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Preface

The computation of mechanical properties is of increasing importance. The fast
development of software has enabled many new possibilities. Unfortunately, the
development of basic modelling of mechanical properties has not taken place at the
same rate. This should be contrasted with other scientific areas. Prediction of physical
properties with the help of quantum mechanics methods (ab initio) has made great
progress in recent years and thousands of papers have been published. Also in the field
of computational thermodynamics (Calphad), rapid progress has taken place. Phase
components in the microstructure and their composition can often be predicted with
good accuracy, which is basic information for the understanding of the development
of the microstructure.

The results of ab initio and Calphad computations are often referred to as basic
or fundamental since they do not involve adjustable parameters to predict prop-
erty values. Considering mechanical properties, on the other hand, computations are
commonly performed with empirical models with a number of adjustable parame-
ters. The progress in the ab initio and Calphad area has inspired me to try to find
out if it is possible to predict mechanical properties from physically based models
without adjustable parameters with results that are sufficiently accurate to be used in
industrial and scientific work. To be precise, models that satisfy these requirements
are referred to as basic or fundamental (synonyms) in this book. It is evidently a
challenging task because the properties depend on the behaviour of the dislocations,
which is in turn a sensitive function of the microstructure.

The use of basic models is essential not least due to a number of limitations with
empirical models.

1. Models involving adjustable parameters are often quite flexible. It is common
experience that with say three or more adjustable parameters a wide range of
data sets can be fitted. Thus, a precise fit does not automatically mean that the
model represents the physics of the data.

2. Forthe same reason as given in 1, it would be very risky to use a model with fitting
parameters to identify operating mechanisms. Many models could describe the
same data.
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3. When properties are modelled, there is almost invariably a desire to generalise
and extrapolate the results. That would obviously be very dangerous with empir-
ical models, since almost arbitrary values can be obtained. The exception is
when the model is fitted to a large data set. The criterion is that the number of
adjustable parameters must be very much smaller than the number of experi-
ments. A well-known case is the extrapolation of creep rupture data with the
help of time temperature parameters such as Larson—-Miller. It is well established
that consistent values can be obtained, which is demonstrated in Chap. 14.

The limitations listed above are well-established and easy to understand. However,
there are subtler effects as well. Scientists want to get a good agreement between
model and observations as possible. If amodel with adjustable parameters is involved,
a good agreement is usually easily fixed. In this situation, there is obviously a risk
that the most flexible model available is chosen or that observations in agreement
with the model are preferred. In most cases, such decisions are likely to be taken
intuitively and not on purpose.

The success of the ab initio and Calphad modelling has been an inspiration for me
to try to avoid the limitations mentioned above and to try to collect and develop basic
models also for mechanical properties. With basic models, a number of phenomena
can be investigated in a more precise way. This will be exemplified next.

The Bird, Mukherjee and Dorn (BMD) equation that describes the influence of the
stress and temperature on the stationary creep rate has been very important for creep
research. It is a semi-empirical model with a physical background. It involves at least
three adjustable parameters: a proportionality constant, an activation energy and a
stress exponent. The BMD equation can describe a large fraction of available creep
rate data and is consequently very valuable. In two early papers, Weertman suggested
that dislocation climb would give a stress exponent of about five and dislocation
glide an exponent of three. Even before, modelling of diffusional creep gave a stress
exponent of one. Unfortunately, these suggestions made people believe that the creep
mechanism could be identified from the stress exponent. Consequently, much of the
early creep research focused on the measurement of the stress dependence of the
secondary creep rate. Nowadays, there are both experiments and modelling results
that show that dislocation climb can give stress exponents from 1 to 50 making
it impossible to use the stress exponent to identify the creep mechanism. This is
discussed in Chaps. 2 and 5. Although it is not accepted by everyone, dislocation
glide is always faster than dislocation climb and the former process cannot control
the creep rate, Chap. 2.

As mentioned in the previous paragraph, the stress exponent as well as the activa-
tion energy have frequently been determined for the secondary creep rate. However,
the corresponding values during primary creep have more rarely been measured. It
turns out that both types of values are lower in the primary stage, which has been
demonstrated both by observations and models. This is in practice quite important
because if the secondary stage has not been fully reached, both the activation energy
and the stress exponent can be under-estimated. These findings are particularly impor-
tant at low stresses since it can be quite time-consuming to reach the secondary stage.
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It has been known for a long time that at low stresses, the variation of the creep rate
during primary creep can be quite helpful in identifying the creep mechanism, but
this fact has largely been ignored in the literature, Chap. 5.

A number of the creep models presented in the book are based on a dislocation
model. Although the dislocation model is properly derived, it is essential that the
predictions are verified against experiments. From the dislocation model, formulae
for primary, stationary and tertiary creep as well as stress strain curves are derived.
The validity of these formulae and a number of others has been demonstrated by
comparison to experimental data. The basic models for primary and secondary creep
were first verified for Cu at fairly high stresses close to ambient temperatures. Later,
it has been demonstrated that the models also work for Al, Ni and, for example,
austenitic stainless steels. It has been shown that the models also can handle very
high temperatures and low stresses under conditions that are assumed to be typical
for diffusion-controlled creep. This verifies that the models can cope with a wide
range of applications. Moving from high stresses to low stress can involve a change
in the creep rate by 10 orders of magnitude, which is very strong support for the
validity of the basic models, Chap. 5.

This change in stress level can thus imply an effective extrapolation by 10 orders
of magnitude. This should be contrasted to extrapolation with empirical models that
are commonly assumed to be able to handle of factor of 3 in time. The extrapolation
capabilities of basic models are of great technical importance. Modern nuclear plants
are often designed for a lifetime of 60 years. Considering that the longest creep tests
are typically performed for about 10 years, an extrapolation by a factor of 3 is not
enough. A more extreme case is copper canisters for storage of spent nuclear fuel
in the Swedish KBS-3 system. The canisters should stay intact for 100000 years.
Without basic creep models such time spans would never be possible to handle.
Since the author has been working with copper canisters for many years, this was an
additional reason for the interest in developing basic creep models.

Stockholm, Sweden Rolf Sandstrom
rsand @kth.se
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Chapter 1 ®)
The Role of Fundamental Modeling oo

Abstract The difference between empirical and basic modeling and its significance
is explained. The types of basic models that have been possible to develop and that
are describe in the book are summarized. The starting point is a basic model for the
dislocation density that is used to derive expression for tensile and creep properties.
It is described how the accuracy of the basic models can be verified. For the creep
models it is described that they are applicable over a wide range of temperatures and
stresses that is of great value to identify operating mechanisms.

1.1 Background

Modeling and prediction of materials properties have had a rapid development in
recent years. Ab initio methods are used to compute the electronic structure of crys-
tals based on quantum mechanical methods. The full multi particle problem is not
possible to solve but a number of first principle procedures such as Density Func-
tional Theory (DFT) are available to handle the problem. By minimizing the total
energy of the system, lattice parameters and the most stable crystal and surface struc-
tures can be established. A range of physical parameters such as thermal expansion
coefficient, heat capacity, electric and thermal conductivity can be computed. Inter-
face energies and elastic constants can be derived. This type of modeling is referred
to as fundamental because it is based on physically well founded algorithms and no
parameters are fitted to experimental data.

Computational thermodynamics (CTD) is another area where great progress has
taken place in recent decades. Its base is unique. Expressions for the free energy are
fitted to a range of thermophysical properties as a function of alloy content, which is
referred to as the Calphad approach. The functions determined in this way can then be
used to find the equilibrium phases for specific amounts of alloying elements. Phase
diagrams can be generated. By using data also for interface energies and diffusion
constants the development of microstructure can be predicted, which is the basis
of much research in materials science. The variation of the interface energies and
diffusion coefficients with alloying elements can also be derived with CTD, which is

© The Author(s) 2024 1
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usually referred to as fundamental in spite of the fitting of the free energy functions
to experimental data, because once this process is completed no further fitting is
involved.

Mechanical properties are of great technical and scientific interest. In spite of
this, the amount of fundamental modeling that has been performed for mechanical
properties is much more limited than for ab initio methods and CTD. Mechanical
properties are primarily controlled by the motion of dislocations and this has created
a barrier for more fundamental modeling.

Probably the most common way of measuring mechanical properties is the tensile
test. It gives a stress strain curve that can be used to assess the yield and tensile
strengths as well as the ductility in the form of elongation or reduction of area. To
describe stress strain curves almost exclusively empirical models are used. Some of
the most well-known models are Hollomon, Ludwik, Voce and Swift. These models
do not have any physical background. They are simply mathematical expressions
with a number of adjustable parameters that can be fitted to the data. Only the Voce
model can readily be derived from basic physical principles. This will be described
in Chap. 3.

Also for creep, mainly empirical models are used. The development of them has
taken place over many decades. A major event was when Norton in his book from
1929 gave an equation for the stress dependence of the creep rate [1]. This relation is
now often referred to as the Norton equation. It was the only equation in the book. The
stress dependence of the creep rate has played a profound role in the development. An
important result by Bird, Mukherjee and Dorn (BMD) in the 1960ties gave an explicit
expression for the temperature dependence in the Norton equation [2]. The creep
rate was assumed to be proportional to an Arrhenius equation of the self-diffusion
coefficient which is natural when climb is the controlling dislocation mechanism.
This implies that the activation energy for creep is the same as that for self-diffusion,
arelation that has been experimentally confirmed for a number of pure metals. Some
temperature dependence was also incorporated by explicitly taking into account the
temperature dependence of the shear modulus. This generalization of the Norton
equation is referred to as the BMD equation.

The BMD equation can be considered as a semi-empirical equation. The inclusion
of the self-diffusion constant was based on physical thinking, but the equation still has
at least two adjustable parameters: a proportionality constant and the stress exponent
ny. In spite of these limitations the equation is frequently used till this day. The value
of ny was assumed to be related to the operating mechanisms. Weertman suggested
that climb control would give ny =~ 5 and glide control ny =~ 3 [3, 4]. Together with
the knowledge that diffusion control gives ny & 1, it was thought that the value of
ny could be used to identify the operating mechanism. For this reason much focus
in creep research in the coming decades was on measuring the secondary creep
rate and determining the stress exponent. This seemed logical at the time but has
turned out to be unfortunate. It gradually became apparent that the stress exponent
was not automatically related to the rate controlling creep mechanism [5]. With the
fundamental models that are presented in this book, it is shown that climb controlled
creep can be associated with stress exponents from 1 to 50, demonstrating that a
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specific range of stress exponents does not necessarily make it possible to identify
the creep mechanism.

For a more detailed modeling of creep deformation, it must be possible to describe
how the dislocation density is evolving with time and strain. Initially models were
semi-empirical in nature, but later it has been possible to derive and verify some of
these models. There are three contributions to the changes in the dislocation density.
Work hardening involves the generation of dislocation that raises the strength. In the
50ties and 60ties numerous scientists were engaged in developing models for work
hardening. For creep of polycrystalline materials, a simple expression derived from
the Orowan equation has turned out to be useful. This was first utilized by Lagneborg
[6]. Two recovery processes that reduce the dislocation density are central aspects
of creep: dynamic recovery that is strain controlled and static recovery that is time
controlled. The expression for dynamic recovery was first presented by Bergstrom
[7]. It was also given in a well-known paper by Kocks [8]. The role of static recovery
was initially emphasized by Lagneborg [6].

What has been described so far is the empirical and semi-empirical modeling of
creep. Before entering fundamental modeling, it is worth-while to specify what we
mean by the different types of modeling. These definitions are not supposed to be
general, but it is essential to clarify what we mean in this book.

e Empirical models. Models that have limited or no physical basis. They are math-
ematical expressions that are used to fit experimental data. For that purpose a
number of adjustable parameters are involved. Example, the Norton equation.

e Semi-empirical models. Models that are at least partially derived from physical
facts. They include adjustable parameters or constants that are not well defined
and it is not clear how the constants could be derived in a precise way. Example,
the BMD equation.

e Fundamental (or basic) models. The models are fully based on physical facts and
a scientific derivation is available. No adjustable parameters are involved. All the
constants can be derived in a precise way. Fundamental and basic models will be
used as synonyms in this book. Example, ab initio modeling.

When fundamental models exist they are more valuable tools because they can be
used to make predictions and generalize results. However, empirical models can be
quite useful as well. A classic example is the empirical Bohr model for the hydrogen
atom, where an electron circles around the nucleus as a particle. The Bohr model
inspired a large number of scientists to perform experiments and to develop models.
The Bohr model is now superseded by the quantum mechanical description of the
hydrogen atom.

Empirical models are usually the first ones to be established for a specific
phenomenon. The Norton equation is an example of that. It created the understanding
about some basic facts about creep. It took about three decades before semi-empirical
improvements started to appear and even further decades before fundamental versions
were available. There is always a risk to focus too much on empirical or semi-
empirical models. With the help of adjustable parameters, it is usually possible to
get a good fit to experimental data and that can easily create the impression that
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good understanding of the phenomenon has been established. But it is important
to recall that it is very difficult to make predictions, generalizations and to identify
operating mechanisms with empirical and semi-empirical models. The use of the
BMD equation is unfortunately an example of that in a number of cases.

The starting point for development of basic creep models concerns diffusion creep.
In these models the deformation is assumed to take place by diffusion of atoms inside
the grains [9] or along the grain boundaries [10]. These models are quite simple and
easy to understand intuitively. They both predict a stress exponent of 1. It was thought
that these models would be easy to verify experimentally. But this has not turned out
to be the case. The interpretation of many earlier tests has also been questioned [11-
13]. One of the main reasons for the difficulty is the assumption that only diffusion
creep is associated with a stress exponent of 1. It has more recently been shown that
dislocation creep can give a stress exponent of 1 at low stresses. This has been found
for aluminum at very high temperatures [14, 15]. In the past a stress exponent of
1 was observed. But by carrying out the testing until sufficiently high strains were
reached, a stress exponent of 3 was obtained. Low stress exponents for dislocation
creep have also been observed for the martensitic 9Cr1Mo steel P91 and for the
austenitic stainless 17Cr12Ni2Mo steel 316H [16, 17]. Although the tests for these
steels were performed till 1000 h, the secondary stage was far from reached. If the
stress exponent is determined in the primary rather than in the secondary stage it can
give a low value of about unity.

It is evident from these experimental results and also from modeling findings in
the present book that dislocations can be of importance at high temperatures and
low stresses and that contribution from them can even be much larger than that from
diffusion. When studying diffusion creep it is consequently important to check the
amount of dislocation creep that is present. A simple way to do that is to observe if
primary creep occurs, which would be a clear sign that dislocation creep is present. In
addition, the creep exponent must be unity and the measured creep rate should agree
with the formulae for diffusion creep. Unfortunately, it is not easy to find studies
fulfilling these requirements in the literature. This does not mean that diffusion creep
is not a real effect. However, it seems to be masked by other mechanisms in many
cases.

1.2 Description

Basic modeling of dislocation creep can be said to be started by the formulation
of the climb mobility by Hirth and Lothe [18]. Climb is by far the most important
mechanism for controlling the creep rate. This climb mobility has been implemented
in the expression for static recovery proposed by Lagneborg [6]. Also the parame-
ters in his expression have been derived and the expression validated. The first to
give a basic modeling of dynamic recovery was Roters et al. [19]. This item is not
fully settled yet because the modeled dynamic recovery constant w is not always in
agreement with experiments. With these achievements a basic differential equation
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for the development of the dislocation density could be established. The equations
are derived in Chap. 2.

From the differential equation for the dislocation density, the stationary creep rate
can be derived. In this way the Norton equation is obtained where all the parameters
are well defined with given values. In the past many attempts have resulted in expres-
sions with poorly defined back stresses, activation energies or activation areas. This
is now avoided. The new formulation gives a stress exponent of three or four in its
simplest form. This is sometimes referred to as the “natural creep law” because it is
a direct consequence of the balance between work hardening and recovery during
stationary creep [20, 21].

It is well established that the stress exponent is raised when higher stresses and
lower temperatures are considered. A dramatic increase from the values of ny =
4-7 in power-law creep is observed, which is often referred to as power-law break
down. The increase in the stress exponent has been possible to be fully explained by
taking strain enhanced formation of vacancies into account [22]. This effect is now
integrated in the expression for the creep mobility and it is taken into account in the
Norton equation. This will be described in Chap. 2.

It 1s natural to assume that stress controlled, load controlled as well as rate
controlled plastic deformation are governed by the same mechanisms and equations.
To follow this principle, stress strain curves are described with the same dislocation
models as for creep. For fcc alloys, the stress strain curves obey the Voce model in
the most direct derivation. This can give an as accurate representation as empirical
models for stress strain curves. The dynamic recovery constant w plays a special
role because it controls the work hardening behavior of an alloy. The value of this
parameter as well as stress strain curves are covered in Chap. 3.

Basic expressions for primary creep have not been derived until recently. In [23]
a formulation was presented for 9-12%Cer steels and in [24, 25] for copper. In these
papers, the primary creep rate is derived from dislocation equations without intro-
ducing new quantities. For copper the observed exponential decrease in creep rate
with increasing strain can be reproduced. With a satisfactory description of primary
creep, the behavior at very low stresses can be modeled. As discussed below this
is of importance for analyzing data for diffusion creep. In addition, an accurate
representation is important in many cases in design at high temperatures. Empirical
equations for primary creep are typically difficult to generalize and transfer to suit-
able expressions for stress analysis. However, from basic equations this is readily
possible. Primary creep will be covered in Chap. 4.

Creep at low stresses and with low stress exponents has always created a special
interest amongst scientists due to the simple expressions for diffusion creep. With
the event of basic formulae for primary dislocation creep, it is possible to analyze
its role at low stresses. Since stationary conditions are rarely reached at very low
creep stresses, it is essential to take primary creep into account. It is shown in the
book that dislocation creep can give stress exponents of 1 and that situation is thus
not restricted to diffusion creep. Examples are given for an austenitic stainless steel,
for aluminum and for copper. Both for aluminum and copper, the basic creep model
can accurately represent creep measurements at high temperatures and low stresses
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as well as at low temperatures and high stresses. Thus, the model can handle a wide
range of conditions in temperature and stress. These findings can be considered as a
direct verification of the basic creep model. The results are presented in Chap. 5.

For solid solution hardening (SSH) already Hirth and Lothe [18] derived expres-
sions for slowly diffusion elements. Surprisingly enough, the expressions have not
been used extensively in the literature. The author has shown that the expressions can
reproduce experimental results quite well. For fast diffusing elements the mechanism
is different [26]. The dislocations have to break away from their Cottrell atmospheres
of elements to move. The most well characterized case is phosphorus in copper where
ppm quantities have a pronounced effect on the creep strength. SSH will be discussed
in Chap. 6.

Precipitation hardening (PH) is a potent method to increase the creep strength of
alloys. This was realized early on and many scientists were engaged to try to model
the magnitude of the contributions. They worked from the assumption that there is a
barrier against climb when the dislocations pass the particles. A number of estimates
of the size of the barrier were made. However, eventually the values became so low
that they had no technical interest anymore [27]. With the lack of a proper model
for a long time, in many papers PH contribution to the creep strength was estimated
with the Orowan strength, which strongly overestimates the PH contribution and
in addition gives the wrong temperature dependence. Later, it was assumed that the
controlling factor was the time it takes for a dislocation to climb across a particle [28,
29]. This mechanism was used to describe the creep strength of austenitic stainless
steels [30-32]. These studies had unfortunately the situation that the PH was only a
smaller part of creep strength. To verify the model, Co particles in Cu were studied
[33]. The Cu—Co alloys had the advantage that PH was a major part of the creep
strength and the validity of the model could be verified. The influence of composition
and heat treatment could be reproduced. PH is analyzed in Chap. 7.

Cells or subgrains are formed in virtually all materials during plastic deformation
and are collectively referred to as substructure. If the substructure can be locked with
the help of particles, it can give a significant contribution to the creep strength. A
well-known example is the martensitic steel P91 where M,3Cg particles can be used
to stabilize the substructure [23]. Models for the formation of substructure during
creep and during plastic deformation at near ambient temperatures are presented.
Unbalanced dislocations can be formed where the presence of opposite Burgers
vector is absent. This has the consequence that static recovery does not occur and
the substructure can build up a significant contribution to the creep strength. This is
an important mechanism for how the creep strength can be raised after cold work
[25]. The model can accurately describe how cold work can raise the rupture time
by several orders of magnitude. This can be considered as an additional verification
of the basic creep models. Substructures are analyzed in Chap. 8.

Grain boundary sliding (GBS) is assumed to be the main mechanism for initiation
of creep cavities. The grain boundary displacements have been quantified with the
help of finite element analysis (FEM) [34, 35]. The displacement is proportional to
the creep strain with a proportionality constant C, that can be assessed from the FEM
results [36, 37]. The amount of data on GBS in the literature is limited. However,
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for copper three types of measurements have been performed, and these measured
values for C; are in agreement with the theoretical value. GBS is also believed to
be the main mechanism for superplasticity. The results for GBS are used to derive a
basic model for superplasticity. The model can reproduce literature data for A122Zn.
GBS is discussed in Chap. 9.

Nucleation, growth and linkage of creep cavities are the source of crack initia-
tion in many cases and are therefore of considerable technical interest. Nucleation of
cavities can be well described by assuming that it is controlled by GBS. In particular,
it gives the number of cavities that is proportional to the creep strain in a way that is in
quantitative agreement with observations [38]. Cavities are mainly nucleated at parti-
cles or subboundary junctions in the grain boundaries. In the past, attempts have been
made to base cavity nucleation on classical nucleation theory. However, it suggests
a strong stress and temperature dependence that is at variance with observations.

Models for diffusion growth of creep cavities have been available for a long
time, but the original expressions overestimated the observed growth. This was
solved by requiring that the growth rate should not be faster than the creep rate
(constrained growth). However, these modeled growth rates are still higher than the
experimental values. By analyzing the balance between the cavity growth rate and
the creep rate with the help of finite element methods (FEM), further improvements
have been achieved and now the data can be described in a satisfactory way [39].
Strain controlled growth of cavities is also analyzed. A number of models can be
found in the literature. However, several of these models give a very low growth rate
if the normal size of cavity nuclei is assumed. That makes it difficult to use them for
prediction of growth rates. In addition, some models do not take constrained growth
into account. On the other hand for larger initial cavity sizes, the predicted growth
rates can exceed the observed ones in a pronounced way. One approach that relates
the growth rate directly to the amount of GBS avoids these problems [40]. Cavitation
is discussed in Chap. 10.

Cavitation during cyclic loading is expected to play the same important role for
rupture prediction as during static creep. To describe the nucleation of cavities, the
amount of creep during creep-fatigue interaction must be possible to predict. The
basic models for static creep can be taken over when describing the stress strain
loops during cycling with one important change. The dynamic recovery parameter
o must be increased. The reason is that dislocations encounter each other much
more frequently during cycling than during static loading, leading to an enhanced
annihilation of dislocations. The principles for nucleation and growth of cavities
can essentially be taken over from static loading. This is verified by comparison to
experiments for 1Cr0.5Mo steel, which is handled in Chap. 11.

Numerous empirical models for tertiary creep can be found in the literature. They
are used to describe the creep damage for example during the analysis of residual
lifetime of components with the help of the continuum damage mechanics (CDM).
There are many mechanisms that can contribute to tertiary creep such as cavitation as
well as particle and substructure coarsening. However, recent investigations suggest
that another mechanism is often the dominating one [41]. The true stress during a
constant load test increases rapidly with strain. During primary and secondary creep,
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the increase rate in the dislocation stress matches that of the true stress. However
during tertiary creep this is no longer the case and the creep rate increases. For a
more complete picture, the role of the substructure must be taken into account as
well. The model results suggest that necking starts to form right at the beginning
of the tertiary stage, but the neck is not fully developed until very close to rupture.
These findings are consistent with available observations [41]. Findings on tertiary
creep are presented in Chap. 12.

Modeling of creep ductility is natural to divide between brittle and ductile rupture
because the failure mechanisms are different. For common creep resistant alloys
brittle rupture is initiated by cavitation. When the cavitated area fraction in the grain
boundaries reaches a critical factor, cracking and rupture are initiated. The general
behavior of the ductility of austenitic steels has been modeled, where the ductility
decreases with increasing temperature and rupture time. For ductile rupture, the
modeling suggests that necking activates the failure. So far this has been demonstrated
for copper and for steels that obey the Omega model, where the logarithm of the strain
rate is linear in the strain in the tertiary stage. These materials include low alloy steels,
martensitic 9-12%Cr steels and some austenitic stainless steels. Creep ductility is
covered in Chap. 13.

Extrapolation of creep rupture data to longer times is technologically most impor-
tant due to the extended design life of modern high temperature plants of 30 years or
more. Extrapolation is in most cases performed with empirical statistical methods. In
particular, time-temperature parameters (TTP) are commonly used. To obtain accu-
rate results a large number of data points must be available and careful post assess-
ment tests must be performed. It is shown that the results are found in a safer way if
requirements are placed on the derivatives of the creep rupture curves in the analysis.
A method for the assessment of the errors in the extrapolated values is presented. An
example is also given of the use of neural networks (NNs) in the assessment of creep
rupture data. NNs are straightforward to use but stringent requirements on the anal-
yses must be fulfilled to get meaningful results. Fundamental models have reached
a sufficient degree of development that they can be used to predict creep rupture
data. This is demonstrated for austenitic stainless steels. The results of fundamental
models can be generalized and extrapolated. In conventional empirical extrapola-
tion with statistical methods, recently safe extrapolation can reach a factor of 3-5
in time [42]. This should be contrasted with the use of the basic model for primary
and secondary creep of copper. It has been demonstrated that the model can describe
experimental data at low stresses even after extrapolating the creep rate by many
orders of magnitude [24]. For copper canisters for spent nuclear fuel, the canisters
should stay intact for 100000 years. In such a situation the use of fundamental models
is absolutely essential. Even such a large time scale can be covered. Extrapolation is
discussed in Chap. 14.
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1.3 Objectives

The starting point for the study of creep can be one of the excellent text books
by Ilschner [43], Evans and Wilshire [44], Kassner [45] or Zhang [46]. There are
also many high quality review articles about creep, for example: Sherby and Burke
[47], Lagneborg [6], Nix and Ilschner [48], Orlova and Cadek [49], Kassner and
Pérez-Prado [50], and Blum [51].

It is not the aim to review the complete literature on creep modeling. It would
neither be possible nor meaningful. Instead the book is concentrated to models that
can be derived from physical principles and can give results in quantitative agreement
with observations. Such models have mainly been presented in recent years.

The purpose of this book is fourfold

e To show that it is quite possible to derive models for properties for plastic defor-
mation that are based on physical principles and that avoid the use of adjustable
parameters. Such models are referred to as fundamental (or basic).

e To demonstrate that the use of fundamental models has and will give useful
contributions to creep research and that they can give quantitative predictions
of properties.

e To illustrate that there are many situations where the use of fundamental models
is essential.

¢ To stimulate more scientists to get involved in the development of fundamental
models. There are many areas where further efforts are needed.

1.4 Layout

The author has taken a number of steps to make it easier for the reader to understand
the models that are presented:

e Each chapter is started with an and abstract and an introduction that describes the
content of the chapter without using any formulae.

e In Section 2 of most chapters, common empirical models are summarized and
applied. The aim is to make the reader find models that he/she is familiar with
and to illustrate how the empirical and fundamental models are related.

e In the remaining section(s), basic models are derived, their use is illustrated and
predictions are compared with experimental data.

e At the end of each chapter a summary of the findings is given.
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1.5 Supplementary Material

It is planned to provide supplementary material to the book text. The supplementary
material will contain values of material constants and other information that would
simplify repeating some of the computations in the book. This material will be placed
at the author’s home page.

https://www.kth.se/profile/rsand
Or as an SKB report at
https://skb.se/publications

The title of the book will be included in the name of the supplementary material.
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Chapter 2 ®)
Stationary Creep ez

Abstract An introduction to creep and its main characterstics are given. Stationary
creep has been studied extensively in the literature. Stationary creep is a result
of a balance between work hardening and recovery processes, which allows for
a continues plastic deformation without raising the stress. The starting point for the
basic modeling of creep is a differential equation for the dislocation density that
describes how it varies with strain or time. The model explains how the dislocation
density is influenced by work hardening and recovery. From the dislocation model, a
basic equation for the creep rate is derived that is in many respects similar to the clas-
sical Bird, Mukherjee and Dorn (BMD) formula but with the values of the parameters
given. By taking the role of strain induced vacancies into account, the applicability
of the BMD equation is widely expanded because the basic model can also handle
low temperatures and high stresses that is usually referred to as the power-law break
down regime. It is illustrated that the creep model can represent the creep rate for
pure metals such as Al and Ni.

2.1 The Creep Process

Creep deformation is in general assumed to take place by the motion of dislocations.
At very low stress and high temperatures creep can also occur by the diffusion of
individual atoms, which is referred to as diffusion creep. The framework for diffusion
creep and the competing dislocation creep at very low stresses are discussed in
Chap. 5. In this chapter the focus will be on dislocation creep.

Let us consider a specimen in a soft annealed condition. During a creep test the
few dislocations present initially will rapidly multiply and form a network. This
network will strengthen the material, which is referred to as work hardening. In a
polycrystalline metal, the initial phase of the work hardening is characterized by
an increase in the strength from the dislocations that is proportional to the strain.
Gradually the dislocation density becomes sufficiently high that more stable and
energy efficient dislocation structures are formed that reduce the increase in strength.
During this stage also some dislocations are eliminated due to the interaction with
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other dislocations. Thus there is a process that balances the work hardening and
removes and stabilizes some dislocations. We will refer to this process as dynamic
recovery. It is strain controlled in the same way as the work hardening. The stages
described so far are similar for creep and rate controlled tensile tests.

Specific for creep is that there is an additional process called static recovery.
Dislocations with opposite burgers vectors attract each other and if the dislocations
are free to move, they will eventually eliminate each other. At low temperatures
dislocations can only move in their glide planes, which is referred to as glide. At
high temperatures the dislocations can also move perpendicular to the glide planes.
For edge dislocations this is possible if atoms can diffuse to and from the dislocation
cores. This mechanism is called climb. The main difference between plastic defor-
mation at low and at high temperatures is that climb of dislocations can take place.
This enables that dislocations can move both parallel and perpendicular to the glide
planes. This is crucial during static recovery since the dislocations that are influenced
by attracting forces can reach each other. This makes it possible for dislocations to
annihilate each other and that is the basis of static recovery.

When the dislocation density has reached a certain level during a creep test due
to work hardening, the static recovery starts to be of importance. There is work
hardening that raises the dislocation density and recovery that reduce the density.
The rates of recovery increase faster with time than the rate of work hardening.
This means that eventually there will be a balance between work hardening and
recovery. The whole process becomes stationary and the dislocation density becomes
constant. This is referred to as stationary creep. In the traditional way of describing
a creep strain versus time curve (‘“‘creep curve”), stationary creep is the second stage
and therefore it is referred to as secondary creep as well. Although stationary and
secondary creep does not always be exactly the same thing, no distinction between
the terms will be made in the present book.

The presence of a stationary stage implies that a specimen can continue to deform
at constant stress or load, which is one of the most characteristic features of creep, and
any basic creep model must be able to describe how the stationary stage is reached.
In creep strain tests, the secondary creep rate is usually measured as the minimum
creep rate. Even in the secondary stage, the creep rate is not fully constant. The extent
of the secondary stage is rarely precisely defined and it is up to the one analyzing
the creep data to determine that.

Two types of recovery, dynamic and static, are introduced above. In fact, in most
papers where recovery during creep is discussed no distinction is made between
dynamic and static recovery. In addition, the nomenclature varies. In this book
dynamic recovery is strain controlled and static recovery time controlled. This means
that dynamic recovery only takes place when a specimen is strained whereas static
recovery can occur even without external load. To describe both tensile and creep
tests with the same models, both dynamic and static recovery must be taken into
account. In addition, there are a number of phenomena such as the role of cell struc-
ture and the influence of cold work on creep that would be very difficult to describe
without taking both types of recovery into account.
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In Sect. 2.2 empirical models for the secondary creep rate are presented. The
dislocation model that is the basis for the description of both stress controlled (creep)
and rate controlled (stress strain curves) deformation is derived in Sect. 2.3. Some
constants that are needed in the creep models are analyzed in Sect. 2.4. The basic
formula for the secondary creep rate is given in Sect. 2.5. The dislocation mobility
plays a central role in the modeling, Sect. 2.6. Finally in Sect. 2.7, the analysis is
applied to aluminum and in Sect. 2.8 to nickel.

2.2 Empirical Models of Secondary Creep

It was early on recognized that the creep rate in the secondary stage could be described
with simple relations. Norton found that stress dependence of the creep rate &g could
be described with an exponential expression [1]

Esec = ANO™ 2.1)

where o is the applied stress Ay is a constant. ny is referred to as the stress or Norton
exponent. Equation (2.1) was later extended by including the temperature and grain
size dependence [2, 3]

. ANDgeitGb (b\" /o \n~
Esec_kB—T<E) (5) 2.2)

Dy.r is assumed to be the self-diffusion coefficient represented with an Arrhenius
expression Dy exp (—Qse1t/RgT) where Dy is a frequency factor, Qgir an activation
energy, and Rg the gas constant. G is the shear modulus, b the Burgers vector, kg
the Boltzmann’s constant, 7 the absolute temperature, d the grain size, o the applied
stress, and Ay a constant. The constant p is the grain size exponent that is usually
close to zero but takes positive values for fine grained materials. An, p and ny are
usually considered as adjustable parameters and fitted to experimental data. Unless
the activation energy is close to that for self-diffusion, it is an additional adjustable
parameter. Equation (2.2) is often referred to as the Bird, Mukherjee and Dorn (BMD)
equation. The equation has been much used in creep research in the past decades. It
has been assumed that from the values of the stress exponent, the activation energy
and the grain size exponent, the active mechanisms could be identified. This will first
be analyzed for the stress exponent below.

Another reason for the importance of Eq. (2.2) is that the creep rate can roughly
be related to the rupture time with the help of the Monkman-Grant relationship [4]

gMnétn = Cyg (2.3)

sec

where fg is the time to rupture and my;g and Cyig are constants. The relation works
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best when the secondary stage is a fairly large fraction of the creep life. An alternative
way of writing Eq. (2.3) is

EseclR = ERue (2.4)

where €gsc 1S the total creep strain in the secondary stage. Equation (2.4) is often
easier to apply than (2.3).

The understanding of dislocation creep is mainly based on modeling. The prime
interest has been on secondary creep. The reason is that the stress dependence of
the rate in the secondary stage has been assumed to reflect the operating creep
mechanism. In two papers Weertman suggested that stress exponent was about 5
if climb of dislocations and about 3 if glide of dislocations was controlling [5, 6].
This resulted in the anticipation that the value of the stress exponent could be used
to identify the controlling microstructure mechanism. This was further emphasized
by the predictions of the diffusion creep models that gave a stress exponent of 1.

Creep investigations concerning metals have often been performed above half the
absolute melting point T',. In Fig. 2.1, the stress dependence of the creep rate is
illustrated for 0.5Cr0.5Mo0.25V steel at 565 °C over a wide range of stresses.

The slope of the curve gives the stress exponent ny. At intermediate stresses (and
temperatures) the stress exponent is usually in the range 3-8. The value in Fig. 2.1 is
4. The stress exponent is much higher at high stresses (and at low temperatures), in
the Figure illustrated with ny = 12. The creep rate varies exponentially with stress
at still higher stresses, which is referred to as power-law breakdown. This can give
very high stress exponents. At very low stresses, the ny value takes values down to
unity or even below unity [7]. The steel 0.5Cr0.5Mo00.25V is a precipitation hardened
material. Other precipitation hardened alloys can show much higher stress exponents
than in Fig. 2.1.

Climb of dislocations has in general been considered as the operating mechanism
at intermediate exponents (3—8). However, glide has also been proposed to control the

Fig. 2.1 Creep rate versus
stress for 0.5Cr0.5Mo00.25V
steel at 565 °C. The n value
is the stress exponent in the
power-law creep law, Eq.
(2.2). At large stresses the
creep rate increases
exponentially with the stress,
which is called power-law
breakdown. Some of the data
points are extrapolated. After n=4 o
Wilshire [7]. Reprinted from 10_10 [ .

[8] with permission of n=1 .
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deformation for certain alloy types. The dominating mechanism at high stresses has
been suggested as glide. The main mechanism at low stress exponents approaching
1 has been considered to be diffusion creep. This consistent change of operating
mechanism with stress has been challenged, see for example [7]. Recent research
supports that this challenge is relevant. This will be discussed in Sect. 2.6.4.

It was early on recognized that when the activation energy in Eq. (2.2) was fitted
to creep strain data for pure metals a value close to the activation energy for self-
diffusion Qs was obtained. This was the reason for having the self-diffusion coef-
ficient in Eq. (2.2). The fitted value is referred to as the activation energy for creep
Qcreep- The relation between Qcreep and Qseir is illustrated in a classical picture in
Fig. 2.2 [2, 3].

The natural explanation of the close relation between Qreep and Qselr is that creep
is controlled by climb. Since climb requires the diffusion of vacancies, the climb
rate of pure metals is proportional to the constant for self-diffusion. However, for
alloyed steels the activation energy for creep can be significantly higher than for
self-diffusion due to solid solution hardening. There are other mechanisms that give
a creep rate that is related to the self-diffusion constant. The most well-known one
is diffusion creep.

2.3 Dislocation Model

The most characteristic feature of creep is that there is a continuous deformation at
constant load or stress. This requires that extensive recovery of dislocations takes
place that balances the strengthening effect of dislocations due to work hardening.
Basic creep models must be able to describe this feature. This is the basis of creep
recovery theories [9]. To provide creep models that can make general predictions,
the models must be based on basic physical principles and the use of adjustable
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parameters must be avoided. In this chapter such a creep recovery model will be
presented.

To describe plastic deformation, the development of the dislocation structure must
be known. Only recently quantitative basic models have been established that fulfill
the requirements in the previous paragraph. Such a model will now be presented. In
later sections and chapters it will be used in a number of applications.

During plastic deformation three main processes take place. Work hardening raises
the strength by generation of new dislocations and thereby increases their density.
The increase of the dislocation density raises the energy content of the material.
There is a driving force to reduce the energy content. The mechanism that makes this
possible is called recovery. During recovery dislocations of opposite signs combine
to form low energy configuration or annihilate each other, which reduces the density
of dislocations. There are two types of recovery: dynamic recovery that is strain
dependent and static recovery that is time dependent.

2.3.1 Work Hardening

The work hardening of polycrystalline materials can be described with the help of
the following equation for the dislocation density p

dp _ mr
de  bL,

(work hardening) (2.5)

e is the strain, my the Taylor factor, b Burger’s vector and L the “spurt” distance which
the dislocation moves in each elementary release during deformation for example
from a Frank-Read source. Equation (2.5) can be derived from the Orowan equation

& = bpv/mr (2.6)

¢ is the creep rate and v the velocity of the dislocations. If Eq. (2.6) is integrated, one
obtains

e =bpLs/mr 2.7)

This equation describes how much strain is generated when the dislocations have
spurted a distance L. If we derivate Eq. (2.7) and keep the spurt distance Ls constant,
we get Eq. (2.5). The Orowan Eq. (2.6) is based only on a geometrical argument and
not on a specific mechanism, and this applies to Eqs. (2.5) and (2.7) as well. In this
way these equations have a general applicability. In Eq. (2.5), L, can be related to the
barriers in the materials such as grains or subboundaries. The simplest assumption
is that the spurting dislocations are stopped by the grain boundaries. Ly would then
be the grain size d,. This would give a grain size dependence in the creep rate that
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is not observed except in special cases. The most common assumption is that Lg
is controlled by the forest of dislocations, i.e. it is related to the average distance
between the dislocations 1/p"2.

L= —X (2.8)

¢y is a constant that is much larger than unity. How to find the size of ¢, will be
discussed below. If the dislocations are stopped by the subboundaries instead it gives
an L value that is not very different from that in Eq. (2.8) as will be seen below. If
Eq. (2.8) is inserted into Eq. (2.5) one finds that

dp _ mpp'?
de ~ bcL

(work hardening) (2.9)

This form of the work hardening equation appears in many models including
empirical ones, see for example [10, 11]. As will be seen below, this model can
describe the initial stages of work hardening in fcc alloys.

2.3.2 Dynamic Recovery

When two dislocations during plastic deformation are nearer to each other than a
critical distance dj, a low energy configuration may be formed or annihilation occurs
reducing the dislocation density. This process is referred to as dynamic recovery. It
is commonly taken into account with the help of the following equation

dp
— = —wp (2.10)

de
where w is a constant. This equation was first proposed by Bergstrom and co-workers
[12, 13]. Roters et al. [14] gave a basic derivation of Eq. (2.10). They used the
following argument. During a time increment d¢ a dislocation travels a distance v
dr and has to find a suitable dislocation within the distance 2d;,. This gives an
annihilation rate of

dp = —pvdi2diyp = —ngTdtZdimp @2.11)

In the last step, the Orowan Eq. (2.6) has been applied. This gives an equation
of the same form as Eq. (2.10). By taking the role of slip planes, dislocation locks
and dislocation dipoles into account, the following expression for the constant o was
obtained [14]
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mr 1
0= —dy(2—- (2.12)

b Nslip

nglip 1s the number of independent slip systems (=12 for fcc metals). Roters et al.
[14] suggested a high value for d;,.. But in fact dyy is quite small [15]. The simplest
way to estimate djy is to assume that it is equal to twice the dislocation core radius.
For example, ab initio calculations for copper give a core radius of ro = 1.3 b [16],
and thus dj,; = 2.6 b. This gives ® = 15 which is quite a good value for copper in
agreement with observations. To represent dynamic recovery, Eq. (2.10) is acommon
equation to use. Together with Eq. (2.9), work hardening of many materials can be
described [10, 11]. Equation (2.10) has been used in many papers for representing
stress strain curves. A list of such papers can be found in [17].

2.3.3 Static Recovery

Dislocations of opposite burgers vector attract each other. Static recovery takes into
account how climbing (and gliding, see below) dislocations of opposite signs move
towards each other and finally annihilate. This can be described by the following
equation

dp 2
— =2 M 2.13
di mp ( )

t is the time, T, the dislocation line tension, and M the dislocation climb mobility.
The idea behind this equation was suggested by Friedel [18], but he never gave any
derivation of it in his book. The equation was first used extensively by Lagneborg
and co-workers [9]. To derive the equation, let us consider a network of dislocations
with an average spacing of R, which corresponds to a dislocation density of p = 1/

R?. With the help of the dislocation mobility, the velocity of the dislocations can be
estimated

dR Gb (R M
= —Mbo = —Mb2—1n< ) - rn (2.14)

dt TR \ro R

G 1is the shear modulus. In the second equality, the expression for the stress from
a neighboring screw dislocation is introduced. In the third equality, an expression
for the line tension of a screw dislocation has been applied. If equations for edge
dislocations or mixed screw and edge dislocations are used instead, the end result is
the same. The time to eliminate the dislocation pair 7., is obtained by integrating
Eq. (2.14) with respect to time

R2
ZM‘L'L

(2.15)

Telim =
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The average distance between the dislocations changing with time during the
recovery is obtained from Eq. (2.15)

dR_M‘L’L
dt ~— R

(2.16)

If now the relation R = 1/,/p is applied to Eq. (2.16), (2.13) is recovered.

The derivation of the rate for static recovery, Eq. (2.13), is obviously simplified
since it considers only a pair of dislocations. To analyze static recovery in a more
general situation, dislocation dynamic simulations have been performed. Randomly
distributed parallel dislocations with six different Burgers vectors have been studied,
see Fig. 2.3. Four of the sets were edge dislocations and two screw dislocations.
Dislocations of opposite signs attract each other (top, bottom or left, right or down,
up) and eventually annihilate.

The result of the analysis is illustrated in Fig. 2.4. In this case 1300 dislocations
were used in the simulation. In Fig. 2.4 the values from Eq. (2.13) are scaled to the
same number of initial dislocations.

It is evident from Fig. 2.4 that the validity of Eq. (2.13) is not restricted to a single
pair of dislocations.

Equation (2.13) is based on the annihilation of forest dislocations, i.e. dislocations
in the subgrain interiors. If the static recovery is based on subgrain coarsening instead,
the recovery rate can be derived with the help of the results in [19]. In fact, the same
results as before are obtained, i.e. Eq. (2.13) is reproduced. Thus, the role of the
subgrains cannot be determined from the form of Eq. (2.13). Blum has suggested
that taking substructure into account would change the recovery process [20]. This
obviously depends on the details of the assumptions.

Both dynamic and static recovery are based on the annihilation of dislocations of
opposite Burgers’ vector or orientation that come close to each other. Although the
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modelling of dynamic and static recovery are strain and time controlled, respectively,
and they are based on the different derivations, the two recovery mechanisms are
not completely unrelated. For some processes, it is essential to take both types of
recovery into account, for example, for stress strain curves for large strains and
for primary creep. For more limited strain ranges, dynamic recovery is enough to
consider for stress strain curves. On the other hand, the stationary creep rate is based
on static recovery. In some cases, it is even assumed that the two recovery mechanisms
can give the same results. This is the case in one derivation of the ¢y parameter.
Dynamic and static recovery should be considered as different appearances of the
same phenomenon, and their relative importance depends on the application. Their
final role should always be verified by comparison to experiments. The varying
influence of the two types of recovery could be compared with phenomena in quantum
mechanics, which could be explained in terms of particles or wave packages or both.

2.3.4 Accumulated Dislocation Model

To describe how the dislocation density p develops during plastic deformation,
the contributions from work hardening (2.5), dynamic recovery (2.10), and static
recovery (2.13) are added.

d
0 _ M 12— 2 Mp? )i 2.17)
de bCL

Notice that we have strain derivatives in (2.5) and (2.10) but a time derivative in
(2.13). By multiplying or dividing by &, one can make a transformation from one
type of derivative to the other. Equation (2.17) represents a general basic equation
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for the development of the dislocation density during plastic deformation. We have
seen above that all parts of Eq. (2.17) have a good basis.

The validity of the two first two terms on the right hand side (RHS) of Eq. (2.17)
has been verified by comparison to the work hardening in tensile tests. This will be
further discussed in Chap. 3. The experimental verification of the last term, the static
recovery term is done with the help of creep tests. Examples will be given below.

In many papers in the literature either dynamic or static recovery is taken into
account but not both. However, there are cases where it is absolutely essential to
include both. For example, this is the case for the influence of cold working on creep
properties, which will be treated in Sect. 8.3 [21]. In addition, if the same equation is
to be used to describe both strain rate and stress controlled tests, both dynamic and
static recovery must be included. Equation (2.17) has to be expanded for some types
of materials. A well-known case is martensitic 9 and 12% Cr-steels. For example, to
describe primary creep more than one type of dislocation density must be taken into
account [22]. This will be described in Sect. 4.5.

2.4 The cy, Parameter

The value of the ¢ parameter can be found from the following analysis. The
maximum dislocation density px that is derived from Eq. (2.17) plays an impor-
tant role because it gives the dislocation contribution to the creep strength during
stationary conditions and the amount of work hardening during tensile tests.

The main alternative to derive the value of ¢, . is to make reference to the substruc-
ture. The spurt distance L in Eq. (2.5) can be related to the subgrain or cell diameter
dsub~

Ly = ngpdaup (2.18)

where the constant ng,, is close to 3 [23, 24]. It is well established that the subgrain
or cell size can be related to the dislocation stress

Ksubi

Odisl

(2.19)

sub —
Kb 1s a constant typically in the range 10-20 [25]. The dislocation stress oy 1S
given by Taylor’s equation
I 172
o4ist = amtGbp (2.20)
where o4 1s the strength contributions from the dislocations. This equation gives the

relation between the strength contribution from the dislocations and the dislocation
density where o &~ 0.19 is a constant. Experimentally o takes typically values in
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the range 0.2-0.6 [26]. In this book a computed value o & 0.19 applicable to high
temperatures will be used, Eq. (3.17). Equation (2.18) can now be rewritten as

_ nsustubi _ nsustub

L =
Odisl mrop'/?

2.21)

Equation (2.21) has the same form as Eq. (2.8) so a ¢ value can be obtained
directly

K.
cL = Msub & sub (2.22)
mro

A simple estimate of the ¢, value can be obtained in the following way. It is
assumed that the maximum dislocation density py is either controlled by the dynamic
recovery term (pxqr) OF the static recovery term (pxs) in Eq. (2.17)

mr 2 mTé 2/3
= = — 2.23
Pxdr (bcLa)) Pxsr < 2be oM ) ( )

At ambient temperatures, the stress dependence of the recovery terms is such that
the dynamic recovery term dominates. This means that first of Eq. (2.23) is the one
that is applicable and can be used to obtain an estimate of c| .

mr miaG N miaG

CL = =
bopy'?

(2.24)

wogislx @Ry — 0y)

where Ry, is the tensile strength and oy the yield strength at room temperature. In
the second equality, Taylor’s Eq. (2.20) has been applied. In the final equality in
Eq. (2.24), the maximum value of o4;5 has been estimated as the difference between
the tensile strength Ry, and the yield strength oy for a material without significant
contributions from precipitation and solid solution hardening. The ratio between the
expressions for static and dynamic recovery, Egs. (2.13) and (2.10), is given by

2‘L'LM

weé

Apart from constants this is the same ratio as in the creep Eq. (2.28), see below,
if the ratio is multiplied by p'/2. This means that the following ratio is at least
approximately temperature and stress independent

2‘L'LM
—./03/2
we

To make Eq. (2.24) valid at higher temperature, we have to multiply it by (p(T)/
o(Tgrr))"? which gives
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_ mr o(T) 12 _ mr
bawp(T)'? " p(Txr) bwp(Trr)'/?

CL, (225)

where Trr is the room temperature. This expression is identical to Eq. (2.24). This
means that Eq. (2.24) is valid at elevated temperatures as well. Consequently, ci, is
a temperature independent constant. Eq. (2.22) represents a more physically based
value than Eq. (2.24), but the values are of the same order.

Another argument can in a number of cases give a more accurate estimate of c. It
is well-known that tensile stress strain tests can give rise to a stationary stress level if
sufficiently large strains can be reached. This stress level is comparable to the creep
stress that gives the same strain rate that was used in the tensile test. For many creep
tests the contribution from the static recovery is dominating that of dynamic recovery.
On the other hand for stress strain curves, the situation is reversed: dynamic recovery
is more important than static recovery. But the comparison between the results from
the tensile and the creep tests gave the same stationary results. A possible assumption
is then that dynamic recovery and static recovery should generate the same findings.
Putting it in mathematical terms this means that the two last terms in Eq. (2.17)
should be the same, which gives

wé — 21 psMa(ps) (2.26)

Since the climb mobility M, in general depends on the dislocation density, Eq.
(2.26) has to be solved by iteration to find the stationary dislocation density ps. This
argument is only valid if only one of the dynamic or the static recovery term is taken
into account. If the dynamic recovery term is considered, the first two terms on the
RHS of Eq. (2.17) have the same value under stationary conditions and the ¢y, value
can be determined.

m
cLz—T,osl/2 2.27)
w

This relation will be used in Sect. 3.3 for stress strain curves.

2.5 Secondary Creep Rate

The recovery theory is the basis of our understanding of the creep process [9]. For
secondary creep to take place the recovery rate must be sufficiently fast that the
dislocation density can be kept constant. In the presence of a continuously rising
dislocation density, the creep rate will gradually be reduced and eventually vanish,
which is not in accordance with observations. Thus, the balance between the gener-
ation and the annihilation of dislocations is a crucial feature. The strain derivative
in Eq. (2.17) vanishes if we assume stationary conditions. The secondary strain rate
can then be expressed as
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. 211.bc
Esec = - L[MclimbIOS/2 (2.28)
mr

In Eq. (2.28) only static recovery is taken into account, not dynamic recovery
to make the equation agree with observations. This was discussed at the end of
Sect. 2.3.3.

If other contributions than the dislocation stress is part of the applied stress, Eq.
(2.20) has to be rewritten as

1/2

odgist = amrGbp''* =0 — o; (2.29)

o4is 18 the dislocation stress. o is an internal stress that was the yield strength above.
In addition, contributions from solid solution hardening and particle hardening can
be included. They will be discussed in Chaps. 6 and 7. Equation (2.28) can be
transformed to stresses with the aid of Taylor’s Eq. (2.29),

3

ZTLbCL (o2
(amtGb)3

Esec = Ngec(0 — ;) Where hg (o) = Mimp (T, 0) (2.30)

The mobility M will be given below. At low stresses this expression is almost
independent of stress, and Eq. (2.28) approximately gives a power-law expression
with a stress exponent of 3 if there is no internal stress. This is sometimes referred to as
the natural creep law [27]. This stress exponent is often observed at high temperatures
for austenitic stainless steels [28]. There are many factors that influence the value
of the stress exponent ny. If diffusion takes place along dislocations (pipe diffusion)
instead of in the grains, the stress exponent is increased by 2 [29]. If the dislocation
network consists of dipoles instead of single dislocations the stress exponent is raised
by 2, but limited experiments are available to support that [20]. But the most dramatic
effect is from strain induced vacancies that will be analyzed in detail below.

According to Eq. (2.29), the applied stress o is equal to the sum of the strength
contributions from dislocations o4i; and from other parts o; (solid solution and
particle hardening). At low temperatures o; can also include the yield strength. Thus,
for a pure metal the applied stress is equal to the dislocation strength if the yield
strength is not taken into account. There are other formulations of the creep-recovery
theory that also involve an effective stress o, see for example [30]. This means that
Eq. (2.29) is replaced by

0 = O¢ff + Odis| — Oi (2.31)

Physical arguments have been given for the existence of an effective stress [31].
However, the effective stress is a problematic quantity. It has been suggested that
ot could be measured in stress drop tests. If the dislocation structure is intact after
a stress drop, the strain rate would disappear after a sufficiently large stress drop,
because the back stress from dislocations would be much larger than for the stationary
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level at the new lower stress. However, it is known now from dislocation dynamics
simulations (DDS) that the forest dislocations adapt to the new stress level within
milliseconds [32]. The substructure is also likely to partially adapt to the new stress
level but not completely. So the back stress that is measured is from the unchanged
part of the substructure. Unfortunately, no detailed studies on the momentary effect
on the substructure seem to exist. It is evident that what is measured in a stress drop
test is something that is quite different from what is supposed to be the effective
stress. Stress drop tests at different laboratories have not in general given consistent
results [33]. This is not surprising considering the dynamic nature of stress drop
tests, which makes them very sensitive to the exact experimental setup [34]. In the
present text, the effective stress will not be considered, since there seems to be no
well-defined way to measure or model the quantity.

et = 0 (2.32)

From the results that are presented in this text it will be evident that precise creep
models can be formulated without introducing an effective stress.

2.6 Dislocation Mobility

2.6.1 Climb Mobility

The dislocation mobility M in Eq. (2.17) describes the velocity v of moving
dislocations

v = Mbo (2.33)

where o is the applied stress. Glide of dislocations takes place in their slip planes
and climb perpendicular to the slip planes. Climb is associated with the emission and
absorption of vacancies by diffusion. Climb is a slower process than glide. Hirth and
Lothe [35] derived a basic expression for the climb mobility of pure metals at high
temperatures (>0.4 T, where T, is the melting temperature)

Dyb o0 _ 0w

ko ewT ¢ RT (2.34)

M timpo =

where T is the absolute temperature, o the applied stress, Dy the pre-exponential coef-
ficient for self-diffusion, Qs the activation energy for self-diffusion, kg Boltzmann’s
constant, and Rg the gas constant.

At lower temperatures, plastic deformation raises the number of vacancies above
the equilibrium value. A climbing dislocation will either emit or absorb vacancies.
Jogs in the form of steps of the length of a Burgers vector are formed on gliding
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dislocations when they cut each other. In general jogs move by climb and hence they
also emit or absorb vacancies. Since the climb rate is proportional to the number of
vacancies per unit volume, it is influenced by the excess vacancy concentration.

Mecking and Estrin [36] have developed a model that describes how the number
of vacancies is influenced by plastic deformation. They estimated the number of
vacancies produced mechanically in a unit volume per unit time as

P—052¢ (2.35)
T T Gh3 ’

The quantities in this equation have been explained above. The constant in Eq.
(2.35) was estimated to 0.1 in [36]. A detailed derivation gives the value 0.5. For the
excess vacancies the annihilation rate A was found to be

DVaC

A= e

(¢ —co) (2.36)

where ¢ is the equilibrium vacancy concentration, Ac = ¢ — ¢ the excess concentra-
tion, Dy, the diffusion constant for the vacancies, and A the spacing between vacancy
sinks. Following [36], A can be related to the cell or subgrain size dy,, Eq. (2.19)
if a substructure is present. Combining Eqs. (2.19), (2.35) and (2.36), an expression
for the excess vacancy concentration is obtained

A 2K2 éb* G
Ac _ o sV2KLED G 2.37)
co Dy o

In finding Eq. (2.37), a relation for the self-diffusion coefficient has been applied
Dyeif = COQDvaC (238)

where €2 is the atomic volume. In the same way as in [36], the climb rate is assumed
to be proportional to the total vacancy concentration. Equation (2.37) then gives the
increase in the climb rate gqimp due to the presence of excess vacancy concentration

Ac
gclimb = 1 + — (2.39)
€o

The total climb mobility M i is obtained by multiplying Eq. (2.34) by gclimb-

Mlimb = Mclimbo&climb (2.40)
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2.6.2 The Glide Mobility

The glide mobility is very high in a dislocation free crystal. A glide mobility of
My =1 x 10* 1/Pa/s was measured for a copper single crystal by Edington [37].
The mobility is much lower in an alloy where a forest of dislocations is present. As
discussed above, jogs will be formed on the dislocations during deformation. Often
the jogs will have to move perpendicular to their glide planes. This implies that they
are sessile, and they have to move by climb [35], and this is a slow process. The
motion of the jogs is likely to control the glide rate. This will be assumed and this is
also what Hirth and Lothe did [35].

The starting point for the glide mobility is Eq. (2.40), since the jogs are moving
by climb. However, there is another aspect that must be considered. Jogs are only
present on a small part of a dislocation. Due to the slow movement of the jogs, the
forces on the dislocations are localized to the jogs. The average distance between
jogs can be related to the dislocation density p as [, = 1/,/p. The Peach-Koehler
formula F = bol where [ is the length of the dislocation gives the force F on a
dislocation. F* will be the force on each jog if [ is chosen as /;g. Thus, the stress on
the jogs is raised by

log 1
b byp

where the length of a jog is set as the burgers vector. Equation (2.41) can be expressed
in terms of the stress ¢ with the help of Taylor’s equation

8glide = (2.41)

o =oy +amrGb./p (2.42)

where oy is the yield strength

amtG
8glide = (2.43)
o —oy
Multiplying the climb mobility by ggji¢e gives the glide mobility
Mgtige = Mclimb0&climb&elide (2.44)

Equation (2.44) is applicable to both edge and screw dislocations. It is evident that
the climb and glide mobility are closely related with the assumptions made. ggjide is
approximately equal to the ratio between the shear modulus G and the applied stress
0. gglide 1S always much larger than unity, since G is considerably larger than o. As
a consequence, the glide mobility is always larger than the climb mobility. When
modeling creep, this is also a common starting point.
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2.6.3 Cross-Slip Mobility

With the help of cross-slip, screw dislocations can change glide plane. This can
increase the annihilation of dislocations with opposite Burgers vectors and raise the
rate of recovery. There is an additional activation energy E.g for cross-slip. Piischl
gave the following values of E [38].

d 2d
E. = 0.012Gb3% ln< bSFE> (2.45)

dspg is the width of a stacking fault [35]

Gb* (2 —p)

=27 - (2.46)
8mysre (1 — vp)

SFE

where yp is Poisson’s ratio and ysgg the stacking fault energy. Taking copper and
aluminum as examples with stacking fault energies of 45 mJ/m? and 166 mJ/m?,
respectively [39], Eq. (2.45) gives for E values of 560 and 40 kJ/mol. This indicates
strong temperature dependence for copper. Equation (2.45) is derived with the help
of elasticity theory, which can give imprecise values at the atomic level. However,
ab initio calculations have recently been carried out with similar results. Du et al.
found E values of 210 to 270 kJ/mol for Ni—Al alloys and Nohring and Curtin 60
kJ/mol for AlI-Mg, 160 kJ/mol for Cu—Ni and 180 kJ/mol for Ni—Al [40, 41]. Lower
energy values have also been obtained in ab initio calculations. Rao et al. found
values in the range 50—70 kJ/mol for Cu and Ni [42]. The effect of cross-slip on the
mobility can be expressed as

eross-slip = €Xp(— Fe ) 247
RgT
Mcross—slip = MclimbOgclimbgglidegcross-slip (2.48)

The role of cross-slip in dynamic recovery will be analyzed in Sect. 3.4.

2.6.4 The Climb Glide Mobility

The results for the dislocation mobilities are recent [8]. It has been known for a
long time that the climb mobility in Eq. (2.34) underestimated the creep rates at low
temperatures and high stresses by a wide margin. The main assumption was that glide
would be the controlling mechanism under these conditions. To handle this situation
a combined climb and glide mobility was formulated [43]
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Metimb = Mclimbo felglide (2.49)
where feigiige 1S given by
Qslr, O 2
Selglide = CXP<RGT (m) (2.50)

Rumax 18 the true tensile strength at ambient temperatures. It was work of Kocks et al.
[44] that suggested the form of Eq. (2.50). They presented an empirical expression
for the glide mobility. However, the expression had five unknown parameters and
could therefore not be used directly. According to a suggestion by Nes, an integrated
climb and glide mobility could be introduced [45]. In this way some of the unknown
parameters could be found. With the aid of work by Chandler, the other parameters
could be fixed [46].

The introduction of Eq. (2.50) has a number of important implications at low
temperatures. First, the activation energy for creep is reduced. Second, the creep rate
is increased by a large factor. Third, the stress exponent is raised in a dramatic way.
These findings are in excellent accordance with experiments [15, 47].

Ideally, to describe creep, the basic models for the dislocation mobilities derived
above should be used when modeling creep and other types of plastic deformation.
However, since g.jimp involves the strain rate, it is difficult to apply directly. Instead,
the equations for the mobilities will be used to verify the validity of Eq. (2.50).
This equation can then be applied to compute the creep rate. gciimp and feigiide are
compared in Figs. 2.5 and 2.6 for pure aluminum.

In Fig. 2.5, a continuous set of parameters for temperature and strain rate are
used whereas in Fig. 2.6 experimental values are applied. It can be seen that the
enhancement in vacancy concentration due to plastic deformation can fully explain
the increase in creep rate in relation to the high temperature climb mobility. A second
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example of the comparison is given in Figs. 2.7 and 2.8 for copper with 50 ppm P
(Cu-OFP).

The two sets of models show an excellent agreement over many orders of magni-
tude of strain rate. The dependence of temperatures, stress and strain rate is well
covered. It verifies that the expression for the climb-glide enhancement in Eq. (2.50)
can be fully explained by the increase in vacancy concentration. Since its stress and
temperature dependence is explicit, it is straightforward to apply. The total formula
for the climb mobility, Eq. (2.49), with the equations for high temperature climb
mobility M jimbo, EQ. (2.34), and the climb glide factor, Eq. (2.50) is now

DS()b ob®  _ Oselr
Mejimp (T, 0) = enTe Fol foige (T, 0) (2.51)
g
kg T
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Fig. 2.8 Climb
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This is the expression that should be inserted in the equation for the secondary
creep rate (2.30)

3

2‘L'LbCL o
(amtGb)3

bsec = hsec(0 — 07) Where hgc(0) =

M jimp (T, 0) (2.52)

The derivation of the factor fegige, Eq. (2.50), was originally based on the assump-
tion that it took the effect of glide into account. But the derivation now considers only
climb. The result is that creep is fully climb controlled even at lower temperatures
and higher stresses in the power-law breakdown regime.

2.7 Application to Aluminum

According to what we know today, static recovery is in general controlled by climb.
This was analyzed in Sect. 2.3.3. This implies that Eq. (2.40) for the climb mobility
should be applied in Eq. (2.30). Furthermore it was found that the enhancement factor
for the climb mobility g.jimp due to the increased vacancy concentration in Eq. (2.39)
agreed with the climb glide enhancement factor fiiige in Eq. (2.50). Further support
to the use of Eq. (2.40) is found from the successful application of f¢jgjiqe to model
experimental data.

An application of Eq. (2.30) will now be demonstrated for pure aluminum. In
bcce metals dislocations are exposed to a friction stress, called the Peierls stress. The
Peierls stress is usually not thought to be of significance for fcc alloys. However,
it has recently been demonstrated by ab initio calculations that the Peierls stress is
non-negligible for aluminum. A Peierls stress will be applied for o;. The following
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Fig. 2.9 Secondary creep
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value for the Peierls stress of edge dislocations op. was found by Shin and Carter
[49].

Ope =49 x 107°G (2.53)

Screw dislocations gave much smaller values. The application of Eq. (2.30) is
illustrated in Fig. 2.9.

The slope of the curves is about 4.5 at intermediate stresses in Fig. 2.9. The slope
is the value of the stress exponent. The slope increases at higher stresses, indicating
power-law breakdown. An increase of the stress exponent is also observed at low
stresses. This is due to the presence of the Peierls stress. It can be seen that the model
in Eq. (2.30) can obviously handle the experimental data quite well.

2.8 Application to Nickel

The factor fegige in Eq. (2.50) has been found to work with good precision for Al and
Cu. It is used successfully in many places in this book for example also for austenitic
stainless steels. It is an expression that is fitted to gcjimp in Eqs. (2.37) and (2.39) and
it may not be completely general. In fact, it has been found for nickel that a different
expression has to be applied [51]. In this case, the starting point is to use the function
for the secondary creep rate, Eq. (2.30) without the factor feigige-

3

bCL 18 o
(amrGb)3

Esec = 2 M timpo(T, o) fsre (2.54)

This formula for the creep rate is inserted into Eq. (2.37)



2.8 Application to Nickel 35

Ac V2K?2 berty 0% o
e =1+—=1 sub — T 2.55
Selglide + @ + kol  (amm)me SsrE " (2.55)

For Ni, pipe diffusion, i.e. diffusion along dislocations is important. To the bulk
diffusion coefficient in M impo, the pipe diffusion coefficient has to be added [29]

Dett = Dgerr + pAgDy (2.56)

where p is the dislocation density, A4 is the core area of the dislocations, and Dy the
dislocation diffusion coefficient. For the core radius of the dislocations, a value of
6 x 1071 m has been chosen. The values of the activation energy and pre-factor for
the dislocation diffusion coefficient are 152.4 kJ/mol and 1.56 x 10~* m?/s [51, 52].
The creep rate can now be predicted using Eqgs. (2.51), (2.52) and (2.55). Results are
illustrated in Fig. 2.10.

There are important differences between Eqs. (2.50) and (2.55). At high stresses,
Eq. (2.50) gives a stress exponent that increases with decreasing temperature that is
a characteristic feature of creep in the power-law break down regime. On the other
hand, Eq. (2.55) is associated with an essentially temperature independent stress
exponent. In Fig. 2.10, the stress exponent is ny = 7. Equation (2.54) in its basic
form gives ny = 3. Since pipe diffusion is dominant there is a contribution of 2 from
the second term in Eq. (2.56), since p is proportional to the stress squared according
to Taylor’s Eq. (2.29). There is also a stress exponent contribution of 2 from Eq.
(2.55). These contributions to the stress exponent add up to ny = 7.
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Fig. 2.10 Secondary creep rate versus temperature at six stresses for pure nickel. Predictions using

Egs. (2.51), (2.52) and (2.55) are compared to experimental data from [53]. Redrawn from [51]
with permission of ASME



36

2 Stationary Creep

2.9 Summary

In the past much creep research has been based on the Bird, Mukherjee and Dorn
(BMD) equation. It describes the creep rate in the secondary stage as a function
of temperature and stress. With the three to four adjustable parameters, most
results for the creep rate can be described. It was for a long time assumed that the
stress exponent and the activation energy would fall in a narrow range for specific
creep mechanisms and that knowledge could be used to identify the operating
mechanisms. However that assumption is challenged by more recent findings.
The most important quantity in the modeling of creep is the dislocation density
because it gives a large contribution to the creep strength. There are three main
processes that control the development of the dislocation density: work hardening,
dynamic recovery and static recovery. Models for the contribution from these three
processes are derived. Differential equations for the time and strain derivative for
the dislocation density are formulated. These equations are the starting point
for much basic modeling of creep. From the equations, an expression for the
secondary creep rate can be derived.

Dislocation creep is assumed to be controlled by climb. The climb mobility is
an important quantity in this respect. At low stresses the climb mobility is essen-
tially stress independent and is only a function of the temperature. In this situation
the models suggest a stress exponent of about three. During creep, strain induced
vacancies appear. At higher stresses they have a dramatic effect on the stress expo-
nent. Strain induced vacancies can quantitatively explain the high stress exponents
at least up to 50 during power-law breakdown. This has been demonstrated for
aluminum and copper.
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Chapter 3 ®)
Stress Strain Curves Creck for

Abstract Traditionally, stress strain curves for example from tensile testing are
described with empirical models with a number of adjustable parameters such as
Hollomon, Ludwik, Voce and Swift. With such models it is difficult or impossible
to generalize and extrapolate. A model in the form of Voce equation is derived
from the same basic dislocation model used for the creep models with the values of
constants computed. The derived model is used to describe stress strain curves for
Cu including their temperature and strain rate dependence. The dynamic recovery
constant o plays a central to show how the work hardening deviates from a linear
behaviour. The temperature dependence of w is analyzed and shown to be related
to that of the shear modulus. In the literature it is frequently assumed that dynamic
recovery is controlled by cross-slip. However, the measured activation energy for
dynamic recovery is many times smaller than the energy required to make partial
dislocations brought together and form a constriction, which is necessary to enable
cross-slip, so this is an unlikely possibility.

3.1 General

Stress strain curves are usually generated with the help of tensile tests. In a tensile
test a specimen is exposed to a constant length expansion rate at the same time as
the force is recorded. The expansion rate is transferred to strain by dividing it by
the initial specimen gauge length. The stress is obtained by dividing the force by the
initial specimen cross section. In this way a stress versus strain curve is generated
for the material, which is also referred to as a flow curve.

Tensile tests are performed on a large scale since the test is used to check the
properties of batches during metal production. From the stress strain curves the
strength and ductility of the material can be determined. The strength that is a measure
of the initiation of plastic deformation, the yield strength, is taken at the linear offset
by 0.2% strain for most material. The maximum load in the flow curve gives the
maximum stress a material can take, the tensile strength. It is often thought that the
strength is the most important property of a material. However, that is not necessarily
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the case. In fact, in order to allow for a more flexible use of a material, it must have
a certain amount of formability. In a tensile test, the formability can be measured as
the (total) elongation, which is determined as the strain at failure. In scientific work,
also the uniform elongation is used, which is the strain at the maximum load in the
tensile test. The elongation is also referred to as the ductility that can be said to be
another word for formability. Elongation is not the only way to measure the ductility
in a tensile test. Another way is to determine the reduction in the specimen cross
section after failure, reduction of area.

The ductility is quite an important property. For example, a low ductility makes
the material sensitive to overloads, fatigue loads and scratches and other marks on
the surface. This can be exemplified for many ceramic materials that have virtually
nil ductility. Special design procedures are required to avoid premature failures with
low ductility. For example, tensile stresses, sharp corners and rough surfaces must
be avoided.

In materials production, stress strain curves from tensile tests are recorded but
not usually modeled. If they are, empirical methods are used. Examples of empirical
methods for analyzing stress strain curves will be given in Sect. 3.2. In the same way
as for creep tests, basic modeling is needed to safely determine the operating mech-
anisms. This applies also to flow curves from tensile tests. Unfortunately, scientific
efforts to formulate such models have been quite limited. However, some models
will be presented in Sect. 3.3. The results from tensile tests and creep tests can be
assumed to be controlled by the same plastic deformation mechanisms. Thus, the
data from tensile tests can significantly supplement the information recorded from
creep tests. The dynamic recovery parameter w plays an important role for the work
hardening behavior. In particular, it describes how fast the deviation from a linear
stress strain curve takes place. Its value and temperature dependence are discussed
in Sect. 3.4.

3.2 Empirical Methods to Describe Stress Strain Curves

To describe stress strain curves, there are many empirical methods in the literature.
Some of the classical approaches are listed in Eqs. (3.1-3.4). Ludwik’s equation is
by far the oldest, but the other three have been around since about 1950. References
to the original papers can be found in [1]

o =a;g" Hollomon (3.1
o =a; +a™ Ludwik (3.2)

o =a; —ae ¥ Voce (3.3)
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Fig. 3.1 Stress versus strain for Cu-OFP at room temperature; comparison between four empirical
models and experimental data; a as received condition (forged); b annealed condition (450 °C, 3 h)
(unpublished data)

o=ua(eg+ &)™ Swift (3.4)

o is the stress and ¢ is the strain. The other quantities are adjustable parameters that
are fitted to the data. The use of the equations will be illustrated for copper and for
a stainless steel. In Fig. 3.1 data for phosphorus alloyed pure copper (Cu-OFP) is
shown in two conditions and compared with fitted curves using Egs. (3.1)-(3.4).

The two conditions give quite similar curves. However, there are some small
differences. In the annealed condition the data have a slightly larger curvature and
the yield strength is lower in comparison to the as received condition. The reason
is that a small amount of cold working remains after the forging in the as received
state.

In general an acceptable fit to the data is obtained. There are some slight devi-
ations though. The Ludwik and the Swift equations do not fit the data fully in the
annealed condition. At small strains below 0.02 there are significant deviations for
both conditions. For the as received condition the Ludwik and the Swift equations
seem to work best whereas the situation is the opposite for the other condition where
the Voce and Hollomon methods seem to be somewhat better.

The situation at small strains can readily be improved by extending the Eqgs.
(3.1)—(3.4) somewhat, A direct way is to combine the Ludwik and Voce expressions,
Eq. (3.5)

mi

6 =aj + ae™ + aze” 2 Ludwik + Voce (3.5)

Another way is to duplicate the fitting terms. This is illustrated in Egs. (3.6) and
3.7

o =a; +a™ + a3 Ludwik 2m (3.6)
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e 4 gaem %8 Voce 292 3.7)

o =a; + ae

In the literature Ludwigson’s Eq. (3.8) has been cited many times [2]. It is the

same as Eq. (3.5) but without the constant term. Unfortunately, this turns it out to
make it more difficult to use the equation.

o =ae™ 4+ are " Ludwigson (3.8)
The application of Egs. (3.5)-(3.7) to copper is illustrated in Figs. 3.2 and 3.3.

It can be seen that with the extended Eqgs. (3.5)—(3.7) the fit at low strains can be
much improved. To see any deviation one has to go to the enlargements in Figs. 3.2 and
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Fig. 3.2 Stress versus strain for Cu-OFP at room temperature in as received condition; a fit to Eqs.
(3.5)—(3.7); b enlargement of the low strain part of (a)
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Fig. 3.3 Stress versus strain for Cu-OFP at room temperature in the annealed condition; a fit to
Eqgs. (3.5)-(3.7); b enlargement of the low strain part of (a)
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3.3. There it can be seen that the best result is obtained for the Voce + Ludwik method
in the as-received condition and the Voce 22 method in the annealed condition.

In Fig. 3.4, data for the austenitic stainless steel 17Cr12Ni2Mo0.08C (316H) at
room temperature and 800 °C are illustrated.

From Fig. 3.4a it is evident that the Hollomon equation does not work very well
in this case. At 800 °C, Egs. (3.1), (3.2) and (3.4) are satisfactory but not the Voce
equation. Handling of low strains is less problematic than for the copper alloys.
However, if a higher precision is needed the extended equations can be applied for
the stainless steels as well. This is shown in Figs. 3.5 and 3.6.

It is evident from Figs. 3.5a and 3.6a, the three extended methods work well for
the stainless steel both at room temperature and at 800 °C: In Fig. 3.5b, the Voce
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Fig. 3.4 Stress versus strain for the austenitic stainless steel 17Cr12Ni2Mo0.08C (316H); a at
room temperature; b at 800 °C. Equations (3.1)—(3.4) are compared to experimental data from [1]
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Fig. 3.5 Comparison to the extended Egs. (3.5)—(3.7) for the same data for 316H at room
temperature as in Fig. 3.4a; a full curve; b enlargement of the low strain part of (a)
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Fig. 3.6 Comparison to the extended Eqs. (3.5)—(3.7) for the same data for 316H at 800 °C as in
Fig. 3.4b; a full curve; b enlargement of the low strain part of (a)

22 method seems to be the best alternative. At the high temperature all the extended
methods are satisfactory also at low strains, Fig. 3.6.

There is a general experience that it is not simple to decide in advance which
empirical relation would give the best fit. This has also been illustrated by the exam-
ples above. Most of Egs. (3.1)—(3.7) are purely empirical and cannot be derived from
basic physical principles. The exception is the Voce equation. This will be demon-
strated in detail in the next section. The other methods are purely empirical. This
means that they are flexible expressions that are suitable for data fitting. One of
the risks with empirical expressions is that when you get a good fit to the data it
is tempting to draw the conclusion that is has physical significance, but that should
clearly be avoided.

In Egs. (3.1)-(3.8) above 2—5 adjustable parameters are present that are to be fitted
to the experimental data. There are many types of software that can handle that task.
However, it has been found that the fitting process can be slow in particular when
the number of adjustable parameters is large. In addition one cannot automatically
be sure that the parameters converge to the desired result. The situation is different
if there is only a linear dependence of the parameter. An example of that is the
determination of constants when a time temperature parameter is used to extrapolate
creep rupture data. The problem can be formulated in such a way that the function
to be fitted is linear in the adjustable parameters. In such a case the parameter values
can be found by solving a linear equation, which is instant. Equations (3.1)—(3.8) are
linearin ay, a; and a3, whereas m, m,, 21 and €2, are nonlinear parameters. By fitting
the nonlinear parameters by the optimization software and the linear parameters by
solving a linear equation, the accuracy and efficiency of the process can be much
improved.
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3.3 Basic Model

3.3.1 The Model

Tensile tests are performed at a constant expansion rate or approximately constant
strain rate. Creep strain and rupture tests are carried out at constant load or stress. In
spite of the difference in testing conditions it is assumed that the same mechanisms
are controlling the plastic deformation in both cases. This means that the equations
developed in Chap. 2 should be valid also for stress strain curves. The basic expression
for the development of the dislocation density p is given by Eq. (2.17)

d
A S VAT (3.9)
de bCL

where ¢ is the strain and ¢ the strain rate, mt the Taylor factor, b burgers vector, ¢ a
dimensionless factor, w the dynamic recovery factor, 1y, the dislocation line tension,
and M the dislocation climb mobility. These quantities are further explained in
Sect. 2.3. The three terms on the right hand side (RHS) of Eq. (3.9) represent the
contributions from work hardening, dynamic recovery and static recovery. At low
strains the work hardening term dominates. Thus at this stage the dislocation density
p increases with increasing strain. Due to different dependence on p of the three terms
in Eq. (3.9), the dynamic recovery term increases faster with strain than the work
hardening term, and the static recovery term faster than the dynamic recovery term.
This means that the rate of increase in p drops with increasing strain. Eventually
the recovery terms are so large that there is a balance between these terms and the
work hardening. This balance cannot always be observed in a tensile test, because
an instability might occur before the balance is reached and the specimen fails. This
instability will be discussed below.

For stress strain curves, the last term in Eq. (3.9), the static recovery term is often
small and can be neglected. The role of this term will still be analyzed below. If the
static recovery term is ignored, Eq. (3.9) can be integrated directly

mr 2 2
p= ( ) (1 — exp(—we/2)) (3.10)

bwcy,

We find as expected that p increases with strain and reaches saturation value at
large strains. The Taylor equation is used to transfer the dislocation density to strength

0=Gy+0disl :cy—i—mTaGbpl/z (311)
where o0 is the strength contribution from the dislocations, oy the yield strength, a

~ (.19 a constant, and G the shear modulus. If Eq. (3.10) is inserted into Eq. (3.11),
the strain dependence of the strength is obtained
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2
AGMT | _ exp(—we/2) (3.12)

0 =0y +
wCr,

It is convenient to introduce the saturation stress oy

aGm3
Osat = Oy + L (3.13)
wCr,
By introducing the saturation stress, Eq. (3.12) can be rewritten as
0 = 0y + (s — 0y) (1 — exp(—we/2)) (3.14)

In Eq. (3.14), the yield strength depends on the temperature and the strain rate. A
model for this dependence is presented in [3].

N . G(T) 8 (1/nn)
O'Y(T, 8) = Oy(To, 80)@(5) (315)

The yield strength is first given at a reference temperature 7 and reference strain
rate £y that are usually taken as 20 °C and 1 x 10~ 1/s, respectively. The change in
the yield strength with temperature is assumed to follow that of the shear modulus G.
The strain rate dependence is described with a Norton equation. The stress exponent
ny is determined at the temperature and strain rate in question from the equation
for the secondary creep rate, Eq. (2.30). The shear modulus G(T') is assumed to be
approximately linear in temperature. Equations (3.12) and (3.14) have exactly the
form of the Voce Eq. (3.3) with

] = Osat d = Ogat — Oy Q= (0/2 (3.16)

Equation (3.9) has been used for many years to derive the Voce equation, see for
example [4—6]. In these papers, a number of the constants were used as adjustable
parameters. This is no longer necessary. All the constants in Eq. (3.16) are given
except oy that is taken as an experimental value. oy varies significantly for different
material batches and cannot be accurately predicted at present. But the full strain
dependence can be described. The constant o requires a comment. The contribution
to o can be split into a short range part ag and a long range part ag [7, 8]. The long
range part has been explicitly derived [8]

1 (d—we/2)

=7 T vp) (3.17)

oG

where vp is Poisson’s ratio. With vp = 0.3, ag = 0.19. At elevated temperatures, o
~ ag [7]. As a consequence, o = 0.19 is used in this book.

At the end of Sect. 2.4, a special procedure was described for finding the value of
the work hardening parameter ¢ based on the assumption that dynamic and static
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recovery give the same result. An expression for the maximum dislocation density pg
in this situation was given in Eq. (2.26). This is equation is now expressed in stress
instead of the dislocation density with the help of the Taylor Eq. (3.11)

_ ZTLbCL
" (aGbmT)?

wé Mo(T, 6y — 07)(Osar — 03)* (3.18)

T is dislocation line tension, M. the climb mobility and o; the contribution
from particle and solid solution hardening including the yield strength. In general,
Eq. (3.18) has to be iterated to find the value of the saturation stress, but the iteration
usually converges quickly. With Eq. (3.13), the value of ¢ is obtained

2
o = YoM (3.19)
®(0sat — O1)

A plastic instability in a tensile test takes place when Considere’s criterion is
satisfied

do

— = 3.20
7o =0 (3.20)

Applying Considere’s criterion to Eq. (3.14), the maximum stress o« in a tensile
test can be obtained as well as the strain at this position, which is referred to as the
uniform elongation ¢,.

®
Omax = Gsalw ) (3.21)
2 2)(Gsat —
- _m((“’Jr ) O "y)) (3.22)
® 204t

With w & 15 for copper and some stainless steels [1], the maximum stress opax
is about 10% less than the saturation stress og,. The uniform elongation ¢, is often
measured. €, is an important property because it is much easier to predict than the
total elongation where the role of specimen necking must be taken into account. This
will be considered in Chap. 12 for tertiary creep.

3.3.2 Application to Parent Metal

In Fig. 3.7 tensile data for Cu-OFP at 75 °C are presented. A comparison is made to
the model that is obtained by integrating Eq. (3.9) and combining it with the Taylor
equation, Eq. (3.11). To investigate the significance of the static recovery term (the
last term in Eq. (3.9)), results are shown both with and without this contribution. It
is evident that static recovery has a negligible influence in this case.
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Fig. 3.7 Stress versus strain for Cu-OFP at 75 °C comparing the model in Egs. (3.9) and (3.11)
with experiments. Data from [3]. To analyze the role of static recovery (last term in Eq. (3.9)),
results with and without this term are shown;a 1 x 10# 1/s;b 1 x 107 1/s;¢ 1 x 100 1/s;d 1 x
107 1/s

In Fig. 3.8 results at 125 °C are given. The model results in this case involve all
the terms in Eq. (3.9) including the static recovery term.

In Fig. 3.9 experimental and model results for Cu-OFP at 175 °C are given. Only
predicted values for the parameters in Eqgs. (3.9) and (3.11) are used. The exception
is the yield strength. Its value at 75 °C and 1 x 10 1/s is taken from experiments.
The yield strength value at other conditions are derived using the Eq. (3.15).

3.3.3 Application to Welds

Equations (3.9) and (3.11) have also been applied to friction stir welds in phosphorus
alloyed oxygen copper Cu-OFP. To describe welds is always challenging since the
properties can locally vary significantly. The same parameters as for the parent metal
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Fig. 3.9 Stress versus strain for Cu-OFP at 175 °C comparing the model in Egs. (3.9) and (3.11)
with experiments. Data from [3];a 1 x 105 1/s;b 1 x 1070 1/s

have been used except for @ (= 12) and the yield strength where one value has been
taken from the experiments at 75 °C and 1 x 10~*. Why the w value had to be reduced
is not understood. In Fig. 3.10 examples are given for the weld zone.

The heat affected zone (HAZ) has also been studied. Examples are presented in
Fig. 3.11. The behavior of the whole weld (the cross weld) usually has to be derived
from the properties of the weld zone and the HAZ. However, since the properties
of the weld are essentially the same and close to those of the parent metal, it is
reasonable to think that the weld can be handled in the same way and that has been
assumed. Examples for cross welds are shown in Fig. 3.12.

It can be concluded that the dislocation model in (3.9) and (3.11) can represent
stress strain curves for both parent metals and welds of Cu-OFP in quite a reasonable
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Fig. 3.11 Stress versus strain for the heat affected zone (HAZ) in friction stir welds in Cu-OFP at

75 °C comparing the model in eqgs. (3.9) and (3.11) with experiments. Data from [9]; a 20 °C, 3 x
1076 1/s; b 125 °C, 3 x 1070 1/s

way essentially without the use of adjustable parameters. The analysis above is likely
to be valid for other fcc alloys as well. However, some parameters and in particular
w will take other values. This will analyzed in the next section.

3.4 The w Parameter in Dynamic Recovery

As was emphasized in Sect. 2.3, two types of recovery (dynamic and static) are
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important to take into account when discussing creep. It is also important to distin-
guish between the two types of recovery. The primary role of dynamic recovery is to
provide the reduction of the work hardening rate with increasing strain in stress strain
curves. Static recovery reduces the dislocation content during creep, which makes it
possible for creep deformation to continue at constant load or stress. Static recovery
must be considered to be well understood. At high temperatures static recovery is
assumed to control the creep rate and the temperature and stress dependence of the
creep rate has been studied for many alloys. In this way detailed knowledge about
static recovery has been gathered indirectly. The models for static recovery are based
on expressions for a basic model of the climb mobility, which was established many
years ago.

Unfortunately, the modeling of dynamic recovery is not at all at the same level.
This is surprising since it has been seen earlier in this chapter that dynamic recovery is
an essential part of the description of plastic flow curves at ambient and intermediate
temperatures. As can be seen for example in Fig. 3.7, the slope of the curve which
is referred to as the work hardening rate is continuously decreasing with increasing
strain that is the effect of dynamic recovery. This slope can directly be obtained from
Eq. (3.12) if the Voce equation is satisfied

do  aGm3
— = ——exp(—we/2) (3.23)
de 2CL
The initial work hardening rate which is the constant in front of the exponential
is found to take a value of about G/20 for polycrystalline fcc alloys [4]. The work
hardening rate in Eq. (3.23) can also be expressed in terms of the stress. By using
Egs. (3.12) and (3.13), Eq. (3.23) can be transformed to
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— = — (O — 0 324
T =2 (Osat — 0) (3.24)

This linear behavior of the work hardening rate as a function of stress has been
demonstrated in many papers, see for example [10].

According to Eq. (3.9), the amount of dynamic recovery is directly proportional
to the parameter w. Consequently, the value of w is of main importance for under-
standing dynamic recovery. For example, it is evident from Eqs. (3.23) and (3.24)
that w has major influence on the work hardening rate. Unfortunately, only limited
data for  is available in the literature. Data for austenitic stainless steels are shown
in Fig. 3.13.

Different designations for w can be found in the literature. For stress strain curves
2 and ny are often used. They are related to w in the following way

Q=—ny=0/2 (3.25)

It is not uncommon that values for w and €2 are mixed up so it is wise to check
the data.

It is evident from Fig. 3.13 that one should distinguish between two ranges for the
temperature dependence of w. At high temperatures in the creep range, the w values
are strongly dependent on both temperature and strain rate. For austenitic stainless
steels, the creep range starts at about 550 °C. At lower temperatures, o is weakly
temperature dependent and the strain rate has quite a small effect. This is called the
work hardening range, because the flow curves are primarily controlled by the work
hardening rate. This behavior has also been found for aluminum [12].

When mechanisms are considered the work hardening and creep range are defined
in the following way

Osat < Ocreep Work hardening range (3.26)
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Fig. 3.14 Saturation and creep stress as a function of temperature for Cu-OFP at a strain rate of 1
x 107 1/s. A third curve gives the saturation stress multiplied by (G gr/ Gr)? where Ggr and Gy
are the shear modulus at room temperature and temperature, respectively

Osat > Ocreep Creep range (3.27)

Osat 1S the maximum flow stress in a stress strain curve. For a material satisfying the
Voce equation, 0 is given by Eq. (3.13). Ocreep is the stress in a creep test that gives
the same strain rate as for the stress strain flow curve. This division is illustrated in
Fig. 3.14.

Below about 100 °C, 04 < Ocreep and we are in the work hardening range in
Fig. 3.14. The situation is reversed above this temperature. Below 400 °C (T,/
2 for Cu, T, the absolute melting point) both o, and o¢reep decrease linearly with
increasing temperature but with different slope. Above 400 °C, 6reep decreases expo-
nentially with increasing temperature, a behavior that is frequently observed for creep
resistant steels. It is natural to distinguish between three temperature ranges: the high
temperature range (7 > T',,/2), the intermediate range (0.37 ', < T < T1,/2, 130-400 °C
for Cu) and the low temperature range (7 < 0.3T,). The high temperature range is
the classical region for studying creep. Dynamic recovery is the dominating recovery
process only in the low temperature range.

There is not a sharp transition between the low and intermediate temperature
ranges. In fact, we can have o > Ocreep in SPite Ocreep being above the experimental
data range in a flow curve in the lower part of the intermediate range. In Fig. 3.15a, o
values are shown for Cu-OFP at the transition from the work hardening to the creep
range. There is temperature dependence but only a weak influence of the strain rate.

According to Eq. (3.13), there is a close relation between w and the saturation
Stress Ogyt-

2
aGmy

cr(Osa — Gy)

(3.28)
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Fig. 3.15 Voce parameters for tensile stress strain curves of Cu-OFP as a function of temperatures
for four strain rates; a dynamic recovery parameter w; b saturation stress oy, divided by the shear
modulus G. Data from [3]

Many times the yield strength oy is only a small fraction of oy, and then w is
roughly inversely proportional to og,. As can be seen for Cu-OFP in Fig. 3.15b the
temperature dependence of o, is inverted in comparison to that of w. However, the
strain rate effect is much larger for o, in comparison to that of w. The reason is that
the yield strength depends on the strain rate and that has a direct influence on oy.

In the literature o, has been studied more frequently than w. In principle, this
should not make much difference since o5, and w are related according to Eq. (3.28).
However, in a number of cases it has not been checked whether the data points are
in the work hardening or in the creep range. If attempts to determine o, are made in
the creep range, it is in fact o¢reep that has been measured, the value of og, would be
strongly underestimated and the role of dynamic recovery cannot be assessed. Data
from [13] have been used in several influential papers to discuss the temperature
dependence of dynamic recovery [10, 14]. However, most of the data in [13] are in
the creep range and a significant fraction even in the high temperature range. This
has probably contributed to the misconception that dynamic recovery is strongly
temperature and strain rate dependent.

Even with the modest temperature dependence of w that has been observed,
Figs. 3.13 and 3.14, it is natural to assume that dynamic recovery is a thermally
activated process, and an Arrhenius expression is formulated

w (1 1
o = wgrrexp| — 9 - — — (3.29)
RcT\T Trr

wgr 18 the o value at room temperature that is determined with the help of Eq. (3.28).
0., is an activation energy and 7 gr room temperature. Expression (3.29) is compared
to the available experiments for fcc alloys for o in Fig. 3.16.

By fitting Eq. (3.29) to the experimental data, a value of O, = 1 kJ/mol was
found that is two orders of magnitude smaller than typical activation energies for
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Fig. 3.16 The dynamic recovery parameter w as a function of temperature for fcc materials. Data
from [1, 11, 15]

self-diffusion. Values for the pure elements Al, Cu and Ni are included in Fig. 3.16a
from [15]. The values from [15] had to be corrected due to numerical errors in the
paper, which makes the values uncertain. The same value of Q,, could be used for
the six materials in Fig. 3.16. The expression in Eq. (3.29) is of course only valid
below the creep range.

Since the 1950ties there has been an almost unanimous opinion in the literature that
cross-slip is the controlling mechanism for dynamic recovery, see for example [ 10, 16,
17]. Notable exceptions are [18, 19]. Cross-slip has been observed many times during
work hardening. However, cross-slip is associated with high activation energies.
Modern ab initio calculations give values from 50 to 300 kJ/mol, see Sect. 2.6.3.
High energies are required to form the constrictions that are necessary to make the
extended screw dislocations in fcc alloys cross-slip. Such high activation energies
are clearly at variance with the low value of Q,, found above.

Attempts to quantitatively model cross-slip are rare and apparently not very
successful [18]. The role of cross-slip for dynamic recovery should not be completely
ruled out. It is well-known that cross-slip takes place in deformation stage I in fcc
single crystals. In this stage the stresses are very low and if high activation energies
would be required, cross-slip would simply not take place [18, 19]. Another possible
mechanism for dynamic recovery is the formation of dislocation tangles on secondary
glide planes which is known to take place in early stages of work hardening [10].
Argon has suggested an entirely different mechanism for dynamic recovery [19]. As
discussed in Sect. 2.4, gliding dislocations are expected to pass through about two
cell boundaries when they are released. When moving through cell boundaries, they
would remove dislocation locks and other dislocations configurations from the cell
boundaries thus reducing the dislocation content.

If cross-slip of extended dislocations is active it is natural that the stacking fault
energy plays a major role. Argon and Moffatt have derived an expression for how
much the climb rate for extended dislocations is slowed down in comparison to
perfect dislocations [20]
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8m(1 —vp)\* / Vs \2
=2 .
e =2 ) () (3.30)

vske is the stacking fault energy. The main factor in this expression is the dimen-
sionless quantity (%)2 The factor 8 was originally 24, but has been changed due
to an error in [20]. The influence on gliding dislocations is the same as for climbing
ones since it is the jogs on the dislocations that control their speed, see Sect. 2.6.2.
The three elements in Fig. 3.16 have quite different values of yspg. No effect of
vske is thus observed in the Figure. However, the shear modulus seems to have an
impact. In Fig. 3.14, the predicted w value is also divided by the shear modulus
squared following Eq. (3.30). As can be seen w is approximately proportional to
one over the shear modulus squared at least below the creep range. This means that
the temperature dependence of w is of the same type as that of G. The influence of
temperature on the shear modulus can be modeled with ab initio methods taking the
role of phonons into account. The value of w during cyclic loading is discussed in
Chap. 11.

3.5 Summary

e Stress strain curves are mostly described by well-known empirical models such
as Hollomon, Ludwik, Voce and Swift. With the available parameters in these
models, there is in general little problem to obtain a good fit to the data. As with
most empirical models, it is difficult or impossible to generalize the results. Only
the Voce model has been possible to derive from basic principles.

e With the basic models for dislocation creep, accurate descriptions of the stress
strain curves can be obtained. This is natural since the basic models should be
applicable whether the deformation is load, stress or strain rate controlled.

e The dynamic recovery parameter w plays a special role because it describes
how the increase in the dislocation stress deviates from a linear behavior and
tends to a saturation value. The temperature dependence of w has been analysed.
Although the amount of data is limited, it suggests that » has the same temperature
dependence as the inverse of the shear modulus squared.

e [t has been proposed in many places in the literature that dynamic recovery
is controlled by cross-slip. However, this requires that partial dislocations can
be brought together and form a constriction. This would require an activation
energy of about 50 kJ/mol or more that would give the dynamic recovery param-
eter a strong temperature dependence. However, this is in direct conflict with
observations, see previous bullet. The role of cross-slip remains unexplained.
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Chapter 4 ®
Primary Creep e

Abstract For many materials, primary creep can be described with the phi (¢) model
and tertiary creep with the Omega (€2) model (discussed in Chap. 12). According
to the phi model, the creep rate is linear in strain and time in a double logarithmic
diagram. When using empirical descriptions of the creep curves, these models are
recommended. Several basic models for primary creep are derived. They are based
on the creep rate in the secondary stage. This means that primary creep can be
derived without any new data. The primary creep models are in agreement with the
phi model and can describe experimental data. For the martensitic 9-12% Cr steels
at least two dislocation densities are needed to represent primary creep because the
initial dislocation density is high contrary to the situation for annealed fcc materials.

4.1 General

The classical form of a creep strain versus time curve (“creep curve”) is that there is
first a primary stage where the creep rate increases but with a continuously decreasing
rate, a secondary stage where the creep rate is approximately constant and a tertiary
stage with a continuously increasing strain rate. Surprisingly many materials show
this behavior but there are many exceptions. In this chapter the primary stage will be
analyzed.

The primary stage is technically very important. If there is a limit on the amount
of strain that a product can accept, primary creep must be considered. Well-known
examples are blades of gas and steam turbines. If the strain is too large the blades will
get in contact with other parts of the structure resulting in disaster. Another case is
where the strains can never become very large. One example is copper canisters for
nuclear waste. Inside the copper tube there is a cast iron insert. Between the copper
tube and the iron insert there is only a small gap. Due to the external pressure the
copper tube creeps towards the insert and when it is reached, creep stops in this part
of the structure. For some materials the total strain is larger in the primary stage than
in the secondary stage. If only secondary creep is considered in design which is not
uncommon, there is a risk that the creep deformation is significantly underestimated.
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Primary creep is also of importance during creep at very low stresses since stationary
conditions are rarely reached. This is discussed in Chap. 5.

Secondary creep has been studied much more extensively than primary creep in
the literature. The reason is that for a long time it was believed that the stress exponent
in the secondary stage could be used to identify the controlling creep mechanisms.
As was discussed in Chap. 2 and will be further discussed in Chap. 5, this connection
is not always true and examples where people are likely to have drawn the wrong
conclusions are easy to find.

Primary creep has almost exclusively been analyzed with empirical models. Only
in recent years, basic models have been presented in the literature. Already in the
1930’ties, Bailey presented a model for the time dependence of the strain in primary
creep. This model is still the first hand choice when describing the primary stage.
The model has later been generalized [1]. We will refer to it as the phi or ¢ model.
It gives an exponential decrease in creep rate with increasing time or strain. As will
be illustrated in the next section several types of materials follow this behavior.

There are a large number of empirical models for representing creep curves. Only
a few of them give a reasonable description of primary and tertiary creep separately
and we will focus on them. For tertiary creep, the correspondence to the phi (¢)
model is the Omega (£2) model. These two models can accurately represent primary
and tertiary creep for the well investigated 9CrMo steels.

Basic models for primary creep have been developed in recent years. Three of
these models will be presented in Sects. 4.3—4.5. The first two models are applicable
to fcc alloys whereas the third one is suitable for CrMo-steels. In some of the models
it is necessary to distinguish between more than one type of dislocation density.
In general these models give the same time dependence of the strain as the phi
(¢) model. Expressed in other words, the phi (¢) model can be derived from basic
physical principles, which has not been shown for any other of the empirical model
for primary creep. So this is an additional reason why we concentrate on the phi (¢)
model, when discussing empirical models for primary creep.

4.2 Empirical Models for Creep Strain Curves

In this section models for both primary and tertiary creep will be considered. The
reason is that many models are designed to handle the entire creep curve rather than
primary and tertiary creep separately. A large number of empirical models have been
proposed. Reviews can be found in [2, 3]. Some of the more frequently used methods
are summarized in Table 4.1. The model that probably has got most attention in the
literature was developed by the Wilshire group. They referred to it as 6 projection.
In Table 4.1 it is called the 6 model. The assumptions in the model are that both
the primary and the tertiary creep rates are linear in the creep strain. This gives a
creep rate that decreases exponentially with time in the primary stage and increases
exponentially in the tertiary stage. To describe the whole creep curve the primary and
tertiary parts are simply added. Thus, itis not necessary to have a separate contribution
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from secondary creep. However, if primary and tertiary data are analyzed separately,
the 6 model does typically not give a good representation of data.

Instead the ¢ model should be used for primary creep data and the Omega (£2)
model for tertiary data. This will be illustrated below. The phi (¢) model for primary
creep gives the following strain rate dependence as a function of strain

Eprim = P16~ phi model 4.1)

The creep rate decreases exponentially with increasing strain. Its time dependence

has the same mathematical form. The €2 model for tertiary creep takes the form
rert = 234¢ Omega model “4.2)

In Eq. (4.2) the creep rate increases exponentially with strain. This gives a time
dependence with a singularity, see Table 4.1. The time at this singularity is close to
the rupture time.

The three models in Table 4.1 have one term for primary creep and one for tertiary
creep. In each term there are two adjustable parameters. So for describing a creep
curve four adjustable parameters are needed.

Equations (4.1) and (4.2) are illustrated for the 9Cr1Mo steel P91 in Figs. 4.1,
4.2,4.3 and 4.4. The steel P91 is common in modern fossil fired power plants.

Table 4.1 Empirical models for describing single creep curves (reproduced from [4] with
permission of Elsevier)

Model Parameters Strain rate Strain rate versus | Strain versus Refs.
versus strain time time
6 model, |6y, 6, Eprim = Eprim = O162¢~21 | 01(1 —e™ %) |[5,6]
primary 6,(6) — &)
6 model, 03, 04 ot = brert = 030494 03(e% — 1) [5,71
tertiary Oa(s + 03)
¢ model, | o1, ¢ Eprim = Eprim = ¢1(d1 (14 | (B1(1 + (1.8]
primary e~ o)1)~ 0/H92) | o)1/ (+00)
d model, | 3, by btert = 3% | on = d3(d3(1 — | (B3(1 — (8]
tertiary da)1) P/ (A=¢a) ¢4)1)1/(A—04)
. s Q (92 Qo141)
thOdel, Q1,2 Eprim = Eprim = Q]ﬂzlf+1 = 192? [9]
primary Qe ¢
Qmodel, | 23, Q4 Bt = Q3™ | bien = [y | —RUSSRRO 1[10-12]
tertiary

¢ is the creep strain, ¢ the strain rate, ¢ the time
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By using double logarithmic scale for a creep rate versus strain curve, a straight
line should result in the primary stage if Eq. (4.1) is valid. That this is the case is
shown in Fig. 4.2.

The same behavior can be illustrated if the creep rate is plotted versus time. From
Table 4.1 it can be seen that also the time dependence of the creep rate in the primary
stage is exponential. It should give a straight line in Fig. 4.3. This is approximately
the case. However, this way of presenting the data is more sensitive to the scatter in
the data.

In the tertiary stage a semi logarithmic scale with the creep rate versus strain
diagram is appropriate to make a comparison to the Omega (£2) model in Eq. (4.2).

----- 180 MPa ¢ Q
* 180 MPa exp
i|===150 MPa ¢ Q
150 MPa exp
——130 MPa ¢ Q
130 MPa exp
---------- 110 MPa ¢ Q
110 MPa exp

Strain rate, 1/s

0.050.1 05 1 5 10
Strain, %

Fig. 4.2 Creep rate versus strain curves for the 9Cr1Mo steel P91 at 600 °C for the same tests as
in Fig. 4.1. Double logarithmic scale. Reprinted from [13] with permission of MDPI
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Fig. 4.3 Creep rate versus time curves for the 9Cr1Mo steel P91 at 600 °C for the same tests as in
Fig. 4.1. Double logarithmic scale

Fig. 4.4 Creep rate versus
strain curves for the 9Cr1Mo
steel P91 at 600 °C for the
same tests as in Fig. 4.1.
Semi logarithmic scale. Data
from [14]. Reprinted from
[13] with permission of
MDPI
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This is illustrated in Fig. 4.4. Indeed, straight lines give a good representation of the
data. Some deviations around the minimum creep rate can be observed.

In Figs. 4.2, 4.3 and 4.4 the contributions from both Egs. (4.1) and (4.2) are
included. The maximum value of them is shown. It can be seen that the whole curves
are quite well represented in this way.

Also the strain versus time curve in Fig. 4.1 can be handled in this way. For
the primary stage Eq. (4.1) is used and for the tertiary stage Eq. (4.2). If an even
better fit is required for the strain versus time curve all the parameters ¢, ¢o, 23
and €24 can be fitted simultaneously to the data. In fact, if four parameters are fitted
many combinations of models for primary and tertiary can be used, for example
different combinations in Table 4.1 such as the 6 model or the 2 model for both
primary and tertiary creep. However, such an approach is not recommended because
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the expressions for the primary and tertiary stages will not be able to describe the
primary and the tertiary stages separately.

It is well established that high chromium steels like P91 follows the ¢ model in
the primary stage and the 2 model in the tertiary stage at least approximately. This is
well documented in the literature. For example, Abe has written several papers about
it [15—18]. The phi (¢) and Omega (£2) models are also applicable to other types of
materials. This will be illustrated in Figs. 4.5, 4.6, 4.7 and 4.8 for the high alloyed
creep resistant austenitic stainless steel Sanicro 25 (22Cr25Ni4W1.5Co3CuNbN)
developed by Sandvik.

Creep strain versus time curves are shown in Fig. 4.5. It can be noticed that the
appearance of the creep curves is quite different from those of P91. The amount of
primary creep is quite small and tertiary creep starts early on and dominates the creep
curve.

In Fig. 4.6, strain rate versus time curves with a double logarithmic scale are
given. The presence of the straight lines in the primary stage illustrates that the phi
(¢) model is satisfied for three of the stresses.

Also in creep rate versus time curves the validity of the ¢ model can be demon-
strated, see Fig. 4.7. Due to scatter in the experimental data the agreement is not
complete.

For the primary stage only a limited number of data points on the creep curves are
available in [19]. For the tertiary stage the data situation is much better. It is evident
in Fig. 4.8 that the tertiary is well represented by the Omega (£2) model.

,| Sanicro 25

o381 R R 180 MPa ¢ Q
03l . ol ] * 180 MPa exp
H - - =200 MPa ¢ Q
I - 200 MPa exp
N o | |——220MPa ¢ 0
= o - 220 MPa exp
N 4 1 [ 240 MPa ¢ Q

:,:,' / | . 240 MPa exp

Creep strain

100 150 200 250 300
Time, h
Fig. 4.5 Creep strain versus time curves for the 22Cr25Ni4W1.5Co3CuNbN austenitic stainless

steel Sanicro 25 at 750 °C at the four stresses 180, 200, 220 and 240 MPa fitted with the ¢ and 2
models, Egs. (4.1) and (4.2). Data from [19]. Reprinted from [13] with permission of MDPI
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Fig. 4.6 Creep rate versus strain curves for the 22Cr25Ni4W1.5Co3CuNbN austenitic stainless
steel Sanicro 25 at 750 °C for the same tests as in Fig. 4.5. Double logarithmic scale
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Fig. 4.7 Creep rate versus time curves for the 22Cr25Ni4W 1.5Co3CuNDN austenitic stainless steel
Sanicro 25 at 750 °C for the same tests as in Fig. 4.5. Double logarithmic scale. Reprinted from

[13] with permission of MDPI

The creep rates in Figs. 4.6, 4.7 and 4.8 show deviations to phi (¢) and Omega
(£2) model around the minimum creep rate. This is a common effect for many creep
curves. The experimental values in the range are lower than the model values. These
deviations are not large enough to show up in the creep strain curves in Fig. 4.5.



66 4 Primary Creep
Fig. 4.8 Creep rate versus R
strain curves for the Sanicro 25 P ,/"
22Cr25Ni4W1.5Co3CuNbN L ’ P )
austenitic stainless steel 4 ,/"
Sanicro 25 at 750 °C for the ©» Ked
same tests as in‘Fig. 4.5. ‘q_; : -:—-—180 MPa ¢ Q
Semi logarithmic scalfa. E 107 < 180 MPa exp |]
Redrgwp from [14] with c - - =200 MPa ¢ Q
g?;rl?éis:lon of Taylor & g 200 MPa exp
: n ——220 MPa ¢ Q
220 MPa exp
---------- 240 MPa ¢ Q

« 240 MPa exp

n

0.3 0.4

Strain

The reason of modeling creep strain is in general to try to extrapolate the results
to other conditions. This is typically very difficult with empirical methods. The
background is that the fitting parameters practically always vary in a complex way
that is challenging to analyze. Instead, the basic models that are described in the next
three sections are readily useful to generalize the results to new conditions.

4.3 Dislocation Controlled Primary Creep

In Chap. 2, an expression for the creep rate in the secondary stage was derived, Egs.
(2.30) and (2.29)

3

) . 2tLbeL o
=h(o —oy) with h(o) = ——M(T,0)——— 43
& =h(o —o;) with h(o) . (T, o) PTETSE (4.3)
od4g = amrGhp'? = o — o (4.4)

where ¢ is the strain rate, o the applied stress, mt the Taylor factor, b burgers vector, G
the shear modulus, ¢, and o dimensionless factors, w the dynamic recovery constant,
1. the dislocation line tension and M the dislocation mobility. o is the dislocation
stress, p the dislocation density, o; is an internal stress that will be discussed below.
Contributions from solid solution hardening and particle hardening can be included
in o;. The validity of these equations was demonstrated in Chap. 2.

To derive the time dependence of the creep strain, the corresponding time
dependence of the dislocation density must be known. Eq. (2.17) describes this
variation
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d
@ _ ﬂ,01/2 —wp — 2. Mp?/é 4.5)
de bCL

where ¢ is the strain. The other quantities were explained above.

The common behavior in the primary creep stage is that there is a continuously
decreasing creep rate with increasing time until the secondary stage is reached. At the
same time it is assumed that there is a gradually increasing density of dislocations.
This is a natural assumption since the dislocation density is low at the start of the
creep test for soft hot worked materials. The density reaches a stationary value in the
secondary stage. There are many possible alternative scenarios for example with a
hard cold worked material or continuous precipitation in the primary stage. However,
we will only consider the main one.

To describe primary creep several assumptions are made [20]:

e The stress dependence of the creep rate is the same in the primary and in
the secondary stage. This means that the function /(o) in Eq. (4.3) should be
applicable.

e The development of the dislocation density can be described with the same equa-
tion, Eq. (4.5) that was used to derive the equation for the secondary creep
rate.

e When starting from a low dislocation density at the start of the creep, Eq. (4.5)
gives an increasing dislocation density. This density is assumed to generate a
dislocation back stress according to Eq. (4.4).

e The creep rate in the primary stage is given by

& = h(o + Odisisec — Odisl — 0i) (4.6)

where ogig1sec 18 the stress due to the dislocations (dislocation stress) in the
secondary stage. In comparison to Eq. (4.3), the effective stress in Eq. (4.6) is
raised by what we can call the primary Stress Oprim

Oprim = Odislsec — Odisl 4.7

The presence of oy in Eq. (4.6) raises the creep rate in comparison to the
secondary stage, which is a characteristic feature of primary creep. When the
secondary stage is reached, the dislocation stress ogis is equal to Ogisi sec aNd Oprim
vanishes as it should. oy 1s a help quantity which makes it possible to model the
creep rate in the primary stage. The applied stress o is still constant.

¢ In the secondary stage there is a balance between the applied stress o and the back
stress from the dislocations ogisisec plus the internal stress o;

0 = Odislsec T Oi 4.8)

If Eq. (4.8) is applied, Eq. (4.6) can be rewritten as
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& =hQ2(o — ;) — ogis1) 4.9)
The internal stress o; has several contributions
o; = oy(T, &) + ossH + opH (4.10)

where oy is the temperature and strain rate dependent yield strength, ossy and opy
the contributions from solid solution hardening and precipitation hardening that
will be discussed in Chaps. 6 And 7.

It is important to recognize that the five assumptions do not involve any new
functions or new parameters. It is simply assumed that the same basic dislocation
mechanisms control both the primary and the secondary stage. A number of quantities
such as the dislocation stresses o4;5; and ogisisec and contributions to the internal stress
ossy and opy are mathematical quantities that are useful in the modeling. These
quantities can be defined in different ways. It is important to recognize that these
quantities cannot be measured and they are not meaningful unless they are precisely
defined. For example, there are many ways of defining a back or internal stress. A
general discussion about a back stress without a proper definition does not make
sense.

In the contribution to the internal stress in Eq. (4.10), the yield strength has been
included. Itis possible to make exactly the same analysis about primary creep without
taking the yield strength into account. It is material dependent if the yield strength
should be taken into account.

The use of the model will now be illustrated for two creep tests of Cu-OFP. In
Fig. 4.9 the development of the dislocation density, Eq. (4.5) and the dislocation
stress, Eq. (4.4) are shown.
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Fig. 4.9 Creep test of Cu-OFP at 75 °C and 160 MPa. The creep test was interrupted after 12000
h; a dislocation density versus strain according to Eq. (4.5); b dislocation stress versus strain for
the dislocation density in a according to Eq. (4.4)
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The dislocation density increases approximately linearly with increasing strain
over most of the strain range considered. When the dislocation density has reached a
sufficiently high level, the third (static recovery) term gives a contribution. Eventually
there is a balance between the two contributions. The secondary stage has been
reached. At this stage the dislocation density becomes independent of strain. The
dislocation stress, Eq. (4.4) is also continuously raised until a plateau in the secondary
stage is reached. In the secondary stage the dislocation stress is the difference between
the applied stress, 160 MPa, and the internal stress, Eq. (4.8). The internal stress
consists of the yield strength and the solid solution hardening due to phosphorus and
these quantities take the values 57 and 6 MPa, respectively at the temperature and
strain rate of the test. The used model for solid solution hardening is presented in
Chap. 6. In Fig. 4.9 the maximum dislocation stress is 97 MPa. These three values
add up to the applied stress as they should according to Eq. (4.8).

In Fig. 4.10a the creep strain versus time curve for the same test is shown. It can
be seen that the model can reproduce the observations even for the fast initial stage
of the test.

The creep rate versus time is given in Fig. 4.10b. Also in this Figure it is evident that
the model can describe the measurements. When the strain had reached a sufficiently
high value in the test, the test had to be reloaded several times to avoid that the dead
weights hit the floor. This is the reason for the spikes in the experimental curves.

In Fig. 4.10b with a double logarithmic scale, the data lie along a straight line
in the primary stage. This indicates that copper in addition to P91 and Sanicro 25
follows the ¢ model, Eq. (4.1). It is evident that also the model, Eq. (4.9), shows this
behavior.

The results for another creep test that has run until rupture are given Fig. 4.11.
The general appearance of creep strain and creep rate curves is not very different
from that in Fig. 4.10. Both the primary and secondary stages are reproduced by the
model. The modeling of the tertiary stage which is not taken into account here will

Experiment
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= Q— 10»8
[ ©
o £
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| ]
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| ——Mode!
0 |
0 5000 10000 10° 10" 102 108 10*
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Fig. 4.10 Creep test of Cu-OFP at 75 °C and 160 MPa. The creep test was interrupted after 12000
h; a creep strain versus time; b creep rate versus time; Eq. (4.9). Redrawn from [20] with permission
of Elsevier



70 4 Primary Creep

0.4
100 N
Y
E‘ .....
o
c 107
©
0.1 @
Cu-OFP s Cu-OFP
75°C, 175MPa 107 75°C, 175MPa
0
0 200 400 600 800 1000 1200 1400 10° 10 102 103
Time, h Time, h
a b

Fig. 4.11 Creep test of Cu-OFP at 75 °C and 175 MPa. The creep test was run until rupture; a creep
strain versus time; b creep rate versus time; Eq. (4.9)

be discussed in Chap. 12. Again the data and the model follow closely the phi (¢)
model in the primary stage.

4.4 Stress Adaptation

4.4.1 Model

In Sect. 3.3 it was demonstrated that a stress strain curve which had the form of a
Voce equation could be derived from Eq. (4.5)

0 =0y + (0gar — 0y) (1 — exp(—we/2)) “4.11)

This relation can be rewritten as

0 — Oy

Tan (4.12)

Osat = Oy +
The saturation stress oy is closely related to the stationary creep stress. With this

background, Eq. (4.12) is now generalized and transformed and considered as the
driving stress for primary creep [4]

o —oy(T,¢)

e (4.13)

OprimSA = Uy(T: &) +

This expression is then inserted in Eq. (4.3) for the secondary creep rate
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da_h T o —oy(T,é)
7 =Moo+ =7

T) (4.14)

The 2 value was originally identical to the dynamic recovery constant . However,
it has been found that at situation far from stationary conditions, €2 might have to be
chosen in a different way and that is discussed below. For this reason w is replace by 2
in Egs. (4.13) and (4.14). In Eq. (4.14) the yield strength depends on the temperature
and the strain rate. The following dependence is assumed, Eq. (3.15).

G(T 2\ (I/ny)
UAT£)=GA%£MG25(§> 4.15)

T is a reference temperature and &, a reference strain rate that are usually taken
as 20 °C and 1 x 10~* 1/s, respectively. The temperature dependence of the yield
strength follows that of the shear modulus G. The strain rate dependence is described
with a Norton equation. ny is the stress exponent determined at the temperature and
strain rate in question from the equation for the secondary creep rate, Eq. (2.30).

The expression for oyimsa is quite different from that of oy, given in Sect. 4.3.
Two features of Eq. (4.13) are important to recognize. When the strain increases
Oprimsa tends towards the applied stress and Eq. (4.14) is back to the expression for
secondary creep. At small strains opimsa can be expanded in the strain. If a Norton
expression with a stress exponent is assumed, it can be shown that Eq. (4.14) takes
the same form as Eq. (4.1) for the ¢ model. This means that if the ¢ model is valid for
very small strains, Eq. (4.14) may be applicable. Equation (4.14) cannot be expected
to be as general as the model in Sect. 4.3. Special assumptions are made and eq.
(4.14) is based on the Voce equation that is not valid for all alloys. The strain rate
and temperature dependence of the yield strength must be taken into account and
they are not always known.

4.4.2 Numerical Integration

Equation (4.14) is numerically complicated to integrate. The reason is that the yield
strength depends on the strain rate. Thus in each integration step an iteration has to
be performed. This way of direct integration is quite feasible. It is referred to as stress
adaptation since to determine the stress oprimsa iteration is required in each step.

There are alternative ways to perform the integration. A brief summary is given
here. For further details, see [21]. One way is to represent the function A(o, T) by a
Norton equation

9 0. T) = AN(T)o™ 4.16
i (0, T) = An(T)o (4.16)

Using Eqgs. (4.15) and (4.16), Eq. (4.14) can be rewritten as
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. 1/n . _ 2 \G(T) (& N\(/nN)
ENVT oy SD (Eyamo 4 TG G g
AN YT G(T) o 1 — e~ 92
The following abbreviations are introduced
n . G T .1/n
aN = All\l/ N bN = O'y(T, 80) G((T)) 85/ N (418)
0
Using these abbreviations and solving for & gives
1
gl — U (4.19)

l/aN_bN+]_eb+Qg/2 1 —e=%/2

From this expression, the formula for the yield strength can be obtained directly

o .. G(T) (& l/nN_ Uy _ o
oy(T, &) = oy(T, 8O)G(T0) <g> = bné = ( T D(1 —e2/2) + 1

aNbN
(4.20)

The strain rate has now been eliminated so the integration of Eq. (4.14) can be
performed directly. This procedure is referred to as expansion integration.

Another problem in the numerical integration is the singularity for small strains
in Egs. (4.14) and (4.20). This singularity can be eliminated by modifying the model
in the following way [22]. In Eq. (4.13) the strain rate dependence is extracted

o = [oy(T) + K(T)(1 — e—M”)](é)“"N 4.21)

oy and K are assumed to have the same strain rate dependence, which is approximately
the case. The reference strain rate &g is only known for the maximum stress, which
also defines K

&k = An(oy(T) + K(T))™ (4.22)

Ay and ny are determined from the total stress opimsa in Eq. (4.13) in the same
way as in the previous integration alternative. From Eq. (4.21) an expression for the
strain rate can be obtained

- { - } (4.23)
i Loy + K(T)(1 —e ) :

Equations (4.22) and (4.23) give

(4.24)

i=A { o (0,(T) + K(T)) }
Moy + KA —e272)
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The Norton Eq. (4.24) can be replaced by an equation of the original form, Eq.
(4.14)

E= h( o(oy(I) + K(T)) ) (4.25)

oy(T) + K(T)(I — e/’

In Eq. (4.25) the singularity at small strains has been removed. This procedure is
referred to as max stress integration.

A simplistic variant of Eq. (4.25) will be given to illustrate how the model works
[23]. The formula in Eq. (4.25) will be expressed as a Norton equation with the
constants A and n. Considering small strains (2¢/2 < 1), the exponential can be
expanded

(4.26)

b =4[ S

oy/K + Qe/2)

Equation (4.26) is integrated with respect to time ¢. Assuming the initial strain to
be zero, one finds that

201 +oy/K))™ .+ 20
={(1 P RALUDE guih e Tiusta pn — L 4.27
e ={(1+n)A} ) il 4.27)
The time derivative of Eq. (4.27) is
1/(n+1) Py
de _ ((1+mA) 20(1+0y/K) |1 428)
dt n+1 Q

Although Egs. (4.26) and (4.28) are both derivatives of Eq. (4.27), they are not
identical because Eq. (4.26) is a function of strain and Eq. (4.28) a function of time.

According to the simplistic model, the stress exponent is n/(n+1), i.e. close to 1
provided n is not small. The time dependence is also of importance. The ¢ model is
valid for many materials in the primary stage

Eprimp = Agt? (4.29)

where 1 is the time and A4 and ¢ are parameters. Further details about the ¢ model
can be found in Sect. 4.2 and in [22]. From (4.28) it can be seen that the simplistic
model agrees with the ¢ model where ¢ = n/(n+1). This requires that the last term
in (4.27) is small is relation to the value of the strain. This can be expressed in terms
of the following criterion

= (4.30)
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It can be shown that this criterion must also be fulfilled for the full model in Eq.
(4.25).

If the primary creep is near its end and approaching stationary conditions, 2 can
be replaced with the dynamic recovery constant w. The temperature correction for »
introduced in Sect. 3.4, (G(RT)/G(T))?, where G(T) and G(RT) are the shear modulus
at temperature and room temperature respectively, should be considered. However,
if the primary creep is far from stationary conditions, 2 has to be determined in an
other way [22]. At low strains the work hardening can be found from Eq. (3.12)

dUdisl Ole%
de  2cL

4.31)

The dislocation stress can never be larger than the applied stress. When the dislo-
cation stress is approaching the applied stress, a semi-stationary condition may be
said to be reached. The strain has then the value

2
‘L (4.32)

Esemi stat — (U - Ui)m

At this stage the exponential in Eq. (4.25) must be small, say 0.05, which gives

3 305Gm%

Q ~ =
Esemi stat 2cr (0 — 07)

(4.33)

where o includes strength contributions, for example, from solid solution and precip-
itation hardening. The applicability of Eq. (4.33) is shown for example in Sect. 5.8
and [22] for applications at a wide range of temperatures for copper.

4.4.3 Applications

The use of Eq. (4.14) will now be illustrated. Two examples for creep tests of Cu-
OFP at 75 °C are shown. The results for a test at a stress of 180 MPa are shown in
Fig. 4.12.

It can be seen that the creep strain and creep strain rate versus time are approxi-
mately reproduced. The three integration methods stress adaptation, expansion inte-
gration and max stress integration give closely the same result. The straight line in
Fig. 4.12b indicates that the phi (¢) model is followed down to fairly short times.

Another example is presented in Fig. 4.13. Again the experimental results for the
creep strain and the creep rate are modeled in a general way. It is clear that the model
in the present section gives a less precise description of the data than the model
in Sect. 4.3. However, the model is useful to describe results at very low stresses,
Chap. 5.
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Fig. 4.12 Creep test of Cu-OFP at 75 °C and 180 MPa. The creep test was run until rupture; a creep
strain versus time; b creep rate versus time; Eq. (4.14)
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Fig. 4.13 Creep test of Cu-OFP at 75 °C and 175 MPa. The creep test was run until rupture; a creep
strain versus time; b creep rate versus time; Eq. (4.14)

4.5 12% Cr Steels

4.5.1 Dislocation Model

The creep models presented in Sects. 4.3 and 4.4 as well as in Chap. 2 are based on
a single dislocation density. However, there are materials for which more than one
type of dislocation density must be introduced to fully take into account the role of
the substructure. For the type of material, 9-12% Cr steels, that will be analyzed
in this section, this is essential. In models with a single dislocation density, it is
increased gradually from low values in the primary stage until it reaches the stationary
value in the secondary stage. For 9-12% Cr steels, the initial microstructure is an
annealed martensitic structure. It is characterized by well-developed subgrains with
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subboundaries full of dislocations. This implies that the initial dislocation density is
high. But the creep behavior of the 9-12% Cr steels in the primary stage is not very
different from that in the fcc-alloys.

