significance 
and does not make the model predictable. An empirical model can be used to identify 
operating mechanisms only if the same parameter values are used to get a good fit 
for a number of curves that is much larger than the number of adjustable parameters. 
A brief summary of CDM is given in Sect. 12.2. 

Spent nuclear fuel in Finland and Sweden will be placed in copper canisters 
500 m down in the bedrock for permanent disposal. Oxygen free copper alloyed 
with 50 ppm P has been selected as canister material because of its creep proper-
ties and its corrosion resistance in the environment. The copper will be exposed to 
creep deformation due to the hydrostatic pressure and the swelling pressure from the 
surrounding bentonite clay at temperatures up to 100 °C. The canisters should stay 
intact for 100000 years until radiation has declined to a low level. The creep proper-
ties of the canister must be possible to predict for such an extended time. This is only 
possible with fundamental creep models. It has been verified that the creep model
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discussed in this book actually can cope with the required extended extrapolation, 
Sect. 14.4.6 [15]. 

Changes in the dislocation structure could generate microstructure degradation. 
A reduction in the dislocation density due to accelerated recovery has been found 
both experimentally [4, 16] and by computation [17]. Creep failure can also be 
induced by nucleation and growth of cavities [9, 10], Chap. 10. Also small defects 
can induce localized deformation if the material is plastically unstable which can 
result in necking [18]. During tensile creep testing at some stage, localized straining 
and necking occur. The role of the size of the initial defect has been studied [19–22]. 

Creep rupture is divided according to the type of failure. It is referred to ductile 
and brittle rupture if the creep ductility is high and low, respectively. There is no 
clear separation between these two types, but a rupture elongation above 30% is in 
general considered as high and an elongation below 10% as low. Brittle rupture is 
more crack sensitive since the creep cavities are more readily created. For brittle 
rupture the failure is primarily controlled by the formation of cavities, and when the 
cavitation is extensive enough, rupture occurs. Ductility exhaustion is assumed to 
initiate failure during ductile rupture. When the creep strain is sufficiently high, a 
plastic instability takes place and the component collapses. From a design point of 
view ductile rupture is preferred since more straining can take place before failure. 
The material is said to be more forgiving. 

It will be assumed that tertiary creep is primarily controlled by the dislocation 
structure. The main mechanism for the increase in the creep rate in the tertiary stage 
has only recently been established [23]. The changes in the dislocation structure 
during a creep test can be quite complex. Modern 9Cr steel is a good example of that. 
To describe the creep deformation no less than three types of dislocation densities 
must be considered: mobile and immobile dislocations in the subgrain interiors and 
dislocations in the subgrain walls [24]. These complications will not be covered here. 
However, the general principles are expected to be the same. Instead, the analysis will 
be restricted to cases where only one type of dislocation controls the main behavior 
that is typical for example for fcc alloys. In this type of material there is generally 
a rapid increase in the dislocation density during primary creep. Contrary to what 
is stated in many places, there is slow continuous increase in the secondary stage in 
load controlled tests. During a creep test, there is a gradual reduction in the specimen 
cross section and for tests at constant load, this means that the true stress is increasing. 
During the secondary creep, this increase is matched by a corresponding increase in 
the dislocation density and thereby also the dislocation stress, Sect. 8.4. The rate of 
increase in the dislocation density is continuously reduced and in the tertiary stage 
this increase cannot keep up with the increase in the true stress and the creep rate is 
raised, Sect. 12.4. 

There are other possible contributions to the increase in the creep rate in the 
tertiary stage. Cavitation plays a role in particular in creep brittle materials. However, 
extensive cavitation is typically strongly localized and does not appear over the whole 
material [25]. This means that cavitation gives a modest contribution to the increase in 
the creep rate. Particle coarsening is another effect. If particle coarsening takes place 
the internal stress from the particles is reduced and thereby an additional increase
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in the creep rate is obtained [26]. Particle coarsening is considered in Sect. 12.3. 
Coarsening of the substructure also takes place, but that is considered to be a part of 
the changes in the dislocation structure mentioned above, Sect. 12.4. Finally, necking 
and other forms of plastic instabilities are of importance. The few systematic studies 
on necking in creep specimens that exist suggest that necking takes place close to 
rupture. This will be further discussed in Sect. 12.5 [23, 27]. 

12.2 Empirical Models for Tertiary Creep and Continuum 
Damage Mechanics 

12.2.1 Models for Tertiary Creep 

In this section a division is made between models that only aim to describe tertiary 
creep and those to attempt to model the development of the creep damage as well. 
The first type of models was analyzed in Sect. 4.2, and the analysis will not be 
repeated here. It was found that the Omega model [28, 29] could represent the creep 
rate in tertiary creep quite well with only two adjustable parameters in the considered 
cases for modified 9Cr steel, Fig. 4.4, and austenitic stainless steel, Fig. 4.8. If more  
adjustable parameters are involved, many models can be used to describe the tertiary 
stage, for a review, see [30, 31]. 

12.2.2 Continuum Damage Mechanics (CDM) 

In continuum damage mechanics (CDM), the changes in the microstructure during 
creep is described with one or more damage parameters representing cavitation, 
particles coarsening, etc. Equations for the development of the damage parameters 
are formulated. When one of the damage parameters has reached the value of unity, 
crack initiation is assumed to take place and failure is close. Most models consider in 
reality cavitation to be the main damage mechanism. This is natural since extensive 
cavitation is closely related to crack initiation. There is a vast literature on CDM. 
For reviews, see [14, 32–34]. The models in general start with some basic concepts 
that are combined with empirical approaches. The number of adjustable parameters 
is often as high as 6–8 [13]. 

The work of CDM was initiated by Kachanov and Rabotnov. They considered the 
following types of model 

ε̇ = A
(

σ 
1 − ω1

)n 

ω̇1 = B 
σ m 

(1 − ω1)χ (12.1)
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where ε̇ is the creep rate, σ the applied stress, and ω1 a damage parameter. A, B, m, n 
and χ are adjustable parameters. The new idea was the introduction of the damage 
parameter. It was assumed to have the value 0 at the start of the creep test and 1 at 
rupture. Although it is rarely stated in the literature, it is obvious that the equations 
are based on the assumption that the damage is due to cavitation. If the cavitation 
gives a reduction in the load bearing area, the modified Norton equation in (12.1) is  
obtained. In Eq. (12.1) an equation for the development of the creep damage is also 
given. With 5 adjustable parameters there is no difficulty in describing almost any 
creep curve in the tertiary stage. 

As mentioned above there are numerous empirical CDM models in the literature. 
Two examples will be mentioned here because they seem to be still used frequently. 
The first one is due to Othman et al. [35]. The creep rate is given by 

ε̇ = A 

(1 − ω1)(1 − ω2)n 
sinh(Bσ) ω̇1 = C(1 − ω1)

2ε̇ (12.2) 

ω1 = 1 − 
ρ1 

ρ
ω̇2 = 

ε̇ 
3εu

(
σ1 

σe

)ν 
(12.3) 

In Eqs. (12.2) and (12.3) there are two damage parameters ω1 and ω2. ω1 takes 
into account the role of the increasing dislocation density ρ during creep. ρ1 is the 
initial mobile dislocation density. Equation (12.2) gives a very rapid increase in the 
dislocation density close to rupture. The damage due to the cavitation is described by 
ω2. It is supposed to take both the effect of nucleation and growth into account. ω2 

is proportional to the creep strain that is well established for nucleation, Eq. (10.8) 
and at least for some materials can describe growth as well, Eq. (10.24). σ1 is the 
maximum principal stress and σe the effective stress. A, B, C, n, ν and εu are constants. 

The second model that will be mentioned is due to Perrin et al. [36]. They give 
the following equations 

ε̇i j  = 
3si j  
2σe 

A sinh

(
Bσe(1 − H ) 

(1 − Φ)(1 − ω2)

)
Ḣ =

(
hε̇e 

σe

)(
1 − 

H 

H∗

)
(12.4) 

Φ̇ =
(
Kc 

3

)
(1 − Φ)4 Φ = (1 − λi/λ) (12.5) 

To show that the CDM equations are straight forward to transfer to multiaxial 
stress states, Eqs. (12.4) and (12.5) are given in this form. ε̇i j  is the strain tensor 
and sij the stress deviator, and ε̇e the effective strain rate. H is a damage parameter 
that is intended to take into account primary creep. Φ considers the effect of particle 
coarsening. λ is the particle spacing and λi the corresponding initial value. A, B, h, H*, 
Kc are constants. Including the temperature dependence, no less than 12 constants 
is listed in [36].
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The two models in Eqs. (12.2) and (12.3) aswell as in (12.4) and (12.5) represented 
the state of the art when the papers were written. Unfortunately, not much of the 
modeling can be considered basic today. 

12.3 Particle Coarsening 

During later stages of the creep life, precipitates are often coarsening due to Ostwald 
ripening. The driving force for the coarsening is the reduction of the surface energy 
of the particles. For a given volume fraction, a distribution of coarser particles has a 
lower total surface energy than one with smaller particles. The coarsening takes place 
by diffusion of elements between the particles. Coarsening is believed to degrade 
creep properties in 9–12%Cr steels. Typically, there are two main types of particles 
in these steels: M23C6 and MX. In M23C6, M represents Cr, Fe, Mo or W. For MX, M 
stands for V and Nb and X for C or N. The distribution of the two types of particles 
is different. M23C6 are mainly found in the subgrain boundaries where they are 
nucleated during tempering. MX particles on other hand are more homogeneously 
distributed in the steel. The distribution of M23C6 is generally coarser than that of 
MX. As a consequence the two particle types have different roles during creep. 
M23C6 slows down or prevents the coarsening of the substructure. In this way the 
total dislocation density can be kept at a high level, which is most important for the 
creep strength. The MX particles on the other hand give precipitation hardening and 
in this way contribute directly to the creep strength. 

If only a single particle type is involved and the coarsening is controlled by lattice 
diffusion, the coarsening can be described by Ostwald ripening 

r3 j = r3 0, j + k j t (12.6) 

where rj is the average particle radius for type j and r0,j the corresponding initial 
value. kj is the coarsening rate constant. For a system with N elements, kj is given 
by [6] 

k j = 
8 

9

[surfV 
j 
m∑N 

k=1 
(x j k −xα/j 

k )2 

xα/j 
k Dα 

k /RGT 

(12.7) 

where [surf is the particle interfacial energy per unit area, V 
j 
m is the molar volume of 

the particle type j, RG the gas constant, and T the absolute temperature. The denom-
inator is a sum in k over the elements involved in the diffusion, Dα 

k is the diffusion 
coefficient, as well as x j k and x

α/j 
k the equilibrium mole fraction in the particle respec-

tively the matrix at particle/matrix interface. Equation (12.7) is complex but the value 
of kj can often be obtained directly from thermodynamic software.
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From Eq. (12.6), it is evident that the average volume of the particles increases 
linearly with time, so it is quite a simple dependence. The presence of particle in 
the subgrain walls slows down the growth of the subgrain and sets a limit to the 
maximum subgrain size. This is described by the following equation [7] 

ddsub 
dt  

= 
3MclimbτL 

2dsub 
·
[
1 −

(
dsub 

dsub lim

)2
]2 

(12.8) 

dsub is the subgrain diameter and dsub lim the limiting subgrain size due to the retarding 
force from the particles, which is referred to as Zener drag. The limiting subgrain 
size is given by [7] 

dsub lim = 
πrp 
γ fp 

(12.9) 

rp is the radius of particles at subgrain boundaries, and f p their volume fraction. The 
constant γ has a value of about 0.5 [37]. 

As was described in Sect. 2.6, creep strain can generate a large number of vacan-
cies. This means that phenomena that are diffusion controlled can also be strain 
controlled. Diffusion requires the presence of vacancies. An equilibrium amount of 
vacancies CVa is formed due to thermal activation. CVa can be represented with an 
Arrhenius expression 

CVa = c0 = exp
(
SF Va 
kB 

− 
HF 

Va 

kBT

)
(12.10) 

where SF Va and H
F 
Va are the entropy and the enthalpy for vacancy formation, and kB 

Boltzmann’s constant. The corresponding formula for the diffusion coefficient DVa 

is 

DVa = AD 
Va exp

(
− 
HF 

Va + HM 
Va 

kBT

)
(12.11) 

where HM 
Va is the enthalpy for vacancy migration and AD 

Va a constant. Diffusion 
depends on both formation and migration of vacancies, but the vacancy concentration 
is only a function of the formation energy. The part of the diffusion coefficient that 
depends on the vacancy concentration can be extracted 

DVa = AD 
Va exp

(
− 

HM 
Va 

kBT 
− 

SF Va 
kB

)
c0 (12.12) 

The corresponding amount of vacancies generated by straining is given by 
Eq. (2.37)
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Δc = 0.5c0 
√
2K 2 subε̇b

2 

Dsel f  

G 

σ 
(12.13) 

It can be assumed that straining gives rise to coarsening in the same way as 
Ostwald ripening in Eq. (12.6) 

dVp 

dε 
= kε (12.14) 

where V p is the average particle volume and kε a constant. The value of kε can be 
derived from Eq. (12.7) by replacing c0 in the expression for the diffusion coefficient 
by Δc using Eq. (12.12). 

For homogeneously distributed particles, coarsening of the particles implies that 
their contribution to the creep strength is reduced. This is described by Eq. (7.17). 
When coarsening takes place, the critical spacing between particles λcrit increases. 

12.4 Dislocation Strengthening During Tertiary Creep 

12.4.1 The Role of Substructure During Tertiary Creep 

During deformation a cell structure is formed in most alloys. Already after 10% strain 
the majority of the dislocations can be found in the cell boundaries [38]. After 20% 
deformation practically all dislocation are located in the cell boundaries [39]. As 
will be demonstrated below the cell structure plays an important role during tertiary 
creep. To simplify the analysis the role of dislocations in the cell interiors will be 
neglected. This has been justified experimentally. For example, Straub et al. showed 
with X-ray techniques that the dislocations in cell interiors in copper only contributed 
10 MPa to the strength [40]. 

As was introduced in Sect. 8.1, there are two sets of dislocations in the cell 
walls: balanced and unbalanced. This is a direct consequence of the basic nature 
of dislocations. The dislocations are initially randomly distributed in the cells. If 
there are dislocations in the cell interior with burgers vector b and opposite burgers 
vector −b on a given slip plane, they would move in opposite directions under stress. 
The effect is that dislocations with one sign end up at one side of the cells and the 
ones with the opposite sign on the other side. This means that the dislocations have 
different signs on the two sides of a cell wall in the stress direction. Such a set of 
dislocations are called polarized or unbalanced. The term unbalanced is due to the 
fact that all the dislocations in the neighborhood have the same sign. At other regions 
of the cells, the dislocations with both types of burgers vectors are present. These 
sets of dislocations are referred to as balanced.
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That the dislocations in the cell walls are divided into two sets, balanced and 
unbalanced is therefore natural. It is well documented experimentally that the dislo-
cations in cell walls can be statistically distributed and polarized [41]. The central and 
main part of the cell walls is found to consist of balanced dislocations, whereas the 
outer layers are polarized. The polarized dislocations cannot move through the walls 
due to the large number of dislocations in the cell walls [12]. Argon has proposed 
that the balanced dislocations in the cell walls to a significant extent are dislocation 
locks [42]. To understand tertiary creep and some other properties, the distinction 
between balanced and unbalanced dislocation is of importance. 

Equations for the dislocation densities of the balanced and unbalanced types as 
well as for locks were given in Eqs. (8.17)–(8.19). The dislocation densities satisfy 
the following equations [11, 12] 

dρbnd 

dε 
= kbnd 

mρ
1/2 
bnd 

bcL 
− ωρbnd − 2τL Mρ2 

bnd/ε̇ (12.15) 

dρbnde 

dε
= kbnde 

m(ρ
1/2 
bnd + ρ1/2 

bnde) 
bcL 

− ωρbnde (12.16) 

dρlock 

dε 
= klockω(ρbnd + ρbnde) − ωρlock − 2τL Mρ2 

lock/ε̇ (12.17) 

ρbnd, ρbnde and ρlock are the balanced, unbalanced and lock dislocation density in the 
cell walls, which are defined as the total length of the dislocations divided by the cell 
volume. ε is the strain, mT the Taylor factor, b Burger’s vector, cL, kbnd and kbnde are 
work hardening constants, ω the dynamic recovery constant, τL the dislocation line 
tension, ε̇ the strain rate and M the creep climb mobility. In Eq. (12.15) the three terms 
on the right hand side represent work hardening, dynamic recovery and static recovery 
in the same way as in the basic Eq. (2.17). Since the unbalanced dislocations cannot 
meet a dislocation with opposite sign, there is no static recovery term in Eq. (12.16). 
Both unbalanced and balanced dislocations are subjected to dynamic recovery. The 
dislocation locks cannot generate dislocations, but instead they obtain an input of 
dislocation due to dynamic recovery of balanced and unbalanced dislocations. As a 
consequence the first term in Eq. (12.17) has a different appearance in comparison 
to Eqs. (12.15) and (12.16). It is important to understand the difference between 
static and dynamic recovery. Static recovery occurs when dislocations of opposite 
signs meet and annihilate. Dynamic recovery takes place through the formation of 
dislocation configurations with lower energy [43]. A contributing factor has been 
suggested by Argon [42]. It is well documented that when dislocations are released 
during plastic straining they move through one or more cell boundaries. When this 
happens a fraction of the dislocation in the boundaries is removed, giving rise to 
a recovery effect. Both dynamic recovery and static recovery should be considered 
when describing tertiary creep as will be discussed below. Dynamic recovery requires 
straining [44] while static recovery is a time dependent process [45]. In the analysis
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below the dislocation locks will be considered to be a part of the balanced density in 
the cell walls. 

Since the unbalanced dislocations in the cell walls are not exposed to static 
recovery they give rise to an extra hardening that is referred to as a back stress 
[11]. The increase in the true applied stress σ = σ0eε during creep under constant 
load is compensated by the back stress, where σ0 is the applied nominal stress. The 
magnitude of the back stress equals the dislocation stress plus other strengthening 
contributions σi minus the nominal applied stress 

σback = σdisl + σi − σ0 (12.18) 

where σdisl is given by (cf. Eq. (8.3)) 

σdisl = 
mTαGb 

2 

√
ρbnd + ρbnde (12.19) 

where α is a constant in Taylor’s equation, and G the shear modulus. The effective 
creep stress is obtained as the true applied stress minus the back stress 

σcreep = σ − σback (12.20) 

From Eq. (12.15), an expression for the secondary creep rate can be obtained 

ε̇sec = 2τL M(T , σcreep)ρ
2 
bnd/

(
kbnd 

mρ
1/2 
bnd 

bcL 
− ωρbnd

)
(12.21) 

where the effective creep is inserted. It is now assumed that Eq. (12.21) it is not just 
applicable to secondary creep but it describes the influence of the changes of the 
dislocation density on the whole creep curve [12] 

ε̇ = 2τL M(T , σcreep)ρ
2 
bnd/

(
kbnd 

mρ
1/2 
bnd 

bcL 
− ωρbnd

)
(12.22) 

This model suggests that if the stress dependence of the secondary creep rate 
is known, the influence of the dislocation density on the whole creep curve can be 
derived. Primary creep was dealt with in Sect. 8.2. 

The variation of the stress components is illustrated for copper in Fig. 12.1. At the  
start of the creep test, the dislocation is low and the effective creep stress is high. But 
already after a short time they are of about the same magnitude. The dislocation stress 
then balances the true applied stress quite well in the secondary stage giving almost 
overlapping curves. This means that the creep stress is approximately constant in 
the secondary stage. Finally in the tertiary stage the increase of the applied stress is 
faster than that of the dislocation stress. Thus, there is an increase in the creep stress 
and thereby in the creep rate.
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Fig. 12.1 Evolution of dis-
location stress, true applied 
stress and effective creep 
stress as a function of time 
for Cu-OFP at 75 °C with  an  
applied stress of 175 MPa. 
Redrawn from [23] with  
permission of Springer 
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By integrating Eq. (12.22) together with (12.15) and (12.16), creep strain versus 
time curves can be obtained. Two examples for Cu-OFP at 75 °C are given in Fig. 12.2. 
The experimental curves show distinct primary, secondary and tertiary creep in spite 
of the low temperature. An extended secondary stage is found in spite of a stress expo-
nent that exceeds 50. How this is possible was explained in Sect. 8.4. The substructure 
plays an important role in this respect and that is taken into account in Eq. (12.22). 
There are steps in the experimental curves due to the necessity of reloading the creep 
when a certain creep strain was reached. No attempts have however been made to try 
to compensate for the reloading of the creep machine. The experimental creep curves 
can be reproduced in a reasonable way. Some of the differences can be accounted 
for by taking necking into account which is analyzed in Sect. 12.5. 

Fig. 12.2 Comparison of experimental creep curves with the model in Eq. (12.22) for  Cu-OFP,  
a 75 °C, 175 MPa; b 75 °C, 180 MPa. Redrawn from [23] with permission of Springer



244 12 Tertiary Creep

12.4.2 Accelerated Recovery Model 

During later stages of creep there is often a degradation of the creep strength. This 
degradation is often referred to as creep damage. Important examples of creep damage 
are cavitation and particle coarsening. The latter effect was analyzed in Sect. 12.3. 
Particle coarsening gives rise to a reduction of the precipitation hardening. In addition, 
subgrain coarsening can take place if the distance between particles in the boundaries 
is increased. 

Particle coarsening is usually represented with a time dependence described by 
Ostwald ripening in Eq. (12.6). However, tertiary creep shows more typically strain 
dependence. This is illustrated in Sect. 4.2. The strain rate in the tertiary stage 
increases exponentially with strain. This is referred to as the Omega model, which 
was discovered during work with estimates of residual life time of fossil fired power 
plants. For this reason it is natural to consider strain dependent processes. One such 
process is the strain dependent coarsening given in Eq. (12.14). A strain dependent 
process is also present for static recovery. Time dependent static recovery has been 
the basis of many derivations in this book. Its basic form is given in Eq. (2.17) 

dρ 
dt  

= −2τL Mρ2 (12.23) 

However, strain dependence is also possible to consider in the same way as for 
particle coarsening 

dρ 
dε 

= −2τL Mερ
2 (12.24) 

In the modified version of the climb mobility Mε in Eq. (12.24), the diffusion 
constant has to be replaced by the expression given in Eq. (12.12). The principles for 
the derivation of Eqs. (12.16) and (12.24) are straightforward, but the expressions 
have not yet been verified experimentally. By taking also Eq. (12.24) into account, 
Eq. (2.17) takes the form 

dρ 
dε 

= 
mT 

bcL 
ρ1/2 − ωρ − 2τL(M/ε̇ + Mε)ρ

2 (12.25) 

From Eq. (12.25), an expression for the creep rate can be derived in the same way 
as in Sect. 8.2.2 

h(σ ) = 2τL M(T , σ  )  
σ 3 

(αmTGb)3 
/

(
mT 

bcL 
− ω 

σ 
αmTGb 

− 2τL Mε 
σ 3 

(αmTGb)3

)

(12.26) 

ε̇ = h(σcreep) (12.27)
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The effective creep stress σcreep is given by Eq. (12.20). With the help of Taylor’s 
Eq. (2.29), Eq. (12.25) can be expressed in term of the dislocation stress σdisl 

dσdisl 

dε 
= 

αm2 
TGb 

2bcL 
− 

ω 
2 

σdisl − 2τL( fM M/h(σcreep) + Mε) 
σ 3 disl 

(αmTGb)2 
(12.28) 

Since the value of Mε is unknown, it has been assumed that its stationary value 
is that of M/h(σcreep), i.e. that the two types of static recovery give about the same 
contribution. 

The use of Eqs. (12.27) and (12.28) in Fig.  12.3 is illustrated for Sanicro 25. A 
comparison is made with the same experimental data set as in Fig. 4.8. In Fig.  12.3a, 
the dislocation stress is shown as a function of creep strain. There is initially a rapid 
increase in the dislocation density. When the stress touches the true stress curve and 
the secondary stage is reached, the increase in the stress continues but at a much lower 
rate. The difference between the sum of the true stress and the nominal stress on one 
hand and the dislocation stress on the other is the effective creep stress, Eq. (8.29). 
Considering the difference between the true stress and any of the dislocation stresses, 
it is evident from Fig. 12.3a that the creep rate is higher in the tertiary stage than in 
the secondary stage but lower than in the primary stage. 

In Fig. 12.3a, the dislocation stress is compared with the true applied stress. Most 
creep models are based on the nominal stress, so also in this book. However, to 
describe tertiary creep, the true stress plays an important role, and Eqs. (12.26)– 
(12.28) are based on the true stress. To take the true stress into account instead of 
the nominal one, some adjustments of the model must be made. For example, the 
secondary stress to give the creep rate in the secondary stress is slightly higher when 
the true stress is used. This is covered with the constant f M in Eq. (12.28). f M is close

Fig. 12.3 a Dislocation stress according Eq. (12.28) with (Mcl + Mε) and only with (Mcl). Mε and 
Mcl are the strain and time dependent climb mobility, respectively. The true stress is also shown; 
b creep rate from Eq. (12.27) for the same cases as in a). A comparison with experiment is included. 
Sanicro 25 at 700 °C, 200 MPa 
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to unity. This can also be seen in Fig. 12.3a, where the stresses in the secondary stage 
are slightly higher than the nominal value of 200 MPa. 

In Fig. 12.3, a comparison is made between the case when only the time dependent 
static recovery and the case when both the time and strain dependent types are 
included. In the first case only the time dependent climb mobility M is taken into 
account and in the second case both M and Mε. The difference between the two cases 
is clearly observed in Fig. 12.3b where the creep rate is plotted versus strain. The 
creep rate drops rapidly in the primary stage. The position of the minimum creep 
rate does not agree with the observations. The reason is most likely that the strain on 
loading is included in the modeling but not in the experiments. In the tertiary stage 
the logarithm of the creep rate increases linearly as a function of strain. This is the 
characteristic feature of the Omega model as was discussed in detail in Sect. 4.2. 
The slope of the experimental curve in the tertiary stage Fig. 12.3b is  nΩ = 14. The 
creep stress exponent at 700 °C for the material is nN = 7. At 725 and 750 °C the 
corresponding values are nΩ = 11 and 9 and nN = 6 and 5, respectively. If only M is 
taken into account in the model the slope is close to the nN value whereas a higher 
value close to nΩ is obtained when also Mε is involved. 

For P91 that is also studied in Sect. 4.2, the difference between nΩ and nN is even 
larger. The experimental data in [46] is for 600 °C. The nN value at this temperature 
is 12 whereas nΩ takes the values 28, 39, 65 and 95 for applied stresses of 180, 150, 
130 and 110 MPa, respectively. That nΩ increases with decreasing applied stress is 
also found for Sanicro 25 although the effect is less dramatic. The fact that nΩ is 
significantly larger than nN clearly shows that degradation of the microstructure takes 
place. It is natural that the degradation increases with decreasing stress since there 
is more time for microstructural changes to take place. The degradation is larger for 
P91 than for Sanicro 25. This is also expected since P91 has a martensitic structure 
that is prone to changes at high temperatures. The model including Mε describes how 
the recovery is accelerated during the tertiary stage, which is a direct consequence 
of microstructural degradation. 

12.5 Necking 

12.5.1 Hart’s Criterion 

During tensile creep testing a plastic instability develops towards the end of the 
experiment. A waist is formed around the specimen that grows until the specimen 
fails. This phenomenon is usually referred to as necking. It is assumed that it is 
initiated due to the presence of a geometric imperfection or a material inhomogeneity. 
The continued growth of the waist does not depend on how it was initiated. 

Hart proposed a criterion for the initiation of necking during creep [47]. The 
initiation is assumed to be due to area fluctuations. The deformation is stable provided 
that the variation at a particle point is larger than zero. From the relation between the
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area reduction and the strain a stability criterion can be derived 

ε̈/ε̇2 ≤ 1 (12.29) 

where ε̇ is the strain rate, and ε̈ is strain acceleration, the second time derivative of 
the strain. One can expect that when this stability criterion fails, necking would be 
initiated in the same way as for Considère’s criterion during tensile testing at ambient 
temperatures. 

12.5.2 Use of Omega Model 

The implications of Hart’s criterion can be illustrated with the help of the Omega 
(Ω) model. It was illustrated in Sect. 4.2 that primary creep often follows the phi 
(φ) model and tertiary creep the Omega model. As was demonstrated in Sect. 4.2, 
it is not necessary to have a separate term for secondary creep. Then according to 
Table 4.1, the creep rate can be expressed as 

ε̇ = φ1ε
−φ2 + Ω3 exp(nΩε) (12.30) 

where the first and second term on the RHS refers to primary and tertiary creep. φ1, 
φ2, Ω3 and nΩ are adjustable parameters. Ω4 in Table 4.1 has been replaced by nΩ

since that designation was used above. According to Sect. 4.2, tertiary creep can be 
represented by the second term in Eq. (12.30) over a fair strain range. Consequently, 
it is of interest to analyze that term separately. 

ε̇ = Ω3 exp(nΩε) ε̈ = Ω3nΩε̇ exp(nΩε) (12.31) 

By combing the two equations in (12.31), we find that 

ε̈/ε̇2 = nΩ (12.32) 

Since nΩ is typically much larger than unity, the stability criterion in (12.29) is  
very far from satisfied in the tertiary stage. In the primary stage ε̈ is negative and 
in the secondary stage zero, so in these stages the stability criterion is fulfilled. To 
satisfy it also in the tertiary stage, there must be a large contribution from the primary 
creep term in (12.30). This is only possible at the start of the tertiary stage. One can 
conclude that Eq. (12.29) implies that an instability is formed when tertiary creep is 
initiated. Similar results have been found when testing the criterion on experimental 
creep curves that do not follow the Ω model. 

Burke and Nix [48] studied necking by analyzing the deformation in a cylindrical 
bar with an imperfection. They assumed a cross section that varied with a smooth 
sinusoidal function



248 12 Tertiary Creep

A(x, 0) = A0 − ΔA 

2 
cos 

2π x 
Li 

(0 ≤ x ≤ Li ) (12.33) 

where A0 is the original cross section area of specimen, and Li the length of the 
specimen with the defected part.ΔA represents the changes of the initial cross section 
area. They considered that the development of the imperfection could be described 
by a uniaxial model. The shape of the initial imperfection is then not so important, 
only the initial reduction of the cross section. 

It is possible to estimate the growth of the imperfection. As was discussed above, 
Eq. (12.29) suggests that an instability is formed shortly after the start of tertiary. 
Only then an imperfection can grow. It is thus possible to use the tertiary part of 
Eq. (12.30) to estimate the amount of necking. 

ε̇ = Ω3 exp(nΩε) εbar = −  
1 

nΩ

log(exp(−nΩε0) − nΩΩ3t) (12.34) 

The integrated solution is given in the second member. ε0 is the starting strain 
of tertiary and t is the time. Following Eq. (12.33), the imperfection has a reduced 
cross section by a factor f red. The solution of the equation in the presence of an 
imperfection is 

εwaist = −  
1 

nΩ

log

(
exp(−nΩε0) − 

nΩΩ3t 

f nN red

)
fred = 1 − ΔA/A0 (12.35) 

The solutions of Eqs. (12.34) and (12.35) are illustrated in Fig. 12.4 for Sanicro 
25 and P91. The cases are the same as the ones in Figs. 4.4 and 4.8. 

Solutions with and without waist are given in (12.34) and (12.35). The difference 
between the strain in the waist and in the unaffected bar εdiff gives the depth of the 
waist and this difference is shown in the Figure. Thus, we have the following simple

a b  

Fig. 12.4 Strain versus time for the solutions in Eqs. (12.34) and  (12.35) for  a Sanicro 25, 750 °C, 
200 MPa and b P91, 600 °C, 150 MPa. a Redrawn from [49] with permission of Taylor & Francis 
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relation 

εwaist = εbar + εdiff (12.36) 

The influence of the waist is only significant late in the creep life. It is evident that 
when this strain difference exceeds 0.2, rupture is close. By assuming an εdiff value 
larger than 0.2 a criterion for rupture can be obtained. By combing the equations for 
εbar (12.34), for εwaist (12.35) and Eq. (12.36), and expression for the rupture time 
can be derived 

tR = 
e−nΩε0

Ω3nΩ

1 − e−nΩεdiff 

(1/ f nN red − e−nΩεdiff )
Ω3 = ε̇min exp(ε0) (12.37) 

In Eq. (12.37), an expression forΩ3 has been given in terms of the minimum creep 
rate. The latter quantity may be easier to find. Assuming f red = 0.99 which is often 
done, Eq. (12.37) gives a rupture time of 51, 75, 144 and 244 h for Sanicro 25 for the 
four curves in Fig. 4.8 that are in reasonable accordance with the observed values 
51, 63, 148 and 244 h. The corresponding values for P91 in Fig. 4.4 are 62, 357, 
1787, 10800 h that should be compared with the observed ones 101, 546, 3650 and 
13940 h. The predicted values clearly underestimate the experimental ones in this 
case. An equation for the rupture elongation εR can also be obtained. The same three 
Eqs. (12.34)–(12.36) are combined and this time the time t and εwaist are eliminated 

εR = 
1 

nΩ

(1/ f nN red − e−nΩεdiff ) 
(1/ f nN red − 1)e−nΩε0 

(12.38) 

For the same four curves in Fig. 4.8, Eq.  (12.38) yields 0.31, 0.38, 0.31, and 0.34 
that should be compared with the experimental values 0.24, 0.22, 0.36 and 0.43. The 
predicted values are of the right order of magnitude but they do not reproduce the 
observed values more precisely. For the curves for P91 in Fig. 4.4, the predicted 
values are 0.095, 0.078, 0.053, 0.034 and the experimental ones 0.17, 0.15, 0.19 and 
0.072. The predicted values are about half the observed ones. The reason why the 
values for the martensitic steel are underpredicted is not known. 

12.5.3 Basic Dislocation Model 

More detailed comparisons will now be made with experimental data for P alloyed 
pure copper Cu-OFP [23]. Distinct necking was observed on the ruptured specimens, 
which emphasizes the importance of necking in tertiary creep. To describe the defor-
mation, the dislocation model in Eq. (12.27) is used. Again uniaxial behavior will be 
assumed for assessing the influence of necking. Influence of multiaxial stress states 
will be considered in Sect. 12.5.4. The starting imperfection is given by Eq. (12.33)
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with a 1% reduced cross section ( f red = 0.99) and a half length of the imperfec-
tion of Li = 5 mm. With the formulae in Chap. 10, the amount of cavitation can be 
estimated. For the cases considered in [23], the local values of the cavitated grain 
boundary area were found to be about 2% which is consistent with observations on 
the specimens. However, as discussed in Sect. 12.1, the average amount is much 
lower. As a consequence the influence of cavitation on the creep curves is small and 
is not noticeable at the scale of the Figures. The initiation of the instability is assumed 
to follow Hart’s criterion (12.29). In Fig. 12.5b the position of this initiation point is 
marked. It is again evident that the point appears very early in the tertiary stage. 

Modeled creep curves are compared with experiments for three stresses at 75 °C 
for Cu-OFP in Fig. 12.5. The dislocation model in Eq. (12.27) takes primary, 
secondary and tertiary creep into account. The dislocation model gives only a modest 
contribution to tertiary creep, but the effect is clearly visible. There are other cases 
where the influence is much more pronounced. Examples are shown in Fig. 8.12 for 
cold worked copper. 

The rise of the creep strain at the end of the creep life is due to necking. Obviously 
the uniaxial creep model can reproduce the sharp increase quite well. The model 
clearly demonstrates that the necking takes place late in the creep life.

Fig. 12.5 Comparison of experimental creep curves with necking model results for Cu-OFP, a 75 
°C, 170 MPa; b 75 °C, 175 MPa, plus marker indicating necking starting point according to Hart’s 
criterion (12.29), c 75 °C, 180 MPa. Redrawn from [23] with permission of Springer 
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Fig. 12.6 Total strain versus 
uniform strain for the FEM 
model in Fig. 12.7. Redrawn  
from [23] with permission of 
Springer 

12.5.4 Multiaxial Stress States 

The formation of a waist clearly takes place under multiaxial stress states. For this 
reason finite element analysis (FEM) has been performed [23]. Unfortunately, special 
FEM software is required that can handle creep deformation with large strains. It 
should also allow for a plastic instability to occur, which makes the analysis sensitive. 
At this stage it is difficult to consider it for routine applications. 

The dislocation model in Eqs. (12.15), (12.16), (12.22), etc. is implemented in the 
FEM program. The parameters used are the same as in the uniaxial case in 12.5.3. 
A creep test of Cu-OFP at 75 °C and 175 MPa was simulated, i.e. the same case as 
the one shown in Fig. 12.5a. The necking appeared at a uniform strain of 0.27. Then 
all the subsequent strain took place in the waist. This is illustrated in Fig. 12.6. 

The strain in the neck is as high as 2. This is not shown in Fig. 12.6 but this 
is clearly evident in Fig. 12.7, where the final strain distribution and profile of the 
specimen is shown.

That the high strain value is in accordance with the experiment that is illustrated 
in Fig. 12.8, where the observed and modeled specimen profiles are shown. The 
experimental values are reproduced within about 10%.

According to the FEM modeling, the necking develops quite slowly and only 
appears close to rupture. This has also been observed for the martensitic 9Cr1Mo 
steel P91 [27]. Once the necking has started to form, the strain in the neck increases 
rapidly. The results of the uniaxial and the multiaxial computations are obviously 
fairly consistent. Also the uniaxial modeling of necking gives a significant necking 
strain only close to rupture.
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Fig. 12.7 FEM results of 
profile strain distribution 
along a creep specimen of 
Cu-OFP at 75 °C with an 
applied stress of 175 MPa. 
Redrawn from [23] with  
permission of Springer

Fig. 12.8 Specimen radius 
versus axial coordinate at the 
necking position. 
Comparison of experimental 
necking profile with FEM 
results for Cu-OFP at 75 °C 
with an applied stress of 
175 MPa. Redrawn from [23] 
with permission of Springer

12.6 Summary 

Many mechanisms that contribute to tertiary creep are well known such as particle 
coarsening, substructure coarsening, cavitation, changes in the dislocation density 
and necking. In the literature these mechanisms have mainly been modeled with 
empirical approaches not least in the context of continuum damage mechanics.



12.6 Summary 253

However, due to the complexity of the phenomena empirical methods give unsafe 
predictions. 

• A basic dislocation model for the whole creep curve is described. The model 
extends results from previous chapters to tertiary creep. The model is formulated 
in such a way that if the stress dependence of the secondary creep rate is known, 
tertiary as well as primary creep rate can be computed. This is done by introducing 
an effective creep stress that takes the changes in the dislocation density into 
account. 

• In the secondary stage there is a balance between the applied stress and the stress 
from the dislocations plus contributions from other strengthening mechanisms. In 
the tertiary stage the dislocation strength continues to increase but the true stress 
increases faster. This means that the effective stress is raised and thereby the creep 
rate. This simple concept is proposed to be the main mechanism behind tertiary 
creep. 

• For copper it is essential to take the substructure into account when modeling 
tertiary creep. A distinction is made between balanced and unbalanced disloca-
tions in the cell walls. The main difference between balanced and unbalanced 
dislocations is that the former type is exposed to static recovery but not the latter. 
The unbalanced dislocations provide a counteracting stress against the rapidly 
increasing true stress at lower temperatures, which makes it possible to explain 
the observed creep rates. 

• In steels there is often a very rapid increase in the creep rate in the tertiary stage 
that can be represented by a linear increase in the logarithm of the creep rate with 
strain (Omega model). To explain this behavior, the degradation mechanisms in 
the microstructure must be strain dependent. This applies in particular to particle 
and substructure coarsening. Quantitative models have been proposed for these 
mechanisms but the models have not yet been verified experimentally. 

• With models presented in Chap. 10, the influence of cavitation on tertiary creep 
can directly be derived. However, pronounced cavitation typically occurs quite 
locally. This means that the overall effect on tertiary creep is limited. 

• Necking is assumed to be initiated when Hart’s stability criterion fails which takes 
place at the very beginning of tertiary creep. Although necking is initiated early 
in the creep process, both uniaxial and multiaxial models suggest that significant 
necking takes place only close to rupture but then necking is progressing very 
rapidly. These results are fully consistent with available experimental data.
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Chapter 13 
Creep Ductility 

Abstract For a number of creep resistant steels, the creep ductiliy decreases with 
increasing temperature and time. As a function of stress, the ductiity is often describe 
with an S-shaped curve with an upper and a lower shelf level. As a function of time, 
the S-shape is inverted. If the ductility is high, the rupture is referred to as ductile, 
and for low ductility levels as brittle. Ductile rupture is believed to be due to a plastic 
instability such as necking. Brittle rupture on the other hand is controlled by the 
nucleation, growth and linkage of creep cavities. With the help of the basic models 
for creep deformation and cavitation, the rupture stress and ductility can be predicted. 
Several models exist for the influence of multiaxiality on the creep ductility. Although 
the models are based on different principles, they predict approximately the same 
behavior, which is verified by comparison to rupture data for notched bars. 

13.1 Introduction 

In creep tests, the ductility is commonly measured in two ways: as creep elongation 
and reduction of area, both at rupture. The creep ductility influences several prop-
erties. With a low ductility cracks are more easily formed and the risk for failure is 
higher than when the ductility is high. This is not least the case for cyclic loading. 
The reason is that creep cavities are more readily formed when the ductility is low. 
Cavities grow and link which results in initiation sites for cracks. For materials with 
low ductility, the risk is obviously higher that the strain allowance is exceeded in 
notches and at inhomogenieties like in welds. Materials with high creep ductility are 
considered to be more forgiving. 

As a consequence it is desirable to select a material with high creep ductility. 
Unfortunately that is not easy. Most creep resistant alloys loose ductility with 
increasing rupture time. In addition, there can be a large cast to cast difference 
in the ductility. It was demonstrated early on that the 17Cr–12Ni–2Mo steel 316 
showed such a variation [1]. The rupture elongation was observed to vary between 2 
and 120%. Also for the martensitic 9Cr1Mo steel P91, low ductility is often found. 
In a larger investigation it was recorded that about 10% of the casts had a reduction
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of area below 20% [2]. It can be concluded that also for materials that have a long 
successful operation record, the ductility can frequently be low. 

There are many mechanisms that are known to influence the ductility. A coarse 
grain size often reduces the ductility. This is natural since the amount of grain 
boundary sliding and thereby the cavitation increases with the grain size. This is 
evident from Eq. (9.12). Particles that are present in the grain boundaries act as 
nucleation sites for cavitation. With increasing number of particles, more cavities 
are formed, see Eq. (10.8). It is known that the presence of coarse particles in the 
grain boundaries increases the risk for crack initiation. Impurity elements P and S 
can lower the ductility in steels. It is suspected that the presence of impurity elements 
is the cause of low creep ductility in many casts but the number of systematic studies 
is limited [2]. It is a common experience for steels that if the creep strength is 
raised, the ductility is often reduced. Some of the mentioned effects can be modeled 
but not all of them. In particular, the observed cast to cast variation is difficult to 
explain. One reason is that some mechanisms can be both positive and negative. One 
example is particles in grain boundaries. As mentioned they can act as nucleation 
sites for cavitation but they can probably also limit the amount of grain boundary 
sliding and thereby resist cavitation, but that does not seem to have been verified. 
The limitation concerning the understanding of the controlling mechanisms must be 
considered when modeling creep ductility. In most cases only a general description 
of influencing factors can be obtained, not a detailed computation. 

To illustrate the influence of parameters on the creep ductility, schematic diagrams 
are often used. Such diagrams are shown in Fig. 13.1. 

At high stresses and short rupture times the ductility is high and approximately 
constant. This is referred to as the upper shelf or regime I. When the stress is reduced, 
the ductility drops to much lower values over a fairly narrow range of stresses and 
rupture times. This is regime II. At low stresses or long rupture times the ductility 
takes very low values. In this range the ductility is again approximately constant. It

a b  

Fig. 13.1 Schematic diagram of the creep ductility; a as a function of stress at a few temperatures 
typical for austenitic stainless steels; b as a function of time to rupture for 9–12%Cr steels 
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a b  

Fig. 13.2 Creep ductility as a function of stress for the 17Cr12Ni2Mo austenitic stainless steel 
316H at 600–750 °C. Data from NIMS [5]; a reduction of area; b elongation at rupture 

is called the lower shelf or regime III. In some materials for example 9%Cr steel [3] 
and CrMoV steels [4], the ductility can increase again at very long rupture times. 
The curves in Fig. 13.1 move to the left with increasing temperature. 

To illustrate how the schematic curves in Fig. 13.1a, look for observed values, 
results for 17Cr12Ni2Mo (316H) are given in Fig. 13.2 for the reduction of area and 
for the elongation at rupture. 

Although the tests have been performed under well controlled conditions there is a 
large scatter in the data. In fact, the scatter in creep ductility values is typically much 
larger than for creep strength values. A difference in comparison with Fig. 13.1 is that 
the upper shelf ductility in Fig. 13.2 varies somewhat with temperature in particular 
for the creep elongation. It should be noticed that the ductility can take very low 
values. 

It is also instructive to plot the creep ductility as a function of rupture time. This 
is shown in Fig. 13.3.

Both the reduction in area and the creep elongation decrease with increasing 
rupture time and increasing temperature. For reduction of area an upper shelf is 
apparent at shorter rupture times. This is only evident for the elongation at lower 
temperatures. Except at the lowest temperature, the ductility values at long times can 
be quite low. This demonstrates that a low ductility shelf is present. The ductility 
versus rupture time can also be represented with an S-shape curve as in Fig. 13.1 
but with inverted S curves. Nice S-shaped curves can be found in the literature with 
much less scatter than in Figs. 13.2 and 13.3 [6]. 

Many attempts have been made in the past decades to model creep ductility. 
With few exceptions, empirical approaches have been used. One important method 
to assess the remaining life of plants operating at high temperature, where creep 
has been the life controlling mechanism, has involved ductility exhaustion. With 
the help of continuum damage mechanics (CDM) [7–9], the creep strain in critical 
components is computed to ensure that it does not exceed the ductility values. In
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a b  

Fig. 13.3 Creep ductility as a function of rupture time for the 17Cr12Ni2Mo austenitic stainless 
steel 316H at 600–750 °C. Data from NIMS [5]; a reduction of area; b elongation at rupture

this process some observed microstructural changes have been recorded and then 
been the basis in the modeling. In the literature there are a large number of papers 
discussing this type of analysis. The mentioned volumes on CDM can serve as a 
starting point in this respect. 

In the present chapter empirical models for the creep ductility will be discussed in 
Sect. 13.2. These models are mainly statistical. In statistical methods mathematical 
expressions are chosen and fitted to the experimental data. The choice of expression 
is merely for numerical convenience to get a good fit to the data. The approaches 
involve a number of adjustable parameters that are fitted to the data. The reason for 
developing these models has in general been to use them in design or in residual life 
assessment. To meet this aim, it must be possible to generalize the data for example 
to longer times. This requires that the models are trained against a large set of data. In 
particular, the number of independent experimental data points must be very much 
larger than the number of adjustable parameters involved. 

To avoid these limitations basic models based on physical principles and without 
the use of adjustable parameters have been developed. Such models will be presented 
in Sect. 13.3. 

Failures that are associated with low and high creep ductility are referred to 
as brittle and ductile rupture, respectively. As was illustrated in Figs. 13.1, 13.2 
and 13.3, brittle rupture occurs primarily at low stress, long rupture times and high 
temperatures, whereas the conditions for ductile rupture are opposite, i.e. it takes 
place at high stresses, low temperatures and short rupture times. Brittle rupture is 
assumed to be initiated by the nucleation, growth and linkage of creep cavities. 
Cavitation models for the creep ductility will be presented in Sect. 13.3.1. Such 
models have turned out to give successful results in a number of cases. Much less 
work has been carried out for ductile rupture. For a number of steels and copper 
it has been demonstrated that necking controls the failure during ductile rupture. 
This approach will be discussed in Sect. 13.3.2. To study the necking, creep strain
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data must be available. However, also a ductility corresponding to the upper shelf in 
Fig. 13.1 can be used to predict ductile rupture. 

13.2 Empirical Ductility Models 

Creep strength data have been analyzed with statistical methods for a long time. The 
European Collaborative Creep Committee (ECCC) has developed suitable proce-
dures that ensure that the statistical analysis is performed in a good way and that the 
results behave in a physically correct way. There is a large number of methods avail-
able analyzing and extrapolating creep strength data and practically all are empirical. 
In spite of this, the methods can provide quite valuable information due to the large 
number of data points. 

ECCC have also proposed procedures for assessment of creep ductility values 
[10]. A number of different expressions for the ductility are suggested [11]. Various 
combinations of constants, stress and temperature dependencies are used such as 

log(εR) = log(β0) + β1 log(T ) + β2 log(σ ) + β3/T + β4σ/T (13.1) 

where εR is the rupture ductility, T the absolute temperature, σ the stress and β0– 
β4 constants. Analyses with such expressions have for example been performed by 
Spindler for austenitic stainless steels [12], by Payten et al. for 9Cr1Mo steels [13], 
and by Holdsworth and co-workers for 1CrMoV rotor steel [4, 14]. Many alternative 
expressions have also been considered; see for example [15, 16]. 

Other types of analyses have also been performed. Lai collected a large database 
for the austenitic stainless steel 316H. He made a regression analysis to determine the 
influence of the composition and some microstructure parameters on the ductility [1, 
17]. Wilshire used creep data from NIMS to generate master curves for high Cr-steels. 
The principle was to use an activation energy to make ductility values at different 
temperatures merge to a single curve [18]. Xu and Hayhurst used continuum damage 
mechanics (CDM) to assess the creep ductility of 316H [19]. Low alloy rotor steels 
were studied by Singh and Kamaraj, again with a CDM approach [20]. 

The complexity and variability of creep ductility data were illustrated in Figs. 13.2 
and 13.3. The cast to cast differences have rarely been possible to model. One notable 
exception is the paper by Binda and Holdsworth [14], where the influence of compo-
sition on 1CrMoV steel was analyzed. However, in most cases it is beneficial to 
concentrate the modeling to the most essential features. From a technical point, the 
start and level of the lower shelf are the most important aspects in general. For this 
purpose, the variation of the ductility can be described by a step function. A suitable 
step function is the sigmoid function that has a characteristic S-shape. 

fsigm(x) = 1/(1 + exp(−x)) (13.2)



262 13 Creep Ductility

With the help of the sigmoid function, curves of the form in Fig. 13.1 can be 
generated 

εfσ = Lshelf + (Ushelf − Lshelf) fsigm((log σ eQ/RGT − log σ0)/ log σrng) (13.3) 

εftR = Lshelf + (Ushelf − Lshelf) fsigm
(−(

log tRe
Q/RG T − log tR0

)
/ log tRrng

)
(13.4) 

where σ and tR are the creep stress and rupture time and εfσ and εftR rupture ductilities. 
Lshelf and Ushelf are the lower and upper shelf energies. The parameters with index 
0 and rng indicate the central position of the curve and the size of the transition 
range, respectively. An activation Q is introduced to represent curves at different 
temperatures. With the help of Eqs. (13.3) and (13.4), it should be straightforward 
to generate curves describing the influence of parameters on the ductility. Ductility 
curves as a function of stress and rupture time have been presented above. In the 
literature, other parameters are also considered. Use of the strain rate or normalized 
stress are often applied, see for example [6, 11]. 

13.3 Basic Ductility Methods 

13.3.1 Brittle Rupture 

The main mechanism for brittle rupture is the nucleation and growth of cavities. 
When a critical cavitated area fraction in the grain boundaries is reached failure 
occurs. A combination of nucleation and growth of cavities must take place. A 
model for nucleation of cavitation based on grain boundary sliding was presented in 
Eq. (10.8) 

dncav 
dt  

= 
0.9Cs 

dsub

(
gsub 
d2 
sub 

+ 
gpart 
λ2

)
ε̇ = Bsε̇ (13.5) 

where ncav is the number of cavities, dsub the subgrain size, ε̇ the creep strain rate, 
λ the interparticle spacing in the grain boundary and Cs a constant. The factors gsub 
and gpart are the fraction of active nucleation sites at sub-boundary junctions and 
particles. 

Diffusion controlled growth of cavities is described by Eqs. (10.15) and (10.18) 

dRcav 

dt  
= 2D0Kf(σred − σ0) 

1 

R2 
cav 

(13.6) 

2π D0Kf(σred − σ0)ncav Rcav + ε̇(σred) = ε̇(σ ) (13.7)
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where Rcav the cavity radius in the grain boundary plane, σ0 the sintering stress. The 
grain boundary diffusion parameter D0 is equal to δDGBΩ/kBT where δ is the grain 
boundary width, DGB the grain boundary self-diffusion coefficient, andΩ the atomic 
volume. kB is the Boltzmann’s constant and T the absolute temperature. The factor 
K f is given in Eq. (10.12). 

Equations (13.6) and (13.7) model constrained cavity growth. Constrained growth 
is essential to take into account to avoid overestimating the growth rate. σred is a 
reduced stress that is lower than the applied stress σ. ε̇(σred) and ε̇(σ ) are the creep 
rates at the reduced and applied stress, respectively. σred is found by solving Eq. (13.7). 

Grain boundary decohesion is the main mechanism for brittle rupture. Due to 
both cavity nucleation and growth, there is a gradual increase of the cavitated grain 
boundary area fraction during creep. When this fraction reaches a critical value, 
failure takes place. It is fairly well established that this critical area fraction is about 
0.25 [21]. The cavitated grain boundary area fraction Acav can be calculated from 
[22] 

Acav = 
t∫

0 

dncav 
dt1 

(t1)π R2 
cav(t, t1)dt1 (13.8) 

The nucleation rate and the cavity radius in Eq. (13.8) are  given by Eqs. (13.5) and 
(13.6). The resulting time dependence of these quantities is illustrated in Fig. 13.4. 
In this Figure the number of cavities, the average cavity radius, the cavitated area 
fraction, and the creep strain are given as a function of time in a common diagram. 
Ductile rupture occurs when the creep strain reaches a fixed elongation value of 0.2. 
Brittle rupture takes place when the cavitated area fraction gets a value of 0.25. These 
levels are marked in the diagram. The condition that is first satisfied controls the type 
of failure. Thus, if the creep strain reaches 0.2 before the cavitated area fraction is 
0.25, the rupture is ductile but if cavitated area fraction takes its critical value first, 
the rupture is brittle.

Two cases for the austenitic stainless steel 316H are considered in Fig. 13.4a at  
a relatively high stress and low temperature and in Fig. 13.4b at a low stress and 
high temperature. The number of cavities increases at the same rate as the creep 
strain. This is a direct consequence of Eq. (13.5). Since a constant creep rate is 
assumed, both the creep strain and the number of nucleated cavities are linear in 
time. For unconstrained growth the cavity volume is linear in time, cf. Eq. (10.11). 
This means that the cavity radius is proportional to t1/3 where t is the time. For 
constrained growth, the growth rate is lower. Since the cavitated area fraction in the 
grain boundaries increases both with the number of cavities and the cavity radius, 
it shows a faster increase than the two contributing processes. In Fig. 13.4a, the 
strain criterion is met first. Consequently the rupture is ductile. On the other hand in 
Fig. 13.4b, the criterion for the cavitated area fraction is satisfied first. The rupture 
is brittle. 

An early example of the application of Eqs. (13.5), (13.6) and (13.8) was  for  
pure oxygen free copper with 50 ppm P (Cu-OFP) and without P. The difference in
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a b  

Fig. 13.4 Modeled time dependence of cavity evolution for the austenitic stainless steel 
17Cr12Ni2Mo (316H). The number of nuclei, the cavity radius, the area fraction of cavities in 
the GBs, and the creep strain are shown as a function of time on a common scale; a 600 °C, 
251 MPa (ductile rupture); b 700 °C, 29 MPa (brittle rupture)

cavitation between these two types of alloys has been possible to model in detail, see 
Sect. 10.4. The predicted rupture elongation as a function of temperature is shown 
in Fig. 13.5. 

The influence of P in Fig. 13.5 is striking. With 50 ppm P the rupture is ductile 
and this is modeled with ductility exhaustion. In contrast, Cu without P can have very 
low creep ductility values (brittle rupture) that can be fully described by the model. 

With the help of Eqs. (13.5), (13.6) and (13.8), predicted creep ductility values 
for brittle rupture are given as a function of rupture time for two austenitic stainless 
steel 321H and 316H in Fig. 13.6.

The computed ductility values decrease with increasing temperature and rupture 
time. This is regime II in Fig. 13.1. The upper shelf regime I appears at higher ductility

Fig. 13.5 Comparison of 
modeled and experimental 
rupture elongation for 
oxygen free copper with and 
without 50 ppm P. Cu-OF is 
exposed to brittle rupture 
(Cu-OF) whereas the rupture 
is ductile for Cu-OFP. The 
rupture time is of the order 
of 10000 h for the tests. 
Redrawn from [22] with  
permission of Elsevier 
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a b  

Fig. 13.6 Comparison of modeled and experimental creep elongation values for brittle rupture for 
two austenitic stainless steels at four temperatures 600, 650, 700, 750 °C (from top to bottom). The 
predicted and observed values at a given temperature are shown in the same colour; a 18Cr12NiTi 
(321H); b 17Cr12Ni2Mo (316H). Creep data from NIMS [5, 23]. Redrawn from [24] with 
permission of Taylor & Francis

values, see Fig. 13.3. In Fig.  13.6 there is no direct evidence of a lower shelf regime 
III. The modeling can only describe the general behaviour of the ductility, not the 
cast to cast variation as explained in Sect. 13.1. 

13.3.2 Ductile Rupture 

Ductile creep rupture of tensile creep specimen is believed to be initiated by necking, 
i.e. the plastic instability that forms a waist around the specimen. That was demon-
strated for creep of copper in Sect. 12.4.1. In addition, when tertiary creep can be 
described with the Omega model, the necking takes place very close to the rupture 
and can be assumed to start the rupture, Sect. 12.5.2. For a number of steels that follow 
the Omega model including many low alloy steels, 9 and 12%Cr steels and austenitic 
stainless steels, ductile rupture can be considered to be controlled by necking. Since 
necking and the associated ductility values are fully described in Sect. 12.5, the  
results will not be repeated here. 

13.4 The Role of Multiaxiality 

In the literature there has been considerable interest in the effect of multiaxiality 
on the creep ductility. One of the main reasons is that creep ductility exhaustion is 
an important method for residual life assessment of components operating at high 
temperatures. For surveys on the role of multiaxiality, see [6, 11].
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13.4.1 Diffusion Controlled Growth 

Giessen and Tvergaard has proposed that Eq. (10.8) for cavity nucleation should be 
modified by including the ratio between the stress normal to the grain boundary σn 

and the effective stress σe to take into account the effect of the stress state [25] 

dncav 
dt  

= 
0.9Cs 

dsub

(
gsub 
d2 
sub 

+ 
gpart 
λ2

)(
σn 

σe

)2 

ε̇ = Bs

(
σn 

σe

)2 

ε̇ (13.9) 

Gonzales and Cocks have taken the average of this expression over all contributing 
grain boundaries and found the following result for the multiaxiality factor [26] 

dncav 
dt  

= B fMAε̇ where fMA = 
4 

9 
+ 5

(
σh 

σe

)2 

(13.10) 

σh is the hydrostatic stress and σe the effective stress. 

σh = (σ1 + σ2 + σ3)/3; σe = 
√

((σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2)/2 
(13.11) 

σ1, σ2 and σ3 are the principal stresses. 
The derivation of the expression for diffusion controlled growth Eq. (10.11) has 

the form that it is natural to assume the following effect of the stress state [27] 

dRcav 

dt  
= 2D0Kfσe 

1 

R2 
cav 

σn 

σe 
(13.12) 

where σn and σe have the same interpretation as in Eq. (13.9). For simplicity the 
role of the sintering stress is neglected since it is small anyway. Thus, the influence 
of the stress state has a similar form as for the nucleation rate in Eq. (13.9). If the 
averaging over grain boundary orientation is made in the same way as in Eq. (13.10), 
the following result is obtained 

dRcav 

dt  
= 2D0K f σe 

1 

R2 
cav 

f 1/2 MA (13.13) 

If a constant stress is assumed, Eqs. (13.10) and (13.12) can be integrated directly 

ncav = Bs fMAε̇t; Rcav = (R3 
cav0 + 6D0K f σe f 

1/2 
MA (t − t0))1/3 (13.14) 

where t is the time. These expressions can be inserted in Eq. (13.8) for the cavitated 
area fraction
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Acav = π Bs f 
4/3 
MA ε̇(6D0K f σe)

2/3 

t∫

0 

(t − t ')2/3 dt '; 
t∫

0 

(t − t ')2/3 dt ' = 
3 

5 
t5/3 

(13.15) 

In this equation the rupture time tR for t is introduced. With a constant stress and 
only secondary creep εR = ε̇tR. 

Acav = 
3π 
5 

Bs f 
4/3 
MA ε̇

−2/3 (6D0 K f σe)
2/3 ε

5/3 
R (13.16) 

From Eq. (13.16), the rupture ductility can be obtained if Acav is taken as its critical 
value Acrit 

εR = (Acritε̇
2/3 /

(
3π 
5 

Bs f 
4/3 
MA (6D0K f σe)

2/3

)3/5 

) (Diffusion control) (13.17) 

Since the expression is based on unconstrained rather than constrained growth is 
cannot be used to predict the uniaxial ductility. However, the effect of the stress state 
is expected to be the same for unconstrained and constrained growth. The influence 
of multiaxiality can now be extracted 

εR = ε0 R/ f 4/5 MA (Diffusion control) (13.18) 

where ε0 R is the uniaxial ductility. 

13.4.2 Strain Controlled Growth 

There are several expressions for strain control of cavity growth that are properly 
derived. The one due to Cocks and Ashby [28] was discussed in Sect. 10.5.3. Wen  
and Tu has improved one expression in Cocks and Ashby’s derivation and proposed 
a new  formula [29]. Another result was derived by Rice and Tracey [30]. It gives a 
cavity growth rate of the form 

1 

Rcav 

dRcav 

dt  
= ε̇ 

1 

2 
sinh 

3σh 

2σe 
(13.19) 

where σh is the hydrostatic stress and σe the effective stress. This equation was derived 
for plastic deformation. Hellan transferred the equation to creep conditions [31] 

1 

Rcav 

dRcav 

dt  
= αHε̇ sinh 

βHσh 

σe 
(13.20)
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where 

αH = 3arcsinh(2(nN − 1)/nN); βH = 2(nN − 1)/nN) (13.21) 

nN is the creep rate stress exponent. Equation (13.20) can be combined with 
Eq. (13.10) for the nucleation rate to derive the cavitated area fraction. But Eq. (13.8) 
must first be transformed from time to strain dependence 

Acav = 
ε∫

0 

dncav 
dε1 

(ε1)π R2 
cav(ε, ε1)dε1 (13.22) 

The nucleation rate Eq. (13.10) can directly be expressed as 

dncav 
dε 

= Bs fMA (13.23) 

Equation (13.20) can also easily be transformed to strain dependence and 
integrated 

1 

Rcav 

dRcav 

dε 
= αH sinh 

βHσh 

σe 
; Rcav = R0 

cav exp(αH sinh 
βHσh 

σe 
(ε − ε0)) (13.24) 

where R0 
cav is the initial cavity radius when a cavity starts to grow at the strain ε0. 

Inserting Eqs. (13.23) and (13.24) into (13.22) gives  

Acav = Bs fMAπ(R0 
cav)

2 

ε∫

0 

exp(2αH sinh 
βHσh 

σe 
(ε − ε1))dε1 (13.25) 

The integral in Eq. (13.25) is elementary 

Acav = Bs fMAπ(R0 
cav)

2 
exp

(
2αH sinh 

βHσh 

σe 
ε
)

2αH sinh 
βHσh 

σe 

(13.26) 

By replacing Acav by its critical value Acrit the rupture ductility is obtained 

εR = 1 

2αH sinh 
βHσh 

σe 

log

(
Acrit2αH sinh 

βHσh 

σe 

Bs fMAπ(R0 
cav)

2

)

(Hellan) (13.27) 

One uncertainty in Eq. (13.27) is the initial value of the cavity radius. Another 
limitation is the absence of significant temperature dependence. These problems 
seem to be common for many strain controlled growth mechanisms. The equation
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is consequently difficult to use to predict the uniaxial rupture ductility. The main 
influence of the stress state is in the sinh function outside the logarithm. 

13.4.3 Growth Due to Grain Boundary Sliding (GBS) 

In Sect. 10.5.3 a model for cavity growth due to GBS was presented in Eq. (10.24) 

Rcav = Csε (13.28) 

If this expression together with Eq. (13.10) for the nucleation rate are inserted in 
Eq. (13.22) the cavitated area fraction in the grain boundaries is found 

Acav = B fMAπC2 
s ε

2 /2 (13.29) 

This gives the following rupture ductility 

εR = (2Acrit/B fMAπC2 
s )

1/2 (GBS growth) (13.30) 

13.4.4 Comparison of Models 

In Fig. 13.7 the multiaxial creep ductility factor for the diffusion controlled growth 
model, Eq. (13.18), is shown as a function the stress triaxiality ratio σh/σe. Also  
results for Hellan’s model in Eq. (13.27) are illustrated. A comparison is made to 
experimental data for notched bars. Values for Durehete 1055 (1Cr1Mo), 2.25Cr1Mo 
(P22), 9Cr1Mo, 9Cr1Mo mod. (P91) and the stainless steel 316H (17Cr12Ni2Mo) 
are included.

A comparison is also made to the models of Cocks and Ashby [28] and of Wen 
and Tu [29] 

εR = sinh
(
2 

3 

(nN − 0.5) 
(nN + 0.5)

)
/ sinh

(
2(nN − 0.5) 
(nN + 0.5) 

σh 

σe

)
(Cocks and Ashby) (13.31) 

εR = exp
(
2 

3 

(nN − 0.5) 
(nN + 0.5)

)
/ exp

(
2(nN − 0.5) 
(nN + 0.5) 

σh 

σe

)
(Wen and Tu) (13.32) 

The five models in Fig. 13.7a are in reasonable agreement with the observations. 
The GBS growth model is in the upper end of the data range. For small stress 
triaxiality values, the models fall in two groups. The diffusion controlled and GBS 
growth models are close to that of Wen and Tu [29]. They derived a model that 
corrected an approximation in the Cocks and Ashby model improving the model at
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a b  

Fig. 13.7 Effect of stress triaxiality σh/σe on the multiaxial creep ductility factor εR/ε0 R for round 
notched bar specimens where ε0 R is the uniaxial creep ductility; a model values are compared to 
experimental data from [6]; b values for strain controlled growth models

low triaxiality stresses [6]. Hellan’s and Cocks and Ashby’s models give results that 
are quite similar. The parts in their expressions for the influence of the stress states 
are also close.  

In spite of the fact that the models tend to give similar results when compared to 
observations, they are based on quite different principles. The diffusion control and 
GBS growth models are based on expressions for nucleation and growth of creep 
cavities that are verified experimentally. For both models the nucleation plays an 
important role. For the strain governed models only the derivation of Hellan’s model 
takes nucleation into account but the nucleation has only a smaller effect on the 
results. The other two models for strain controlled growth, Cocks and Ashby as well 
as Wen and Tu do not involve nucleation. All the strain controlled models suffer from 
the limitation that there is no direct temperature or stress dependence in the models, 
which is not consistent with data for uniaxial creep ductility. The starting value of 
the cavity radius for growth in these models is not defined except for the GBS growth 
models. These facts imply that it is difficult to make direct comparisons to observed 
growth rates. If these limitations affect the multiaxial ductility factor is not known. 

The derivation (13.27) based on Hellan’s model is new. In the past, most researches 
have started directly from Rice and Tracey’s Eq. (13.19) ignoring the transformation 
to creep. In the literature the multiaxial ductility in Eq. (13.33) is assumed to be  
derived from Rice and Tracey’s equation. 

εR = ε0 R exp
(
1 

2 
− 

3 

2 

σh 

σe

)
(Rice and Tracey orig.) (13.33) 

Further comparisons between models are given in Fig. 13.7b. The transformation 
to creep in Hellan’s equation seems to have only a modest effect. This can be seen 
by comparing the curves for Hellan’s and Rice and Tracey’s models. However, the
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usual expression referred to as Rice and Tracey’s original equation is quite different 
to that of Hellan. 

A number of empirical models for the multiaxial ductility factor exist. Wen et al. 
have given of survey of them [6]. Since several models derived from basic principles 
are available and they give results that are often not very different from the empirical 
models, the incentive to use the latter type must be limited in particular since the 
expressions for the basic models are not very complex. 

13.5 Summary 

• For a number of creep resistant steels the creep ductility decreases with increasing 
rupture time and temperature. Sometimes an upper shelf level is observed at short 
rupture times and a lower shelf level at longer rupture times. For martensitic steels 
an increase in the ductility can be found at still longer times. 

• Creep ductility is traditionally modelled with empirical mathematical expressions 
describing an S or an inverted S-shaped curve depending on the variables used. 

• Basic expressions for cavity nucleation and diffusion controlled growth can be 
used to describe the ductility during brittle failure. For steels only general predic-
tions are possible due to the complex cast to cast variation that is not fully 
understood at present. 

• The ductility during ductile rupture has been demonstrated to be controlled by 
necking for the investigated steels and copper alloys. Since necking occurs very 
close to the rupture, modeling of necking can be used to predict the creep ductility. 

• Several derivations for the influence of multiaxiality on the creep ductility are 
presented. In spite of the fact that they are based on many principles, the results 
are in general close to observations for notched bars. 
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Chapter 14 
Extrapolation 

Abstract The extrapolation of creep data to longer times is technically very impor-
tant. The traditional way of extrapolating creep rupture data is to use time tempera-
turer parameters (TTPs). In this way data from several test temperatures are combined 
to a single master curve that can be used to assess rupture strengths at long times. 
Recently, there is much focus on machine learning techniques (neural networks, 
NNs). Both types of procedures can generate accurate results, but a detailed anal-
ysis is required. A good way to assess the quality of the results is to use the post 
assessment tests (PATs) developed by ECCC. Without such tests arbitrary results 
can be obtained. They are important for both TTPs and NNs. It has been shown 
that by putting requirements on the derivatives of the creep rupture curves, the PATs 
can more or less automatically be satisfied. In addition, the error in the extrapolated 
values should be estimated. Using the basic creep models presented in this book, 
prediction of rupture strength and ductility can be made in a safer way. It is demon-
strated for Cu that accurate extrapolation of many order of magnitude in the creep 
rate can be made, which is never possible with empirical models. 

14.1 Introduction 

Many types of high temperature plants have a long design life. Modern fossil fired 
power plants are designed for 20–40 years of operation and nuclear power plants 
for 60–80 years. To ensure safe operation accurate creep data and other time depen-
dent material property values must be available that cover such long design lives. 
Direct measurement of creep data for these extended times is not practical for several 
reasons. It is expensive and technically complicated to perform long term creep tests. 
Disturbances can take place that destroy the test results. In addition the material being 
tested can be outdated before the test is finished. Instead numerical time extrapolation 
of the experimental results must be carried out. Extrapolation of creep rupture data 
have been performed for many years. Long term values have been predicted from 
shorter time experimental data. It should be emphasized that systematic procedures 
must be applied in order to obtain accurate results.
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R. Sandström, Basic Modeling and Theory of Creep of Metallic 
Materials, Springer Series in Materials Science 339, 
https://doi.org/10.1007/978-3-031-49507-6_14 

275

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49507-6_14&domain=pdf
https://doi.org/10.1007/978-3-031-49507-6_14


276 14 Extrapolation

The most common approach is to use time-temperature parameters (TTPs). With 
the help of a TTP, creep rupture data at several temperatures are combined to a single 
master curve, where the creep stresses are shown as a function of the TTP. From the 
master curve, time extrapolated values at lower temperatures can be derived from 
master curve values at higher temperatures. In this way, extrapolated values at most 
temperatures can be found by interpolation from the master curve. By being able to 
interpolate reduces the error in the analysis significantly. Many different TTPs exist, 
see [1]. It started with the Larson-Miller method in the 1950ties. Some TTPs will 
be listed in Sect. 14.2. Although many adjustable parameters are typically involved 
in the fit of the creep rupture data to the master curve, the TTPs are in general 
simple to use since the adjustable parameters can be obtained with linear algebra. 
The application of TTPs will be demonstrated in Sect. 14.2. 

There are other types of methods than TTPs for extrapolation of creep rupture data. 
Two methods can be mentioned where also the form of the TTP is adjustable. The 
minimum commitment method [2] and the free temperature model [3]. In general it 
is difficult to reach more than a factor of three in time for accurate extrapolation with 
statistical methods like TTPs. With the free temperature model a factor of ten can 
be reached in many cases. This has been demonstrated for austenitic stainless steels. 
Other approaches for extended extrapolation also exist [4, 5]. Two other groups of 
methods should also be mentioned. With algebraic methods a creep stress versus 
rupture time equation is the starting point. This type of approach was popular in the 
former Soviet Union [6]. The German graphical techniques have successfully been 
used to perform accurate extrapolations [7]. Another graphical method is a former 
ISO-standard [8]. A more recent method that is popular is due to Wilshire [9]. In this 
approach the creep data is normalized with the tensile strength. This is valuable if 
the amount of scatter in the creep data can be reduced in this way. 

It was recognized a long time ago that the extrapolation results significantly 
depended on the chosen TTP and on the degree of the polynomial used in the fit 
of the master curve [10]. Since different analysts often have different opinions about 
the choice of method, it means that the results are operator dependent and this was not 
considered to be an acceptable situation. For this reason, the European Collaborative 
Creep Committee (ECCC) was initiated. Within ECCC, a framework of systematic 
procedures has been developed that generate more consistent results. The ECCC 
program started in 1992 and is still ongoing in 2022. It has been known that it is not 
possible to pin point a specific TTP to be more advantageous than others. Instead, 
post assessment tests (PATs) have been formulated that are used to check that the 
applied method does not show unphysical behavior and that the extrapolated creep 
rupture strength values are not sensitive to limited changes in the input data. Due to 
the flexibility of the polynomial fit to the master curve, unphysical behavior often 
appears. The PATs represented a major step forward when they were introduced [11, 
12]. Creep rupture data for many steels and alloys proposed by ECCC are now in 
European standards. However, there are still short comings of the proposed proce-
dures and PATs. None of them are based on derivations from physical principles and 
in the past there has been no way of estimating the error in the results.
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To improve the situation for these remaining limitations, two things have recently 
been proposed [13]. The first one is to put requirements on the first and second 
derivatives of the predicted creep rupture curve. The derivatives should be negative. 
In this way a correct physical behavior is often automatically achieved and the flexing 
of creep rupture curves is avoided. The second item is that principles for estimating 
the extrapolation error have been proposed. The use of these findings will be discussed 
in Sect. 14.3. 

The use of a Neural Network (NN) is an alternative to TTP. NN is also called Arti-
ficial Neuron Network and is a part of deep learning. NNs are extensively applied in 
the development of Artificial Intelligence (AI). NNs are used in a large number of 
industrial applications such as autonomous driving, signal processing, risk assess-
ment, pattern recognition of images, missile control, autopilots, etc. [14]. In contrast 
to TTP no basic parameter model is chosen. NNs consist of a number of functions, 
neurons, with adjustable parameters. NNs are sufficiently flexible that they can adapt 
to many types of functional dependence. Fitting of data with empirical models has 
found new interest with the wide spread use of NNs. NNs are in principle limited to 
interpolation of data. However, in practice they are used for extrapolation as well. 

Complicated creep rupture behavior can be simulated with NNs even when special 
degradation mechanisms are present [15, 16]. The fit of the functional dependence 
implies that the number of adjustable parameters is larger than when using TTPs, 
often much larger. Liang et al. [17] have analyzed the creep rupture life of 9–12%Cr 
steels with NN; Ghatak et al. have modeled the creep rupture curve of HP40Nb steels 
with NN successfully [15]. Adductive NN has also been suggested for creep rupture 
prediction of 9–12%Cr steels by Wang et al. [18]. 

In fact, the debate for the extrapolation capability of NN has lasted for a long 
time. Including physical principles in the common NN is a good way to improve the 
extrapolation. This is called physics-constrained [19] or physics-informed NN [20] 
(PCNN or PINN). The extrapolation can be safely conducted by adding constraints 
or prior knowledge to the common NN. 

Extrapolation from NN results must be common in industry. In spite of this it is 
difficult to find procedures for error analysis in the literature. The common method 
is to make a regression analysis between the predicted values and the source data 
and to determine the standard deviation between predictions and the observations. 
As will be shown in Sect. 14.3, this is not adequate at all for creep rupture data and 
probably not for many other types of applications either. For this reason new types 
of error analysis have been formulated recently, Sect. 14.3. 

As was mentioned above, the introduction of requirements on the first and second 
derivative of the creep rupture curves can significantly simplify and improve the 
results of the extrapolation analysis with TTPs. For example, many of the ECCC PATs 
were found to be automatically satisfied if these requirements were introduced. It will 
be shown in Sect. 14.2 that these requirements are equally essential when NN-based 
modeling is carried out. This will be demonstrated in Sect. 14.3. 

The methods discussed above are all empirical models. None of TTPs commonly 
used have been derived from basic physical principles. Both TTPs and NNs are just 
flexible expressions that can easily be fitted to the observations. Empirical models



278 14 Extrapolation

have the drawback that a large amount of data must be available to make safe predic-
tions. Unless the amount of data is sufficient, the models cannot be used to identify 
the operating mechanisms [21–23]. To fully understand the underlying mechanisms, 
fundamental models should be applied where the contributions from different mech-
anisms are derived from basic physical principles. Such models have been derived for 
dislocation strengthening as well as precipitation and solid solution hardening. They 
have been used to predict the creep rate of austenitic stainless steels [21, 22, 24, 25]. 
Fundamental models have also been formulated for cavity nucleation and growth. By 
applying these models, brittle rupture can be modeled. Both creep rupture strength 
and ductility have successfully been computed for copper and austenitic stainless 
steels [22, 23, 26–28]. Some of these models will be discussed in Sect. 14.4. Funda-
mental models are of importance for example to meet the full design life of modern 
nuclear reactors with a planned design life of 60–80 years. 

14.2 Empirical Extrapolation Analysis 

14.2.1 Basic TTP Analysis 

Extrapolation from a single curve gives quite an uncertain result in particularly if there 
are no requirements on the derivatives. It was recognized long ago that by combining 
creep data from several temperatures, the accuracy could be much improved. The 
size of the improvement will be analyzed in Sect. 14.3. The classical approach is 
to use a time temperature parameter (TTP). It is a function of absolute temperature 
and time. A polynomial in the logarithm of the creep stress is fitted to the TTP in 
such a way that the creep rupture data fall on a single curve, the master curve. A 
logarithm with the base 10 is most frequently used in studies on extrapolation and 
that practice will be followed in this chapter. The coefficients in the polynomial and 
a few constants in the TTP represent the adjustable parameters involved. For many 
TTPs the adjustable parameters can be determined with the help of linear algebra 
and are consequently easy to find. Many TTPs are available. Sources were given in 
Sect. 14.1. Examples of TTPs are listed in Table 14.1. 

Table 14.1 Examples of 
time-temperature parameters 
(TTPs) 

Larson-Miller (LM) TTPLM = T [log(t) + CLM] 
Manson-Haferd (MH) TTPMH = log(t)−log(ta ) 

T −Ta 

Manson-Brown (MB) TTPMB = log(t)−log(ta ) 
(T−Ta )r 

Orr-Sherby-Dorn (OSD) TTPOSD = log(t) + COSD/T 

Manson-Succop (MS) TTPMS = log(t) + CMS · T 
Sud aviation (SA) TTPSA = log(t) + CSA · log(T ) 
Goldhoff-Sherby (GS) TTPGS = log(t)−log(ta ) 

1/T−1/Ta
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For the listed TTPs, T is the temperature, t the time, and CNN and log(ta) are  
adjustable parameters. The parameters T a and r are given predefined values in 
general. 

The TTPs in Table 14.1 have been used for a number of decades. References to 
the original sources of the TTPs can be found in [1, 29, 30]. The extrapolation results 
depend on the chosen TTP and the degree of the polynomial that is used to fit the 
master curve. Consequently, it is critical how these quantities are selected. There is 
general experience that it is not possible to find the optimal TTP for a given analysis 
in advance [10]. Instead, a number of TTPs and polynomial degrees have to be tested 
to find a satisfactory solution. 

With an example it will be shown how extrapolation with a TTP can be performed 
and how the result is checked and analyzed. A creep resistant 17Cr12NiTi austenitic 
stainless steel with the common designation 321H will be studied. The experimental 
data are taken from NIMS’ large collection. The studied creep data are shown in 
Fig. 14.1. Larson-Miller TTP is applied and the polynomial degree is selected to 6. 
The fitted master curve is shown in Fig. 14.2. 

The model values in Fig. 14.1 are taken directly from the master curve in Fig. 14.2. 
The part of the master in the range of the data is used for all temperatures except 
the highest one where it is necessary to take into account the extrapolated part of 
the master curve for large TTP values. The advantage of using a TTP is already 
obvious from this description. The extrapolated values at all temperatures except the 
highest one can be determined by interpolation along the master curve. This gives a 
more accurate result than when being forced to extrapolate from single curves. As a 
consequence the extrapolated values at the highest temperature involve a potentially

Fig. 14.1 Comparison of experimental and modeling (interpolated and extrapolated) values for 
creep rupture of the 17Cr12NiTi austenitic stainless steel (321H); Larson-Miller TTP model is used; 
‘pred’ represents the interpolated values, ‘epol’ the extrapolated values, and ‘exp’ the experimental 
data at five test temperatures from 550 to 750 °C. Experimental data from NIMS [31]
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Fig. 14.2 Master curve for 
the creep rupture data in 
Fig. 14.1. A polynomial of 
degree 6 in log(σcreep) versus 
TTP (dashed curve --) is 
fitted to the experimental 
data (pluses +) at the  five test  
temperatures 550–750 °C

higher error than the predicted values at other temperatures. The first requirement of 
a successful analysis is that good fit to the data is obtained, which should be directly 
evident from the comparison with source data (Fig. 14.1) and for the master curve 
(Fig. 14.2). 

In many cases the analysis is performed without additional requirements. This 
often means that a number of attempts have to be made before smooth curves and 
a good fit can be obtained. However, the results in Figs. 14.1 and 14.2 have been 
determined with additional requirements. All creep strength versus rupture time 
representations with double logarithmic scale (which are referred to as creep rupture 
curves) must have a non-positive derivative, in practice a negative derivative. Other-
wise the rupture time would not increase with decreasing creep strength which is 
unphysical. In addition, the absolute slope is not arbitrarily large. 

The second derivative of creep rupture curves is in most cases negative, i.e. 
the absolute value of their slope increases with rupture time. The reason is that 
there is microstructural degradation for example through coarsening of precipitates. 
The exception is so-called sigmoidal behavior with a slightly S-shaped curve. Such 
rupture curves are typically the result of complex precipitation during the creep tests 
and there is a time period when the strength is not degrading but increasing. It is 
quite unusual that the sigmoidal appearance has a temperature dependence that is 
consistent with the creep rupture and can be described with a TTP so this case is 
not considered here. In fact, sigmoidal forms are suitable to handle with the type of 
basic models that are presented in Sect. 14.4. As a consequence it can be assumed 
that also the second derivative of the rupture curve is negative. 

When computing the results in Fig. 14.1 and in Fig. 14.2, constraints on the creep 
rupture curves have been taken into account. The conditions are formulated as 

−m = 
d log tR 
d log σ 

≤ −1.5; d
2 log tR 

d log σ 2 
≤ 0 (14.1)
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d log tR 
d log T 

≤ 0 (14.2) 

As pointed out above it is a physical requirement that the first derivative of creep 
rupture curves is negative 

d log σ 
d log tR 

< 0 (14.3) 

d log tR 
d log σ is the inverse of 

d log σ 
d log tR 

, and consequently the former derivative is also 
negative. 

In Eq. (14.1) the second derivative can be expressed as the second derivative of 
the rupture curve 

d2 log tR 
d log σ 2 

= −  
d2 log σ 
d log t2 R 

/

(
d log σ 
d log tR

)3 

(14.4) 

Equation (14.4) can be obtained with elementary calculus. Since the first derivative 
is assumed to be negative it follows that the two second derivatives have the same 
sign. Thus, the second criterion in Eq. (14.1) is verified. This ensures that the creep 
rupture curves have a negative second derivative. The second derivative of the rupture 
time is somewhat easier to compute than the second derivative of the creep stress. 

With a Norton type of approach both the creep rate ε̇sec and the rupture time tR 
can be represented with stress exponents (power-law creep) 

ε̇sec = ANσ nN; tR = BRσ −m (14.5) 

The constant m is the inverse slope of the flow curve with a minus sign, see 
Eq. (14.1). The Modified Monkman-Grant equation relates the rupture strain εR to 
the strain rate and the rupture time [32] 

ε̇sectR = CMMGεR (14.6) 

Sundararajan lists values of CMMG for a number of materials [33]. The values 
lie in the interval 0.1–0.64. If only secondary creep contributed to the rupture strain 
the constant CMMG would be equal to unity. Another constant, the rupture ductility 
factor λR, is often used 

λR = εR 

ε̇sectR 
; λR = 1/CMMG (14.7) 

By comparing the definition of λR with the modified Monkman-Grant equation, it 
is evident that λR is just the inverse of the modified Monkman-Grant constant CMMG. 
The value of the rupture ductility factor has been analyzed in more detail for modern 
9Cr1Mo steels. The result is that λR ≈ 5 and increases with rupture time [34].
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By combining Eqs. (14.5)–(14.7) and taking the logarithmic derivative, one finds 
that 

m − nN = 
d log λR 

d log σ 
− 

d log εR 
d log σ 

(14.8) 

Since the rupture strain often increases with stress and λR decreases with stress 
for some alloys, the m value is smaller than the nN value at least at lower stresses. 
ECCC has suggested a lower limit of m of 1.5, cf. Eq. (14.1). This is a characteristic 
feature of creep resistant steels. If the absolute value of the slope would be still higher 
and the m value lower, the steel would not be safe to use. 

If the Omega model is satisfied for tertiary creep, the following relation is available 
from Eq. (12.37) if the reasonable assumption that εdiff is large is made 

tRε̇min = 
e−nΩε0 f nN red 

nΩ

(14.9) 

If this equation is combined with the expression for the rupture strain, Eq. (12.38), 
one finds that 

tRε̇min = εR f nN red (1 − f nN red ) (14.10) 

This recovers obviously the modified Monkman-Gran relationship (14.6) with a 
constant that depends on the size of the imperfection of the specimen. Since ε0 is 
about 0.01 and fred ≈ 0.99, the right hand side of Eq. (14.9) is often close to 1/nΩ. 
From Eqs. (14.6), (14.7) and (14.9) one then finds that 

1 

nΩ

≈ CMMGεR = 
εR 

λR 
(14.11) 

This provides another way of estimating the slope nΩ of log(strain rate) versus 
strain curves in the tertiary stage. This result is consistent with the finding that 
nΩ increases with increasing rupture time for modified 9Cr1Mo steels (end of 
Sect. 12.4.2) in the  same  way as  εR/λR does [34]. 

The first and second derivatives for the predicted rupture curves in Fig. 14.1 are 
illustrated in Fig. 14.3. The first derivative is given as the m value, Eq. (14.1).

The conditions in Eq. (14.1) require that the m value is larger than 1.5 and that 
the second derivative is not positive. These conditions are obviously fulfilled. The 
criterion in Eq. (14.2) ensures that the creep rupture curves at different temperatures 
do not cross. This criterion is usually not difficult to meet.
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a b  

Fig. 14.3 The first a and second b derivatives of the rupture time as a function of creep stress for 
the creep rupture curves at the five test temperatures 550–750 °C in Fig. 14.1. The  m-value is minus 
the inverse of the first derivative (PAT 1.3)

14.2.2 The ECCC Post-assessment Tests 

As mentioned above the results of the extrapolation analysis depend on the chosen 
TTP and degree of the polynomial that is used to fit the master curve. The European 
Creep Collaborative Committee (ECCC) recognized that additional tools are needed 
to improve the possibility to select amongst all the alternatives. They proposed a 
number of Post Assessment Tests (PATs) that should be applied when the predicted 
rupture strengths have been generated. There are three sets of PATs [11, 12, 35]. 
The PATs are listed in Table 14.2. PATs 1.1–1.3 check the physical realism of the 
predicted creep rupture curves. A good fit to the data is required, and the derivative 
of the rupture curve should follow the measured values. PATs 2.1 and 2.2 assess that 
the result is uniform and unbiased and that data at specific stresses, temperatures, or 
casts do not behave in a different way from the rest of the prediction. The analysis 
is repeated in PATs 3.1 and 3.2 with some of the long term data removed to verify 
the stability of the prediction. 

Table 14.2 ECCC post-assessment tests (PATs) for creep rupture data extrapolation (reproduced 
from [36] with permission from Elsevier) 

PAT 1.1 Visibility check that the model has given a good fit to data 

PAT 1.2 Physical behavior of the rupture curve over an extended range of temperatures and 
stresses 

PAT 1.3 First derivative of rupture curves to check that the slope is not too steep 

PAT 2.1 Regression of predicted vs. experimental rupture times to avoid bias 

PAT 2.2 Analysis of individual casts 

PAT 3.1 Reanalysis with 50% of the longest time data removed 

PAT 3.2 Reanalysis with 10% of the lowest stress data at each temperature removed
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a b  

Fig. 14.4 a Representation of predicted creep rupture curves over an extended range of rupture 
times for a fine distribution of temperatures (PAT 1.2); b influence of culling of data on the predicted 
rupture curves; According to PAT 3.1 long term data are removed in the analysis, and in PAT 3.2 
the data points with the lowest stresses at each temperature are not included 

The match of the predicted to the experimental data is illustrated in Figs. 14.1 and 
14.2. The fit is fine which means that PAT 1.1 is satisfied. In Fig. 14.3, m > 1.5 and 
consequently PAT 1.3 is fulfilled. 

In Fig. 14.4 the results of PAT 1.2 and PAT 3 are shown. In Fig. 14.4a there is  
no bending back or crossing of curves in spite of the wide range of stresses and 
rupture times and the fine temperature spacing. PAT 1.2 is verified. It should be 
demonstrated that the results are not sensitive to the data for the longest test times. 
This is studied with the help PAT 3.1 and PAT 3.2. In PAT 3.1 the same analysis is 
performed again but with 50% of the data points with rupture time larger than a tenth 
of the maximum observed rupture time randomly removed (culled). In PAT 3.2, the 
analysis is repeated again but this time with 10% of the data points with the lowest 
stresses culled. As can be seen in Fig. 14.4b only at the highest temperature there is 
a significant difference between the culled and the unculled curves. The difference 
should be less than 10% according to the ECCC recommendation and this is satisfied. 

In Fig. 14.5 regression plots between the experimental and the predicted rupture 
times are shown. The purpose of this type of diagram is to demonstrate that the 
predicted values are close to the observed ones at both low and high stresses. Other-
wise the regression line would deviate from the 1:1 line. Two sets of border lines are 
marked in the Figure. There are lines a factor of 2 above and below the 1:1 line. If 
there is limited scatter in the data set, the result would fall inside these lines, but that 
is typically not the case. The second set is located 2.5 σstd above and below the 1:1 
line. If the data show a normal distribution, no more than 2% of the data should fall 
outside these lines. This is obviously fulfilled in Fig. 14.5. The regression coefficient 
should be higher than 0.78 (0.92 in Fig. 14.5a). The regression plots are used to 
estimate the regression error. This will be further discussed in Sect. 14.3.
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a b  

Fig. 14.5 Regression plots between observed and predicted rupture times. The regression line is 
marked. The black line represents a factor of 2 above and below the mean line. The red line describes 
a factor of 2.5 times the standard deviation above and below the mean line; a all temperatures (PAT 
2.1); b Regression plots for individual temperatures 

14.2.3 Use of Neural Network (NN) 

Creep rupture data can be analyzed with a neural network [37]. It is sufficient to use 
a simple NN. The NN that has been applied is illustrated in Fig. 14.6. There are a 
hidden layer and an output layer. In the hidden layer there are 3–10 neurons (3 in the 
Fig. 3) and in the output layer one. 

Each neuron represents transfer functions, one for each input and one for each 
output. The type of transfer function is sigmoidal in the input layer and linear in the 
output layer. There are weight and base parameters in the transfer functions. They 
are used as adjustable parameters in the fitting process. Well established procedures 
for finding the values of the adjustable parameters are available [14]. The fitting 
process for NNs is usually called training. Of the experimental data 70% were set for 
training, 15% for testing, and 15% for validation. The Levenberg-Marquardt back 
propagation method was applied in the training of the network to minimize the Mean 
Squared Error (MSE). A random number stream was used in the NN fitting process 
to fix the output.

Fig. 14.6 Schematic structure of the neural network used to fit the creep rupture data (with Matlab) 
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With ninput inputs, nout outputs, and nneur neurons in the hidden layers, the number 
of adjustable parameters (weight and base parameters) nadj is 

nadj = (ninput + 1 + nout)nneur + 1 (14.12) 

For creep rupture, the test temperatures and the stresses are the two inputs and the 
rupture times the output. The flexible NN model should give a good representation of 
the rupture times. According to Eq. (14.12), there are 13 adjustable parameters with 
3 neurons in the hidden layer; and there are 41 with 10 neurons. In the framework of 
creep rupture, 13 adjustable parameters is already a large number [12]. With more 
neurons the fitting of the data is improved but overfitting may quickly be the result. 

For precisely the same reasons as in the TTP analysis, the requirements on the 
derivatives in (14.1) and (14.2) should be fulfilled. This ensures that flexing and 
other unphysical behavior of the predicted creep rupture curves are avoided. Unfor-
tunately expressions for the derivatives are not readily available in NN software. For 
this reason expressions for derivatives have been derived. Since the expressions are 
complex, the derivation has been placed in an Appendix (Sect. 14.6). An alternative 
is to repeat the computations many times until the constraints and other requirements 
are fulfilled. This is referred to as soft constrained machine learning [38]. 

The application of a NN model is illustrated in Fig. 14.7 for the austenitic stainless 
18Cr10NiCu steel Super304H. It has also the common designation 304HCu. The 
predicted rupture strengths are compared with the observations. 

A good fit was possible to obtain in Fig. 14.7. It should be emphasized that many 
runs with different stream numbers were needed before a satisfactory result was 
obtained. The stream number fixes the random number generator so the same run 
can be repeated. In this way the adjustable parameters in the NN model are initiated

Fig. 14.7 Comparison 
between observed and 
predicted rupture times for 
the creep-resistant austenitic 
stainless steel Super304H at 
four test temperatures from 
600 to 750 °C. The 
prediction of the rupture 
times was made with a 
constrained NN model. 
“pred” is the modeling 
results within the 
experimental range; “epol” is 
the extrapolated results; 
“exp” is the experimental 
data of Super304H taken 
from [39]. Reproduced from 
[37] with the permission of 
Taylor & Francis 



14.2 Empirical Extrapolation Analysis 287

a b  

Fig. 14.8 The first and second derivatives of rupture time with respect to the creep stress for the 
rupture curves in Fig. 14.7; a the m value and b the second derivative both as a function of rupture 
time. Reproduced from [37] with the permission of Taylor & Francis 

with the same values. The initial values have obviously a significant effect on the 
result. The requirements on the derivatives simplify the search for a good fit that 
behaves in a physical correct way. 

The derivatives of the rupture curves are presented in Fig. 14.8. In this case the 
derivatives are given as a function of rupture time instead of stress as in Fig. 14.3. 
But the same message is provided. The derivatives are negative and the m value is 
larger than 1.5 so the conditions in Eqs. (14.1) and (14.2) are satisfied. 

The regression plot in Fig. 14.9 shows a narrower scatter band than in Fig. 14.5 
for 321H. Most of the data fall inside the band for a factor of 2. The reason is most 
likely that the data for Super304H come from just one cast whereas the 321H data 
are from 9 casts. Only single points are outside the 2.5 σstd limit in Fig. 14.9. PAT  
2.1 is fulfilled since the regression line is close to the 1:1 line. An even distribution is 
shown for the extended curves in Fig. 14.9b. No crossing of curves and no bending 
back verify that PAT 1.2 is satisfied.

Studies on several materials show that the PATs play an equally important role 
for NN models as in TTP analysis. That the results have a physical correct behavior 
cannot be ascertained without the application of the PATs. The use of constrained 
optimization with conditions on the derivatives of the creep rupture curves makes it 
much more straightforward to fulfill the requirements of the PATs.
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a b  

Fig. 14.9 Regression plot of predicted rupture time versus observed rupture time for Super304H 
with a regression line (dashed line) close to the 1:1 line. Two bands are given: ±2.5 times the 
standard deviation and a factor of ±2; b predicted rupture times over a wide range of stresses and 
rupture times to demonstrate that the curves are not bending back in an unphysical way. Reproduced 
from [37] with the permission of Taylor & Francis

14.3 Error Analysis in Extrapolation 

14.3.1 Model for Error Analysis 

Fitting a model to the observed creep rupture data is the start of all empirical models. 
The model must give a good fit to the data. This means that the model must be able 
to interpolate accurately between the data points. If TTPs are used the fit is to a 
single curve, the master curve. The deviation between the interpolated values and 
experimental data gives the first contribution to the extrapolation error. 

A schematic creep rupture curve is shown in Fig. 14.10. The creep stress is plotted 
versus rupture time. The data points are scattered around a source curve with a random 
scatter of 50%. The curve will be used to estimate the interpolation error.

The data is fitted with a polynomial of degree 5. To simulate the situation for 
a creep rupture curve, the condition for the first derivative is taken into account 
according to the first criterion in Eq. (14.1). The polynomial lies well inside the 
scatter band but it is moving from one side of the source curve to the other side. 
This means that the second derivative changes sign. In the curve designated fit with 
constraints the second derivative is also assumed to be negative according to the 
second criteria in Eq. (14.1). Since this condition is fulfilled for most rupture curves, 
see Sect. 14.2, the focus will be on this case. It will be referred to as the constrained 
one (although the pure polynomial fit is also constrained to some degree). 

The average error σdevcon in the fit with the constraints can be estimated from basic 
principles in statistics [40]
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Fig. 14.10 Schematic creep 
rupture curve with the creep 
stress as a function of the 
rupture time in a double 
logarithmic diagram

log σdev con = log σrnd/
√
nd (14.13) 

nd is the number of data points. σrnd the amount of scatter in the data points measured 
as the deviation of the difference between the data points and the source curve. 

log σrnd =
√∑

i 

(log σi − log σsource)2/(nd − 1) (14.14) 

A polynomial fit is flexing around the source up to np times, where np is the degree 
of the polynomial. Within each range of flexing the principles of Eq. (14.13) can be 
applied. The average error σdevuncon becomes 

log σdevuncon = log σrnd/ 
√
nd/np (14.15) 

Consequently, the error is raised by a factor of
√
np in relation to Eq. (14.13). 

The derived errors in Eqs. (14.13) and (14.15) have been verified with thousands of 
test runs. Logarithms are used in Eqs. (14.13) and (14.15), which shows that relative 
errors are derived. 

In Fig. 14.11a it is illustrated what happens if one tries to extrapolate the curves 
in Fig. 14.10. For the polynomial fit a partially unphysical result is obtained and the 
curve is almost bending upwards. This is avoided in the constrained fit. In Fig. 14.11b 
another case is illustrated for the same source curve but with a new set of randomly 
generated data points. It is evident that extrapolation from a single curve can give 
significant variations.

When a significant extrapolation is made, the result is controlled by the highest 
order term in the polynomial. In the error analysis, this part is taken into account. It 
can be expressed as
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a b  

Fig. 14.11 Schematic creep rupture curve with the creep stress as a function of the rupture time in 
a double logarithmic diagram; a extrapolated from Fig. 14.10; b parallel example from the same 
source curve

log eext = A(log(text/tref))
np (14.16) 

where text is the extrapolated rupture time. The reference time tref is chosen as the 
minimum rupture time tmin included in the analysis. A is a constant that is a function 
of the degree np of the polynomial, the number of data points nd, and the half-width 
of scatter band σrnd. The  value of  A has been determined with the help of a large 
number of test runs. The following expressions have been found for the constrained 
and unconstrained cases 

Acon = a0 log σrnd √
nd(log(tmax/tmin))

np 
; Auncon = a0 log σrnd  √

nd /n p(log(tmax/tmin))
n p 

(14.17) 

tmin and tmax are the minimum and maximum rupture times in the analysis. a0 is an 
empirical factor that has been found to be about unity. A safety factor of 2.5 in the 
width of the scatter band is included in the value of a0. 

The constant A and consequently the error from Eq. (14.17) are directly propor-
tional to the logarithm of the half-width of the scatter band and inversely proportional 
to the square root of the number of data points. For the unconstrained case the error 
is higher by a factor that is equal to the square root of the degree of the polynomial. 
These basic factors are the same as in Eqs. (14.13) and (14.15). 

In Fig. 14.12 an example is given for how the error increases with rupture time. 
There is a rapid increase. If extrapolation by a factor of 3 in time is assumed which 
is a common requirement, it can be seen from the Figure that this corresponds to an 
error of 20% in the constrained case and 50% in the unconstrained case. It is obvious 
that extrapolation from a single curve can generate large errors.
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Fig. 14.12 Error in stress 
after extrapolation. Results 
for extrapolation with 
constrained derivatives are 
compared with 
unconstrained ones. tmin = 
0.01 kh and tmax = 20 kh. 
Redrawn from [36] with  
permission of Taylor & 
Francis 

14.3.2 Error Analysis with PATs 

The ECCC PATs are valuable tools to assess if the analysis has worked in a satisfactory 
way and the predicted values show a correct physical behavior. However, they do not 
give a direct measure of the accuracy even if all PATs are satisfied. However, with the 
help of the analysis above this can be achieved. The interpolation error einterp from 
the master curve can be expressed as 

log einterp = 
log σrnd 

m(σ ) 

√
ntemp 

nd 
(14.18) 

Logarithms are used in Eq. (14.18), since the modeling of the creep rupture curves 
is usually analyzed in log scales. The error in stress is requested, whereas σrnd gives 
the scatter in the time direction. To take this into account, the m(σ) value is introduced 
in Eq. (14.18). As marked the m value is stress dependent, see Fig. 14.3. The number 
of temperatures in the analysis ntemp is included for the same reasons as the degree 
of the polynomial in Eq. (14.15). 

The regression lines in Fig. 14.5 do not follow the 1:1 line precisely. This deviation 
results in an error that can be expressed as 

log eregr = b0 + (b1 − 1) log tR (14.19) 

where b0 and b1 are adjustable parameters describing the regression line. In 
Fig. 14.5b, the regression lines are evaluated at each temperature. This means that b0 
and b1 are temperature dependent. As can be seen the regression line at individual 
temperatures can deviate from the 1:1 line much more than the mean line. 

The expressions for the errors einterp and eregr in Eqs. (14.18) and (14.19) are  often  
close to unity. The corresponding differences from unity Einterp and Eregr and their
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sum are therefore introduced 

Einterp = einterp − 1; Eregr = eregr − 1 (14.20) 

Etot = einterperegr − 1 (14.21) 

For the case in Fig. 14.1 the three types of errors are given for 321H in Table 14.3. 
The interpolation error in Table 14.3 is between 4 and 6%. The error due to bias 

in the prediction is referred to as the regression error which takes values from 7 to 
10%. The total error is between 12 and 18%. The strength values are multiplied by 
the total relative errors to find the uncertainties in the stress values that are given as 
plus-minus additions. 

To find the extrapolated values at the highest temperature, it is necessary to extrap-
olate from the master curve. The error in this case is given by Eqs. (14.13) and 
(14.14) 

log eextrap = 
a0 log σrnd √

nd

[
log(text/tref) 
log(tmax/tmin)

[np 

(14.22) 

text is the extrapolated rupture time, and tmin and tmax the range of experimental 
rupture times. a0 = 1 and tref = tmin are chosen as explained above. The relative error 
Eextrap is obtained as in Eq. (14.20) from  

Eextrap = eextrap − 1 (14.23) 

The regression error is determined in the same way as for the other temperatures 
and the total error from Eq. (14.21). The results are shown in Table 14.4.

Table 14.3 Error estimates for values interpolated from the master curve in Fig. 14.2 

Temperature, 
°C 

Rupture time, 
h 

Stress, MPa Rel. 
interpolation 
error Einterp, 
% 

Rel. 
regression 
error Eregr, %  

Rel. total error 
Etot, %  

550 100000 177.6 ± 21.6 4.3 7 12.1 

600 100000 112.6 ± 14.9 4.7 7.5 13.2 

650 100000 70.6 ± 10.2 5.2 8.2 14.5 

700 100000 42 ± 6.8 5.8 9 16.3 

550 200000 167.1 ± 22 4.4 7.7 13.2 

600 200000 105.2 ± 15.1 4.8 8.4 14.3 

650 200000 65.5 ± 10.3 5.2 9.1 15.8 

700 200000 38 ± 6.8 5.9 10.2 17.9 
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Table 14.4 Error estimates for values extrapolated from the master curve (321H) 

Polynomial 
degree 

Temperature, 
°C 

Rupture 
time, h 

Stress, MPa Rel. 
extrapolation 
error Eextrap, 
% 

Rel. 
regression 
error Eregr, 
% 

Rel. 
total 
error 
Etot, %  

4 750 70000 20.1 ± 8.2 27.2 9.7 40.9 

4 750 100000 17 ± 8.2 33.6 9.7 48.0 

6 750 70000 20.1 ± 13.2 49.5 9.7 65.7 

6 750 100000 17 ± 15.1 70.1 9.7 88.5 

The total errors are larger in Table 14.4 than in Table 14.3. This is precisely 
as expected since at the highest temperature there is extrapolation from the master 
curve. The degree of the polynomial plays an important role. The extrapolation error 
is significantly increased when the degree of the polynomial is raised from 4 to 6. 
The corresponding effect is small in Table 14.3. The absolute error for the strength is 
obtained in the same way as in Table 14.3, i.e. by multiplying the relative total error 
by the stress value and giving the result as a plus-minus addition. 

The errors in Table 14.4 are so large that the extrapolated values are of little tech-
nical value. The reason for the large values is that the data range at the highest temper-
ature is quite limited. That this gives a large error is directly evident from Eq. (14.22). 
In addition the longest test duration at the highest temperature is fairly short, see 
Fig. 14.1. The case demonstrates the value of the error estimates, although already 
from Fig. 14.1 it is evident that the accuracy would be lower at the highest temper-
ature. However, not until the error has been computed, one can draw the conclusion 
that the error is so large that the extrapolated results at the highest temperature are 
not very useful. 

A comparison between different TTPs is made in Table 14.5 to further investigate 
extrapolation errors. The study is for the austenitic stainless steel Sanicro 25 and 
is taken from [36]. The results for five TTPs are shown at 700 °C for two rupture 
times 100000 and 200000 h. The abbreviations of the five methods can be found in 
Table 14.1.

The predicted strengths vary from 92 to 97 MPa at 100000 h and from 78 to 84 MPa 
at 200000 h. The five methods are associated with fairly similar error estimates. Two 
of the methods (Larson-Miller and Manson-Succop) give slightly higher predicted 
stresses. From the generated PATs for the TTPs (not shown) one finds that 

• For these two methods, the fit at low stresses to the master curve results in a slight 
over-prediction of the stresses. 

• The m-value at low stresses is about 4 for the two methods and 3 for the others. 
• At low stresses the second derivative of the rupture time is about −2 at low stresses 

for the two methods instead of −5 for the others. 

These three sets of observations are not unrelated. They simply show that the 
rupture curves bend down slightly less for Larson-Miller and Manson-Succop
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Table 14.5 Error estimates for values interpolated from the master curve with different TTPs for 
the austenitic stainless steel Sanicro 25 (22Cr25Ni4W1.5Co3CuNbN). Reproduced from [36] with 
permission of Taylor & Francis 

Method Temperature, 
°C 

Rupture 
time, h 

Stress, MPa Rel. 
interpolation 
error Einterp, %  

Rel. 
regression 
error Eregr, 
% 

Rel. 
total 
error 
Etot, %  

OSD 700 100000 91.7 ± 6.8 3.1 4.0 7.4 

700 200000 78.3 ± 6.8 3.2 5.0 8.6 

LM 700 100000 95.6 ± 7.4 3.2 4.2 7.7 

700 200000 83.6 ± 7.4 3.3 5.2 8.9 

MS 700 100000 97.1 ± 8 3.0 4.8 8.2 

700 200000 84.5 ± 8.1 3.1 5.9 9.6 

SA 700 100000 95.2 ± 6.1 3.0 3.1 6.4 

700 200000 82.5 ± 6 3.1 3.9 7.3 

GS 700 100000 93.2 ± 6.6 3.2 3.6 7.0 

700 200000 80.5 ± 6.5 3.3 4.5 8.1

methods at low stresses than the other methods. The error analysis indicates that 
all the five methods give acceptable results but one of the OSD, SA and GS methods 
should be chosen if conservative values are desirable. 

It has been assumed indirectly in the error analysis that the TTPs are valid also 
for extrapolated values. Some support for this assumption is that PAT 1.3 is satisfied 
when some of the long term or low stress points from the data set are removed and 
predicted values can be repeated, see Fig. 14.4. 

14.3.3 Error Analysis with NN 

In Table 14.6 some of the creep data for the investigated cast of Super304H are given 
that are essential for the error analysis. The shortest and longest rupture time at each 
temperature as well as an approximate strength value at the longest rupture time are 
provided. In addition the relative regression error is shown.

Contrary to the case for TTPs, the creep rupture curves at different temperatures 
must be considered as individuals. Thus, each temperature must be analyzed as a 
single curve when the extrapolation error should be estimated with Eq. (14.22). The 
extrapolation error is multiplied by the regression error in the same way as in the 
TTP analysis. The total errors in the strength are listed in Table 14.7 as plus-minus 
additions. When the errors are very large, no decimal is given in the error because it 
does not have any significance. In some cases the errors are close or even exceeding 
the values they are associated with. In that case no values are given. The error depends 
on the number of adjustable parameters nadj. When using Eq. (14.22) the polynomial
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Table 14.6 Some creep properties of Super304H (reproduced from [37] with permission of Taylor 
& Francis)  

Temperature, °C Stress at start, 
MPa 

Shortest rupture 
time, h 

Longest rupture 
time, h 

Regression error, 
% 

600 194.1 113 83985 12.5 

650 133.4 59 46324 1.5 

700 84.1 95 38293 2.7 

750 42.3 70 52178 2.5

degree np is assumed to correspond to np = nadj − 2 since that is the case in the TTP 
analysis. Naturally, the error increases with extrapolated rupture time. In many cases 
the estimated error also increases rapidly with the number of adjustable parameters. 
This is an indication that the number of neurons in the hidden layer should be kept 
as low as possible. It is not common to use networks with smaller nadj values than 
13. This is an important observation because the number of adjustable parameters 
can easily become quite large in NN analyses. The total error is often quite large 
and typically larger than in a TTP analysis. The reason is that the extrapolation 
occurs from single curves with the NN method whereas at most temperatures the 
extrapolated values can be found from interpolation along the master curve with a 
TTP method. 

Table 14.7 Error analysis for creep rupture prediction with the constrained NN model for 
Super304H. Reproduced from [37] with permission of Taylor & Francis 

No of parameters Temperature, °C Predicted creep rupture strength, MPa 

70000 h 100000 h 200000 h 

9 600 187.4 ± 30 174.6 ± 30.3 149.2 ± 30 
9 650 110.1 ± 5.6 101.1 ± 6.6 84.5 ± 9.3 
9 700 64.9 ± 4.8 59.2 ± 5.6 49.1 ± 7.9 
9 750 39.3 ± 2.2 35.7 ± 2.5 29.5 ± 3.3 
13 600 187.4 ± 30 174.6 ± 30 149.2 ± 36 
13 650 110.1 ± 6.6 101.1 ± 9.4 84.5 ± 20 
13 700 64.9 ± 6.2 59.2 ± 9 49.1 ± 20 
13 750 39.3 ± 2.5 35.7 ± 3.3 29.5 ± 6.4 
21 600 187.4 ± 30 174.6 ± 32 149.2 ± 65 
21 650 110.1 ± 9.8 101.1 ± 21 – 

21 700 64.9 ± 11.6 59.2 ± 29 – 

21 750 39.3 ± 3.1 35.7 ± 6.1 –
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14.4 Basic Modeling of Creep Rupture Curves 

14.4.1 General 

To predict and extrapolate creep rupture data, empirical models have been used 
for many years. Such models are described in Sect. 14.2. Many such models are 
well established. They are in principle easy to use. However, if precise results are 
needed they have to be combined with post assessment tests and error analysis. These 
additions require a significant computational effort. This has the consequence that it 
is tempting to ignore these additions but then the results would be quite uncertain. 

Nowadays it is possible to model and describe the development of the microstruc-
ture during high temperature service. There are also basic models for mechan-
ical properties available. By combining these two types of models the mechanical 
properties including creep can be predicted. 

Empirical models require large data set in order to be used for predictions of 
properties. With just a limited data set the models act as more or less arbitrary 
mathematical expressions that are fitted to the data. In such cases it would be very 
risky to generalize and extrapolate the results. An empirical model with say three or 
more adjustable parameters can represent many sets of experimental observations. 
It is very unlikely that a good fit to the data ensures that the model describes the 
physics of the observations. 

To avoid these problems several steps must be taken: 

• The models must be derived from basic physical principles. 
• All the parameters in the models should be well defined and it should be specified 

how they should be determined. 
• No adjustable parameters should be involved that are fitted to the mechanical 

properties. 

There are many models in the creep literature that are derived from basic principles 
but with some parameters that are fitted to the data. It is not quite as risky to apply 
such models as fully empirical ones, but numerous examples exist in the literature 
where such models have been applied and questionable or incorrect results have been 
obtained. Further analysis of this issue can be found in Chap. 1. A summary of basic 
models that can be used for creep rupture is given below. Most of these models are 
derived in other parts of the book. 

14.4.2 Secondary Creep Rate 

The main contribution to the creep strength comes from the dislocation density. An 
accurate description of the dislocation density is therefore essential. Equation (2.17) 
describes the development of the dislocation density ρ
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dρ 
dε 

= 
mT 

bcL 
ρ1/2 − ωρ − 2τL Mclimbρ

2 /ε̇ (14.24) 

ε is the strain, mT the Taylor factor, b Burger’s vector, cL a constant and Ls the “spurt” 
distance which the dislocation moves in each elementary release during deformation 
for example from a Frank-Read source. ω is the dynamic recovery constant, τL the 
dislocation line tension, and ε̇ the creep strain rate. Mclimb the dislocation mobility 
is given by Eq. (2.34) 

Mclimb(T , σ  )  = 
Ds0b 

kBT 
e 

σ b3 
kB T e− (Qself+Qsol ) 

RG T fclglide(σ ) (14.25) 

where T is the absolute temperature, σ the applied stress, Ds0 the pre-exponential 
coefficient for self-diffusion, Qself the activation energy for self-diffusion, kB Boltz-
mann’s constant, and RG the gas constant. Qsol the contribution to the activation 
energy from solid solution hardening has been added to Eq. (14.25). Qsol is equal to 
the maximum interaction energy between solute atoms and dislocations, Eq. (6.10) 

Qsol = Umax 
i = 

1 

π 
(1 + νP) 
(1 − νP) 

GΩ0δi (14.26) 

where G is the shear modulus, νP the Poisson’s ratio of the material, Ω0 the atomic 
volume of the parent metal, and δi the linear misfit of the element i. Mclimb has a 
strong temperature dependence from the activation energies. Mclimb can also have 
strong stress dependence in particular in the power-law break down regime. This 
was explained in Sect. 2.6.4. This stress dependence is described with the function 
fclglide, Eq.  (2.50) 

fclglide(σ ) = exp

(
Q 

RGT

(
σ 

Rmax

)2
)

(14.27) 

The name of the factor fclglide is somewhat misleading. Earlier it was thought that 
the factor was due to the influence of glide. However, the factor is now derived only 
assuming climb, see Sect. 2.6.4. 

The secondary creep rate can be obtained from Eq. (14.24) directly since the 
dislocation density is constant in that stage and consequently its strain derivative 
vanishes. 

ε̇sec = 2τL Mclimbρ
3/2 /( 

mT 

bcL 
− ωρ1/2 ) (14.28) 

Taylor’s Eq. (2.29) gives the contribution σdisl from the dislocation to the strength 

σdisl = αmTGbρ1/2 = σ − σi (14.29)
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where σ is the applied stress and α ≈ 0.19 a constant. σi represents other strength 
contributions than from the dislocations. They will be exemplified below. Using 
Taylor’s Eq. (2.29), Eq. (14.28) can be formulated in terms of the applied stress 
which is the common way of expressing the creep rate 

ε̇sec = hsec(σ − σi); hsec(σ ) = 2τL Mclimb(T , σ  )  
σ 3 

(αmTGb)3 
/

(
mT 

bcL 
− ω 

σ 
αmTGb

)

(14.30) 

This can be considered as a Norton equation where the stress dependence of the 
creep rate is given. At low stresses the stress dependence is from the σ3 factor but at 
the high stresses the main contribution is from the f clglide factor, Eq. (14.27), in the 
expression for Mclimb. 

Practically all high temperature alloys have contributions from solid solution 
hardening (SSH) and/or precipitation hardening (PH) to the creep strength. SSH 
enters the equation in two ways. It gives a contribution Qsol to the activation energy 
for the creep rate, Eq. (14.26). The other part gives a drag stress that contributes to 
σi. This depends on if slowly or fast diffusion elements are involved. The case with 
slowly diffusing solute will be covered first. There are several expressions for the 
drag stress in Sect. 6.4. The one that is most commonly valid is Eq. (6.20) 

σ drag i = 
vclimbci0β2 

bDi kB T 
I (z0) (14.31) 

ci0 is the average concentration of solute i, and Di the diffusion constant for solute 
i. I(z0) is an integral of  z0 = b/r0kBT where r0 is the dislocation core radius. I(z0) 
is given by Eq. (6.21). The climb velocity vclimb and the strength parameter σi are 
found from, Eqs. (6.14) and (6.15) 

vclimb = Mclimbbσ ; βi = bUmax 
i (14.32) 

For fast diffusion elements, the solute must break away from the dislocations. The 
necessary stress is, Eq. (6.28) 

σbreak = 
Umax 

i 

b3

∫
cdyn i dz (14.33) 

cdyn i describes the distribution of solutes around the dislocations, Eq. (6.13). 
The validity of the expressions (14.31) and (14.33) for SSH have been demon-

strated in Sects. 6.4 and 6.5. The influence of Mg on creep rate in Al–Mg alloys is 
illustrated in Fig. 6.4 and the effect of P on the creep rate of Cu in Fig. 6.6. 

The starting point for the precipitation hardening is the Orowan strength, Eq. (7. 
3)

https://doi.org/10.1007/978-3-031-49507-6_7
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σO = 
mTCOGb 

λs 
(14.34) 

where λs is the mean particle spacing, Eq. (7.4) and CO = 0.8 a constant. Equa-
tion (14.33) gives the contribution from particles at ambient temperatures. At elevated 
temperatures small particles can be climbed across without contributing to the 
strength. Only particles larger than a critical radius rcrit give an addition to the strength 

σpart = 
COGbmT 

λcrit 
= σOe

−k(rcrit−r0)/2 (14.35) 

where λcrit is the mean spacing between the particles larger than rcrit, k ≈ 1/r is the 
slope of the particle size distribution and r is the mean particle size. rcrit is given as, 
Eq. (7.9) 

rcrit = Mclimb(T, σ  )b2 σλF 
ρ 

ε̇secmT 
(14.36) 

The Friedel particle spacing λF can be determined from Eqs. (7.6) and (7.14)

(
λs 

λF

)3 

= αcl 

αcl + 2CO 
; αcl = 

2r 

3λs 
=

√
2 fV 
3π 

(14.37) 

f V is the volume fraction of all particles. 
The applicability of Eq. (14.35) has been demonstrated in Sect. 7.4.3 for Cu–Co 

alloys. This is shown in Figs. 7.5 and 7.8. Cu–Co is a suitable system to analyze the 
effect of particles on the creep strength, since well-defined particles can be formed 
and the influence of SSH is quite small. 

14.4.3 Creep Strain Curves 

In the literature much focus has been placed on the prediction and analysis of the creep 
rate in the secondary stage. However, both primary and tertiary creep is of importance 
in many applications. It has been demonstrated in Sect. 12.4 that the whole creep 
strain versus time curves (creep strain curves) can be derived from the creep rate 
in the secondary stage. It is possible to simplify this approach somewhat [36]. The 
creep rate for the whole creep curve can then be expressed by using Eq. (14.30) 

ε̇ = hsec(σcreep); σcreep = σtrue + σnom − σdisl − σi (14.38) 

The only difference in comparison with Eq. (14.30) is that an effective creep stress, 
Eq. (12.19), is introduced. σtrue and σnom are the true and nominal applied stress. It 
is essential to take the true stress into account because otherwise there would be no
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tertiary creep. The nominal creep stress must also be included. Otherwise the creep 
curves close to ambient temperatures could not be explained. They have the same 
form as at elevated temperatures in spite of the fact that stress exponent can be as high 
as 50. This is further discussed in Sect. 8.4. During primary creep, the dislocation 
density increases and thereby the dislocation strength σdisl. When the secondary stage 
is reached, the stresses balance and σcreep is equal to the true stress and Eq. (14.30) 
is recovered. 

In the book there are several models for primary and tertiary creep. For example, 
there are more advanced models taking the substructure into account. However, the 
principles are the same. Examples of computed creep strain curves can be found in 
Sect. 12.5.3. 

14.4.4 Cavitation 

Basic models for nucleation and growth of creep cavities have been presented in 
Chap. 10 and summarized in Sect. 13.3.1. The cavity nucleation rate can be expressed 
as, Eq. (13.5) 

dncav 
dt  

= 
0.9Cs 

dsub

(
gsub 
d2 
sub 

+ 
gpart 
λ2

)
ε̇ = Bsε̇ (14.39) 

ncav is the number of cavities, dsub the subgrain size, ε̇ the creep strain rate, λ the 
interparticle spacing in the grain boundaries and Cs a constant. The fraction of active 
nucleation sites is given by the factors gsub and gpart. The main feature of Eq. (14.39) 
is that the nucleation rate is proportional to the creep strain rate, which has been 
observed for many materials. 

Two types of growth of cavities are considered: diffusion controlled and strain 
controlled. It was early on recognized that for diffusion control, the growth rate cannot 
be faster than creep deformation of the matrix. This is referred to as constrained 
growth. The general equation for constrained growth is, Eq. (13.6) 

dRcav 

dt  
= 2D0Kf(σred − σ0) 

1 

R2 
cav 

(14.40) 

Rcav is the cavity radius in the grain boundary plane and σ0 the sintering stress. 
The grain boundary diffusion parameter D0 is equal to δDGBΩ/kBT where δ is the 
grain boundary width, DGB the grain boundary self-diffusion coefficient, and Ω the 
atomic volume. kB is the Boltzmann’s constant and T the absolute temperature. The 
factor K f ≈ 0.2 is given in Eq. (10.12). The reduced stress σred can be determined 
from Eq. (13.7) 

2π D0Kf(σred − σ0)ncav Rcav + ε̇(σred) = ε̇(σ ) (14.41)
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ε̇(σred) and ε̇(σ ) are the creep rates at the reduced and applied stress. 
Equations (14.39) and (14.40) have been applied successfully to model cavity 

nucleation and growth in austenitic stainless steels. This is illustrated in Figs. 10.5 
and 10.8. 

There are several derived expressions for strain controlled growth. The most well-
known ones are due to Rice and Tracey and to Cocks and Ashby modified by Wen 
and Tu, see Sect. 13.4.2. Unfortunately, these expressions are difficult to use for 
predictions. The start value for the cavity size has a large effect on the results but 
there is no obvious way of selecting the value. Furthermore, the model by Rice and 
Tracey gives quite a limited growth rate in the uniaxial case and the Cocks and Ashby 
model does not fulfill the criterion for constraint growth. A model based on grain 
boundary sliding, Eq. (10.24) avoids these problems but it needs further experimental 
verification for general use. 

14.4.5 Rupture Criteria 

A distinction is made between brittle and ductile rupture. Brittle rupture is assumed 
to occur when the cavitated grain boundary area reaches a sufficient fraction. The 
cavitated grain boundary fraction Acav can be computed from the expression for cavity 
nucleation and growth, Eqs. (14.39) and (14.40). The result is given in Eq. (13.8) 

Acav = 
t∫

0 

dncav 
dt '

(t ')π R2 
cav(t, t

')dt ' (14.42) 

Several studies indicate that the local critical value for brittle rupture is Acav ≈ 
0.25. 

The results in Sect. 12.5 suggest that a plastic instability initiates ductile rupture, 
for tensile specimens necking. Only very close to the rupture a fully developed waist 
is formed. The prediction of necking requires creep strain data. If creep strain curves 
are not available, they could be predicted with the help of Eq. (14.38). Unfortunately, 
the applicability of this equation has been documented mainly for Cu. The alternative 
is to assume ductility exhaustion, and use a fixed creep rupture elongation value as 
failure criterion. As will be seen below, this seems to work well. 

14.4.6 Extensive Extrapolation of the Creep Rate for Cu 

In the present book it has been emphasized that basic models can improve the possi-
bility to predict and extrapolate results. This was illustrated for Al in Sect. 5.7 and 
for Cu-OFP in Sect. 5.8.1. Another example will be given here for Cu-OFP where 
this capability of extrapolation in time is also demonstrated in a dramatic way. The
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a b  

Fig. 14.13 Creep strain versus testing time for Cu with 50 ppm P (Cu-OFP) at 95 °C. The creep 
strain according to Eq. (5.32) is compared to experimental data from Ho [43]; a 19.9 MPa; b 60 MPa. 
Redrawn from [42] with permission of Elsevier 

case was originally presented in [41], but it is reanalyzed here with the primary creep 
model in Sect. 5.5 [42]. 

With conventional creep testing techniques creep rates down to about 1 × 10−12 1/ 
s can be measured. This requires for example that the testing temperature in the labo-
ratory is controlled within 2 °C. Ho carried out creep tests at much lower stationary 
creep rates for Cu-OFP [43]. Tests were performed at 20–100 MPa at 95 °C, at 
20–60 MPa at 125 °C and at 20–40 MPa at 150 °C. The model in Sect. 5.5 can at 
least approximately describe all the experimental results. The parameter value σy/K 
is taken from the room temperature data in [41], and the ω value is computed from 
Eq. (5.35). It is checked that the criterion in Eq. (5.36) is fulfilled. Two examples are 
given in Fig. 14.13. Four tests were performed at 19.9 MPa and six tests at 60 MPa. 
In spite of the low stresses, creep is clearly present in all the tests. 

From Fig. 14.13 one might think that creep is approaching the secondary stage. But 
that is not at all the case. The lowest creep rates in Fig. 14.13a are about 1 × 10−12 1/s 
and in Fig. 14.13b about 3× 10−11 1/s. From Eq. (14.30), the stationary creep rate can 
be estimated to 1.3 × 10−22 and 1.4 × 10−19 1/s in Fig. 14.13a, b, respectively. Such 
creep rates are far outside the interval where they can be measured. For a specimen 
with a gauge length of 50 mm, 1.3 × 10−22 1/s represents a displacement of less 
than one lattice spacing in a million years. The basic stationary creep model can 
obviously handle creep rates at least from 180 MPa at 75 °C of 1.4 × 10−7 (Fig. 6. 
6) to 20 MPa at 95 °C of 1.3 × 10−22 1/s. This represents a range of validity of 15 
orders of magnitude. It clearly demonstrates the value of the basic creep model. 

In Fig. 12.1 the stress exponent is about nN = 60 deep in the power-law break 
down regime. In Fig. 14.13a, the stress exponent is nN = 3.3 and in Fig. 14.13b nN 
= 8.3. Thus, the model provides valuable information even when there is a transfer 
from one creep regime to another. These results have profound implications.

https://doi.org/10.1007/978-3-031-49507-6_6
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• Basic models have the potential to extrapolate results by orders of magnitude in 
time. This should be compared with empirical statistical methods where a factor 
of 3 typically can be reached and in special cases a factor of 10. 

• Meaningful results can be obtained even when there is a transfer from one testing 
regime to another. With basic models it is much safer to generalize and extrapolate 
findings. 

• The technical consequences are of immense significance. Cu-OFP will be used in 
canisters for disposal of spent nuclear fuel in Finland and Sweden. The canisters 
have a design life of 100000 years. Cu-OFP has been creep tested for up to 3 years. 
An extrapolation by almost 5 orders of magnitude is required. The results above 
demonstrate that the basic creep model is valid for such a time extrapolation factor 
with a good margin and that the model can safely be used to predict the creep 
properties of the canisters. 

14.4.7 Creep Rupture Predictions for Austenitic Stainless 
Steels 

With the equation in Sects. 14.4.2–14.4.5 the rupture time can be predicted. This 
has been applied to austenitic stainless steels in several papers [21, 25, 44]. Ductile 
rupture is handled with ductility exhaustion. A constant elongation at rupture of 0.2 
is assumed. This value is lower than the observed values for ductile rupture. On the 
other hand the strain computation is based on the secondary creep rate, Eq. (14.30) 
that underestimates the total strain. At present there is not sufficient data available 
to take primary and tertiary creep into account as well. 

Brittle rupture is based on the cavitated area fraction in the grain boundaries Acav, 
Eq. (14.41). When Acav reaches 0.25, brittle rupture is assumed to occur. The criterion 
for ductile or brittle rupture that is met first is considered to control the type of rupture 
that takes place. 

Results for the 18Cr12NiNb steels (347H) are shown in Fig. 14.14. In Fig.  14.14a 
only ductile rupture is taken into account but in Fig. 14.14b both types of rupture are 
included.

The difference between the two types of rupture is not very large. Only at low 
stresses and long times there is a significant difference. Cavitation reduces the rupture 
times in that situation. The general behavior of the rupture curves can be seen to be 
represented in a reasonable way. 

In Fig. 14.15, the corresponding results for the 17Cr12Ni2Mo steel 316H are 
illustrated. The influence of ductile and brittle rupture is much the same as for 347H. 
The experimental data is represented quite well in particular at long times.

The variation of the slope in Figs. 14.14 and 14.15 follows the observations well. 
The absolute value of slope was designated m in Eq. (14.1). The m value is given in 
Fig. 14.16a for the curves in Fig. 14.14 for 347H.
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a b  

Fig. 14.14 Creep rupture strength values as a function of rupture time for the austenitic stainless 
steel 18Cr12NiNb (347H); a ductile rupture based on ductility exhaustion, Eq. (14.30); b ductile 
rupture as in a and brittle rupture assuming a fixed cavitated area fraction at failure, Eq. (14.42). 
Experimental data from [45] at temperatures between 600 and 750 °C. Redrawn from [21] with 
permission of Elsevier

a b  

Fig. 14.15 Creep rupture strength values as a function of rupture time for the austenitic stainless 
steel 17Cr12Ni2Mo (316H); a ductile rupture based on ductility exhaustion, Eq. (14.30); b ductile 
rupture as in a and brittle rupture assuming a fixed cavitated area fraction at failure, Eq. (14.42) 
Experimental data from [45] at temperatures between 600 and 750 °C. Redrawn from [21] with 
permission of Elsevier

If the modified Monkman-Grant relation was strictly followed, m would be equal 
to the stress exponent for the creep rate nN. However, m is typically larger than 
nN at least for modest rupture times. Figure 14.16 illustrates the contributions to 
the rupture strength. For 347H, the dislocations give the largest contribution which 
is often the case. 347H is precipitation hardened with Nb(C, N). It clearly gives a 
significant contribution to the strength. From solid solution hardening, there is only 
a small effect.
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a b  

Fig. 14.16 Creep rupture behavior of the austenitic stainless 18Cr12NiNb steel 347H; a stress 
exponent m for creep rupture versus rupture time at the temperature 600 °C (top) to 750 °C (bottom); 
b contribution to the rupture strength from dislocations, precipitates and elements in solid solution. 
b Redrawn from [21] with permission of Elsevier

Successful predictions of the creep ductility taking both brittle and ductile rupture 
into account were presented in Sect. 13.3. For example, results corresponding to 
Fig. 14.15 were shown in Fig. 13.6. These results illustrate that the ductility is also 
possible to compute with basic models. 

14.5 Summary 

• The use of time-temperature parameters (TTPs) is the classical way to extrapolate 
creep rupture data to longer times. With the help of TTPs the rupture data are 
fitted to a single curve, the master curve. Extrapolation at most temperatures can 
be handled by interpolation along the master curve. In this way the extrapolation 
from single curves is avoided that gives a less accurate result. Only at the highest 
temperature this is necessary. 

• An alternative to TTPs is to use a neural network (NN). It is necessary to choose a 
simple NN to minimize the number of adjustable parameters involved. The error 
can increase rapidly with the number of parameters. 

• The ECCC post assessment tests (PATs) are quite valuable to show that an extrap-
olation analysis has worked and that the results show a correct physical behavior. 
This applies to both TTPs and NN. 

• Creep rupture curves, i.e. creep stress versus rupture times show some charac-
teristic features. Their first derivative is always negative. This applies also to the 
second derivative except for so-called sigmoidal behavior but that is not consid-
ered in this chapter. For empirical extrapolation, the creep data are fitted to a model
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with a number of adjustable parameters. To improve the fit and the physical realism 
of the predicted rupture time, constrained optimization with conditions on first 
and second derivatives is recommended. It has been shown that many of the PATs 
are automatically satisfied in this way. 

• Formulae for error estimates are presented. Expressions for the relative errors of 
interpolation, extrapolation and regression are given. These error estimates make 
it much simpler to assess the quality of an evaluation. Both interpolation and 
extrapolation from a master curve are covered as well as NN. 

• Basic models for creep rupture have been presented throughout the book. The 
main equations for brittle and ductile rupture are summarized in Sect. 14.4. 

• In principle, basic modeling should make it possible to significantly improve the 
possibility to generalize and extrapolate results. For Cu-OFP it has been possible 
to demonstrate that this is in fact the case. It was verified that meaningful extrap-
olation of many orders of magnitude in time is possible. This makes it possible to 
safely compute the creep properties over such extended periods as 100000 years, 
which has been fully utilized in canisters for disposal of spent nuclear waste. 

• Basic creep rupture predictions for austenitic stainless are summarized. It is 
demonstrated that experimental creep rupture can be well reproduced. 

Appendix: Derivatives in Neural Network Models 
(Reproduced from [37] with Permission) 

The rupture curves, i.e., the creep stress plotted versus the observed rupture time, 
must show the same behavior as described for the TTP analysis, the first and second 
derivative must fulfill the requirements in Eqs. (14.1) and (14.2).  If  the criteria in these  
equations are satisfied unphysical flexing of the predicted rupture curve is prevented. 
The criteria are of the same importance when NN models are used. 

The derivatives of predicted curves are not available in general in NN programs, 
so expressions for the derivatives are derived below. The NN model is represented 
with the matrix formalism given by Hagan et al. [14]. The input p to output a1 from 
the first layer in the network is given by 

v1 k =
∑
i 

W1 
kipi + b1 i (14.43) 

a1 k = ϕ1 (v1 k ) (14.44) 

p has components corresponding to the number of inputs ninput. There is a weight 
factor W1 to each neuron for each input. Thus, the matrix W1 has the dimension 
nneuron × ninput where nneuron is the number of neurons in the first layer. For each 
neuron there is also a component in the base vector b1. The linear combination in 
Eq. (14.43), the transfer input v1 is fed into the transfer function ϕ1, which results
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in the output a1 from the first layer. ϕ1 is a scalar function. The output from the first 
layer is the input to the next layer. The qth layer in the network can be expressed as: 

vq k =
∑
i 

Wq 
kia

q−1 
i + bq k (14.45) 

aq k = ϕq (vq k ) (14.46) 

The superscript refers to the number of the layer in the network. Thus the output 
from layer q − 1 namely aq−1 is the input to layer q. This generates a transfer input 
vq, which is then used to form the output from layer q. 

The formalism set up in Eqs. (14.43)–(14.46) will now be employed to derive 
the expression for derivatives with respect to the input variables in the vector p. An  
iterative procedure will be considered in the sense that if the parameters for one layer 
are known the parameters in the next layer can be derived. The derivative of the 
transfer input in the first layer can be obtained from Eq. (14.43) 

dv1 j 
dpm 

= W1 
jm (14.47) 

Equation (14.45) gives the transfer input from layer q − 1 to layer q 

dvq k 
dpm 

=
∑
i 

Wq 
ki  

daq−1 
i 

dpm 
(14.48) 

The derivative of the output aq from layer q takes the form 

daq k 
dpm 

= 
dϕq 

dv 
(vq k ) 

dvq k 
dpm 

(14.49) 

Notice that there is a summation over index i in Eq. (14.48) but no summation over 
the repeated index k in Eq. (14.49). The rule of automatic summation over repeated 
indices is not applied. When there is a summation, it is explicitly indicated. If Eqs. 
(14.48) and (14.49) are combined, an expression is obtained where the derivative of 
the transfer input in one layer is directly related to transfer input in the previous one. 

dvq k 
dpm 

=
∑
i 

Wq 
ki  

dϕq−1 

dv 
(vq−1 

i ) 
dvq−1 

i 

dpm 
(14.50) 

With the Eqs. (14.47), (14.49) and (14.50) the derivatives of transfer input and 
output can be computed for a layer from the corresponding values in the previous 
layers. 

The second derivatives can be derived in a similar way. From Eq. (14.43), it is 
evident that the second derivative of the transfer input vanishes in the first layer.
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d2v1 j 
dpmdpn 

= 0 (14.51) 

Derivating Eq. (14.50) gives the following result 

d2vq k 
dpmdpn 

=
∑
i

(
Wq 

ki  

d2ϕq−1 

dv2 
(vq−1 

i ) 
dvq−1 

i 

dpm 

dvq−1 
i 

dpn 
+ Wq 

ki  

dϕq−1 

dv 
(vq−1 

i ) 
d2vq−1 

i 

dpmdpn

)

(14.52) 

The second derivative of the output from layer q can be obtained from Eq. (14.49) 

d2aq j 
dpmdpn 

= 
d2ϕq 

dv2 
(vq j ) 

dvq j 
dpm 

dvq j 
dpn 

+ 
dϕq 

dv 
(vq j ) 

d2vq j 
dpmdpn 

(14.53) 

Since NN software where conditions on the derivatives could be introduced was 
not found, a new NN program was written from scratch. The network consists of 
layers of neurons. The number of neurons in each layer could be chosen. The values 
of the weights and bases were determined with the help of an algorithm for back 
propagation. A contribution Δerr to the mean square error was added

Δerr = c1ϕlogsig

(
daQ 

dpm

)
+ c2ϕlogsig

(
d2aQ 

dp2 n

)
(14.54) 

where Q is the final layer in the network, and c1 and c2 are constants. ϕlogsig is a logsig 
function. If the derivatives are positive, there is a contribution to the error function 
that the training of the network will try to remove. 

In the NN models for the prediction of the creep rupture times, two layers were 
used. The first hidden layer contained 3–10 neurons with a logsig transfer function 
for ϕ1. The second output layer with one output had one neuron with a linear transfer 
function ϕ2. With a final linear transfer function, the first term in Eq. (14.53) vanishes 
in this case. With one output, aQ becomes a scalar as indicated in Eq. (14.54). 
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