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Abstract Societal inequalities manifest at a range of scales, from coarse (inter-
continent) to fine (intra-city). Satellite-measured night-time lights (NTL) have 
shown value for capturing and estimating socioeconomic characteristics, including 
economic activity, well-being, and poverty. However, multi-scale mapping and 
visualization of inequalities, especially their relative gradations and spatial patterns, 
have remained a challenge. To narrow this gap, we developed an approach that 
combines globally available built-up surface, population density, and night-time 
light intensity data. The integration of these earth observation-derived variables 
through a spatial visualization frame reveals patterns of societal inequalities at 
different scales. Our findings suggest that: (1) Outlining and mapping settlements 
using night-time lights alone underrepresent settlements of low-income countries, as 
both rural and suburbia of larger cities of the Global South are scarcely lit at night. 
(2) Combining population and built-up density that spatially locate people on the 
surface of the Earth with NTL provides insights on deprivation related to the lack of 
electricity and the services that come with it. (3) Night-time lights and inequality 
maps are the results of many factors that need to be addressed at different scales. A 
body of scientific literature that we review has just started to describe the variety of 
night-time light sources and the spatial variation within and across countries. New, 
fine-resolution NTL, population, and built-up density that are now becoming avail-
able may provide additional insights. 

Keywords Societal inequalities · Night-time lights · Spatial visualization · 
Population density 

D. Ehrlich (✉) · M. Pesaresi · T. Kemper · M. Schiavina · S. Freire · M. Melchiorri 
European Commission, Joint Research Centre, Ispra, Italy 
e-mail: daniele.ehrlich@ec.europa.eu 

© The Author(s) 2024 
M. Kuffer, S. Georganos (eds.), Urban Inequalities from Space, Remote Sensing and 
Digital Image Processing 26, https://doi.org/10.1007/978-3-031-49183-2_3

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49183-2_3&domain=pdf
mailto:daniele.ehrlich@ec.europa.eu
https://doi.org/10.1007/978-3-031-49183-2_3#DOI


34 D. Ehrlich et al.

3.1 Introduction 

In a world populated by eight billion people, quantifying the human presence and 
inequalities is essential to devise strategies to combat poverty and understand 
sustainability and the resilience of societies. Inequality is used to indicate issues 
including deprivations, particularly in health, education, safe water and sanitation, 
nutrition, and consumption (World Bank Group 2016), as well as in access to 
economic and infrastructure resources (Pandey et al. 2022; United Nations 2020). 
In this research, we refer to inequality as a lack of light at night in human settlements, 
presumably due to the inability to access electricity and the services that electricity 
can provide to households, communities, and societies. 

Measuring inequalities among and within human societies has always been a 
challenge. Society’s access to resources differs greatly across planet Earth. On the 
one extreme are the low-income subsistence farming communities in remote and 
predominantly rural landscapes, or those that live in the low-income peripheries of 
the metropolises of the Global South. On the other extreme are high-income 
communities and energy-producing countries – including those that can prosper 
also in otherwise inhospitable locations on Earth thanks to the ability to access all 
possible goods and services through their income. Such communities are typically 
located in high-income or energy-producing societies, where electricity is ubiquitous 
and available to illuminate all types of physical infrastructure. 

The demand for global spatially consistent population data and their attributes 
including inequality is expressed indirectly through a large body of policy and 
scientific documents addressing poverty and the sustainability of planet Earth. For 
example, attaining the Sustainable Development Goals (SDGs) is based on a set of 
related indicators that need to be monitored and reported periodically (Anderson 
et al. 2017). Directly relevant to this work is SDG 1, which aims to “End poverty in 
all its forms everywhere”; SDG 7 to “Ensure access to affordable, reliable, sustain-
able and modern energy for all,” which is one key socioeconomic indicator; and 
SDG 11 aims to “Make cities and human settlements inclusive, safe, resilient and 
sustainable.” 

Consistent and global data on built-up areas have been made available in recent 
years. Global Earth observation image collections have been used to generate global 
land cover and land use maps (Gong et al. 2013) that include impervious class, as 
well as built-up from optical imagery (Pesaresi et al. 2016a, b) and from radar 
imagery (Esch et al. 2017; Marconcini et al. 2020). Multi-temporal built-up mapping 
enabled assessing the process of global urbanization (Melchiorri et al. 2018), as well 
as to sizing and enumerating settlements. 

A number of global population distribution products are now available that differ 
with respect to the population concept being mapped, the input data, and the physical 
variables to which the population is associated (Leyk et al. 2019). This work uses the 
concept of residential population density generated by combining earth observation– 
derived built-up information and population estimates from census data (Freire et al. 
2016). The spatial allocation of people uses the built-up density as a single



covariate (Corbane et al. 2019). The built-up density and population density spatial 
grids are available at different spatial resolutions from the GHS 2019 public data 
release (Florczyk et al. 2019). The data suit applications span from the local/regional 
to global domains. Population density datasets can now be further combined to 
address inequalities, including the usage of night-time lights (NTL). 
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Open night-time satellite imagery with global coverage has been made available 
from the Operational Linescan System on board the Defense Mapping Satellite 
Program (OLS-DMSP) (Baugh et al. 2010; Román et al. 2018) and more recently 
by imagery originating from the visible infrared imaging radiometer suite (VIIRS) 
(Elvidge et al. 2017). Astronaut photographs of the Earth at night (available from 
http://eol.jsc.nasa.gov) have also been used to address city light emissions, although 
the limited number of cities covered makes it useful for local studies only. 
OLS-DMSP, VIIRS, and astronaut photographs have been used to address socio-
economic characteristics including urban extent (Liu et al. 2019; Zhou et al. 2015), 
population density (Sutton et al. 2011), gross domestic product (GDP) (Galimberti 
2020; Sutton et al. 2007; Wu et al. 2013), poverty (Elvidge et al. 2009), and 
development and other socioeconomic variables (Elvidge et al. 2012; Levin and 
Duke 2012; Nordhaus 2006). 

A line of research equates the spatial distribution of night-time lights with access 
to electricity and the services that electricity supplies and links the lack of electricity 
with poverty or inequality. For example, geographical pockets of poverty are 
estimated by combining the “dark” regions as measured from VIIRS NTL with 
settlements (McCallum et al. 2022) defined by the World Settlement footprint 
(Marconcini et al. 2020). Similarly, poverty was spatially located by “dark” popu-
lation spatial grids from LandScan (Dobson et al. 2000), as those areas that are not 
covered by NTL form the DMSP (Smith and Wills 2018). NTL has been considered 
for use in developing economic indicators (Chen and Nordhaus 2011) for countries 
with low-quality statistical data and economic growth (Henderson et al. 2012). 
Gridded built-up, population, and night-time lights combined have also been used 
in addressing regional-scale infrastructure development in India and in the United 
States to address progress towards the SDGs (Stokes and Seto 2019) and to map 
inequalities globally (Ehrlich et al. 2018). 

Relevant to this work is the body of research that analyzed the sources of light 
recorded by the OLS-DMSP, VIIRS-NTL, and within-country and across-country 
variations. For example, Kyba et al. (2014), provided insights into the type of land 
uses that generate NTL. These authors also showed that in 2012, former East 
Germany cities emit more light per capita than those in former West Germany and 
that American cities emit more light per capita than the German cities. Levin and 
Duke (2012), identify and explain differences in emissions due to socioeconomic 
status of settlements in Israel and the Palestinian Authority. Nordhaus and Chen 
(2015), assessing GDP from NTL, reported that the lowest-income countries have 
also the lowest night-time recording and that these may be filtered out in the 
processing hampering the effort of gathering GDP statistics. Weidmann and Schutte 
(2017), report on the large discrepancy in NTL emissions from rich countries.

http://eol.jsc.nasa.gov
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We propose a qualitative analysis of patterns of inequality based on a visualiza-
tion of three global variables. We use built-up density and population density – two 
global variables that are co-produced to spatially locate settlements – and satellite-
measured NTL. The three variables are also referred to as societal variables (Ehrlich 
et al. 2021) as they all are related to processes and patterns generated from human 
activities (Ehrlich et al. 2020). 

We process the three variables with a unique set of parameters tailored to identify 
spatial patterns that have been reported in the literature or that we justify based on 
current knowledge. This research is thus a qualitative data exploration exercise that 
aims to assess the potential of the three variables combined to guide further research 
at global and regional scales. Finally, we discuss the limitations of the three variables 
taken separately, the limitations of the variables taken in combination, and the 
limitation of a single set of parameters, ending with an outlook on future possible 
research. 

3.2 Data 

This study uses three 1x1 km spatial grids generated for the nominal year 2015; the 
Global Human Settlement Built-up (GHS-BUILT), the Global Human Settlement 
Population (GHS-POP) (Florczyk et al. 2019), and the NTL from VIIRS NTL from 
the Black Marble Night Time Lights (Elvidge et al. 2017; Román et al. 2018). 