To handle this situation, a distinction is made between free and immobile dislo-
cations. The free dislocations are located in the subgrain interiors and the immobile
ones primarily in the subboundaries. The following equations are formulated for the
densities of the free dislocations p; and the immobile dislocations pip, [24, 25]

dor 1 mr

dor_ M 434
de " L. b (w1 + w2) py (4.34)
d .

% = wopr — 2MTp2 )i (4.35)

¢ is the strain, & the creep rate, L, the mean spurt distance of dislocations, my the
Taylor factor, b Burgers vector, M the climb mobility, and t;, the dislocation line
tension. The first term on the right hand side of Eq. (4.34) gives the work hardening.
Only the free dislocations contribute to the work hardening. There are two types
of dynamic recovery. A free dislocation will interact with a dislocation of opposite
Burgers creating a dipole with a spacing d;, that can annihilate each other

Gb
dyp = —— 07 (4.36)
SJT(I — l)p) o
This gives a recovery constant
2mr dgi
o, = T Ldip 4.37)
b Nslip

nglip 1S the number of active slip systems. Dislocations can also form locks, when
dislocations with different Burgers vector at a distance of djok interact. djocx has
about the same size as dgjp. This is another recovery effect that transfers the free
dislocations to immobile ones.

4mr d ip— 1
Wy = mr lock(nslp ) (4.38)
b Nglip

Thus this type of recovery reduces the free dislocation density and increases
the immobile dislocation density. It gives no net change in the total dislocation
density. The immobile dislocations can only be removed by static recovery. The
static recovery term is the last term in Eq. (4.35) and it has the same form as in Eq.
4.5).

Only the immobile dislocations are included in Eq. (4.39) for the dislocation stress

Odis] = amTGbpilnﬁz (439)
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It is now possible to describe what happens during primary creep. Initially, p; has
a high value and p;, a low value. This gives a high total dislocation density, but the
dislocation stress is low. To compute the strain rate, ogis; should be inserted in Eq.
(4.9). With a low value of o4, the creep rate will be high. With increasing strain,
the free dislocations are transferred to immobile ones, o4ig is increased and the creep
rate reduced. With Egs. (4.34) and (4.35) the established features of primary creep
are reproduced.

The internal stress is an important quantity for 9-12% Cr-steels. Particles increase
the creep strength in two ways. Fine carbo-nitrides give a direct increase in the creep
strength. Coarse M,3Cq carbides stabilize the subboundaries and thereby reduce
the recovery rate of the immobile dislocations. This implies a high value of the
dislocation strength can be kept that decreases the creep rate. Only the role of the
fine carbo-nitrides will be discussed briefly here. Further details are given in Chap. 7
on precipitation hardening. Only particles with a radius larger than a critical size
contribute to the creep strength, Eq. (7.12)

P

EsecMT

Terit = Mclimb(Tv U)b20)"s

(4.40)

where \; is the interparticle spacing for all the carbo-nitrides. The particles give the
following contribution to the internal stress

CoGb
A OA_[’”T (4.41)
Cr1

where Co = 0.8 and )\ is the interparticle spacing for particles larger than r;.
Equation (4.41) is the expression for the Orowan strength except that X is replaced
by At Together with o4, 07 should be inserted in Eq. (4.9) to find the creep rate.

4.5.2 Simulated Creep Curves

Results for creep strain curves of 12Cr1MoV steels (X20) will be presented. The
creep curves have been published in [9]. Two heats CL and CT are considered. The
particles in this steel are primarily M»3Cg carbides. M stands mainly for Cr and Fe.
The size distribution of the carbides has been measured [26]. The result is presented
in Fig. 4.14.

In the semi logarithmic scale in Fig. 4.14, the size distributions are approximately
linear except for small particle sizes. The deviation for small particles is often due
to the difficulty to make accurate measurements for such particles. Otherwise the
Figure shows that the number of particles per unit area np,; decreases exponentially
with increasing carbide radius 7pqrt

Rpart = nge” P (4.42)
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Fig. 4.14 Number of M»3C¢
carbides per unit area versus
carbide radius for two heats
CL and CT for a 12CrIMoV
steels. From [27]
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where ng and p are constants. The values of § for the heats CL and CT in Fig. 4.14
are 3.2 x 107 and 6.0 x 107 1/m, respectively.

The initial values of the dislocation densities pf and p;,, have been taken as 8
x 10" and 1 x 10" 1/m? from two doctorial theses from Erlangen on 9 to 12%
Cr-steels (Polcik 1998; Sailer 1998).

Experimental creep strain versus time curves are compared to the model in
Figs. 4.15 and 4.16. The model curves only include primary and secondary creep
since tertiary creep is not considered. In the primary and the secondary stages the
experimental data is reasonably well reproduced.

This is further illustrated in Fig. 4.17 where the experimental and modeled
minimum creep rates are compared. The Figure shows that the deviation is about a
factor of two, which can be considered as acceptable. Again it is shown that primary
creep can be accurately modeled without the use of adjustable parameters
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Fig. 4.16 Creep strain
versus time curves for
12CrMoV steel at

600-650 °C for a stress of 80
or 90 MPa. Experimental
data from [9]. Heat CL.
From [27]

Fig. 4.17 Comparison of
minimum creep strain rates
between the experimental
and model curves in

Figs. 4.15 and 4.16. From
[27]
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e Many empirical models exist for representing creep curves, i.e. creep strain versus
time curves. With four or more parameters almost any of these models can give
a good fit to the curves. To get a better basis for selection of models, primary
and tertiary creep should be handled separately. Then it is enough to involve just
two parameters for primary creep and two for tertiary. For many types of steels
primary creep can be represented with the phi model and tertiary creep with the
Omega model. The phi model gives a linear curve in a double logarithmic strain
rate versus time diagram. The Omega-model provides a linear curve when the
logarithmic of the strain rate is shown as a function of the strain. The two models
can be added to describe the whole creep curve. It is usually not necessary to have
a separate term for secondary creep.
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e Several basic models for primary creep are derived in the chapter. The modeling
is based on the assumption that the dislocation density has initially a low value
that increases during the primary stage until a stationary value is reached in the
secondary stage that can be described with the basic dislocation models. The
dislocation density is associated with a dislocation stress according to Taylor’s
equation. In one of the models an effective creep stress is introduced which is
twice the applied stress minus the dislocation stress. This effective stress can be
introduced in the expression for the secondary creep rate to find the creep rate
in the primary stage. The expression can be generalized to include also tertiary
creep, see Sect. 12.4.

e The use of the basic models for primary creep demonstrates that they can describe
experimental creep curves. These modelled creep curves follow the phi model.

e For martensitic 9-12% Cr steels the situation is somewhat more complicated. Due
to the martensitic microstructure the initial dislocation density is high. To handle
this case at least two types of dislocation densities must be introduced; free and
immobile. As a consequence, the development of both types of dislocations must
be taken into account but the principles are the same.
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Chapter 5 ®)
Creep with Low Stress Exponents e

Abstract Primary creep models predict that at low stresses a stress exponent of 1
can be obtained for dislocation creep. Also experimentally this has been observed for
an austenitic stainless steel. The time dependence of the primary creep verifies that
it is dislocation creep. An other example is for Al at very high temperatures (Harper-
Dorn creep), where at sufficiently low stresses, the stress exponent approaches 1. For
both materials higher stresses give larger stress exponents as expected for dislocation
creep. Obviously, diffusion and dislocation creep can be competing processes. The
validity of creep models at low stresses and high temperatures as well as at high
stresses and low temperatures demonstrates their wide range of usage. Since this in
reality represents an extensive extrapolation, it can be consider as a direct verification
of the basic creep models. In cases for Cu and stainless steels, the predicted creep rate
by diffusion creep (Coble) exceeds the observed creep rate as well as the predicted
one by dislocation creep by an order of magnitude. The likely explanation is that
constrained boundary creep is taken place, i.e. the grain boundary creep rate cannot
be essentially faster than that of the bulk.

5.1 General

Creep at low stresses has generated great interest amongst scientists for a long time.
Expressions for diffusional creep that do not involve dislocations were developed at
an early stage. First an expression based on bulk diffusion was formulated [1]. This
is now referred to as Nabarro-Herring creep. The creep takes place by diffusion from
grain boundaries with low stresses to boundaries located perpendicular to the loading
direction. An alternative expression was given by Coble [2] where the diffusion is
assumed to take place in the grain boundaries instead of in the bulk. The difference in
diffusion mechanism means that Nabarro-Herring creep is proportional to the bulk
diffusion coefficient and Coble creep to the grain boundary diffusion coefficient.
The grain size dependence is also different. With bulk diffusion the creep rate is
inversely proportional to the square of the grain size. With grain boundary diffusion
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the proportionality is instead to the inverse cube of the grain size. Models for diffusion
creep is summarized in Sect. 5.2.

The derivations for diffusional creep gave the first basic equations for the creep
rate. The expressions do not involve any arbitrary or adjustable parameters and the
equations are fully predictable. For both types of diffusional creep, the rate is propor-
tional to the stress, which means that the stress exponent is 1. Thus diffusional creep
has a number of characteristic features: well defined dependence of the grain size,
stress and temperature (through the diffusion coefficient). For a long time it was also
assumed that a stress exponent of 1 should always be associated with diffusional
creep. Authors have suggested observations of Herring-Nabarro or Coble creep in
many metals: Cd, Co, Cu, Fe, Mg and Zr. Kassner has given an excellent review of
diffusional creep [3] and details about the observations and references can be found
there.

Observations of diffusional creep have often been controversial. One reason is that
observed creep rates have not been in agreement with predicted ones in a number of
studies [4]. In for examples the excellent studies on BCo and aFe [5, 6], the observed
creep rate was about two orders of magnitude higher than the predicted ones. The
identification of diffusional creep is not necessarily based only on the observed creep
rates. There are also metallographic techniques to distinguish between dislocation
and diffusional creep. Langdon proposed that if scratches are made parallel to the
loading direction, the markings would be still continuous across the grain boundaries
after the test for dislocation creep but not for diffusional creep [7]. This requires
that no grain boundary sliding occurs along the considered boundaries. Another
proposal is that diffusional creep gives denuded zones in particle hardened alloys or
grooves around grain boundaries [8, 9]. For example, McKnee et al. have used these
techniques to support observations of diffusional creep [10, 11]. The role of denuded
zones has been questioned in the literature [12]. Ample evidence is now available
that demonstrates that denuded zones can be formed also during dislocation creep.
Wadsworth et al. suggest that denuded zones are created at grain boundaries that are
sliding and migrating simultaneously [13].

When recording creep rates during diffusional creep, it is assumed that stationary
conditions have been reached. In creep testing at higher stress, the deformation can be
allowed to continue until rupture takes place. Then it is straightforward to determine
when the stationary stage has been reached. During dislocation creep, a distinct
primary stage is expected. If such a stage is observed it is an indication that the
operating mechanism is not diffusional creep. However, as will be discussed in this
chapter, it is possible that diffusional creep can also show primary creep. It is evident
that in many cases it is quite difficult to decide when stationary conditions have been
achieved. If the creep rate is assessed during the primary stage, the measured creep
rate would typically be much higher than in the secondary stage. In addition, the
stress exponent can be low also for dislocation creep often approaching a value of 1.
This makes it easy to mistake it for diffusional creep. Modeling can be quite helpful in
understanding non-stationary conditions. In this chapter, modeling is presented that
can assess and interpret creep rates that are measured in the primary stage, Sect. 5.5.
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Harper and Dorn tested aluminum very close to the melting point at very low
stresses looking for diffusional creep [14]. Their results gave a stress exponent of
1 but the creep rate was two orders of magnitude higher than the diffusional creep
models predicted. They draw the conclusion that the mechanism was dislocation
creep with a stress exponent of 1. This phenomenon is referred to as Harper-Dorn
creep. It has created large interest. The work in the area is summarized in a paper
by Kassner et al. [15]. Some authors were able to reproduce the results of Harper
and Dorn [16, 17], others were not [18]. It was early on suspected that in many
cases stationary conditions had not been reached. This has been confirmed in a paper
by Kumar et al. [19] where the testing was carried to somewhat larger strains. The
stress exponent now took the value of 3. They also found that Harper and Dorn had
introduced a threshold stress, which Kumar et al. could not find any justification for.
If the threshold stress is removed also the Harper and Dorn data are consistent with
a stress exponent of 3 so the whole effect disappears. In Sect. 5.7, creep at very low
stresses in aluminum is modeled. It is shown that deviations from a stress exponent of
3 can be explained by taking non-stationary effects into account. Thus, creep at very
low stresses at high temperature can be fully accounted for with ordinary dislocation
creep models and there is no need to refer to Harper-Dorn creep as a special effect.

Tests at very low stresses for the austenitic stainless steel 316H and the martensitic
steel P91 have given a stress exponent of 1 [20]. Since distinct primary creep is
observed and stress change experiments gave a stress exponent of 4.5 [21], it is
concluded that the operation mechanism is dislocation creep. The tests for 316H
are analyzed with a primary creep model in Sect. 5.6. The non-stationary model
can quantitatively explain the behavior at low stresses (and at higher stresses). This
clearly demonstrates that dislocation creep can be of importance also at very low
stresses.

Creep tests that have claimed to demonstrate diffusional creep for Cu [9, 22],
have been analyzed in Sect. 5.8. It is shown that the part of the experimental data
that has been investigated is possible to reproduce with non-stationary dislocation
creep. There are pros and cons whether these observations represent diffusional or
dislocation creep. Further details are given in Sect. 5.8.

Results for previously unpublished results on creep in Cu between and 1 and 2 MPa
at 600° C are presented. The tests are unusual for low stress experiments since the
testing times exceed 12000 h. The results clearly represent dislocation creep, since
the stress exponent is 3 and distinct primary creep is observed. Furthermore the
results are in good agreement with the basic model for stationary creep, so any non-
stationary model is not needed. The surprising feature is that the Coble creep model
suggests a creep rate that exceeds the observations by an order of magnitude or more.
Although mechanisms have been proposed in the literature that can reduce the Coble
creep rate, it is difficult to identify such a mechanism in this case that can explain
the effect. This is further discussed in Sect. 5.8.1. Also for the investigated case for
316H, Coble creep overestimates the observed creep rates at low stresses (by about
one order of magnitude).

The classical diffusional models are briefly derived and summarized in Sect. 5.2.
To explain the effect of alloying elements on the diffusional creep rate, several authors
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assume that mobile grain boundary dislocations are a prerequisite for diffusional
creep. For this reason a recovery creep model for grain boundary dislocations is
formulated in Sect. 5.3. It is demonstrated that the grain boundary dislocations can
give rise to quite a high creep rate, a phenomenon that does not seem to be covered
in the literature. Some results suggest that creep along the grain boundaries must
be accompanied with simultaneous deformation in the grains. This is covered in
Sect. 5.4. It is referred to as constrained grain boundary creep. In Sect. 5.5, the
primary creep model that is used to describe non-stationary dislocation creep at low
stresses is summarized. Applications of the primary creep model at low stresses for
an austenitic stainless steel are given in Sect. 5.6, for aluminum in Sect. 5.7, and for
copper in Sect. 5.8.

5.2 Model for Diffusional Creep

Detailed models for diffusional creep were already presented in the original papers
for Nabarro-Herring and Coble creep [1, 2]. Here, only a simplified derivation will
be given. During Nabarro-Herring creep in tension, matter is transported to grain
boundaries oriented perpendicular to the loading direction from grain boundaries
parallel to the loading direction. This is possible by migration of vacancies in the
opposite direction. It is assumed that the sources and sinks of the vacancies are at the
grain boundaries. This is opposite to dislocation creep where the sinks and sources are
primarily at the dislocations. The difference in vacancy concentration Ac, between
the boundaries that are exposed to a stress o and the others is

_ O O Vaiom |
Acv_exp< kBT)(exp( kol ) 1) S.D

QOr is the vacancy formation energy and vy, the atomic volume. The first factor
in Eq. (5.1) is the thermal equilibrium concentration of vacancies. The second factor
describes the increase in vacancy concentration due to the presence of the stress.
Since only low stresses are considered, Eq. (5.1) can be rewritten as

O Vatom

ks T

Acy = ¢y (5.2)

A notation ¢, has been introduced for the equilibrium vacancy concentration.
The flow of vacancies J can be expressed as

D, A
J=—— 2% _ p 0T (5.3)
Vatom deff deff kBT

D, is the vacancy diffusion coefficient and d.¢ the effective diffusion distance. For
a simple grain structure, d.¢ can be estimated. Let us assume that we have coordinates
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x and y on perpendicular grain boundaries in a quadratic grain

dgram/2 dgrain/2
1 d rain
degr = 5 / VX2 4+ y2dxdy = 0.1dgpain = £ 54
dgrain 0 ANH

The constant Axyg has been introduced to mark that its value depends on the
geometry of the grains. The vacancy flux gives rise to a change in the grain size
along the loading direction

ddgrain
—_— _Jva om 55
o ! (5.5)
This corresponds to a creep rate &,,, of
1 ddein J v
by = ain _ ZHHOM _ f Dy g T Rem (5.6)
dgrain dt dgrain dgrain kBT

where Eq. (5.3) has been inserted for J. The expression for d¢ in Eq. (5.4) has also
been used where Axy = 10. The vacancy diffusion coefficient D, is related to the
self-diffusion coefficient Dy

Dlatt = DVCVO (57)

If this expression is applied the final expression for the Nabarro-Herring creep
rate is obtained.

Diay 0 Vatom

N — YANH 5
dgrain kBT

& (5.8)

The resultin Eq. (5.8) is identical to the original expression derived by Herring for
quadratic grains [1]. However, it is more common to use the expression for spherical
grains and then Axy = 14 instead of 10 [1, 23]. Greenwood has presented expressions
for Nabarro-Herring creep for more general grain structures [24].

It is possible to extend the equation to Coble creep by introducing an effective
diffusion coefficient D that takes both lattice diffusion and grain boundary diffusion
into account

T SGB DGB il 8DGB
b —D . =D 1 5.9
eff latt( + dgrain Dlatt) 13“( * dgl'ﬂi“ Diay ( )

where 3gp is the grain boundary width. In this book the grain boundary diffusion
coefficient is represented by 3Dgp that includes the grain boundary width and has
the unit m3/s. This is the quantity that is most often measured. But Eq. (5.9) is also
expressed in terms of the grain boundary diffusion coefficient Dgp that does not
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include 3G and has the unit m?/s. The factor 7 in front of 8Dgg can take different
values in different sources but m is the most common choice. If Dy, is replaced by
D, in Eq. (5.8), Coble creep is covered by the second term in the brackets

. O Vatom b DGB
€y = ANH——22_ D (1 + ) (5.10)
dereep kB ngzrain “ dgrain D latt

5.3 Grain Boundary Creep

As will be seen in Sects. 5.6 and 5.8, the classical model for Coble creep can over-
estimate the observed creep rates by at least an order of magnitude. This means that
diffusional creep must be blocked by one or more processes. Such processes have
been proposed. A survey of earlier work is provided by Arzt et al. [25]. The diffusion
process in the grain boundary can be affected. However, it is difficult to see how such
processes can provide mechanisms that are sufficient large to explain the mentioned
observations. In a number of papers including [25], it assumed that dislocation activ-
ities are needed to make grain boundaries involved in diffusional creep and provide
the necessary sources and sinks of vacancies. This gives a way to explain the large
blocking effects. Another mechanism that does not seem to have been raised in the
literature, is that the dislocations in the grain boundaries can give a direct contribu-
tion to the creep rate without involving diffusional creep. In this section, a model is
presented for this contribution. In the derivation, due to the lack of access, specific
properties for grain boundary dislocations will not be used. Instead, parameters for
bulk dislocations will be applied.

The first step is to formulate a model for development of the dislocation density
during creep in the grain boundaries equivalent to Eq. (2.17). In the same way as for
deformation in the bulk, the starting point is the Orowan Eq. (2.6). It has a different
form for GB dislocations [26]

bn is
§ — nPvdisl (5.11)

degrain

where b, is the component of the Burgers vector perpendicular to the GB, p the dislo-
cation density and vg;5 the velocity of the dislocations. Equation (5.11) is integrated
and derivated with respect to the strain to give

d_lo _ degrain

= 5.12
de b, Ly ( )

L, is the spurt distance, cf. Eq. (2.5) and it is assumed that it can be expressed in
the subgrain diameter dgyp. In the same way as for bulk deformation
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L = ngpdsup (5.13)

where the constant ngyy, is close to 3 [27, 28]. The subgrain size can be related to the
dislocation stress

Ko Gb
dopy = —077 (5.14)

Odisl

K is a constant typically in the range 10-20. The expression for the Taylor
Eq. (2.20) has to be modified [25]

Odis] = OlmTGb,O =0 —0; (515)

The dislocation stress ogig is now linear in the density. o; is the back stress from
solid solution and particle hardening. By combining Eqs. (5.11)—(5.15) it is found
that the change in the dislocation density contributing to the work hardening is given
by

d d rain .
€0 _ MM%rain , (work hardening) (5.16)
de ber
where
Ui K Ui
¢, = Msub & sub 5.17)
mrto

In comparison to the bulk Eq. (2.9), the difference is that the work hardening
contribution is linear in the dislocation density. Since the dislocation stress ogjg is
linear in the dislocation density, the strain dependence of oy is also linear.

d i d rain .
Ouist _ M1rain -\ (work hardening) (5.18)
de CLbn

For the elastic properties and the Burgers vector for example in Eq. (5.15), grain
boundary values should be applied. However, for metals the values of the elastic
properties are of the order of 93% of the bulk values [29]. Considering the uncer-
tainties involved in modeling grain boundary properties, these replacements have not
been made.

For the static recovery, the starting point is Eq. (2.16).

dR MB‘L'L
— = 5.19
dt R (>-19)

where R is the spacing between dislocations and Ty, the dislocation line tension. The
boundary climb mobility is given by
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bD
My = GB
kgT

(5.20)

Notice the difference between the two grain boundary diffusion coefficients

8Dgg and Dgg have the units m*/s and m?/s, respectively. 3gg is the grain boundary
width that is usually taken as 5 x 10~'° m. The dislocation spacing R in the boundary
is

R=1/p (5.22)
Inserting Eq. (5.22) into (5.19) gives

dp 3 .
S =T Mgp (static recovery) (5.23)

There are two differences between Eq. (5.23) and the bulk version, Eq. (2.13).
First, the factor of 2 is missing and the dislocation density appears to the third order.

By summing the contributions from Egs. (5.16) and (5.23), an expression for the
strain dependence of the dislocation density is obtained

d_,O _ degrain
de bCL

p—wMgp’/ép (5.24)

The time derivative in Eq. (5.23) has been changed to a strain derivative by dividing
by the strain rate. ég is the local creep rate in the grain boundary. During stationary
condition the strain derivative of the dislocation density vanishes and the creep rate
can be found directly. The overall grain boundary creep rate égg is given by

) Sgeber T Mg p?
fop = GB iy = GB CZLTL B (5.25)
dgrain dgrainm T

With the modified Taylor, Egs. (5.15) and (5.25) can be expressed in terms of
stress

_ dbeLiMg(0 — 07)?

éGB =
2 2
dgmian(amT Gb)

(5.26)

The grain boundary creep rate is inversely proportional to the square of the grain
size and has a stress exponent of about 2 at low stresses. At higher stresses the role
of pipe diffusion, strain induced vacancies, etc. should be taken into account in the
same way as for creep in the bulk. Equation (5.26) has the same temperature, stress
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and grain size dependence as the creep rate during superplastic deformation due to
GBS, Eq. (9.20), but the equations are not identical.

Equation (5.26) can give quite a high strain rate. The grain boundary diffusion
coefficient is much larger than the bulk diffusion coefficient and that is only compen-
sated to some extent by the ratio 8gp/dgrin. It is important to take into account the
role of cross-slip. If the grain boundaries are fully straight, cross-slip has to take
place at the triple points. However, the boundaries are often curved, and then cross-
slip is continuous. With cross-slip an extra activation energy has to be introduced,
Eq. (2.47)

EC§
cross-slip = - 5.27
AR 52

Equation (5.26) is multiplied by Eq. (5.27). The problem is that the value of the
activation energy for cross-slip is uncertain. As summarized in Sect. 2.6.3, ab initio
values for the activation energy vary from 50 to 270 kJ/mol. The values for alloys
appear to be larger than for pure metals. The role of cross-slip remains an open issue.

5.4 Constrained Grain Boundary Creep

Creep in the grain boundaries without plastic deformation in the neighboring grain
interiors is not possible. Perhaps, the most obvious effect is for superplasticity. In
this case the main deformation takes place by GB sliding. However, extensive defor-
mation cannot occur in a material without the grain interiors being affected. In other
words, creep in the grain boundaries must always be accompanied by creep in the
whole grains as well. This phenomenon will be referred to as constrained grain
boundary creep. The term is taken from growth of creep cavities that inside a material
growth cannot be faster than the creep deformation, see Sect. 10.5.2.

Grain boundary creep according to Eq. (5.26) can give quite a high creep rate, in
many cases higher than bulk dislocation creep, but such a phenomenon has not been
reported in the literature. It is assumed that the grain boundary creep rate égg cannot
exceed the creep rate in the bulk &y, significantly. The bulk creep mechanism is
practically always dislocation creep but could in principle also be Nabarro-Herring
creep. If the grain boundary creep rate égp is estimated to be higher than the bulk
creep rate, the creep rates must be matched approximately

éGB (Ured) ~ ébulk(o) (528)

Thus, the stress controlling the grain boundary creep rate must be reduced to
ensure that the creep rates match.

In Sects. 5.6 and 5.8.1 it is shown that the Coble creep model rates can exceed
the observations by more than an order of magnitude. Several mechanisms have
been proposed that could retard diffusional creep. These are in general based on the
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assumption that the creep rate is controlled by GB dislocations [25]. For Nabarro-
Herring creep, they can account for that GBs are not perfect sources and sinks for
vacancies. For Coble creep the GB dislocations assure that atoms and vacancies
can leave the GBs to avoid that they are getting saturated. Many mechanisms are
available that can reduce the mobility of GB dislocations. Further details are given
in the mentioned sections.

If the estimated Coble creep rate is still higher than the bulk creep rate, constrained
GB creep is active. This means that Eq. (5.28) must be satisfied for Coble creep as
well

£coble (Ored) A Epuik(07) (5.29)

Thus, if the Coble creep rate is nominally higher than the bulk creep rate, matching
of the two creep rates must take place and the stress driving Coble creep is reduced.
Exceptions to this principle can be found for hypothetical grain structures. A grain
structure consisting of identical rectangular prisms where there is a homogeneous
padding of atoms on the planes perpendicular to the loading directions is an example
where bulk deformation may not take place. Such cases have of course no practical
relevance.

When the bulk creep rate is controlled by dislocation creep, it shows a higher
creep rate in the primary stage and this allows Coble creep to have a higher creep
rate initially as well. This means that Coble creep can have a primary stage. The main
conclusion of this section is that any creep deformation mechanism that is entirely
concentrated to the GBs cannot be significantly faster than the bulk creep rate.

5.5 Primary Creep at Low Stresses

One major concern when making creep tests at low stresses is whether stationary
conditions have been reached. Most creep models refer to the stationary creep rate
when identifying creep mechanisms. If the creep test has not been carried out long
enough the wrong conclusions can be drawn. At low stresses, the interesting ques-
tion is often if diffusional or dislocation creep is observed. The stress exponent for
diffusional creep is always assumed to be 1 according to the models for Nabarro-
Herring and Coble creep. A possible exception exists for nanocrystalline alloys. It
has been proposed that Coble creep can appear also at higher stresses and with a
stress exponent larger than unity [30]. This possibility will not be considered here.
If stationary creep has been reached, the stress exponent is 3 or more for dislocation
creep. The known exception is superplasticity where the stress exponent can be 2.
This is discussed in Sect. 9.4. Then it is straightforward to distinguish between diffu-
sional and dislocation creep. However, if dislocation creep is in the primary stage,
the stress exponent can be lower and the identification can be difficult.

In recent years basic models for primary creep have been developed. They are
described in Chap. 4. With the help of these models a better understanding of the
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creep behavior during non-stationary conditions can be established. Low stresses are
often associated with low strains. The appropriate model is given in Egs. (4.13) and
(4.14). The model is called stress adaptation. In the same way as for the other models
for primary creep in Chap. 4, the starting point is the creep rate in the stationary stage
and the rate in the primary stage is related to that in the stationary stage. The only
change is that an effective stress is introduced that is higher than the stationary stress,
which can represent the higher creep rate in the primary stage. In the stress adaption
model the effective stress is given by [31]

o —oy(T,é)

= (5.30)

OprimSA = Uy(T’ 8) +

The quantity oy is the yield strength that depends on temperature and the strain
rate &, 2 is related to the dynamic recovery constant, and ¢ the applied stress in the
creep test. One requirement on the effective stress is that it tends to the applied stress
at large strains. This is obviously the case in Eq. (5.30). The second part of the model
is the rate for stationary creep, Eq. (4.3)

2t b M(T, o) o3

é=h(o — o) with h(o) = mr (amrGb)?

(5.31)

where mr is the Taylor factor, b burgers vector, G the shear modulus, ¢;, and o
dimensionless constants, Ty, the dislocation line tension and M the dislocation climb
mobility. oj is an internal stress that includes contributions from solid solution hard-
ening and particle hardening. If the effective stress in Eq. (5.30) is inserted into (5.3 1),
an expression for the creep rate is obtained that is valid for primary and stationary
creep

— T’ ¢
2% _ h(oy(T, &)+ W _— T> (5.32)

Equation (5.32) is complicated but not impossible to integrate, since oy depends
on the strain rate. This means that the equation has to be solved by iteration in each
integration step. In addition, the primary stress in Eq. (5.30) is singular at small
strains. However, it was demonstrated in Sect. 4.4.2 that these difficulties can be
avoided. Equation (5.32) can be reformulated and the most suitable form is given in
Eq. (4.25)

_ oD +KT)
o h<0y(T) + K(T)(1 — e~%¢/2) i T) (5.33)

where K(T) is given by

2
aGmiy

K(T) = = og(T) — oy(T) (5.34)

CL
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The saturation stress (maximum stress) o, during plastic deformation at constant
strain rate is the sum of oy (T") and K(T'). In Eq. (5.33), the strain rate dependence of
oy(T) and K(T') has been eliminated. These quantities are assumed to be influenced
by the strain rate in the same way. This means that their values can in principle be
selected at any strain rate.

Up to the creep range, the temperature dependence of oy and K are at least approx-
imately known. The temperature dependence of the yield strength is proportional to
that of the shear modulus, Eq. (3.15). The temperature dependence of the dynamic
recovery constant  is inversely proportional to that of the square of the shear
modulus. However, in the creep range the increase in w can be much faster with
temperature. This is illustrated in Fig. 3.13. The role of 2 is that it describes how
large the strain must be before the stationary or semi-stationary stage is reached. If
the primary data are close to stationary conditions, the value of €2 can be assumed to
be equal that of w. However, if this is not the case, 2 is given by another expression,
Eq. (4.33)

3 3aGm?

Q ~ = -
Estat 2CL(G - ai)

(5.35)

To understand the behavior of Eq. (5.33) a simplified version is presented in
Sect. 4.4.2. The strain dependence follows the ¢ model with a ¢ value of nn/(ny +
1). Some requirements must be fulfilled. In particular, the following criterion must
be satisfied, Eq. (4.30)

X <7 (5.36)

5.6 Creep at Low Stresses in an Austenitic Stainless Steel

In this section, creep of the austenitic stainless 17Cr12Ni2Mo steel 316H will be
analyzed at low stresses. The creep data is taken from a paper of Kloc et al. [20] and
the analysis from [32]. Very low stresses could be reached with the help of a helicoid
spring specimen technique. Some of the experimental results are shown in Fig. 5.1.

The creep strain rate versus stress is given in Fig. 5.1. Two distinct regions of
stress dependence are evident. At low stresses the stress exponent is about 1. At
higher stresses, the stress exponent is 7, i.e. in the range for power-law creep. With
a stress exponent of 1, it was initially thought that diffusional creep was observed.
However, the presence of primary creep, see Fig. 5.1b suggests that dislocation creep
is the controlling mechanism also at low stresses. In [20] similar creep tests were also
performed for the 9Cr1Mo (P91) steel at 650 °C demonstrating a stress exponent of
1 at low stresses and a stress exponent of 12 at high stresses. For P91 stress change
experiments were performed resulting in a stress exponent of 4.5 verifying dislocation
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Fig. 5.1 Creep data for the austenitic stainless 17Cr12Ni2Mo steel 316H; a strain rate versus stress
at 650-750 °C (exp.) and Coble creep model; b creep strain versus time at 700 °C for six stresses
(creep data from [20]). Redrawn from [32] with permission of Elsevier

creep [21]. It can be expected that similar results would have been obtained for 316H
if stress change experiments had been carried out. The creep rates at low stresses
were assessed after testing for 1000 h. The natural interpretation of these results is
that 1000 h is not long enough to reach stationary conditions. The consequences of
this will be analyzed below.

In Fig. 5.1, predictions with the classical Coble model, Eq. (5.10) are included. It
can be seen that the Coble model over predicts the observations by about one order of
magnitude. The grain boundary diffusion coefficient from Smith and Gibbs has been
used [33]. Their measurements are in the same temperature range as the creep data.
However, the results are sensitive to the choice of diffusion coefficient. If the value
from Mizouchi et al. [34] is chosen instead, the Coble predictions would be three
orders of magnitude above the observations. Nabarro-Herring creep is not marked
in the Figure but it gives values about an order of magnitude below the experimental
data. Several papers in the literature address the problem that the diffusional models
can overestimate the creep rate. A summary of early work is given by [25]. In these
papers it is in general assumed that the required vacancies during diffusional creep
are generated by the motion of GB dislocations. In some papers, a related concept
of disconnections is considered, but the equations and effects are not very different
from those of GB dislocations [35] and no distinctions between these concepts will
be made here.

The main idea in these papers is that for Nabarro-Herring creep, GB disloca-
tions are needed to emit and absorb vacancies at the GBs, since the GBs cannot be
assumed to be perfect sources and sinks for vacancies. If the motion of GB dislo-
cations is slowed down, it will impair the access of vacancies and reduce the creep
rate. For Coble creep, the GB must be able to emit and absorb atoms and vacancies
to avoid being over-saturated. This role of GB dislocations makes it easy to explain
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deviations from the classical models. Mo in 316H gives a large solid solution hard-
ening effect that reduces the creep rate dramatically. The influence of Mo has not
yet been predicted but it can be assumed that it is of the same order as that of W,
which raises the activation energy by about 50 kJ/mol [36]. This might seem like a
high value but if the creep activation energy is assessed from the NIMS data [37], a
value of 487 kJ/mol is obtained which should be compared with the activation energy
for self-diffusion of 293 kJ/mol for 316H. Thus, the activation energy for creep is
almost 200 kJ/mol higher than that for self-diffusion. The largest contribution to this
increase comes from Mo. Therefore, a value of 50 kJ/mol for Mo that gives an Arrhe-
nius factor of 0.002 at 700 °C is likely to underestimate its effect. The solid solution
hardening effect can be assumed to be about the same for GB and bulk dislocations.
As a consequence solid solution hardening alone can explain the deviation from the
classical expression for Coble creep.

Particles can also influence the motion of dislocations in the grain boundaries.
Arzt et al. suggest that a threshold stress oy, is formed of about [25]

om ~ 0.1oo (5.37)

where o is Orowan stress, Eq. (7.3). If typical values for M,3C¢ carbides are assumed
with a volume fraction of 0.005 and particle radius of 0.1 mm, a oth value of 1.6 MPais
obtained. Such a threshold stress would certainly influence the prediction, but would
not have a dramatic effect on the results. However, for other austenitic stainless
steels the Orowan stress could be much higher. This could block diffusional creep
completely if Eq. (5.37) describes the situation correctly and climb across particles
isignored. There are further constraints on grain boundary dislocations. But they are
primarily of interest for pure metals. These constraints will be discussed in connection
with creep of copper at low stresses in Sect. 5.8.

If the Coble creep rate taking these effects into account would still be higher
than the dislocation creep rate, constrained GB creep would be active and adjust this
situation, see Sect. 5.4.

From now on in this section, it will be assumed that the creep data in Fig. 5.1 are
controlled by dislocation creep. Since primary creep data are available at 700 °C,
the analysis will be concentrated to that temperature. First a model is needed for
stationary creep. Strain induced vacancies are taken into account according to
Eq. (2.37)

Ac_ 0.5—“/51(52“1’%2 ¢

(5.38)
Co Dy o

K provides a relation between the subgrain size and the stress, Eq. (8.4). The
strain rate in Eq. (5.31) is used in Eq. (5.38). Austenitic stainless have typically a
low stacking fault energy which is important to take into account with the help of
Eq. (3.30). These assumptions are the same as in a model for pure Ni, Sect. 2.8 [38],
which is expected to have similar properties. The effect of dislocation dipoles have
been taken into account. It increases the climb mobility by a factor fgp
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fap = 1+ 2pdg,, (5.39)

where dgip, is the distance between the dislocations in a dipole which is set to 1 x
10”7 m. In Sect. 2.8, pipe-diffusion is taken into account instead, which gives an
almost identical effect. This effect is of special importance at high stresses. This
expression can be derived in the same way as Eq. (2.13). The constant term in
Eq. (5.39) raises the stress exponent at higher stresses by 2. The solid solution
hardening due to Mo is taken into account by adding 50 kJ/mol to the activation
energy following the discussion above. In the model for the non-stationary behavior,
Eq. (5.32), the value for o,/K(T) = 0.02 has been selected to satisfy the criterion
(5.36). The 2 value in the exponent in Eq. (5.32) has been determined with the help
of Eq. (5.35). Quite a high value of 2 = 800 is obtained.

Predictions of the creep strain during primary creep with the help of Eq. (5.33)
are given in Fig. 5.2.

As can be seen that a reasonable representation of the experimental data is
obtained. The strain rate versus time is shown in Fig. 5.3a.

Fully straight lines are found in the double logarithmic diagram in Fig. 5.3a
indicating that the phi-model is satisfied, see Sect. 3.2. The slope of the strain rate
versus time curves is 0.8. The stress exponent is 1. The corresponding strain rate
versus strain curves are presented in Fig. 5.3b. Approximately straight lines are
obtained. However, the slope is considerably higher than for the time dependence
varying from 2 to 4.5. The stress exponent is close to 7 so it is the same as for
stationary creep.

Results for strain rates as a function of stress are given in Fig. 5.4.

The stationary model has a stress exponent of 7 at high stresses. At low stresses
the non-stationary primary creep models gives a stress exponent of 1 in agreement
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Fig. 5.2 Creep strain versus time at 700 °C for the austenitic stainless 17Cr12Ni2Mo steel 316H

at low stresses during primary creep. Non-stationary model rates according to Eq. (5.33) compared
to experimental data from [20]. Redrawn from [32] with permission of Elsevier
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Fig. 5.3 Strain rate at 700 °C for the austenitic stainless 17Cr12Ni2Mo steel 316H at low stresses
during primary creep. Non-stationary model rates according to Eq. (5.33); a strain rate versus time;
b strain rate versus strain. a is redrawn from [32] with permission of Elsevier
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with observations. In Fig. 5.5 the time dependence of the strain rate versus stress
curves is illustrated.

The strain rate decreases with increasing time in the primary stage. But even
the longest time gives strain rates that are orders of magnitude above the stationary
values, Fig. 5.4. At low stresses the activation energy in the model is 60 kJ/mol which
is considerably less than the experimental value which is 140 kJ/mol. This value is
almost the same as for grain boundary diffusion, which is 150 kJ/mol [34]. This is
the expected value if Coble creep would have been the operating mechanism. The
activation energy for stationary creep in the model is 340 kJ/mol, which is about
50 kJ/mol above the value for self-diffusion. The observed value is 420 kJ/mol. As
discussed above that are good reasons to select a higher value than 50 kJ/mol for
solid solution hardening, but due to lack of data this has not been done.
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In summary, primary creep curves and their stress dependence of the creep rate can
be described quite well with the model assuming dislocation creep. Thus, the model
can explain the observations in a satisfactory way. It is clearly demonstrated that
the stress exponent can be much lower during primary creep than during stationary
creep. The activation energy is also lower during primary than during stationary creep
although the model exaggerates the effect.

5.7 Creep in Aluminium at Very Low Stresses
(Harper-Dorn Creep)

Creep at very low stresses and at very high temperatures in aluminum has received
considerable interest in the scientific literature. The reason is that Harper and Dorn
[14] looking for diffusional creep, in fact observed a stress exponent of 1 as expected
but a creep rate that was about two orders of magnitude higher than the predicted one
for diffusional creep. They drew the conclusion that they had observed dislocation
creep with a stress exponent of 1. In two more recent papers available data have been
summarized and analyzed [15, 19]. Kumar et al. [19] made also new tests for high
purity aluminum to reduce the effect of non-stationary conditions. They could give a
satisfactory explanation to most of the existing data. They found a creep exponent of
3 clearly indicating dislocation creep. The Harper and Dorn data also give this stress
exponent when a threshold stress that they introduced was removed. Any indication
of a threshold stress has not been found in more recent data.

In this section both stationary and non-stationary modeling will be presented taken
from [32]. It has always been assumed that the controlling mechanism is dislocation
creep. For stationary creep, the same model for aluminum as in Chap. 2 has been used,
Eq. (5.31). The classical value for the self-diffusion coefficient with an activation
energy of 142 kJ/mol has been applied. In the non-stationary model, Eq. (5.33), the
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choice €2 = 40 is taken directly from the formulae in Chap. 3. To satisfy the criterion
(5.36) a value of oy/K = 0.01 has been chosen.

The results for the stress dependence of strain rate are given in Fig. 5.6.

The stationary creep model with a stress exponent of 3 can describe the bulk
of creep of data. The only data that deviate significantly from the stationary curve
are those of Barrett et al. [16]. They used testing times of 300—1000 h. In the other
investigations longer testing times were utilized, which makes the results lying closer
to the stationary values. It is evident that the modest deviations from the stationary
curve can be well represented by the non-stationary model. How the results are
approaching stationary conditions is illustrated in Fig. 5.7.
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It can be seen from Fig. 5.7 that the values are close to stationary conditions. For
stresses larger than 0.3, stationary creep has been reached even for the shortest time
and the stress exponent is 3. Only for stresses below 0.03 MPa, stress exponents below
1.5 are found. The stress exponent clearly increases with increasing observation time.

Creep strain versus time curves are shown in Fig. 5.8.

The linear behaviour except at the highest stress is consistent with the phi-model.
The variation of the strain rate with time and strain is demonstrated in Fig. 5.9.

The approximate straight lines again show that the phi-model is obeyed. The
exception is the higher stresses where stationary conditions are reached at longer
times or larger strains. This is the same behavior that is observed in Fig. 5.7.
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Fig. 5.8 Creep strain versus time at 650 °C for pure aluminum at different stresses according to
Eq. (5.33)
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Fig. 5.9 Creep strain versus time a and versus strain b at 650 °C for pure aluminum at four stresses
according to Eq. (5.33). a is redrawn from [32] with permission of Elsevier
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These results above suggest that the high temperature creep of aluminum can be
fully explained quantitatively based on ordinary dislocation creep. There is no need
to refer to any special Harper-Dorn creep.

From Fig. 5.6 it can be seen that the basic creep model in Eq. (5.31) can describe
the stationary creep rate quite accurately at least down to 0.02 MPa at 650 °C. The
same model can represent creep data at 27 °C up to 50 MPa [39]. If the stress is raised
from 0.02 to 50 MPa at 27 °C, the creep rate is increased by 21 orders of magnitude,
see Table 5.1. The corresponding increase at 650 °C is 13 orders of magnitude. In the
same way if the temperature is raised from 27 to 650 °C at 0.02 MPa, the creep rate is
enhanced 17 orders of magnitude. At 50 MPa the increase is 9 orders of magnitude.
Thus, Eq. (5.31) can cope with very large variation in the strain rate over a range of
conditions. This is clearly strong justification for the validity of the creep model.

More recently, annealing experiments have been performed for aluminum single
crystals by Smith et al. [40]. Even after long annealing times the dislocation density
never fell below 1 x 10° 1/m?. With the help of the Orowan equation for the defor-
mation, they suggest that this would give a stress exponent of 1, recovering Harper-
Dorn creep. A constant dislocation density would imply that recovery of dislocations
would be blocked. But if recovery is blocked, creep is not possible. Without recovery
there would be a continuous increase in the dislocation density until the deformation
stops as observed for many alloys at ambient temperatures. In addition, several other
studies (some of which are summarized in [40]) have observed that the dislocation
density varies with stress and that the dislocation density can be much below 1 x 10°
1/m?, see for example [19]. Furthermore, creep of aluminum can quantitatively be
described from ambient temperatures, Sect. 2.7 to close to the melting temperature,
see above, with the help of the creep-recovery theory. The observations in [40] cannot
be explained at present.

Table 5.1 Creep rate ratios of aluminum

Temperature, °C Stress, MPa Creep rate ratio, stress Creep rate ratio, temperature
27 0.02—50 |2x10?!
650 0.02 — 50 6 x 1013
27->650 0.02 1 x 107
27->650 50 4% 10°
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5.8 Creep in Copper at Low Stresses

5.8.1 Creep of Cu-OFP at 600 °C

Creep tests of copper at very low stresses at 600 °C were performed at the author’s
laboratory many years ago but the results have only been published recently [41].
The material used was oxygen free copper alloyed with 54 wt. ppm P, Cu-OFP. The
material had good purity. All other elements than Cu and P had a total amount of 30
wt. ppm. The batch had the designation 500. The detailed composition of the batch
can be found in [42]. The grain size of the material was 100 wm. Three tests were
carried out at 1, 1.5 and 2 MPa. The testing times were between 12000 and 17000 h.
The conditions were selected to be well inside the stress range for diffusional creep.
Results for the stress dependence of the strain rate are shown in Fig. 5.10.

The experimental data give a stress exponent of 3. A comparison to the model for
stationary creep for Cu-OFP, Eq. (5.31) is given. It is evident that the model gives
strain rate values that are quite close but with a slightly higher stress exponent of 4.
For pure Cu without P the creep rate according to the stationary model is almost an
order of magnitude higher and the stress exponent is 3.

In the primary creep model, Eq. (5.33), 2 has been selected according Eq. (5.35).
For oy and K the room temperature values in [42] have been used. These values
for oy and K satisfy the criterion (5.36). In Fig. 5.11, the strain rate versus time is
illustrated for the test at 1.5 MPa.

Distinct primary creep is observed. Both the experiments and the predictions
follow the phi-model. Thus, there are three ways that demonstrate that dislocation
creep is involved; (i) a stress exponent of 3; (ii) the results are in agreement with
the predictions for stationary dislocation creep; (iii) well-developed primary creep
is present.
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The basic stationary creep can describe creep rate values down to 1 MPa at 600 °C,
Fig. 5.10. The model can also represent creep data at 75 °C up to 180 MPa, Fig. 6.6.
This involves a large variation in the creep rate. Raising the stress from 1 to 180 MPa
increases the creep rate by 21 orders of magnitude according to Eq. (5.31), Table 5.2.
The corresponding increase at 600 °C is 13 orders of magnitude. There is also an
increase due to change in temperature, which is 15 order of magnitude at 1 MPa and
9 orders of magnitude at 180 MPa.

These wide ranges of creep rate are of the same order as those for aluminum,
Table 5.1. Which of the ratios in Tables 5.1 or 5.2 that is chosen is not important.
The high ratios demonstrate that the basic creep model can cope with a wide range
of conditions. Since the model was originally developed for creep close to ambient
temperature at high stresses [31], the applicability at high temperatures and low
stresses can be seen as a possibility to extrapolate over many order of magnitude in
creep rate. It is clearly a strong justification for the validity of the basic creep model.

In Fig. 5.10, the classical models for diffusional creep are compared with the
observations. It is evident that the model for Coble creep significantly overestimates
the creep rate and that applies to Nabarro-Herring creep as well but to a less extent.
Consequently, there must be one or more mechanisms that strongly block the diffu-
sional processes. Such a diffusion mechanism is not easy to identify. P is known to
raise the diffusion coefficients in both the bulk and in the grain boundaries [43], so

Table 5.2 Creep rate ratios of copper

Temperature, °C Stress, MPa Creep rate ratio, stress Creep rate ratio, temperature
75 1 — 180 4 x 10%!
600 1 — 180 2 x 1013
75 — 600 1 6 x 1013
75 — 600 180 2 x 10°
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that effect works in the wrong way. Zhevnenko shows that surface active elements
like P reduces the diffusional creep rate, but fairly large amounts of alloying elements
are needed to give a significant effect [44]. Solid solution hardening due to P gives
a back stress of 0.4 MPa at 600 °C [45]. This is the main reason why the stationary
curve for Cu-OFP in Fig. 5.10 is lower than that for pure Cu. If dislocations control
the amount of vacancies that escapes the grain boundaries, the solid solution hard-
ening would be expected to be the same in the bulk and the grain boundaries. This
effect is represented by the difference in the stationary creep rate between Cu with
and without P. Thus, this would explain a part of the blocking of diffusional creep. P
is fully in solid solution so there is no effect of particles. It has been suggested that if
the curvature of the dislocation is too small, the grain boundary dislocations become
immobile. This gives a back stress of [25, 46]

(39

5.40
bd grain ( )

Ocury =

where 1 is the dislocation line tension. For the case in Fig. 5.10, o¢yy is equal to
0.05 MPa, which is negligible. The remaining discrepancy for Coble creep is possibly
due to constrained grain boundary creep, Sect. 5.4.

5.8.2 Creep of Copper at 820 °C

In one of the first attempts to measure diffusional creep, Burton and Greenwood
studied pure copper at 820 °C [22]. Some of their results for a grain size of 35 pum
are shown in Fig. 5.12.

Below 5 MPa their data gave a stress exponent close to 1. Above 5 MPa, the
stress exponent is 5. The values for the classical Coble and Nabarro-Herring models

Fig. 5.12 Creep rate versus ' i i i " e
striss at 820 OCpfor Cu. ® Burton & Greenwood (1970)
Experimental data from [22]. ==+ Coble
Coble and Nabarro-Herring 1074 | |® Nabarro-Herring . -
creep according to @ - - -Stationary creep e
Eq. (5.10), stationary creep <
model according to (5.31). % Cu 820°C
Redrawn from [41] with E 108
permission of Elsevier ‘©

n
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Stress, MPa
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Fig. 5.13 Cr:,ep rate versus model 0.2 h
stress at 820 °C for Cu.
: 4 | [ model 0.43 h .
Experimental data from [22]. 107 F|_._. model 0.67 h
Stationary and - = =model 0.9 h
non-stationary creep models =  Burton & Greenwood (1970)
according to (5.31) and 107 |+ Stationary creep ]

(5.33). Redrawn from [41]
with permission of Elsevier

Strain rate, 1/s

Cu 820°C
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are quite close to the experimental data at low stresses. Burton and Greenwood
suggested that the low stress behavior was controlled by Nabarro-Herring creep
but with the diffusion coefficients that are available today, the Coble creep values
are even closer. With a stress exponent of 5 at stresses above 5 MPa, dislocation
creep must be controlling. It is interesting to note that the stationary creep model in
Eq. (5.31) matches the position of the change in stress exponent quite well, but the
stress exponent in the stationary model is 3.

It will now be analyzed whether non-stationary conditions could have been of
importance in this study [41]. Detailed analysis shows that transition to the semi-
stationary stage occurs later than given by Eq. (5.35) so the €2 value has been reduced
by a factor of 2 to satisfy these findings in the non-stationary model (5.33). For o,/K
a value of 0.01 has been chosen to ensure that the criterion (5.36) is fulfilled. In [22]
very short testing times were used of about 0.4 h. The results for stress dependence
of the creep rate are given in Fig. 5.13.

Results for testing times between 0.2 and 0.9 h are shown. The non-stationary
values fall in the same range as the experimental data. The variation of the stress
exponent is presented in Fig. 5.14.

Below 1 MPa, the stress exponent is close to unity. From 1 to 5 MPa the stress
exponent increases to the stationary value of 3. The strain variation with time is
reproduced in Fig. 5.15a.

The creep curves are consistent with the observation in [22], see [41]. For example,
a strain of 0.002 is reached after 0.5 h for a stress of 1 MPa. In Fig. 5.15b the time
dependence of the strain rate is given. It is evident that stationary conditions are
reached at the two highest stresses at “longer” times.

It is clear that the data in Fig. 5.12 can be explained either with diffusional creep
or with non-stationary dislocation creep. One argument against diffusional creep
is the short testing times that would give non-stationary effects. Another argument
is that the purity of the investigated alloy is modest with a total impurity content
of 167 wt. ppm. This should be compared with the copper in Sect. 5.8.1, where
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Fig. 5.14 Stress exponent 3.5 T T T "
versus stress at 820 °C in Cu
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at four testing times. 3L [ mod 0.43 h Cu 820°C
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Fig. 5.15 Strain a and strain rate b versus time at 820 °C in Cu at seven stresses. Non-stationary
creep model according to (5.33)

the impurity content was 30 wt. ppm and the P content 54 wt. ppm. Why would
diffusional creep be blocked by element additions in the latter but not in the former
case? The paper [22] has been criticized in the literature, for example, for being
performed in a temperature range where the microstructure is not stable [4, 12]. This
might not be important due to the short testing times. However, there are arguments
in [22] in favor of diffusional creep. For example, the correct grain size dependence
if Nabarro-Herring creep is controlling (which however is not the case if Coble creep
is controlling). It is not possible to decide which creep mechanisms that is the correct
one and it is not the aim of this book to try to make that decision. Instead, the main
message is that dislocation creep often occurs in parallel and in competition with
diffusional creep.



108

5 Creep with Low Stress Exponents

5.8.3 Creep of Copper at 480 °C

McKnee et al. have made creep tests of copper at low stresses [9]. Most tests were
performed at 480 °C probably for the same material used by Burton and Greenwood
but with a grain size of 55 pm. These results are compared with the non-stationary
model, Eq. (5.33). The parameter values are taken directly from the basic model (oy
=0.01 MPa, K(T) = 69 MPa, Q2 = 32). The results in [9] are compared to the model

in Fig. 5.16.

Below 3 MPa the results by McKnee et al. give a stress exponent of 1 and above
3 MPa a stress exponent of 2. They attribute this change of stress exponent to a
transition from diffusional creep to dislocation creep. A comparison to stationary
creep is provided in Fig. 5.17.

Fig. 5.16 Creep rate versus
stress at 480 °C for Cu.
Experimental data from [9].
Non-stationary creep model
according to Eq. (5.33)

Fig. 5.17 Creep rate versus
stress at 480 °C for Cu.
Experimental data from [9].
Stationary and
non-stationary creep models
according to Egs. (5.31) and
(5.33). Classical diffusional
creep models are given,

Eq. (5.10)
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Results for stationary creep according to Eq. (5.31) are 1.5 orders of magnitude
or more below the results in [9]. Considering the precision of the prediction of
stationary creep in Fig. 5.10, the results in [9] must represent non-stationary creep.
The non-stationary model, Eq. (5.33), generates values that are in agreement with
the observations in [9] considering the length of testing times that were used in
that investigation. The stress exponent in the non-stationary model is illustrated in
Fig. 5.18.

The stress exponent in the range of data of [9] is about 1. There is a slight increase
with stress but it is not enough to explain the observed increase to 2. The stationary
creep values are simply too far below the observation to give such an increase. The
Coble results in Fig. 5.17 are close to both the values in [9] and the non-stationary
results. The activation energy predicted from the non-stationary model, Eq. (5.33) is
shown in Fig. 5.19.

In the model, lattice diffusion with an activation energy of 198 kJ/mol from [47]
is used. In spite of this, the non-stationary model gives a value of about 70 kJ/mol
at 480 °C. Via step change tests, McKnee et al. found a creep activation energy of
99 + 5 kJ/mol. Both these values are close to the accepted value for grain boundary
diffusion of 84.5 kJ/mol [48] which is the relevant value for Coble creep. It can be
seen that the mechanical data in [9] can be explained at least partially with the help
of non-stationary dislocation creep.

5.9 Summary

e One issue when performing creep tests at low stresses is to ensure that stationary
conditions have been reached. At normal stresses when tests run to failure the
minimum creep rate usually gives a good estimate of the stationary rate. However,
creep tests at low stresses when the stress exponent is close to unity practically
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Fig. 5.19 Activation energy 80 T i T i i i i i i
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never are taken to failure. Often this is simply not possible because the estimated
rupture time could be 10 years or more.

e Stationary creep rates have traditionally been the basis of identifying operating
mechanisms, for example for distinguishing between diffusional creep, power-
law dislocation creep and power-law break-down. For a long time only empirical
dislocation creep models were available but this identification could still be made
as long as stationary conditions could be ascertained. However, at low stresses it
must in general be assumed that a stationary state has not been reached during the
testing. It is then essential to use non-stationary models.

e Inrecent years basic dislocation creep models that can cope also with the primary
stage have been formulated. These models are at least partially predictable and
that is essential to analyze the data. During the primary stage the creep rate drops
quickly. Where in the primary stage the test is stopped must be determined.

e Traditionally it has been assumed that a stress exponent close to 1 should imply
that diffusional creep is active. The classical models for diffusional creep are
simple and well established. They give well-defined stress, temperature and grain
size dependence. In spite of this it has been difficult to obtain agreement with the
models in many cases. In several classical studies for pure metals, the diffusional
models overestimate the creep rate by two orders of magnitude. Since quite accu-
rate diffusion coefficients are available, the deviations cannot be accounted for
by lack of precision. Two alternatives then remain. Either the observations are
non-stationary dislocation creep or non-stationary diffusional creep.

e Experimental results for an austenitic stainless at 700 °C gave a stress exponent
of 1, but the presence of primary creep and a stress exponent of 4.5 in related
stress change tests clearly demonstrated that dislocation creep was the operating
mechanism. The same results were found for Cu at 600 °C since the observed
stress exponent was 3 and distinct primary creep was observed. In spite of these
quite clear verifications that dislocation creep was the controlling mechanism,
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the classical Coble creep model predicted creep rates one order of magnitude
higher than the observed ones. Consequently, Coble creep must be blocked by
one or more mechanisms. If Coble creep is controlled solely by diffusion in the
grain boundaries, this is virtually impossible to account for. Several authors have
proposed that the motion of vacancies is controlled by grain boundary dislocations.
If this assumption is correct, and the amount of solid solution hardening is the same
for GB and bulk dislocations, the observations are at least partially possible to
explain although very large blocking effects would be required since the mobility
of the grain boundary dislocations is very high. The more likely explanation is
due to constrained grain boundary creep. see next bullet [41].

e Any creep mechanism that is located in the grain boundaries is proposed to be
accompanied by bulk deformation. Such mechanisms are superplasticity due to
grain boundary sliding, grain boundary dislocation creep and Coble creep. Thus,
the bulk creep rate must be at least of the same magnitude as the creep in the grain
boundaries to accommodate local strain changes. This is referred to as constrained
grain boundary creep. This has important implications. The Coble creep rate can
never exceed the bulk creep rate by a significant margin. In addition, since the
Coble creep rate must be adapted to the bulk rate, it will show primary creep.

e A primary creep model has been used to describe dislocation creep with low creep
exponents. The model has been applied successfully to an austenitic stainless steel,
to pure Al and to pure Cu. It is shown that dislocation creep can be active in stress
and temperature ranges that traditionally have been attributed only to diffusional
creep. The low stress exponents observed is a result of stationary conditions not
being reached. It is demonstrated that if non-stationary conditions are assessed the
apparent activation energy can be much lower than the lattice diffusion activation
energy used in the model.

e Creep at very high temperature and low stresses for pure Al has in the past been
considered as a special case with the designation Harper-Dorn after the researchers
that first proposed it. For the first time a basic model has been used to describe data
from a number of investigations for this type of creep. The model successfully
shows that the bulk of data can be represented by a stationary model giving a
stress exponent of 3 in agreement with observations. The data that deviate from
this behavior can be handled with the non-stationary model. In agreement with
results in the literature, there is no longer any need to consider this phenomenon
as something special, since the dislocation creep model can describe these results
in a similar way as for other alloys.

e It has been demonstrated that the basic models for primary and secondary creep
can accurately describe experimental data at high temperatures and low stresses.
For secondary creep the model parameters are identical to the ones used at lower
temperature. Thus, for aluminum the application of the basic creep model has
been verified from 50 MPa at room temperature to 0.02 MPa at 650 °C. For
copper the corresponding range is from 180 MPa at 75 °C to at least 1 MPa at
600 °C. For both the stress and temperature ranges, they represent a variation of
in the creep rate over many orders of magnitude. For copper primary creep is
accurately represented in the same range also without any change of parameter
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values. These facts clearly show that the basic creep model can handle a wide range
of experimental conditions. Primary creep of aluminum has not been investigated
at ambient temperatures.
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Chapter 6 ®)
Solid Solution Hardening ez

Abstract The size and modulus misfit between solute and parent atoms gives rise
to strengthening, solid solution hardening (SSH). With the development of Argon’s
expression for the interaction energies for solute atoms and dislocations for size
and modulus misfit, both effects can now be modeled without the introduction of
adjustable or arbitrary parameters. These expressions are used to derive models for
SSH during creep. Although the constants for the modulus misfit can be an order
larger than those for size misfit, the latter effect is still dominating. The interaction
energy gives a direct contribution to the activation energy for creep. The solutes form
Cottrell atmospheres around the dislocations. For slowly diffusion elements, these
atmospheres give rise to a drag force that slows down the motion of the dislocations.
Fast diffusing elements have to break away from the dislocations to enable their
motion. This creates a break stress that is the source of SSH in this case.

6.1 General

Elements in solid solution are used in many alloy systems to increase the strength
and that is referred to as solid solution hardening (SSH). When the size of the solute
atoms is different from that of the parent metal atoms, it makes it more difficult for
the dislocations to propagate and that raises the strength. SSH is in fact one of the
major ways to increase the strength of creep resistant alloys.

The size misfit is not the only way that solute atoms can affect the strength. If
the shear modulus of the solutes is different from that of the parent metal, it is also
of importance for SSH. This will be analyzed in the present chapter. This effect
is less easy to understand intuitively than that of the size misfit. The most direct
way to recognize the significance of this effect is to consider that the expression for
interaction energy between a solute and a dislocation is proportional to the shear
modulus. Any change in the value of shear modulus would affect the size of the
interaction energy. There are a number of other mechanisms that can influence SSH.
Examples are the presence of stacking faults, short range order of solutes (solutes are
not fully randomly distributed), and the solutes from more or less complex defects.
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These cases will not be covered here. When the solutes agglomerate in particles, it is
considered outside SSH and will be discussed in Chap. 7 on precipitation hardening.

SSH at ambient temperatures and at lower temperatures have been covered exten-
sively in the literature. There are excellent reviews on SSH on this topic. The texts
by Haasen [1], Suzuki et al. [2] and Argon [3] can be mentioned. At elevated temper-
atures and particularly for creep the number of publications is much more limited.
Primarily solid solution hardened aluminum alloys have been studied. We will cover
this literature below.

At low temperatures, SSH is assessed as the force that the solutes give on the
dislocations. This is in principle the force acting on the dislocation at 0 K. In several
papers, semi-empirical temperature dependencies have been introduced (summarized
in [1, 3]) to find values at ambient temperatures. In some of the models for binary
alloys, SSH is proportional to ¢ in some models, and to ¢*3 in others, where ¢
is the concentration of the solute. In engineering applications where more than one
alloying element is involved, SSH is often linear in ¢ [4, 5]. At elevated tempera-
tures, it is the interaction energy between the solutes and the dislocations that is of
interest. This interaction energy has the consequence that the solutes gather around
the dislocations and form so-called Cottrell atmospheres. The Cottrell atmospheres
slow down the motion of the climbing dislocation and thereby strengthening the
alloy. The mechanisms for SSH are different at ambient and high temperatures. We
will focus on the creep case at high temperatures.

In many alloy systems, SSH is of high significance for raising the creep strength.
Thus, SSH is extensively used in creep resistant austenitic stainless steels, superalloys
(both Co and Ni based) and titanium alloys. Many experiments on the role of Mg
in Al-Mg have been published. They have in general been analyzed according to
Weertman’s original proposals [6, 7]. This is referred to as the classical picture,
which is presented in Sect. 6.2. Basic models for the influence of lattice and shear
modulus misfit on SSH are given in Sect. 6.3. In Sect. 6.4, the role of the drag stress
is discussed. The mechanisms for slow and fast diffusion elements are different. The
first case is covered in Sect. 6.3 and the latter case in Sect. 6.5.

6.2 The Classical Picture

6.2.1 Observations

In the analysis of the influence of solid solution hardening on creep much focus
has been devoted to Al-Mg alloys. The reason is that there is a change in the stress
exponent for the secondary creep rate with stress above 300 °C. As was discussed
in Chap. 2, change in the stress exponent has often been associated with a change in
creep mechanism. The effect of magnesium on the creep rate is illustrated in Fig. 6.1.

With increasing Mg content, the creep rate rapidly decreases. The creep exponent
of pure aluminum is n = 5, as marked with the number 5 on the curve. At least for
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Fig. 6.1 Observed creep
rate versus applied stress for 102+
Al-Mg alloys between 300
and 400 °C. Mg content from
0.5 to 5%. Values for pure
aluminum are shown for
comparison [8]. Data for
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some of the Al-Mg alloys, the creep exponent at low stresses is 5 but it is reduced
to 3 at slightly higher stresses. At still higher stresses the creep exponent increases
again first in some cases to 5 and then to still higher values.

Al-Mg alloys are rarely used above 150 °C. All the interest in the Al-Mg alloys is
thus mechanistic. For Al-Mg alloys the classic assumption is that the various creep
exponents are due to different creep mechanisms. Two papers of Weertman from
1957 suggested that n = 3 and n = 5 correspond to dislocation glide and climb,
respectively [6, 7].

The unusual transition from n = 5 and n = 3 is attributed to a sudden introduction
of viscous glide of dislocations where solute atmospheres (Cottrell atmospheres)
are dragged along with the dislocations. In general, dislocation climb is slower than
glide, and is therefore expected to control the creep rate. However, the drag was
assumed to slow down the gliding dislocations sufficiently to make them control the
creep process. At high stresses, the gliding dislocations could break away from the
solute atmospheres. This would make the gliding dislocations move faster and climb
would become controlling. Hence, a transition from n = 3 and n = 5 is expected.
Friedel has given a model for such a break away [12].

The distinction between glide and climb controlled alloys is considered so impor-
tant that they are described as Class I and Class II alloys, respectively. In Class
I alloys the dislocations interact with the solutes forming atmospheres around the
dislocations. Since the solutes follow the dislocation through diffusion which is a
slow process and slower than the glide velocity, the dislocations are slowed down
and creep can be controlled by glide. The dislocations are dragged by the solutes and
hence the designation solute drag.

When no solute atmospheres are formed, glide will take place without any effect
of solutes, and the glide velocity will be high. Creep will be climb controlled in the
same way as for pure metals. Such materials are referred to as Class Il materials. Most
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alloys for example stainless steels and superalloys are of Class II type. In addition
to Al-Mg some Fe-Mo alloys are of Class I type. Another distinction that is often
mentioned is that Class II form substructure during creep whereas Class I do not.
However, this is not general since Fe—Mo alloys also form substructure [13].

6.2.2 Issues with the Classical Picture

There are a number of problems with the classical pictures

We saw in Chap. 2 that in many cases there is a continuous increase in the creep
exponent with stress if a sufficiently large interval of stresses is considered. This
applies to aluminum as well [14]. The change in creep exponent is therefore not
necessarily associated with a change in creep mechanism.

Even Weertman who was the first to suggest a difference in creep exponent
between glide and climb, made the statement that practically all creep laws based
on creep recovery give n = 3, which is referred to as the natural mode [8]. Although
this statement is not correct, it illustrates that it is not directly possible to use the
creep exponent to distinguish between glide and climb.

The Class I alloy Fe—1.8Mo shows the same type of behavior as Al-Mg [15].
However, creep exponent in the assumed glide region is n = 4, not n = 3.

The influence of solid solution on glide and climb is now well understood, see
below. As demonstrated in Chap. 2, glide is always faster than climb. Solutes are
now believed to influence climb and glide in the same way. Consequently, the
transition from n = 5 to n = 3 cannot be explained by the presence of solutes.

If the dislocations move fast enough, they will break away from their Cottrell
atmospheres. The required stress for the breakaway was first derived by Friedel
[12]. A numerical more precise solution has then been given by Hirth and Lothe
[16], Eqs. 18-131.

mrcop?

Omax = Qabsz_T (6.1)

where mt is the Taylor factor, ¢y the concentration of the solute in at.%, €2,
is atomic volume, P is the solute strengthening parameter (defined below), b is
Burgers’ vector and kg T has its usual meaning. The values of ¢y and B are given
in Sect. 6.4. For the alloys in Fig. 6.1, the following values are obtained from
Eq. (6.1): 55, 120, 226, 359 and 640 MPa. They are all outside the range of the
experimental data and cannot explain the observed change in stress exponent.

One can conclude that many of the classical assumptions about creep of AI-Mg

alloys are questionable. There are clear distinctions between pure aluminum and
Al-Mg alloys with respect to creep. The origin of these differences is less clear than
what has been assumed in the past. An alternative way of explaining the observations
will be presented below.
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6.3 Modeling of Solid Solution Hardening. Slowly Diffusing
Elements

For slowly diffusing solutes, the solutes form Cottrell atmosphere that follow the
dislocations as described above. This creates a back stress on the dislocations that
slows down their motion. This is referred to as solute drag. Slowly diffusing elements
are often major alloying elements that are in solid solution.

Fast diffusing elements like the interstitial elements C and N in steel also raise the
creep strength but the mechanism is different. These elements can lock the disloca-
tions and they have to break away to contribute to the straining. The critical quantity
is the break stress which is needed to make the dislocations move. The break stress
is derived in Sect. 6.5.

6.3.1 Lattice and Modulus Misfit

If the atomic radius of solutes that are present in the lattice is different from that in
the matrix, it creates an interaction between the solutes and the dislocations. This is
referred to as lattice misfit. It generates a friction stress that influences the motion of
the dislocations and thereby increases the strength of the alloy. A difference in the
modulus also influences the forces on the dislocations.

The lattice misfit can be expressed in terms of the difference in atomic volume
between the solute and the host matrix. The atomic volumes can be obtained from the
lattice parameters a; as ©2; = a; /4 (for fcc). These volumes are linearly expanded
(as a function of concentration) around the host composition. The linear misfit §; is
given by:

189 19—

= — 6.2
3Q Bc,» 3Q Ci ( )

where 2 is the atomic volume of the matrix, €2; the atomic volume of the solute of
element 7 and c¢; the concentration of the solute. It can also be related to the change
in the lattice parameter,

6.3
a ¢ a ¢ 6.3)

where a; and a are the lattice parameters of the solute and the matrix, respectively.
The linear misfit is a third of the volume misfit as shown in Eq. (6.2). The modulus
misfit p; can be expressed as

106 1G,—G
= = 6.4
M= G G o 64
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where G; and G are the shear modulus in the solute and the matrix, respectively.
Values for experimental lattice spacings and misfit parameters can be found in
Pearson’s handbook [17] and in King’s paper [18]. The interaction of solutes with
stacking faults (Suzuki effect) can also contribute to the creep strength. However,
models for these interactions are currently unavailable. For example, for aluminum
King gives the following values for the linear misfit 8¢y, = —0.13, 8y = 0.12, and
O = —0.19. Experimental modulus misfit values are less readily available in the
literature, and in general modulus misfits have to be computed with ab initio methods.

6.3.2 Solute Atmospheres

The dislocation-solute interaction can be estimated from elasticity theory by
assuming the solute to be a dilation center. Due to the interaction, solute agglomer-
ates around the dislocation. The concentration around a dislocation can be expressed
as [16]

R S C/iC))
¢ =c¢ exp( kT ) (6.5)

where c? is the mean concentration of the solute i, ¢; the local concentration of the
solute and U;(r) at position r from the dislocation. The interaction energies take the
values [3]
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where G is the shear modulus, and vp is the Poisson’s ratio of the material. The
indices for U; refer to edge (e) and screw (s) dislocations and size (8) and modulus
() misfit. 7 is the overall distance from the dislocation core, y the distance above the
dislocation, and z the distance in the plane. The expressions (6.6)—(6.9) are illustrated
in Fig. 6.2. The value of y is set to correspond to the distance to the second plane of
atoms, in fcc y = +/3/2b. The first atom plane cuts the dislocation core and gives a
weaker interaction.
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In Fig. 6.2, the interaction energies are normalized with respect to G2 and the
misfit parameters d; or ;. In this way the result is material independent. In spite of
the fact that p; is often 10 times larger than 8, it is evident from Fig. 6.2 that the
lattice misfit for edge dislocations, Eq. (6.6), gives the largest interaction energy

= —— " G, (6.10)

The dislocations that are slowed down mostly by the interaction with the solutes
will also control the magnitude of SSH. Consequently, it is the interaction energy in
Eq. (6.10) that is the important quantity.

Due to the interaction energy, it is energetically favorably for the solutes to be
located close to the dislocations. Therefore, atmospheres of solutes are created around
the dislocations. If the dislocations are not moving (they are static), the concentration
of solute atoms ¢;'* is given by Eq. (6.5). The concentration of solutes around
a moving dislocation can be derived from the following diffusion equations [16],
Egs. 18-10

?01&+imiciw+v%=0 (6.11)
d0y2  kgT dy dy dy
This is just Fick’s second law taking into account the dislocation-solute interaction
in the second and the moving frame with a velocity v in the third term. D" is
the diffusion coefficient for the solute i in the matrix. The Cartesian coordinates
represent the position of the solute relative to an edge dislocation that is climbing in
the y-direction. Equation (6.11) can be integrated directly.
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yn

By solving Eq. (6.12), the concentration cid of solutes around a dislocation

moving in the y-direction can be obtained [16, 19]

y

0 Ui(y,2) vy U2 | vy

dyn ve; T kT psol T T sl

6" = pu (e ) [ ay (6.13)
i

—00

The quantities B and r; are introduced that will be used below

B = bUP™ = o

= 6.14
kT (6.14)

B; is the maximum force of the dislocation from individual solutes, and r; the radius
of the Cottrell atmosphere or cloud of solutes around the dislocations. The velocity
of a climbing dislocation v is given by

Velimb = Mclimbbo (6.15)

M imp 1s the climb mobility and o the applied stress. M jimp can be expressed in
terms of the coefficient of self-diffusion D¢, Eq. (2.34), and the activation energy
for the solutes Q.

Dgeith o>
M jimb = ]z;;ekrﬂ exp(—%

) (6.16)

The size of Qs is taken as U™, Eq. (6.10), for the element that has the largest
solid solution hardening effect on the creep strength. At lower temperatures, the
climb enhancement factor gcjimb, Eq. (2.37) should be taken into account. For gliding
dislocations, the velocity is given by Eqgs. (2.39) and (2.42)

1
Vglide = Mgliaebo = Mclimp8glideb0 = Mclimp ——=bo (6.17)

ING

again ignoring the climb enhancement factor. p is the dislocation density. Since giide
is much larger than unity, the glide velocity is always higher than the climb velocity.
The distribution of solutes around dislocations is illustrated in Fig. 6.3.

For a climbing dislocation there is agglomeration of solutes on one side and deple-
tion on the other side. For a gliding dislocation the static distribution is symmetric in
the direction of the motion. The concentration in the static model is slightly higher
than according to the dynamic model for climbing dislocations, Fig. 6.3a. For glide
the dynamic concentration is much lower than the static one, Fig. 6.3b. The reason
is the much higher glide velocity in comparison to the climb velocity.

By integrating over the profiles, the agglomeration of solutes can be determined.
For the case corresponding to Fig. 6.3a, the agglomeration is 25 and 27 for the static
and dynamic distribution, respectively. For the gliding dislocation, the agglomeration
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Fig. 6.3 Agglomeration of Mg solutes in Al3.25 Mg at 327 °C around a dislocation that is climbing
a or gliding b in the positive y-direction. Results are given for a static distribution, Eq. (6.5) and a
dynamic distribution, Eq. (6.13). The coordinates are those in these equations

is 128 and 1.2 for the static and dynamic distribution, respectively. The agglomeration
factor can be interpreted in two ways. If all the additional atoms are placed at the
dislocation core over a distance of a Burgers vector, the concentration there of the
solute would be enhanced by the agglomeration factor. Alternatively, it can be taken
as the distance in terms of Burgers vectors over which the concentration is more than
twice the average solute concentration.

6.4 Drag Stress

For slowly moving dislocations, the solutes exert a drag stress on the dislocations
that is the source of SSH. The drag stress can be derived numerically from Eq. (6.13)
[16].

kT vei
drag _ "B L Uclimb dyn
0; = bz—Di/Ci dz (618)

Alternatively the drag stress can be expressed as

ol — / C?Y“w dz (6.19)
Z

Itis important that the dynamic solution is used in Egs. (6.18) and (6.19). The static
solution in Eq. (6.5) cannot be utilized because it does not give the correct behavior
at large z. The need to use the dynamic expression makes the full solution fairly
complex. An approximate solution was derived in [16]. The approximate solution
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illustrates important features of SSH and will be summarized below. A common form
of the drag stress o for element i is

2
drag _ VelimbCiof;

_ I 6.20
i Dy | 0 (20
where
20
2/27
I = [ S5red: (6:21)
3z~

1

Velimb 18 the dislocation climb speed, cf. Equation (6.15), c;o is the concentration of
solute i, and D; the diffusion constant for solute i. I(z) is an integral of zo = b/rokgT
where r( is the dislocation core radius. /(zo) often has values of about 3. f; is the
force in Eq. (6.14).

If the radius of the static cloud 7; is less than the burgers’ vector b or if D;/vjimp is
larger than the average distance between the dislocations Rg;s, Eq. (6.20) is replaced
by

2
S _ VelimbCi0;
! bD;kgT

D;
Og( ) r < b or Di > Uclimdeisl (622)
Vclimbb

Finally, if r; > Ry the expression for c?mg takes the form

2
drag _ VclimbCio; D;
C = D; > vclimp Rai 6.23
i bD[ kB T ( Velimbli i climb M disl ( )
The four alternative expressions are not very different. Only the final (logarithmic)
factor varies. The situation is another if the dislocation speed vgig is high and the
motion of the solute cloud is no longer diffusion controlled.

2
arag _ T Djciof;

= — is 4DikgT/B; 6.24
; FaT b v Vgisi > sT/P (6.24)

or

Gidrag =mcioBi ri >/ DiBi/vasksT (6.25)

The dependence of v4i5)/D; is inverted in Eq. (6.24) and absent in Eq. (6.25).

In the computation of the secondary creep, the drag stress is added to the internal
stress o; in Eq. (2.29). An application of the drag stress is illustrated in Fig. 6.4. The
contribution from Qg in Eq. (6.15) to the creep activation energy is also taken into
account. This increases the activation energy by U™**. i is the element Mg in this
case. In Fig. 6.4, Eq. (6.20) for the drag stress was used.
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Fig. 6.4 Secondary creep rate versus stress for Al-Mg alloys at around 330 °C. The stress contribu-
tion to the internal stress is from Eq. (6.20) and the increase in activation energy from Eq. (6.16). The
model results are compared to experimental data [9—-11]; a Alloys Al0.9 Mg, Al2.0 Mg, Al3.25 Mg;
b Alloys Al3.25 Mg, Al3.0 Mg, Al5.0 Mg. a Redrawn from [20] with permission of intechopen

Three stages of stress dependence can be found in Fig. 6.4. At low stresses there
is a slight increase in the stress exponent ny due to the presence of the Peierls
stress. Its value is the same as for pure aluminum used in Fig. 2.9. For stresses in
the middle range a power-law behavior is observed. At higher stresses the stress
exponent increases and a tendency to power-law break down is found.

The modeling in Fig. 6.4 is based on climb and it is assumed that climb is the
controlling mechanism. It has been suggested many times in the literature that glide
should be controlling for AI-Mg in part of the studied stress range, see Sect. 6.2. The
background is that the stress exponent in the middle stress range is about three and
that is what Weertman suggested for glide control in his original paper on the topic.
However, it is evident from the analysis in Chap. 2 that climb control often gives the
same stress exponent at modest stress levels. According to the classical picture, see
Sect. 6.2, two changes in models and mechanisms have to be assumed to represent
the stress dependence in Fig. 6.4. The absence of substructure in AI-Mg has been
taken as one reason for not considering climb as the controlling mechanism. But
that could also be a consequence of the presence of the alloying element. Increasing
amounts of alloying elements tend to reduce the stacking fault energy and give a
more planar dislocation structure [3]. It is demonstrated in Fig. 6.4 that the present
model can describe the experimental data. In the same way as for other comparison
with experiments in this book no adjustable parameters are involved. In summary, a
single climb based model can accurately reproduce the creep data for Al-Mg. There
is no need to assume that glide is controlling in part of the stress range which avoids
a number of the difficulties discussed in Sect. 6.2.
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6.5 Modeling of Solid Solution Hardening. Fast Diffusing
Elements

Fast diffusing elements can have a dramatic effect on the creep rate and the rupture
strength. Addition of 50 ppm phosphorus to pure copper reduces the creep rate and
increases the creep rupture strength. Phosphorus reduces the experimentally observed
creep rate by about a factor of 100 at 75 °C. This will be illustrated below. At the
same time the creep strength at 10000 h rupture time is raised from about 140 to
170 MPa at the same temperature [21]. Another example is nitrogen in solid solution
in austenitic stainless steel. An addition of 0.1% N can reduce the creep rate by an
order of magnitude and increase the rupture strength at 650 °C for a rupture time of
10000 h by about 40 MPa [22].

These pronounced effects of small additions of alloying elements cannot be
explained by solute drag. To get a significant contribution from solute drag to SSH,
fairly large amounts of alloying elements are needed. We will concentrate on the
influence of P on Cu. There are two reasons for that. The influence of P on creep in
copper has been analyzed in detail [19]. In addition the low amount of P is clearly
in solid solution so there are no particles present that can disturb the analysis. In
[19] it has been demonstrated that the solute drag stress is at most 1 MPa. If the
accurate expression in Eq. (6.18) is evaluated numerically, the solute drag value is
even several orders of magnitude below 1 MPa. It can be concluded that solute drag
cannot explain the influence of P on creep in Cu.

In [19] amodel is presented that can explain the effect of P on creep quantitatively.
It is assumed that the P atoms are agglomerated at the dislocations in the same way
as for elements in solute drag and that the distribution of P atoms can be described
by Eq. (6.5) for the static distribution and by Eq. (6.13) for the dynamic distribution.
These distributions are illustrated in Fig. 6.5.
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Fig. 6.5 Agglomeration of P solutes in oxygen free copper with 50 ppm P (Cu-OFP) at 75 °C
around a dislocation that is climbing a or gliding b in the positive z-direction. Results are given for
a static distribution, Eq. (6.5) or a dynamic distribution, Eq. (6.13). After [19]
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The general behavior of these profiles is the same as for Al-Mg in Fig. 6.3.
Howeyver, there are differences. The diffusion rate for P is so fast that even in the
glide case, the dynamic distribution is virtually identical to the static one. In the
climb case the agglomeration is even higher in the dynamic distribution than in the
static one.

The main difference to the solute drag model is that the P atoms are assumed to lock
the dislocations [19]. For the dislocations to move they must break away from the P
atmospheres. But since the P atoms are rapidly moving, they will immediately catch
up with the dislocations and lock them again. So there is a continuously repeating
break away and locking process. When dislocations are more permanently breaking
away from solute locking, serrated yielding is often observed. However, since the
breakaway—Ilocking is taking place continuously for P in Cu no serrated yielding is
observed.

The stress needed to move a dislocation oy, can be determined from an energy
balance [19]. According to Peach-Koehler’s formula the force F on a dislocation
length segment 2L is F' = oy 2Lb. If the dislocation is moved by one burgers’
vector, the consumed energy is Fb/2. This energy corresponds to the maximum
binding energy U™

Obreak LD? = U™ (6.26)

The average distance L between solute pinning points on a dislocation is

b
L= ded (6.27)
¢;” dz
Combining Egs. (6.26) and (6.27) gives an expression for opeax
Umax
Otk = 3 / o dz (6.28)

The index i refers in this case to the element P.

To find the influence of opreqx ON the creep rate, opreqi is added to the internal stress
in Eq. (2.29). The creep rate versus stress for oxygen free copper with (Cu-OFP) and
without P (Cu-OF) is shown in Fig. 6.6.

As stated above, the presence of 50 ppm P reduces the creep rate by two orders
of magnitude and this can be fully accounted for by the model for the break stress in
Eq. (6.28).
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6.6 Summary

e Solid solution hardening (SSH) is a result of the misfit between solutes and the
matrix with respect to lattice parameters and elastic moduli. This makes it more
difficult for the dislocation to move in the lattice which results in a hardening effect.
The interaction energies between dislocations and solutes are proportional to the
misfit in the lattice parameters and in the elastic moduli. In spite of the fact that the
misfit parameters are larger for the elastic moduli than for the lattice parameters,
the former give lower interaction energies and can in general be neglected.

¢ The interaction energies between dislocations and solutes give a direct contribu-
tion to the activation energy for creep. This is the main reason why alloys typically
have higher activation energy for creep than that for self-diffusion.

e Slowly diffusion solute elements give rise to a drag stress. This drag stress is
proportional to the interaction energies squared and inversely proportional to the
diffusion coefficient of the solutes.

e Since the diffusion coefficient appears in the denominator in the expression for
solute drag, the effect is small or negligible for fast diffusion elements like inter-
stitial elements. Instead the dislocations must break away from the fast diffusing
elements to be able to move.

e To verify the models it is suitable to study systems with only one main solute
that contributes to the creep strength and without particles present. For slowly
diffusion solutes the system Al-Mg alloys at around 300 °C has been chosen.
The model can accurately describe the complex dependence on the creep stress
and the Mg content. In the past it was necessary to involve several changes in the
creep mechanisms which is no longer the case.

e For fast diffusion elements, P in copper has been considered. The addition of
50 ppm P raises the creep strength significantly and that is possible to model quite
well.
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Chapter 7 ®)
Precipitation Hardening e

Abstract Models for precipitation hardening (PH) at room temperature have been
available for a long time. In spite of the importance of PH, it took a long time to
establish models for elevated temperatures. In fact, empirically the room temperature
models have also been used at higher temperatures. This gives the wrong temperature
dependence and overestimates PH. It was for a long time thought that it was an
energy barrier for climb across particles that was the controlling mechanism, but
it was gradually appearing that this effect was so small that it could be neglected.
Instead it is time it takes for dislocations to climb across particles that is the critical
factor. Small particles are readily passed and do not contribute to the strengthening.
Particles larger than a critical size have to be passed by the Orowan mechanism,
because there is not time enough for dislocations to climb across these particles.
This mechanism was finally verified for Cu—Co alloys.

7.1 General

The precipitation of phases in the form of particles is probably the most effective
way of increasing the creep strength in alloys. Precipitation hardening is utilized in
many types of steels and Ni-base alloys. Because of its technical significance there
are a large number of publications on precipitation hardening in these alloy systems.
The role of carbides and nitrides in Cr—Mo steels and ' in Ni-base alloys has been
extensively studied. It is well established that the presence of fine precipitates in
these systems is essential to get good creep strength.

The understanding of precipitation hardening (PH) at ambient temperatures has
been well established for a long time. However, in spite of its technical importance,
this has not been the case for the role of precipitation hardening during creep. Only
recently, a satisfactory description has been formulated. In fact, many scientists
have tried to use models developed for applications at ambient temperatures for
PH at elevated temperatures. This does not work well because methods at ambient
temperatures are essentially temperature independent. The temperature dependence
they involve is often only that of the shear modulus and that is weak. However, the
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creep rate and strength typically decrease exponentially with increasing temperature
(see Chap. 2) and this is strongly at variance with models for applications at ambient
temperatures.

It was early on recognized that climb must play an important role for describing
PH. It was thought that there is a significant energy barrier for dislocations to climb
across particles. More and more accurate models for the energy barrier were devel-
oped. However, at the same time the predicted size of the energy barrier decreased
when new models were presented. Eventually the magnitude became so small that
they were no longer near to explain the large size of PH observed in commercial
alloys. This development will briefly be summarized in Sect. 7.2.

It was evident that an entirely new principle was needed to understand PH. The
solution was to assume that it is the time for a dislocation to climb across a particle
rather than the size of the energy barrier that is the controlling factor [1]. A critical
particle size is introduced. If a particle is large enough, there will not be sufficient
time to get across it and the particle will block the motion of the dislocation. This
gives a contribution to the creep strength. On the other hand if the particles are small
they will readily be climbed across and they will not contribute to the creep strength.
With this model is has been possible to describe PH of 9 and 12Cr steels, austenitic
stainless steels and Cu—Co alloys [2—4]. The model development will be presented
in Sect. 7.3. The application to Cu—Co alloys is covered in Sect. 7.4.

7.2 Previous Models for the Influence of Particles
on the Creep Strength

7.2.1 Threshold Stress

At about half the absolute melting point Tr,, many particle free materials have a
stress exponent ny for the creep rate in the interval 4-7. Particle strengthened alloys
typically have a higher stress exponent. This can be rationalized if the creep rate ¢ is
expressed as

€= Ao — O'i)n[ (7.1)

o is the applied stress, o; the internal stress from the particles, and A, and n; constants.
With this formulation, the stress exponent n; is smaller than ny. As can be seen from
the analysis in Chap. 2, an equation of the type in Eq. (7.1) can be derived from basic
principles so the equation has a good basis. In a number of papers, oi, A,, and n; have
been used as adjustable parameters to make Eq. (7.1) fit the experiments and to have
n; to fall in the range 4-7. A special procedure called the Lagneborg-Bergman plot
was developed for this purpose [5].

Assuming that o; is constant which was frequently done, it implies that oj is a
threshold stress and below this stress no creep will take place. For oxide dispersion
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strengthened alloys (ODS) such a threshold stress has been observed [6, 7], but there
are also ODS where a threshold is not found. However, for most particle strength-
ened materials for example the common CrMo steels, no threshold stress has been
recorded. By analyzing Eq. (7.1), it is found that the stress exponent ny decreases
with increasing stress. This behavior is observed for a few ODS alloys [7], but not
for most particle strengthened alloys, which is a drawback of the model.

The reasons for the failure of the assumption with a constant threshold stress are
now well understood. It is now possible to derive o; directly. In fact, it is shown later
in this chapter that o; is not a constant. It depends on both temperature and stress and
there is no indication that it will tend to a limiting value at low stresses.

7.2.2 Orowan Model

Dislocations can pass particles by cutting through them, by flowing around them
or climbing across them. At ambient temperatures only the first two are usually
considered. Particle cutting will not be analyzed in the present text because as we
will see later in this chapter, it is unlikely that it is of importance in creep exposed
materials except in special cases. For a summary of mechanisms for particle cutting,
see [8].

The Orowan model for dislocation looping of particles will briefly be described
here because it is needed in Sect. 7.3. When the stress increases for a dislocation
attached to particles, the dislocation will eventually almost meet itself around the
particles. The maximum force F that the dislocation can take is 21, &~ 2Gb*/2 where
1L is the dislocation line tension. The external force F on a dislocation segment of
length ) is (Peach-Koehler formula)

F = o\b/mr (7.2)

where o is the external stress and m is the Taylor factor. By equating the two forces
the critical stress is obtained. This is the stress for Orowan looping oo

_ mTCon

. (7.3)

0o

Many refinements of this expression are available in the literature. However, they
can approximately be taken into account by adding a factor Co = 0.8 [9]. The
precision in the prediction of PH does not justify that a more elaborate formulation
is needed. ) is usually assumed to be taken as the nearest neighbor distance for
randomly distributed spherical particles of radius r and a volume fraction of f. This
distance is usually referred to as the planar lattice square spacing A

s = r(21/3 fy)/? (7.4)
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As can be seen from Egs. (7.3) and (7.4), the Orowan strength increases with
decreasing particle radius and increasing volume fraction of particles.

As pointed out above, the Orowan strength has been used many times to esti-
mate the influence of particles on the creep strength. This overestimates the strength
contribution since Eq. (7.3) is only weakly temperature dependent through the shear
modulus G, which decreases approximately linearly with temperature.

7.2.3 The Role of the Energy Barrier

Many attempts were made in the past to generalize the Orowan model by taking climb
into account. For a review, see [7, 10]. Initial attempts to determine the size of the
energy barrier and the associated value for o; were made by Brown and Ham [9] and
by Lagneborg [11]. They found a value for internal stress o; of about half the Orowan
stress, which was in agreement with observations for some materials. However, they
assumed the presence of local dislocations that were attached to the particles and that
the dislocations remained in the glide planes between the particles. This introduces
sharp bends on the dislocations that are easily relaxed. Further modeling therefore
concentrated to general dislocations that are only attached to a single point on the
particles and have more general degrees of freedom. The assumption about climb
of general dislocations rather than of local dislocations is clearly more realistic.
However, with this approach the values for o; turned out to be quite small and tended
to decrease with each investigation [6, 7, 12]. The best estimate for the minimum
climb stress o ¢jmin 18 [0, 7]

Oclmin _ Ol (1.5)
oo o +2Co '
where
o 2 fy
=—=,/— 7.6
Ol 3.}\5 37 ( )

o, is called the climb resistance. This gives a value of 0.02—-0.06 for o¢jy, of the
Orowan stress for common particle volume fractions of fyv = 1 to 5%.

The predicted energy barriers are so low that they are of little practical value to
describe the significant PH in engineering alloys. One possibility is that there is an
attractive interaction between the dislocations and the particles. Such an interaction
has been observed for ODS [13, 14] but not in general for other PH systems. This
behavior has also been modeled [15, 16]. The dilemma with this model is that the
interaction strength is considered as an adjustable parameter and this means that the
model is not predictive. The nature of the interaction cannot therefore be ascertained.
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Clearly, the energy barriers against climb cannot be used as a basis for explaining
PH. Instead another approach will be presented in Sect. 7.3 that is based on the time
it takes for a dislocation to climb across a particle.

7.3 Precipitation Hardening Based on Time Control

It is evident from the summary in Sect. 7.2.3 that an energy barrier against climb
cannot be the controlling factor for the role of precipitates during creep. For
this reason, an alternative approach is considered. The following assumptions are
involved [1, 2, 4]

e Precipitation hardening is considered but not oxide dispersion strengthening
(ODS). This means that the attractive interaction that sometimes appears for ODS
alloys is not taken into account.

e The controlling mechanism is assumed to be the time it takes for a dislocation to
climb across a particle, not an energy barrier. It is this time that decides whether
a particle will be climbed or not.

e The critical particles radius r; is taken for the largest particle where there is
sufficient time for the dislocation to climb across.

e For particles smaller than . they will freely be climbed across and will not
contribute to the creep strength.

e Particle shearing is not taken into account since small particles will be passed by
climb anyway.

e Particles larger than r; have to be passed by Orowan bowing and this determines
their contribution to the creep strength.

These principles for PH have for example been used for austenitic stainless steel
[3, 17-19]. The total creep strength has been possible to predict in a precise way.

For climb to be of importance, the climb time )i, must be as long as the glide
time #,4iqe between particles. This criterion can be used to find the critical particle
radius

Iclimb = tglide (7.7)

The critical radius 7 is equal to the climb time multiplied by the climb velocity
Vclimb

Ferit

(7.8)

felimb =
Uclimb

The climb velocity can be derived from the climb mobility, Eq. (2.29)

Velimb = Mciimb (T, 0)bo (7.9
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where o is the applied stress. The glide time 74jq. is controlled by the average distance
between particles \g

S

Lolide = (7.10)
Vglide
The Orowan equation for the creep rate gives the glide velocity
: bp
€ = Vglide —— (7.1
mr

where p is the dislocation density. From Eqgs. (7.7) to (7.11) an expression for the
critical radius can be derived.

Ferit = Mclimb(T’ O')bzo—}\-F (712)

EsecT

The secondary creep rate &g is given by Eq. (2.30). In Eq. (7.12) the Friedel
spacing between the particles Ar has been introduced. It is thought that it is the
best way of representing the average distance between the pinning points along the
dislocations and it is a better alternative than the planar lattice square spacing A [7,
8]. A can be related to the force acting on a climbing segment

ﬁ 2 _ i _ Ociminb Mg _ cfclminﬁ (7.13)
Ap 2. 2mru %0 ks

In deriving Eq. (7.13), Egs. (7.2) and (7.3) have been used. By applying also
Eq. (7.5), we find that

(5)3 _ % (7.14)
Ap o +2Co '

With the help of Egs. (7.4), (7.6) and (7.14), the Friedel spacing can be derived.

To determine the contribution from the particles to the strength, their size distri-
bution must be known. Particles of significance in creep resistant materials often
follow an exponential size distribution [2, 18]. Then the number of particles per unit
area N 5 can be expressed as

Nj = Nage X070 (7.15)

where Nao = 1/22, and r is the particle radius. ry takes into account that there are
often no accurate observations at small particle sizes; ry is taken as 1 um for scanning
microscopy. k is related to the average particle size 7 as k = 1/(7 — rp). As pointed
out above only particles larger than r.; contribute to the creep strength. Thus the
average spacing between these particles A 1S an important quantity



7.4 Application of the Precipitation Hardening Model 137

Nerit = v IVA()E_k(rC”‘_"O)/2 (7.16)

The contribution to the creep strength can then be expressed as

ConmT

— Goefk(rmrro)ﬂ (7.17)
)\crit

Opart =

This contribution is added to o; in Eq. (2.30). The critical radius depends on
temperature and stress and consequently, so does Gpy.

7.4 Application of the Precipitation Hardening Model

7.4.1 Analyzed Materials

The model in Sect. 7.3 was first published in 2000 and was successfully applied both
to Cr—Mo steels [2] and to austenitic stainless steels [1, 3, 17]. In these applications,
PH is not the dominating contribution to the creep strength. Therefore they could not
be considered as full verification of the PH model. In this section results on creep in
Cu—Co alloys published by Wilshire and coworkers will be analyzed [20, 21]. This
system has the advantage that the particles have a large influence on the creep rate.
In addition, several ageing conditions with different particle size distributions were
studied, so the influence of the particles can safely be ascertained. A valuable feature
is that the effect of solid solution hardening in these studies is negligible small as
will be shown and will not interfere with the analysis.

The analyzed alloys and conditions are summarized in Table 7.1.

Three alloys were included in the study with 0.88, 2.48 and 4.04 wt.% Co. In
their main condition the alloys were fully aged at 600 and 700 °C generating a
stable particle structure. These temperatures were sufficiently high that no particle

Table 7.1 Investigated Cu—Co alloys

Co, Heat Heat Particle | Coinsolid | Particle | Particle Orowan
wt.% | treatment treatment volume | solution, radius, spacing, | stress,
temperature, | type fraction | wt.% nm nm MPa
°C
0.88 | 600 Underaged |0.00567 |0.33 1.2 41 593
0.88 | 600 Aged 0.00567 |0.33 4.2 98 250
0.88 | 600 Overaged 0.00567 |0.33 17.2 405 60
2.48 | 600 Aged 0.0222 0.33 7.6 90 272
4.04 | 700% Aged 0.0344 0.33%* 22.6 215 113

* Stabilized at 600 °C after heat treatment at 700 °C
Reprinted from [4] with permission of Springer
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coarsening took place during the creep testing at 439 °C. In addition, underaged and
overaged conditions were covered for the 0.88 wt.% alloy.

The volume fraction of particles for the different alloys and the amount of Co
were calculated with the thermodynamic software Thermo-Calc, see Table 7.1. The
particle sizes were measured with transmission electron microscopy [20, 21]. Using
the expression for the square lattice spacing, Eq. (7.4), the particle spacing was deter-
mined. With the help of Eq. (7.3) the Orowan strength for the alloys was computed,
see Table 7.1. The Orowan strength significantly exceeds the creep strength of the
alloys as will be seen.

The amount of solid solution hardening of the alloys was evaluated with the help
of Eq. (6.22). Some of the Co is in solid solution, Table 7.1. The computed solute
drag stress was in the interval from 0.15 to 0.25 MPa, which is negligible in the
context.

7.4.2 Pure Copper

To demonstrate the validity of PH model, it is essential to verify that strength contri-
bution from the dislocations can be described with the model in Chap. 2. This is
tested for pure copper. Some creep data for pure copper can be found in [20, 21].
In addition creep data have been taken from [22] where tests were performed at
400-500 °C that are close to the test temperature for the Cu—Co alloys. The creep
rate versus applied stress is shown in Fig. 7.1.

From Fig. 7.1 it can be seen that the predicted temperature dependence is larger
than the observed one. The reason is that the activation energy for creep is lower
than the activation energy of self-diffusion which is used in the prediction. That the

Fig. 7.1 Modeling of

O 400°C exp ,
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activation energy for creep is lower than that for self-diffusion is unusual. This has
been discussed by Raj and Langdon [22]. The stress exponent, i.e. the slope of the
curves in Fig. 7.1 is in acceptable agreement with the observations. The model and
experimental values at 439 and 450 °C are in close agreement.

7.4.3 Cu—Co Alloys

Only particles larger than the critical size contribute to the creep strength. Such
particles have to be passed by Orowan bowing. The critical particles radius is given
by Eq. (7.12). The critical particle radii for the three Cu—Co alloys is illustrated in
Fig. 7.2.

In Fig. 7.2 in addition to the critical radii, the average particle sizes are shown.
Both the typical radii and the critical radii increase with the Co content. At low
stresses the critical radii are about a factor of four larger than the average particle
radii. At larger stresses the difference is smaller. For the two lower Co contents it is a
factor of two. For the highest Co content, there is no longer any difference anymore.
This means that all particles contribute to the creep strength.

When the volume fraction and the average radius are known, the size distribution
can be estimated with the help of Eq. (7.15). The result is illustrated in Fig. 7.3.

Exponential size distributions imply that the number of particles per unit area can
decrease quite rapidly with increasing radius. The Co content has a large impact on
the slope of the size distributions. The critical radii are marked in Fig. 7.3 for different
applied stresses. As is evident from Fig. 7.2, the largest critical radii correspond to
the lowest stresses.
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The influence of particles on the creep strength is via the critical Orowan strength
in Eq. (7.17). This strength is added to internal stress in Eq. (2.29). The critical
Orowan strength is shown in Fig. 7.4.

The critical strength increases with the applied stress. It might be thought that
if the Co content is raised it would automatically enhance PH. From Fig. 7.4 it is
clear that this is not the case. In fact, the alloy with 2.48 wt.% Co gives the highest
strength. The predicted creep rate as a function of applied stress is shown in Fig. 7.5.

The Co particles reduce the creep rate by about two orders of magnitude in relation
to that of pure copper. It is evident that the model can reproduce this behavior quite
well. The ranking of the three Cu—Co alloys is also in accordance with experiments.
The stress dependence is handled in an acceptable way.

IfFigs. 7.4 and 7.5 are compared, the difference in critical Orowan stress is directly
related to the observed relations between the creep rates as proposed by the model.
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. . ©

[4] with permission of 2

Springer 8 ——Cu0.88Co mod
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e 0y Cu4.04Co mod
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Applied stress, MPa



7.4 Application of the Precipitation Hardening Model 141
Fig. 7.5 Modeling of ' . I
stationary creep rate for three 10" ;y' /
Cu—Co alloys and pure 439°C * o+
copper compared with . ,-k x
experimental data from [20]. 107 * /"
Redrawn from [4] with * Pid ’ 3
permission of Springer ) Pd x&
- * .7 3
£ 107"
o o X
8 A | O Cu0.88Co exp
o <" ¥|——Cu0.88Co mod
108 g x Cu2.48Coexp |
---------- Cu2.48Co mod
+ Cu4.04Co exp
————— Cu4.04Co mod
107° # CuOF exp
= = =CuOF mod
40 60 80 100 120 140

Stress, MPa

If the values for the Orowan strength at room temperature (Table 7.1) would be used
to rank the creep strength it would suggest that Cu0.88Co and Cu2.48Co would have
about the same creep strength and would be significantly better than Cu4.04Co. This
is clearly not consistent with the model or with the experimental results. Another
way of demonstrating that creep strength is not close related to the Orowan strength
is illustrated in Fig. 7.6.

It can be seen that the ratio between the critical Orowan strength and room
temperature Orowan strength varies with applied stress and alloy composition.
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In [20] there is also a comparison between underaged, aged and overaged condi-
tions for the Cu0.88Co alloy. The computed size distributions for these conditions
are shown in Fig. 7.7.

There is obviously a large difference between these conditions which makes it
an interesting additional test of the model. Furthermore the size distributions are
different from those in Fig. 7.3. The strain rate versus stress curves are presented in
Fig. 7.8.

As can be seen in the Figure, the model can describe the experimental data fairly
well. The difference between the conditions can be accounted for, and the stress
dependence is well reproduced.

Fig. 7.7 Size distributions,
Eq. (7.15) for Cu0.88Co
particles in aged, underaged
and overaged conditions
with critical radii marked,
Eq. (7.12). Redrawn from [4]
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7.5 Summary

Empirical models for the influence of particles on the creep strength have
often simply used the Orowan model. This has the consequence that the strong
temperature dependence is almost completely neglected and hardening effect is
exaggerated.

Traditional systematic models for precipitation hardening during creep have been
based on energy barriers. However, assessment of the size of the energy barriers
has shown that it is negligibly small. Instead the modeling in this chapter is starting
from the assumption that the time it takes for a particle to be climbed is the factor
that controls if the particle contributes to the creep strength or not.

A critical particle size is introduced. Particles that are smaller than the critical
size do not contribute to the creep strength. Particles larger than the critical size
must pass particles by Orowan bowing and they contribute to the creep strength.
To find the critical particle size, the particle size distribution must be known.
Exponential size distributions have been assumed. Such distributions have been
found a number of times for creep resistant steels.

A critical test has been performed for Cu—Co alloys. This is a suitable system since
the amount of solid solution hardening is quite small. The model can account for
the reduction in creep rate due to the presence of Co particles in Cu.

Observed effects of Co content, heat treatment condition and stress dependence
on the creep rate can be satisfactorily reproduced.

The predicted increase in the creep strength is significantly smaller than the
Orowan strength (except at high stress and high alloy content). The ratio between
the predicted increase in strength and the Orowan strength varies with applied
stress, Co-content and ageing condition.
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Chapter 8 ®)
Cells and Subgrains. The Role of Cold ez
Work

Abstract In almost all metals and alloys, dislocations are concentrated to narrow
regions after plastic deformation that divide the material into cells or subgrains. The
cell walls consist of tangles whereas the subgrains are surrounded by thin regular
networks of dislocations. The cells are transferred to subgrains with increasing
temperature. Although these substructures have been analyzed for many years, basic
models of their development have only appeared recently. Models for substructures
are presented for plastic deformation at constant stress and at constant strain rate.
During straining the dislocations can move in opposite directions creating a polarized
structure, where the possibility for recovery of dislocations is reduced. This can be
expressed in term of a back stress. Its presence explains why creep curves at near
ambient temperatures could have an appearance that is similar to that at elevated
temperatures. It is also the basis for the effect of cold work on creep. The models
can quantitatively describe why the creep rate can be reduced by up to six orders of
magnitude for Cu after cold work.

8.1 General

Tangles of dislocations are formed in virtually all alloys during plastic deforma-
tion. With increasing strain the tangles form boundaries that divide the materials
into micrometer sized cells or subgrains, Fig. 8.1. With increasing temperature and
strain the boundaries become better developed and thinner. At high temperatures
the boundaries consist of regular networks of dislocations, and are then referred to
as subboundaries or subgrain boundaries. At lower temperatures the boundaries are
made up of loose tangles that are called cell boundaries. Expressed in another way
subgrains are formed in the creep range and cells in the work hardening range [1],
although there is no sharp transition. For a definition of the work hardening and the
creep range, see Sect. 3.4. Both cells and subgrains are referred to as substructure.
In most materials the substructure is well developed already at modest strains. This
means that the substructure can be observed in tensile and creep tests. However in
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Fig. 8.1 Cell structure in
Cu-OFP after 24% cold
working [3]

some alloys, for example Al-Mg alloys, the development of substructure is delayed
to higher strains [2].

There are excellent reviews on substructure formation in the literature [2, 4, 5].
Many results are similar for cells and subgrains so there is no need in general to
make a clear distinction between them. For example, both the cell and subgrain sizes
are related to the applied stress in the same way. One question that appeared early
on was if the substructure contributed to the creep strength [5, 6]. In a number of
investigations it has been shown that strength contribution from the dislocations in
the subgrain interiors could account for the full creep strength in single phase alloys,
see for example Orlova’s paper [7]. However, with the event of Mughrabi’s composite
model where the subboundaries are considered as hard zones, it is clear that there are
long range stresses from the subboundaries [8]. In the composite model, the strength
is taken as a weighted average of the “hard” boundaries and the “soft” subgrain
interiors. In a single phase alloy, the subgrain size is fully controlled by the applied
stress and there is no way of varying the strength contribution from the subgrains
[5]. However, the presence of particles can stabilize the subgrain size. In this way a
major contribution to the creep strength from subgrains stabilized by M,3Cg¢ carbides
is obtained in modern creep resistant 9—12% Cr steels [9].

There are many investigations on the formation of substructure but few of them
are quantitative. Notable exceptions are work by Blum and Straub and coworkers
who measured the development of the subgrain size during creep in martensitic steels
[10-12]. These results could be combined with a basic model for the influence of
particles on subgrain growth [13] to understand the long term behavior of 9-12% Cr
steels [9].

Dislocations with burgers vectors b and —b in a slip system are moving in opposite
directions in an applied stress field inside a cell. Dislocations with b and —b end up
at opposite sides of the cells. If a cell boundary is considered, dislocations with b are
found on one side of the boundary and those with —b on the other side. This means
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that the cell boundaries become polarized. It has also the consequence that there is a
boundary between the dislocations with b and —b and recovery of them cannot take
place. These dislocations are also referred to as unbalanced because in the region
with b dislocations there are no —b dislocations. This should be contrasted with
balanced dislocations where dislocations with opposite burgers vectors are present.
Models for the formation of substructure is presented in Sect. 8.2.

When unbalanced dislocations are present static recovery is slowed down since
dislocation with opposite burgers vectors cannot meet and annihilate. The unbalanced
dislocations are of importance for several properties. Modeling tertiary creep of
copper has demonstrated that the recovery rate of the substructure gives a main
contribution to the increasing strain rate [14]. This is likely to be the case for other
ductile alloys as well. This will be further discussed in Sect. 12.4. Cold work can
reduce the creep rate by many orders of magnitude. Taking balanced and unbalanced
dislocations in the subgrain walls into account has made it possible to explain this
quantitatively for copper [15]. The role of cold work is discussed in Sect. 8.3.

Most creep tests are performed at constant load. For example, when the creep rate
is plotted versus stress, usually the engineering stress, i.e. the nominal stress is used,
not the true stress. At high temperatures when the creep exponent is about 5 this is
not so critical, but at lower temperatures in the power-law break down regime where
the creep exponent can be 30-50, the difference between using the engineering and
the true stress is huge, which can easily be demonstrated. It turned out for copper
that the engineering stress is still the relevant quantity. It took many years to explain
this feature, but by considering the role of the substructure it was possible, Sect. 8.4
[16].

8.2 Modeling of Subgrain Formation

8.2.1 The Stress from Dislocations

In previous chapters, the Taylor equation has been applied to describe the contribution
to the strength from the dislocations, Eq. (2.28)

odist = amtGb./p (8.1

where o is constant, mr the Taylor factor, G the shear modulus and b burgers vector.
In the presence of substructure the relation has to be modified because the o value is
different for dislocations in the cell boundary. This can be illustrated by an expression
for o given by Kuhlmann-Wilsdorf [17]

(I —vp/2) Rco
= ——— " log — 8.2
axw 61— vp) g (8.2)
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vp is Poisson’s ratio and Rcp a cut-off ratio that is taken as the spacing between
dislocations. This spacing is of the order of 10~7 m and 1078 m in the cell interior
and the cell boundaries respectively. This gives that a is close to a factor of 2 larger
for dislocations in the cell interior than for dislocations in the cell boundaries. For
this reason Eq. (8.1) is replaced by the following expression

1
odisi = amtGb./pin; + EamTGb«/pbound (8.3)

where pin 1s the dislocation density in the cell interior and ppound the dislocation
density in the cell boundaries. The value for agw will not be used in the present book,
since there is an expression that is adapted to elevated temperatures, Eq. (3.17). As
discussedin Sect. 8.1, there are many different results in the literature for the influence
of boundary dislocations on the strength. Rather than trying to select between the
various experimental results, a direct derivation has been chosen.

There is a well-established relation between the cell or subgrain size d, and the
stress

Ko Gb

Odisl

(8.4)

dsub =

K 1s a dimensionless constant that typically takes values in the interval 10 to
20. The first ones to propose an equation of this form were Staker and Holt [18]. It
is assumed that it is the dislocation stress that is used in Eq. (8.4) [17]. Eq. (8.4) was
already given in Sect. 2.4. It has been suggested that Eq. (8.4) is general and does not
only apply to stationary conditions [19]. There are two well-known derivations of
Eq. (8.4) in the literature. In the first one a spinodal decomposition of a set of parallel
screw dislocations was considered [20]. In the second one the energy of a substructure
was assumed to be the sum of the dislocation line energy and the dislocation cell
stresses. By minimizing the sum of these two contributions, Eq. (8.4) was obtained
[17].

The distance between dislocations in the cell walls which is referred to as the
dislocation separation can be estimated in the following way. For the sake of argu-
ment, the cell walls are assumed to consist of one layer of  sets of dislocations and
cells arranged as packed cubes. The density of boundary dislocations is then given
by

3ud2,
Pond = —5—— (8.5)
" @l

su

where [, is the dislocation separation. Each corner in the arrangements of the cube

substructure is associated with three cube sides and that is the reason for the factor
’{

31in Eq. (8.5). The density is taken as the average over the volume of each cell dg; .

Equation (8.5) will be used below to obtain an estimate for the dislocation separation.
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8.2.2 Formation of Subgrains During Creep

In most materials well-formed subgrains are present in the secondary stage. This
means that the subgrains are created during primary creep. There are exceptions. In
Al-Mg alloys at around 300 °C, subgrains are not formed until a strain of about 1
[2]. In addition, in some stainless steels a homogeneous dislocation structure appears
under certain conditions. For 17Cr12Ni2Mo subgrains appeared at 704 °C but not
at 593 °C [21]. For 17Cr12Ni2MoN no subgrains were present at higher N content
[22]. A possible qualitative explanation to these observations is that the stacking fault
energy ysre plays a role and that the subgrain formation increases with the value of
vsre. For 17Cr12Ni2Mo there is a dramatic increase in yspg With temperature [23],
which could explain the observations in [21]. The results of the influence of N on
yske in the literature are far from unanimous but a recent analysis of existing data
[24] suggests that N reduces ysgg and this could be a reason for the findings in [22].
For Al-Mg, the value of yspg is considerably lower than for Al, but if this is of
importance for the substructure formation is uncertain.

The normal case where subgrains are present in the secondary stage will now
be considered. The changes of the substructure have been quantitatively studied for
an Al5Zn alloy at a temperature of 250 °C and an applied stress of 16 MPa. The
study was performed by Blum and co-workers. The original papers are not readily
available anymore, but fortunately the results are reproduced in other sources [2, 25].
In Sect. 4.3, a model for primary creep is presented. The creep rate is given by Eqgs.
(4.3) and (4.9)

& =h(2(o — 0y) — o4is1) (8.6)

where
h(o) = 20 M(T o (m “ 8.7
o) =20M( ’O)(amTGb)3/ bey, _wamTGb 7

In Eq. (8.6), there is an effective stress that controls the creep rate in the primary
stage

Oeff = 2(0 — 07) — Ogisl (8.8)

As can be seen from Eq. (4.10), there is a contribution from solid solution hard-
ening. For Al5Zn, this contribution comes from the Zn content. The linear misfit for
Zn in Al is —0.02. The drag stress from the Zn content is given by (Eq. (6.20))

2
drag __ UclimbCio B

= I 8.9
i bDksT (zo) (8.9)
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The resulting value of o; is 4.6 MPa. For h(c) values for Al are used, see Sect. 2.
7. The creep strain and the strain rate are illustrated Fig. 8.2.

The creep rate versus strain follows the ¢-model, Sect. 4.2, although the slope is
not quite the same in the experiments and the model.

Since the effective stress controls the primary creep rate, it is natural to assume
that it also governs the subgrain size. By applying Eq. (8.8) in Eq. (8.4) a simple
model is obtained. The findings are shown in Fig. 8.3a.

The variation of the dislocation density with strain can also be derived with the
help of Eq. (4.5). The result is given in Fig. 8.3b. Once the dislocation density is
known, the dislocation separation in the subgrain boundaries can be obtained with
the help of Eq. (8.5). It is assumed that most of the dislocations are located in the

boundaries. The result is demonstrated in Fig. 8.4.
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Fig. 8.2 Creep strain versus time a and creep rate versus strain b for Al15Zn at 250 °C and 16 MPa.
Experimental data from [2, 25]. Redrawn from [26] with permission of MDPI
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It is clear that the model presented here can predict the general behavior of the
subgrain formation in Figs. 8.3 and 8.4 although the details are not fully accurate.

8.2.3 Cell Formation at Constant Strain Rate

Dislocation cells are formed in virtually all alloys during tensile and compression
testing at ambient temperatures. A brief survey is given by Koneva et al. [27]. In the
same way as during creep, the cell diameter decreases with increasing strain. They
summarize findings that the cell diameter is proportional to the inverse of the square
root of the dislocation density.

dsup = I(rholo_l/2 (8.10)

This is consistent with Eq. (8.4). This is seen by combining Eqgs. (8.3) and (8.4)
with (8.10)

KQU sul
Ko = — b (8.11)

amrt

where g, = 1 and 2 for dislocation densities in the subgrain interior and walls
respectively. A value of K, = 15 was found for Cu which is in reasonable agreement
with K, = 10, since a =~ 0.19 and mt ~ 3.1. The location of dislocation in cell
interiors or boundaries was not specified. Their results for K, for Cu—Al (2-5)
and for Cu—Mn (2-5) illustrate that K, can be significantly smaller for alloys in
comparison to pure metals. In [27] early investigations for Ky, are also referenced
but these results are difficult to match to K, values.
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Subgrain boundaries have essentially zero width in particular at high temperatures.
Cell walls on the other hand have a significant width w;;. This means that Eq. (8.5)
must be replaced by

3I‘Lwcell

8.12
dsublszep ( )

Pond =

In Eq. (8.12), the separation distance between dislocations is assumed to be the
same in the boundary plane and perpendicular to the plane. In the boundary several
types of dislocations must be taken into account [15]. This will be explained in detail
in Sect. 8.2.3, where the equations for the dislocation densities will be given. Using
these equations the developments of dislocation densities and the corresponding
dislocation stress, Eq. (8.3), can be computed. Once the dislocation stress is known,
the cell size can be obtained with the help of Eq. (8.4). The variation of the cell
size as a function of strain is illustrated in Fig. 8.5. The cell diameter decreases with
increasing strain and tends towards a stationary value at larger strains.

In addition to the overall dislocation density in the boundary ppng, there is a
formation of dislocation locks that are believed to create the stability of the boundary.
The density of the locks is designated pjocx. Following [15] the cell wall width is
related to the lock density

1

l sepPlock

(8.13)

Weell =

If Egs. (8.12) and (8.13) are combined, expressions for the dislocation separation
and wall width in terms of the dislocation densities are obtained

3 1/3
Iy = <—“> (8.14)
dsubpbnd Plock

Fig. 8.5 Cell diameters as a
function of strainfor [ e Model
Cu-OFP at 75 °C and 1 x I O Experiments
1075 1/s [15]. Experimental
data from [3]. Redrawn from
[15] with permission of
Elsevier
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Weell = (Lpzbmi) (8.15)
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Equations (8.14) and (8.15) are compared to experimental data in Fig. 8.6.

In the same way as for the cell size, the dislocation separation and cell boundary
width decrease with strain. The variation of the dislocation separation and cell
boundary width with strain is more rapid than for the cell size. These results are
not consistent with those of Koneva et al., who suggest a constant ratio between the
cell boundary width and the cell diameter.

In a test series for 18Cr8Ni austenitic stainless at 865 °C, the formation of
subgrains as a function of strain at constant strain rate is studied in [2]. In the same
way as for Al5Zn and Cu-OFP above, it is demonstrated that the subgrain size and
dislocation separation in subgrain walls decrease and tend to stationary values with
increasing strain. The dislocation density rapidly increases with strain and also levels
off to a stationary value. Since the variation of the stress with strain can be predicted, it
was thought that the results should be possible to model. Unfortunately, the published
stress strain curve is not consistent with the creep models.

8.3 Influence of Cold Work on the Creep Rate

The influence of cold deformation on the creep rate and creep rupture is a clas-
sical problem. During primary creep of annealed material, the dislocation density
is normally raised from a low value to a stationary one when the secondary stage
is reached. This is a direct outcome of the creep recovery theory and it is well
described by the basic dislocation equation used in this book, Eq. (4.5). On the
other hand for a cold deformed material, the initial dislocation density is high.
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If Eq. (4.5) is applied, the dislocation density would be reduced during primary
creep and the same stationary dislocation density as for an annealed material would
be found and no effect of the cold deformation would remain. This is in direct at
variance with observations for example for fcc alloys. For a number of austenitic
stainless steels the creep strength can be increased significantly [28-31]. A review
is given in [32]. If the temperature is too high or the strain is too large the effect of
cold work disappears. The reason is that the dislocation structure is not sufficiently
stable under such conditions and recrystallization may appear.

In this section the influence of cold work on the creep of Cu-OFP will be analyzed.
Results for creep rupture data are shown in Fig. 8.7.

Values for 0, 12 and 24% cold work are compared. It is evident that the cold work
has a dramatic effect on the rupture time. For 12% cold work the rupture time is
increased by more than three orders of magnitude. For 24% cold work the rupture
time is raised by six orders of magnitude. This effect is only observed if the cold
work is performed in tension. If the cold work is in compression only quite a small
increase in the rupture time is found. The creep testing was carried out in tension.
Thus if the deformation direction is reversed between the cold work and creep testing
only a limited effect is observed.

With increasing cold deformation, the creep ductility is practically always
reduced. This is clearly found for Cu-OFP, Fig. 8.8.

For Cu-OFP without cold work the rupture elongation is typically quite high,
above 40%. For 12% cold deformation in tension the rupture elongation is still high,
30% and above. For 24% cold deformation, the rupture elongation is a little bit
above 10%. It is interesting to note that the creep ductility of Cu-OFP deformed in
compression is low in spite of the small increase in the rupture time.

It has now been found that the role of the substructure must be taken into account to
understand the influence of cold working [15]. This has also been suggested in the past
but without any basic analysis that could predict the magnitude of the effect [4, 33].
As described in Sects. 8.1 and 8.2 a cell structure is formed in practically all alloys

Fig. 8.7 Stress versus 300 : w
rupture time for 12 and 24% CuOFP O 12% cold work; tension
cold deformed Cu-OFP at ¥ 24?’ cold work tension
75 °C. For comparison data + 12% cold work; compression
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deformation is included. The
lines are fitted to the
experimental data to
illustrate the influence of
rupture time. Experimental
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Fig. 8.8 Rupture elongation 70 ‘ - v
versus rupture time for 12 O 12% cold work; tension CuOFP
and 24% cold deformed 60t * 24% cold work; tension
Cu-OFP at 75 °C. F + 12% cold work; compression
u-rra - ror . X # 0% cold work; forged *
comparison data for material = 507
without cold deformation is 2 * * *
included. Experimental data S a0t °
from [3]. Redrawn from [26] _S o
with permission of MDPI o 30f o o
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during deformation at ambient temperatures. A large fraction of the dislocations
moves to the cell boundaries and in this way they create the cell structure. During
the deformation all dislocations do not behave in the same way. Dislocations with
opposite burgers vectors move in opposite directions in a given stress field. This
can be seen from the Peach-Koehler formula for the force F on a dislocation with
direction £ and burgers vector b

F = (bo) x & (8.16)

If the direction of the burgers vector is changed to the opposite one (—b), this is
the same as changing the sign of the burgers vector. For this reason, burgers vectors
of opposite directions will also be referred to as burgers vectors of opposite signs.
From Eq. (8.16), it can be seen that if the direction of the burgers vector is changed to
the opposite one, the sign and the direction of the force is also changed. Dislocations
of opposite signs on the same glide plane move to different ends of the cell. With
opposite signs at different ends of the cell, the dislocations are said to be polarized.
Not all dislocations are polarized. It is assumed that the outer layers of the boundaries
are polarized.

The polarization of dislocations has a pronounced effect on the recovery. Since
dislocations with opposite burgers vectors cannot be found amongst polarized dislo-
cations, static recovery is not possible. Polarized dislocations are referred to as unbal-
anced since dislocations with opposite burgers vector are not present. For unpolarized
dislocations, dislocations with opposite burgers vectors can be found and they are
therefore referred to as balanced.

In the model for the development of the cell structure, the following dislocation
densities in the cell boundaries are taken into account: balanced dislocation density
pbnd, the unbalanced dislocation density ppnge, and the density of the locks piock [15].
Most of the dislocations are in the boundaries, and the content in the cell interiors is
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neglected. The equation for the balanced dislocation density pyyq is almost identical
to Eq. (2.17)

dpona mpyg )
dgn = kpnd bey WPbnd — 2T M Py /€ (8.17)

Work hardening, dynamic recovery and static recovery are considered. The only
difference is the introduction of the factor kp,g. It takes into account since Eq. (8.3)
is modified in comparison to the ordinary version of the Taylor equation. For the
unbalanced content pyyge, the equation corresponding to (8.17) is

d 1/2 1/2
Ponde _ 1 Pona F Ponge) (8.18)
de bey

There are two significant differences between (8.17) and (8.18). There is no static
recovery term in Eq. (8.18). Unbalanced dislocations cannot annihilate by combining
with dislocations of opposite signs, since such dislocations are not present. The other
difference is that both balanced and unbalanced contribute to the generation of the
unbalanced content since both types move across the cell interiors.

The traditional view is that dynamic recovery is due to dislocations coming suffi-
ciently close that they can combine with dislocations of opposite sign and annihilate
[34]. This assumption tends to overestimate the recovery rate, see Sect. 2.3.2. In addi-
tion, the mechanisms for dynamic and static recovery would be similar although their
temperature and time dependencies are quite different. Argon has instead suggested
that the dynamic recovery is due to the interaction between dislocations generated
during work hardening and the cell boundaries [35]. It is known experimentally that
spurting dislocations are moving a distance of about three cell diameters [36] and
consequently they will pass through more than one cell boundary. During this passage
boundary dislocations will be removed. When the dislocations hit the boundaries low
energy configurations will be formed and this is part of the dynamic recovery process.
Some of these low energy configurations are locks that are dominated by Cottrell-
Lomer locks. They are created when partial dislocations cross. The formation of
locks are assumed to be controlled by the following equation

dplOCk
de

= kiock® (Obnd + Pbnde) — WPlock — 2":L]u,0]20¢k/é (8.19)

This equation describes how both balanced and unbalanced dislocations contribute
to the formation of locks. Dynamic recovery influences the number of locks since
spurting dislocations passing through the boundaries remove locks. The locks can
also be eliminated by static recovery since this process reduces the energy even for
complex dislocation configurations.

In Sect. 3.3, experimental stress strain curves for Cu-OFP were accurately repro-
duced using Eq. (2.17) assuming a homogenous distribution of dislocations. If now



8.3 Influence of Cold Work on the Creep Rate 157

the dislocations are considered to be located in the cell boundaries and Eqgs. (8.17)—
(8.19) are used, the stress should be computed with the help of Eq. (8.3) with ppound
equal to the sum of pynd, Ponde a0d piock- The results for the stress strain curves should
be the same. With kpyg = /2 and kbnde = /2 this is the case. The value of Kiock
should be considerably smaller than the value for kp,q. A value of kjocx = 0.1 has
been assumed. With Eq. (8.14), this gives a value for the separation distance of the
dislocations in the cell walls of about 20 nm that is in accordance with experiments
for several materials, see Sect. 8.2. The selection of ko also affects the values kg
and kppge. Values kpng = 1.7, kpnae = 0.2 and kjocx = 0.1 reproduce the stress strain
curves [15].

The results for the influence of cold work in Fig. 8.7 will now be analyzed.
12% and 24% cold deformation at ambient temperature gives stresses of 154 and
191 MPa, respectively. Assuming the dislocations are located in cell boundaries in
agreement with observations [3], and using the modified Taylor Eq. (8.3), this gives
total densities of dislocations in the cell walls of 8.7 x 10'* and 1.5 x 10" 1/m?.
The development of the dislocation densities according to in Egs. (8.17)—(8.19) is
shown in Fig. 8.9. In this case the balanced dislocations dominate the total content. It
should be emphasized that the stresses from the cold work are much higher than even
the dramatic increase in creep strength demonstrated in Fig. 8.7. Extensive recovery
is taken place but not to such an extent that the stationary state for annealed material
is reached.

The key to understanding the influence of cold work is the unbalanced dislocation
density ppnge that is not exposed to static recovery. It is assumed to give rise to a back
stress that reduces the creep rate

maGb

Oback = ) A/ Pbnde (820)
Fig. 8.9 Densities of 2500 ;
balanc.ed, unpalaqced and N - = -Bal. wall CUuOFP _J
lock dislocations in the cell e | |- Unbal. wall _--" -
boundaries as a function of = 20007 |.. Locks .7 ]
strain for Cu-OFP. Redrawn ‘; Pie -
from [15] with permission of = 1500} R J
Elsevier c L7
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If the secondary creep rate for undeformed material is & (o), the corresponding
value for cold worked material is

seccW (0) = €gec (0 — Opack) (8.21)

where o is the applied creep stress. It might be thought that the back stress could
be measured in a stress drop test by reducing the applied stress until the creep rate
vanishes. However, this is not possible. The stress drop is in general based on the
assumption that the dislocation structure is essentially unchanged after the reduction
in stress. With dislocation dynamics it has been demonstrated that the dislocation
structure is adapted to the new stress level within milliseconds [37]. This applies
both to the dislocations in the cell interior and in the cell walls. On the other hand it
takes a longer time before the cell size corresponds to the new stress level. Thus the
dislocation structure after a stress drop neither represents the old stress level nor the
new one. Back stresses can be quite useful in modeling, but to measure them would
require quite a sophisticated analysis to interpret the results.

The stress dependence of the secondary creep rate according to Eq. (4.3) is given
by

ho) = 20 M(T. o) — 2 /(M _ O 8.22
(0) =21, (’G)(amTGb)3/ E_wamTGb (8.22)

which is inserted into Eq. (8.21)

éSCCCW(U) = /’l(O’ - Uback) (823)
To handle primary creep, Egs. (4.6) and (4.7) are applied

Oprim = Odislsec — Odisl (3.24)

& = h(0 + Odisisec — Odisl — Tback) (8.25)

o4is1 18 the stress created by the dislocations. In the secondary stage this stress takes
the value ogissec- Thus, in the secondary stage, Eq. (8.25) is identical to Eq. (8.21).

The use of Eq. (8.25) with no cold work present has been illustrated for Cu-OFP
in Fig. 4.10. It was demonstrated that the primary creep could be well reproduced
and that both the experimental and the model results followed the ¢-model.

Two examples of creep-strain curves for 12% cold-work Cu-OFP are shown in
Fig. 8.10.

Both the experimental and model curves show distinct primary and secondary
stages. The model exaggerates somewhat the size of the primary stage and reaches
the secondary stage too soon. The model accurately reproduces the creep rate in the
secondary stage in spite of the fact that the creep rate is three orders of magnitude
lower than without cold work. This would not be possible unless the recovery rate
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Experiment 12% CW, Experiment

12% CW, 75°C, 205MPa
——Model 75°C, 192MPa Model
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Fig. 8.10 Creep strain versus time for 12% cold worked Cu-OFP at 75 °C, a 205 MPa and b 192
MPa. Model results from integration of Eq. (8.25). Redrawn from [15] with permission of Elsevier

of the unbalanced dislocations would be much lower than for the other types of
dislocations. The amount of tertiary creep is very limited in the experimental data
and the tertiary stage appears late in the test. It is probably caused by necking [14].
Since necking is not taken into account in the creep model, it is then natural that
tertiary creep is absent in the model curves.

For one of the cases in Fig. 8.10, the creep rate as a function of time is given in
Fig. 8.11.

In the same way as in Fig. 4.10b the experiment and the model obeys the ¢-model
at least approximately. The drop in strain rate with increasing time is however much
more dramatic in Fig. 8.11 in comparison to Fig. 4.10b.

Creep strain curves for 24% cold deformed Cu-OFP are illustrated in Fig. 8.12.

Fig. 8.11 Creep strain rate -
versus time for 12% S I N Experiment 1
cold-work Cu-OFP at 75 °C 107 ——Model i
and 192 MPa. Model results I . .
from Eq. (8.25). Redrawn g 108+ 12% CW, 75°C, 192MPa
from [15] with permission of & 3
Elsevier © E e
o 107}
g E
S5 L
10-8 L
10-9 L
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Fig. 8.12 Creep strain versus time for 24% cold-work Cu-OFP at 75 °C, a 235 MPa and b 223
MPa. Model results from integration of Eq. (8.25). Redrawn from [15] with permission of Elsevier

It is immediately evident that that creep strain curves for 24% cold deformed
material are very different from those of 12% cold deformed. In Fig. 8.12, primary
and secondary creep is only present to a limited extent and tertiary creep is totally
dominating. It is striking that the model can reproduce the creep strain curves also in
this case. The cell sizes are smaller, the boundaries are narrower and the dislocations
in the walls are closer for 24% cold deformed materials in comparison to 12% cold
deformed, see Figs. 8.5 and 8.6. It is believed that the continuously increasing creep
rate is due to enhanced recovery [14]. Tertiary creep will be further discussed in
Chap. 12.

It can be concluded that by taking the back stress from the unbalanced dislocations
into account, Eq. (8.12), the main features for cold deformed Cu-OFP can be well
described. Thus, the reduction of the creep rate by three and six orders of magnitude
for 12 and 24% can be modeled. The whole creep curves can be reproduced in a
reasonable way. In the argument above the model was analyzed for primary and
secondary creep. It will be seen in Chap. 12 on tertiary creep that Eq. (8.25) is also
valid for tertiary creep. This is also clearly demonstrated in Fig. 8.12.

In the analysis above it has been assumed that the substructure is stabilized by the
presence of unbalanced dislocation. An alternative way is to use particles to stabilize
the substructure. This is extensively utilized for modern 9%Cr steels [38]. For the
influence of cold work on the creep rate of austenitic stainless steels it has been
suggested that particles can lock the substructure and prevent that the effect of cold
work is lost [28, 29]. However, no detailed analysis of the role of the particles has
been performed.
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8.4 Formation of a Dislocation Back Stress

Cu-OFP close to ambient temperatures show creep curves that have the same appear-
ance as at much higher temperatures with distinct primary, secondary and tertiary
creep. One example is given in Fig. 8.13.

The cusp on the experimental curve is due to the necessity to reload the creep
machine. Thus, the creep curves have many characteristics in common with typical
creep curves at higher temperatures at about half the melting point. However, there is
one aspect that is different. It is in general assumed that the true creep rate is constant
in the secondary stage. This is frequently a starting point in stress analysis with finite
element programs. To check if that is the case for the creep curve in Fig. 8.13, it is
assumed for simplicity that the creep rate can be described with a Norton equation

d
d—j = Ag(o0e’)™ (8.26)

where A is a constant and o is the nominal applied stress. The stress exponent ny is
about 70 for the case in Fig. 8.13. The factor e® takes into account the increase in the
true stress when the specimen cross section is reduced during straining. Ay is chosen
so the Norton expression crosses the experimental at 600 h, which is about half the
rupture time. Equation (8.26) is now integrated starting with gy = 0.17 to simulate
the influence of primary creep. The result is included in Fig. 8.13. It is obvious that
Eq. (8.26) cannot represent the creep curve in Fig. 8.13. This conclusion is in no way
affected by the choice of parameter values in Eq. (8.26).

The creep exponent exp(ny ¢€) in Eq. (8.26) has a dramatic effect on the strain
rate giving a creep curve with rapidly increasing slope that is fully inconsistent with
observations. The effect is in fact quite large. For example, for ¢ = 0.1, exp(ny €) is
equal to 1100. This enormous increase has never been observed in creep curves and

Fig. 8.13 Creep strain 0.4 T T " T
versus time for Cu-OFP at i
75 °C and 175 MPa. Forged
material. The model curve is
derived with Eq. (8.25).
Redrawn from [16] with
permission of Elsevier
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one can conclude that the simple assumption of a constant true strain is strongly at
variance with observations.

Instead there must be a back stress that prevents the rapid increase in the strain
rate. The back stress must be built up in the dislocation structure

Oback = Odisl — 00 (8.27)

odis 18 given by Eq. (8.3). o is again the nominal applied stress. It is related to the
true applied stress o as

o = opexp(e) (8.28)
The stress ocreep that drives the creep deformation is given by
Ocreep = 0 — Oback = O + 00 — Odisl (8.29)

In the second equality, Eq. (8.27) has been applied. Thus by applying Eq. (4.6),
the creep rate is given by

& = h(o + 0p — odis1) (8.30)

It is interesting to compare this equation with the simplified version in Eq. (4.
9). In Eq. (4.9), the applied stress is the nominal one but at the same time the full
impact of substructure on o is not included. For primary and secondary creep these
differences are not very important. However, Eq. (4.9) cannot describe tertiary creep
contrary to Eq. (8.30), which will be explained now.

The development of the balanced and unbalanced dislocation densities pp,q and
pbnde for the case in Fig. 8.13 is illustrated in Fig. 8.14. Equations (8.17) and (8.18)
are used. The small contribution from pjock is neglected in this case. Since the relation
between ppng and ppnge 18 not known, the relation between kp,q and kypge cannot be
determined. It is assumed that ky,q = kpnge With a value of /2 that reproduces the
results of Sect. 4.3.

As can be seen from Fig. 8.14a, the balanced dislocation density reaches an
approximately constant value in the secondary stage whereas the unbalanced content
increases continuously even during the secondary stage. The implication for the
dislocation stresses is shown in Fig. 8.14b. The total stress from the balanced and
the unbalanced dislocation stresses are marked as ‘all’. This total dislocation stress
matches the true applied stress o in the secondary stage. This is the reason why the
creep rate does not increase in an uncontrolled way. This balance is possible due
to the increase in the unbalanced stress. The difference between the starting value
of the applied stress of 150 MPa and the test stress of 175 MPa is the value of the
yield strength. With increasing strain the total dislocation stress cannot match the
true applied stress anymore. Then the tertiary stage is reached and the creep rate
increases.
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Fig. 8.14 Model results for the same case as in Fig. 8.13 (Cu-OFP at 75 °C and 175 MPa). a Dislo-
cation densities versus time; b dislocation stresses versus strain. Redrawn from [16] with permission
of Elsevier

It can be seen from Fig. 8.13 that tertiary creep is reasonably well represented. This
can also be demonstrated by plotting the strain rate as a function of time, Fig. 8.15.

Although the cusps in the experimental data do not make a detailed comparison
possible, it is evident that the overall picture reproduces both the primary and tertiary
stages in a good way.

It can be concluded that the presence of back stress from the unbalanced disloca-
tions, prevents the creep rate from increasing in an uncontrolled way that would be
suggested if a constant true strain rate in the secondary would be assumed. In addition,
the introduction of this back stress makes it possible to model tertiary creep.

Also stress strain curves seem to be affected by the back stress. One example is
illustrated in Fig. 8.16. A stress strain curve for 15% cold worked Cu-OFP is shown.
A model curve using Egs. (8.3), (8.17) and (8.18) is also included in Fig. 8.16a.
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Fig. 8.16 Stress strain curve for 15% cold worked Cu-OFP at 125 °C and 1 x 10~ 1/s; a the
experimental curve is compared to modeling results with Eqgs. (8.3), (8.17) and (8.18) for balanced
and unbalanced boundary dislocations; b balanced and unbalanced boundary (wall) dislocation
density. Experiments from [39]. Redrawn from [16] with permission of Elsevier

It is assumed that the stress strain relations are controlled by the same equations
as the creep curves in the same way as in other parts of this book. This means that
the stress level at higher strains should correspond to the stationary stress in a creep
test. This stress is given by

Ogtat = Osta0€” (8.31)

where 0,0 and o, are the nominal and the true stationary stress that give the same
strain rate as in the stress strain curve (1 x 10™* 1/s at 125 °C). The stationary stress
is not identical to the stress strain curve but it is very close to supporting the assumed
principle.

The strain dependence of the dislocation densities is given in Fig. 8.16b. The
balanced and unbalanced dislocation densities are assumed to be the same at zero
strain. Using these assumptions, the values of kg and kpyge can be determined, see
[16] for details. It can be seen from Fig. 8.16b that the unbalanced dislocation density
increases with strain and compensates for the increase in the true stationary stress.

It has been seen above that both creep curves and stress strain curves are strongly
affected by the back stress from the unbalanced dislocation content. In particular for
creep, it was demonstrated above that the effect is huge and cannot be ignored. This is
especially important to take into account in stress analysis with finite element methods
(FEM). There are two straight forward alternative ways to handle the problem. The
first way is to take the back stress into account explicitly. This requires however the
development of special software. The other alternative is to replace the true stress
o with o exp(—e¢). This alternative represents no practical problem but there is a
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psychological barrier because it is not in accordance with what people have been
trained to do. However, ignoring it will give rise to large errors.

The dramatic effect of the back stress has only been verified for copper at lower
temperatures. There are no reasons to believe that it should not applicable to other
materials as well because there is nothing in the derivation that is specific for copper.
The open question is to what temperature the effect survives. At a sufficiently high
temperature the back stress from the unbalanced dislocations cannot be expected to
be stable anymore. This section is mainly taken from [16] where further detail can
be found.

8.5 Summary

e Dislocation cells are formed in virtually all alloys during plastic deformation at
ambient or near ambient temperatures. Typically the cells and the surrounding cell
walls are well developed after a plastic strain of about 0.3. At elevated temperatures
subgrains are formed instead at least for alloys where the stacking fault energy
is not too low. The subboundaries consist of thin networks of dislocations. The
presence of cells or subgrains is referred to as substructure.

e Although the presence of the substructure has been discussed in many contexts
in the literature, the development of substructure has only been modeled recently.
Models for subgrain formation during creep and creation of cells during plastic
deformation are presented in the chapter. The models can describe the limited
amount of data that are available.

e During plastic deformation dislocations with opposite burgers vectors move in
opposite directions in cells with the results that some parts of the cell walls have
only one type of dislocations. This is referred to as unbalanced dislocations.

¢ The unbalanced dislocations are not exposed to static recovery since they cannot
meet a dislocation of opposite sign. As a consequence the dislocation density and
creep strength can continue to grow. This is believed to be the main mechanism
behind the sometimes dramatic increase of the creep strength after cold work.

e The presence of unbalanced dislocations can also explain why creep curves at
near ambient temperatures have a similar appearance as at much higher temper-
atures. The unbalanced dislocations form a massive back stress that counteracts
the rapidly increasing true applied stress with increasing strain.
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Chapter 9 ®)
Grain Boundary Sliding oo

Abstract During plastic deformation at elevated temperatures, grains move relative
to each other which is referred to as grain boundary sliding (GBS). The amount
of GBS is proportional to the creep strain with a proportionality constant that is
known from finite element analyses, and found to agree with experiments for Cu.
The most import effect of GBS is that it gives rise to the initiation of creep cavities,
Chap. 10. GBS is also the main mechanism for superplasticity. A basic model for
superplasticity is presented.

9.1 General

During creep neighboring grains are displaced along the grain boundaries (GB)
relative to each other when they are exposed to shear stresses. This is referred to
as grain boundary sliding (GBS). GBS can easily be observed by metallography by
introducing scribe lines or a micro grid before the test. The principle is illustrated in
Fig. 9.1. Using scribe lines on a polished and etched surface, the shear offset under
application of stress can be observed and measured where the lines cross the grain
boundary (GB).

The appearance of GBS in a micrograph is shown in Fig. 9.2.

The displacement of the scribe line in Fig. 9.2 was about 5 pwm, which is the
amount of GBS. For a flat GB, the sliding itself experiences little resistance but
significant stresses appear at the triple points in the grain boundary corners, which
have to be relaxed by creep deformation. Sometimes the stresses are large enough to
initiate micro-cracks at the triple points. This is illustrated in Fig. 9.3.

GBS can also result in grains moving perpendicular to the surface. This has the
consequence that the specimen surface appears wavy. This has often been observed
for pure Al, see for example [2]. However, using the GB offset technique illustrated
in Fig. 9.1, the GBS events are only found locally at a limited number of GBs [1, 3].
Unfortunately, only a limited number of studies where a systematic measurement of
the GB offsets has been performed are available.
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R. Sandstrom, Basic Modeling and Theory of Creep of Metallic

Materials, Springer Series in Materials Science 339,
https://doi.org/10.1007/978-3-031-49507-6_9


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49507-6_9&domain=pdf
https://doi.org/10.1007/978-3-031-49507-6_9

170 9  Grain Boundary Sliding

Grain
boundary

a b

EHT = 15.00 kv
WD = 86 mm

Fig. 9.2 SEM observations of GBS in Cu-OFP after 507 h in a creep test at 125°C, 47 MPa. The
strain was 20.8%. The grain boundary goes from northeast to southwest. The scribe line is almost
perpendicular to the grain boundary. Reprinted from [1] with permission of Elsevier

What is causing GBS is not understood in detail. From TEM observations on Al,
Kokawa et al. have suggested that it is only random grain boundaries that slide. Lattice
dislocations move into the GBs and introduce the sliding. Ordered GBs (coincidence
sites) contain extrinsic GB dislocations but they do not contribute to the sliding [4].

One sometimes distinguishes between two types of GBS: Rachinger sliding and
Lifshitz sliding that occur during dislocation creep and diffusion creep, respectively
[5]. Unfortunately, it has turned out to be difficult to distinguish between dislocation
creep and diffusion creep experimentally even if the principles are straightforward.
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Fig. 9.3 SEM observation of a micro-crack at a triple point after GBS. The same specimen as in
Fig. 9.2 [1]

There are numerous scientific papers discussing this issue. The simple principle
that will be followed in this book is that it is Rachinger sliding when we discuss
dislocation creep and Lifshitz sliding when diffusion creep is analyzed but without
being explicit about the type of sliding.

GBS gives a contribution to the overall creep strain. In general, this contribution is
expected to be limited. The model analysis in Sect. 9.3 suggests that the contribution is
about 15% if all the grain boundaries are active in GBS. However, since only a limited
number of GBs give GBS offsets, the effective contribution is likely to be much
smaller. However, there is one main exception, superplasticity. The main mechanism
for superplastic deformation is believed to be GBS of a fine grained structure, where
more or less all grain boundaries participate. This means that the deformation takes
place by the sliding of grains against each other without the grains being elongated.
In this way large elongation values can be obtained during superplasticity. Empirical
modeling of superplasticity will be discussed in Sect. 9.2. In Sect. 9.3, a basic model
for grain boundary sliding is presented. This result is used in Sect. 9.4 to find a basic
model for superplasticity. Another case where GBS plays a major role is for nano-
crystalline materials. The reason is the same as for superplastic materials. The GBs
constitute a large fraction of the nano-crystalline structures, and GBS is an important
deformation mechanism [6]. However, it has turned out that the behavior is complex
and the topic will not be dealt with here.

During creep, the formation and growth of cavities generate creep damage and
often initiate failure. In the past, it was believed that creep cavities were nucleated
due to the presence of large local stresses. However, detailed analysis demonstrated
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that this would require very high stresses and in addition these high stresses would
relax very quickly during creep. Nowadays, most scientists are convinced that GBS is
the main mechanism for forming cavities. For example, it can quantitatively explain
the strain dependence of the number of creep cavities and why creep cavities can be
formed at low creep stresses. Initiation and growth of cavities will be discussed in
Chap. 10. The required model for GBS will be presented in Sect. 9.3.

9.2 Empirical Modeling of GBS During Superplasticity

Discussion of various aspects of GBS can be found in many papers. However,
the number of direct measurements of GBS is limited. Results for copper will be
presented in Sect. 9.3 together with basic modeling. The only area where numerous
measurements can be found is for superplasticity, where stress strain curves and
creep rates have been determined. In general, it is assumed that superplasticity is
controlled by GBS.

Superplasticity is a mechanism where elongations of several hundred percent can
be achieved. This makes it possible to produce deeper drawings and more complex
shapes than in ordinary sheet pressing. There are a number of requirements on the
alloy to enable superplasticity [7]. The grain size must be fine, less than 10 pm and
equiaxed. The pressing must be performed at temperatures above half the absolute
melting point (>T',/2). The strain rate should lie in the interval 1 x 107> to 1 x 107!
1/s. The lower limit is to ensure that pressings can be carried out in a reasonable time.
The upper limit is to prevent damage formation such as the development of cavities.
Finally the strain rate sensitive m;

_Blno
" 9lné

my

should be about 0.5. Under stationary condition, m; is the inverse of the stress
exponent ny

m, = 1/ny 9.1

The choice of temperature is critical. If the temperature is too low, climb will
be slow and the pressing would require a long time. A too high temperature will
initiate grain growth that will destroy the superplastic properties. Often a two-phase
structure is used to prevent grain growth. An alternative is to have a fine distribution
of particles that acts as grain refiner. Both these alternatives are associated with the
risk that abnormal grain growth is initiated implying that some very large grains are
created, which is totally unacceptable [8].

Superplastic formed parts are nowadays used in many applications [9]. High
strength alloys are typically difficult to form with conventional techniques because of
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limited ductility. Then superplastic forming can be quite helpful. In particular, appli-
cations in aero planes, trains and cars are common. Special high strength aluminum
alloys probably cover most of the market. However, there are many components
produced in Mg, Ti and Ni base alloys as well. The total number of commonly used
alloys for superplastic forming is not very large. Barnes lists 13 alloys [9].

After superplastic deformation, the grain shape is still equiaxed. The only imag-
inable mechanism that can accomplish this is GBS. Detailed measurements of the
amount of GBS during superplasticity confirm that GBS can account for almost all
of the strain [10]. Creep deformation inside the grains must also take place to accom-
modate local strains. First, bulk dislocations moving towards the GBs are the basis of
GBS. Secondly, the grains must constantly adapt their shape during the deformation
and this takes place by intragranular creep.

A number of authors have used empirical relations to describe the strain rate
during superplasticity as a function of temperature, stress and grain size, see for
example [11, 12]. The most common form is

bD b\?
e=A—SB () 42 9.2)
GksT \ dg

where ¢ is the strain rate, o the applied stress, b burgers vector, G the shear modulus,
d, the grain size, Dgp the grain boundary diffusion coefficient and A a dimension-
less factor. For GBS it is natural to assume that it is grain boundary diffusion that
supplies the vacancies although the contribution from the lattice dislocation is also
of importance. Eq. (9.2) gives a stress exponent of 2 and exponent of —2 for the
grain size. It is not possible to intuitively understand the values of these exponents.
However, it will be explained in Sect. 9.4 that detailed modeling actually gives these
exponents.
Data for a superplastic Zn22%Al alloy is illustrated in Fig. 9.4.

Fig. 9.4 Creep rate versus 1072 . . :
stress for at Zn22%Al alloy +
at 190 °C at the three grain Zn22Al 190°C .
sizes 1.3, 2.6. and 3.9 pm. © +
Data from [13]. The grain K% (o)
sizes in [13] have been N 10'4 3 x + 3
transferred to linear intercept % fo) X+
values 14 =
o (9 x o F
5 o +
S, A x4 ]
O 10%: 9, & o 13mm
o x+ x 2.6 um
x T + 3.9 um
+ L i
10" 102

Stress, MPa
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In Fig. 9.4, there are two different levels of the stress exponent. At low stresses,
the stress exponent is 4, at higher stresses 2. It is the high stress range where the
superplastic behavior appears. The lower stress range is nowadays assumed to be due
to the presence of impurities [5]. This range will be discussed further in Sect. 9.4.
In the superplastic range the grain size dependence has an exponent of about —2
again in accordance with Eq. (9.2). A comparison of the data with modeling will be
presented in Sect. 9.4.

9.3 Grain Boundary Sliding in Copper

Crossman and Ashby [14] formulated a model for the contribution from GBS to
the overall creep strain. The basic steps in this model will be followed. The inverse
relation namely the amount of GBS generated by an amount of creep strain is equally
interesting. The relative displacement ugg of neighboring grains is controlled by
viscous flow. If the GB is exposed to a shear stress, the displacement rate can then
be expressed as

dugs  dgB
= 7 (9.3)
dt NGB

where 3 is the width of the grain boundaries (taken as 2 b, where b is burgers’ vector;
a common assumption) and t is the shear stress acting on the grain boundary. ngg is
the viscosity of a flat grain boundary

ksT
8bDgp

NGB = 9.4

kg is Boltzmann’s constant, T the absolute temperature and Dgp the grain boundary
diffusion coefficient. If ledges with the height A are present, the viscosity in Eq.
(9.4) for a flat GB is increased by a factor of (hp/b)? [15]

ks Th?
= 9.5
58 = e Dan 9.5
Presence of a distribution of particles also increases the viscosity [15]
kT fad2,
= ——% 9.6
NGB 85 Dag (9.6)

where f4 and dp,y are the area fraction and diameter of particles in the boundary.
Equations (9.5)—(9.7) thus represent three different types of GBs. A finite element
analysis was performed for hexagonal grains with sliding boundaries and grains
following power-law creep [14]. The sliding of the boundaries is so fast that in
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general they can be considered as flaws. The overall creep rate could be described
by introducing a stress enhancement factor f';

. . o n
&= 80<fco__0> 9.7

o is the applied stress and 7 is the creep exponent. &y and o are constants. Crossman
and Ashby [14] gave a value of f. = 1.1. Ghahremani refined the analysis and found
a value of f, = 1.16-1.3 [16]. Also Hsia et al. [17] repeated the analysis and got
fc = 1.17 for the same geometry. In [14, 16] also the contribution to the overall
displacement rate was assessed

Ucas
¢ =—
Uan

9.8)

U Al 1 the total displacement rate, which must be precisely defined in relation to
the grain structure. The ¢ values found were from 0.15 (ny = 1) to 0.33 (ny = 00)
depending on the creep exponent [16]. Both Unan and Uggs are proportional to the
creep rate £. The finite element analysis [14] shows that the overall displacement rate
can be expressed as

Uy = 2 (9.9)
A= £ .
where d, is the linear intercept grain size and § is a factor that gives the relation to
the side length apex of the hexagonal grains [1].

£ =d,/ane = 7/4tan(/6) = 1.36 (9.10)

It was early on recognized that the displacement due to GBS is proportional to
the creep strain [18]

ugps = Cs¢ 9.11)

From Egs. (9.8), (9.9), and (9.11), the constant C can be expressed as

: 3
Cs = Ugps/é = %dg (9.12)

The model results above will now be compared with experiments for oxygen
free copper with P (Cu-OFP) and without P (Cu-OF). Observed values from three
investigations are shown in Fig. 9.5.

The values in Fig. 9.5 represent three types of tests: creep at constant load [19],
creep at constant loading rate [1] and slow strain rate tests at constant strain rate
[20]. Pettersson’s values increase faster with strain in particular in comparison to the
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Fig. 9.5 Observed
displacements at grain
boundaries as a function of
strain in Cu-OF and Cu-OFP.
Data from [1, 19, 20].
Redrawn from [1] with
permission of Elsevier
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data from [19]. Considering that a wide range of temperatures and strain rates are
covered, it is not surprising that the values differ. But they are clearly of the same

order.

In Fig. 9.6, the displacement in Fig. 9.5 are divided by the strain to obtain the

values for the constant Cs in Eq. (9.11).

The constant C depends on the strain. Cs is higher at lower strains in all three
studies. There is a tendency that the rate of decrease is slower at higher strains. This

Fig. 9.6 Observed
displacements at grain
boundaries as a function of
strain in Cu-OF and Cu-OFP
divided by the creep strain
giving the constant Cs, Eq.
(9.11). Data from [1, 19, 20].
Redrawn from [1] with
permission of Elsevier
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decrease in slope has also been found for austenitic stainless steels, although the
absolute value of Cy is smaller [21]. A complicating factor is that at large strains new
grains are frequently formed [22].

The observed values for C are compared to the model in Eq. (9.12) in Fig. 9.7.
Since the model does not take the strain dependence into account, experimental values
for all strains are included in the Figure. The model values are at the lower end of
the slow strain rate data, but at the upper end for the other data. One complication
is that both large and fine grains were present in the copper in [1]. Since the model
values are proportional to the grain size, the use of an average grain size does not
take this variation into account. Results on stainless steels demonstrate that the effect
is weaker than the model suggests. If this is the case also for copper, the C; values
would be underestimated in [20] where grain size is smaller and overestimated in
[19] where the grain size is larger. This is consistent with the results in Fig. 9.7.

Although there is considerable variation, a general approximate value of 50 pm
for C seems reasonable, taking into account that it covers a range of temperatures,
strain rates and three testing techniques. No significant difference between Cu-OF
and Cu-OFP has been observed.

9.4 Superplasticity

As was explained in Sect. 9.2, studies of superplasticity show that the strain rate
during this process can be described by an empirical equation given in Eq. (9.2).
According to this equation, the strain rate is proportional to the grain boundary
diffusion coefficient Dgg, it has a stress exponent of 2 and the exponent for the
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grain size dependence is —2. The controlling mechanism is well established. Intu-
itively this is obvious because an equiaxed grain structure remains equiaxed even
after larger strain, and this would be difficult to reconcile unless GBS is the control-
ling mechanism. The fact that GBS is highly active has also been demonstrated in
metallographic studies [10].

In spite of the fact that the mechanisms are well established and the process is
well described, no basic model of the creep strain rate during superplasticity has been
found in the literature. An attempt will be made here is to formulate such a model.

Grain boundaries (GBs) are normally considered as good sources and sinks for
dislocations. For superplastic alloys that are fine grained, the recovery of disloca-
tions at the grain boundaries must be taken into account. This is referred to as GB
annihilation recovery. The rate for this mechanism can be represented as

d 2ova 2
&0 _ 2PV _ P By (9.13)
d d, dg

where p is the dislocation density, v the climb velocity and MS® the climb mobility.
A dislocation has to travel a distance of half the grain size to reach a GB and to
be annihilated. Since GBS is the controlling mechanism, the dislocations are active
close to the GB. Consequently, the climb mobility MCGlB involves GB diffusion. The
effective contribution from GB to the diffusion coefficient can be expressed as

78GR éGR _ 9B
Dgpesr = p Dgp = p Dgpoe o’ (9.14)
g e

where 3gp is the width of the grain boundary (taken as 2 b), Dgg is the GB diffusion
coefficient, Dgpo the pre-exponential factor of Dgg and Qgp the activation energy
for grain boundary diffusion. To find M SB Eq. (9.14) for the effective grain boundary
diffusion coefficient should replace the lattice diffusion coefficient in the expression
for the climb mobility in Eq. (2.34)

JTSGB DGBb abd
—— _eksT

MSB —
d dy kgT

9.15)

The contribution to the recovery in Eq. (9.14), can now be added to the total
expression for time derivative in Eq. (2.17)

dp _ mr 1/2; . 2 20, 6B
—_— = — —2uMyp” — —M3°b 9.16
dr = bey pE—wpe =2t Map 4, M o (9.16)

In Eq. (9.16), a time derivative instead of the strain derivative in Eq. (2.15) is
used. This is achieved by multiplying the equation by the strain rate. There are three
recovery terms (with minus sign) on the right hand side of Eq. (9.16): dynamic, static
and GB annihilation recovery. The role of the dynamic recovery is small and that
term is dropped in Eq. (9.16).
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Considering stationary conditions where the time derivative disappears, an
expression for the stationary creep rate can be obtained from Eq. (9.16)

. 2012 m
bsee = QTLMap? + d_MngU)/(b_T) ©-17)
g CL

To transfer Eq. (9.17) to stresses, the Taylor Eq. (2.29) is used
amrGbp'? =0 — o, (9.18)
where o is the deformation hardening constant and o; the internal stress from other

contributions such as precipitation hardening. Inserting Eqgs. (9.15) and (9.18) into
(9.17) gives

3 2 2
—0; 2(0 — o; das Dgpb” b
ésec=<2rLMd<(" ”) 4 2(0 = 0)" 7dcs Do ekér)/<Z1—T) ©.19)

amTGb (OlmTGb) dé kBT CL

Equation (9.19) includes contributions from both creep in the bulk and GBS. To
analyze the contribution from GBS, it is given separately

-GBS _ 2ber. (0 — 0;)* wds Dasb
se¢ am? G dé kgT

(9.20)

Equation (9.20) gives a stress exponent of 2 and exponent of —2 for the grain size
dependence. The creep rate in this equation is proportional to the grain boundary
diffusion coefficient. These features are the same as in the empirical Eq. (9.2). Equa-
tion (9.20) is compared to experimental data for the eutectoid alloy Zn22%Al in
Fig. 9.8.

The creep rate is shown as a function of stress for five grain sizes at 230 °C. In the
model a grain boundary diffusion coefficient for Zn is used [23]. The experimental
curves have two slopes. The slope at the lower range of stresses is believed to be due
to the presence of impurities [5]. This could be handled in the model by introducing
a small internal stress in the same way as was done for aluminum for the Peierls
stress, see Sect. 2.7. However, since the magnitude of the internal stress would not
be known, it would be meaningless to take it into account. The part with the higher
slope at low stresses is ignored. In the GBS range for larger stresses, both the stress
and grain size dependencies are well represented by the model.

In Fig. 9.9 the corresponding data for Zn22Al are presented at 190 °C. There is a
difference between Figs. 9.8 and 9.9. In the latter Figure, there is a third stress range
at higher stress where the slope of the curves increases. This is believed to be due to
ordinary lattice diffusion controlled creep that is starting to contribute. In this case,
Eq. (9.19) is used in the model where both GBS and creep by lattice dislocations are
taken into account. The lattice diffusion coefficient for Zn is used [24].
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Fig. 9.8 Creep rate during superplasticity in Zn22Al for the five grain sizes 1.2, 1.8, 2.5, 3.3 and
4.3 pm at 230 °C. Model according to Eq. (9.20). Data from [13]

Fig. 9.9 Creep rate during ' ' '
superplasticity in Zn22Al for Zn22A1 190°C
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Again both the stress and grain size dependence can be represented by the model.
From Figs. 9.8 and 9.9, it is apparent that the experimental stress exponent is slightly
larger than 2 and the absolute value of the exponent for the grain size dependence is
somewhat larger than 2. This was already observed in the original work [13]. It has
also been found for other superplastic alloys [11].

To illustrate the temperature dependence of the GBS rate, results at 130 °C are
illustrated in Fig. 9.10.

It can be seen that the model yields values that are higher than the experi-
mental values. This suggests that the grain boundary diffusion coefficient is slightly
overestimated in the model. However, the stress dependence is well described.

It has been shown in Figs. 9.9 and 9.10 that there is a transition from GBS to lattice
creep at high stresses. Langdon has suggested that this corresponds to a situation
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where the grain size goes from being smaller than the subgrain size to being bigger.
If the grain size is smaller than the nominal subgrain size according to Eq. (9.21), no
subgrains are present. The subgrain size dg,;, can be directly related to the dislocation
stress, Eq. (2.18)

K.wGb

Odisl

dsuy = 9:21)

Kb 1s a non-dimensional constant that typically takes values between 10 and 20.
Since no value has been found for Zn, the value 18 for Al has been used. The idea
that the subgrain size is of importance for GBS is natural. In alloys with normal grain
sizes, dislocations can move 1-3 subgrain diameters. If the grain size is smaller than
the subgrain size, the dislocations are clearly influenced. In particular, the recovery
is affected. Annihilation at GBs becomes of importance. In addition, the recovery at
the subgrains disappears which is equivalent to ordinary static recovery in the bulk.

In Fig. 9.11 the subgrain size is shown as a function of stress. The range of grain
sizes from [13] is also presented. The grain size is equal to the subgrain size for
stresses between 50 and 200 MPa. This is in good qualitative agreement with the
transitions in Figs. 9.9 and 9.10. The equivalence of the grain size and the subgrain
size cannot be considered as a general principle since the exact position of the tran-
sition depends for example on the ratio between the diffusion coefficients for grain
boundary and lattice diffusion. So the precise position must be analyzed for each
specific experimental case.
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9.5 Summary

Grain boundary sliding (GBS) is believed to constitute the main mechanism for
nucleation of creep cavities and to some extent growth of cavities, see Chap. 10.
GBS is therefore of considerable scientific and technical significance.
According to finite element simulations, the amount of GBS is directly propor-
tional to the overall creep strain with a constant C; that is known.

Detailed measurements of GBS have been performed for copper with three tech-
niques; creep at constant load, creep at constant loading rate, and slow strain rate
tests at constant strain rate over a range of temperatures and strain rates. In spite of
the varying testing conditions, the measured values for Cy are in close agreement
with the theoretical value of 50 pm.

A basic model for superplasticity is presented. It can successfully describe
published data for A122Zn. The form of the basic model is not very different from
an earlier presented empirical model, but in the basic derivation of the model,
parameter values could be fixed.
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Chapter 10 ®)
Cavitation ot

Abstract Cavitation is of great technical importance. Nucleated cavities grow and
link to form cracks that can cause rupture. During creep, cavities are initiated in the
grain boundaries. The nucleation takes place at particles or at subboundary—grain
boundary junctions. The main mechanism is believed to be grain boundary sliding
(GBS), Chap. 9. According to the double ledge model, cavities are formed when the
particles or subboundaries meet other subboundaries. With this assumption quan-
titative models for cavity nucleation can be derived. They show that the nucleated
number of cavities is proportional to the creep strain in good accordance with obser-
vations. Cavities can grow by diffusion or by straining. It is important to take into
account that cavities cannot grow faster than the surrounding creeping matrix, which
is referred to as constrained growth. Otherwise the growth rate can be significantly
overestimated. Models both for diffusion and strain controlled growth have been
available for a long time. A recently developed model for strain controlled growth is
presented based on GBS. It has the advantage that is associated with a well-defined
initiation size of cavities and that constrained growth is automatically taken into
account, features that some previous strain controlled models miss.

10.1 General

During creep micrometer sized holes are formed in alloys. These holes are called
cavities. The presence of cavities is technologically important because the cavities
have a strong influence on the final rupture, in particular at low stresses. Quantitative
studies of cavitation have mainly been performed in three groups of alloys that will
be referred to as Group I, Group II and Group III. Group I consists of fcc alloys:
copper, austenitic stainless steels and nickel-base alloys. Group II includes creep
resistant low alloy steels typically with a ferritic-bainitic microstructure. Also the
classical 12%Cr steel (X20) is included in this group because it shows the same type
of behavior. Group III represents the advanced martensitic 9% Cr creep resistant
steel. The reason why it is important to distinguish between these groups is that the
cavitation occurs in different ways. In Group I, the cavities appear mainly in the
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grain boundaries, and in Group II the cavities are found in the prior austenite grain
boundaries. The main location of cavities in Group III is the lath boundaries in the
martensite. For a review on earlier work on cavitation during creep, see [1] and for
more recent work [2].

Models for the formation and growth of cavities have primarily been developed
for Group I and II alloys. The analysis in this chapter will concentrate on these types.
Much less is known about the martensitic steels in Group IIl in spite of their extensive
use in modern fossil fired power plants. Information about Group III steels will be
summarized in Sect. 10.3.

The cavitation in Group I and II can be discussed in the same way, just recalling
that when grain boundaries are discussed they are the genuine grain boundaries in
Group I but the prior austenite grain boundaries in Group II.

During creep deformation there is some sliding along grain boundaries. Thus,
there is a movement between neighboring grains that is called grain boundary sliding
(GBS), Chap. 9. The distance that neighboring grains move with respect to each other
is referred to as the amount of GBS. According to finite element work, the amount
of GBS is proportional to the creep strain. This is further discussed in Chap. 9.

GBS is believed to be essential for cavity formation. If particles are present in
the grain boundaries cavities can be created when the boundaries slide. Modeling
of initiation of creep cavitation was first made with the help of classical nucleation
theory (CNT) [3]. This approach is however associated with several disadvantages.
It suggests that cavitation would essentially appear at high stresses, which is in
contrast to observations for engineering steels where cavitation is primarily observed
at low stresses. CNT tends to give results that appear as a step function in stress and
temperature again at variance with observations. With CNT it is very difficult to
make quantitative predictions since results are sensitive to the exact values of the
chosen parameters. There are many experiments that give that the number of cavities
is proportional to the creep strain [4, 5] which is difficult to model with CNT.

With the help of dislocation pile-ups, large stresses can be introduced that could
initiate creep cavities [6]. Very large stresses in the GPa range are needed to form
cavities in this way. Very long pile-ups are required that are rarely observed in the
presence of creep cavities. High stresses can also be generated with the help of a
shear crack. Riedel used that approach to model cavity formation with the help of
CNT [7]. However, both these types of models have the same problems with the
stress dependence as for CNT models in general.

It has been even more challenging to understand how cavities can be created in
essentially particle free materials like pure copper. It has been demonstrated that
the substructure can act as hard zones in the same way as particles. Lim has shown
that subboundaries interacting with a sliding grain boundary can form cavities and
that the process is thermodynamically feasible [8]. It is therefore natural to assume
that the cavity formation around particles that is experimentally well documented is
associated with the interaction with the substructure.

Taking into account the role of GBS and the substructure it can directly be
explained why the number of nucleated cavities is proportional to the creep strain for
many materials. The proportionality to the strain was first demonstrated by Dyson
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[4] and later surveyed in [5]. Although this empirical rule has been known for many
years, a basic model was only derived recently based on the so called double ledge
principle. In this way the value of the proportionality constant could be derived. This
is shown in Sect. 10.4.

Already during the 1950ties, Hull and Rimmer derived a model for growth of
cavities based on diffusion control. However, it was found that their model typically
exaggerated the growth rate. Dyson realized that the cavities could not grow faster
than what the creep rate allows [9]. This is referred to as constrained growth. Although
good models for this effect were derived, they still tended to give a too large growth
rate. In fact, in models for creep damage development, strain dependent growth is
often used in spite of the availability of basic diffusion controlled growth models
[10]. A revised constrained cavity growth model has recently been presented, which
gives significantly reduced growth rates and solves some of the previous issues. This
is analyzed in Sect. 10.5.

After the design life of fossil fired power plants and other high temperature units
has expired, almost invariably the plant owners want to extend the service time. Then
itis essential to demonstrate that continued operation is safe. The main life controlling
factors are related to material properties, not least to creep. Many material properties
degrade during service. The determination of the degree of property degradation is
referred to as residual life analysis, which is a major research area today. Concerning
creep properties, the study of cavitation has and is playing a major role in this
respect. Neubauer found that the structure of the cavitation changed in components
during service [11]. It could be followed by taking replicas on components, which
were studied in the laboratory. First a limited number of single cavities appeared
in the grain boundaries (category I). Then single cavities were observed in larger
numbers (category II). Cavities gradually linked to micro-cracks (shorter than a
grain diameter) (category III). Finally macro-cracks appeared (larger than the grain
diameter) (category IV). These categories and their interpretation can be found in
many versions. Their value is that it typically takes a number of years from category
I to IT and from II to III. Only for category IV, immediate action in the form of
repair or replacement of the component is essential. In this way a system of early
warning of serious creep damage was established. It has been extensively used. It has
avoided many fatal accidents and saved many lives. Fatal accidents are fortunately
rare nowadays.

The use of replication to follow the development of creep damage is the most used
traditional method in residual life analysis and also the most successful one. A review
of non-destructive methods for residual life analysis can be found in [12]. Welded
joints are particularly prone to creep damage, and in particular the fine grained part
of the heat affected zone. The Neubauer scheme seems to work well for Group I and
Group II materials. However, for the modern martensitic steels in Group III, single
cavities in large extent only appear close to rupture and to find cavities that have
linked to microcracks is unusual. Early warning of serious creep damage is difficult
to get. This will be further discussed in Sect. 10.3.
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10.2 Empirical Cavity Nucleation and Growth Models

As mentioned above, the number of cavities formed during creep n.,, Was early on
observed to be approximately proportional to the creep strain €

Nea = Bse (10.1)

By is a constant. This relation was found to be valid for Group I materials 347
(austenitic stainless steel) and Nimonic 80A (nickel base alloy) and for low alloy
steels in Group II 1Cr0.5Mo, 0.5Cr0.5M00.25 V, 1Cr1Mo00.25 V and 2.25Cr1Mo as
well as 12CrMoV steels [4, 5]. Notice that there is no constant term in Eq. (10.1).
The observations show that the formation of cavities starts already at small strains.

Hull and Rimmer formulated a basic expression for diffusion controlled growth
of cavities [13]. The equation expresses that the time derivate of the cavity volume
is proportional to the grain boundary diffusion coefficient and the applied stress.
As pointed out above the resulting growth rate often greatly exceeded the observed
values. The situation was much improved when constrained growth was taken into
account to ensure that cavity growth rate was not faster than the creep rate. A number
of authors derived models for the reduced stress during constrained growth. For
example, Rice derived such a model [14].

Cavitation models are extensively used in continuum damage mechanics (CDM)
to assess the (remaining) creep life of components. Three of the common approaches
in CDM that are supposed to be based on physical constitutive equations are given in
[15—17]. A review of the models can be found in [10]. In all three papers an empirical
combination of cavity nucleation and growth is used.

Wcay = C5e<ﬁ> (10.2)

Oe¢

where @.,, is the creep damage due to the cavities, &, the effective creep rate, o,
the maximum principal stress, o, the effective stress, and C and v are constants.
Equation (10.2) was originally proposed by Cane [18]. There is no indication in the
papers [15—17] why the empirical Eq. (10.2) was chosen and not the basic constrained
growth models that were available at the time. There are cases where the growth rate is
proportional to the creep strain but that cannot be considered to be a general solution.
This will be further discussed in Sect. 10.5.

10.3 Cavitation in 9% Cr Steels

Cavitation has been studied quantitatively to a less extent for modern 9Cr steels (P91,
P92) in Group III in comparison to materials in Group I and II. This is surprising
considering that they are common materials in pipes and tubes in modern fossil fired
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power plants. Much of the data has been collected from ruptured specimens with
welds or failed welded components. For a survey, see [19].

In 9Cr steels cavities are primarily formed at lath boundaries, but also at prior
austenite grain boundaries. The cavities appear as single units even close to fracture.
This should be contrasted to the Group I and II materials where even at fairly low
fraction of the rupture life the cavities are arranged in rows at the grain boundaries
(“pearls on string”). At higher life fraction the cavities link and form microcracks
and then macrocracks. These three later stages are absent in Group III materials. In
addition the cavities in Group III materials are observed only very close to the fine
grained zone in the HAZ, where the failure takes place (type IV cracking). All these
facts make is more difficult to locate the cavitation.

Siefert and Parker [19] made an attempt to estimate the number of cavities 7,y
as a function of the life fraction #/tg

Rcay t Heas
L (10.3)

1R IR

where n,yr 1S the number of cavities close to rupture that is estimated to be about
800 cavities per mm?. [Leay iS a constant. For materials with a low creep ductility pLcay
= 0.5, Although the majority of casts of P91 has a high ductility, there is a significant
fraction where the reduction of area at rupture is less than 20%. L,y is reduced with
increasing ductility, which means that the cavitation appears later in life. This has to
be taken into account in residual life time analysis.

It has been found that it is often more difficult to observe cavities metallographi-
cally for Group III than for the other Groups. This applies both to replication and direct
observation in the lab (Charman, personal communication 2021). It is recommended
to use laser microscopy to safely observe the cavities.

In Sects. 10.4 and 10.5 basic models for cavity nucleation and growth are intro-
duced. These models are based on the assumption that the cavities are located at the
grain boundaries. Since this is not always the case for Group III materials, the models
are not automatically satisfied. Since suitable data for the strain and time dependence
of cavitation of 9Cr steels cannot be located, it is not possible to be more specific
about the applicability of the models for the Group III materials.

10.4 Basic Model for Cavity Nucleation

10.4.1 Thermodynamic Considerations

In the past a number of mechanisms have been proposed for the formation of creep
cavities. One idea is that atomic bonds are ruptured. However, this requires very
high stresses and even if such stresses would be initiated they would quickly relax
in a creeping material [6]. Another suggestion is that the accumulation of vacancies
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can be handled with classical nucleation theory [3]. This gives a very strong stress
dependence suggesting that cavities would almost exclusively appear at high stresses
[20]. This is at variance with observations since most cavities are formed at low
stresses. High stresses can appear at grain boundary ledges, triple points and particles.
A common assumption is that cavities are formed by decohesion at particles. High
stresses are required in most models. A threshold must be exceeded and an incubation
time is required [3, 21]. Contrary to these suggestions, observations demonstrate that
cavity nucleation is strain controlled rather than by stress and cavitation is particularly
frequent at low stresses as pointed out above. Statements in the literature have also
concluded that earlier theories are not successful [22, 23]. These papers also give
excellent reviews of earlier work.

New ideas for nucleation mechanisms came from the studies on copper. It is well
established that extensive cavitation can take place in copper during creep [24]. It is
noticeable that the number of particles is typically so low that they cannot contribute
significantly to the cavitation. A model by Lim gave a possible explanation [25].
He assumed that a sliding grain boundary can form cavities where subboundaries
reach the boundary. Grain boundary dislocations formed pile ups that exerted suffi-
cient stress on the grain boundary—subboundary intersection that a cavity could be
nucleated. He made a thermodynamic analysis of the situation and showed that an
energy gain was obtained when a cavity was formed. In his model, the high stress is
a result of a stationary creep process and avoids the problem with stress relaxation.
The change in free energy during the formation of a cavity can be expressed as

AG = —r*Fyoupp + 1’ Fyys — r*Fopyos — (AG| + AGy + AG3)  (10.4)
vs and ygp are the surface and grain boundary energies per unit area and

Fy, = 27/3(2 — 3cosa + cos’r)

Fy = 47 (1 — cosw)

FGB = 7TSin20l

where a is half the tip angle of the cavity. The first term in Eq. (10.4) is the work
done by the applied stress. The second and third terms represent the modification in
the surface and grain boundary energies when a cavity is formed. The fourth term is
the decrease in the strain energy. AG; is the change in the line energy of the grain
boundary dislocations (GBD). AG; is the interaction energy between the remaining
and the consumed GBD. The strain energy AGs is the reduction of the strain energy
of GBDs outside the cavity. Details of the application of Lim’s fairly complex model
can be found in [26, 27].

Cavitation in copper and austenitic stainless steels has been analyzed with Lim’s
model. If AG in Eq. (10.4) is negative, cavitation can take place. When the applied
Stress o,ppl is raised AG becomes more negative and cavitation is more likely. On the
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other hand if o,y is reduced cavitation does not readily occur. This is precisely as
expected. When o,,p) is below a minimum value AG becomes positive and cavitation
is no longer possible. This minimum cavitation stress for Cu is shown as a function
of temperature in Fig. 10.1. The main temperature dependence is due to the last term
in Eq. (10.4).

A comparison is made in Fig. 10.1 to the creep rupture strength for copper for
10000 h. The rupture strength are higher than the minimum cavitation stresses.
Since the rupture strength is used in design (with a safety factor), this demonstrates
that cavitation at the intersections between subboundaries and grain boundaries is a
thermodynamically feasible process.

Itis well documented that oxygen free copper Cu-OF can have a much lower creep
ductility than the same alloy with 50 wt. ppm P, Cu-OFP [29]. It has therefore been
decided to use Cu-OFP but not Cu-OF in copper canisters for disposal of spent nuclear
fuel [30]. The origin of the low creep ductility of Cu-OF is the extensive formation
of creep cavities [30]. It is evident from Fig. 10.1 that the minimum cavitation stress
is much lower for Cu-OF than for Cu-OFP, which explains the difference in creep
ductility between the materials, Sect. 13.3.1.

It can also be demonstrated that the minimum cavitation stress is well below
the rupture strength for common austenitic stainless steels 304H (18Cr10Ni), 316H
(17Cr12Ni2Mo), 321H (18Cr12NiTi), 347H (18Cr12NiNb) [31]. This is illustrated
for 347H in Fig. 10.2. The ratio between the rupture strength and the minimum
cavitation stress is reduced with increasing temperature, which would suggest that
the amount of cavitation would be reduced with increasing temperature contrary to
observations. It is likely that Lim’s model does not fully give the correct temperature
dependence.
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10.4.2 Strain Dependence

Most researchers today assume that the nucleation of cavities is due to grain boundary
sliding (GBS). There are several reasons for this. In many materials cavities are
formed around particles in the grain boundaries. It has often been found experimen-
tally that the number of cavities is proportional to the creep strain, Eq. (10.1). In
addition, the amount of GBS is also proportional to the creep strain, Eq. (9.11)

ugps = Cse (10.5)
The constant Cy is given by, Eq. (9.12)

. .3
Cs = uGBS/8 = %dg (106)

where d, is the grain size, ¢ and & are constants.

To explain the experimental observations that the nucleation rate is proportional
to the creep strain rate, Eq. (10.1), Sandstrom and Wu proposed the so called double
ledge model [30]. Following the ideas in Lim’s model [25], nucleation is assumed
to take place when a subboundary on one side of a sliding grain boundary meets
another subboundary on the opposite side. The position where a subboundary meets
a grain boundary is referred to as a subgrain corner. The nucleation rate then takes
the form

d y 1
Ncay _ UGBS — (10.7)
A d 2y
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where dg,, is the subgrain diameter. d, is inversely proportional to the dislocation
stress that is in general close to the applied stress, Eq. (8.4). Equation (10.7) gives
the nucleation rate per unit grain boundary area. It must also be added to Eq. (10.7)
that at most one nucleus is formed in each subgrain. Equation (10.7) describes the
situation for a particle free material. If particles are present, nucleation is assumed to
occur when a subboundary hits a particle on a sliding grain boundary. Considering the
nucleation at both particles and subgrain corners, the nucleation rate can be expressed
as [31]

dncay 0.9C; [ gsub 8part \ . R
= =B 10.8
7 ™" ( R +57 )E=Bié (10.8)

where \ is the interparticle spacing in the grain boundary. In Eq. (10.8), factors ggu
and g, are introduced for the fraction of subgrain corners and particles where cavity
nucleation takes place. The values of gqu, and gpa Will be discussed below. 0.9 is a
factor that takes into account the averaging of different orientation. The derivation
is comparatively lengthy. For this reason the derivation is not presented here [31].

10.4.3 Comparison to Experiments for Copper

Das et al. have recently presented measurements on nucleation of creep cavities
in copper using small angle neutron scattering (SANS) [32]. Their results will be
compared with the model in Sect. 10.4.2. They give values for the spacing A\cay
between cavities in the grain boundaries. The spacing can be transferred to the number
of cavities nc,, per unit grain boundary area as

Neay = 1/22, (10.9)

The results for nq,y as a function of stress is shown in Fig. 10.3.

In Fig. 10.3 the model values are about a factor of 4 below the experimental ones
but show the same stress dependence. The ratio between the tests at the two times
is about the same. There is also another way to determine the cavity density in [32]
from their volume fraction fy and the cavity radii R,y

fv
7 R2

cav

(10.10)

Necay =

The values from Eq. (10.10) fall below the model values contrary to the values
according to Eq. (10.9). Since it is more difficult to measure the volume fraction
and the cavity radius than the cavity spacing, the values from Eq. (10.10) are more
uncertain and are not shown in Fig. 10.3.

Das el al. evaluated the parameter B in Eq. (10.8), i.e. the ratio between the
nucleation rate and the creep rate or expressed in another way the ratio between the
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Fig. 10.3 Modeling and
experimental number of
cavities per unit grain
boundary area as a function
of stress for two testing
times. Model values from
Eq. (10.8) and experiments
from [32]
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cavity density and the creep strain. The experimental and the model values are given
in Fig. 10.4. Unfortunately data are not available for exactly the testing time as in

Fig. 10.3.

The model values are a factor of 2 above the experimental data this time. The stress
dependence is about the same in the model and the experiments. It should be noticed
that with the same model in the Figures, model values are above the experimental
ones in Fig. 10.4 contrary to those in Fig. 10.3. This indicates an uncertainty in the
experimental data and the consistency between models and observations is acceptable
considering this effect. It is valuable that the fairly dramatic stress dependence in the
model (6°) is reproduced in the observations.

Fig. 10.4 Modeling and
experimental values for the
ratio By between the number
of cavities per unit grain
boundary area and the creep
strain as a function of stress
for a testing time of 17.5 h.
Model values (line) from
Eq. (10.8) and experiments
(points) from [32]
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w
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10.4.4 Comparison to Experiment for Austenitic Stainless
Steels

A comparison of the model in Eq. (10.8) to experimental data for austenitic stainless
is given in Fig. 10.5. Data for TP347 (17Cr12NiNb), TP304 (18Cr10Ni) and TP321
(17Cr10NiTi) are presented. Nucleation at both subgrain corners and particles are
taken into account. Considering the scatter in the data, the observations give good
support to the model. In Fig. 10.5, the factors ge, and gpar are taken as unity. Thus
every subgrain corner and particle is assumed to contribute to the nucleation. This
cannot always be assumed to be the case but systematic studies have not been found.

10.5 Models for Cavity Growth

10.5.1 Unconstrained Cavity Growth Model

Once the cavities have been nucleated they can start to grow if they exceed a critical
size. Growth of creep cavities are in general assumed to be controlled by diffusion.
There can also be contributions from straining. Strain controlled growth is considered
in Sect. 10.5.3. A diffusion controlled growth model was first proposed by Hull and
Rimmer [13]. Beere and Speight simplified this formulation [33] and this is the
version that is used nowadays

dR ay 1
pra 2DyKi(o — 00) 5

cav

(10.11)
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R4y is the cavity radius in the grain boundary plane, dR.,,/dt its growth rate,
o the applied stress, o the sintering stress 2yg sin(a)/R.ay, Where s is the surface
energy of the cavity per unit area and o the cavity tip angle. The presence of the
sintering stress o ensures that only cavities that are larger than a critical size grow.
d the grain boundary width, Dgp the grain boundary self-diffusion coefficient, 2
the atomic volume are combined into a grain boundary diffusion parameter Dy, Dy
= 3Dgp2/kpT. kg is the Boltzmann’s constant and 7 the absolute temperature. The
factor K¢ was introduced in [34]. It takes into account the role of the size of the cavity
in relation to that of the surrounding area that can deliver vacancies for the growth
of the cavity. It is a function of the cavitated grain boundary area fraction f, = (2R/
)\cav)z

Ki=—1/[21og fu + (1 = )G = £)] (10.12)

Acay 18 the spacing between cavities in the grain boundary. It can be determined from
number of cavities per unit grain boundary area nc,y, cf. Eq. (10.9)

Acay = 1/\/”cav (10.13)

Neay 18 derived with the nucleation relation, Eq. (10.8).

The cavities cannot grow unless the stress is larger than the sintering stress op.
This means that the cavity radius must have reached a certain size for growth to take
place, which is referred to as the nucleation radius Ry, . From the expression for the
sintering stress, Ry can be found

) .
Roya = %n(a) (10.14)

Das et al. give data for the cavity radius for short creep testing times measured
with small angle neutron scattering (SANS) [32]. The cavity radii should be close to
Ruucl- A comparison between their data and Eq. (10.14) is illustrated in Fig. 10.6.

In Fig. 10.6, a cavity tip angle of 55° has been assumed. A precise value of the
tip angle is not known but in the literature values of 50-70° are often used. It can be
seen that the nucleation radius is well represented by Eq. (10.14). The mechanisms
for the initial growth of creep cavities are not well established. But it is likely that
it takes place by GBS, see Sect. 10.5.4. Since the cavities are initiated by GBS, it is
reasonable that the first growth also occurs by this mechanism.

10.5.2 Constrained Cavity Growth

It was early on found that the expression for diffusion growth in Eq. (10.11) often
exceeded observed values. Dyson noticed that the predicted growth rate many times
was larger than the creep strain rate which he considered to be unphysical [9]. He
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suggested that the growth rate should always be less than the creep rate that is referred
to as constrained growth. Here the expression for constrained growth derived by Rice
will be used [14]

dR..y 1
= 2DoK(0red — UO)RT (10.15)

The only difference between Eqs. (10.11) and (10.15) is that the applied stress is
replaced by a reduced stress oreq

1
Ored = 00 + T 3507 (10.16)

o A2 deBé(0)
where B is a material constant (8 = 1.8 for homogeneous materials), and d, the grain
diameter. Equation (10.15) satisfies the criterion formulated by Dyson.

In Rice’s paper an assumption was made about linear viscoplastic opening of a
crack. In a reanalysis, He and Sandstrém did not make the assumption about linearity
[35]. A grain structure with a pillar of height 4 and width corresponding to the grain
size dy was set up. The creep deformation in this pillar in the loading direction z can
be expressed as

d
o = 4T DoK1(0res — 00)eas + hé(Orea) = hi () (10.17)

&(0req) and & (o) are the creep rates at the reduced and applied stress, respectively.
In the first expression for % the first term is the volume growth rate of a cavity
multiplied by the number of cavities per unit grain boundary area. The second term

is the creep displacement of the pillar at the reduced stress. The second expression for

z—f is the displacement of the surrounding material at the applied stress. According
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Fig. 10.7 Reduced stresses 120 T T
according to Eq. (10.16) - - -He & Sandstrom
(dash-dotted) and (10.18) 100 - S Mo Rice |
(dashed) versus time for the RN LT .
austenitic stainless steel AN \\
18Cr10 Ni (TP304) at 80| 1
727 °C and 100 MPa. & s '\\‘
Redrawn from [36] with s \ \
permission of Elsevier 3 601 ' Y 1
& ' Y
40 \\ ‘_“ 4
\\
20+ 18Cr10Ni 727°C 1

O 1 i 1 i L
107" 10° 10" 102 108 10*
Time, h

to Eq. (10.17), the cavity growth rate plus the creep rate around the cavity matches
the average creep rate. This is a stronger criterion than the original requirement on
constraint. The height of the pillar 7 was determined with finite element analysis.
The finding was that the pillar height was related to the cavity radius & ~ 2R,y [35].
With this result, Eq. (10.17) takes the form

2jTDOI{f(O'red - 60)/L2Rcav + é(ared) - 8(0) (1018)

To find 0,4, the equation has to be solved by iteration. This new value for oy is
lower than what the expression (10.16) gives. An illustration of this is presented in
Fig. 10.7. In particular, the difference is significant at longer times.

These reduced stresses are quite important when describing experimental data. A
comparison to experimental data for common austenitic stainless steel is shown in
Fig. 10.8. Data for 18Cr10Ni steel with and without Nb or Ti are illustrated. This
new model for constrained growth clearly gives an improved description of data.

10.5.3 Strain Controlled Cavity Growth

A contribution from plastic deformation to cavity growth can also be obtained. The
most well established model is due to Cocks and Ashby [37]. They analyze how the
area fraction f, of cavities in a grain boundary perpendicular to the loading direction
increases with strain. They derived the following time derivatives for f, and the axial
strain g, in the loading direction

dfs s_{ 1
(I = fo)m

dt - oy

- - fh)} (10.19)
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where the stationary creep is given by
. .o\
Egs = 80<—> (10.21)
00

and

(10.22)

o = l/sinh{—(nN —1/2) ﬁ}

(nx +1/2) o

Ry, is the initial cavity radius, d, the grain size, o, the effective stress and oy,
the hydrostatic stress. &y, 09, and ny are constants describing the creep rate. By
integrating Eqgs. (10.19) and (10.20) the cavitated area fraction can be obtained. An
example is shown in Fig. 10.9. An initial cavitated area fraction of 0.001 is assumed.

The increase in cavitated area fraction is much larger if a larger initial value is
assumed, which does not seem to be realistic. If the plastic growth is combined with
diffusion growth, significant contributions can be obtained. The problem with the
model is that it is not consistent with the principle of constrained growth. The strain
rate around the cavities can become many times larger than the average creep rate
and that should not be the situation during constrained growth. This effect is however
small for low cavitated area fractions, so the results in Fig. 10.9 are still valid.

Describing the growth rate due to plastic deformation can be handled with a model
that has been developed by Danavas and Solomon [38]
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where a;p i the tip angle of the cavity. An important modification has been made in
Eq. (10.23) in comparison to the original model in [38]. The creep rate is computed
for the reduced stress, not for the applied stress to make it consistent with Eq. (10.18).
The expression gives a modest increase in the cavity size except if multiaxial stress
states are taken into account. In Eq. (10.23) this is considered with the help of an
expression from Rice and Tracey [39]. There are several alternative ways that have
been proposed for the influence of multiaxial stress state derived from cavity growth
during ductile fracture. The role of multiaxial stress cannot be considered to be fully
settled.

10.5.4 Growth Due to Grain Boundary Sliding

It is well established that cavities are often elongated in the plane of the grain
boundary. As has been analyzed in detail above, it is natural to assume that cavi-
ties are nucleated due to grain boundary sliding (GBS). Once the cavities have been
nucleated for example around particles, the cavities will be exposed to shearing due
to the continuing GBS. It is possible that some cavities expand at the same rate as
the GBS. From Eq. (10.5) this will give a cavity size of

Reay = ng (1024)

where C; is again given by Eq. (10.6), This expression is compared with data for a
12CrMo steel and a TP347 (17Cr12NiNb) austenitic stainless steel in Fig. 10.10.
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Fig. 10.10 Cavity radius versus strain. Model according Eq. (10.24); a 12CrMo steel (X20). Data
from [40]; b TP347 (17Cr12NiNb). Data from [41]. b Redrawn from [42] with permission of
Taylor & Francis

The results give a reasonable description of the cavity growth data for the two
steels. The amount of data to make comparisons to the model is limited. Since the
constant C, is proportional to the grain size, the model predicts large cavity radii
when the grain size is large, which might not be realistic.

10.6 Summary

e Nucleation of creep cavities is assumed to take place at particles and subboundary
junctions in the grain boundaries by grain boundary sliding (GBS). This assump-
tion makes it possible to quantitatively explain the observed strain dependence
of the number of cavities. In the past attempts have been made to use classical
nucleation theory, but it gives essentially a step function in stress that is in direct
variance with observations.

e Diffusion controlled growth of cavities can satisfactorily describe observations
for austenitic stainless steels if recent modeling for constrained growth is taken
into account. Constrained growth ensures that the cavities are not expanding faster
than the creep rate of the matrix.

e Several expressions for strain controlled growth exist that are derived from basic
physical principles. However, these expressions are difficult to verify experimen-
tally since the starting cavity size has a significant effect on the result and there
is no well-defined way of choosing the size. In addition, some expressions do
not fulfil the requirements on constrained growth which can give overestimated
growth rates. A recent model based on GBS avoids these difficulties. The model
reproduces the limited experimental data that are available.
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Chapter 11 ®)
The Role of Cavitation in Creep-Fatigue oo
Interaction

Abstract There are many empirical models for the development of creep and fatigue
damage. The perhaps most well-known ones are Robison’s and Miner’s damage
summation rules. They are based on the mechanical behavior during monotonous and
cyclic loading. To improve the accuracy of the damage assessment, it is important
to analyze the changes in the microstructure as well, not least the cavitation. To
describe cyclic loading, special empirical models have often been used in the past,
some with numerous adjustable parameters. Recently, a model for cyclic loading
has been formulated that is based on the corresponding expressions for monotonous
loading. The main change is that the value of the dynamic recovery constant is
increased. In this way, cyclic hysteresis loops can be reproduced without adjustable
parameters. Cavitation is believed to be of the same technical importance during
cyclic as during static loading. In spite of this, the number of studies of cavitation
during cyclic loading is quite limited. One set of data exists for a 1Cr0.5Mo steel. The
static cavitation models have been transferred to cyclic conditions. It is demonstrated
that these models can describe the cavitation both during low cycle fatigue (LCF)
and combined creep and LCF.

11.1 General

High temperature plants are often exposed to a combination of creep and fatigue.
A common feature is thermal fatigue where components are exposed to straining
during start-ups and shut-downs. During operation primary stresses (direct loading)
as well as secondary stresses (self-equilibrium stresses) appear that give rise to creep
damage. Although some types of plants like steam and gas turbines are particularly
exposed to cyclic loading, both creep and fatigue are of importance in many plants.
In recent years significant contributions from solar and wind power have been added
to the electric supply. Since the amount of power of these renewable sources depends
on the weather, additional basic power is needed. This has implied that many fossil
fired power plants have been put into standby and are operated intermittently. This
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means that number of start-ups and shut-downs are increased and thereby the amount
of cyclic loading.

Different types of damage appear depending on the relative amounts of creep and
fatigue. If there is limited creep due to short loading times at high temperatures,
the life time is controlled by fatigue [1]. Pure fatigue is dominated by transgranular
crack initiation, Fig. 11.1a. On the other hand if there is modest amount of fatigue,
the damage will be dominated by creep. Creep gives rise to cavitation in the grain
boundaries, Fig. 11.1b. If fatigue and creep take place sequentially, the main cracks
changes from transgranular to intergranular, Fig. 11.1c. If creep and fatigue loading
occur simultaneously, the creep damage in the grain boundaries provides easy paths
for the fatigue cracks, Fig. 11.1d.

Creep-fatigue interactions have traditionally been studied with low cycle fatigue
(LCF) at a temperature close to the maximum operation temperature [3]. To observe
any influence of creep, it is essential to include hold times in the load cycles [1].
However, it has turned out that LCF typically gives a lower amount of damage
than is found in components. For simulating the role of straining during start-ups
and shut-downs, thermal mechanical fatigue (TMF) is often used where both the
loading and temperature are varied during the cycle. It is important that the minimum
temperature in the cycle is low, since a significant part of the damage is generated at
low temperatures [4]. LCF and TMF are commonly performed under strain control.
A number of tests are carried out with a sequence of different maximum strains in the
cycles. Hold times are introduced at the maximum and/or minimum strains. During

(a) Fatigue dominated (b) Creep dominated

|

(c) Creep-fatigue interaction (d) Creep-fatigue interaction

(creep damage consequential) (creep damage s.‘mu;'?éneousj

Fig. 11.1 Appearance of creep-fatigue damage mechanisms; a fatigue controlled; b creep
controlled; ¢ creep-fatigue interaction (sequential); d creep-fatigue interaction (simultaneous).
Reprinted from [2] with permission of Taylor & Francis
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the hold times the strain level is fixed during which the stress is relaxing due to creep.
An alternative is to have hold times at a fixed stress. Since the absolute value of the
average stress is larger during the hold times in this case, it gives rise to more creep
damage than for a hold time at constant strain. The amount of creep damage can be
increased by raising the length of the hold time or by lowering the strain rate in the
cycle.

It is well-known that formation of creep cavities plays an important role during
creep-fatigue interaction. This is illustrated in Fig. 11.1. In spite of the importance of
creep cavities during creep-fatigue, only limited efforts to generate basic modeling
of the phenomenon have been taken [5]. Instead, reference has to be made to brittle
creep rupture during static conditions. It can be assumed that many of the mechanisms
are similar for cyclic and static loading. The main mechanism for creep damage is
believed to be initiation and growth of creep cavities in the grain boundaries. When
the cavitated area fraction in the grain boundaries has reached a certain level, cracks
are formed and rupture is close in common specimens [6]. In larger specimens and
components the crack propagation stage is also of major importance [7].

Grain boundary sliding (GBS) is commonly assumed to give rise to cavity forma-
tion. This is a natural assumption. Considering for example particles in the grain
boundaries. GBS will generate extensive shearing around the particles that can easily
initiate cavities. However, cavities can also be formed in grain boundaries where very
few particles are present such as in pure copper. Lim provided a model for this situ-
ation by taking into account the presence of substructure [8]. Cavities can form at
the intersection between grain boundaries and the substructure. He showed that this
process is thermodynamically feasible and there is an energy gain when cavities are
formed. Quantitative models for cavity nucleation could now be formulated.

It has been shown experimentally and with the help of finite element methods
(FEM) that the amount GBS is proportional to the creep strain [8, 9]. The FEM
modeling also gives the proportionality constant, so it can be used for quantita-
tive predictions. Using these findings and the assumption that cavities can nucleate
at particles and subgrain-grain boundary junctions, the double ledge model was
formulated [10]. This model gives that the number of cavities is proportional to the
creep strain and the results are in quantitative agreement with observations [11]. It
is assumed that these principles can be taken over for cyclic loading, Sect. 11.4.

Models for diffusion controlled growth of creep cavities have been available for
many years. Unfortunately, these models typically predict much higher growth rates
than the observed ones. It was however realized that cavities inside a material (not on
the surface) cannot grow faster than the creep rate of the surrounding material. This
is referred to as constrained growth in contrast to the unconstrained models [12].
Models for constrained growth were quickly developed and gave a better agreement
with observations, see for example [13]. The models still tended to overestimate the
growth rate. For this reason, the models were reanalyzed and with the help of FEM
studies. A new and improved model could be established that is in better agreement
with experiments [14].

Strain controlled growth of creep cavities can also take place in addition to diffu-
sion growth. There are number of models based on plastic straining in the literature.
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Unfortunately, most of these models do not consider constrained growth contrary to
the situation for diffusion growth, which means that the predicted grow rate can give
quite large cavity growth during creep. Recently, a model that takes the criterion for
constraint growth into account has been presented which is of importance during
creep [5]. During cyclic deformation, constrained cavity growth is not expected to
be significant due to the often small creep strain in the cycles. This will be discussed
in Sect. 11.4.2.

For creep failure it is important to distinguish between ductile and brittle rupture.
Ductile rupture has been shown to occur after ductility exhaustion or after plastic
instability has taken place (in specimens necking) [15]. Brittle rupture in many engi-
neering materials takes place after the cavitated area fraction in the grain bound-
aries has reached a certain level. To predict creep rupture, the development of the
microstructure must be possible to model including the dislocation structure, particle
structure and the fraction of elements in solid solution. In this way the dislocation
strengthening, particle hardening and solid solution hardening can be computed. In
addition, quantitative models for cavity nucleation and growth must be available.
Such models have been established and the creep rupture behavior has successfully
been predicted for austenitic stainless steels without the use of adjustable parameters,
see for example [16].

For monotonous loading these principles are well established. However, data and
parameter values cannot be applied to cyclic loading directly and basic models for
this case are only available to a limited extent. For example, the value of the dynamic
recovery constant is much larger during cyclic than during static loading [5]. This
will be analyzed in Sect. 11.3. Models for cavitation during low cycle fatigue will
be presented in Sect. 11.4 and compared to experimental data for 1Cr0.5Mo steel.

11.2 Empirical Principles for Development
of Creep-Fatigue Damage

11.2.1 Fatigue and Creep Damage

Basic models for describing creep rupture are available. Several models have been
given in this book. However, for cyclic loading basic models do not seem to have
been developed. However, many empirical models can be found. A model that is
applicable to many materials is the Coffin-Manson equation

Ninie = Com(Agy) Fem (11.1)

where Ny is the number of cycle to crack initiation and Aep, the plastic strain range
in the load cycle. Ccym and Bey are constants that are fitted to the observations.
Equations of type in (11.1) can sometimes also be used for the elastic and total strain
range. The use of Eq. (11.1) is illustrated in Fig. 11.2.
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Fig. 11.2 Relation between
the number of cycles to crack
initiation and the total,
plastic and elastic strain
ranges for 1Cr0.5Mo during
continuous cycling (CC).
Experimental data from [17].
Redrawn from [18] with
permission of Taylor &
Francis
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The influence of pre-creep before LCF and/or hold time during the LCF is illus-
trated in Fig. 11.3. With increasing amount of creep, the elastic strain range at a given
number of cycles to crack initiation is significantly reduced. However, the effect of
creep on the plastic strain range relation is not very pronounced.

The total fatigue damage Dr is often determined with the help of Miner’s law. It
is based on linear summation of the damage over individual cycles

ni
pp=S " (112)
Ninit (Agp1 (i)
CcC
045 1Cr0.5Mo Precrept 560C
. 535°C X Precrept 600C
e ) Precrept 560C
I o - ’
> S Hold time 5 min
o = Hold time 5 min
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K o cc e
‘g x Precrept 560C | %3
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* Hold time 5 min
0.25 . old time 5 mi
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Fig. 11.3 Influence of 5% pre-creep strain and/or 5 min hold time on the number of cycles to crack
initiation as a function of strain range for 1Cr0.5Mo. Experimental data from [17]; a elastic strain

range; b plastic strain range
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where n; is the number of cycles when the plastic strain range is Ag, (i) giving
a number of cycles to crack initiation of Ny (Aegy(i)). When the damage reaches
unity, failure is assumed to take place.

There are many expressions for the creep damage Dc¢. The classical principle is
based on linear time fractions (Robinson rule)

t

Dc=f$ (11.3)
/ tr(T (1)), 0 (1))

where 1r(T, 0) is the rupture time at temperature 7' and stress ¢ as a function of time
t. An alternative way is to base the damage on ductility exhaustion

. de
De Z/ de (T (1)), o (11))d1y (114

er(T(11), 0 (t1))

where the accumulated creep strain is compared to the rupture ductility. A simple
assumption of how to combine Dg and D¢ would be to just add them. This means
that rupture is predicted to occur when

Dr+ Dc =1 (11.5)
However, detailed experiments have shown that such a relation is not conservative

enough. In fact, bilinear equations have been demonstrated to agree with observations
and have also been standardized by ASME

1 — OFEC
DF =1- DC DF > DC
orC (11.6)
1— OFC
Dc=1- Dg D¢ > Dr
QFC

The constant agc has been found to be material dependent. Holdsworth [7] gives
the following values: for the austenitic stainless steels 18Cr10Ni and 17Cr12Ni2Mo,
apc = 0.33, for 20Cr30NiTi, agc = 0.11, for 9Cr1Mo (P91), apc = 0.25 and for
2.25Cr1Mo, apc = 0.11. The bilinear relation in Eq. (11.6) is illustrated in Fig. 11.4.
For comparison Eq. (11.5) would give a straight line between (0, 1) and (1, 0).
Equation (11.6) is thus considerably more conservative than Eq. (11.5).

For plain specimens of parent metal, Eq. (11.6) is very well supported. However,
already by considering multi-axial stresses, the prediction of the rupture time in
Eq. (11.3) becomes an issue. Hayhurst [19] proposed that the rupture stress og under
multi-axial conditions could be represented by

OR = Y101 + ¥20h + V30 (11.7)



11.2 Empirical Principles for Development of Creep-Fatigue Damage 211

Fig. 11.4 Bilinear criterion 1
for failure with combined
fatigue and creep damage 5
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where o; is the maximum principal stress, oy, the average of the principal stresses
and o, the effective stress. y;, Y, and y3 are constants that are fitted to creep rupture
data under multi-axial conditions. It has been shown that Eq. (11.7) can be used to
describe experimental data in a number of cases. However, it turns out that different
authors give different values for vy, y2 and 3. Since the results of Eq. (11.7) are very
sensitive to the values of these constants, it is difficult to use Eq. (11.7) to estimate
the rupture stress. The issues with Eq. (11.7) have been discussed by Wen et al. [20].
This is one of the reasons why the ductility exhaustion expression for creep damage
Eq. (11.4) is preferred by many authors to the estimate of the damage by integration
over the rupture time, Eq. (11.3) [2]. The influence of multiaxiality on the creep rate
can be described directly with the Odqvist equation [21]

) 3 sij
&ij = Ea—jh((fe) (118)

The stress dependence of the creep rate /(o) in the secondary stage can be found
in Eq. (5.31). The stress deviator s;; and the effective stress o, are given by

Sij =0ij—oh5ij (119)

00 = (01 — 022 + (02— 33)* + (03 — 01)?) /2 (11.10)

where oj; is the stress tensor, 3;; the Kronecker delta, o1, o2 and o3 the principal
stresses, and oy, the hydrostatic stress (the average of the principal stresses). i and j
runs over the coordinate directions 1, 2 and 3. By considering uniaxial conditions
(01 = 0, 03 = 03 = 0), it can easily be shown that the expected creep rates &, =
éu, &, = —&u/2, &, = —&,/2 are reproduced, where ¢, is the uniaxial creep rate.
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For the creep ductility, the influence of multiaxiality has been characterized quite
well and there is a fair agreement between several models and experiments at least
for notched bars. This is analyzed in Sect. 13.4.4. For example, the model by Wen
and Tu seems to represent many sets of experimental data [22].

In the paper by Wen et al. [20] it is quite well documented that ductility exhaustion,
Eq. (11.4) gives a considerably safer prediction than that based on the life fraction
rule, Eq. (11.3). Even for ductility exhaustion, they demonstrate that the predicted
damage typically deviates a factor of three up or down.

These results confirm many earlier results that it is not safe to base damage esti-
mates solely on mechanical properties. It is also important to predict the microstruc-
ture development in terms of particle coarsening, subgrain growth, cavitation, etc.
and compare the findings with observations. If it can be done with continuum damage
mechanics that is fine, but it is strongly recommended to use basic models of the
type formulated in this book.

A third way to estimate the damage is to compute the cavitated area fraction A,y
in the grain boundaries (Eq. (13.8))

t

dn

Acay = / ﬁ(t/)ﬂ?fav(h t"dt' (11.11)
0

where n,y, is the number of creep cavities per unit grain boundary area and R,y their

radius. The amount of damage is then

Dc = Acav/Acavcril (1 112)

Acaverit 18 the amount of cavitation when cracks are initiated. If it is possible to
record the cavitation, it is usually the safest way to assess the amount of damage.
The modeling of n¢,, and R.,, during cyclic loading is handled in Sect. 11.4.

11.2.2 Loops During Cyclic Loading

During cyclic loading the stress versus strain curves form loops that are called
hysteresis loops. Perhaps the most common way of describing a hysteresis loop
is with the Ramberg-Osgood equation

S " (11.13)
4= — — .
E Kip

where ¢, is the strain, o, is stress, and E the elastic modulus. Ky, and vy, are
adjustable parameters that are fitted to the experimental data. There are more complex
approaches based on the assumption that the loops are due to the build-up of residual
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stresses. The first such approach was due to Masing but models based on the
superposition of a distribution of yield strengths have also been proposed [23].

The creep damage in a stress strain loop is primarily due to the stress relaxation
during a hold time and thereby the amount of creep strain. To describe the stress
relaxation during a hold time, the Feltham equation is often used for this purpose

Orel = Ost(1 — 00 Brer log(1 + breit)) (11.14)

where o is the start stress, o, is the stress after relaxation and ¢ the relaxation time.
Bie1, brel and o are adjustable parameters. References to the original papers can be
found in [24] where also some applications of the equations are given.

11.3 Deformation During Cyclic Loading

11.3.1 Basic Model for Hysteresis Loops

Empirical models for representing hysteresis loops are readily available. A few exam-
ples were mentioned in Sect. 11.2.2. Adjustable parameters in these models are fitted
to the experimental data. Often a reasonable fit to the data can easily be obtained.
There are however drawbacks with the empirical approaches. Typically a good fit
can be found with many mathematical expressions and then it is difficult to know
which one represents the correct mechanism. It is practically always desirable to
extrapolate the results to new condition but if the operating mechanisms are not
safely identified, generalization of the results becomes quite uncertain unless a large
set of experimental data is available. Phrased in another way, empirical models are
not predictable.

For creep under non-cyclic conditions, basic models have been presented in several
chapters in the book and also in publications, for a survey, see [25]. The models
are formulated from basic physical principles and have been shown to reproduce
experimental data for copper, aluminum and austenitic stainless steels in a satisfactory
way without using adjustable parameters. Such models are referred to as basic in this
book. Only limited attempts have been made to perform the corresponding derivation
for cyclic deformation, which involves elastic, plastic and creep deformation. The
procedure described in [5] will be followed. The Voce equation can describe the
plastic flow curve for a number of materials. This equation is given in Eq. (3.14) and
can also be found in [26].

0 =0y + (Umax flow — 0’_\7)(1 - efwspl/Z) (1115)
where o is the applied stress, e the plastic strain, oy the yield strength, omax flow

the maximum flow stress, and w the dynamic recovery constant. The deviation from
linear behavior of the work hardening is controlled by w. The plastic strain rate can
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be obtained from Eq. (11.15)

dey 2 do

=V (11.16)
dt @ (Omax flow — 0) dt

The creep rate in the secondary stage &g is given in Eq. (4.3). The original
derivation can be found in [27]

2ber Deiobtr ¢ 0 \3 ot _Ss[i-(2)?] 2
]’l — ( ) kgT RgT Timax RT 11.17
@ = kT \aGb) ¢ ¢ (A
d sec
Esec _ h(o — o3) (11.18)
dt

where T is the absolute temperature, o the applied stress, Dy the pre-exponential
coefficient for self-diffusion, Qs the activation energy for self-diffusion, kg Boltz-
mann’s constant, Rg the gas constant, m the Taylor factor, b Burger’s vector, tr, the
dislocation line tension, Ojmax the maximum flow stress, and c¢p a work hardening
constant. Solid solution hardening gives an additional contribution Qy to the acti-
vation energy. oj is an internal stress that includes contributions from solid solution
hardening and particle hardening. The stress exponent is about 3 at low stresses, but
increases rapidly with increasing stress. According to Eq. (4.6), the primary creep
rate is given by

dsprim

1 = h(o + 0Odisl sec — Tdisl — Oi) (11.19)

In comparison to (11.18) an extra stress has been introduced
Oprim = Odislsec — Odisl (11.20)

For this model for primary creep that was described in Sect. 4.3, primary creep is fully
accounted for just by introducing the extra stress in Eq. (11.20). It is the difference
between the dislocation stress in the secondary stage ogig sec and that in the primary
stage o4 Since the dislocation density in the primary stage is normally much lower
than that in the secondary stage, consequently oy;g sec 1S much higher than og4i5. The
result is that the creep rate is much higher in the primary stage than in the secondary
stage as it should. This is also directly evident from Eq. (11.19).

In a hysteresis loop, the stress is not stationary but varies all the time. It goes
through the cycle so the creep process is restarted in every half cycle. This means
that primary creep is involved. But in fact, Eq. (11.18) is still valid [28]. This can be
seen from Egs. (11.20) and (11.21). In these equations, ¢ + opim correspond to the
stress during cyclic loading. The result is simply

dgprim

TR h(o — sgn(éiwt)oi) (11.21)
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This equation is obviously identical to Eq. (11.18) apart from the different sign
in front of o; in the compression and the tension going part of the cycle.

The total strain rate &, has contributions from the elastic &, plastic &y, and creep
strain rate £pim. The sum of the elastic, plastic, and creep strain rate is equal to the
external strain rate

dee dspl dgpn'm . dé&or

(11.22)
dt dt dt dt
where the elastic strain rate & is
deg do 1
= —— (11.23)
dt dt E

and E is the elastic modulus. By combining Egs. (11.16), (11.21), (11.22) and (11.23),
the stress rate that gives the hysteresis loops is found

do 1 |:d8t0t

E N l/E + 2/[w(0maxﬂ0w - Sgn(étot)(f)] dt B h(O’ - Sgn(e[Ot)Oi)]

(11.24)

The sign function sgn in Eq. (11.21) is necessary to make the equation valid for
both the tension and compression going parts of the loop.

When applying Eq. (11.24) for hysteresis loops, the starting point is that the
properties used in monotonous loading should be taken over to as large extent as
possible. Creep properties can be found for many materials. However, tensile prop-
erties at elevated temperatures are often more difficult to locate. The temperature
dependence of the maximum flow stress below the creep range is approximately
related to that of the elastic modulus (unpublished results)

2
E(T) ] (11.25)

Omax flow (T) = Omax flow (RT) |: E(RT)
where T and RT represent the value at temperature and room temperature, respec-
tively. The dynamic recovery constant  has also a related temperature dependence.
But there is also another effect. w describes how fast dislocations of opposite burgers’
vectors on the same slip plane annihilate when they meet. But during cyclic defor-
mation dislocations meet much more frequently that raises the value of . Each half
cycle in the hysteresis loop can in this respect be considered equivalent to the strain
to uniform elongation in the monotonous case. The resulting equation for w is then

e [ERT)?
o(T) = a)(RT)S—|: 5 } (11.26)
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where ¢, is the uniform elongation during monotonous loading and ¢, the strain
range during cycling. Observe that the influence of the temperature dependence of
the elastic modulus is opposite for o,y fow and w.

11.3.2 Application of the Cycling Model

A model for the hysteresis loop is given in Eq. (11.24) based on the same principles as
for stationary deformation. Elastic, plastic and creep deformation are considered. It
involves parameter values for monotonous loading except for the dynamic recovery
constant » which has to be raised due to the frequent encounter of dislocations during
cyclic deformation according to Eq. (11.26).

Equation (11.24) is applied in Fig. 11.5 to the 21Cr11Ni austenitic stainless steel
253 MA, that has rare earth metal additions to improve the oxidation resistance and
can therefore be used up to 1000 °C. A loop for continuous cycling is illustrated.

An acceptable description of the loop is obtained. Data for the studied material
can be found in [29].

The high value of w is quite important. If the monotonous value for w is used
(0w = 15 at room temperature) without taking the loop factor ¢,/¢; into account, the
observed type of loop cannot be reproduced. This is shown in Fig. 11.6. Obviously,
a reasonably formed looped cannot be formed.

In Sect. 11.4 on cavitation, the steel 1Cr0.5Mo will be studied. Since creep rate
data for the steel have not been found, the model values have been compared to
rupture data assuming that the Monkman-Grant relationship is valid. The rupture
data is shown in Fig. 11.7.

An Arrhenius expression is fitted to the data

Fig. 11.5 Hysteresis loop 200
for low cycle. f.atlgu‘e ren T Modal
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Eq. (11.24). Redrawn from %
[18] with permission of g2 07 1
Taylor & Francis »
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Fig. 11.6 Simulated
hysteresis loop for low cycle
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parameter values except that
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R kgT

The data for stresses above 300 MPa are ignored since they are not of importance
for the hysteresis loops. The values of the constants are Or = 391 kJ/mol, ny = 4.4
and Cg = 1.0 x 10'? with the rupture time #g in hours. Equation (11.27) is transferred
to strain rate with the help of the modified Monkman-Grant relation.

f= R (11.28)
IR
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Fig. 11.8 Creep rate model values for 1Cr0.5Mo steel according to Eqgs. (11.17) and (11.18)
compared creep rupture data [30] fitted to an Arrhenius expression as well as to experimental
creep rate values from [17]

The rupture ductility eg is taken as 0.1. The strain rate according to the model
in Eqs. (11.17) and (11.18) is compared to that in Eq. (11.28) in Fig. 11.8. A few
experimental data points for the creep rate from [17] are also included.

A precise agreement in Fig. 11.8 is not to be expected because the Monkman-
Grant equation is only an approximate relation. In addition, the activation energy
for the rupture is quite high, 390 kJ/mol. This should be compared to the activation
energy for self-diffusion for ferrite that is 240 kJ/mol. For the creep rate this value is
raised by the contribution from solid solution hardening that has been taken as 50 kJ/
mol. The difference in activation energy between creep rupture and rate is still quite
significant. The modelled strain rate are anyway of the right order around 550 °C,
where the results are used for modeling hysteresis loops.

Four modeled loops for 1Cr0.5Mo steels are compared to experimental data in
Figs. 11.9 and 11.10.

In Fig. 11.9, two loops cycled at 535 °C with and without pre-creep are compared.
Pre-creep reduces the stress range probably due to softening of the microstructure
during the creep process. In Fig. 11.10, the influence of a hold time is illustrated
that decreases the stress range further. Pre-creep reduces the stress range also in this
case. It is evident that the model in Eq. (11.24) can at least approximately describe
the influence of pre-creep and hold time on the hysteresis loops.

To illustrate the applicability of the model in Eq. (11.24) quite a different case
where creep has the main influence on the hysteresis loops is considered. This
should be contrasted to Figs. 11.9 and 11.10 where the dominant influence on the
loops is from cycling. Loops have been computed for alloy PM2000, which is a
ferritic oxide dispersion strengthened (ODS) alloy with the approximate composi-
tion 20Cr5A10.4Ti0.5Y203 [31]. Loops are presented in Fig. 11.11 at 1200 °C for
two different strain rates. The dominance of creep is demonstrated by the flat upper
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Fig. 11.9 Hysteresis loop for low cycle fatigue (LCF) of the ferritic-bainitic steel 1Cr0.5Mo at
535 °C. Experimental data from [17] are compared with the model in Eq. (11.24). a Tempered
condition; b pre-crept to 5% strain at 600 °C. Redrawn from [18] with permission of Taylor &

Francis
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Fig. 11.10 Hysteresis loop for low cycle fatigue (LCF) of the bainitic steel 1Cr0.5Mo at 535 °C
with a hold time of 5 min. Experimental data from [17] are compared with the model in Eq. (11.24).
a Tempered condition; b pre-crept to 5% strain at 560 °C. Redrawn from [18] with permission of
Taylor & Francis

and lower parts of the loops. The high temperature is the origin of the strong role of
creep. The creep strain is of importance at lower stresses. This means that the vertical
parts of the loops are controlled by the initial straighter part of the work hardening.
The main effect of the lower strain rate in Fig. 11.11b is that it reduces the stress
range somewhat.

In Fig. 11.12 a loop for thermo-mechanical fatigue (TMF) is presented. The
thermal cycling is between 800 and 1200 °C with strain and temperature in phase,
i.e. the maximum strain and temperature appear together. This is quite a severe test of
the model in Eq. (11.24). The upper and lower parts of the loop are again controlled
by creep. Since the temperature is increasing in parallel to the increasing strain in
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Fig. 11.11 Hysteresis loop for low cycle fatigue (LCF) of the ferritic ODS alloy at 1200 °C.
Experimental data from [31] are compared with the model in Eq. (11.24); a strain rate 7 x 10~ 1/
s; b strain rate 5 x 107> 1/s. Reprinted from [5] with permission of Springer

the upper part of the loop, the stress is gradually decreasing. For the same reason the
absolute value of the creep stress increases with decreasing strain in the lower part
of the loop when the temperature is reduced.

Previously, the loops in Figs. 11.11 and 11.12 have been represented with an
empirical model involving a number of adjustable parameters [31]. Such analysis is
restricted to measured loops, and generalizing the results, for example, for computa-
tion of the fatigue and creep damage is difficult to manage in a safe way. However with
the basic model for the hysteresis loop, the situation is different. It has been demon-
strated that the model can handle different cases without using adjustable parame-
ters. The possibility to extrapolate the results to new situations is then dramatically
improved. In the past it has often been assumed that the shape of the hysteresis loops
is due to the presence of a complex state of residual stresses that can be described
with the Masing model or a distribution of yield strengths [23]. However, the results

Fig. 11.12 Hysteresis loop
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in this section demonstrate that monotonous and cyclic loading can be handled in
the same way just by modifying the value of the dynamic recovery constant.

11.4 Cavitation

11.4.1 Nucleation of Cavities

The basic principles for nucleation of creep cavities are assumed to be the same in
cycling and monotonous loading. Basic mechanisms for nucleation are discussed in
10.4 and in [6]. Although a number of mechanisms for nucleation have been proposed
in the literature, the experimental data are fully consistent with the starting point that
cavities are formed by grain boundary sliding (GBS). Cavities open up at particles or
at subboundary—grain boundary junctions in sliding grain boundaries. The amount
of GBS uggs is proportional to the creep strain, Eq. (9.11)

ugps = Csé (11.29)

The value of the proportionality constant C has been determined with the help
of FEM modeling [32], Eq. (9.12)

%dg (11.30)

28

where d, is the grain size, ¢ = 0.15-0.33 (the value increases with the creep stress
exponent) and € & 1.4 are constants. With the help of the so called double ledge model,
the nucleation rate can be related to the amount of creep strain [10]. According to
this model, nucleation is assumed to take place when a subboundary on one side of
a sliding grain boundary meets a subboundary on the other side or a particle. The
result is the following nucleation rate, Eq. (10.8)

d cav 0-9C§ sul T . .
Reav _ Sub | 8 ) = B (11.31)
dt dsup d A2

sub

Cs = ugps/é =

where nc,, is the number of cavities nucleated per unit grain boundary area, and
dgyp 1s the subgrain diameter. d,, is inversely proportional to the dislocation stress
that is in general close to the applied stress. ) is the interparticle spacing in the grain
boundary. g, and g, are the fractions of particles and subboundary junctions where
cavitation takes place. The averaging over different orientations gives the factor 0.9.
Equation (11.31) has been verified successfully by comparison to experiments for
austenitic stainless steels [11] and copper [33].

A 1Cr0.5Mo ferritic-bainitic steel will be used to illustrate cavitation during LCF
[17, 18]. Some of the specimens were creep tested before the LCF to study the



222 11 The Role of Cavitation in Creep-Fatigue Interaction
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combined influence of creep and cycling. The creep testing was performed at a stress
of 100 MPa and was terminated when a creep strain of 5% was reached. The creep
testing temperatures were 560 and 600 °C. The amount of cavitation is illustrated in
Fig. 11.13.

The cavities are assumed to be nucleated around the carbides in the grain bound-
aries. By comparing the distribution of cavities and particles in the grain boundaries
at 560 °C where micrographs are available, it turns out that one particle out of 5
initiated a cavity. This means that gy, is 0.2. It is not possible to predict the value
of gpart. The grain size dgpin Was 12 wm and the creep exponent ny = 4.4. Equa-
tion (11.30) then gives a C; value of 2.5 x 107 m. These parameter values are used
in the modeling also for LCF.

The nucleation rate at 600 °C is clearly lower than at 560 °C. This has been
interpreted as a result of particle coarsening. Since no basic creep model is available
for the 1Cr0.5Mo steel, the amount of coarsening has to be estimated indirectly. With
the help of Norton equations, the creep rates £sgp at 560 and &ggp at 600 °C can be
expressed as

560 = An exp(—Qcreep/ R T560) (0 — 0pse0)"™ (11.32)

600 = AN eXp(— Qcreep/ R Ts00) (0 — 0p600)™ (11.33)

Since the creep rates have been measured, their ratio 21.3 is known. Since also the
activation energy Qcreep = 290 kJ/mol and the stress exponent ny = 4.4 are known,
the ratio between the particle strengths ops60 and opepo at 560 and 600 °C can be
determined from Eqs. (11.32) and (11.33). It is found that the particle strengthening
at 600 °C is 70% of that at 560 °C. Assuming that this is a consequence of differences
in particle spacing according to model in Sect. 7.3, the corresponding differences in
nucleation rate can be estimated. These results are applied in Fig. 11.13. It can be
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seen that the observations for a creep strain of 0.05 can be reproduced in a reasonable
way.

In [17] LCF tests with and without a hold time in tension were carried out at
535 °C. The length of the hold time was 5 min. Some of the tests were exposed to
static creep before LCF as described above. The number of cavities was recorded
before and after LCF. Only tests with a hold time significantly influenced the number
of creep cavities. For this reason, the analysis will be focused on the tests with hold
times. Seven such tests were performed. Some data for these tests can be found in
Table 11.1.

The six left most columns in Table 11.1 give experimental data for the tests: total
strain range €y, SITESS Tange Opange, NUMber of cycles to failure Ny, number of
cycles to crack initiation Niy, and the number of measured cavities per unit area
neay after the test. Properties for the loops have been computed with the model in
Sect. 11.3.1. Results are presented in the four right most columns in Table 11.1:
stress drop due to relaxation during the hold time Aegyog, amount of creep strain
during the hold time Agpq, amount of creep strain during the tension going part of
the cycle Agcr (ens (€xcluding the strain during the hold time), and amount of creep
strain during the compression going part of the cycle Agc;_cmp. The stress relaxation
during the hold time varies from 50 to 90 MPa. The corresponding creep strain lies
between 0.00038 and 0.00067. The amounts of creep strain in the compression and
tension going part of the cycle are almost two orders of magnitude smaller. Only
the first of these four quantities can be compared with the experimental data. It was
demonstrated in Sect. 11.3.2 that this could be accomplished in a successful way.

It is assumed that amount of cavitation during cycling can be based on Eq. (11.31),
i.e. on the total creep strain. The total creep strain is the amount of creep strain in each
cycle multiplied by the number of cycles Ny. There are three contributions to the
creep strain in each cycle: (i) during the hold time Agpqq4, (ii) during the compression
going part of the cycle Aee_cmpr and (iii) during the tension going part Age; ges.
These contributions are directly added. The result is the following expression for the
number of cavities 7.,y

Neqy = Bs(l - fclose)(Aghold + Agcrftens + Agcrfcmpr)]\/vcycl (1 134)

The total creep strain in each cycle is the expression within brackets in Eq. (11.34).
The main part of the creep strain appears during the hold time. Ag¢; tens and Ager cmpr
are much smaller. In addition they have opposite signs so they cancel each other to a
significant extent. In cycles with hold time in tension, the absolute value of A, cmpr
is larger than that of Ag; (ens SO the overall effect is that the creep during the hold time
is marginally reduced in the remainder of the cycle. The creep strain is multiplied by
the B constant, Eq. (11.31). Some cavities may close during the compression going
part of the cycle. This is taken into account with the help of the constant fj,sc Which
is the fraction of cavities that are closed in each cycle. The value of fijose Will be
estimated in Sect. 11.4.2.
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The application of Eq. (11.34) is compared to experimental data in Figs. 11.14
and 11.15. The difference between the Figures is that in Fig. 11.15, the specimens
were exposed to creep before the LCF testing.

For the modeling the same values as in Fig. 11.13 have been used with Cy =
2.5 pm and dgpain = 12 pm. The subgrain size dg, was determined at the average
stress in the tension and compression going part of the cycles. The resulting values

3500
K 1Cr0.5Mo 535°C
3000 [ . .
': ;,. Hold time 5 min ° A‘t=0'64% oxp.
NE 2500 ,' I." % Ae=0.92% exp.
g :’ ;; + A51=1'2% exp.
g 2or # Ae=153% exp.
= ry
S . A¢;=0.64% mod.
S | Ae,=0.92% mod
kS 1 ,I * e 86 TU.IET0 :
i o a - [
2 1000 - ",l % T |m—— Aet—1.2ﬁa mod.
7
/ - - =A¢=1.53% mod.
500 o
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Fig. 11.14 Number of cavities versus number of cycles after LCF testing of 1Cr0.5Mo steels at
535 °C with 5 min hold time in the cycle. Total strain ranges between 0.64 and 1.53%. Experimental
data from [17] are compared with the model in Eq. (11.34). Redrawn from [18] with permission of
Taylor & Francis
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Fig. 11.15 Number of cavities versus number of cycles after LCF testing of 1Cr0.5Mo steels at
535 °C with 5 min hold time in the cycle. Total strain ranges between 0.55 and 1.11%. The specimens
were exposed to 5% creep strain before the LCF testing. Experimental data from [17] are compared
with the model in Eq. (11.34). Redrawn from [18] with permission of Taylor & Francis
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are about dg, = 2 pwm. In Fig. 11.15, the number of cavities from the pre-creep in
Fig. 11.13 has been added to the results. It seems that the cavitation model gives an
acceptable result for most of the specimens.

11.4.2 Cavity Growth

Already in the 1950ties, Hull and Rimmer derived an expression for diffusion
controlled growth of creep cavities. The expression was later modified by several
authors to give it a more practical form. For example, Beere and Speight [34] derived
the following formula that is of the form commonly used today, Eq. (10.11)

dRcav
dt

= 2DyK /(o — op) (11.35)

2
cav

where R.,, is the cavity radius in the grain boundary plane, dR.,,/dt its growth rate,
oo the sintering stress, 2y, sin(a)/R..y, Where vy is the surface energy of the cavity
per unit area and o the cavity tip angle. If the cavities are sufficiently small, they will
shrink rather than grow after nucleation. The sintering stress avoids that the formula
predicts growth in such cases. Dgp the grain boundary self-diffusion coefficient, and
2, the atomic volume are combined into a grain boundary diffusion parameter Dy,
Dy = 8Dgp2,/kgT. kg is the Boltzmann’s constant and T the absolute temperature.
K¢ ~ 0.1 is approximately a constant.

As discussed in Sect. 10.5, Eq. (11.35) typically overestimates the growth rates
during creep. This problem was solved by introducing the requirement that the growth
rate should not be higher than the creep rate of the surrounding matrix. This is referred
to as constrained growth [12]. This means that equilibrium is established between
the cavity growth and the creep deformation. Without this condition, the growth is
referred to as unconstrained, and the growth rate in this case is given by Eq. (11.35).
However, it is difficult to imagine that equilibrium can be established during the
short cycle time and the small creep strain in common LCF tests. As illustrated in
Table 11.1, the creep strains in each cycle are quite small. It must be assumed that
unconstrained growth applies in LCF.

In addition for diffusion, plastic deformation can also give rise to growth of
creep cavities. This was discussed in Sect. 10.5.3. A model where the cavity growth
is proportional to the amount of grain boundary sliding (GBS) will be used [5],
Eq. (10.24)

Reay = Cse (11.36)
Again the constant Cy is given by Eq. (11.30). After nucleation for example

around particles, the cavities can continue to expand due to GBS. Elongated creep
cavities in grain boundaries are often observed. It was demonstrated in Fig. 10.10
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Fig. 11.16 Cavity radius versus the cycle where the cavity was nucleated. Two examples from
the tests in Table 11.1 for 1Cr0.5Mo steel. Model values for diffusion controlled growth according
to Eq. (11.35) and strain controlled growth, Eq. (11.36). Redrawn from [18] with permission of
Taylor & Francis

that Eq. (11.36) could describe cavity growth for a 12CrMo steel and an austenitic
stainless steel TP347 (17Cr12NiNb).

Equations (11.35) and (11.36) are applied in Fig. 11.16 to two cases in Table 11.1
for the 1Cr0.5Mo steel.

Figure 11.16 illustrates how a distribution of cavity sizes is obtained. The cavities
that are nucleated early are larger since they are more exposed to growth processes.
The two types of growth mechanisms give different behavior as a function of initiation
cycle. Diffusion growth shows a rapid increase in cavity radius initially and a slower
growth later. Strain controlled growth on the other hand has a constant increase with
cycle number. No detailed measurement of the cavity size was performed in [17].
This would have been difficult anyway since the specimens were etched. Taking this
into account, the computed cavity radii are consistent with the observations.

In the case of constrained growth, the values from diffusion and strain controlled
growth should definitely not be added since the two mechanisms give each the
maximum possible growth rates. This was discussed in Sect. 10.5.3. However, for
unconstrained growth this conclusion is no longer self-evident. However, it turns out
in the studied cases for 1Cr0.5Mo that if the two contributions are added quite large
cavity radii of up to 10 wm are obtained which is not in agreement with observations.
Adding the two contributions should therefore be avoided.

Equation (11.35) should in principle be possible to use to estimate the fraction of
cavities that are closed during the compression going part of the LCF cycle. If it is
applied directly it does not work. This can be seen in the following way. According
to Eq. (11.36), in the first cycle a cavity with a radius of about 1 x 10~ m is formed.
With Eq. (11.35), such a cavity would disappear in fractions of a second. As a
consequence, no cavities would be formed contrary to the observations. To make the
result sensible, another case has to be considered. It is possible that the GBS does
not take place in each cycle but occurs stepwise. It has been shown for copper during
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static creep that the nucleated cavity size is in accordance with [33]
Reavmin = 2% sin(a)/o (1 137)

This relation is obtained by putting o = o¢ in Eq. (11.35). For the 1Cr0.5Mo
steel, Reaymin is about 1.5 x 1078 m. With a strain rate of 0.003/s, in the compression
part the cycle time is about 3 s. Using Eq. (11.35) one can derive that cavities that
are smaller than about R.,ymin/2.5 are dissolved during this time. If it is assumed
that the formed cavities have initially a size in the interval 0-2 Rcyymin, about a fifth
of the cavities are closed during the compression part of the cycle. If this value is
representative, f.ose in Eq. (11.34) would be 0.2. However, this value is uncertain
and it has not been applied in the computation of the nucleation rate in Figs. 11.14
and 11.15.

11.5 Summary

e Many plants that are operating at high temperatures are exposed to both creep and
fatigue. A number of fossil-fired plants are running under intermittent loading
while in the past they were adapted to base loading. The reason is that renewable
sun and wind units do not supply power continuously and have to be backed up
by conventional plants. As a consequence, fossil-fired power plants experience
often combined creep and fatigue loading nowadays.

e Numerous empirical methods are available for assessing the material damage
in plants. The classical Robinson’s and Miner’s damage summation rules have
been extensively tested. Some results suggest that the damage typically can vary
from being underestimated by a factor of three to being overestimated by the same
factor. From a practical point of view such a large uncertainty is not acceptable. To
base damage assessment just on mechanical properties is consequently difficult.
It is also important to analyze the changes in the microstructure such as particle
and substructure coarsening and formation of creep cavities and compare these
findings with models. In this respect continuum damage mechanics can be quite
useful.

e Many empirical models for damage assessment can predict both the development
of mechanical properties and the microstructure. However, as for all empirical
models, they have to be adapted to specific cases to give meaningful results. The
alternative is to use basic models for both mechanical properties and microstruc-
ture. Such models are readily available also for the development of the microstruc-
ture as described in this book. Although basic models are somewhat more complex
to program, the predictions are far safer.

e For analyzing creep damage, the assessment of cavitation has been quite useful.
In recent years basic quantitative models for cavitation have been established that
are directly applicable in this context. However, the situation has been different
for cyclic loading. Two essential features have been missing. Prediction of stress
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strain loops has been based on empirical approaches meaning that the results are
restricted to the experimental case(s) under investigation. It is demonstrated in
this chapter that many of the basic models applied in non-cyclic situations can
be transferred to cyclic cases. The main parameter that has to be changed is the
dynamic recovery constant. The reason for this is simple. During cyclic deforma-
tion dislocations encounter each other much more frequently than in monotonous
cases and it increases the rate of recovery. Therefore, the recovery constant must
take a higher value.

e The other missing feature has been the absence of models for the development
of cavitation. It is expected that cavitation plays the same important role during
creep-fatigue interaction as during plain creep. With the help of the models for
the stress strain loops, the amount of creep strain in each cycle can be computed.
By applying this in the formula for cavity nucleation, the number of cavities after
LCF and after combined creep and LCF for a 1Cr0.5Mo steel have been possible
to compute in an acceptable way.

e The cavity growth rate for the 1Cr0.5Mo steel has also been analyzed. Both models
for diffusion controlled and strain controlled growth have been considered. Since
quite small creep strains appear in each cycle unconstrained diffusion growth
has been used. The reason is that it is assumed to be unrealistic that equilibrium
between the cavity growth and the creep deformation could be established. The
strain controlled growth is based on the assumption that the amount of growth is
equal to the amount of grain boundary sliding. This assumption has previously
worked well for two steels during creep where data are available. Although the
diffusion growth is faster initially, the total growth is about the same as for strain
controlled growth of the 1Cr0.5Mo steel. The final cavity size is in the interval
from 0.1 to 1 pwm, which seems reasonable. These results should be considered
as tentative since detailed experiments are not available.

e It is often assumed that some closure of cavities takes place during the compres-
sion part of the load cycle. With the help of the model for diffusion controlled
growth, it should in principle be possible to predict the amount of closure. Unfor-
tunately, meaningful results are not obtained unless special assumptions are made.
Therefore, the amount of cavity closure remains an open issue. In the prediction
of cavity nucleation for 1Cr0.5Mo, no account of cavity closure has been taken
into account. Satisfactory predictions have been obtained anyway indicating that
the amount of cavity closure must be limited.
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Chapter 12 ®)
Tertiary Creep e

Abstract In the tertiary stage, the creep rate is continously increasing eventually
leading to rupture. Many mechanisms can contribute to the increasing creep rate such
as particle coarsening, substructure coarsening, cavitation, changes in the dislocation
density and necking. A large number of empirical models exist for the description
of tertiary creep and the development of creep damage not least in the context of
continuum damage mechanics (CDM). However, there are also basic models. An
equation is presented that can describe the whole creep strain versus time curve.
Only parameters that are already defined for secondary creep are needed. During the
tertiary stage the true applied stress increases rapidly and faster than the counteracting
dislocation strength, which is one main reason for the increase in the creep rate during
the tertiary stage. Cavitation is of importance, but the cavitation is often local and
therefore gives a modest contribution to the creep rate. According Hart’s criterion,
necking starts right at the beginning of the tertiary stage. But the necking is not fully
developed until close to rupture. This is demonstrated both by uniaxial and multiaxial
models and it is also consistent with available experimental data.

12.1 General

Most creep tests are performed as tensile tests at constant load or stress. In a creep
strain test the strain is recorded as a function of test time, and the result is referred to as
a creep strain curve. As discussed in detail in Chap. 4, the common form of the creep
strain curves is that the slope decreases in the primary stage, reaches a minimum in
the secondary stage and increases in the tertiary stage. In the secondary stage the
microstructure is assumed to be essentially constant. Changes in the microstructure
contribute to the increase in the creep rate that is observed in the tertiary stage. These
changes will be analyzed in this chapter.

In the scientific literature, much focus has been on secondary creep, primarily
because that data have been used to identify the operating creep mechanisms.
However, primary and tertiary creep are technically also of major importance, but
the number of systematic studies is much more limited. A significant fraction of the
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creep strain in fcc alloys occurs in the primary stage. The key to the understanding
of creep rupture is the behavior during the tertiary stage.

The changes in the microstructure that give rise to the acceleration of the creep
rate in the tertiary stage are traditionally referred to as creep damage [1]. Many
mechanisms are known that contribute to the creep damage [2]. The most discussed
ones are particle coarsening and dissolution, formation of creep cavities, recovery of
dislocations and subgrain growth. In creep resistant martensitic steels microstructure
degradation has often been observed to induce creep rupture. Fine carbonitrides (e.g.
MX) coarsen and dissolve during long-term creep. New brittle phases can be created
(e.g. Z-phase, Laves phase, MgX carbides). The fine particles give a significant
contribution to the creep strength which is reduced when their number decreases.
The creep strength and in particular the creep ductility are lowered further when new
coarse phases are present and act as crack nucleation sites [3-5].

Basic models for particle coarsening [6] and subgrain growth have been available
for along time. This includes the effect of Zener pinning of subboundaries [7]. This is
of importance for stabilizing the substructure in martensitic creep resistant steels. For
cavitation the situation has been less satisfactory. A basic model for cavity nucleation
has only appeared recently [8, 9]. The models for cavity growth needed improvement
to describe experimental data, Chap. 10 [10]. Also the dislocation models were
necessary to extend and take substructure into account to understand why essentially
the same creep strain behavior is observed at low and high temperatures, Sect. 8.4
[11,12].

There is extensive literature on modeling of creep damage, not least in the connec-
tion of continuum damage mechanics (CDM) where the models are used to analyze
the behavior of components. Reviews are given in [13, 14]. Practically all commonly
used models are empirical or partially based on physical principles with a number
of adjustable parameters involved. It is important to recognize the limitations with
the use of adjustable parameters. Empirical models for tertiary creep were analyzed
in [15]. Only two adjustable parameters were needed for some models to represent
tertiary creep data in a satisfactory way and with three or four parameters almost any
of the available models can give a good fit, Sect. 4.2. The important conclusion is that
a good description with an empirical model does not ensure physical significance
and does not make the model predictable. An empirical model can be used to identify
operating mechanisms only if the same parameter values are used to get a good fit
for a number of curves that is much larger than the number of adjustable parameters.
A brief summary of CDM is given in Sect. 12.2.

Spent nuclear fuel in Finland and Sweden will be placed in copper canisters
500 m down in the bedrock for permanent disposal. Oxygen free copper alloyed
with 50 ppm P has been selected as canister material because of its creep proper-
ties and its corrosion resistance in the environment. The copper will be exposed to
creep deformation due to the hydrostatic pressure and the swelling pressure from the
surrounding bentonite clay at temperatures up to 100 °C. The canisters should stay
intact for 100000 years until radiation has declined to a low level. The creep proper-
ties of the canister must be possible to predict for such an extended time. This is only
possible with fundamental creep models. It has been verified that the creep model
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discussed in this book actually can cope with the required extended extrapolation,
Sect. 14.4.6 [15].

Changes in the dislocation structure could generate microstructure degradation.
A reduction in the dislocation density due to accelerated recovery has been found
both experimentally [4, 16] and by computation [17]. Creep failure can also be
induced by nucleation and growth of cavities [9, 10], Chap. 10. Also small defects
can induce localized deformation if the material is plastically unstable which can
result in necking [18]. During tensile creep testing at some stage, localized straining
and necking occur. The role of the size of the initial defect has been studied [19-22].

Creep rupture is divided according to the type of failure. It is referred to ductile
and brittle rupture if the creep ductility is high and low, respectively. There is no
clear separation between these two types, but a rupture elongation above 30% is in
general considered as high and an elongation below 10% as low. Brittle rupture is
more crack sensitive since the creep cavities are more readily created. For brittle
rupture the failure is primarily controlled by the formation of cavities, and when the
cavitation is extensive enough, rupture occurs. Ductility exhaustion is assumed to
initiate failure during ductile rupture. When the creep strain is sufficiently high, a
plastic instability takes place and the component collapses. From a design point of
view ductile rupture is preferred since more straining can take place before failure.
The material is said to be more forgiving.

It will be assumed that tertiary creep is primarily controlled by the dislocation
structure. The main mechanism for the increase in the creep rate in the tertiary stage
has only recently been established [23]. The changes in the dislocation structure
during a creep test can be quite complex. Modern 9Cr steel is a good example of that.
To describe the creep deformation no less than three types of dislocation densities
must be considered: mobile and immobile dislocations in the subgrain interiors and
dislocations in the subgrain walls [24]. These complications will not be covered here.
However, the general principles are expected to be the same. Instead, the analysis will
be restricted to cases where only one type of dislocation controls the main behavior
that is typical for example for fcc alloys. In this type of material there is generally
a rapid increase in the dislocation density during primary creep. Contrary to what
is stated in many places, there is slow continuous increase in the secondary stage in
load controlled tests. During a creep test, there is a gradual reduction in the specimen
cross section and for tests at constant load, this means that the true stress is increasing.
During the secondary creep, this increase is matched by a corresponding increase in
the dislocation density and thereby also the dislocation stress, Sect. 8.4. The rate of
increase in the dislocation density is continuously reduced and in the tertiary stage
this increase cannot keep up with the increase in the true stress and the creep rate is
raised, Sect. 12.4.

There are other possible contributions to the increase in the creep rate in the
tertiary stage. Cavitation plays a role in particular in creep brittle materials. However,
extensive cavitation is typically strongly localized and does not appear over the whole
material [25]. This means that cavitation gives a modest contribution to the increase in
the creep rate. Particle coarsening is another effect. If particle coarsening takes place
the internal stress from the particles is reduced and thereby an additional increase
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in the creep rate is obtained [26]. Particle coarsening is considered in Sect. 12.3.
Coarsening of the substructure also takes place, but that is considered to be a part of
the changes in the dislocation structure mentioned above, Sect. 12.4. Finally, necking
and other forms of plastic instabilities are of importance. The few systematic studies
on necking in creep specimens that exist suggest that necking takes place close to
rupture. This will be further discussed in Sect. 12.5 [23, 27].

12.2 Empirical Models for Tertiary Creep and Continuum
Damage Mechanics

12.2.1 Models for Tertiary Creep

In this section a division is made between models that only aim to describe tertiary
creep and those to attempt to model the development of the creep damage as well.
The first type of models was analyzed in Sect. 4.2, and the analysis will not be
repeated here. It was found that the Omega model [28, 29] could represent the creep
rate in tertiary creep quite well with only two adjustable parameters in the considered
cases for modified 9Cr steel, Fig. 4.4, and austenitic stainless steel, Fig. 4.8. If more
adjustable parameters are involved, many models can be used to describe the tertiary
stage, for a review, see [30, 31].

12.2.2 Continuum Damage Mechanics (CDM)

In continuum damage mechanics (CDM), the changes in the microstructure during
creep is described with one or more damage parameters representing cavitation,
particles coarsening, etc. Equations for the development of the damage parameters
are formulated. When one of the damage parameters has reached the value of unity,
crack initiation is assumed to take place and failure is close. Most models consider in
reality cavitation to be the main damage mechanism. This is natural since extensive
cavitation is closely related to crack initiation. There is a vast literature on CDM.
For reviews, see [14, 32-34]. The models in general start with some basic concepts
that are combined with empirical approaches. The number of adjustable parameters
is often as high as 6-8 [13].

The work of CDM was initiated by Kachanov and Rabotnov. They considered the
following types of model

é:A( g ) oy =B—2 (12.1)

1 —w (I — )X



12.2 Empirical Models for Tertiary Creep and Continuum Damage Mechanics 237

where ¢ is the creep rate, o the applied stress, and w; a damage parameter. A, B, m, n
and y are adjustable parameters. The new idea was the introduction of the damage
parameter. It was assumed to have the value O at the start of the creep test and 1 at
rupture. Although it is rarely stated in the literature, it is obvious that the equations
are based on the assumption that the damage is due to cavitation. If the cavitation
gives a reduction in the load bearing area, the modified Norton equation in (12.1) is
obtained. In Eq. (12.1) an equation for the development of the creep damage is also
given. With 5 adjustable parameters there is no difficulty in describing almost any
creep curve in the tertiary stage.

As mentioned above there are numerous empirical CDM models in the literature.
Two examples will be mentioned here because they seem to be still used frequently.
The first one is due to Othman et al. [35]. The creep rate is given by

A
f = inh(B o= C(l — )% 12.2
& T —ond —a)r sinh(Bo) (I —-wy)é (12.2)
o =1-2 4= i<ﬂ) (12.3)
1Y 3ey \ 0e

In Egs. (12.2) and (12.3) there are two damage parameters w; and w;. »; takes
into account the role of the increasing dislocation density p during creep. p; is the
initial mobile dislocation density. Equation (12.2) gives a very rapid increase in the
dislocation density close to rupture. The damage due to the cavitation is described by
wy. It is supposed to take both the effect of nucleation and growth into account. w;
is proportional to the creep strain that is well established for nucleation, Eq. (10.8)
and at least for some materials can describe growth as well, Eq. (10.24). o is the
maximum principal stress and o, the effective stress. A, B, C, n, v and ¢, are constants.

The second model that will be mentioned is due to Perrin et al. [36]. They give
the following equations

. 3sij . ( BO’e(l — H) ) . (hse)( H >
&= —LAsinh[ ———————— H= 11— — (12.4)
20, (1— )1 — w») 0o H*

. K. .
D = <?)(1 - ) D =(1—-1i/A) (12.5)

To show that the CDM equations are straight forward to transfer to multiaxial
stress states, Eqs. (12.4) and (12.5) are given in this form. &;; is the strain tensor
and sj; the stress deviator, and &, the effective strain rate. / is a damage parameter
that is intended to take into account primary creep. ® considers the effect of particle
coarsening. \ is the particle spacing and \; the corresponding initial value. A, B, h, H*,
K. are constants. Including the temperature dependence, no less than 12 constants
is listed in [36].
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The two models in Egs. (12.2) and (12.3) as well asin (12.4) and (12.5) represented
the state of the art when the papers were written. Unfortunately, not much of the
modeling can be considered basic today.

12.3 Particle Coarsening

During later stages of the creep life, precipitates are often coarsening due to Ostwald
ripening. The driving force for the coarsening is the reduction of the surface energy
of the particles. For a given volume fraction, a distribution of coarser particles has a
lower total surface energy than one with smaller particles. The coarsening takes place
by diffusion of elements between the particles. Coarsening is believed to degrade
creep properties in 9-12%Cr steels. Typically, there are two main types of particles
in these steels: M3Cg and MX. In M»3Cg, M represents Cr, Fe, Mo or W. For MX, M
stands for V and Nb and X for C or N. The distribution of the two types of particles
is different. M»3C¢ are mainly found in the subgrain boundaries where they are
nucleated during tempering. MX particles on other hand are more homogeneously
distributed in the steel. The distribution of M53Cg is generally coarser than that of
MX. As a consequence the two particle types have different roles during creep.
M;3Cg slows down or prevents the coarsening of the substructure. In this way the
total dislocation density can be kept at a high level, which is most important for the
creep strength. The MX particles on the other hand give precipitation hardening and
in this way contribute directly to the creep strength.

If only a single particle type is involved and the coarsening is controlled by lattice
diffusion, the coarsening can be described by Ostwald ripening

r}=rp; +kjt (12.6)
where r; is the average particle radius for type j and ro; the corresponding initial

value. k; is the coarsening rate constant. For a system with N elements, k; is given
by [6]
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where Iy, is the particle interfacial energy per unit area, Vi is the molar volume of
the particle type j, R the gas constant, and T the absolute temperature. The denom-
inator is a sum in k over the elements involved in the diffusion, Dy is the diffusion
coefficient, as well as x{ and x; o/ the equilibrium mole fraction in the particle respec-
tively the matrix at particle/matrix interface. Equation (12.7) is complex but the value
of k; can often be obtained directly from thermodynamic software.



12.3 Particle Coarsening 239

From Eq. (12.6), it is evident that the average volume of the particles increases
linearly with time, so it is quite a simple dependence. The presence of particle in
the subgrain walls slows down the growth of the subgrain and sets a limit to the
maximum subgrain size. This is described by the following equation [7]

2
ddg _ 3MjimbTL 1= & ’ (12.8)
dt 2dup dsublim

dgyp 1s the subgrain diameter and dp ji the limiting subgrain size due to the retarding
force from the particles, which is referred to as Zener drag. The limiting subgrain
size is given by [7]

rrrp

— 12.9
pr ( .

dsublim =

7p is the radius of particles at subgrain boundaries, and f, their volume fraction. The
constant y has a value of about 0.5 [37].

As was described in Sect. 2.6, creep strain can generate a large number of vacan-
cies. This means that phenomena that are diffusion controlled can also be strain
controlled. Diffusion requires the presence of vacancies. An equilibrium amount of
vacancies Cy, is formed due to thermal activation. Cv, can be represented with an
Arrhenius expression

st HEY
Cva=co= exp(k—va — ﬁ) (12.10)
B B

where SY, and HY, are the entropy and the enthalpy for vacancy formation, and kg
Boltzmann’s constant. The corresponding formula for the diffusion coefficient Dy,
is

HY + H)
M) (12.11)

Dy, = Ay exp| —
Va Va €XP < ke T
where Hy! is the enthalpy for vacancy migration and A%, a constant. Diffusion
depends on both formation and migration of vacancies, but the vacancy concentration
is only a function of the formation energy. The part of the diffusion coefficient that
depends on the vacancy concentration can be extracted

HY SE
Dy, = Aeaexp<—kB—VT - ﬁ)CO (12.12)

The corresponding amount of vacancies generated by straining is given by
Eq. (2.37)
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Ac = 0.5¢, (12.13)

It can be assumed that straining gives rise to coarsening in the same way as
Ostwald ripening in Eq. (12.6)

dv,
P — (12.14)
de

where V, is the average particle volume and k. a constant. The value of k, can be
derived from Eq. (12.7) by replacing ¢ in the expression for the diffusion coefficient
by Ac using Eq. (12.12).

For homogeneously distributed particles, coarsening of the particles implies that
their contribution to the creep strength is reduced. This is described by Eq. (7.17).
When coarsening takes place, the critical spacing between particles A increases.

12.4 Dislocation Strengthening During Tertiary Creep

12.4.1 The Role of Substructure During Tertiary Creep

During deformation a cell structure is formed in most alloys. Already after 10% strain
the majority of the dislocations can be found in the cell boundaries [38]. After 20%
deformation practically all dislocation are located in the cell boundaries [39]. As
will be demonstrated below the cell structure plays an important role during tertiary
creep. To simplify the analysis the role of dislocations in the cell interiors will be
neglected. This has been justified experimentally. For example, Straub et al. showed
with X-ray techniques that the dislocations in cell interiors in copper only contributed
10 MPa to the strength [40].

As was introduced in Sect. 8.1, there are two sets of dislocations in the cell
walls: balanced and unbalanced. This is a direct consequence of the basic nature
of dislocations. The dislocations are initially randomly distributed in the cells. If
there are dislocations in the cell interior with burgers vector b and opposite burgers
vector —b on a given slip plane, they would move in opposite directions under stress.
The effect is that dislocations with one sign end up at one side of the cells and the
ones with the opposite sign on the other side. This means that the dislocations have
different signs on the two sides of a cell wall in the stress direction. Such a set of
dislocations are called polarized or unbalanced. The term unbalanced is due to the
fact that all the dislocations in the neighborhood have the same sign. At other regions
of the cells, the dislocations with both types of burgers vectors are present. These
sets of dislocations are referred to as balanced.
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That the dislocations in the cell walls are divided into two sets, balanced and
unbalanced is therefore natural. It is well documented experimentally that the dislo-
cations in cell walls can be statistically distributed and polarized [41]. The central and
main part of the cell walls is found to consist of balanced dislocations, whereas the
outer layers are polarized. The polarized dislocations cannot move through the walls
due to the large number of dislocations in the cell walls [12]. Argon has proposed
that the balanced dislocations in the cell walls to a significant extent are dislocation
locks [42]. To understand tertiary creep and some other properties, the distinction
between balanced and unbalanced dislocation is of importance.

Equations for the dislocation densities of the balanced and unbalanced types as
well as for locks were given in Egs. (8.17)—(8.19). The dislocation densities satisfy
the following equations [11, 12]

dppnd mp;ﬁ )
To = kona po T @Pona 21 Mpig/é (12.15)
dPonde 1/2 4 12
Ponde _ - Pong & Ponge) (12.16)
de bCL
dp .
dljk = Kiock® (Pbnd + Ponde) — @Prock — 2T MpLy /& (12.17)

Pbnd> Pbnde aNd Prock are the balanced, unbalanced and lock dislocation density in the
cell walls, which are defined as the total length of the dislocations divided by the cell
volume. ¢ is the strain, my the Taylor factor, b Burger’s vector, cr, kpng and kpnge are
work hardening constants, w the dynamic recovery constant, Ty the dislocation line
tension, ¢ the strain rate and M the creep climb mobility. In Eq. (12.15) the three terms
on the right hand side represent work hardening, dynamic recovery and static recovery
in the same way as in the basic Eq. (2.17). Since the unbalanced dislocations cannot
meet a dislocation with opposite sign, there is no static recovery term in Eq. (12.16).
Both unbalanced and balanced dislocations are subjected to dynamic recovery. The
dislocation locks cannot generate dislocations, but instead they obtain an input of
dislocation due to dynamic recovery of balanced and unbalanced dislocations. As a
consequence the first term in Eq. (12.17) has a different appearance in comparison
to Eqgs. (12.15) and (12.16). It is important to understand the difference between
static and dynamic recovery. Static recovery occurs when dislocations of opposite
signs meet and annihilate. Dynamic recovery takes place through the formation of
dislocation configurations with lower energy [43]. A contributing factor has been
suggested by Argon [42]. It is well documented that when dislocations are released
during plastic straining they move through one or more cell boundaries. When this
happens a fraction of the dislocation in the boundaries is removed, giving rise to
a recovery effect. Both dynamic recovery and static recovery should be considered
when describing tertiary creep as will be discussed below. Dynamic recovery requires
straining [44] while static recovery is a time dependent process [45]. In the analysis
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below the dislocation locks will be considered to be a part of the balanced density in
the cell walls.

Since the unbalanced dislocations in the cell walls are not exposed to static
recovery they give rise to an extra hardening that is referred to as a back stress
[11]. The increase in the true applied stress o = ope® during creep under constant
load is compensated by the back stress, where oy is the applied nominal stress. The
magnitude of the back stress equals the dislocation stress plus other strengthening
contributions o; minus the nominal applied stress

Oback = Odisl + 07 — 00 (12.18)

where o4 is given by (cf. Eq. (8.3))

mtaGb

— VP ~+ Pbnde (12.19)

Odisl =

where a is a constant in Taylor’s equation, and G the shear modulus. The effective
creep stress is obtained as the true applied stress minus the back stress

Ocreep = O — Oback (12.20)

From Eq. (12.15), an expression for the secondary creep rate can be obtained

1/2
. M Py,
Esee = 2L M (T, O'creep)pgnd/ (kbnd be d _ wpbnd) (12.21)
L
where the effective creep is inserted. It is now assumed that Eq. (12.21) it is not just
applicable to secondary creep but it describes the influence of the changes of the
dislocation density on the whole creep curve [12]

. 2 mpéﬁ
& =2 M(T, Gcreep)pbnd/ kbnd be, — WPbnd (12.22)

This model suggests that if the stress dependence of the secondary creep rate
is known, the influence of the dislocation density on the whole creep curve can be
derived. Primary creep was dealt with in Sect. 8.2.

The variation of the stress components is illustrated for copper in Fig. 12.1. At the
start of the creep test, the dislocation is low and the effective creep stress is high. But
already after a short time they are of about the same magnitude. The dislocation stress
then balances the true applied stress quite well in the secondary stage giving almost
overlapping curves. This means that the creep stress is approximately constant in
the secondary stage. Finally in the tertiary stage the increase of the applied stress is
faster than that of the dislocation stress. Thus, there is an increase in the creep stress
and thereby in the creep rate.
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By integrating Eq. (12.22) together with (12.15) and (12.16), creep strain versus
time curves can be obtained. Two examples for Cu-OFP at 75 °C are given in Fig. 12.2.
The experimental curves show distinct primary, secondary and tertiary creep in spite
of the low temperature. An extended secondary stage is found in spite of a stress expo-
nent that exceeds 50. How this is possible was explained in Sect. 8.4. The substructure
plays an important role in this respect and that is taken into account in Eq. (12.22).
There are steps in the experimental curves due to the necessity of reloading the creep
when a certain creep strain was reached. No attempts have however been made to try
to compensate for the reloading of the creep machine. The experimental creep curves
can be reproduced in a reasonable way. Some of the differences can be accounted
for by taking necking into account which is analyzed in Sect. 12.5.
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Fig. 12.2 Comparison of experimental creep curves with the model in Eq. (12.22) for Cu-OFP,
a 75 °C, 175 MPa; b 75 °C, 180 MPa. Redrawn from [23] with permission of Springer
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12.4.2 Accelerated Recovery Model

During later stages of creep there is often a degradation of the creep strength. This
degradation is often referred to as creep damage. Important examples of creep damage
are cavitation and particle coarsening. The latter effect was analyzed in Sect. 12.3.
Particle coarsening gives rise to a reduction of the precipitation hardening. In addition,
subgrain coarsening can take place if the distance between particles in the boundaries
is increased.

Particle coarsening is usually represented with a time dependence described by
Ostwald ripening in Eq. (12.6). However, tertiary creep shows more typically strain
dependence. This is illustrated in Sect. 4.2. The strain rate in the tertiary stage
increases exponentially with strain. This is referred to as the Omega model, which
was discovered during work with estimates of residual life time of fossil fired power
plants. For this reason it is natural to consider strain dependent processes. One such
process is the strain dependent coarsening given in Eq. (12.14). A strain dependent
process is also present for static recovery. Time dependent static recovery has been
the basis of many derivations in this book. Its basic form is given in Eq. (2.17)

dp 2
— =-21.M 12.23
dr wMmp ( )

However, strain dependence is also possible to consider in the same way as for
particle coarsening

d
@ _oqm.p? (12.24)
de

In the modified version of the climb mobility M, in Eq. (12.24), the diffusion
constant has to be replaced by the expression given in Eq. (12.12). The principles for
the derivation of Eqgs. (12.16) and (12.24) are straightforward, but the expressions

have not yet been verified experimentally. By taking also Eq. (12.24) into account,
Eq. (2.17) takes the form

d
LI 12y — 20 (MJE + M,)p? (12.25)
de bCL

From Eq. (12.25), an expression for the creep rate can be derived in the same way
as in Sect. 8.2.2

h(o) = 2. M(T, o) o /(2 a o, — O

o) =2t o) ——— -2y M, ——————
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(12.26)

&= h(Ucreep) (12.27)



12.4 Dislocation Strengthening During Tertiary Creep 245

The effective creep Stress oreep is given by Eq. (12.20). With the help of Taylor’s
Eq. (2.29), Eq. (12.25) can be expressed in term of the dislocation stress og;g)

dog amiGh ol
di 1= ﬁ — 50t = 20 (M D (Ocrep) + Mf)mmf—éb)z (12.28)

Since the value of M, is unknown, it has been assumed that its stationary value
is that of M/ h(0creep), i.€. that the two types of static recovery give about the same
contribution.

The use of Eqgs. (12.27) and (12.28) in Fig. 12.3 is illustrated for Sanicro 25. A
comparison is made with the same experimental data set as in Fig. 4.8. In Fig. 12.3a,
the dislocation stress is shown as a function of creep strain. There is initially a rapid
increase in the dislocation density. When the stress touches the true stress curve and
the secondary stage is reached, the increase in the stress continues but at a much lower
rate. The difference between the sum of the true stress and the nominal stress on one
hand and the dislocation stress on the other is the effective creep stress, Eq. (8.29).
Considering the difference between the true stress and any of the dislocation stresses,

it is evident from Fig. 12.3a that the creep rate is higher in the tertiary stage than in
the secondary stage but lower than in the primary stage.

In Fig. 12.3a, the dislocation stress is compared with the true applied stress. Most
creep models are based on the nominal stress, so also in this book. However, to
describe tertiary creep, the true stress plays an important role, and Eqgs. (12.26)—
(12.28) are based on the true stress. To take the true stress into account instead of
the nominal one, some adjustments of the model must be made. For example, the
secondary stress to give the creep rate in the secondary stress is slightly higher when
the true stress is used. This is covered with the constant /' in Eq. (12.28). f is close

300

2 - - :
Sanicro 25 10 L Sanicro25 |- M,
250 700°C i roo°cc | M +M
501 200MPa i 200MPa Lo
S it xperiment
S200F=" 4 Zaotri
= /4 g 1
- -y © i
% 150 .”.r % 1‘1“
B ¥ © o6k b
w100+ 7 (&) i\
_f _____ Mm
"
sof |- MM
i = = =True slress
ok
0 0.1 0.2 0.3 0.4

Strain Strain

Fig. 12.3 a Dislocation stress according Eq. (12.28) with (M + M) and only with (M}). M and
M) are the strain and time dependent climb mobility, respectively. The true stress is also shown;

b creep rate from Eq. (12.27) for the same cases as in a). A comparison with experiment is included.
Sanicro 25 at 700 °C, 200 MPa
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to unity. This can also be seen in Fig. 12.3a, where the stresses in the secondary stage
are slightly higher than the nominal value of 200 MPa.

InFig. 12.3, acomparison is made between the case when only the time dependent
static recovery and the case when both the time and strain dependent types are
included. In the first case only the time dependent climb mobility M is taken into
account and in the second case both M and M. The difference between the two cases
is clearly observed in Fig. 12.3b where the creep rate is plotted versus strain. The
creep rate drops rapidly in the primary stage. The position of the minimum creep
rate does not agree with the observations. The reason is most likely that the strain on
loading is included in the modeling but not in the experiments. In the tertiary stage
the logarithm of the creep rate increases linearly as a function of strain. This is the
characteristic feature of the Omega model as was discussed in detail in Sect. 4.2.
The slope of the experimental curve in the tertiary stage Fig. 12.3b is ng = 14. The
creep stress exponent at 700 °C for the material is ny = 7. At 725 and 750 °C the
corresponding values are ng = 11 and 9 and ny = 6 and 5, respectively. If only M is
taken into account in the model the slope is close to the ny value whereas a higher
value close to ng is obtained when also M, is involved.

For P91 that is also studied in Sect. 4.2, the difference between ng and ny is even
larger. The experimental data in [46] is for 600 °C. The ny value at this temperature
is 12 whereas ng, takes the values 28, 39, 65 and 95 for applied stresses of 180, 150,
130 and 110 MPa, respectively. That ng, increases with decreasing applied stress is
also found for Sanicro 25 although the effect is less dramatic. The fact that ng, is
significantly larger than ny clearly shows that degradation of the microstructure takes
place. It is natural that the degradation increases with decreasing stress since there
is more time for microstructural changes to take place. The degradation is larger for
P91 than for Sanicro 25. This is also expected since P91 has a martensitic structure
that is prone to changes at high temperatures. The model including M, describes how
the recovery is accelerated during the tertiary stage, which is a direct consequence
of microstructural degradation.

12.5 Necking

12.5.1 Hart’s Criterion

During tensile creep testing a plastic instability develops towards the end of the
experiment. A waist is formed around the specimen that grows until the specimen
fails. This phenomenon is usually referred to as necking. It is assumed that it is
initiated due to the presence of a geometric imperfection or a material inhomogeneity.
The continued growth of the waist does not depend on how it was initiated.

Hart proposed a criterion for the initiation of necking during creep [47]. The
initiation is assumed to be due to area fluctuations. The deformation is stable provided
that the variation at a particle point is larger than zero. From the relation between the
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area reduction and the strain a stability criterion can be derived
§/62 < 1 (12.29)

where ¢ is the strain rate, and € is strain acceleration, the second time derivative of
the strain. One can expect that when this stability criterion fails, necking would be
initiated in the same way as for Considere’s criterion during tensile testing at ambient
temperatures.

12.5.2 Use of Omega Model

The implications of Hart’s criterion can be illustrated with the help of the Omega
(£2) model. It was illustrated in Sect. 4.2 that primary creep often follows the phi
(¢) model and tertiary creep the Omega model. As was demonstrated in Sect. 4.2,
it is not necessary to have a separate term for secondary creep. Then according to
Table 4.1, the creep rate can be expressed as

&= p1e7” + Qs exp(nge) (12.30)

where the first and second term on the RHS refers to primary and tertiary creep. ¢,
b2, 23 and ng are adjustable parameters. €24 in Table 4.1 has been replaced by nq
since that designation was used above. According to Sect. 4.2, tertiary creep can be
represented by the second term in Eq. (12.30) over a fair strain range. Consequently,
it is of interest to analyze that term separately.

& = Qsexp(nge) &= Qnqéexp(nge) (12.31)
By combing the two equations in (12.31), we find that
£/62 = ng (12.32)

Since ng, is typically much larger than unity, the stability criterion in (12.29) is
very far from satisfied in the tertiary stage. In the primary stage £ is negative and
in the secondary stage zero, so in these stages the stability criterion is fulfilled. To
satisfy it also in the tertiary stage, there must be a large contribution from the primary
creep term in (12.30). This is only possible at the start of the tertiary stage. One can
conclude that Eq. (12.29) implies that an instability is formed when tertiary creep is
initiated. Similar results have been found when testing the criterion on experimental
creep curves that do not follow the €2 model.

Burke and Nix [48] studied necking by analyzing the deformation in a cylindrical
bar with an imperfection. They assumed a cross section that varied with a smooth
sinusoidal function
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A(x,0) = Ay — TCOS — O0=<x<Ly (12.33)

where Ay is the original cross section area of specimen, and L; the length of the
specimen with the defected part. AA represents the changes of the initial cross section
area. They considered that the development of the imperfection could be described
by a uniaxial model. The shape of the initial imperfection is then not so important,
only the initial reduction of the cross section.

It is possible to estimate the growth of the imperfection. As was discussed above,
Eq. (12.29) suggests that an instability is formed shortly after the start of tertiary.
Only then an imperfection can grow. It is thus possible to use the tertiary part of
Eq. (12.30) to estimate the amount of necking.

1
& = Qzexp(nge)  &par = —— log(exp(—ngey) — ng23t) (12.34)
ne

The integrated solution is given in the second member. €, is the starting strain
of tertiary and ¢ is the time. Following Eq. (12.33), the imperfection has a reduced
cross section by a factor f.q. The solution of the equation in the presence of an
imperfection is

noQst
I frea=1—AA/Ag (12.35)
red

The solutions of Egs. (12.34) and (12.35) are illustrated in Fig. 12.4 for Sanicro
25 and P91. The cases are the same as the ones in Figs. 4.4 and 4.8.

Solutions with and without waist are given in (12.34) and (12.35). The difference
between the strain in the waist and in the unaffected bar &g gives the depth of the
waist and this difference is shown in the Figure. Thus, we have the following simple

1
Ewaist = _n_ 10g <3XP(—”QEO) -
Q

0.8
PO1T [l i
Sanicro25 | Waist anal i Waist anal
061 750:c,200mPa | Bar anal 600°C, 150 MPa |- Bar anal
05" [ - Diff waist-bar|  : o6 | Diff waist-bar

0 50 100 150 0 100 200 300 400

Time in tertiary, h Time in tertiary, h
a b

Fig. 12.4 Strain versus time for the solutions in Eqs. (12.34) and (12.35) for a Sanicro 25, 750 °C,
200 MPa and b P91, 600 °C, 150 MPa. a Redrawn from [49] with permission of Taylor & Francis
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relation
Ewaist = Ebar T Ediff (1236)

The influence of the waist is only significant late in the creep life. It is evident that
when this strain difference exceeds 0.2, rupture is close. By assuming an &g value
larger than 0.2 a criterion for rupture can be obtained. By combing the equations for
€bar (12.34), for eyaisc (12.35) and Eq. (12.36), and expression for the rupture time
can be derived

—nqé —nQé&dift
e~ neko 1 — e "wéi

T Qung (1/f1y — enasar)

IR Q3 = émin exp(&p) (12.37)

In Eq. (12.37), an expression for 23 has been given in terms of the minimum creep
rate. The latter quantity may be easier to find. Assuming f.q = 0.99 which is often
done, Eq. (12.37) gives a rupture time of 51, 75, 144 and 244 h for Sanicro 25 for the
four curves in Fig. 4.8 that are in reasonable accordance with the observed values
51, 63, 148 and 244 h. The corresponding values for P91 in Fig. 4.4 are 62, 357,
1787, 10800 h that should be compared with the observed ones 101, 546, 3650 and
13940 h. The predicted values clearly underestimate the experimental ones in this
case. An equation for the rupture elongation eg can also be obtained. The same three
Egs. (12.34)—(12.36) are combined and this time the time ¢ and €y,;y are eliminated

B 1 U/fé’ﬁ _ e—nszadm-)
" ng (1/fiy — e

(12.38)

For the same four curves in Fig. 4.8, Eq. (12.38) yields 0.31, 0.38, 0.31, and 0.34
that should be compared with the experimental values 0.24, 0.22, 0.36 and 0.43. The
predicted values are of the right order of magnitude but they do not reproduce the
observed values more precisely. For the curves for P91 in Fig. 4.4, the predicted
values are 0.095, 0.078, 0.053, 0.034 and the experimental ones 0.17, 0.15, 0.19 and
0.072. The predicted values are about half the observed ones. The reason why the
values for the martensitic steel are underpredicted is not known.

12.5.3 Basic Dislocation Model

More detailed comparisons will now be made with experimental data for P alloyed
pure copper Cu-OFP [23]. Distinct necking was observed on the ruptured specimens,
which emphasizes the importance of necking in tertiary creep. To describe the defor-
mation, the dislocation model in Eq. (12.27) is used. Again uniaxial behavior will be
assumed for assessing the influence of necking. Influence of multiaxial stress states
will be considered in Sect. 12.5.4. The starting imperfection is given by Eq. (12.33)



250 12 Tertiary Creep

with a 1% reduced cross section ( freq = 0.99) and a half length of the imperfec-
tion of L; = 5 mm. With the formulae in Chap. 10, the amount of cavitation can be
estimated. For the cases considered in [23], the local values of the cavitated grain
boundary area were found to be about 2% which is consistent with observations on
the specimens. However, as discussed in Sect. 12.1, the average amount is much
lower. As a consequence the influence of cavitation on the creep curves is small and
is not noticeable at the scale of the Figures. The initiation of the instability is assumed
to follow Hart’s criterion (12.29). In Fig. 12.5b the position of this initiation point is
marked. It is again evident that the point appears very early in the tertiary stage.

Modeled creep curves are compared with experiments for three stresses at 75 °C
for Cu-OFP in Fig. 12.5. The dislocation model in Eq. (12.27) takes primary,
secondary and tertiary creep into account. The dislocation model gives only a modest
contribution to tertiary creep, but the effect is clearly visible. There are other cases
where the influence is much more pronounced. Examples are shown in Fig. 8.12 for
cold worked copper.

The rise of the creep strain at the end of the creep life is due to necking. Obviously
the uniaxial creep model can reproduce the sharp increase quite well. The model
clearly demonstrates that the necking takes place late in the creep life.

0.4 . . . 04 .
Cu-OFP Cu-OFP
75°C 170MPa 75°C 175MPa

Strain
Strain

o —— Model 01 —— Model
- - - Experiment - = =Experiment

0 100 200 300 400 0 200 400 600 800 1000 1200
Time, h Time, h
0.6
0.5] Cu-OFP
75°C 180MPa

— Model
- = = Experiment

0 5 10 _15 20 25 30
Time, h
Fig. 12.5 Comparison of experimental creep curves with necking model results for Cu-OFP, a 75

°C, 170 MPa; b 75 °C, 175 MPa, plus marker indicating necking starting point according to Hart’s
criterion (12.29), ¢ 75 °C, 180 MPa. Redrawn from [23] with permission of Springer
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Fig. 12.6 Total strain versus .
uniform strain for the FEM 0.4+ i ]
model in Fig. 12.7. Redrawn ;
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12.5.4 Multiaxial Stress States

The formation of a waist clearly takes place under multiaxial stress states. For this
reason finite element analysis (FEM) has been performed [23]. Unfortunately, special
FEM software is required that can handle creep deformation with large strains. It
should also allow for a plastic instability to occur, which makes the analysis sensitive.
At this stage it is difficult to consider it for routine applications.

The dislocation model in Egs. (12.15), (12.16), (12.22), etc. is implemented in the
FEM program. The parameters used are the same as in the uniaxial case in 12.5.3.
A creep test of Cu-OFP at 75 °C and 175 MPa was simulated, i.e. the same case as
the one shown in Fig. 12.5a. The necking appeared at a uniform strain of 0.27. Then
all the subsequent strain took place in the waist. This is illustrated in Fig. 12.6.

The strain in the neck is as high as 2. This is not shown in Fig. 12.6 but this
is clearly evident in Fig. 12.7, where the final strain distribution and profile of the
specimen is shown.

That the high strain value is in accordance with the experiment that is illustrated
in Fig. 12.8, where the observed and modeled specimen profiles are shown. The
experimental values are reproduced within about 10%.

According to the FEM modeling, the necking develops quite slowly and only
appears close to rupture. This has also been observed for the martensitic 9Cr1Mo
steel P91 [27]. Once the necking has started to form, the strain in the neck increases
rapidly. The results of the uniaxial and the multiaxial computations are obviously
fairly consistent. Also the uniaxial modeling of necking gives a significant necking
strain only close to rupture.
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Fig. 12.7 FEM results of
profile strain distribution
along a creep specimen of
Cu-OFP at 75 °C with an
applied stress of 175 MPa.
Redrawn from [23] with
permission of Springer

Fig. 12.8 Specimen radius
versus axial coordinate at the
necking position.
Comparison of experimental
necking profile with FEM
results for Cu-OFP at 75 °C
with an applied stress of

175 MPa. Redrawn from [23]
with permission of Springer
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Many mechanisms that contribute to tertiary creep are well known such as particle
coarsening, substructure coarsening, cavitation, changes in the dislocation density
and necking. In the literature these mechanisms have mainly been modeled with
empirical approaches not least in the context of continuum damage mechanics.
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However, due to the complexity of the phenomena empirical methods give unsafe
predictions.

e A basic dislocation model for the whole creep curve is described. The model
extends results from previous chapters to tertiary creep. The model is formulated
in such a way that if the stress dependence of the secondary creep rate is known,
tertiary as well as primary creep rate can be computed. This is done by introducing
an effective creep stress that takes the changes in the dislocation density into
account.

e In the secondary stage there is a balance between the applied stress and the stress
from the dislocations plus contributions from other strengthening mechanisms. In
the tertiary stage the dislocation strength continues to increase but the true stress
increases faster. This means that the effective stress is raised and thereby the creep
rate. This simple concept is proposed to be the main mechanism behind tertiary
creep.

e For copper it is essential to take the substructure into account when modeling
tertiary creep. A distinction is made between balanced and unbalanced disloca-
tions in the cell walls. The main difference between balanced and unbalanced
dislocations is that the former type is exposed to static recovery but not the latter.
The unbalanced dislocations provide a counteracting stress against the rapidly
increasing true stress at lower temperatures, which makes it possible to explain
the observed creep rates.

e In steels there is often a very rapid increase in the creep rate in the tertiary stage
that can be represented by a linear increase in the logarithm of the creep rate with
strain (Omega model). To explain this behavior, the degradation mechanisms in
the microstructure must be strain dependent. This applies in particular to particle
and substructure coarsening. Quantitative models have been proposed for these
mechanisms but the models have not yet been verified experimentally.

e With models presented in Chap. 10, the influence of cavitation on tertiary creep
can directly be derived. However, pronounced cavitation typically occurs quite
locally. This means that the overall effect on tertiary creep is limited.

e Necking is assumed to be initiated when Hart’s stability criterion fails which takes
place at the very beginning of tertiary creep. Although necking is initiated early
in the creep process, both uniaxial and multiaxial models suggest that significant
necking takes place only close to rupture but then necking is progressing very
rapidly. These results are fully consistent with available experimental data.
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Chapter 13 ®)
Creep Ductility oo

Abstract For a number of creep resistant steels, the creep ductiliy decreases with
increasing temperature and time. As a function of stress, the ductiity is often describe
with an S-shaped curve with an upper and a lower shelf level. As a function of time,
the S-shape is inverted. If the ductility is high, the rupture is referred to as ductile,
and for low ductility levels as brittle. Ductile rupture is believed to be due to a plastic
instability such as necking. Brittle rupture on the other hand is controlled by the
nucleation, growth and linkage of creep cavities. With the help of the basic models
for creep deformation and cavitation, the rupture stress and ductility can be predicted.
Several models exist for the influence of multiaxiality on the creep ductility. Although
the models are based on different principles, they predict approximately the same
behavior, which is verified by comparison to rupture data for notched bars.

13.1 Introduction

In creep tests, the ductility is commonly measured in two ways: as creep elongation
and reduction of area, both at rupture. The creep ductility influences several prop-
erties. With a low ductility cracks are more easily formed and the risk for failure is
higher than when the ductility is high. This is not least the case for cyclic loading.
The reason is that creep cavities are more readily formed when the ductility is low.
Cavities grow and link which results in initiation sites for cracks. For materials with
low ductility, the risk is obviously higher that the strain allowance is exceeded in
notches and at inhomogenieties like in welds. Materials with high creep ductility are
considered to be more forgiving.

As a consequence it is desirable to select a material with high creep ductility.
Unfortunately that is not easy. Most creep resistant alloys loose ductility with
increasing rupture time. In addition, there can be a large cast to cast difference
in the ductility. It was demonstrated early on that the 17Cr—12Ni-2Mo steel 316
showed such a variation [1]. The rupture elongation was observed to vary between 2
and 120%. Also for the martensitic 9Cr1Mo steel P91, low ductility is often found.
In a larger investigation it was recorded that about 10% of the casts had a reduction
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of area below 20% [2]. It can be concluded that also for materials that have a long
successful operation record, the ductility can frequently be low.

There are many mechanisms that are known to influence the ductility. A coarse
grain size often reduces the ductility. This is natural since the amount of grain
boundary sliding and thereby the cavitation increases with the grain size. This is
evident from Eq. (9.12). Particles that are present in the grain boundaries act as
nucleation sites for cavitation. With increasing number of particles, more cavities
are formed, see Eq. (10.8). It is known that the presence of coarse particles in the
grain boundaries increases the risk for crack initiation. Impurity elements P and S
can lower the ductility in steels. It is suspected that the presence of impurity elements
is the cause of low creep ductility in many casts but the number of systematic studies
is limited [2]. It is a common experience for steels that if the creep strength is
raised, the ductility is often reduced. Some of the mentioned effects can be modeled
but not all of them. In particular, the observed cast to cast variation is difficult to
explain. One reason is that some mechanisms can be both positive and negative. One
example is particles in grain boundaries. As mentioned they can act as nucleation
sites for cavitation but they can probably also limit the amount of grain boundary
sliding and thereby resist cavitation, but that does not seem to have been verified.
The limitation concerning the understanding of the controlling mechanisms must be
considered when modeling creep ductility. In most cases only a general description
of influencing factors can be obtained, not a detailed computation.

To illustrate the influence of parameters on the creep ductility, schematic diagrams
are often used. Such diagrams are shown in Fig. 13.1.

At high stresses and short rupture times the ductility is high and approximately
constant. This is referred to as the upper shelf or regime I. When the stress is reduced,
the ductility drops to much lower values over a fairly narrow range of stresses and
rupture times. This is regime II. At low stresses or long rupture times the ductility
takes very low values. In this range the ductility is again approximately constant. It

Ductility transition Upper shelf Ductility regimes
0.8 0.8 T —— \
> 2 ‘\‘
= 4_; \
“g 0.6 S 0.6 ‘.\ |
© © \
Q 5 \“‘
g 04 g 04 AN v/
o o \‘\ ."
kY J
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0 0 ]
10 20 50 100 200 500 10° 102 108 104 10°
Stress, MPa Time to rupture, h
a b

Fig. 13.1 Schematic diagram of the creep ductility; a as a function of stress at a few temperatures
typical for austenitic stainless steels; b as a function of time to rupture for 9—12%Cer steels
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Fig. 13.2 Creep ductility as a function of stress for the 17Cr12Ni2Mo austenitic stainless steel
316H at 600-750 °C. Data from NIMS [5]; a reduction of area; b elongation at rupture

is called the lower shelf or regime III. In some materials for example 9%Cer steel [3]
and CrMoV steels [4], the ductility can increase again at very long rupture times.
The curves in Fig. 13.1 move to the left with increasing temperature.

To illustrate how the schematic curves in Fig. 13.1a, look for observed values,
results for 17Cr12Ni2Mo (316H) are given in Fig. 13.2 for the reduction of area and
for the elongation at rupture.

Although the tests have been performed under well controlled conditions there is a
large scatter in the data. In fact, the scatter in creep ductility values is typically much
larger than for creep strength values. A difference in comparison with Fig. 13.1 is that
the upper shelf ductility in Fig. 13.2 varies somewhat with temperature in particular
for the creep elongation. It should be noticed that the ductility can take very low
values.

It is also instructive to plot the creep ductility as a function of rupture time. This
is shown in Fig. 13.3.

Both the reduction in area and the creep elongation decrease with increasing
rupture time and increasing temperature. For reduction of area an upper shelf is
apparent at shorter rupture times. This is only evident for the elongation at lower
temperatures. Except at the lowest temperature, the ductility values at long times can
be quite low. This demonstrates that a low ductility shelf is present. The ductility
versus rupture time can also be represented with an S-shape curve as in Fig. 13.1
but with inverted S curves. Nice S-shaped curves can be found in the literature with
much less scatter than in Figs. 13.2 and 13.3 [6].

Many attempts have been made in the past decades to model creep ductility.
With few exceptions, empirical approaches have been used. One important method
to assess the remaining life of plants operating at high temperature, where creep
has been the life controlling mechanism, has involved ductility exhaustion. With
the help of continuum damage mechanics (CDM) [7-9], the creep strain in critical
components is computed to ensure that it does not exceed the ductility values. In
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Fig. 13.3 Creep ductility as a function of rupture time for the 17Cr12Ni2Mo austenitic stainless
steel 316H at 600-750 °C. Data from NIMS [5]; a reduction of area; b elongation at rupture

this process some observed microstructural changes have been recorded and then
been the basis in the modeling. In the literature there are a large number of papers
discussing this type of analysis. The mentioned volumes on CDM can serve as a
starting point in this respect.

In the present chapter empirical models for the creep ductility will be discussed in
Sect. 13.2. These models are mainly statistical. In statistical methods mathematical
expressions are chosen and fitted to the experimental data. The choice of expression
is merely for numerical convenience to get a good fit to the data. The approaches
involve a number of adjustable parameters that are fitted to the data. The reason for
developing these models has in general been to use them in design or in residual life
assessment. To meet this aim, it must be possible to generalize the data for example
to longer times. This requires that the models are trained against a large set of data. In
particular, the number of independent experimental data points must be very much
larger than the number of adjustable parameters involved.

To avoid these limitations basic models based on physical principles and without
the use of adjustable parameters have been developed. Such models will be presented
in Sect. 13.3.

Failures that are associated with low and high creep ductility are referred to
as brittle and ductile rupture, respectively. As was illustrated in Figs. 13.1, 13.2
and 13.3, brittle rupture occurs primarily at low stress, long rupture times and high
temperatures, whereas the conditions for ductile rupture are opposite, i.e. it takes
place at high stresses, low temperatures and short rupture times. Brittle rupture is
assumed to be initiated by the nucleation, growth and linkage of creep cavities.
Cavitation models for the creep ductility will be presented in Sect. 13.3.1. Such
models have turned out to give successful results in a number of cases. Much less
work has been carried out for ductile rupture. For a number of steels and copper
it has been demonstrated that necking controls the failure during ductile rupture.
This approach will be discussed in Sect. 13.3.2. To study the necking, creep strain
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data must be available. However, also a ductility corresponding to the upper shelf in
Fig. 13.1 can be used to predict ductile rupture.

13.2 Empirical Ductility Models

Creep strength data have been analyzed with statistical methods for a long time. The
European Collaborative Creep Committee (ECCC) has developed suitable proce-
dures that ensure that the statistical analysis is performed in a good way and that the
results behave in a physically correct way. There is a large number of methods avail-
able analyzing and extrapolating creep strength data and practically all are empirical.
In spite of this, the methods can provide quite valuable information due to the large
number of data points.

ECCC have also proposed procedures for assessment of creep ductility values
[10]. A number of different expressions for the ductility are suggested [11]. Various
combinations of constants, stress and temperature dependencies are used such as

log(er) = log(Bo) + B11og(T) + B2 log(o) + B3/T + Pac/T (13.1)

where eg is the rupture ductility, T the absolute temperature, o the stress and fo—
B4 constants. Analyses with such expressions have for example been performed by
Spindler for austenitic stainless steels [12], by Payten et al. for 9Cr1Mo steels [13],
and by Holdsworth and co-workers for 1CrMoV rotor steel [4, 14]. Many alternative
expressions have also been considered; see for example [15, 16].

Other types of analyses have also been performed. Lai collected a large database
for the austenitic stainless steel 316H. He made a regression analysis to determine the
influence of the composition and some microstructure parameters on the ductility [1,
17]. Wilshire used creep data from NIMS to generate master curves for high Cr-steels.
The principle was to use an activation energy to make ductility values at different
temperatures merge to a single curve [18]. Xu and Hayhurst used continuum damage
mechanics (CDM) to assess the creep ductility of 316H [19]. Low alloy rotor steels
were studied by Singh and Kamaraj, again with a CDM approach [20].

The complexity and variability of creep ductility data were illustrated in Figs. 13.2
and 13.3. The cast to cast differences have rarely been possible to model. One notable
exception is the paper by Binda and Holdsworth [14], where the influence of compo-
sition on 1CrMoV steel was analyzed. However, in most cases it is beneficial to
concentrate the modeling to the most essential features. From a technical point, the
start and level of the lower shelf are the most important aspects in general. For this
purpose, the variation of the ductility can be described by a step function. A suitable
step function is the sigmoid function that has a characteristic S-shape.

fsigm(x) =1/(1 4+ exp(—x)) (13.2)
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With the help of the sigmoid function, curves of the form in Fig. 13.1 can be
generated

&te = Lanetr + (Ushett — Lihetr) foigm ((log ae@/®" —logog)/logome)  (13.3)

e, = Laneit + (Ushelt — Laheir) fsigm (— (log tre /%" — log tro)/ log trmg) (13.4)

where o and #y are the creep stress and rupture time and ¢, and egg rupture ductilities.
Lneir and U gere are the lower and upper shelf energies. The parameters with index
0 and rng indicate the central position of the curve and the size of the transition
range, respectively. An activation Q is introduced to represent curves at different
temperatures. With the help of Eqgs. (13.3) and (13.4), it should be straightforward
to generate curves describing the influence of parameters on the ductility. Ductility
curves as a function of stress and rupture time have been presented above. In the
literature, other parameters are also considered. Use of the strain rate or normalized
stress are often applied, see for example [6, 11].

13.3 Basic Ductility Methods

13.3.1 Brittle Rupture

The main mechanism for brittle rupture is the nucleation and growth of cavities.
When a critical cavitated area fraction in the grain boundaries is reached failure
occurs. A combination of nucleation and growth of cavities must take place. A
model for nucleation of cavitation based on grain boundary sliding was presented in
Eq. (10.8)

dncay 0.9C; ( gsup 8part \ . .
' — 22 4+ 220 e = B, 13.5
i o <d2 + & s€ ( )

sub
where nc,y, is the number of cavities, dy,;, the subgrain size, ¢ the creep strain rate,
X the interparticle spacing in the grain boundary and C; a constant. The factors gy
and gpar are the fraction of active nucleation sites at sub-boundary junctions and
particles.

Diffusion controlled growth of cavities is described by Eqgs. (10.15) and (10.18)

dRcav 1 (13 6)
dt '

= 2Dy Kt(0req — 09) R2

cav

27 Do K(0red — 00)Ncay Reay + €(0red) = €(0) (13.7)
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where R,y the cavity radius in the grain boundary plane, o the sintering stress. The
grain boundary diffusion parameter Dy is equal to 8Dgp<2/kgT where 3 is the grain
boundary width, Dgg the grain boundary self-diffusion coefficient, and €2 the atomic
volume. kg is the Boltzmann’s constant and T the absolute temperature. The factor
K is given in Eq. (10.12).

Equations (13.6) and (13.7) model constrained cavity growth. Constrained growth
is essential to take into account to avoid overestimating the growth rate. o4 is a
reduced stress that is lower than the applied stress o. £(oreq) and é(o) are the creep
rates at the reduced and applied stress, respectively. o,q is found by solving Eq. (13.7).

Grain boundary decohesion is the main mechanism for brittle rupture. Due to
both cavity nucleation and growth, there is a gradual increase of the cavitated grain
boundary area fraction during creep. When this fraction reaches a critical value,
failure takes place. It is fairly well established that this critical area fraction is about
0.25 [21]. The cavitated grain boundary area fraction A.,, can be calculated from
[22]

t

dncav 2
Acay = 7 (170 Rey, (2, 11)d1y (13.8)
1

0

The nucleation rate and the cavity radius in Eq. (13.8) are given by Eqgs. (13.5) and
(13.6). The resulting time dependence of these quantities is illustrated in Fig. 13.4.
In this Figure the number of cavities, the average cavity radius, the cavitated area
fraction, and the creep strain are given as a function of time in a common diagram.
Ductile rupture occurs when the creep strain reaches a fixed elongation value of 0.2.
Brittle rupture takes place when the cavitated area fraction gets a value of 0.25. These
levels are marked in the diagram. The condition that is first satisfied controls the type
of failure. Thus, if the creep strain reaches 0.2 before the cavitated area fraction is
0.25, the rupture is ductile but if cavitated area fraction takes its critical value first,
the rupture is brittle.

Two cases for the austenitic stainless steel 316H are considered in Fig. 13.4a at
a relatively high stress and low temperature and in Fig. 13.4b at a low stress and
high temperature. The number of cavities increases at the same rate as the creep
strain. This is a direct consequence of Eq. (13.5). Since a constant creep rate is
assumed, both the creep strain and the number of nucleated cavities are linear in
time. For unconstrained growth the cavity volume is linear in time, cf. Eq. (10.11).
This means that the cavity radius is proportional to '3 where ¢ is the time. For
constrained growth, the growth rate is lower. Since the cavitated area fraction in the
grain boundaries increases both with the number of cavities and the cavity radius,
it shows a faster increase than the two contributing processes. In Fig. 13.4a, the
strain criterion is met first. Consequently the rupture is ductile. On the other hand in
Fig. 13.4b, the criterion for the cavitated area fraction is satisfied first. The rupture
is brittle.

An early example of the application of Egs. (13.5), (13.6) and (13.8) was for
pure oxygen free copper with 50 ppm P (Cu-OFP) and without P. The difference in
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Fig. 13.4 Modeled time dependence of cavity evolution for the austenitic stainless steel
17Cr12Ni2Mo (316H). The number of nuclei, the cavity radius, the area fraction of cavities in
the GBs, and the creep strain are shown as a function of time on a common scale; a 600 °C,
251 MPa (ductile rupture); b 700 °C, 29 MPa (brittle rupture)

cavitation between these two types of alloys has been possible to model in detail, see
Sect. 10.4. The predicted rupture elongation as a function of temperature is shown
in Fig. 13.5.

The influence of P in Fig. 13.5 is striking. With 50 ppm P the rupture is ductile
and this is modeled with ductility exhaustion. In contrast, Cu without P can have very
low creep ductility values (brittle rupture) that can be fully described by the model.

With the help of Egs. (13.5), (13.6) and (13.8), predicted creep ductility values
for brittle rupture are given as a function of rupture time for two austenitic stainless
steel 321H and 316H in Fig. 13.6.

The computed ductility values decrease with increasing temperature and rupture
time. This is regime Il in Fig. 13.1. The upper shelf regime I appears at higher ductility

Fig. 13.5 Comparison of
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oxygen free copper with and
without 50 ppm P. Cu-OF is
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Fig. 13.6 Comparison of modeled and experimental creep elongation values for brittle rupture for
two austenitic stainless steels at four temperatures 600, 650, 700, 750 °C (from top to bottom). The
predicted and observed values at a given temperature are shown in the same colour; a 18Cr12NiTi
(321H); b 17Cr12Ni2Mo (316H). Creep data from NIMS [5, 23]. Redrawn from [24] with
permission of Taylor & Francis

values, see Fig. 13.3. In Fig. 13.6 there is no direct evidence of a lower shelf regime
III. The modeling can only describe the general behaviour of the ductility, not the
cast to cast variation as explained in Sect. 13.1.

13.3.2 Ductile Rupture

Ductile creep rupture of tensile creep specimen is believed to be initiated by necking,
i.e. the plastic instability that forms a waist around the specimen. That was demon-
strated for creep of copper in Sect. 12.4.1. In addition, when tertiary creep can be
described with the Omega model, the necking takes place very close to the rupture
and can be assumed to start the rupture, Sect. 12.5.2. For a number of steels that follow
the Omega model including many low alloy steels, 9 and 12%Cr steels and austenitic
stainless steels, ductile rupture can be considered to be controlled by necking. Since
necking and the associated ductility values are fully described in Sect. 12.5, the
results will not be repeated here.

13.4 The Role of Multiaxiality

In the literature there has been considerable interest in the effect of multiaxiality
on the creep ductility. One of the main reasons is that creep ductility exhaustion is
an important method for residual life assessment of components operating at high
temperatures. For surveys on the role of multiaxiality, see [6, 11].
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13.4.1 Diffusion Controlled Growth

Giessen and Tvergaard has proposed that Eq. (10.8) for cavity nucleation should be
modified by including the ratio between the stress normal to the grain boundary o,
and the effective stress o, to take into account the effect of the stress state [25]

dncay 0.9C; [ gsub 8part On 2 . On 2 .
—_— = — = By — 13.9
dt dsup <d2 + A2 Oe ¢ Oe ¢ ( )

sub

Gonzales and Cocks have taken the average of this expression over all contributing
grain boundaries and found the following result for the multiaxiality factor [26]

dncay 4 2
Teav _ phné where fan = ~ +5( (13.10)
dt 9 Oe

op is the hydrostatic stress and o, the effective stress.

oh = (01 + 02 +03)/3; 0e =+/((01 — 02)% + (02 — 33)2 + (03 — 01)?)/2
(13.11)

o1, 07 and o3 are the principal stresses.
The derivation of the expression for diffusion controlled growth Eq. (10.11) has
the form that it is natural to assume the following effect of the stress state [27]

AReav _ 5 1y Ko (13.12)
—_— = (O —— — .
dt 0B Tep2 Oe

cav
where o, and o. have the same interpretation as in Eq. (13.9). For simplicity the
role of the sintering stress is neglected since it is small anyway. Thus, the influence
of the stress state has a similar form as for the nucleation rate in Eq. (13.9). If the
averaging over grain boundary orientation is made in the same way as in Eq. (13.10),
the following result is obtained

dRcav 1 1/2
7 = 2D0KfO'eRT MA (1313)

cav

If a constant stress is assumed, Egs. (13.10) and (13.12) can be integrated directly

Nea = By funél; Reay = (R2,0 + 6D0K joe fuln (t — 1)) (13.14)

cav0

where ¢ is the time. These expressions can be inserted in Eq. (13.8) for the cavitated
area fraction
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t t
3
Acayv :nBsf&/jé(éDoKfae)Zﬁ/(t —H*3ar'; /(r —"Radr = §r5/3
(13.15)

In this equation the rupture time #g for ¢ is introduced. With a constant stress and
only secondary creep egr = éfR.

Aca B Suine P ODoK o) ey (13.16)

From Eq. (13.16), the rupture ductility can be obtained if A,y is taken as its critical
value At

3/5
sR_(Acmam/( B, ful2 (6DoK s0.)*? ) )  (Diffusion control)  (13.17)

Since the expression is based on unconstrained rather than constrained growth is
cannot be used to predict the uniaxial ductility. However, the effect of the stress state
is expected to be the same for unconstrained and constrained growth. The influence
of multiaxiality can now be extracted

4/5

ER = sR /fvia  (Diffusion control) (13.18)

where & is the uniaxial ductility.

13.4.2 Strain Controlled Growth

There are several expressions for strain control of cavity growth that are properly
derived. The one due to Cocks and Ashby [28] was discussed in Sect. 10.5.3. Wen
and Tu has improved one expression in Cocks and Ashby’s derivation and proposed
a new formula [29]. Another result was derived by Rice and Tracey [30]. It gives a
cavity growth rate of the form

I dRcy 1 301,
= £—sinh
Re.w dt 2 20,

(13.19)

where oy, is the hydrostatic stress and o, the effective stress. This equation was derived
for plastic deformation. Hellan transferred the equation to creep conditions [31]

1 dRcav .. ﬂHGh
—— ——— = ayé sinh
Reaw dt O,

(13.20)
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where
ayg = 3arcsinh(2(ny — 1)/nN); By = 2N — 1)/nN) (13.21)

ny is the creep rate stress exponent. Equation (13.20) can be combined with
Eq. (13.10) for the nucleation rate to derive the cavitated area fraction. But Eq. (13.8)
must first be transformed from time to strain dependence

&

dneay
Acar :/ ;“ (e R, (e, &1)de (13.22)
&1

0
The nucleation rate Eq. (13.10) can directly be expressed as

dn cav
de

= Bs fua (13.23)

Equation (13.20) can also easily be transformed to strain dependence and
integrated

1 dRcay . PBuon 0 . Buon
— = ay sinh ——; R.w = R_, exp(ay sinh
Rcav de H 0o cav cav €XP ( H 0o

(e —g)) (13.24)

where R?av is the initial cavity radius when a cavity starts to grow at the strain ¢.

Inserting Eqs. (13.23) and (13.24) into (13.22) gives

&

Acay = BsfMAﬂ(Rga\,)z / exp(2ay sinh
0

Pron . yde, (13.25)

e

The integral in Eq. (13.25) is elementary

exp (ZaH sinh £ 8)

Oe

Acav = Bs fuam (R,)?

cav

20y sinh @ (13:20)

By replacing A,y by its critical value A the rupture ductility is obtained

1 1 AcritZO{H sinh ﬁgﬁh 11 (13 2 )
e = 0 : (Hellan) 27
® ™ 2ay sinh Buoy *\ B mam (RY,)?

One uncertainty in Eq. (13.27) is the initial value of the cavity radius. Another
limitation is the absence of significant temperature dependence. These problems
seem to be common for many strain controlled growth mechanisms. The equation
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is consequently difficult to use to predict the uniaxial rupture ductility. The main
influence of the stress state is in the sinh function outside the logarithm.

13.4.3 Growth Due to Grain Boundary Sliding (GBS)

In Sect. 10.5.3 a model for cavity growth due to GBS was presented in Eq. (10.24)
Reav = Cse (13.28)

If this expression together with Eq. (13.10) for the nucleation rate are inserted in
Eq. (13.22) the cavitated area fraction in the grain boundaries is found

Acay = Bfuam C26%/2 (13.29)
This gives the following rupture ductility

er = QAcit/BfuamC2)'* (GBS growth) (13.30)

13.4.4 Comparison of Models

In Fig. 13.7 the multiaxial creep ductility factor for the diffusion controlled growth
model, Eq. (13.18), is shown as a function the stress triaxiality ratio op/c.. Also
results for Hellan’s model in Eq. (13.27) are illustrated. A comparison is made to
experimental data for notched bars. Values for Durehete 1055 (1Cr1Mo), 2.25Cr1Mo
(P22), 9Cr1Mo, 9Cr1Mo mod. (P91) and the stainless steel 316H (17Cr12Ni2Mo)
are included.

A comparison is also made to the models of Cocks and Ashby [28] and of Wen
and Tu [29]

er = sinh(%w>/sinh(wﬁ
(nn+0.5) o,

3 (nn +0.5)
B % (ny —0.5) 2(nn — 0.5) Oh
ER = exp(3 —(nN 05) )/ exp(—(nN 105 Ge) (Wen and Tu) (13.32)

) (Cocks and Ashby) (13.31)

The five models in Fig. 13.7a are in reasonable agreement with the observations.
The GBS growth model is in the upper end of the data range. For small stress
triaxiality values, the models fall in two groups. The diffusion controlled and GBS
growth models are close to that of Wen and Tu [29]. They derived a model that
corrected an approximation in the Cocks and Ashby model improving the model at
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Fig. 13.7 Effect of stress triaxiality op/c. on the multiaxial creep ductility factor ER/&‘g for round
notched bar specimens where eg is the uniaxial creep ductility; a model values are compared to
experimental data from [6]; b values for strain controlled growth models

low triaxiality stresses [6]. Hellan’s and Cocks and Ashby’s models give results that
are quite similar. The parts in their expressions for the influence of the stress states
are also close.

In spite of the fact that the models tend to give similar results when compared to
observations, they are based on quite different principles. The diffusion control and
GBS growth models are based on expressions for nucleation and growth of creep
cavities that are verified experimentally. For both models the nucleation plays an
important role. For the strain governed models only the derivation of Hellan’s model
takes nucleation into account but the nucleation has only a smaller effect on the
results. The other two models for strain controlled growth, Cocks and Ashby as well
as Wen and Tu do not involve nucleation. All the strain controlled models suffer from
the limitation that there is no direct temperature or stress dependence in the models,
which is not consistent with data for uniaxial creep ductility. The starting value of
the cavity radius for growth in these models is not defined except for the GBS growth
models. These facts imply that it is difficult to make direct comparisons to observed
growth rates. If these limitations affect the multiaxial ductility factor is not known.

The derivation (13.27) based on Hellan’s model is new. In the past, most researches
have started directly from Rice and Tracey’s Eq. (13.19) ignoring the transformation
to creep. In the literature the multiaxial ductility in Eq. (13.33) is assumed to be
derived from Rice and Tracey’s equation.

0 1 3 Op . .
ER = €R €XP 3755 (Rice and Tracey orig.) (13.33)
€

Further comparisons between models are given in Fig. 13.7b. The transformation
to creep in Hellan’s equation seems to have only a modest effect. This can be seen
by comparing the curves for Hellan’s and Rice and Tracey’s models. However, the
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usual expression referred to as Rice and Tracey’s original equation is quite different
to that of Hellan.

A number of empirical models for the multiaxial ductility factor exist. Wen et al.

have given of survey of them [6]. Since several models derived from basic principles
are available and they give results that are often not very different from the empirical
models, the incentive to use the latter type must be limited in particular since the
expressions for the basic models are not very complex.

13.5 Summary

For a number of creep resistant steels the creep ductility decreases with increasing
rupture time and temperature. Sometimes an upper shelf level is observed at short
rupture times and a lower shelf level at longer rupture times. For martensitic steels
an increase in the ductility can be found at still longer times.

Creep ductility is traditionally modelled with empirical mathematical expressions
describing an S or an inverted S-shaped curve depending on the variables used.
Basic expressions for cavity nucleation and diffusion controlled growth can be
used to describe the ductility during brittle failure. For steels only general predic-
tions are possible due to the complex cast to cast variation that is not fully
understood at present.

The ductility during ductile rupture has been demonstrated to be controlled by
necking for the investigated steels and copper alloys. Since necking occurs very
close to the rupture, modeling of necking can be used to predict the creep ductility.
Several derivations for the influence of multiaxiality on the creep ductility are
presented. In spite of the fact that they are based on many principles, the results
are in general close to observations for notched bars.
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Chapter 14 )
Extrapolation i

Abstract The extrapolation of creep data to longer times is technically very impor-
tant. The traditional way of extrapolating creep rupture data is to use time tempera-
turer parameters (TTPs). In this way data from several test temperatures are combined
to a single master curve that can be used to assess rupture strengths at long times.
Recently, there is much focus on machine learning techniques (neural networks,
NNs). Both types of procedures can generate accurate results, but a detailed anal-
ysis is required. A good way to assess the quality of the results is to use the post
assessment tests (PATs) developed by ECCC. Without such tests arbitrary results
can be obtained. They are important for both TTPs and NNs. It has been shown
that by putting requirements on the derivatives of the creep rupture curves, the PATs
can more or less automatically be satisfied. In addition, the error in the extrapolated
values should be estimated. Using the basic creep models presented in this book,
prediction of rupture strength and ductility can be made in a safer way. It is demon-
strated for Cu that accurate extrapolation of many order of magnitude in the creep
rate can be made, which is never possible with empirical models.

14.1 Introduction

Many types of high temperature plants have a long design life. Modern fossil fired
power plants are designed for 2040 years of operation and nuclear power plants
for 60-80 years. To ensure safe operation accurate creep data and other time depen-
dent material property values must be available that cover such long design lives.
Direct measurement of creep data for these extended times is not practical for several
reasons. It is expensive and technically complicated to perform long term creep tests.
Disturbances can take place that destroy the test results. In addition the material being
tested can be outdated before the test is finished. Instead numerical time extrapolation
of the experimental results must be carried out. Extrapolation of creep rupture data
have been performed for many years. Long term values have been predicted from
shorter time experimental data. It should be emphasized that systematic procedures
must be applied in order to obtain accurate results.
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The most common approach is to use time-temperature parameters (TTPs). With
the help of a TTP, creep rupture data at several temperatures are combined to a single
master curve, where the creep stresses are shown as a function of the TTP. From the
master curve, time extrapolated values at lower temperatures can be derived from
master curve values at higher temperatures. In this way, extrapolated values at most
temperatures can be found by interpolation from the master curve. By being able to
interpolate reduces the error in the analysis significantly. Many different TTPs exist,
see [1]. It started with the Larson-Miller method in the 1950ties. Some TTPs will
be listed in Sect. 14.2. Although many adjustable parameters are typically involved
in the fit of the creep rupture data to the master curve, the TTPs are in general
simple to use since the adjustable parameters can be obtained with linear algebra.
The application of TTPs will be demonstrated in Sect. 14.2.

There are other types of methods than TTPs for extrapolation of creep rupture data.
Two methods can be mentioned where also the form of the TTP is adjustable. The
minimum commitment method [2] and the free temperature model [3]. In general it
is difficult to reach more than a factor of three in time for accurate extrapolation with
statistical methods like TTPs. With the free temperature model a factor of ten can
be reached in many cases. This has been demonstrated for austenitic stainless steels.
Other approaches for extended extrapolation also exist [4, 5]. Two other groups of
methods should also be mentioned. With algebraic methods a creep stress versus
rupture time equation is the starting point. This type of approach was popular in the
former Soviet Union [6]. The German graphical techniques have successfully been
used to perform accurate extrapolations [7]. Another graphical method is a former
ISO-standard [8]. A more recent method that is popular is due to Wilshire [9]. In this
approach the creep data is normalized with the tensile strength. This is valuable if
the amount of scatter in the creep data can be reduced in this way.

