Skip to main content

Past, Present, and Future in the Development of Medium and High-Temperature Catalytic Processes for N2O Decomposition

  • Chapter
  • First Online:
Advances in Catalysts Research

Part of the book series: Advances in Material Research and Technology ((AMRT))

  • 168 Accesses

Abstract

Trace N2O emissions in ammonia burner during the nitric acid production process have received special attention as N2O is recognized as a potent greenhouse gas that actively participates in global warming. The abatement of N2O complies to international commitments aiming to reduce the greenhouse gas emissions through the installation of appropriate technologies. Different strategies have been categorized, the most efficient one involving the implementation of heterogeneous catalytic reactor in various positions of nitric acid plant. The catalyst composition strongly depends on the running temperature privileging mixed-metal oxides for N2O decomposition at medium and high-temperature whereas Platinum Group Metal-supported catalysts can be preferred for end-of-pipe technologies running at low temperature with the help of reducing agent. This present chapter focusses on medium and high-temperature (350–900 °C) application. Different theoretical and experimental approaches will be discussed in order to get more insights into the design of active sites, especially under more realistic running conditions to improve the understanding of kinetics and get more relevant reaction mechanisms that could further provide guidelines for the preparation of more stable and selective catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Wei, in Advance in Catalysis. ed. by D.D. Eley, H. Pines, P.B. Weisz (Academic Press, New York, 1975), p.57

    Google Scholar 

  2. M.M. Bettahar, G. Costentin, L. Savary, J.C. Lavalley, On the partial oxidation of propane and propylene on mixed metal oxide catalysts. Appl. Catal. A 145, 1–48 (1996). https://doi.org/10.1016/0926-860X(96)00138-X

    Article  CAS  Google Scholar 

  3. J. Pérez-Ramiréz, Prospects of N2O emission regulations in the European fertilizer industry. Appl. Catal. B 70, 31–35 (2007). https://doi.org/10.1016/j.apcatb.2005.11.019

    Article  CAS  Google Scholar 

  4. J.A. Kapteijn, J.A. Rodriguez-Mirasol, Moulijn, Heterogeneous catalytic decomposition of nitrous oxide. Appl. Catal. B 9, 25–64 (1996). https://doi.org/10.1016/0926-3373(96)90072-7

    Article  CAS  Google Scholar 

  5. J. Pérez-Ramiréz, F. Kapteijn, K. Schöfel, J.A. Moulijn, Formation and control of N2O in nitric acid production. Where do we stand today?. Appl. Catal. B 44, 117–151 (2003). https://doi.org/10.1016/S0926-3373(03)00026-2

  6. S. Alini, F. Basile, S. Blasioli, C. Rinaldi, A. Vaccari, Development of new catalysts for N2O-decomposition from adipic acid plant. Appl. Catal. B 70, 323–329 (2007). https://doi.org/10.1016/j.apcatb.2005.12.031

    Article  CAS  Google Scholar 

  7. M. Konsolakis, Recent advance in nitrous oxide (N2O) decomposition over non-noble-metal oxide catalysts: catalytic performance, mechanistic considerations and surface chemistry aspect. ACS Catal. 5(11), 6397–6421 (2015). https://doi.org/10.1021/acscatal.5b01605

    Article  CAS  Google Scholar 

  8. V. Schumacher, G. Bürger, T. Fetzer, M. Baier, M. Hesse (BASF), WO 9955621, 1999

    Google Scholar 

  9. P. Granger, P. Esteves, S. Kieger, L. Navascues, G. Leclercq, Effect of yttrium on the performances of zirconia based catalysts for the decomposition of N2O at high temperature. Appl. Catal. B 62, 236–243 (2006). https://doi.org/10.1016/j.apcatb.2005.07.015

    Article  CAS  Google Scholar 

  10. F.J. Perez-Alonso, I. Melian-Cabrera, M. Lopez-Granados, F. Kapteijn, J.L.G. Fierro, Synergy of FexCe1−xO2 mixed oxides for N2O decomposition. J. Catal. 239, 340–346 (2006). https://doi.org/10.1016/j.jcat.2006.02.008

    Article  CAS  Google Scholar 

  11. P. Esteves, Y. Wu, C. Dujardin, M.K. Dongare, P. Granger, Ceria–zirconia mixed oxides as thermal resistant catalysts for the decomposition of nitrous oxide at high temperature. Catal. Today 176, 453–457 (2011). https://doi.org/10.1016/j.cattod.2010.10.068

    Article  CAS  Google Scholar 

  12. G. Giecko, T. Borowiecki, W. Gac, J. Kruk, Fe2O3/Al2O3 catalysts for the N2O decomposition in the nitric acid industry. Catal. Today 137, 403–409 (2008). https://doi.org/10.1016/j.cattod.2008.02.008

    Article  CAS  Google Scholar 

  13. P. Stelmachowski, F. Zasada, G. Maniak, P. Granger, M. Inger, M. Wilk, A. Kotarba, Z. Sojka, Optimization of multicomponent cobalt spinel catalyst for N2O abatement from nitric acid plant tail gases: laboratory and pilot plant studies. Catal. Lett. 130, 637–641 (2009). https://doi.org/10.1007/s10562-009-0014-z

    Article  CAS  Google Scholar 

  14. M. Inger, M. Wilk, M. Saramok, G. Grzybek, A. Grodzka, P. Stelmachowski, W. Makowski, A. Kotarba, Z. Sojka, Cobalt Spinel catalyst for N2O abatement in the pilot plant operation–long-term activity and stability in tail gases. Ind. Eng. Chem. Res. 53(25), 10335–10342 (2014). https://doi.org/10.1021/ie5014579

    Article  CAS  Google Scholar 

  15. L. Obalová, K. Jirátová, F. Kovandac, M. Valášková, J. Balabánová, K. Pacultová, Structure–activity relationship in the N2O decomposition over Ni-(Mg)-Al and Ni-(Mg)-Mn mixed oxides prepared from hydrotalcite-like precursors. J. Mol. Catal. A 248, 210–219 (2006). https://doi.org/10.1016/j.molcata.2005.12.037

    Article  CAS  Google Scholar 

  16. K. Pacultová, K. Karásková, F. Kovanda, K. Jirátová, J. Šrámek, P. Kustrowski, A. Kotarba, Ž Chromčáková, K. Kočí, L. Obalova, K-doped Co-Mn-Al mixed oxide catalyst for N2O abatement from nitric acid plant waste gases: pilot plant studies. Ind. Eng. Chem. Res. 55, 7076–7084 (2016). https://doi.org/10.1021/acsiecr.6b01206

    Article  Google Scholar 

  17. Ž Chromčáková, L. Obalová, P. Kustrowski, M. Drozdek, K. Karásková, K. Jirátová, F. Kovanda, Optimization of Cs content in Co–Mn–Al mixed oxide as catalyst for N2O decomposition. Res. Chem. Intermed. 41, 9319–9332 (2015). https://doi.org/10.1007/s11164-015-2008-3

    Article  CAS  Google Scholar 

  18. M. Jabłońska, M. Agote Arán , A.M. Beale, G. Delahay, C. Petitto, M. Nocuń, R. Palkovits, Understanding the origins of N2O decomposition activity in Mn(Fe)CoAlOx hydrotalcite derived mixed metal oxides. Appl. Catal. B 243, 66–75 (2019). https://doi.org/10.1016/j.apcatb.2018.10.010

  19. H. Cheng, Y. Huang, A. Wang, L. Li, X. Wang, T. Zhang, N2O decomposition over K-promoted Co-Al catalysts prepared from hydrotalcite-like precursors. Appl. Catal. B 89, 391–397 (2009). https://doi.org/10.1016/j.apcatb.2008.12.018

    Article  CAS  Google Scholar 

  20. J. Pérez-Ramiréz, M. Santiago, Metal-substituted hexaaluminates for high-temperature N2O abatement. Chem. Commun. 6, 619 (2007). https://doi.org/10.1039/b613602h

    Article  CAS  Google Scholar 

  21. M. Tian, A. Wang, X. Wang, Y. Zhu, T. Zhang, Effect of large cations (La3+ and Ba2+) on the catalytic performance of Mn-substituted hexaaluminates for N2O decomposition. Appl. Catal. B 92, 437–444 (2009). https://doi.org/10.1016/j.apcatb.2009.09.002

    Article  CAS  Google Scholar 

  22. Y. Zhang, X. Wang, Y. Zhuc, T. Zhanga, Stabilization mechanism and crystallographic sites of Ru in Fe-promoted barium hexaaluminate under high-temperature condition for N2O decomposition. Appl. Catal. B 129, 382–393 (2013). https://doi.org/10.1016/j.apcatb.2012.10.001

    Article  CAS  Google Scholar 

  23. E.V. Kondratenko, V.A. Kondratenko, M. Santiago, J. Pérez-Ramírez, Mechanism and micro-kinetics of direct N2O decomposition over BaFeAl11O19 hexaaluminate and comparison with Fe-MFI zeolites. Appl. Catal. B 99, 66–73 (2010). https://doi.org/10.1016/j.apcatb.2010.05.033

    Article  CAS  Google Scholar 

  24. M. Santiago, J.C. Groen, J. Pérez-Ramírez, Carbon-templated hexaaluminates with enhanced surface area and catalytic performance. J. Catal. 257, 152–162 (2008). https://doi.org/10.1016/j.jcat.2008.04.017

    Article  CAS  Google Scholar 

  25. W. Burckardt, M. Voigt (Porzellanwerk Kloster Veilsdor), EP 1147813 A2, 2001

    Google Scholar 

  26. J. Neumann, L. Isopova, L. Pinaeva, N. Kulikovskaya, L. Zolotarskii (Umicore), WO2007104403 A1, 2007

    Google Scholar 

  27. Y. Wu, C. Dujardin, C. Lancelot, J.P. Dacquin, V.I. Parvulescu, M. Cabié, C.R. Henry, T. Neisius, P. Granger, Catalytic abatement of NO and N2O from nitric acid plants: A novel approach using noble metal-modified perovskites. J. Catal. 328, 236–247 (2015). https://doi.org/10.1016/j.jcat.2015.02.001

    Article  CAS  Google Scholar 

  28. M. Zabilskiy, B. Erjavec, P. Djinović, A. Pintar, Ordered mesoporous CuO–CeO2 mixed oxides as an effective catalyst for N2O decomposition. Chem. Eng. J. 254, 153–162 (2014). https://doi.org/10.1016/j.cej.2014.05.127

    Article  CAS  Google Scholar 

  29. M. Lybaki, E. Papista, S.A.C. Carabineiro, P.B. Tavares, M. Konsolakis, Optimization of N2O decomposition activity of CuO–CeO2 mixed oxides by means of synthesis procedure and alkali (Cs) promotion. Catal. Sci. Technol. 8, 2312–2322 (2018). https://doi.org/10.1039/c8cy00316e

    Article  CAS  Google Scholar 

  30. P.J. Smeets, M.H. Grootheart, R.M. van Teeffelen, H. Leeman, E.J.M. Hensen, R.A. Schoonheydt, Direct NO and N2O decomposition and NO-assisted N2O decomposition over zeolites: Elucidating the influence of the Cu-Cu distance on oxygen migration. J. Catal. 245, 358–368 (2007). https://doi.org/10.1016/j.jcat.2006.10.017

    Article  CAS  Google Scholar 

  31. T. Franken, R. Palkovits, Investigation of potassium doped mixed spinels CuxCo3-xO4 as catalyst for an efficient N2O decomposition in real conditions. Appl. Catal. B 176–177, 298–305 (2015). https://doi.org/10.1016/j.apcatb.2015.04.002

    Article  CAS  Google Scholar 

  32. A. Klyushina, K. Pacultová, S. Krejčová, G. Słowik, K. Jirátová, F. Kovanda, J. Ryczkowski, L. Obalova, Advantages of stainless steel sieves as support for catalytic N2O decomposition over K-doped Co3O4. Catal. Today 257, 2–10 (2015). https://doi.org/10.1016/j.cattod.2015.05.015

    Article  CAS  Google Scholar 

  33. K. Pacultová, A. Klegova, T. Kiška, D. Fridichová, A. Martaus, A. Rokicińska, P. Kuśtrowski, L. Obalová, Effect of support on the catalytic activity of Co3O4-Cs deposited on open-cell ceramic foams for N2O decomposition. Mater. Res. Bull. 129, 110892 (2020). https://doi.org/10.1016/j.materresbull.2020.110892

    Article  CAS  Google Scholar 

  34. J.B. Lim, S.H. Cha, S.B. Hong, Direct N2O decomposition over iron-substituted small-pore zeolite with different pore topologies. Appl. Catal. B 243, 750–759 (2019). https://doi.org/10.1016/j.apcatb.2018.10.068

    Article  CAS  Google Scholar 

  35. P. Xie, Y. Luo, Z. Ma, L. Wang, C. Huang, Y. Yue, W. Hua, Z. Gao, CoZSM-11 catalysts for N2O decomposition: Effect of preparation methods and nature of active sites. Appl. Catal. B 170–171, 34–42 (2015). https://doi.org/10.1016/j.apcatb.2015.01.027

    Article  CAS  Google Scholar 

  36. Y. You, H. Chang, L. Ma, L. Guo, X. Qin, J. Li, J. Li, Enhancement of N2O decomposition performance by N2O pretreatment over Ce-Co-O catalyst. Chem. Eng. J. 347, 184–192 (2018). https://doi.org/10.1016/j.cej.2018.04.081

    Article  CAS  Google Scholar 

  37. H.M. Choi, S.J. Lee, S.H. Moon, T.N. Phan, S.G. Jeon, C.H. Ko, Comparison between unsupported mesoporous Co3O4 and supported Co3O4 on mesoporous silicas as catalysts for N2O decomposition. Catal. Comm. 82, 50–54 (2016). https://doi.org/10.1016/j.catcom.2016.04.022

    Article  CAS  Google Scholar 

  38. M. Zabilskiy, P. Djinovíc, B. Erjavec, G. Dražić, A. Pintar, Small CuO clusters on CeO2 nanosphere as active species for catalytic N2O decomposition. Appl. Catal. B 163, 113–122 (2015). https://doi.org/10.1016/j.apcatb.2014.07.057

    Article  CAS  Google Scholar 

  39. P. Xie, Y. Luo, Z. Ma, C. Huang, C. Miao, Y. Yue, W. Hua, Z. Gao, Catalytic decomposition of N2O over Fe-ZSM11 catalysts prepared by different methods: Nature of active Fe species. J. Catal. 330, 211–322 (2015). https://doi.org/10.1016/j.jcat.2015.07.010

    Article  CAS  Google Scholar 

  40. Y. Wu, C. Cordier, E. Berrier, N. Nuns, C. Dujardin, P. Granger, Surface reconstructions of LaCo1-xFexO3 at high temperature during N2O decomposition in realistic exhaust gas composition: Impact on the catalytic properties. Appl. Catal. B 140–141, 151–163 (2013). https://doi.org/10.1016/j.apcatb.2013.04.002

    Article  CAS  Google Scholar 

  41. Y. Wu, X. Ni, A. Beaurain, C. Dujardin, P. Granger, Stoichiometric and non-stoichiometric perovskite-based catalysts: Consequences on surface properties and on catalytic performances in the decomposition of N2O from nitric acid plants. Appl. Catal. B 125, 149–157 (2012). https://doi.org/10.1016/j.apcatb.2012.05.033

    Article  CAS  Google Scholar 

  42. H.J. Zhang, J. Wang, X.F. Xu, Catalytic decomposition of N2O over NixCo1-xCoAlO4 spinel oxides prepared by sol-gel method. J. Fuel Chem. Technol. 43, 81–87 (2015). https://doi.org/10.1016/S1872-5813(15)60008-1

    Article  Google Scholar 

  43. T.Q. Zhao, Q. Gao, H.J. Li, X.F. Xu, Catalytic decomposition of N2O over Y-Co3O4 composite oxides prepared by one-step hydrothermal method. J. Fuel Chem. Technol. 47, 446–454 (2019). https://doi.org/10.1016/S1872-5813(19)30021-0

    Article  CAS  Google Scholar 

  44. L. Zheng, H.J. Li, X.F. Xu, Catalytic decomposition of N2O over Mg-Co composite oxides hydrothermally prepared by using carbon sphere as template. J. Fuel. Chem. Technol. 46, 569–577 (2018). https://doi.org/10.1016/S1872-5813(18)30024-0

    Article  CAS  Google Scholar 

  45. H. Yu, X. Wang, Y. Li, Strong impact of cobalt distribution on the activity for Co3O4/CaCO3 catalyzing N2O decomposition. Catal. Today 339, 274–280 (2020). https://doi.org/10.1016/j.cattod.2018.10.036

    Article  CAS  Google Scholar 

  46. B.M. Abu-Zied, L. Obalová, K. Pacultová, A. Klegova, A.M. Asiri, An investigation on the N2O decomposition activity of MnxCo1-xCo2O4 nanorods prepared by the thermal decomposition of their oxalate precursors. J. Ind. Eng. Chem. 93, 279–289 (2021). https://doi.org/10.1016/j.jiec.2020.10.004

    Article  CAS  Google Scholar 

  47. X. Hu, Y. Wang, R. Wu, Y. Zhao, Graphitic carbon nitride-supported cobalt oxides as a potential catalyst for decomposition of N2O. Appl. Surf. Sci. 538, 148157 (2021). https://doi.org/10.1016/j.apsusc.2020.148157

    Article  CAS  Google Scholar 

  48. S. Wójcik, G. Ercolino, M. Gajewska, C.W.M. Quintero, S. Specchia, A. Kotarba, Robust Co3O4|α-Al2O3|cordierite structured catalyst for N2O abatement – Validation of the SCS method for active phase synthesis and deposition. Chem. Eng. J. 377, 120088 (2019). https://doi.org/10.1016/j.cej.2018.10.025

    Article  CAS  Google Scholar 

  49. S. Wójcik, G. Grzybek, J. Gryboś, A. Kotarba, Z. Sojka, Designing, optimization and performance evaluation of the K-Zn0.4Co2.6O4|α-Al2O3|cordierite catalyst for low-temperature N2O decomposition. Catal. Comm. 110, 64–67 (2018). https://doi.org/10.1016/j.catcom.2018.03.019

  50. T. Zhao, Y. Li, Q. Gao, Z. Liu, X. Xu, Potassium promoted Y2O3-Co3O4 catalysts for N2O decomposition Catal. Comm. 137, 105948 (2020). https://doi.org/10.1016/j.catcom.2020.105948

    Article  CAS  Google Scholar 

  51. Z. Xue, Y. Shen, S. Shen, C. Li, S. Zhu, Promotional effects of Ce4+, La3+ and Nd3+ incorporations on catalytic performance of Cu-Fe-Ox for decomposition of N2O. J. Ind. Eng. Chem. 30, 98–105 (2019). https://doi.org/10.1016/j.jiec.2015.05.008

    Article  CAS  Google Scholar 

  52. M.J. Kim, S.J. Lee, I.S. Ryu, M.W. Jeon, S.H. Moon, H.S. Roh, S.G. Jeon, Catalytic decomposition of N2O over cobalt based spinel oxides: The role of additive. Mol. Catal. 442, 202–207 (2017). https://doi.org/10.1016/j.mcat.2017.05.029

    Article  CAS  Google Scholar 

  53. F. Zasada, J. Grybós, E. Budiyanto, J. Janas, Z. Sojka, Oxygen species stabilized on the cobalt spinel nano-octahedra at various reaction conditions and their role in catalytic CO and CH4 oxidation, N2O decomposition and oxygen isotopic exchange. J. Catal. 371, 224–235 (2019). https://doi.org/10.1016/j.jcat.2019.02.010

    Article  CAS  Google Scholar 

  54. G.A. Zenkovets, R.A. Shutilov, V.I. Sobolev, V.Y. Gavrilov, Catalysts Cu/ZSM-5 for N2O decomposition obtained with copper complexes of various structures. Catal. Comm. 144, 106072 (2020). https://doi.org/10.1016/j.catcom.2020.106072

    Article  CAS  Google Scholar 

  55. D. Pietrogiacomi, M.C. Campa, L.R. Carbone, M. Ochiuzzi, N2O decomposition and reduction on Co-MOR, Fe-MOR and Ni-MOR catalysts: in situ UV-vis DRS and operando FTIR investigation. An insight on the reaction pathways. Appl. Catal. B 240, 19–29 (2019). https://doi.org/10.1016/j.apcatb.2018.08.046

  56. J. Pérez Ramirez, F. Kapteijn, A. Brückner, Active site structure sensitivity in N2O conversion over FeMFI zeolites. J. Catal. 218, 234–238 (2003). https://doi.org/10.1016/S0021-9517(03)00087-3

  57. J. Pérez Ramirez, J.C. Groen, A. Brückner, M.S. Kumar, U. Bentrup, M.N. Debbagh, L.A. Villaescusa, Evolution of isomorphously substituted iron zeolites during activation: comparison of Fe-beta and Fe-ZSM-5. J. Catal. 232, 318–334 (2005). https://doi.org/10.1016/j.jcat.2005.03.018

  58. M. Santosh Kumar, J. Pérez Ramirez, M.N. Debbagh, B. Smarsly, U. Bentrup, A. Brückner. Evidence of the vital role of the pore network on various catalytic conversions of N2O over Fe-silicalite and Fe-SBA-15 with the same iron constitution. Appl. Catal. B 62, 244–254 (2006). https://doi.org/10.1016/j.apcatb.2005.07.012

  59. B. Zhang, F. Liu, L. Xue, Role of agregated Fe oxo species in N2O decomposition over Fe/ZSM5. Chin. J. Catal. 35, 1972–1981 (2014). https://doi.org/10.1016/S1872-2067(14)60184-4

    Article  CAS  Google Scholar 

  60. Q. Xiao, F.F. Yang, J. Zhuang, G.P. Qiu, Y.J. Zhong, W.D. Zhu, Facile synthesis of uniform FeZSM-5 crystals with controlled size and their application to N2O decomposition. Microporous Mesoporous Mater. 167, 38–43 (2013). https://doi.org/10.1016/j.micromeso.2012.05.029

    Article  CAS  Google Scholar 

  61. T. Meng, Y. Lin, Z. Ma, Effect of the crystal size of Cu-ZSM5 on the catalytic performance in N2O decomposition. Mater. Chem. Phys. 163, 293–300 (2015). https://doi.org/10.1016/j.matchemphys.2015.07.043

    Article  CAS  Google Scholar 

  62. G. Moretti, G. Fierro, G. Ferraris, G.B. Andreozzi, V. Naticchioni, N2O decomposition over [Fe]-MFI catalysts: Influence of the FexOy nuclearity and the presence of framework aluminium on the catalytic activity. J. Catal. 318, 1–13 (2014). https://doi.org/10.1016/j.jcat.2014.07.005

    Article  CAS  Google Scholar 

  63. M. Rutkowska, L. Chmielarz, D. Macina, Z. Piwowarska, B. Dudek, A. Adamski, S. Witkowski, Z. Sojka, L. Obalová, C.J. Oers, P. Cool, Catalytic decomposition and reduction of N2O over micro-mesoporous materials containing Beta zeolite nanoparticles. Appl. Catal. B 143, 112–122 (2014). https://doi.org/10.1016/j.apcatb.2013.05.005

    Article  CAS  Google Scholar 

  64. B.I. Palella, M. Cadoni, A. Frache, H.O. Pastore, R. Pirone, G. Russo, S. Coluccia, L. Marchese, On the hydrothermal stability of CuAPSO-34 microporous catalysts for N2O decomposition: a comparison with Cu-ZSM5. J. Catal. 217, 100–106 (2003). https://doi.org/10.1016/S0021-9517(03)00033-2

    Article  CAS  Google Scholar 

  65. W.H. Eom, M. Ayoub, K.S. Yoo, Catalytic Decomposition of N2O at Low Temperature by Reduced Cobalt Oxides. Nanosci. Nanotechnol. 16, 4647–4654 (2016). https://doi.org/10.1166/jnn.2016.11026

    Article  CAS  Google Scholar 

  66. P. Stelmachowski, G. Maniak, J. Kaczmarczyk, F. Zasada, W. Piskorz, A. Kotarba, Z. Sojka, Mg and Al substituted cobalt spinels as catalysts for low temperature deN2O—Evidence for octahedral cobalt active sites. Appl. Catal. B 146, 105–111 (2014). https://doi.org/10.1016/j.apcatb.2013.05.027

    Article  CAS  Google Scholar 

  67. Y. Wang, X. Zhou, X. Wei, X. Li, R. Wu, X. Hu, Co/Hydroxyapatite catalysts for N2O catalytic decomposition : Design of well-defined active sites with geometrical and spacing effect. Mol. Catal. 501, 111370 (2021). https://doi.org/10.1016/j.mcat.2020.111370

    Article  CAS  Google Scholar 

  68. P. Sazama, N.K. Sathu, E. Tabor, B. Wichterlová, S. Sklenák, Z. Sobalik, Structure and critical function of Fe and acid sites in Fe-ZSM-5 in propane oxidative dehydrogenation with N2O and N2O decomposition. J. Catal. 299, 188–203 (2013). https://doi.org/10.1016/j.jcat.2012.12.010

    Article  CAS  Google Scholar 

  69. A.J.J. Koekkoek, W. Kim, V. Degirmenci, H. Xin, R. Ryoo, E.J.M. Hensen, Catalytic performance of sheet-like Fe/ZSM-5 zeolites for the selective oxidation of benzene with nitrous oxide. J. Catal. 299, 81–89 (2013). https://doi.org/10.1016/j.jcat.2012.12.002

    Article  CAS  Google Scholar 

  70. K. Sun, H. Xia, E. Hensen, R. van Santen, C. Li, Chemistry of N2O decomposition on active sites with different nature: Effect of high-temperature treatment of Fe/ZSM-5. J. Catal. 238, 186–195 (2006). https://doi.org/10.1016/j.jcat.2005.12.013

    Article  CAS  Google Scholar 

  71. G.D. Pirngruber, P.K. Roy, R. Prins, The role of autoreduction and of oxygen mobility in N2O decomposition over Fe-ZSM-5. J. Catal. 246, 340 (2007). https://doi.org/10.1016/j.jcat.2006.11.030

    Article  CAS  Google Scholar 

  72. A. Wang, Y. Wang, E.D. Walter, R.K. Kukkadapu, Y. Guo, G. Lu, R.S. Weber, Y. Wang, C.H.F. Peden, F. Gao, Catalytic N2O decomposition and reduction by NH3 over Fe/Beta and Fe/SSZ-13 catalysts. J. Catal. 358, 199–210 (2018). https://doi.org/10.1016/j.jcat.2017.12.011

    Article  CAS  Google Scholar 

  73. T. Zhang, Y. Qiu, G. Liu, J. Chen, Y. Peng, B. Liu, J. Li, Nature of active Fe species and reaction mechanism over high-efficiency Fe/CHA catalysts in catalytic decomposition of N2O. J. Catal. 392, 322–335 (2020). https://doi.org/10.1016/j.jcat.2020.10.015

    Article  CAS  Google Scholar 

  74. F. Lin, T. Andana, Y. Wu, J. Szanyi, Y. Wang, F. Gao, Catalytic site requirements for N2O decomposition on Cu-, Co- and Fe-SSZ-13 zeolites. J. Catal. 401, 70–80 (2021). https://doi.org/10.1016/j.jcat.2021.07.012

    Article  CAS  Google Scholar 

  75. P. Granger, J.P. Dacquin, C. Dujardin, Catalytic abatement of N2O from stationary sources, in Perovskite materials and related mixed oxides, ed. by P. Granger, S. Kaliaguine, V. Parvulescu, W. Prellier (Wiley-VCH Verlag GmbH, 2015), vol. 2, p. 611–630

    Google Scholar 

  76. D.V. Ivanov, E.M. Sadovskaya, L.G. Pinaeva, L.A. Isupova, Influence of oxygen mobility on catalytic activity of La–Sr–Mn–O composites in the reaction of high temperature N2O decomposition. J. Catal. 267, 5–13 (2009). https://doi.org/10.1016/j.jcat.2009.07.005

    Article  CAS  Google Scholar 

  77. J.P. Dacquin, C. Lancelot, C. Dujardin, P. Da Costa, G. Djega-Mariadassou, P. Beaunier, S. Kaliaguine, S. Vaudreuil, S. Royer, P. Granger, Influence of preparation methods of LaCoO3 on the catalytic performances in the decomposition of N2O. Appl. Catal. B 91, 596–604 (2009). https://doi.org/10.1016/j.apcatb.2009.06.032

    Article  CAS  Google Scholar 

  78. W. Piskorz, F. Zasada, P. Stemachowski, O. Diwald, A. Kotarba, Z. Sojka, Computational and experimental investigation into N2O decomposition over MgO nanocrystals from thorough molecular mechanism to ab initio microkinetics. J. Phys. Chem. C 115(45), 22451–22460 (2011). https://doi.org/10.1021/jp2070826

    Article  CAS  Google Scholar 

  79. P. Pietrzik, F. Zasada, W. Piskorz, A. Kotarba, Z. Sojka, Computational spectroscopy and DFT investigations into nitrogen and oxygen bond breaking and bond making processes in model deNOx and deN2O reactions. Catal. Today 119, 219–227 (2007). https://doi.org/10.1016/j.cattod.2006.08.054

    Article  CAS  Google Scholar 

  80. E.J. Karlsen, M.A. Nygren, L.G.M. Pettersson, Theoretical study on the decomposition of N2O over alkaline earth metal-oxides: MgO-BaO. J. Phys. Chem. A 106, 7868–7875 (2002). https://doi.org/10.1021/jp025622g

    Article  CAS  Google Scholar 

  81. T.A. Egerton, F.S. Stone, J.C. Vickerman, x-Cr2O3-Al2O3 Solid Solutions: II. The catalytic decomposition of nitrous oxide. J. Catal. 33, 307–315 (1974). https://doi.org/10.1016/0021-9517(74)90275-9

  82. H. Xia, K. Sun, Z. Liu, Z. Feng, P. Ying, C. Li, The promotional effect of NO on N2O decomposition over the bi-nuclear Fe sites in Fe/ZSM-5. J. Catal. 270, 103–109 (2010). https://doi.org/10.1016/j.jcat.2009.12.014

    Article  CAS  Google Scholar 

  83. P.J. Smeets, B.F. Sels, R.M. van Teeffelen, H. Leeman, E.J.M. Hensen, R.A. Schoonheydt, The catalytic performance of Cu-containing zeolites in N2O decomposition and the influence of O2, NO and H2O on recombination of oxygen. J. Catal. 256, 183–191 (2008). https://doi.org/10.1016/j.jcat.2008.03.008

    Article  CAS  Google Scholar 

  84. S.L. Raj, B. Viswanathan, V. Srinivasan, The activity of Mn3+ and Mn4+ in lanthanum strontium manganite for the decomposition of nitrous oxide. J. Catal. 75, 185–187 (1982). https://doi.org/10.1016/0021-9517(82)90133-6

    Article  CAS  Google Scholar 

  85. A. Dandekar, M.A. Vannice, Decomposition and reduction of N2O over copper catalysts. Appl. Catal. B 22, 179–200 (1999). https://doi.org/10.1016/S0926-3373(99)00049-1

    Article  CAS  Google Scholar 

  86. D.V. Ivanov, L.G. Pinaeva, E.M. Sadovskaya, L.A. Isupova, Isotopic transient kinetic study of N2O decomposition on LaMnO3+δ. J. Mol. Catal. A 412, 34–38 (2016). https://doi.org/10.1016/j.molcata.2015.11.018

    Article  CAS  Google Scholar 

  87. S. Ponce, M.A. Pena, J.L.G. Fierro, Surface properties and catalytic performance in methane combustion of Sr-substituted lanthanum manganites. Appl. Catal. B 24, 193–205 (2000). https://doi.org/10.1016/S0926-3373(99)00111-3

    Article  CAS  Google Scholar 

  88. I.K. Murwani, S. Scheurell, M. Feist, E. Kemnitz, 18O-isotope exchange behavior and oxidation activity of La1-xSrxMnO3+δ. J. Therm. Anal. Cal. 69, 9–21 (2002). https://doi.org/10.1023/a:1019905819824

    Article  CAS  Google Scholar 

  89. S. Royer, D. Duprez, S. Kaliaguine, Role of bulk and grain boundary oxygen mobility in the catalytic oxidation activity of LaCo1–xFexO3. J. Catal. 234, 364–375 (2005). https://doi.org/10.1016/j.jcat.2004.11.041

    Article  CAS  Google Scholar 

  90. A.A. Taskin, A.N. Lavrov, Y. Ando, Achieving fast oxygen diffusion in perovskites by cation ordering. Appl. Phys. Lett. 86, 0619110 (2005). https://doi.org/10.1063/1.1864244

    Article  CAS  Google Scholar 

  91. W. Suo, S. Sun, N. Liu, X. Li, Y. Wang, The adsorption and dissociation of N2O on CuO(111) surface: The effect of surface structures. Surf. Sci. 696, 121596 (2020). https://doi.org/10.1016/j.susc.2020.121596

    Article  CAS  Google Scholar 

  92. X. Gao, Y. Li, J. Chen, X. Zhuang, Z. Chang, Y. Li, First-principles study of N2O decomposition on (001) facet of perovskite LaBO3 (B = Mn Co, Ni). Mol. Catal. 510, 111713 (2021). https://doi.org/10.1016/j.mcat.2021.111713

    Article  CAS  Google Scholar 

  93. X. Liu, L. Sheng, Catalytic decomposition of N2O on iron-embedded C2N monolayer: A DFT study. Mater. Today Comm. 28, 102585 (2021). https://doi.org/10.1016/j.mtcomm.2021.102585

    Article  CAS  Google Scholar 

  94. M. Zabilskiy, P. Djinović, E. Tchernychova, A. Pintar, N2O decomposition over CuO/CeO2 catalyst: New insights into reaction mechanism and inhibiting action of H2O and NO by operando techniques. Appl. Catal. B 197, 146–158 (2016). https://doi.org/10.1016/j.apcatb.2016.02.024

    Article  CAS  Google Scholar 

  95. L. Obalová, K. Jirátová, K. Karásková, Ž Chromčáková, N2O catalytic decomposition – From laboratory experiment to industry reactor. Catal. Today 191, 116–120 (2012). https://doi.org/10.1016/j.cattod.2012.03.045

    Article  CAS  Google Scholar 

  96. M. Bernauer, B. Bernauer, G. Sádovská, Z. Sobalík, High-temperature decomposition of N2O from HNO3 production: Process feasibility using a structured catalyst. Chem. Eng. J. 220, 115624 (2020). https://doi.org/10.1016/j.ces.2020.115624

    Article  CAS  Google Scholar 

  97. R. Zhang, K. Hedjazi, B. Chen, Y. Li, Z. Lei, N. Liu, M(Fe, Co)-BEA washcoated honeycomb cordierite for N2O catalytic decomposition. Catal. Today 273, 273–285 (2016). https://doi.org/10.1016/j.cattod.2016.03.021

    Article  CAS  Google Scholar 

  98. F. Heshmatifar, J. Karimi-Sabet, P. Khadiv-Parsi, The investigation of the efficient replaceable microreactor into the catalytic decomposition of N2O over Pd/anodic N-Al2O3/Al. Chem. Eng. Proc. 168, 108555 (2021). https://doi.org/10.1016/j.cep.2021.108555

  99. G. Wang, Z. Li, C. Li, Recent progress in one-step synthesis of acrylic acid and methyl acrylatevia aldol reaction: Catalyst, mechanism, kinetics and separation. Chem. Eng. Sci. 247, 117052 (2022). https://doi.org/10.1016/j.ces.2021.117052

    Article  CAS  Google Scholar 

  100. A. Szydło, J.-D. Goossen, C. Linte, H. Uphoff, M. Bredol, Preparation of platinum-based electrocatalytic layers from catalyst dispersions with adjusted colloidal stability via a pulsed electrophoretic deposition method. Mater. Chem. Phys. 242, 122532 (2020). https://doi.org/10.1016/j.matchemphys.2019.122532

    Article  CAS  Google Scholar 

  101. I.V. Yentekakis, G. Goula, P. Panagiotopoulou, S. Kampouri, M.J. taylor, G. Kyriakou, R.M. Lambert, Stabilization of catalyst against sintering on oxide supports with high oxygen ion lability exemplified by-Ir-catalyzed decomposition of N2O. Appl. Catal. B 192, 357–364 (2016). https://doi.org/10.1016/j.apcatb.2016.04.011

  102. G. Grzybek, J. Gryboś, P. Indyka, J. Janas, K. Ciura, B. Leszczyński, F. Zasada, A. Kotarba, Z. Sojka, Evaluation of the inhibiting effect of H2O, O2 and NO on the performance of laboratory and pilot K-ZnxCo3-xO4 catalysts supported on α-Al2O3 for low-temperature N2O decomposition. Appl. Catal. B 297, 120435 (2021). https://doi.org/10.1016/j.apcatb.2021.120435

    Article  CAS  Google Scholar 

  103. H. Xia, K. Sun, Z. Feng, C. Li, Effect of Water on Active Iron Sites for N2O Decomposition over Fe/ZSM-5 Catalyst. J. Phys. Chem. C 115, 542–548 (2011). https://doi.org/10.1021/jp1094917

    Article  CAS  Google Scholar 

  104. Q. Shen, M. Wu, H. Wang, N. Sun, C. He, W. Wei, The influence of desilication on high-silica MFI and its catalytic performance for N2O decomposition. Appl. Surf. Sci. 441, 474–481 (2018). https://doi.org/10.1016/j.apsusc.2018.01.052

    Article  CAS  Google Scholar 

  105. Crucial role of activation temperature on catalytic performances, G. Grzybek, S. Wójcik, P. Legutko, J. Gryboś, P. Indyka, B. Leszczyński, A. Kotarba, Z. Sojka, Thermal stability and repartition of potassium between the support and active phase in the K-Zn0.4Co2.6O4|α-Al2O3 catalyst for N2O decomposition. Appl. Catal. B 205, 597–604 (2017). https://doi.org/10.1016/j.apcatb.2017.01.005

    Article  CAS  Google Scholar 

  106. M. Inger, P. Kowalik, M. Saramok, M. Wilk, P. Stelmachowski, G. Maniak, P. Granger, A. Kotarba, Z. Sojka, Laboratory and pilot scale synthesis, characterization and reactivity of multicomponent cobalt spinel catalyst for low temperature removal of N2O from nitric acid plant tail gases. Catal. Today. Today 176, 365–368 (2011). https://doi.org/10.1016/j.cattod.2010.11.044

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The laboratory participates in the Institut de Recherche en ENvironnement Industriel (IRENI), which is financed by the Communauté Urbaine de Dunkerque, the Région Nord Pas-de-Calais, the Ministère de l’Enseignement Supérieur et de la Recherche, the CNRS, European Fund for Regional Development (FEDER), and the Agency for Ecological Transition (ADEME).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Granger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, Y., Zheng, Y., Granger, P. (2024). Past, Present, and Future in the Development of Medium and High-Temperature Catalytic Processes for N2O Decomposition. In: Ikhmayies, S.J. (eds) Advances in Catalysts Research. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-49108-5_7

Download citation

Publish with us

Policies and ethics