3.2.1 GHS-Built 

The GHS-BUILT layer quantifies the density of the built environment. More 
specifically, it provides a quantitative measure of the surface area covered by 
buildings (Corbane et al. 2019; Pesaresi et al. 2013). The GHS-BUILT is generated 
by processing a combination of image repositories, including that of Landsat-8-
optical imagery multispectral bands for 2014 and 2015, available at 30 × 30 m and 
the Landsat panchromatic band available at 10 × 10 m. Symbolic machine learning 
(Pesaresi et al. 2016a, b) was used for information extraction, an association type of 
algorithm that allows to simultaneously process satellite information from different 
sources. The extracted built-up information is averaged – using a surface share 
function – over 250 × 250 m spatial grids for use in generating GHS-POP, and in 
1 × 1 km spatial grids to be used for the visual analysis of inequality in this research. 
All output data are available in World Mollweide equal area projection (EPSG 
54009).
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3.2.2 GHS-Pop 

The GHS-POP is a spatial grid of residential population abundance and density. It is 
generated by combining census data from the Gridded Population of the World 
(GPW) with the GHS-BUILT. GPW (Center for International Earth Science Infor-
mation Network-CIESIN-Columbia University, 2017) collects and integrates several 
available census data and estimates population counts for different epochs, adjusted 
at the national level to the 2015 United Nations World Population Prospects (United 
Nations 2015). Such population counts are linearly disaggregated from census units 
to GHS-BUILT 250 × 250 m grid cells, informed by the locations and density of 
built-up areas (Freire et al. 2016). For this analysis, the population layer is made 
available as 1x1 km grid cells for the year 2015, in World Mollweide equal area 
projection (EPSG 54009). 

3.2.3 Night-Time Light Emissions 

The night-time light emissions are collected by the visible infrared imaging radiom-
eter suite (VIIRS day/night band (DNB) (Elvidge et al. 2017) generated by the Earth 
Observation Group (EOG) at the National Oceanic and Atmospheric Administration 
(NOAA/National Geophysical Data Center (NGDC) (Elvidge et al. 2017). We used 
Version 1 of VIIRS day/night band VIIRS-NTL (Elvidge et al. 2017, 2021). VIIRS-
NTLs are filtered from radiance generated by a number of natural phenomena, 
including moonlight and aurora (Román et al. 2018). VIIRS-NTL shows cloud-
free average radiance emitted, expressed as nano-watt per steradian per square 
centimeter (nW cm-2 sr-1 ). The outlier removal process filters out fires and other 
ephemeral lights. The data are available as 15 arc-second spatial grids mapped to the 
WGS84 geographic coordinates, covering the globe from 75° latitude North to 65° 
latitude South. We use the annual average image composite products (Elvidge et al. 
2021) for the reference year 2015. The data were processed and resampled for this 
research to a 1 × 1 km grid in World Mollweide projection (EPSG 54009) aligned 
with GHS-BUILT and GHS-POP grids. 

3.3 Data Processing 

The GHS-POP, GHS-BUILT, and NTL at 1 × 1 km grids were further processed to 
allow their combined visualization and interpretation. This included standardization, 
sequencing, encoding, and visualization (Ehrlich et al. 2018). 

The statistical parameters – average and standard deviations – for visualization of 
the three variables are used for global, regional, or local visualization. For global 
representation, we collected statistics from all grid cells containing population higher



2

þ

than 50 people (Box 3.1, Eq. 3.1). For regional and local representation, we collected 
statistics from all populated grid cells. 
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The standardization procedure aimed at adjusting the value range of each variable 
to that of the other two variables in order to allow for a meaningful visualization in 
the RGB color space. First, we rescaled the GHS-POP and NTL based on a 
logarithmic base 10 function (Box 3.1, Eq. 3.2). Second, we centered the data 
distribution of each variable to the dynamic range required for the visualization. 
That rescaling and data range adjustment used two standard deviations to define the 
minimum and maximum (Box 3.1, Eqs. 3.3, 3.4, and 3.5). 

Box 3.1: Equations Used in Preprocessing the Variables for 
Visualization 

(3.1) d {x : xGHS _ POP > 50}. 
(3.2) x. 

(3.3) x00 = x0 - cminð Þ  
cmax - cminð Þ  the linear rescaling of (1), bounded in 

the [0..1] interval. 
(3.4) cmax = μx0 d 2σx0 d 
(3.5) cmin = μx0 d - 2σx0 d , with  μx0 d being the average of x′ in the spatial 

domain d, and σx0 d being the standard deviation of x′ in the same spatial 

domain d. 

The clustering allows associating the standardized GHS-POP, GHS-BUILT, and 
NTL data to the additive color-mixing model as represented in the color cube model 
(Fig. 3.1). The combination of values from the three thematic layers is associated with 
the colors of the data cube scaled from 0 to 255. Vertices 1, 3, and 5 show, 
respectively, the primary colors red, green, and blue, with blue only showing grid 
cells with night-time light values NTL, red grid cells with only population counts, and 
green grid cells with only built-up areas. Vertices 2, 4, and 5, show respectively, the 
secondary colors, magenta, yellow, and cyan, with magenta showing both population 
and NTL but no built-up, yellow only population and built-up and no night-time 
lights, and cyan only built-up and night-light and no population. The colors in between 
vertices indicate combinations of the three variables. Vertex 7 corresponds to white, 
with all variables showing the highest value. Vertex 8 corresponds to black, with all 
values corresponding to 0. The prevalence of one color over the other represents the 
relative dominance of one societal variable over the other variables. 

3.4 Results 

The combinations of the three societal variables in visual band composites generate 
spatial color patterns that can be related to different settlement pattern characteristics. 
Table 3.1 summarizes the association between colors as from the color cube of



Fig. 3.1 and the relative presence of the corresponding societal variables and the 
spatial settlement patterns that can be detected. The following sections provide 
examples of colored spatial patterns that focus on identifying spatial inequalities at 
global, regional, and local scales. We also compare local scale inequality patterns 
across continents and in disaster-affected areas. We selected the inequality maps 
presented in this research based on the societal patterns and processes that we could 
understand and explain. When considered relevant, we combine inequality maps 
with NTL maps representing the same geographical area. For cartographic rendering 
purposes, global maps are resampled to 5 × 5 km, while all other maps are generated 
using statistics from the 1 × 1 km spatial grids. 
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Fig. 3.1 Color cube showing all possible color combinations used to visualize societal inequality 
generated from population density, built-up density, and night-light emissions 

3.4.1 Global Inequality Maps 

Global inequality maps show populated areas of the world with different color 
patterns (Fig. 3.2). All major cities are characterized by white colors given their 
concentration of population, built-up, and illumination, but not everywhere. 
Figure 3.2 shows in red tones the inhabited areas of the world poorly lit and present 
in Sub-Saharan Africa, parts of Asia, and Latin America. The blue tones – charac-
terized by NTL that dominates over the built-up and population – occur in the



high-income or energy-producing countries. The most visible blue tone occurs in 
North America, in the larger cities of South America, parts of Europe, oil-producing 
countries of the Middle East, South Korea, and Taiwan, which are also middle- or 
high-income countries. The green color indicates higher values of built-up relative to 
population and night-lights and that occurs in high and medium-income countries. 
Yellow spatial patterns showing a very high concentration of population and built-up 
are found around the megacities of the eastern part of the Indian subcontinent and the 
Eastern lowlands of China. 
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Table 3.1 Correspondence between colors as represented in the color cube of Fig. 3.1, relative 
values of societal variables, and example of settlement patterns 

Color 
cube 
vertices Colors 

Societal variables relative 
values (abbreviations for figure 
legends) 

Examples of settlement pattern 
characteristics 

1 Blue High NTL, less population, 
and built-up (P-B-L+) 

Large industrial installations, security 
infrastructures, oil and gas extraction 
sites, illuminated road infrastructure 

2 Magenta Population, NTL, and less 
built-up (P + B-L+) 

Deprived areas, dense urban centers, 
densely inhabited 

3 Green Built-up, less NTL, and less 
population (P-B + L-) 

Overbuilt rural areas, abandoned vil-
lages, overbuilt rural areas 

4 Yellow Population, built-up, and less 
NTL (P + B + L-) 

Poor-lit cities, deprived areas, historic 
urban centers, diffuse settlements, 
scarce public illumination. Disaster-
affected urban areas 

5 Red Mostly population, less built-
up, and NTL (P + B-L-) 

Deprived areas, dense population, and 
absence of public illumination. 
War-affected areas, disaster-affected 
rural areas, urban areas in low-income 
neighborhoods 

6 Cyan Built-up, NTL, and no popula-
tion (P-B + L+) 

Affluent cities, suburbs, large built-up 
land use, large public illumination, 
sparse population 

7 White Population, built-up, and NTL 
(P + B + L+) 

Well-lit cities resulting from high den-
sity of people, high density of buildings, 
large night-light emissions 

8 Black No population, built-up, and 
NTL (P-B-L-) 

Locations on earth with no human 
presence 

3.4.2 Regional Inequality Maps 

Regional inequality maps provide insight on differences between countries or 
countries belonging to similar income class. Figure 3.3 shows North America and 
part of the Caribbean region. A large part of the United States is shown in blue, the 
typical color combination of high-income countries. All larger cities show most of
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Fig. 3.2 Global spatial pattern of inequality map represented as combination of colors using data 
aggregated at pixel of 5 × 5 km large grid cells. The color legend indicates population (P), built-up 
(B), and night-time lights (L) with relative abundance (+) or scarcity (-). Colors indicate spatial 
societal patterns with high-income regions in blue, low-income regions in red, and colored in 
between including high populated with high density of built-up – yellow tones in east Asia – and 
high population with lower density of built-up in cyan 

Fig. 3.3 Inequality map for North America and part of the Caribbean. The United States shows 
well-lit patterns in large cities and smaller settlements. Mexico and the Caribbean show well-lit 
cities and less well-lit rural areas. The color legend indicates population (P), built-up (B), and night-
time lights (L) with relative abundance (+) or scarcity (-)



their area covered in white, indicating a relatively high value for population, built-
up, and NTL. The more densely populated settlements of the East of North America 
indicate less built-up, which may be related to the higher concentration of larger 
buildings. The figure also shows dark blue related to the oil field of Texas (Southern 
United States). The color spatial pattern differs for Mexico and the Caribbean region. 
Mexico city and the larger cities show high built-up, population, and night-lights as 
in high-income country. The remaining settlements colored in red indicate low built-
up and NTL.
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Fig. 3.4 Inequality map for Middle East. The color legend indicates population (P), built-up (B), 
and night-time lights (L) with relative abundance (+) or scarcity (-).The map shows the high-
income and oil-producing countries in blue, the emerging economies in cyan (i.e., Egypt, Nile 
Delta), countries in conflict (i.e., Yemen, Syria, and Northern Iraq), and low-income countries 
(i.e., Afghanistan) in red 

Figure 3.4, a regional map of the Middle East, is centered on the Arabic peninsula 
and shows a number of spatial inequality patterns. Saudi Arabia and part of Iraq are 
characterized by blue color with a high degree of NTL. In the southernmost part of 
the peninsula, coinciding with Yemen, the tones are red, indicating a lack of night-
light and relatively low built-up densities. This part coincides with conflict areas 
where lights are off (Jiang et al. 2017). The Nile Delta (Egypt) is characterized by 
high population and NTL, and this is in contrast with the southern part of the Nile 
River in Sudan, where NTLs are completely absent with the exception of Sudan’s 
capital Khartoum. The figure also shows the moderately well-lit part of Turkey and 
the lack of night-lights in Syria and part of Northern Iraq due to the ongoing conflict 
that unfolded in 2015. 

Europe’s inequality spatial patterns are particularly diverse across the continent 
and originate from a number of societal processes (Fig. 3.5). These inequality



patterns are determined by a combination of the settlement sizes and spatial distri-
bution, as well as that of NTL emissions. For example, in the Po River valley (Italy), 
settlements are relatively small and dispersed, while those found in Southern Italy 
are more concentrated despite similar night-light emissions. We describe below the 
more significant continental patterns as a systematic review of the origin and source 
of all NTL is beyond the scope of this work. Figure 3.5 shows mountain regions, 
including the Alps, Carpathian Mountains, as well as the Apennines as largely not lit 
and unpopulated. All larger cities are well lit. Areas in between large cities differ as 
Southern Europe is more lit than central and eastern Europe. 
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Fig. 3.5 Inequalities in Europe and Europe’s neighborhoods. The color legend indicates popula-
tion (P), built-up (B), and night-time lights (L) with relative abundance (+) or scarcity (-) 

Figure 3.6 illustrates patterns of inequality in East Asia, including Western China, 
Korea, and Japan. Most noticeable is North Korea and South Korea night-time light 
divide. North Korea is not well lit except for the capital. South Korea is well lit 
similar to other high-income countries. Japan shows high night-time use in cities but 
low NTL in the peripheries. This, combined with a high land per capita ratio in a 
rural area, makes it a unique societal pattern. Very noticeable also is China with very 
well-lit cities, while the rural area – densely populated with a large number of small 
towns closely spaced – is not well lit, generating a unique spatial pattern character-
ized by a high density of population and built-up displayed in yellow.
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Fig. 3.6 South and North Korea show different night-time spatial patterns. South Korea is well 
illuminated, while North Korea is very poorly lit. The color legend indicates population (P), built-up 
(B), and night-time lights (L) with relative abundance (+) or scarcity (-) 

3.4.3 Across Continent Inequality 

Figure 3.7 shows inequality maps for four 80x240 km large areas in four continents 
(a1–d1) and the corresponding NTL maps (a2–d2). Figure 3.7 – a1 shows part of the 
Po River plain (Italy), including Torino as the largest settlement, and Fig. 3.7 – a2 
shows the corresponding NTL map. Figure 3.7 – a1 and a2 show a nearly complete 
coverage of night-lights for both larger cities and smaller settlements scattered 
within the agricultural land. As from the legend, the larger cities and towns with 
high population, built-up, and NTL appear in white. The cyan color indicates a 
relatively high value of NTL and built-up with lower density of population charac-
teristics of productive infrastructure – commercial and industry – as from Fig. 3.1. 

Figure 3.7 – b1 and b2 show the agricultural region in the central plains of the 
United States extending between Iowa City and Davenport. The region shows 
mostly towns and cities, and all larger towns are lit at night (Fig. 3.7 – b2). The 
combination of spatial settlement patterns and illumination highlights the areas 
populated as well as the more commercial and productive areas represented in cyan. 

Figure 3.7 – c1 and c2 are centered on the city of Shijiazhuang in Hebei province, 
which covers the rich agricultural land of Eastern China plains. Only the large- and 
medium-size cities are lit at night, as shown in Fig. 3.7 – c2. The rural areas are 
interspersed by a dense pattern of towns spatially located at regular distances from



each other. At the 1 × 1 km spatial resolution, this pattern of settlements is rendered 
as a continuous built environment. The area is densely inhabited, and this generates 
typical yellow patterns from the dominance of built-up and population with 
lower NTL. 
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Fig. 3.7 Inequality maps (a1, b1, c1, d1) and NTL maps (a2, b2, c2, d2) for four 80 × 240 km 
regions centered on: (a) Torino (Italy), (b) Davenport (USA), (c) Shijiazhuang (China), and (d) 
Ouagadougou (Burkina Faso) 

Figure 3.7 – d1 and d2 show rural areas centered in Sub-Saharan Africa along the 
Sahel belt, with Ouagadougou (Mali) as the largest settlement. The region outside 
Ouagadougou is inhabited, but not lit at night. Red is the typical color for highly 
populated areas with low density of built-up and no light.
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3.4.4 Local and Disaster-Related Inequality Maps 

Figure 3.8 shows a divide between Haiti, the Dominican Republic, and Puerto Rico. 
Puerto Rico exhibits high-income style of high illumination throughout the island. 
The Dominical Republic shows well-lit urban areas and towns interspersed with 
poorly illuminated rural areas. In strong contrast is Haiti, where only the capital Port 
Au-Prince is illuminated and with lower intensity than other capitals. 

Local night-time lights and inequality maps show finer-scale inequality patterns. 
Figure 3.9 compares NTL (Fig. 3.9 – left) and inequality (Fig. 3.9 – right) for parts of 
Southern Nigeria. At this cartographic representation, the night-time map shows

Fig. 3.8 Inequality map depicting Haiti, Dominican Republic, and Puerto Rico. The color legend 
indicates population (P), built-up (B), and night-time lights (L) with relative abundance (+) or 
scarcity (-) 

Fig. 3.9 Nigh-time lights, map (left) and inequality map for Southern Nigeria (right)



major cities including Lagos and Abuja and some secondary cities well lit. The oil 
extraction sites in the Niger delta are also well lit due to gas flares and presumably for 
security reasons. However, the inequality maps show the blue tones indicating the 
absence of population and built-up. The NTL figure also shows some secondary 
cities and some scattered settlements in between cities. The inequality map includes 
many more settlements (color coded in red) that are not lit, as shown from the NTL 
map. Larger and smaller cities show diminishing availability of electricity moving 
from the center to the peripheries and displayed in yellow. Only Abuja shows 
peripheries with high built-up and light and low population shown in magenta.
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Fig. 3.10 Conflict related inequality map for 2015 centered on Syria. The color legend indicates 
population (P), built-up (B), and night-time lights (L) with relative abundance (+) or scarcity (-) 

NTLs are used to report on disaster-affected areas. In fact, electricity supply is often 
disrupted by the impact of hazards (Cole et al. 2017) and is best observable with NTL 
taken days or weeks apart. Protracted crises can be detected also from night-time 
annual averages. Figure 3.10 shows the outcome of the protracted conflict in Syria, 
still unfolding in 2015. Figure 3.10 also shows Damascus with one part of the city – 
the government controlled – well lit, and the eastern part of the city from the opposing 
forces not lit (yellow shades). Most of the rural areas south of the capital are not lit 
except for the larger city (European Commission, Joint Research Centre 2016). 

3.5 Discussion 

The chapter describes a procedure to visualize inequality patterns using three earth 
observation–derived products processed with a unique set of parameters. This visual 
data exploration approach confirms the usefulness of combining NTL, population,



and built-up to detect inequality linked to income, access to resources, and disaster-
related electricity supply disruptions. We show that inequality patterns are visible at 
global, regional, and local scales, and each scale of representation has benefits and 
limitations in visualizing societal patterns and processes. For the global representa-
tion, we have aggregated the 1 × 1 km grids to the coarser 5 × 5 km spatial grids. The 
global overview displays the economic areas of the globe with the high-income 
countries and the oil-producing countries – with high NTL densities, the middle-
income countries with a high variety of NTL densities, and the low-income countries 
with NTL mostly detected only for major urban areas. The drawback of global 
representations is the inability to show very sparse settlement patterns in part due to 
cartographic representation limitations. In fact, the color rendering at coarse scales 
are modulated by the amount of information that can be displayed. The benefit of this 
global representation consists in the spatial consistency of representation across the 
globe. 
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The continental and country level representation at 1 × 1 km grid resolution 
reflects the countries’ diverse income and policies related to night-time emissions. 
For example, Fig. 3.4 centered on the Middle East shows that the high-income and 
energy-producing countries are in stark contrast with the lower-income countries. In 
Europe, the spatial inequality patterns vary considerably despite the countries having 
similar access to energy and income. There are considerable differences even within 
a single country, i.e., former West and East Germany. Also, east European countries 
lit cities and urban areas better than rural areas; while southern European Countries 
and North African countries show high NTL emissions for all settlements. 

Africa displays two main patterns, that of Northern and Southern Africa with 
NTL both in urban centers and in rural areas, and that of sub-Saharan Africa with 
low coverage of NTL except for the larger cities. Asia shows great variability related 
to the different population concentrations and night-time emissions. 

Middle-income country spatial patterns are diverse and are in part due to the 
different use of night-time illumination, including different urbanization textures and 
population density. At the country scale, inequality can be often detected across 
borders of countries with different incomes and/or within a single country due to 
conflict of natural hazard impact. 

In this research, the city-wide inequalities are shown for selected Syrian cities. 
We confirm our findings reported in the literature that disaster-affected areas typi-
cally have disruptions in energy supply and that disruptions can be detected for 
disaster-affected regions. In fact, we expect to detect NTL shortcomings also in 
deprived and in informal settlements or slums. However, within-city NTL emission 
variations should be measured with sensors of higher resolution than that of VIIRS. 

The 1 × 1 km spatial grids of population built-up density and NTL used in this 
research are not optimal for locating deprived areas or not lit areas within cities. 
Built-up is generally detected in deprived areas at the original spatial resolution from 
which built-up is extracted. The aggregation of the built-up and the derived popu-
lation information into 1 × 1 km grid inevitably decreases the precision that is 
required to outline those city sections. In addition, deprived areas are often nested 
within more affluent parts of the city and the “glowing” effect of NTL emissions



over the more affluent areas may extend over non-lit areas especially when using 
weekly, monthly, or annual average products. Finally, the cities of the Global South, 
those that often host slums, are already poorly lit, making it even more difficult to 
locate deprived areas. The usefulness of night-light analysis for deprived areas 
would be best addressed using higher-resolution imagery as that from the new 
generation of night-time sensors and/or from astronaut photography. 
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The reader should always be knowledgeable about the limitations of the three 
input data used in this research. GHS-BUILT data are generated from artificial 
intelligence procedures and that process is not error free. Typically, errors are 
more likely to occur in regions of sparse settlements and less in dense urban areas. 
From our analysis, informal settlements and deprived areas within larger cities are 
detected from the processing of Landsat imagery. Future research will quantify the 
accuracies across settlement patterns and the impact of these patterns on color 
rendering. 

GHS-POP relies on census data that are not always up to date for all countries of 
the world. Moreover, the population distribution accuracy is likely to be different 
across space, and it depends on the spatial and geometrical accuracy of the census 
data. With coarse census units as those available in many low-income countries, the 
census number is disaggregated to any built-up feature detected including that of the 
deprived areas. Finally, GHS-POP that used a resident population relies on improv-
ing the spatial distribution for residential and non-residential areas, as well as to 
include the volume of built-up that is the ultimate measure for attempting to measure 
floor space per person. 

NTL for use in assessing societal activities also need to be assessed. First, the 
satellite overpass at 1.30 am images is not ideal to represent societal activity that 
would be more representative, if the satellite would fly over before midnight. Also, 
the sensor may not be able to detect faint lights simply due to the imaging resolution 
and the sensibility of the sensor (Elvidge et al. 2021). The annual averages represent 
stable lights over the year. This averages out images that may be illuminated for a 
short period of time. In fact, while all the oil-producing sites are being detected, wild 
forest fires are not detected. This analysis also shows that protracted crises that suffer 
prolonged electricity shut downs can be detected, those occurring at short intervals 
and that are quickly restored cannot be detected from annual averages. 

3.6 Conclusions 

The chapter describes a procedure to visualize societal inequalities related to the 
access to electricity and the services it provides, the availability of built infrastruc-
ture, and the resident population. The topic is of relevance for addressing disparities 
in access to resources and services associated to electricity and to locate low-income 
communities; all topics are relevant to the post-2015 Development Agenda. We 
could infer societal regional patterns that are consistently occurring in different parts 
of the world and reported in the literature. We would also like to report that as NTLs



are not detectable for part of the world, these may provide biased results if used to 
outline human settlements. In fact, large parts of rural landscapes in Sub-Saharan 
Africa and Asia do not appear to be lit at night but are often densely populated. Also, 
while most large cities of the globe are all well lit, a number of large cities of the 
Global South are only partly lit. Many cities show to be lit at the city center and 
night-light rapidly decrease from the center to the peripheries. The high-income 
countries typically are all very well lit. Some, high-income oil-producing countries 
show NTLs for all settlements as well as for the transport infrastructure connecting 
settlements. 
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There is regional difference within continents. There are inequalities to be noted 
between North America and Latin America, as well as for many countries in East Asia. 
There are some strong gradients along the border of neighboring countries with 
striking examples in the border separating North and South Korea as well as Haiti 
and Dominican Republic. There are also inequalities within the same country that can 
be observable due to prolonged effect of hazard impact or conflict. Urban inequalities 
are unlikely to be detected from the variables at the 1 × 1 km resolution. Finer 
resolution NTL and finer spatial resolution built-up grids should be used instead. 

This first attempt that explores night-lights and the combination with built-up and 
population densities shows a promising avenue of research especially for global, 
continental, and country-wide inequality description. In fact, NTL should also be 
considered an essential societal variable (Ehrlich et al., 2021) used in addressing 
societal patterns and processes (Ehrlich et al. 2020). This research opens new ways 
of investigation especially when new finer resolution night-time light will be avail-
able. First, we will continue to explore the new NTLs that are generated by new 
sensors, including that onboard the SDGSAT-1 (Hu et al. 2022). Second, we will use 
the new night-time series for 2020 and include in the analysis the new GHS-BUILT 
dataset generated with Sentinel-2 data that is mapping building densities much more 
refined. This will have an effect on the population distribution in particular in 
developing countries, where the new data may show even more people in rural 
areas deprived of access to electricity. Combining the three variables at finer 
resolution may reveal new spatial patterns originating from processes that are 
averaged out from the current coarse datasets. Third, we will attempt a more 
systematic data standardization procedure for a systematic assessment of inequality 
maps over time. Fourth, we will assess relations with inequality indicators derived 
from these datasets with data collected in the field. Future research will also address 
the use of night-time lights to understand and monitor the impact of night-time light 
in the natural environment as light pollution is an issue for the natural world, as well 
as to monitor use and/or efficiency in the use of resources. 

Disclaimer The designations employed and the presentations of materials and maps do not imply 
the expression of any opinion whatsoever on the part of the European Union concerning the legal 
status of any country, territory, or area or of its authorities, or concerning the delimitation of its 
frontiers or boundaries that if shown on the maps are only indicative. The boundaries and names 
shown on maps do not imply official endorsement or acceptance by the European Union. The views 
expressed herein are those of the author and do not necessarily reflect the views of the European 
Union.
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