It was recognized a long time ago that the extrapolation results significantly
depended on the chosen TTP and on the degree of the polynomial used in the fit
of the master curve [10]. Since different analysts often have different opinions about
the choice of method, it means that the results are operator dependent and this was not
considered to be an acceptable situation. For this reason, the European Collaborative
Creep Committee (ECCC) was initiated. Within ECCC, a framework of systematic
procedures has been developed that generate more consistent results. The ECCC
program started in 1992 and is still ongoing in 2022. It has been known that it is not
possible to pin point a specific TTP to be more advantageous than others. Instead,
post assessment tests (PATs) have been formulated that are used to check that the
applied method does not show unphysical behavior and that the extrapolated creep
rupture strength values are not sensitive to limited changes in the input data. Due to
the flexibility of the polynomial fit to the master curve, unphysical behavior often
appears. The PATs represented a major step forward when they were introduced [11,
12]. Creep rupture data for many steels and alloys proposed by ECCC are now in
European standards. However, there are still short comings of the proposed proce-
dures and PATs. None of them are based on derivations from physical principles and
in the past there has been no way of estimating the error in the results.
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To improve the situation for these remaining limitations, two things have recently
been proposed [13]. The first one is to put requirements on the first and second
derivatives of the predicted creep rupture curve. The derivatives should be negative.
In this way a correct physical behavior is often automatically achieved and the flexing
of creep rupture curves is avoided. The second item is that principles for estimating
the extrapolation error have been proposed. The use of these findings will be discussed
in Sect. 14.3.

The use of a Neural Network (NN) is an alternative to TTP. NN is also called Arti-
ficial Neuron Network and is a part of deep learning. NNs are extensively applied in
the development of Artificial Intelligence (AI). NNs are used in a large number of
industrial applications such as autonomous driving, signal processing, risk assess-
ment, pattern recognition of images, missile control, autopilots, etc. [14]. In contrast
to TTP no basic parameter model is chosen. NNs consist of a number of functions,
neurons, with adjustable parameters. NNs are sufficiently flexible that they can adapt
to many types of functional dependence. Fitting of data with empirical models has
found new interest with the wide spread use of NNs. NNs are in principle limited to
interpolation of data. However, in practice they are used for extrapolation as well.

Complicated creep rupture behavior can be simulated with NNs even when special
degradation mechanisms are present [15, 16]. The fit of the functional dependence
implies that the number of adjustable parameters is larger than when using TTPs,
often much larger. Liang et al. [17] have analyzed the creep rupture life of 9-12%Cr
steels with NN; Ghatak et al. have modeled the creep rupture curve of HP40NbD steels
with NN successfully [15]. Adductive NN has also been suggested for creep rupture
prediction of 9-12%Cr steels by Wang et al. [18].

In fact, the debate for the extrapolation capability of NN has lasted for a long
time. Including physical principles in the common NN is a good way to improve the
extrapolation. This is called physics-constrained [19] or physics-informed NN [20]
(PCNN or PINN). The extrapolation can be safely conducted by adding constraints
or prior knowledge to the common NN.

Extrapolation from NN results must be common in industry. In spite of this it is
difficult to find procedures for error analysis in the literature. The common method
is to make a regression analysis between the predicted values and the source data
and to determine the standard deviation between predictions and the observations.
As will be shown in Sect. 14.3, this is not adequate at all for creep rupture data and
probably not for many other types of applications either. For this reason new types
of error analysis have been formulated recently, Sect. 14.3.

As was mentioned above, the introduction of requirements on the first and second
derivative of the creep rupture curves can significantly simplify and improve the
results of the extrapolation analysis with TTPs. For example, many of the ECCC PAT's
were found to be automatically satisfied if these requirements were introduced. It will
be shown in Sect. 14.2 that these requirements are equally essential when NN-based
modeling is carried out. This will be demonstrated in Sect. 14.3.

The methods discussed above are all empirical models. None of TTPs commonly
used have been derived from basic physical principles. Both TTPs and NNs are just
flexible expressions that can easily be fitted to the observations. Empirical models
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have the drawback that a large amount of data must be available to make safe predic-
tions. Unless the amount of data is sufficient, the models cannot be used to identify
the operating mechanisms [21-23]. To fully understand the underlying mechanisms,
fundamental models should be applied where the contributions from different mech-
anisms are derived from basic physical principles. Such models have been derived for
dislocation strengthening as well as precipitation and solid solution hardening. They
have been used to predict the creep rate of austenitic stainless steels [21, 22, 24, 25].
Fundamental models have also been formulated for cavity nucleation and growth. By
applying these models, brittle rupture can be modeled. Both creep rupture strength
and ductility have successfully been computed for copper and austenitic stainless
steels [22, 23, 26-28]. Some of these models will be discussed in Sect. 14.4. Funda-
mental models are of importance for example to meet the full design life of modern
nuclear reactors with a planned design life of 60-80 years.

14.2 Empirical Extrapolation Analysis

14.2.1 Basic TTP Analysis

Extrapolation from a single curve gives quite an uncertain result in particularly if there
are no requirements on the derivatives. It was recognized long ago that by combining
creep data from several temperatures, the accuracy could be much improved. The
size of the improvement will be analyzed in Sect. 14.3. The classical approach is
to use a time temperature parameter (TTP). It is a function of absolute temperature
and time. A polynomial in the logarithm of the creep stress is fitted to the TTP in
such a way that the creep rupture data fall on a single curve, the master curve. A
logarithm with the base 10 is most frequently used in studies on extrapolation and
that practice will be followed in this chapter. The coefficients in the polynomial and
a few constants in the TTP represent the adjustable parameters involved. For many
TTPs the adjustable parameters can be determined with the help of linear algebra
and are consequently easy to find. Many TTPs are available. Sources were given in
Sect. 14.1. Examples of TTPs are listed in Table 14.1.

Table 14.1 Examples of

time-temperature parameters Larson-Miller (LM) TTPLy = TTlog(r) + Crm]
(TTPs) Manson-Haferd (MH) TTPyy = %
Manson-Brown (MB) TTPuB = W

Orr-Sherby-Dorn (OSD) | TTPosp = log(¢) + Cosp/T
Manson-Succop (MS) TTPps = log(t) + Cms - T
Sud aviation (SA) TTPsa = log(t) + Csa - log(T)

Goldhoff-Sherby (GS) TTPgs = 57— 5
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For the listed TTPs, T is the temperature, ¢ the time, and Cnyn and log(z,) are
adjustable parameters. The parameters 7, and r are given predefined values in
general.

The TTPs in Table 14.1 have been used for a number of decades. References to
the original sources of the TTPs can be found in [1, 29, 30]. The extrapolation results
depend on the chosen TTP and the degree of the polynomial that is used to fit the
master curve. Consequently, it is critical how these quantities are selected. There is
general experience that it is not possible to find the optimal TTP for a given analysis
in advance [10]. Instead, a number of TTPs and polynomial degrees have to be tested
to find a satisfactory solution.

With an example it will be shown how extrapolation with a TTP can be performed
and how the result is checked and analyzed. A creep resistant 17Cr12NiTi austenitic
stainless steel with the common designation 321H will be studied. The experimental
data are taken from NIMS’ large collection. The studied creep data are shown in
Fig. 14.1. Larson-Miller TTP is applied and the polynomial degree is selected to 6.
The fitted master curve is shown in Fig. 14.2.

The model values in Fig. 14.1 are taken directly from the master curve in Fig. 14.2.
The part of the master in the range of the data is used for all temperatures except
the highest one where it is necessary to take into account the extrapolated part of
the master curve for large TTP values. The advantage of using a TTP is already
obvious from this description. The extrapolated values at all temperatures except the
highest one can be determined by interpolation along the master curve. This gives a
more accurate result than when being forced to extrapolate from single curves. As a
consequence the extrapolated values at the highest temperature involve a potentially

O 550 exp
550 pred
x 600 exp
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+ 650 exp
1 |===== 650 pred
#* 700 exp
= = =700 pred
o 750 exp
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Fig. 14.1 Comparison of experimental and modeling (interpolated and extrapolated) values for
creep rupture of the 17Cr12NiTi austenitic stainless steel (321H); Larson-Miller TTP model is used;
‘pred’ represents the interpolated values, ‘epol’ the extrapolated values, and ‘exp’ the experimental
data at five test temperatures from 550 to 750 °C. Experimental data from NIMS [31]
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higher error than the predicted values at other temperatures. The first requirement of
a successful analysis is that good fit to the data is obtained, which should be directly
evident from the comparison with source data (Fig. 14.1) and for the master curve
(Fig. 14.2).

In many cases the analysis is performed without additional requirements. This
often means that a number of attempts have to be made before smooth curves and
a good fit can be obtained. However, the results in Figs. 14.1 and 14.2 have been
determined with additional requirements. All creep strength versus rupture time
representations with double logarithmic scale (which are referred to as creep rupture
curves) must have a non-positive derivative, in practice a negative derivative. Other-
wise the rupture time would not increase with decreasing creep strength which is
unphysical. In addition, the absolute slope is not arbitrarily large.

The second derivative of creep rupture curves is in most cases negative, i.e.
the absolute value of their slope increases with rupture time. The reason is that
there is microstructural degradation for example through coarsening of precipitates.
The exception is so-called sigmoidal behavior with a slightly S-shaped curve. Such
rupture curves are typically the result of complex precipitation during the creep tests
and there is a time period when the strength is not degrading but increasing. It is
quite unusual that the sigmoidal appearance has a temperature dependence that is
consistent with the creep rupture and can be described with a TTP so this case is
not considered here. In fact, sigmoidal forms are suitable to handle with the type of
basic models that are presented in Sect. 14.4. As a consequence it can be assumed
that also the second derivative of the rupture curve is negative.

When computing the results in Fig. 14.1 and in Fig. 14.2, constraints on the creep
rupture curves have been taken into account. The conditions are formulated as

_dlogtR<_15' d2logtR<0 14.1)

" dlogo dlogo?
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dlogtg -

14.2
dlogT — ( )

As pointed out above it is a physical requirement that the first derivative of creep
rupture curves is negative

dlogo
< (14.3)
dlogtg
‘éllf)g s the inverse of %% and consequently the former derivative is also
0g 0 dlogtr
negative.

In Eq. (14.1) the second derivative can be expressed as the second derivative of
the rupture curve

d?logtr . _d2 logo {dloga }3 (14.4)

dlogo? — dlogtz ' | dlogt

Equation (14.4) can be obtained with elementary calculus. Since the first derivative
is assumed to be negative it follows that the two second derivatives have the same
sign. Thus, the second criterion in Eq. (14.1) is verified. This ensures that the creep
rupture curves have a negative second derivative. The second derivative of the rupture
time is somewhat easier to compute than the second derivative of the creep stress.

With a Norton type of approach both the creep rate &, and the rupture time g
can be represented with stress exponents (power-law creep)

Egoc = ANGnN; IR = BRO'_m (14.5)

The constant m is the inverse slope of the flow curve with a minus sign, see
Eq. (14.1). The Modified Monkman-Grant equation relates the rupture strain eg to
the strain rate and the rupture time [32]

sectR = CMMGER (14.6)

Sundararajan lists values of Cymg for a number of materials [33]. The values
lie in the interval 0.1-0.64. If only secondary creep contributed to the rupture strain
the constant Cyvg would be equal to unity. Another constant, the rupture ductility
factor AR, is often used

&R

AR = ; AR = 1/Cmmc (14.7)

EseclR

By comparing the definition of Ag with the modified Monkman-Grant equation, it
is evident that hy is just the inverse of the modified Monkman-Grant constant Cyvg.
The value of the rupture ductility factor has been analyzed in more detail for modern
9Cr1Mo steels. The result is that A\g & 5 and increases with rupture time [34].
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By combining Eqs. (14.5)—(14.7) and taking the logarithmic derivative, one finds
that

dlogir dlogegr

(14.8)

m —nN = —
dlogo dlogo

Since the rupture strain often increases with stress and A decreases with stress
for some alloys, the m value is smaller than the ny value at least at lower stresses.
ECCC has suggested a lower limit of m of 1.5, cf. Eq. (14.1). This is a characteristic
feature of creep resistant steels. If the absolute value of the slope would be still higher
and the m value lower, the steel would not be safe to use.

If the Omega model is satisfied for tertiary creep, the following relation is available
from Eq. (12.37) if the reasonable assumption that e is large is made

e—ngé‘o ”g
ha TcH
R = el (14.9)
ne

If this equation is combined with the expression for the rupture strain, Eq. (12.38),
one finds that

Rémin = €R fron (1 — fren (14.10)

This recovers obviously the modified Monkman-Gran relationship (14.6) with a
constant that depends on the size of the imperfection of the specimen. Since ¢ is
about 0.01 and fi.q &~ 0.99, the right hand side of Eq. (14.9) is often close to 1/ng,.
From Egs. (14.6), (14.7) and (14.9) one then finds that

1 ER
L~ Cunger = R (14.11)
ne AR

This provides another way of estimating the slope ng of log(strain rate) versus
strain curves in the tertiary stage. This result is consistent with the finding that
ng increases with increasing rupture time for modified 9Cr1Mo steels (end of
Sect. 12.4.2) in the same way as er/Ar does [34].

The first and second derivatives for the predicted rupture curves in Fig. 14.1 are
illustrated in Fig. 14.3. The first derivative is given as the m value, Eq. (14.1).

The conditions in Eq. (14.1) require that the m value is larger than 1.5 and that
the second derivative is not positive. These conditions are obviously fulfilled. The
criterion in Eq. (14.2) ensures that the creep rupture curves at different temperatures
do not cross. This criterion is usually not difficult to meet.
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Fig. 14.3 The first a and second b derivatives of the rupture time as a function of creep stress for
the creep rupture curves at the five test temperatures 550-750 °C in Fig. 14.1. The m-value is minus
the inverse of the first derivative (PAT 1.3)

14.2.2 The ECCC Post-assessment Tests

As mentioned above the results of the extrapolation analysis depend on the chosen
TTP and degree of the polynomial that is used to fit the master curve. The European
Creep Collaborative Committee (ECCC) recognized that additional tools are needed
to improve the possibility to select amongst all the alternatives. They proposed a
number of Post Assessment Tests (PATs) that should be applied when the predicted
rupture strengths have been generated. There are three sets of PATs [11, 12, 35].
The PATs are listed in Table 14.2. PATs 1.1-1.3 check the physical realism of the
predicted creep rupture curves. A good fit to the data is required, and the derivative
of the rupture curve should follow the measured values. PATs 2.1 and 2.2 assess that
the result is uniform and unbiased and that data at specific stresses, temperatures, or
casts do not behave in a different way from the rest of the prediction. The analysis
is repeated in PATs 3.1 and 3.2 with some of the long term data removed to verify
the stability of the prediction.

Table 14.2 ECCC post-assessment tests (PATs) for creep rupture data extrapolation (reproduced
from [36] with permission from Elsevier)

PAT 1.1 Visibility check that the model has given a good fit to data

PAT 1.2 Physical behavior of the rupture curve over an extended range of temperatures and
stresses

PAT 1.3 First derivative of rupture curves to check that the slope is not too steep

PAT 2.1 Regression of predicted vs. experimental rupture times to avoid bias
PAT 2.2 Analysis of individual casts
PAT 3.1 Reanalysis with 50% of the longest time data removed

PAT 3.2 Reanalysis with 10% of the lowest stress data at each temperature removed
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Fig. 14.4 a Representation of predicted creep rupture curves over an extended range of rupture
times for a fine distribution of temperatures (PAT 1.2); b influence of culling of data on the predicted
rupture curves; According to PAT 3.1 long term data are removed in the analysis, and in PAT 3.2
the data points with the lowest stresses at each temperature are not included

The match of the predicted to the experimental data is illustrated in Figs. 14.1 and
14.2. The fit is fine which means that PAT 1.1 is satisfied. In Fig. 14.3, m > 1.5 and
consequently PAT 1.3 is fulfilled.

In Fig. 14.4 the results of PAT 1.2 and PAT 3 are shown. In Fig. 14.4a there is
no bending back or crossing of curves in spite of the wide range of stresses and
rupture times and the fine temperature spacing. PAT 1.2 is verified. It should be
demonstrated that the results are not sensitive to the data for the longest test times.
This is studied with the help PAT 3.1 and PAT 3.2. In PAT 3.1 the same analysis is
performed again but with 50% of the data points with rupture time larger than a tenth
of the maximum observed rupture time randomly removed (culled). In PAT 3.2, the
analysis is repeated again but this time with 10% of the data points with the lowest
stresses culled. As can be seen in Fig. 14.4b only at the highest temperature there is
a significant difference between the culled and the unculled curves. The difference
should be less than 10% according to the ECCC recommendation and this is satisfied.

In Fig. 14.5 regression plots between the experimental and the predicted rupture
times are shown. The purpose of this type of diagram is to demonstrate that the
predicted values are close to the observed ones at both low and high stresses. Other-
wise the regression line would deviate from the 1:1 line. Two sets of border lines are
marked in the Figure. There are lines a factor of 2 above and below the 1:1 line. If
there is limited scatter in the data set, the result would fall inside these lines, but that
is typically not the case. The second set is located 2.5 oy above and below the 1:1
line. If the data show a normal distribution, no more than 2% of the data should fall
outside these lines. This is obviously fulfilled in Fig. 14.5. The regression coefficient
should be higher than 0.78 (0.92 in Fig. 14.5a). The regression plots are used to
estimate the regression error. This will be further discussed in Sect. 14.3.
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Fig. 14.5 Regression plots between observed and predicted rupture times. The regression line is
marked. The black line represents a factor of 2 above and below the mean line. The red line describes
a factor of 2.5 times the standard deviation above and below the mean line; a all temperatures (PAT
2.1); b Regression plots for individual temperatures

14.2.3 Use of Neural Network (NN)

Creep rupture data can be analyzed with a neural network [37]. It is sufficient to use
a simple NN. The NN that has been applied is illustrated in Fig. 14.6. There are a
hidden layer and an output layer. In the hidden layer there are 3—10 neurons (3 in the
Fig. 3) and in the output layer one.

Each neuron represents transfer functions, one for each input and one for each
output. The type of transfer function is sigmoidal in the input layer and linear in the
output layer. There are weight and base parameters in the transfer functions. They
are used as adjustable parameters in the fitting process. Well established procedures
for finding the values of the adjustable parameters are available [14]. The fitting
process for NN is usually called training. Of the experimental data 70% were set for
training, 15% for testing, and 15% for validation. The Levenberg-Marquardt back
propagation method was applied in the training of the network to minimize the Mean
Squared Error (MSE). A random number stream was used in the NN fitting process
to fix the output.

Hidden Output
Input Output
3 1
3 1

Fig. 14.6 Schematic structure of the neural network used to fit the creep rupture data (with Matlab)
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With 7ipy inputs, 16y outputs, and 72,e,, neurons in the hidden layers, the number

of adjustable parameters (weight and base parameters) n,q; is
Nadj = (ninput + 1+ nou)neur + 1 (14.12)

For creep rupture, the test temperatures and the stresses are the two inputs and the
rupture times the output. The flexible NN model should give a good representation of
the rupture times. According to Eq. (14.12), there are 13 adjustable parameters with
3 neurons in the hidden layer; and there are 41 with 10 neurons. In the framework of
creep rupture, 13 adjustable parameters is already a large number [12]. With more
neurons the fitting of the data is improved but overfitting may quickly be the result.

For precisely the same reasons as in the TTP analysis, the requirements on the
derivatives in (14.1) and (14.2) should be fulfilled. This ensures that flexing and
other unphysical behavior of the predicted creep rupture curves are avoided. Unfor-
tunately expressions for the derivatives are not readily available in NN software. For
this reason expressions for derivatives have been derived. Since the expressions are
complex, the derivation has been placed in an Appendix (Sect. 14.6). An alternative
is to repeat the computations many times until the constraints and other requirements
are fulfilled. This is referred to as soft constrained machine learning [38].

The application of a NN model is illustrated in Fig. 14.7 for the austenitic stainless
18Cr10NiCu steel Super304H. It has also the common designation 304HCu. The
predicted rupture strengths are compared with the observations.

A good fit was possible to obtain in Fig. 14.7. It should be emphasized that many
runs with different stream numbers were needed before a satisfactory result was
obtained. The stream number fixes the random number generator so the same run
can be repeated. In this way the adjustable parameters in the NN model are initiated

Fig. 14.7 Comparison
between observed and
predicted rupture times for
the creep-resistant austenitic
stainless steel Super304H at
four test temperatures from
600 to 750 °C. The
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Fig. 14.8 The first and second derivatives of rupture time with respect to the creep stress for the
rupture curves in Fig. 14.7; a the m value and b the second derivative both as a function of rupture
time. Reproduced from [37] with the permission of Taylor & Francis

with the same values. The initial values have obviously a significant effect on the
result. The requirements on the derivatives simplify the search for a good fit that
behaves in a physical correct way.

The derivatives of the rupture curves are presented in Fig. 14.8. In this case the
derivatives are given as a function of rupture time instead of stress as in Fig. 14.3.
But the same message is provided. The derivatives are negative and the m value is
larger than 1.5 so the conditions in Egs. (14.1) and (14.2) are satisfied.

The regression plot in Fig. 14.9 shows a narrower scatter band than in Fig. 14.5
for 321H. Most of the data fall inside the band for a factor of 2. The reason is most
likely that the data for Super304H come from just one cast whereas the 321H data
are from 9 casts. Only single points are outside the 2.5 oy limit in Fig. 14.9. PAT
2.1 is fulfilled since the regression line is close to the 1:1 line. An even distribution is
shown for the extended curves in Fig. 14.9b. No crossing of curves and no bending
back verify that PAT 1.2 is satisfied.

Studies on several materials show that the PATs play an equally important role
for NN models as in TTP analysis. That the results have a physical correct behavior
cannot be ascertained without the application of the PATs. The use of constrained
optimization with conditions on the derivatives of the creep rupture curves makes it
much more straightforward to fulfill the requirements of the PATs.
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Fig. 14.9 Regression plot of predicted rupture time versus observed rupture time for Super304H
with a regression line (dashed line) close to the 1:1 line. Two bands are given: £2.5 times the
standard deviation and a factor of 2; b predicted rupture times over a wide range of stresses and
rupture times to demonstrate that the curves are not bending back in an unphysical way. Reproduced
from [37] with the permission of Taylor & Francis

14.3 Error Analysis in Extrapolation

14.3.1 Model for Error Analysis

Fitting a model to the observed creep rupture data is the start of all empirical models.
The model must give a good fit to the data. This means that the model must be able
to interpolate accurately between the data points. If TTPs are used the fit is to a
single curve, the master curve. The deviation between the interpolated values and
experimental data gives the first contribution to the extrapolation error.

A schematic creep rupture curve is shown in Fig. 14.10. The creep stress is plotted
versus rupture time. The data points are scattered around a source curve with arandom
scatter of 50%. The curve will be used to estimate the interpolation error.

The data is fitted with a polynomial of degree 5. To simulate the situation for
a creep rupture curve, the condition for the first derivative is taken into account
according to the first criterion in Eq. (14.1). The polynomial lies well inside the
scatter band but it is moving from one side of the source curve to the other side.
This means that the second derivative changes sign. In the curve designated fit with
constraints the second derivative is also assumed to be negative according to the
second criteria in Eq. (14.1). Since this condition is fulfilled for most rupture curves,
see Sect. 14.2, the focus will be on this case. It will be referred to as the constrained
one (although the pure polynomial fit is also constrained to some degree).

The average error Ggevcon in the fit with the constraints can be estimated from basic
principles in statistics [40]
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log 64evcon = 10€ Ornd/A/d (14.13)

nq is the number of data points. o,,g the amount of scatter in the data points measured
as the deviation of the difference between the data points and the source curve.

logomg = \/Z (logo; —log Gsource)2/(nd -1 (14.14)

A polynomial fitis flexing around the source up to n, times, where n,, is the degree
of the polynomial. Within each range of flexing the principles of Eq. (14.13) can be
applied. The average error ogeyuncon DECOMES

log Ggevuncon = log o'rnd/\/ nd/np (14.15)

Consequently, the error is raised by a factor of /i, in relation to Eq. (14.13).
The derived errors in Eqgs. (14.13) and (14.15) have been verified with thousands of
test runs. Logarithms are used in Eqs. (14.13) and (14.15), which shows that relative
errors are derived.

In Fig. 14.11a it is illustrated what happens if one tries to extrapolate the curves
in Fig. 14.10. For the polynomial fit a partially unphysical result is obtained and the
curve is almost bending upwards. This is avoided in the constrained fit. In Fig. 14.11b
another case is illustrated for the same source curve but with a new set of randomly
generated data points. It is evident that extrapolation from a single curve can give
significant variations.

When a significant extrapolation is made, the result is controlled by the highest
order term in the polynomial. In the error analysis, this part is taken into account. It
can be expressed as
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Fig. 14.11 Schematic creep rupture curve with the creep stress as a function of the rupture time in
a double logarithmic diagram; a extrapolated from Fig. 14.10; b parallel example from the same
source curve

log eexi = A(log(fext/ frer))™ (14.16)

where 7.y is the extrapolated rupture time. The reference time f.¢ is chosen as the
minimum rupture time #,;; included in the analysis. A is a constant that is a function
of the degree n,, of the polynomial, the number of data points n4, and the half-width
of scatter band o,,4. The value of A has been determined with the help of a large
number of test runs. The following expressions have been found for the constrained
and unconstrained cases

ap log orng ao log oynq

Acon = 7 Ay =
con \/n—d(log(tmax/tmin))np neon vV nd/np(log(tmax/tmin))np

(14.17)

min and 7, are the minimum and maximum rupture times in the analysis. ag is an
empirical factor that has been found to be about unity. A safety factor of 2.5 in the
width of the scatter band is included in the value of aj.

The constant A and consequently the error from Eq. (14.17) are directly propor-
tional to the logarithm of the half-width of the scatter band and inversely proportional
to the square root of the number of data points. For the unconstrained case the error
is higher by a factor that is equal to the square root of the degree of the polynomial.
These basic factors are the same as in Egs. (14.13) and (14.15).

In Fig. 14.12 an example is given for how the error increases with rupture time.
There is a rapid increase. If extrapolation by a factor of 3 in time is assumed which
is a common requirement, it can be seen from the Figure that this corresponds to an
error of 20% in the constrained case and 50% in the unconstrained case. It is obvious
that extrapolation from a single curve can generate large errors.
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14.3.2 Error Analysis with PATs

The ECCC PATs are valuable tools to assess if the analysis has worked in a satisfactory
way and the predicted values show a correct physical behavior. However, they do not
give a direct measure of the accuracy even if all PATs are satisfied. However, with the
help of the analysis above this can be achieved. The interpolation error ejperp from
the master curve can be expressed as

log orng Ntemp
m(o)

log éinterp = (14.18)

nq

Logarithms are used in Eq. (14.18), since the modeling of the creep rupture curves
is usually analyzed in log scales. The error in stress is requested, whereas o,g gives
the scatter in the time direction. To take this into account, the m(c) value is introduced
in Eq. (14.18). As marked the m value is stress dependent, see Fig. 14.3. The number
of temperatures in the analysis 7y is included for the same reasons as the degree
of the polynomial in Eq. (14.15).

The regression lines in Fig. 14.5 do not follow the 1:1 line precisely. This deviation
results in an error that can be expressed as

log eregr = bo + (b1 — 1) log tr (14.19)
where by and b; are adjustable parameters describing the regression line. In
Fig. 14.5b, the regression lines are evaluated at each temperature. This means that b
and b, are temperature dependent. As can be seen the regression line at individual
temperatures can deviate from the 1:1 line much more than the mean line.

The expressions for the errors ejperp and epegr in Eqs. (14.18) and (14.19) are often
close to unity. The corresponding differences from unity Ejyerp and Eregr and their
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sum are therefore introduced

Einterp = Cinterp — 1; Eregr = Cregr — 1 (1420)

Eiot = €interpCregr — 1 (14.21)
For the case in Fig. 14.1 the three types of errors are given for 321H in Table 14.3.

The interpolation error in Table 14.3 is between 4 and 6%. The error due to bias
in the prediction is referred to as the regression error which takes values from 7 to
10%. The total error is between 12 and 18%. The strength values are multiplied by
the total relative errors to find the uncertainties in the stress values that are given as
plus-minus additions.

To find the extrapolated values at the highest temperature, it is necessary to extrap-
olate from the master curve. The error in this case is given by Egs. (14.13) and
(14.14)

ao 10g Ornd 1Og(text/tref) "p
I xtrap = 14.22
08 Cextap A/ 1d [log(tmax/tmin) ( )

text 1S the extrapolated rupture time, and f,;, and f,.x the range of experimental
rupture times. ap = 1 and t,.f = iy are chosen as explained above. The relative error
Ecxirap 15 obtained as in Eq. (14.20) from

(14.23)

Eexlrap = €extrap — 1

The regression error is determined in the same way as for the other temperatures
and the total error from Eq. (14.21). The results are shown in Table 14.4.

Table 14.3 Error estimates for values interpolated from the master curve in Fig. 14.2

Temperature, | Rupture time, | Stress, MPa | Rel. Rel. Rel. total error
°C h interpolation | regression Eot, %
error Einerp, | €1TOT Eregr, %
%
550 100000 177.6 £21.6 |43 7 12.1
600 100000 1126 £ 149 (4.7 1.5 13.2
650 100000 70.6 £ 102 |52 8.2 14.5
700 100000 42 + 6.8 5.8 9 16.3
550 200000 167.1 £22 4.4 7.7 13.2
600 200000 105.2 £ 15.1 |4.8 8.4 14.3
650 200000 655+ 103 |52 9.1 15.8
700 200000 38 +6.8 5.9 10.2 17.9
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Table 14.4 Error estimates for values extrapolated from the master curve (321H)

Polynomial | Temperature, | Rupture | Stress, MPa | Rel. Rel. Rel.

degree °C time, h extrapolation | regression | total
error Eexirap, | €ITOr Eregr, | €r101
%o %o Eiot, %

4 750 70000 20.1 £82 |27.2 9.7 40.9

4 750 100000 |17 +8.2 33.6 9.7 48.0

6 750 70000 20.1 £13.2 495 9.7 65.7

6 750 100000 |17 £ 15.1 70.1 9.7 88.5

The total errors are larger in Table 14.4 than in Table 14.3. This is precisely
as expected since at the highest temperature there is extrapolation from the master
curve. The degree of the polynomial plays an important role. The extrapolation error
is significantly increased when the degree of the polynomial is raised from 4 to 6.
The corresponding effect is small in Table 14.3. The absolute error for the strength is
obtained in the same way as in Table 14.3, i.e. by multiplying the relative total error
by the stress value and giving the result as a plus-minus addition.

The errors in Table 14.4 are so large that the extrapolated values are of little tech-
nical value. The reason for the large values is that the data range at the highest temper-
ature is quite limited. That this gives a large error is directly evident from Eq. (14.22).
In addition the longest test duration at the highest temperature is fairly short, see
Fig. 14.1. The case demonstrates the value of the error estimates, although already
from Fig. 14.1 it is evident that the accuracy would be lower at the highest temper-
ature. However, not until the error has been computed, one can draw the conclusion
that the error is so large that the extrapolated results at the highest temperature are
not very useful.

A comparison between different TTPs is made in Table 14.5 to further investigate
extrapolation errors. The study is for the austenitic stainless steel Sanicro 25 and
is taken from [36]. The results for five TTPs are shown at 700 °C for two rupture
times 100000 and 200000 h. The abbreviations of the five methods can be found in
Table 14.1.

The predicted strengths vary from 92 to 97 MPa at 100000 h and from 78 to 84 MPa
at 200000 h. The five methods are associated with fairly similar error estimates. Two
of the methods (Larson-Miller and Manson-Succop) give slightly higher predicted
stresses. From the generated PAT's for the TTPs (not shown) one finds that

e For these two methods, the fit at low stresses to the master curve results in a slight
over-prediction of the stresses.

e The m-value at low stresses is about 4 for the two methods and 3 for the others.
Atlow stresses the second derivative of the rupture time is about —2 at low stresses
for the two methods instead of —5 for the others.

These three sets of observations are not unrelated. They simply show that the
rupture curves bend down slightly less for Larson-Miller and Manson-Succop
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Table 14.5 Error estimates for values interpolated from the master curve with different TTPs for
the austenitic stainless steel Sanicro 25 (22Cr25Ni4W1.5Co3CulNbN). Reproduced from [36] with
permission of Taylor & Francis

Method | Temperature, | Rupture | Stress, MPa |Rel. Rel. Rel.
°C time, h interpolation regression total
error Einerp, % | €101 Eregr, | €1TOT
% Eot, %
OSD 700 100000 |91.7+6.8 3.1 4.0 7.4
700 200000 |78.3+6.8 32 5.0 8.6
LM 700 100000 |95.6 +7.4 32 4.2 7.7
700 200000 |83.6+74 33 5.2 8.9
MS 700 100000 |97.1 +38 3.0 4.8 8.2
700 200000 |84.5 +8.1 3.1 5.9 9.6
SA 700 100000 |95.2 +6.1 3.0 3.1 6.4
700 200000 |82.5+6 3.1 39 7.3
GS 700 100000 |93.2+6.6 32 3.6 7.0
700 200000 |80.5 +£6.5 33 4.5 8.1

methods at low stresses than the other methods. The error analysis indicates that
all the five methods give acceptable results but one of the OSD, SA and GS methods
should be chosen if conservative values are desirable.

It has been assumed indirectly in the error analysis that the TTPs are valid also
for extrapolated values. Some support for this assumption is that PAT 1.3 is satisfied
when some of the long term or low stress points from the data set are removed and
predicted values can be repeated, see Fig. 14.4.

14.3.3 Error Analysis with NN

In Table 14.6 some of the creep data for the investigated cast of Super304H are given
that are essential for the error analysis. The shortest and longest rupture time at each
temperature as well as an approximate strength value at the longest rupture time are
provided. In addition the relative regression error is shown.

Contrary to the case for TTPs, the creep rupture curves at different temperatures
must be considered as individuals. Thus, each temperature must be analyzed as a
single curve when the extrapolation error should be estimated with Eq. (14.22). The
extrapolation error is multiplied by the regression error in the same way as in the
TTP analysis. The total errors in the strength are listed in Table 14.7 as plus-minus
additions. When the errors are very large, no decimal is given in the error because it
does not have any significance. In some cases the errors are close or even exceeding
the values they are associated with. In that case no values are given. The error depends
on the number of adjustable parameters n,q;. When using Eq. (14.22) the polynomial
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Table 14.6 Some creep properties of Super304H (reproduced from [37] with permission of Taylor
& Francis)

Temperature, °C | Stress at start, | Shortest rupture | Longest rupture | Regression error,
MPa time, h time, h %

600 194.1 113 83985 12.5

650 133.4 59 46324 1.5

700 84.1 95 38293 2.7

750 42.3 70 52178 2.5

degree n,, is assumed to correspond to 1, = n,q; — 2 since that is the case in the TTP
analysis. Naturally, the error increases with extrapolated rupture time. In many cases
the estimated error also increases rapidly with the number of adjustable parameters.
This is an indication that the number of neurons in the hidden layer should be kept
as low as possible. It is not common to use networks with smaller n,4; values than
13. This is an important observation because the number of adjustable parameters
can easily become quite large in NN analyses. The total error is often quite large
and typically larger than in a TTP analysis. The reason is that the extrapolation
occurs from single curves with the NN method whereas at most temperatures the
extrapolated values can be found from interpolation along the master curve with a
TTP method.

Table 14.7 Error analysis for creep rupture prediction with the constrained NN model for
Super304H. Reproduced from [37] with permission of Taylor & Francis

No of parameters Temperature, °C Predicted creep rupture strength, MPa

70000 h 100000 h 200000 h
9 600 187.4 £30 174.6 £30.3 149.2 £ 30
9 650 110.1 £5.6 101.1 £ 6.6 845+93
9 700 649 £4.38 592+£5.6 49.1+79
9 750 393+22 35725 29.5+33
13 600 187.4 £30 174.6 £ 30 149.2 £ 36
13 650 110.1 £6.6 101.1+£94 84.5 £ 20
13 700 649+ 6.2 59249 49.1 £20
13 750 393+25 357+£33 295+64
21 600 187.4 £ 30 174.6 £ 32 149.2 £+ 65
21 650 110.1 £9.8 101.1 +£21 -
21 700 64.9 £ 11.6 59.2+£29 -
21 750 393 +£3.1 357 +6.1 -
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14.4 Basic Modeling of Creep Rupture Curves

14.4.1 General

To predict and extrapolate creep rupture data, empirical models have been used
for many years. Such models are described in Sect. 14.2. Many such models are
well established. They are in principle easy to use. However, if precise results are
needed they have to be combined with post assessment tests and error analysis. These
additions require a significant computational effort. This has the consequence that it
is tempting to ignore these additions but then the results would be quite uncertain.

Nowadays it is possible to model and describe the development of the microstruc-
ture during high temperature service. There are also basic models for mechan-
ical properties available. By combining these two types of models the mechanical
properties including creep can be predicted.

Empirical models require large data set in order to be used for predictions of
properties. With just a limited data set the models act as more or less arbitrary
mathematical expressions that are fitted to the data. In such cases it would be very
risky to generalize and extrapolate the results. An empirical model with say three or
more adjustable parameters can represent many sets of experimental observations.
It is very unlikely that a good fit to the data ensures that the model describes the
physics of the observations.

To avoid these problems several steps must be taken:

e The models must be derived from basic physical principles.

e All the parameters in the models should be well defined and it should be specified
how they should be determined.

e No adjustable parameters should be involved that are fitted to the mechanical
properties.

There are many models in the creep literature that are derived from basic principles
but with some parameters that are fitted to the data. It is not quite as risky to apply
such models as fully empirical ones, but numerous examples exist in the literature
where such models have been applied and questionable or incorrect results have been
obtained. Further analysis of this issue can be found in Chap. 1. A summary of basic
models that can be used for creep rupture is given below. Most of these models are
derived in other parts of the book.

14.4.2 Secondary Creep Rate

The main contribution to the creep strength comes from the dislocation density. An
accurate description of the dislocation density is therefore essential. Equation (2.17)
describes the development of the dislocation density p
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dp m .
L= L2 p — 20 Maimn 0 /6 (14.24)
de bCL

¢ is the strain, my the Taylor factor, b Burger’s vector, c¢; a constant and L the “spurt”
distance which the dislocation moves in each elementary release during deformation
for example from a Frank-Read source. w is the dynamic recovery constant, t;, the
dislocation line tension, and ¢ the creep strain rate. M, the dislocation mobility
is given by Eq. (2.34)

Db o> _ (QulrtOso)
My (T, 0) = k—TekBTe KT fulglide (0) (14.25)
B

where T is the absolute temperature, o the applied stress, Dy the pre-exponential
coefficient for self-diffusion, Qs the activation energy for self-diffusion, kg Boltz-
mann’s constant, and Rg the gas constant. Oy, the contribution to the activation
energy from solid solution hardening has been added to Eq. (14.25). O, is equal to
the maximum interaction energy between solute atoms and dislocations, Eq. (6.10)

Qsol = U™ = ————=GQpé; (14.26)

where G is the shear modulus, vp the Poisson’s ratio of the material, £2; the atomic
volume of the parent metal, and §; the linear misfit of the element i. M jimp has a
strong temperature dependence from the activation energies. M jimp can also have
strong stress dependence in particular in the power-law break down regime. This
was explained in Sect. 2.6.4. This stress dependence is described with the function
JSaigtide> Eq. (2.50)

0 (o \
Selglide (o) = exP(RG_T<R ) ) (14.27)

The name of the factor fgiqe is somewhat misleading. Earlier it was thought that
the factor was due to the influence of glide. However, the factor is now derived only
assuming climb, see Sect. 2.6.4.

The secondary creep rate can be obtained from Eq. (14.24) directly since the
dislocation density is constant in that stage and consequently its strain derivative
vanishes.

. m
Eoee = 2rLMcumbp3/2/(£ —wp'?) (14.28)
L

Taylor’s Eq. (2.29) gives the contribution o4; from the dislocation to the strength

1/2

ogisi = amtGbp''* = o — oj (14.29)
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where o is the applied stress and o & 0.19 a constant. o; represents other strength
contributions than from the dislocations. They will be exemplified below. Using
Taylor’s Eq. (2.29), Eq. (14.28) can be formulated in terms of the applied stress
which is the common way of expressing the creep rate

e = (0 — 0 (@) = 2 M (T 0)— (1 d

sec = Ig, — 0j); secl0) = 2T im N — —_— —

Esec eclO ec LM climb o (amTGb)3 b, a)amTGb
(14.30)

This can be considered as a Norton equation where the stress dependence of the
creep rate is given. At low stresses the stress dependence is from the o3 factor but at
the high stresses the main contribution is from the fgige factor, Eq. (14.27), in the
expression for M cjimp.

Practically all high temperature alloys have contributions from solid solution
hardening (SSH) and/or precipitation hardening (PH) to the creep strength. SSH
enters the equation in two ways. It gives a contribution Qy, to the activation energy
for the creep rate, Eq. (14.26). The other part gives a drag stress that contributes to
o;. This depends on if slowly or fast diffusion elements are involved. The case with
slowly diffusing solute will be covered first. There are several expressions for the
drag stress in Sect. 6.4. The one that is most commonly valid is Eq. (6.20)

2

drag Vclimb€Cio B

¢ = -] 14.31
0; bDkyT (z0) ( )
cio is the average concentration of solute i, and D; the diffusion constant for solute
i. I(zp) is an integral of zy = b/rokgT where ry is the dislocation core radius. 7(zg)
is given by Eq. (6.21). The climb velocity v¢jimbp and the strength parameter o; are
found from, Eqgs. (6.14) and (6.15)

Uclimb = Mclimbbo—; ﬂi = bUimax (1432)

For fast diffusion elements, the solute must break away from the dislocations. The
necessary stress is, Eq. (6.28)

U max d
Obreak = # /q“a (14.33)

c?yn describes the distribution of solutes around the dislocations, Eq. (6.13).

The validity of the expressions (14.31) and (14.33) for SSH have been demon-
strated in Sects. 6.4 and 6.5. The influence of Mg on creep rate in Al-Mg alloys is
illustrated in Fig. 6.4 and the effect of P on the creep rate of Cu in Fig. 6.6.

The starting point for the precipitation hardening is the Orowan strength, Eq. (7.
3)
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o0 = @ (14.34)
S

where ) is the mean particle spacing, Eq. (7.4) and Co = 0.8 a constant. Equa-
tion (14.33) gives the contribution from particles at ambient temperatures. At elevated
temperatures small particles can be climbed across without contributing to the
strength. Only particles larger than a critical radius 7 give an addition to the strength

ConmT

— er*k(rcrrro)ﬂ (14.35)
Acrit

Opart =

where A is the mean spacing between the particles larger than 7., kK & 1/7 is the
slope of the particle size distribution and 7 is the mean particle size. r; is given as,
Eq. (7.9)

Ferit = Megimb (T, 0)b*0 Ap

(14.36)

EsecMT

The Friedel particle spacing Ar can be determined from Eqgs. (7.6) and (7.14)

A\ 27 2
My o 2 2f (14.37)
AF aq +2Co 3hs 3n
fv is the volume fraction of all particles.
The applicability of Eq. (14.35) has been demonstrated in Sect. 7.4.3 for Cu—Co
alloys. This is shown in Figs. 7.5 and 7.8. Cu—Co is a suitable system to analyze the

effect of particles on the creep strength, since well-defined particles can be formed
and the influence of SSH is quite small.

14.4.3 Creep Strain Curves

In the literature much focus has been placed on the prediction and analysis of the creep
rate in the secondary stage. However, both primary and tertiary creep is of importance
in many applications. It has been demonstrated in Sect. 12.4 that the whole creep
strain versus time curves (creep strain curves) can be derived from the creep rate
in the secondary stage. It is possible to simplify this approach somewhat [36]. The
creep rate for the whole creep curve can then be expressed by using Eq. (14.30)

& = Ngec (Gcreep); Ocreep = Otrue + Onom — Odisl — Oj (14.38)
The only difference in comparison with Eq. (14.30) is that an effective creep stress,

Eq. (12.19), is introduced. oy and oy are the true and nominal applied stress. It
is essential to take the true stress into account because otherwise there would be no
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tertiary creep. The nominal creep stress must also be included. Otherwise the creep
curves close to ambient temperatures could not be explained. They have the same
form as at elevated temperatures in spite of the fact that stress exponent can be as high
as 50. This is further discussed in Sect. 8.4. During primary creep, the dislocation
density increases and thereby the dislocation strength o4i5;. When the secondary stage
is reached, the stresses balance and orecp is equal to the true stress and Eq. (14.30)
is recovered.

In the book there are several models for primary and tertiary creep. For example,
there are more advanced models taking the substructure into account. However, the
principles are the same. Examples of computed creep strain curves can be found in
Sect. 12.5.3.

14.4.4 Cavitation

Basic models for nucleation and growth of creep cavities have been presented in
Chap. 10 and summarized in Sect. 13.3.1. The cavity nucleation rate can be expressed
as, Eq. (13.5)

dncay 0.9C; ( gsuv 8part \ . .
A = B, 14.39
dt dop (dz * 2 )¢ € ( )

sub
Neay 1 the number of cavities, dg,p, the subgrain size, ¢ the creep strain rate, : the
interparticle spacing in the grain boundaries and Cs a constant. The fraction of active
nucleation sites is given by the factors gqu, and gpa. The main feature of Eq. (14.39)
is that the nucleation rate is proportional to the creep strain rate, which has been
observed for many materials.

Two types of growth of cavities are considered: diffusion controlled and strain
controlled. It was early on recognized that for diffusion control, the growth rate cannot
be faster than creep deformation of the matrix. This is referred to as constrained
growth. The general equation for constrained growth is, Eq. (13.6)

dRcay 1
pra 2DyK¢(0red — UO)RT

cav

(14.40)

Rcqv is the cavity radius in the grain boundary plane and o the sintering stress.
The grain boundary diffusion parameter Dy is equal to 3Dgg2/kgT where 3 is the
grain boundary width, Dgp the grain boundary self-diffusion coefficient, and €2 the
atomic volume. kg is the Boltzmann’s constant and 7 the absolute temperature. The
factor Ky ~ 0.2 is given in Eq. (10.12). The reduced stress o, can be determined
from Eq. (13.7)

2w D()Kf(ared - U())ncachav + é(ared) = 8(6) (1441)
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&(0eq) and &(o) are the creep rates at the reduced and applied stress.

Equations (14.39) and (14.40) have been applied successfully to model cavity
nucleation and growth in austenitic stainless steels. This is illustrated in Figs. 10.5
and 10.8.

There are several derived expressions for strain controlled growth. The most well-
known ones are due to Rice and Tracey and to Cocks and Ashby modified by Wen
and Tu, see Sect. 13.4.2. Unfortunately, these expressions are difficult to use for
predictions. The start value for the cavity size has a large effect on the results but
there is no obvious way of selecting the value. Furthermore, the model by Rice and
Tracey gives quite a limited growth rate in the uniaxial case and the Cocks and Ashby
model does not fulfill the criterion for constraint growth. A model based on grain
boundary sliding, Eq. (10.24) avoids these problems but it needs further experimental
verification for general use.

14.4.5 Rupture Criteria

A distinction is made between brittle and ductile rupture. Brittle rupture is assumed
to occur when the cavitated grain boundary area reaches a sufficient fraction. The
cavitated grain boundary fraction A.,, can be computed from the expression for cavity
nucleation and growth, Egs. (14.39) and (14.40). The result is given in Eq. (13.8)

t

dn ,
Acay = / (O RE (@.1dl! (14.42)

0

Several studies indicate that the local critical value for brittle rupture is A,y ~
0.25.

The results in Sect. 12.5 suggest that a plastic instability initiates ductile rupture,
for tensile specimens necking. Only very close to the rupture a fully developed waist
is formed. The prediction of necking requires creep strain data. If creep strain curves
are not available, they could be predicted with the help of Eq. (14.38). Unfortunately,
the applicability of this equation has been documented mainly for Cu. The alternative
is to assume ductility exhaustion, and use a fixed creep rupture elongation value as
failure criterion. As will be seen below, this seems to work well.

14.4.6 Extensive Extrapolation of the Creep Rate for Cu

In the present book it has been emphasized that basic models can improve the possi-
bility to predict and extrapolate results. This was illustrated for Al in Sect. 5.7 and
for Cu-OFP in Sect. 5.8.1. Another example will be given here for Cu-OFP where
this capability of extrapolation in time is also demonstrated in a dramatic way. The
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Fig. 14.13 Creep strain versus testing time for Cu with 50 ppm P (Cu-OFP) at 95 °C. The creep
strain according to Eq. (5.32) is compared to experimental data from Ho [43]; a 19.9 MPa; b 60 MPa.
Redrawn from [42] with permission of Elsevier

case was originally presented in [41], but it is reanalyzed here with the primary creep
model in Sect. 5.5 [42].

With conventional creep testing techniques creep rates down to about 1 x 10712 1/
s can be measured. This requires for example that the testing temperature in the labo-
ratory is controlled within 2 °C. Ho carried out creep tests at much lower stationary
creep rates for Cu-OFP [43]. Tests were performed at 20—100 MPa at 95 °C, at
20-60 MPa at 125 °C and at 20—40 MPa at 150 °C. The model in Sect. 5.5 can at
least approximately describe all the experimental results. The parameter value o,/K
is taken from the room temperature data in [41], and the w value is computed from
Eq. (5.35). It is checked that the criterion in Eq. (5.36) is fulfilled. Two examples are
given in Fig. 14.13. Four tests were performed at 19.9 MPa and six tests at 60 MPa.
In spite of the low stresses, creep is clearly present in all the tests.

FromFig. 14.13 one might think that creep is approaching the secondary stage. But
that is not at all the case. The lowest creep rates in Fig. 14.13a are about 1 x 107'2 1/s
and in Fig. 14.13babout 3 x 10~!! 1/s. From Eq. (14.30), the stationary creep rate can
be estimated to 1.3 x 10722 and 1.4 x 107" 1/s in Fig. 14.13a, b, respectively. Such
creep rates are far outside the interval where they can be measured. For a specimen
with a gauge length of 50 mm, 1.3 x 10722 1/s represents a displacement of less
than one lattice spacing in a million years. The basic stationary creep model can
obviously handle creep rates at least from 180 MPa at 75 °C of 1.4 x 1077 (Fig. 6.
6) to 20 MPa at 95 °C of 1.3 x 10722 1/s. This represents a range of validity of 15
orders of magnitude. It clearly demonstrates the value of the basic creep model.

In Fig. 12.1 the stress exponent is about nxy = 60 deep in the power-law break
down regime. In Fig. 14.13a, the stress exponent is ny = 3.3 and in Fig. 14.13b ny
= 8.3. Thus, the model provides valuable information even when there is a transfer
from one creep regime to another. These results have profound implications.
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e Basic models have the potential to extrapolate results by orders of magnitude in
time. This should be compared with empirical statistical methods where a factor
of 3 typically can be reached and in special cases a factor of 10.

e Meaningful results can be obtained even when there is a transfer from one testing
regime to another. With basic models it is much safer to generalize and extrapolate
findings.

e The technical consequences are of immense significance. Cu-OFP will be used in
canisters for disposal of spent nuclear fuel in Finland and Sweden. The canisters
have a design life of 100000 years. Cu-OFP has been creep tested for up to 3 years.
An extrapolation by almost 5 orders of magnitude is required. The results above
demonstrate that the basic creep model is valid for such a time extrapolation factor
with a good margin and that the model can safely be used to predict the creep
properties of the canisters.

14.4.7 Creep Rupture Predictions for Austenitic Stainless
Steels

With the equation in Sects. 14.4.2-14.4.5 the rupture time can be predicted. This
has been applied to austenitic stainless steels in several papers [21, 25, 44]. Ductile
rupture is handled with ductility exhaustion. A constant elongation at rupture of 0.2
is assumed. This value is lower than the observed values for ductile rupture. On the
other hand the strain computation is based on the secondary creep rate, Eq. (14.30)
that underestimates the total strain. At present there is not sufficient data available
to take primary and tertiary creep into account as well.

Brittle rupture is based on the cavitated area fraction in the grain boundaries Ac,y,
Eq. (14.41). When A.,, reaches 0.25, brittle rupture is assumed to occur. The criterion
for ductile or brittle rupture that is met first is considered to control the type of rupture
that takes place.

Results for the 18Cr12NiNDb steels (347H) are shown in Fig. 14.14. In Fig. 14.14a
only ductile rupture is taken into account but in Fig. 14.14b both types of rupture are
included.

The difference between the two types of rupture is not very large. Only at low
stresses and long times there is a significant difference. Cavitation reduces the rupture
times in that situation. The general behavior of the rupture curves can be seen to be
represented in a reasonable way.

In Fig. 14.15, the corresponding results for the 17Cr12Ni2Mo steel 316H are
illustrated. The influence of ductile and brittle rupture is much the same as for 347H.
The experimental data is represented quite well in particular at long times.

The variation of the slope in Figs. 14.14 and 14.15 follows the observations well.
The absolute value of slope was designated m in Eq. (14.1). The m value is given in
Fig. 14.16a for the curves in Fig. 14.14 for 347H.
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Fig. 14.14 Creep rupture strength values as a function of rupture time for the austenitic stainless
steel 18Cr12NiNb (347H); a ductile rupture based on ductility exhaustion, Eq. (14.30); b ductile
rupture as in a and brittle rupture assuming a fixed cavitated area fraction at failure, Eq. (14.42).
Experimental data from [45] at temperatures between 600 and 750 °C. Redrawn from [21] with

permission of Elsevier

200 200

g g

S 100 ¢ S 100 ¢

8 o B ]

S 50 o o T £ 50 \

@ 17Cr12Ni2Mo (316H) $ . &J'ﬁi @ 17Cr12Ni2Mo (316H) : ”*\HJ'*'};‘?\
Dislocation creep * * 3'*‘!"‘ Dislocation and Cavitation % . St H
600-750 °C ~d 600-750 °C A

207 NiMs data * o 207 NiMs data * N
10 102 10° 10* 10° 10" 102 10° 10* 105
Time, h Time, h
a b

Fig. 14.15 Creep rupture strength values as a function of rupture time for the austenitic stainless
steel 17Cr12Ni2Mo (316H); a ductile rupture based on ductility exhaustion, Eq. (14.30); b ductile
rupture as in a and brittle rupture assuming a fixed cavitated area fraction at failure, Eq. (14.42)
Experimental data from [45] at temperatures between 600 and 750 °C. Redrawn from [21] with
permission of Elsevier

If the modified Monkman-Grant relation was strictly followed, m would be equal
to the stress exponent for the creep rate ny. However, m is typically larger than
nn at least for modest rupture times. Figure 14.16 illustrates the contributions to
the rupture strength. For 347H, the dislocations give the largest contribution which
is often the case. 347H is precipitation hardened with Nb(C, N). It clearly gives a
significant contribution to the strength. From solid solution hardening, there is only
a small effect.



14.5 Summary 305

18Cr12CrNb (347H) o 347H, 700°C
= 600-750 °C 200
- 20+,
2
3 |- e
S ol Tl = 100
S 9 ¢ 80
ks 7 . 175 |
2 6 \\\ Ny 60 Dislocation Hardn.
% 5 AN T SO ... + Precipitation Hardn.
4 Taell el 40 |- + Solid Solution Hardn.
o Uk 301 ‘ ‘ ‘
10’ 102 10° 10* 10° 10? 10° 10*
Rupture time, h Time, h
a b

Fig. 14.16 Creep rupture behavior of the austenitic stainless 18Cr12NiNb steel 347H; a stress
exponent m for creep rupture versus rupture time at the temperature 600 °C (top) to 750 °C (bottom);
b contribution to the rupture strength from dislocations, precipitates and elements in solid solution.
b Redrawn from [21] with permission of Elsevier

Successful predictions of the creep ductility taking both brittle and ductile rupture
into account were presented in Sect. 13.3. For example, results corresponding to
Fig. 14.15 were shown in Fig. 13.6. These results illustrate that the ductility is also
possible to compute with basic models.

14.5 Summary

e The use of time-temperature parameters (TTPs) is the classical way to extrapolate
creep rupture data to longer times. With the help of TTPs the rupture data are
fitted to a single curve, the master curve. Extrapolation at most temperatures can
be handled by interpolation along the master curve. In this way the extrapolation
from single curves is avoided that gives a less accurate result. Only at the highest
temperature this is necessary.

e An alternative to TTPs is to use a neural network (NN). It is necessary to choose a
simple NN to minimize the number of adjustable parameters involved. The error
can increase rapidly with the number of parameters.

e The ECCC post assessment tests (PATs) are quite valuable to show that an extrap-
olation analysis has worked and that the results show a correct physical behavior.
This applies to both TTPs and NN.

e Creep rupture curves, i.e. creep stress versus rupture times show some charac-
teristic features. Their first derivative is always negative. This applies also to the
second derivative except for so-called sigmoidal behavior but that is not consid-
ered in this chapter. For empirical extrapolation, the creep data are fitted to a model



306 14 Extrapolation

with anumber of adjustable parameters. To improve the fit and the physical realism
of the predicted rupture time, constrained optimization with conditions on first
and second derivatives is recommended. It has been shown that many of the PATs
are automatically satisfied in this way.

e Formulae for error estimates are presented. Expressions for the relative errors of
interpolation, extrapolation and regression are given. These error estimates make
it much simpler to assess the quality of an evaluation. Both interpolation and
extrapolation from a master curve are covered as well as NN.

e Basic models for creep rupture have been presented throughout the book. The
main equations for brittle and ductile rupture are summarized in Sect. 14.4.

e In principle, basic modeling should make it possible to significantly improve the
possibility to generalize and extrapolate results. For Cu-OFP it has been possible
to demonstrate that this is in fact the case. It was verified that meaningful extrap-
olation of many orders of magnitude in time is possible. This makes it possible to
safely compute the creep properties over such extended periods as 100000 years,
which has been fully utilized in canisters for disposal of spent nuclear waste.

e Basic creep rupture predictions for austenitic stainless are summarized. It is
demonstrated that experimental creep rupture can be well reproduced.

Appendix: Derivatives in Neural Network Models
(Reproduced from [37] with Permission)

The rupture curves, i.e., the creep stress plotted versus the observed rupture time,
must show the same behavior as described for the TTP analysis, the first and second
derivative must fulfill the requirements in Eqs. (14.1) and (14.2). If the criteria in these
equations are satisfied unphysical flexing of the predicted rupture curve is prevented.
The criteria are of the same importance when NN models are used.

The derivatives of predicted curves are not available in general in NN programs,
so expressions for the derivatives are derived below. The NN model is represented
with the matrix formalism given by Hagan et al. [14]. The input p to output a' from
the first layer in the network is given by

Vi =) Wip;+b (14.43)

a, =¢' (V) (14.44)

p has components corresponding to the number of inputs 7;,p,. There is a weight
factor W! to each neuron for each input. Thus, the matrix W! has the dimension
Mneuron X Minput Where ipeyron is the number of neurons in the first layer. For each
neuron there is also a component in the base vector b!. The linear combination in
Eq. (14.43), the transfer input v! is fed into the transfer function cpl, which results
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in the output a' from the first layer. ¢! is a scalar function. The output from the first
layer is the input to the next layer. The gth layer in the network can be expressed as:

vi=Y Wial™ +b! (14.45)

i
al = (v}) (14.46)

The superscript refers to the number of the layer in the network. Thus the output
from layer ¢ — 1 namely a?~! is the input to layer g. This generates a transfer input
v4, which is then used to form the output from layer g.

The formalism set up in Egs. (14.43)—(14.46) will now be employed to derive
the expression for derivatives with respect to the input variables in the vector p. An
iterative procedure will be considered in the sense that if the parameters for one layer
are known the parameters in the next layer can be derived. The derivative of the
transfer input in the first layer can be obtained from Eq. (14.43)

N
= wi, (14.47)

Equation (14.45) gives the transfer input from layer g — 1 to layer g

-1

av? da’
Vi =Y Wy, & (14.48)
dpm : dpm

The derivative of the output a4 from layer g takes the form

dai _dy? . dv]

—— (D

14.49
dpm dv dpm ( )

Notice that there is a summation over index i in Eq. (14.48) but no summation over
the repeated index k in Eq. (14.49). The rule of automatic summation over repeated
indices is not applied. When there is a summation, it is explicitly indicated. If Egs.
(14.48) and (14.49) are combined, an expression is obtained where the derivative of
the transfer input in one layer is directly related to transfer input in the previous one.

dv? dgi~! d
Vi =y w, ‘p & wrhSi v (14.50)
dpm - dpm

With the Eqs. (14.47), (14.49) and (14.50) the derivatives of transfer input and
output can be computed for a layer from the corresponding values in the previous
layers.

The second derivatives can be derived in a similar way. From Eq. (14.43), it is
evident that the second derivative of the transfer input vanishes in the first layer.
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dvj

— =9 14.51
dpmdpn ( )

Derivating Eq. (14.50) gives the following result

d*v} = qdztpq’l(v'qfl)dv?_' dvi™! e 20 e d>vi™!
dpudpn Koqvr U T dp, dp, “odqv T Tdpudp,
(14.52)

The second derivative of the output from layer q can be obtained from Eq. (14.49)

2.9 q q 249
) B ] d“’q( A (14.53)
dpndp,  dv? ' dp, dp, Y1 ap d Pn ’

Since NN software where conditions on the derivatives could be introduced was
not found, a new NN program was written from scratch. The network consists of
layers of neurons. The number of neurons in each layer could be chosen. The values
of the weights and bases were determined with the help of an algorithm for back
propagation. A contribution Aerr to the mean square error was added

da? d*a®
A€rT = €1 Plogsig <W> + C2@10gsig (d_pz) (14.54)

where Q is the final layer in the network, and ¢ and ¢, are constants. @jogg i a logsig
function. If the derivatives are positive, there is a contribution to the error function
that the training of the network will try to remove.

In the NN models for the prediction of the creep rupture times, two layers were
used. The first hidden layer contained 3—10 neurons with a logsig transfer function
for ¢'. The second output layer with one output had one neuron with a linear transfer
function ¢?. With a final linear transfer function, the first term in Eq. (14.53) vanishes
in this case. With one output, a? becomes a scalar as indicated in Eq. (14.54).
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