Skip to main content

Differential Event-Related Spectral Perturbation for Left and Right Elbow Movement for Applications in a Brain-Computer Interface

  • Conference paper
  • First Online:
IX Latin American Congress on Biomedical Engineering and XXVIII Brazilian Congress on Biomedical Engineering (CLAIB 2022, CBEB 2022)

Abstract

In the present study, we seek to investigate how the sequence of neuronal events that include stimulus identification, motor planning, and movement execution is implemented in the cortical neural networks, using an experimental paradigm that segregates between preparation and motor activation. For this study, twenty-two right-handed subjects had EEG signals recorded and analyzed. The subjects were divided into two groups. The imagery group performed real right or left forearm movements or the imagination of these movements. The control group performed real movement of the right or left forearm or did not perform any movement (wait condition). The Event-Related Spectral Perturbation (ERSP) in each one of the experimental conditions was compared for the time intervals of preparation, execution, and after-movement end. We observed: (I) mu and beta desynchronizations (ERD) for movement and imagery and not for the wait condition, during preparation and execution periods. (II) The movement ERD is greater than the imagery ERD for both mu and beta bands. (III) Synchronization (ERS) after the movement is finished. (IV) Greater mu ERD during the execution period and beta ERS after the movement ends at the contralateral channels in the movement condition. (V) Gamma ERS after the movement ends for the movement condition, and not for wait. These findings suggest that using signals from the contralateral region of the movement to be executed might impact the accuracy of the control of devices in a brain-computer interface paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McFarland, D., Wolpaw, J.: EEG-based brain–computer interfaces. Curr. Opin. Biomed. Eng. 4, 194–200 (2017). https://doi.org/10.1016/j.cobme.2017.11.004

    Article  Google Scholar 

  2. Molinari, M., Masciullo, M.: Stroke and potential benefits of brain-computer interface. Handb. Clin. Neurol. 168, 25–32. Elsevier (2020). https://doi.org/10.3390/s21134312

  3. Sharma, N., Pomeroy, V.M., Baron, J.-C.: Motor imagery: a backdoor to the motor system after stroke? Stroke 37, 1941–1952 (2006). https://doi.org/10.1161/01.STR.0000226902.43357.fc

    Article  Google Scholar 

  4. Fernández-Gómez, E., Sánchez-Cabeza, Á.: Imaginería motora: revisión sistemática de su efectividad en la rehabilitación de la extremidad superior tras un ictus. Rev. Neurol. 66, 137 (2018). https://doi.org/10.33588/rn.6605.2017394

  5. Santos-Couto-Paz, C., Teixeira-Salmela, L., Tierra-Criollo, C.: The addition of functional task-oriented mental practice to conventional physical therapy improves motor skills in daily functions after stroke. Braz. J. Phys. Ther. 17, 564–571 (2013)

    Article  Google Scholar 

  6. Page, S., Szaflarski, J., Eliassen, J., Pan, H., Cramer, S.: Cortical plasticity following motor skill learning during mental practice in stroke. Neurorehabil. Neural Repair 23, 382–388 (2009). https://doi.org/10.1177/1545968308326427

    Article  Google Scholar 

  7. Page, S., Levine, P., Sisto, S., Johnston, M.: A randomized efficacy and feasibility study of imagery in acute stroke. Clin. Rehabil. 15, 233–240 (2001). https://doi.org/10.1191/026921501672063235

    Article  Google Scholar 

  8. Kansaku, K., Cohen, L., Birbaumer, N.: Clinical Systems Neuroscience. Springer, Tokyo, Japan (2015). https://doi.org/10.1007/978-4-431-55037-2

  9. Pfurtscheller, G., Aranibar, A.: Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalogr. Clin. Neurophysiol. 46, 138–146 (1979). https://doi.org/10.1016/0013-4694(79)90063-4

    Article  Google Scholar 

  10. Pfurtscheller, G., Lopes da Silva, F.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol 110, 1842–57 (1999). https://doi.org/10.1016/s1388-2457(99)00141-8

  11. Galdo-Alvarez, S., Bonilla, F., González-Villar, A., Carrillo-de-la-Peña, M.: Functional equivalence of imagined vs. real performance of an inhibitory task: an EEG/ERP study. Front. Hum. Neurosci. (2016). https://doi.org/10.3389/fnhum.2016.00467

  12. Tallon-Baudry, C., et al.: Oscillatory gamma activity in humans and its role in object representation. Trends Cogn. Sci. 3(4), 151–162 (1999). https://doi.org/10.1016/s1364-6613(99)01299-1

    Article  Google Scholar 

  13. Amo Usanos, C., et al.: Induced Gamma-Band Activity during Actual and Imaginary Movements: EEG Analysis. Sensors (Basel, Switzerland), vol. 20, no 6, (2020). https://doi.org/10.3390/s20061545

  14. Kilavik, B., Zaepffel, M., Brovelli, A., MacKay, W., Riehle, A.: The ups and downs of β oscillations in sensorimotor cortex. Exp. Neurol. 245, 1526 (2013). https://doi.org/10.1016/j.expneurol.2012.09.014

    Article  Google Scholar 

  15. Weinrich, M., Wise, S.: The premotor cortex of the monkey. J. Neurosci. 2, 1329–1345 (1982). https://doi.org/10.1523/JNEUROSCI.02-09-01329.1982

    Article  Google Scholar 

  16. Crammond, D., Kalaska, J.: Prior information in motor and premotor cortex: activity during the delay period and effect on pre-movement activity. J. Neurophysiol. 84, 986–1005 (2000). https://doi.org/10.1152/jn.2000.84.2.986

    Article  Google Scholar 

  17. Makeig, S.: Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalogr. Clin. Neurophysiol. 86(4), 283–293 (1993). https://doi.org/10.1016/0013-4694(93)90110-h

    Article  Google Scholar 

  18. Klimesch, W., Sauseng, P., Hanslmayr, S.: EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res. Rev. 53, 63–88 (2007). https://doi.org/10.1016/j.brainresrev.2006.06.003

    Article  Google Scholar 

  19. Takemi, M., Masakado, Y., Liu, M., Ushiba, J.: Event-related desynchronization reflects downregulation of intracortical inhibition in human primary motor cortex. J. Neurophysiol. 110, 1158–1166 (2013). https://doi.org/10.1152/jn.01092.2012

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro) for their financial support during the production of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André da Silva Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

da Silva Pereira, A. et al. (2024). Differential Event-Related Spectral Perturbation for Left and Right Elbow Movement for Applications in a Brain-Computer Interface. In: Marques, J.L.B., Rodrigues, C.R., Suzuki, D.O.H., Marino Neto, J., García Ojeda, R. (eds) IX Latin American Congress on Biomedical Engineering and XXVIII Brazilian Congress on Biomedical Engineering. CLAIB CBEB 2022 2022. IFMBE Proceedings, vol 99. Springer, Cham. https://doi.org/10.1007/978-3-031-49404-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49404-8_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49403-1

  • Online ISBN: 978-3-031-49404-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics