Skip to main content

Energy-Efficient Task Offloading with Statistic QoS Constraint Through Multi-level Sleep Mode in Ultra-Dense Network

  • Conference paper
  • First Online:
Service-Oriented Computing (ICSOC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14419))

Included in the following conference series:

Abstract

While ultra-dense networks (UDN) greatly enhances network performance, the extensive deployment of small base stations poses significant energy consumption challenges. Traditional ON/OFF base station sleep schemes can alleviate some energy issues. Still, complete shutdowns and lengthy reactivation times of base stations lead to coverage gaps in the network, severely impacting the quality of service delivered to users. In this paper, we introduce a multi-level Sleep Mode (SM) technique, focusing specifically on energy-efficient task offloading in the context of Mobile Edge Computing (MEC) scenarios. To ensure the performance of delay-sensitive services in user devices, we employ stochastic network calculus (SNC) theory to analyze the stability of the two-stage system. Combining the SNC-derived delay bounds, we propose a Multi-Agent Deep Deterministic Policy Gradient (MADDPG) based approach, which we refer to as SNC-MADDPG. This approach aims to minimize long-term system energy consumption. Numerical results demonstrate that the proposed algorithm achieves more significant energy savings under reliability constraints than other optimization algorithms. Furthermore, the results indicate that the multi-level sleep mode outperforms the traditional ON/OFF base station sleep schemes in meeting the reliability requirements of delay-sensitive applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, X., Yao, Z., Chen, Z., Min, G., Zheng, X., Rong, C.: Load balancing for multi-edge collaboration in wireless metropolitan area networks: a two-stage decision-making approach. IEEE Internet of Things J. 10, 17124–17136 (2023)

    Google Scholar 

  2. Chu, W., Jia, X., Yu, Z., Lui, J.C., Lin, Y.: Joint service caching, resource allocation and task offloading for MEC-based networks: a multi-layer optimization approach. IEEE Trans. Mobile Comput. (2023)

    Google Scholar 

  3. El Amine, A., Chaiban, J.P., Hassan, H.A.H., Dini, P., Nuaymi, L., Achkar, R.: Energy optimization with multi-sleeping control in 5G heterogeneous networks using reinforcement learning. IEEE Trans. Netw. Service Manag. 19, 4310–4322 (2022)

    Google Scholar 

  4. Israr, A., Yang, Q., Israr, A.: Emission-aware sustainable energy provision for 5g and b5g mobile networks. IEEE Trans. Sustain. Comput. (2023). https://doi.org/10.1109/TSUSC.2023.3271789

  5. Israr, A., Yang, Q., Israr, A.: Renewable energy provision and energy-efficient operational management for sustainable 5G infrastructures. IEEE Trans. Netw. Service Manag. 20, 2678–2710 (2023)

    Google Scholar 

  6. Kim, S., Son, J., Shim, B.: Energy-efficient ultra-dense network using LSTM-based deep neural networks. IEEE Trans. Wireless Commun. 20(7), 4702–4715 (2021)

    Article  Google Scholar 

  7. Lähdekorpi, P., Hronec, M., Jolma, P., Moilanen, J.: Energy efficiency of 5G mobile networks with base station sleep modes. In: 2017 IEEE Conference on Standards for Communications and Networking (CSCN), pp. 163–168. IEEE (2017)

    Google Scholar 

  8. Li, X., Li, C., Liu, X., Chen, G., Dong, Z.Y.: Two-stage community energy trading under end-edge-cloud orchestration. IEEE Internet Things J. 10(3), 1961–1972 (2023)

    Article  Google Scholar 

  9. Liao, Y., Friderikos, V.: Optimal deployment and operation of robotic aerial 6G small cells with grasping end effectors. IEEE Trans. Veh. Technol. (2023)

    Google Scholar 

  10. Liu, S., Cheng, P., Chen, Z., Xiang, W., Vucetic, B., Li, Y.: Contextual user-centric task offloading for mobile edge computing in ultra-dense network. IEEE Trans. Mobile Comput. 22, 5092–5108 (2022)

    Google Scholar 

  11. Malta, S., Pinto, P., FernÃaindez-Veiga, M.: Using reinforcement learning to reduce energy consumption of ultra-dense networks with 5g use cases requirements. IEEE Access 11, 5417–5428 (2023)

    Google Scholar 

  12. Masoudi, M., Khafagy, M.G., Soroush, E., Giacomelli, D., Morosi, S., Cavdar, C.: Reinforcement learning for traffic-adaptive sleep mode management in 5G networks. In: 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 1–6 (2020)

    Google Scholar 

  13. Masoudi, M., Soroush, E., Zander, J., Cavdar, C.: Digital twin assisted risk-aware sleep mode management using deep q-networks. IEEE Trans. Veh. Technol. 72(1), 1224–1239 (2023)

    Article  Google Scholar 

  14. Renga, D., Umar, Z., Meo, M.: Trading off delay and energy saving through advanced sleep modes in 5G RANs. IEEE Trans. Wireless Commun. (2023)

    Google Scholar 

  15. Salahdine, F., Opadere, J., Liu, Q., Han, T., Zhang, N., Wu, S.: A survey on sleep mode techniques for ultra-dense networks in 5G and beyond. Comput. Netw. 201, 108567 (2021)

    Article  Google Scholar 

  16. Tan, X., Xiong, K., Gao, B., Fan, P., Letaief, K.B.: Energy-efficient base station switching-off with guaranteed cooperative profit gain of mobile network operators. IEEE Trans. Green Commun. Netw. 7, 1250–1266 (2023)

    Google Scholar 

  17. Wei, Z., Li, B., Zhang, R., Cheng, X., Yang, L.: Many-to-many task offloading in vehicular fog computing: a multi-agent deep reinforcement learning approach. IEEE Trans. Mobile Comput. (2023)

    Google Scholar 

  18. Wu, Q., Chen, X., Zhou, Z., Chen, L., Zhang, J.: Deep reinforcement learning with spatio-temporal traffic forecasting for data-driven base station sleep control. IEEE/ACM Trans. Netw. 29(2), 935–948 (2021)

    Article  Google Scholar 

  19. Liu, Y., Jiang, Y.: Stochastic Network Calculus. Springer, London (2008). https://doi.org/10.1007/978-1-84800-127-5

    Book  MATH  Google Scholar 

  20. Zhou, X., et al.: Edge-enabled two-stage scheduling based on deep reinforcement learning for internet of everything. IEEE Internet Things J. 10(4), 3295–3304 (2023)

    Article  Google Scholar 

  21. Zhou, Z., et al.: Learning-based URLLC-aware task offloading for internet of health things. IEEE J. Sel. Areas Commun. 39(2), 396–410 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by National Natural Science Foundation of China (Grant No. U1711264).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chongwu Dong or Wushao Wen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, H., Dong, C., Wen, W. (2023). Energy-Efficient Task Offloading with Statistic QoS Constraint Through Multi-level Sleep Mode in Ultra-Dense Network. In: Monti, F., Rinderle-Ma, S., Ruiz Cortés, A., Zheng, Z., Mecella, M. (eds) Service-Oriented Computing. ICSOC 2023. Lecture Notes in Computer Science, vol 14419. Springer, Cham. https://doi.org/10.1007/978-3-031-48421-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48421-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48420-9

  • Online ISBN: 978-3-031-48421-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics