Skip to main content

Computational Fluid Dynamics for Assessment of Airflow Patterns in the Airway Tree

  • Conference paper
  • First Online:
IX Latin American Congress on Biomedical Engineering and XXVIII Brazilian Congress on Biomedical Engineering (CLAIB 2022, CBEB 2022)

Abstract

Tracheal stenosis lesions have a negative impact on patients’ quality of life. The incidence of post-intubation tracheal stenosis ranges from 6 to 20%, and after tracheostomy from 0.6 to 21%. Since the symptoms are only noticeable after the presence of a 70% reduction in the tracheal lumen, early diagnosis is not always possible. Computed tomography (CT) scan can be used to assess stenosis even before symptoms appear, however it is unable to provide dynamic data (e.g., airflow and pressure patterns) that would be important in early diagnosis, as well as for prognostic assessment and therapeutic planning. Computational Fluid Dynamics (CFD) is a non-invasive analysis that allows computer simulations of airflow using reconstructions based on CT scan images. We hypothesize that CFD simulation can be a feasible tool to assess the fluid-mechanical behavior within the tracheal stenosis. Results of the streamlines allowed us to understand the flow pattern present along the trachea. In addition, it was possible to identify the occurrence of vortex in the proximal region of the trachea that precedes the stenosis and in the left bronchus also affected by stenosis. The assessment of pressure gradient and WSS values may provide additional information for risk estimating to the tracheal wall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Furlow, P.W., Mathisen, D.J.: Surgical anatomy of the trachea. Ann. Cardiothorac. Surg. 7(2), 255–260 (2018)

    Article  Google Scholar 

  2. Leske, V. et al: Tracheobronchopathia osteochondroplastica: a study of 41 patients. Medicine (Baltimore), Philadelphia 80(6), 378–390 (2001)

    Google Scholar 

  3. Marom, E.M., et al.: Diffuse abnormalities of the trachea and main bronchi. Am. J. Roentgenol. Leesburg 176(3), 713–717 (2001)

    Article  Google Scholar 

  4. Prince, J.S., et al.: Nonneoplastic lesions of the tracheobronchial wall: radiologic findings with bronchoscopic correlation. RadioGraphics, Oak Brook 22(1), 215–230 (2002)

    Article  Google Scholar 

  5. Wood, D.E., Thomas, C.R.: Mediastinal tumors. Springer, Berlim (1995)

    Book  Google Scholar 

  6. Mandour, M., et al: Chronic subglottic and tracheal stenosis: endoscopic management vs. surgical reconstruction. Eur. Arch. Oto-Rhino-Laryngol. Leiden 260(7), 374–380 (2003)

    Google Scholar 

  7. Dos Anjos, D.M., et al.: Endopróteses: opção terapêutica para estenoses traqueobrônquicas adquiridas. Revista de Medicina, São Paulo 86(3), 174–184 (2007)

    Article  Google Scholar 

  8. Grillo, H.C., et al.: Postintubulation tracheal stenosis: treatment and results. J. Thorac. Cardiovasc. Surg. Beverly 109(3), 486–493 (1995)

    Article  Google Scholar 

  9. Minamoto, H., Terra, R.M., Cardoso, P.F.G.: Estenoses Benignas da Via Aérea. Pulmão RJ, Rio de Janeiro 20(02), 48–53 (2011)

    Google Scholar 

  10. Brouns, M., et al.: Tracheal stenosis: a flow dynamics study. J. Appl. Physiol. 102(3), 1178–1184 (2007)

    Article  Google Scholar 

  11. Mylavarapu, G., et al.: Planning human upper airway surgery using computational fluid dynamics. J. Biomech. 46(12), 1979–1986 (2013)

    Article  Google Scholar 

  12. Xu, C., et al.: Computational fluid dynamics modeling of the upper airway of children with obstructive sleep apnea syndrome in steady flow. J. Biomech. 39(11), 2043–2054 (2006)

    Article  Google Scholar 

  13. Bates, A.J., Cetto, R., Doorly, D.J., Schroter, R.C., Tolley, N.S., Comerford, A.: The effects of curvature and constriction on airflow and energy loss in pathological tracheas. Respir. Physiol. Neurobiol. 234, 69–78 (2016)

    Article  Google Scholar 

  14. Kikinis, R., Pieper, S. D., Vosburgh, K.: 3D slicer: a platform for subject-specific image analysis, visualization, and clinical support. In: Jolesz, F. (ed.) Intraoperative imaging and image-guided therapy. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-7657-3_19

  15. Pritchard, P. J., Mitchell, J. W.: Fox and McDonald’s introduction to fluid mechanics (9th ed.). Wiley (2015)

    Google Scholar 

  16. Mimouni-Benabu, O., et al.: A preliminary study of computer assisted evaluation of congenital tracheal stenosis: a new tool for surgical decision-making. Int. J. Pediatr. Otorhinolaryngol. 76(11), 1552–1557 (2012)

    Article  Google Scholar 

  17. Gemcia, T., et al.: Computational model of airflow in upper 17 generations of human respiratory tract. J. Biomech. 41, 2047–2054 (2008)

    Article  Google Scholar 

  18. ANSYS, Inc.: ANSYS Fluent User’s Guide, Release 2021R2 (2021)

    Google Scholar 

  19. Qi, S. et al.: Transient dynamics simulation of airflow in a CT-scanned human airway tree: more or fewer terminal bronchi? Comput. Math. Methods Med. Article ID 1969023, 14p (2017)

    Google Scholar 

  20. Qi, S., et al: Computational fluid dynamics simulation of airflow in the trachea and main bronchi for the subjects with left pulmonary artery sling. BioMed. Eng. OnLine 13, 1–85 (2014)

    Google Scholar 

Download references

Acknowledgment

This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior—Brazil (CAPES)—Finance Code 001 and the Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnologico—Brazil (CNPq) (308280/2019-9 to HTM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Formariz Legendre .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

We do not have any conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Legendre, D.F. et al. (2024). Computational Fluid Dynamics for Assessment of Airflow Patterns in the Airway Tree. In: Marques, J.L.B., Rodrigues, C.R., Suzuki, D.O.H., Marino Neto, J., García Ojeda, R. (eds) IX Latin American Congress on Biomedical Engineering and XXVIII Brazilian Congress on Biomedical Engineering. CLAIB CBEB 2022 2022. IFMBE Proceedings, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-031-49401-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49401-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49400-0

  • Online ISBN: 978-3-031-49401-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics