
Chapter 14 
Making Urban Slum Population Visible: 
Citizens and Satellites to Reinforce Slum 
Censuses 
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Abstract In response to the “Leave No One Behind” principle (the central promise 
of the 2030 Agenda for Sustainable Development), reliable estimate of the total 
number of citizens living in slums is urgently needed but not available for some of 
the most vulnerable communities. Not having a reliable estimate of the number of 
poor urban dwellers limits evidence-based decision-making for proper resource

A. Abascal (✉) 
Navarra Centre for International Development, University of Navarra, Pamplona, Spain 

Faculty of Geo-information Science and Earth Observation (ITC), University of Twente, 
Enschede, The Netherlands 
e-mail: maabascal@unav.es 

S. Georganos 
Geomatics, Department of Environmental and Life Sciences, Karlstad University, 
Karlstad, Sweden 
e-mail: stefanos.georganos@kau.se 

M. Kuffer · D. Thomson · J. Wang 
Faculty of Geo-information Science and Earth Observation (ITC), University of Twente, 
Enschede, The Netherlands 
e-mail: m.kuffer@utwente.nl; d.r.thomson@utwente.nl; j.wang@utwente.nl 

S. Vanhuysse · E. Wolff 
Department of Geosciences, Environment and Society, Université libre de Bruxelles (ULB), 
Brussels, Belgium 
e-mail: sabine.vanhuysse@ulb.be; eleonore.wolff@ulb.be 

L. Manyasi · B. Ochieng · T. Ochieng 
Community Researcher Non-affiliated, Nairobi, Kenya 

D. M. Otunga 
Community Researcher Single Mother Association of Kenya, Nairobi, Kenya 

J. Klinnert 
Department of Economics, University of Maryland, College Park, MD, USA 
e-mail: klinnert@umd.edu 

© The Author(s) 2024 
M. Kuffer, S. Georganos (eds.), Urban Inequalities from Space, Remote Sensing and 
Digital Image Processing 26, https://doi.org/10.1007/978-3-031-49183-2_14

287

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49183-2_14&domain=pdf
https://orcid.org/0000-0002-0001-2058
https://orcid.org/0000-0002-1915-2069
mailto:maabascal@unav.es
mailto:stefanos.georganos@kau.se
mailto:m.kuffer@utwente.nl
mailto:d.r.thomson@utwente.nl
mailto:j.wang@utwente.nl
mailto:sabine.vanhuysse@ulb.be
mailto:eleonore.wolff@ulb.be
mailto:klinnert@umd.edu
https://doi.org/10.1007/978-3-031-49183-2_14#DOI


allocation in the fight against urban inequalities. From a geographical perspective, 
urban population distribution maps in many low- and middle-income cities are most 
often derived from outdated or unreliable census data disaggregated by coarse 
administrative units. Moreover, slum populations are presented as aggregated within 
bigger administrative areas, leading to a large diffuse in the estimates. Existing 
global and open population databases provide homogeneously disaggregated infor-
mation (i.e. in a spatial grid), but they mostly rely on census data to generate their 
estimates, so they do not provide additional information on the slum population. 
While a few studies have focused on bottom-up geospatial models for slum popu-
lation mapping using survey data, geospatial covariates, and earth observation 
imagery, there is still a significant gap in methodological approaches for producing 
precise estimates within slums. To address this issue, we designed a pilot experiment 
to explore new avenues. We conducted this study in the slums of Nairobi, where we 
collected in situ data together with slum dwellers using a novel data collection 
protocol. Our results show that the combination of satellite imagery with in situ 
data collected by citizen science paves the way for generalisable, gridded estimates 
of slum populations. Furthermore, we find that the urban physiognomy of slums and 
population distribution patterns are related, which allows for highlighting the diver-
sity of such patterns using earth observation within and between slums of the 
same city.
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14.1 Introduction 

Global sustainable development, adoption of the United Nations (UN) Sustainable 
Development Goals (SDGs) (UN-Habitat 2015), and international development 
agreements have triggered a much-needed data revolution, with countries and 
institutions around the world recognising the critical role of geospatial data for 
evidence-based policymaking. Increasingly, high-quality geospatial datasets are 
becoming an essential source of information to guide social, economic, and envi-
ronmental policies at global, regional, national, and subnational scales (Nilsson et al. 
2016). 

Among the wide variety of geospatial datasets needed to create credible measures 
of sustainable development (e.g. data on land use, land cover, risks, or climate 
indicators), some of the most spatially necessary datasets are those describing the 
spatial distribution of the urban form (Benza et al. 2016) and the human population. 
Global population datasets must ensure to include all populations, with particular 
attention to urban slums, which exhibit distinct patterns from the rest of the city and 
are often not accounted for in census data in most low- and middle-income countries 
(LMICs). While open population databases are widely used, including censuses, 
surveys, and gridded datasets (e.g. WorldPop), they systematically and dramatically 
underrepresent slum populations in LMICs (Thomson et al. 2020). Global



population models come with high uncertainties in LMIC cities, e.g. the underesti-
mation of the urban population living in slums (Kuffer et al. 2022). 
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Slums are characterised by sub-standard services, lack of open space, and high 
building density. Deprivation is exacerbated by high urban built-up density and 
overcrowding of households that are much higher than in urban formal areas. In 
addition, slum dwellers commonly lack land tenure security, so they are often not 
recognised by local authorities and are not included in official population counts 
(i.e. in national censuses). This means that population data collected through tradi-
tional methods may not fully reflect the number of people living in slums. This 
problem is compounded by the fact that slum populations are often highly mobile 
(people move in and out of neighbourhoods frequently) and with diverse population 
patterns according to social strata, which can result in multiple families residing 
within the same household. The presence of such diversity in slum populations 
makes it challenging to estimate their numbers accurately based on limited obser-
vations or extrapolation methods. 

It should be noted, as shown in Fig. 14.1, that not only is there a morphological 
distinction between slums and formal areas, but there is variation in size and 
physiognomy between and within slums (Georganos et al. 2021). Therefore, the 
extrapolation of slum data needs to be carefully considered. To address this problem, 
more targeted and innovative approaches to data collection in LMIC, especially in 
slums, are needed. This may involve the use of new technologies, such as satellite 
imagery and geospatial data, to identify slum populations. It may also require closer 
collaboration between local authorities, researchers, and community organisations to 
ensure that slum populations are adequately represented in population data. 

Choosing the appropriate spatial unit for modelling urban slum population 
depends on several factors, including the scale and geographic extent of the study, 
the level of detail required for the analysis, and the available input data and the 
protection of privacy. To accurately model the population of slums within global 
population layers, the spatial unit chosen needs to match the intra-slum level patterns 
of the population density. This will enable a more accurate representation of the 
population distribution and help to address any potential biases in the mapping 
process. Therefore, administrative units may not be appropriate as they often contain 
very diverse areas and potentially include one or several slums. The choice of the 
spatial unit should also be driven by the availability and quality of data. For example, 
census tracts may be ideal for modelling urban populations at larger scales, in case of 
high-quality census data availability. However, in the case of LMIC cities, census 
data are not reliable data sources for population estimation in slums (Carr-Hill 2013) 
because they are often outdated regarding the high pace of their population growth, 
and their smallest administrative unit is too small. Therefore, considering the fine 
level of detail required in this study, fine grid units would be optimal (Fig. 14.2). It 
should be noted that the selection of appropriate spatial units involves adapting to the 
diversity within each grid to accurately represent the population distribution at a finer 
resolution. 

The process of gridded population mapping requires understanding the integra-
tion approaches between diverse geo-datasets, from source units into the target units



(Leyk et al. 2019). Previous research in different fields has shown that spatial 
aggregation (in top-down approaches) influences urban modelling results (Zhang 
and Kukadia 2005; Duque et al. 2018; Weigand et al. 2019). This common challenge 
is called the modifiable areal unit problem (MAUP) (Gehlke and Biehi 1934; 
Openshaw 1984; Wong 2009) and describes how results change as the spatial 
aggregation of data changes. A good approach to evaluating the influence of the 
aggregation level is to conduct a sensitivity analysis, testing different spatial units to 
see which one provides the best results and insights for the research question at hand. 
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Fig. 14.1 Physiognomic diversity between and within slums in Nairobi city 

As shown in Fig. 14.3, several global open-gridded population datasets are 
available, and the modelling process involved in their creation is variable (for further 
information, visit the POPGRID website (2020)). The first distinction is whether 
they are top-down or bottom-up approaches. Top-down approaches to distributing 
spatial population patterns have been shown to grossly underestimate the slum 
population, as they are based on the disaggregation of census data into smaller 
units (Thomson et al. 2020). On the other hand, bottom-up approaches are typically



more accurate, employing commonly in situ survey data with a set of covariates in 
statistical and machine learning approaches (Boo et al. 2020). A distinction is also 
made between approaches that do and do not constrain population redistribution 
using settlement extents. A constrained approach produces improved population 
distributions (Linard et al. 2011). Finally, the degree of modelling, from
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Fig. 14.2 Spatial units diagram: from administrative to more physiognomic 

Fig. 14.3 Global population datasets diagram



un-modelled to highly modelled, indicates the size of the covariate set used to predict 
the population.
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Table 14.1 Disaggregation methods 

Method type 
Method 
name Weighting Authors 

Disaggregation Statistical 
analysis 

Means of population Birkin and Clarke (1988) 

Areal 
weighting 

Uniform distribution Goodchild and Lam (1980) 

Dasymetric 
mapping 

Binary weight Eicher and Brewer (2001) 

Empirical weight Mennis and Hultgren (2006) 

Statistical weight Reibel and Bufalino (2005) 

Hybrid 
dasymetric 

Statistical analysis and 
dasymetric mapping 

Stevens et al. (2015), Sorichetta 
et al. (2015), Reed et al. (2018) 

When creating spatial population data, it is necessary to disaggregate or aggregate 
data into a common spatial unit. Disaggregation is typically employed when the 
source data is census or administrative data, and the target grid cell is a smaller spatial 
unit than the source units. It has been shown that the incorporation of ancillary urban 
data, named constrained, results in better accuracies than unconstrained modelling 
when disaggregating from census data. As shown in Table 14.1, there  are several  
disaggregation methods to allocate population distribution into smaller units. One 
common method is the areal weighting method, an unconstrained approach, which 
assumes that the population is uniformly redistributed from the source units to the 
target cells that overlap with the source units. Although this assumption is an 
oversimplification due to non-uniform population distributions, the method is com-
putationally efficient and can create spatially explicit and globally consistent popula-
tion estimates. An example of this approach is the gridded population of the world 
(GPW) product. When using ancillary data, the population redistribution is achieved 
through areal interpolation, referred to as the dasymetric mapping method. All 
dasymetric mapping techniques rely on the relationships between population (pro-
vided by the input census data) and ancillary data (such as land cover) that can be 
utilised to reallocate the population to finer spatial units with greater accuracy. The 
disaggregation method applied in traditional dasymetric approaches varies, ranging 
from binary dasymetric refinement to more complex weighting schemes or hybrid 
methods. As Leyk et al. (2019) stressed, they differ in the way relationships between 
population and ancillary data are derived (e.g. presence/absence based, empirically 
derived, or optimised) to determine weights for different locations to guide the 
disaggregation of population totals. 

Efforts have been made to develop models that are not dependent on census data 
and rely on bottom-up approaches. However, these attempts have not been applied 
on a global scale. For example, the GRID3 project has developed population 
estimates for LMICs that are independent of census data (Grid3 2023). Recently, 
a method combining household survey data with building footprints has been



suggested as a possible census-independent approach (Thomson et al. 2020; Boo 
et al. 2022), the most promising method for creating benchmark models for slum 
populations. It is noted that attempts to develop bottom-up population estimations 
use a random sampling scheme of survey locations, and while this methodology 
suggests that sample surveys can provide unbiased estimates of the total population 
size of an aggregated population (Cottam et al. 1957), the precision of these 
estimates will depend on the level of aggregation, the distribution of population 
within the aggregate units, and the extent to which the sample is representative of the 
different urban physiognomies. As stated by Georganos et al. (2021), the latter differ 
vastly within and between slums. 
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In this study, we aim to propose a novel method to produce more accurate gridded 
population estimates that can be used as a benchmark to evaluate other open 
population datasets and validate and/or highlight existing uncertainties. Data was 
collected in situ in collaboration with slum dwellers through a novel data collection, 
as all the grid size was surveyed, using citizen science, i.e. slum dwellers. The 
authors hypothesise that leveraging bottom-up earth observation (EO) methods can 
improve slum population estimates compared to existing censuses and open-gridded 
population datasets. 

14.2 Data 

14.2.1 Onekana Population Database 

The study covers six slum areas in Nairobi city, namely Kibera, Mukuru, Waruku, 
Pumwani, Korogocho, and Mathare. The study area was divided into 2000 uni-
formly sized grid cells, each measuring 1 hectare (100 m × 100 m). Out of these, 
117 cells were randomly selected and comprehensively surveyed, resulting in a total 
of 10,550 surveys conducted (Fig.14.4). Throughout the data collection process, 
certain grid cells had to be excluded from the survey due to safety concerns reported 
by citizens. These cells were predominantly situated close to rivers, areas with 
known drug or alcohol consumption, or fenced-off areas with restricted access. 

14.2.2 Open Geo-Datasets 

Interpretable urban variables in the form of open geo-data were collected from two 
sources, namely satellite imagery and cooperative citizen databases such as 
OpenStreetMap. Variables derived from satellite imagery were produced in prior 
research studies utilising very high-resolution WorldView-3 images (0.30 cm) of 
2019 (Abascal et al. 2022; Georganos et al. 2021; Wang et al. 2023). They consist of 
proportions of land cover classes and morphological metrics aggregated at the grid



cell level. Additional morphological metrics were computed from the Google Open 
Building layer, which uses satellite imagery of 0.50 cm resolution (Sirko et al. 2021). 
Finally, road and river data were collected from OpenStreetMap (OSM) contributed 
by community members in 2021. 
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Fig. 14.4 Nairobi case study. Census sub-locations, total grids corresponding to slums, and 
surveyed grid cells are depicted 

14.2.3 Open Population Datasets 

Table 14.2 presents the population datasets selected for comparison, which were 
chosen based on two criteria: spatial resolution finer than or equal to 100 m by 100 m 
and data availability for Nairobi city. 

14.3 Methodology 

Figure 14.5 illustrates the general workflow of the study. The first step involves 
designing and collecting field data, which are then subjected to cleaning and 
imputation to estimate the population of non-responding households in the grid. 
Subsequently, the data obtained from surveying 117 grids are used to train and 
validate the model using advanced spatial aggregation techniques. This results in the 
creation of the Onekana population dataset, which provides predicted population



data for the remaining slum grids. Finally, this dataset is compared with more recent 
and disaggregated open population datasets described in Table 14.1. 
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Table 14.2 Population geospatial datasets for Nairobi with spatial resolution finer than or equal to 
100 m × 100 m used in this research 

Name and 
source Institution Authors 

Geographic 
coverage 

Spatial 
resolution Data Date 

Census KNBS KNBS 
(2019) 

Kenya Adm. 
Sub-
location 

Census 2019 

High Reso-
lution Settle-
ment Layer 
(HRSL) – 
constrained 

Columbia 
University, 
Facebook 

CIESIN 
(2016) 
Meta 
(2023) 

Africa, Asia, 
Latin 
America 

Grid 
(30 m) 

Census, RS 2020 

WorldPop – 
constrained 

University 
Southampton 

WorldPop 
(2023) 

Global Grid 
(100 m) 

Census, 
Survey, 
Geospatial 
data, and RS 

2020 

GRID 3 – 
constrained 

Columbia 
University, 
WorldPop 

Gadiaga 
et al. 
(2021) 

Sub-Saharan 
Africa 
(11 countries) 

Grid 
(100 m) 

Building pat-
terns (Dooley 
et al. 2020), 
Geospatial 
data (Lloyd 
et al. 2017) 

2023 

Fig. 14.5 Overall workflow 

14.3.1 ONEKANA Population Database 

Field Data Collection To model population, we assume households living in 
similar physical housing and environmental conditions have similar demographic 
characteristics, and therefore similar population numbers (Pearce et al. 2010). To 
gather population data on the ground, slum dwellers participated in a citizen science



process. The survey and its objectives were explained to them, and they were 
involved in designing the work plan and determining their remuneration. They 
also helped to convey the purpose of the surveys to the respondents to build trust 
and achieve a high response rate. However, reaching some households was not 
possible due to the unstable employment situation and unpredictable work schedules 
of some residents. 
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The data collection process involves two main steps: (A) map exploration and plot 
delineation and (B) a field survey conducted using a mobile app. Due to the 
complicated physical layout of the slums, it was not feasible to survey each dwelling 
individually as originally planned. Instead, maps were created from very-high-
resolution (VHR) satellite image chips and OSM data to identify landmarks and 
serve as orientation guides within the slums. Surveyors then delineated plots, which 
are fenced compounds of grouped dwellings with a single entrance. The field survey 
also consists of two phases: First, counting the number of households in a plot and 
second, interviewing the inhabitants. Geo-data surveys were conducted using a 
mobile app created on the Firebase platform for this research (Fig. 14.6). 

Aggregation Methods To evaluate the sensitivity of slum population patterns and 
assess the aggregation error, the missing data were filled in using two different 
aggregation methods. It should be noted that the total number of dwellings per plot 
and per grid cell was known, as they were counted in the field. The two methods used 
were (1) grid aggregation method: Population numbers were aggregated at the grid 
cell level, and the missing population number for a household was assumed to be

Fig. 14.6 Field data collection process. (a) Locating the assigned grid cell and drawing plot 
boundaries. (b) Carrying out household surveys and filling out the form on the mobile app (grid 
id, plot id, household number, and population number)



equal to the mean household population number in the grid cell (2) Plot to grid 
aggregation method: Population numbers were aggregated at the plot level, and the 
missing population number for a household was assumed to be equal to the mean 
household population number in the plot. A first R-squared (R2 ) test measurement 
was performed to evaluate the proportion of variance and strength of the relationship 
between variables.
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Population Modelling Slum population density is predicted for the six biggest 
slums within the city of Nairobi. As a modelling approach, we employed the random 
forest (RF) algorithm, where population numbers were predicted from geospatial 
covariates, such as land cover and building footprints and morphological metrics, for 
each slum separately, at the grid level. Additionally, to create a more predictive and 
generalisable slum population model, we used a spatial variant of RF, geographical 
random forest (Georganos et al. 2019) in which data from all slums were used 
simultaneously. We evaluate the results both by visual inspection and by validating 
our predictions against a set of surveys left out of the training stage by computing 
performance indicators such as root mean square error (RMSE) and mean absolute 
error (MAE). 

Comparison of Slum Population Estimates To assess the cell-level accuracy of the 
four existing gridded population datasets considered (Table 14.2), each cell-level 
estimate (e.g. WorldPop) was compared to the “ground true” population count 
obtained from the exhaustive household surveys. The reference grid used in the 
comparison was the Onekana grid, 100 by 100 m. The HRSL dataset is aggregated 
using the areal weighting method, as we know the population distribution within 
each grid cell could be diverse (see Fig. 14.1). The areal-weighted interpolation is a 
more sophisticated method compared to simple spatial aggregation as it considers 
the spatial distribution of the population within each grid cell. The Census has been 
disaggregated into the reference grid by the dasymetric mapping method. This 
method considers the spatial distribution of the census data and uses ancillary 
data, such as land use or land cover, to redistribute the census data within each 
grid cell based on the spatial characteristics of the ancillary data. The other 100 by 
100 m open population dataset (i.e. WorldPop and GRID3), as there was a spatial 
mismatch between the cells being compared, were converted to the reference grid 
using the inverse distance weighting spatial interpolation method. This method 
estimates the values of unsampled locations based on the values of nearby sampled 
locations. This method ensured all compared cells were on the same grid and 
minimised errors due to spatial mismatches between data sets. 

14.4 Results 

14.4.1 ONEKANA Population Database 

This study employed two distinct aggregation methods to evaluate the impact on 
modelling outcomes: the grid aggregation method and the plot-to-grid aggregation



Database RMSE R-squared MAE

method. Figure 14.7 shows the predicted versus observed population for four slums, 
when modelling the population for each slum separately, revealing that the plot-to-
grid aggregation method yielded a remarkable outcome, with an R2 value 
approaching 0.90 for the major slums except for Kibera. However, the results 
were less satisfactory (R2 ranging from 0.20 to 0.25) when all the slums were 
modelled together. The finding that the model demonstrated high accuracy when 
modelling each slum individually, but not when modelling all slums together, pro-
vides support for the hypothesis that population patterns vary across slums. 
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Fig. 14.7 Population modelling per slum (with a distinct RF model for each slum), with two 
different aggregation methods 

Table 14.3 Performance 
indicators for the ONEKANA 
population estimate ONEKANA 307,28 0,48 199,13 

After the aggregation method, the final modelling was determined through a 
rigorous testing process, and the model was subsequently refined by incorporating 
a geographical component. The utilisation of the geographical random forest (GRF) 
method produced the best model and yielded enhanced results, as evidenced in 
Table 14.3. 

14.4.2 Slum Population Comparison 

Compared to existing population estimates, our results show a mean estimate per 
grid of almost 600 people, whereas others are less than half of that. As shown in 
Table 14.4, among the existing open population layers, the best estimate is GRID3 
and the worst are both Census and the WorldPop database. This could be explained 
as when adding survey data (e.g. GRID3) or disaggregating the spatial area and 
model with exhaustive Remote Sensing data (e.g. HRSL) results improve quantita-
tively. Despite the improvement, it is clear, e.g. in Fig. 14.8, how the existing 
databases respond to a spatial distribution of the population such as the census 
data, as it has been the main data to train the models.



Population estimate
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Table 14.4 Population estimate comparison in Nairobi slums 

Statistics Accuracy metrics 

Mean Median Min Max RMSE R-squared MAE 

ONEKANA 596,83 581,85 315,69 1500,34 307,28 0,48 199,13 

Census 350,12 264,16 0,1 1472,10 191,30 0,02 191,19 

HRSL 266,22 239,43 0 1218,14 189,30 0,04 189,23 

WorldPop 447 326 9 3238 193,80 0,02 193,64 

GRID 3 374 361 0 1231 187,80 0,06 187,75 

Fig. 14.8 Comparison of population estimates in Mukuru Slum, with ONEKANA (population 
counts from HH surveys) on top 

ONEKANA population account for more than one million people, whereas the 
census estimates less than half a million. These results highlight the need to produce 
reliable population datasets to have a more reliable and complete understanding of 
the urban population, accounting for the slum population and “Leave No One 
Behind”. 

14.5 Conclusion 

To reduce urban poverty, including upgrading and planning slum areas and provid-
ing slum dwellers with services, it is necessary to improve statistics on the urban 
population. For this purpose, the extent, nature, and location of slums are needed. 
Making the population of urban slums visible will help design suitable urban 
policies, such as the provision of local services. According to our findings, the use



of satellite imagery combined with in situ data collected by citizen science allows us 
to create generalisable, gridded estimates of slum populations. The R2 of the overall 
model (i.e. when modelling all slums together) is 0.48, although it is promising that 
when isolating the modelling of individual slums, in some cases the R2 reaches 0.9. 
This indicates that there is a relationship between the urban characteristics of slums 
and population distribution patterns. Our work provides insights as to how urban 
population models should tackle slum areas, as there is currently a lack of ad hoc 
approaches. The knowledge gained will contribute to a better understanding of the 
evolution of sub-Saharan African cities, enhancing evidence-based policymaking 
and ensuring sustainable urban growth. 
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