
7Nonlinear Realization of Symmetry 

In Parts I and II of the book, I reviewed the basic physics of spontaneous symmetry 
breaking (SSB) and the corresponding Nambu–Goldstone (NG) bosons. In order to 
keep the discussion simple, I relied mostly on general but elementary field-theoretic 
arguments. Where explicit results were necessary or useful, I resorted to simple 
models. However, one of the main virtues of SSB is universality: the low-energy 
physics is largely independent of the microscopic, short-distance details. This agrees 
with the general spirit of effective field theory (EFT); cf. Sect. 1.1. What SSB does 
for us is ensure a separation of resolution scales, which makes it possible to build a 
low-energy EFT solely using the NG degrees of freedom. 

I will now set out on the main quest of this book: to develop an EFT framework 
for SSB that is based on symmetry alone. Thanks to the universality of SSB, the 
predictions of such a framework are guaranteed to match those of any microscopic 
theory with the same symmetry-breaking pattern. The construction of the EFT 
requires two main steps. The first step is to realize the action of the symmetry solely 
in terms of a set of NG fields. This problem is dealt with in the present chapter. The 
results will be used in the next chapter to construct effective actions for NG bosons. 

The celebrated Wigner theorem of quantum mechanics states that any symmetry 
of a quantum system can be realized by a linear unitary or antilinear antiunitary 
operator on its Hilbert space (see Chap. 2 of [1] for a detailed discussion). As a 
consequence, states in the spectrum of a quantum system can be organized into 
multiplets, corresponding to irreducible representations of its symmetry group. In 
quantum field theory, the concept of linear realization of symmetry is naturally 
lifted from states to fields. In a perturbative setting, one usually has a one-to-one 
correspondence between one-particle states and (elementary) fields. Moreover, the 
fields span a linear space. One then expects the symmetry to act on fields linearly 
via some representation just like it does on states in the Hilbert space. 
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Example 7.1 

A field theory of a single complex scalar field . φ may possess a .U(1) symmetry under 
which the field transforms as .φ → eiϵφ, where . ϵ is a real parameter. In this case, 
the field . φ belongs to a complex one-dimensional representation of .U(1). Similarly, 
the .SO(n) “linear sigma model” includes an n-plet of real scalar fields . φi , subject to 
symmetry transformations .φi → Ri

jφ
j , where .R ∈ SO(n). In this case, the fields 

. φi belong to the vector representation of .SO(n). 

As we saw in Sect. 5.3, however, a symmetry that is spontaneously broken is 
not necessarily realized by a set of unitary operators on the Hilbert space of states. 
Likewise, as illustrated in Chap. 2, it may be convenient to use field variables that 
do not belong to a linear representation of the symmetry. This may even become a 
necessity in the low-energy EFT where only the NG bosons of the broken symmetry 
are present; we simply do not have enough degrees of freedom to fill complete 
multiplets of the symmetry group. 

Example 7.2 

The complex scalar field of Example 7.1 can be represented by its real and imaginary 
parts, .φ = φ1 + iφ2. These span the vector representation of .SO(2) ≃ U(1). When 
the .U(1) symmetry is spontaneously broken, it may however be more convenient to 
use the exponential parameterization of the field, .φ = ϱeiθ , in terms of its modulus 
. ϱ and phase . θ . In the low-energy EFT, the modulus field is integrated out and the 
only remaining degree of freedom is the NG field . θ . The latter transforms under 
.eiϵ ∈ U(1) as .θ → θ + ϵ, which is not a linear representation. This is not merely 
a matter of bad choice of parameterization; the EFT contains a single real field, yet 
the group .U(1) does not have any nontrivial real one-dimensional representations. 

With the above observations in mind, I will develop in this chapter a formalism 
for nonlinear realization of symmetries. Mathematically, this amounts to generaliz-
ing the concept of a linear representation of a symmetry group to that of an action 
of the group. The space on which the group acts need not be linear itself; we can 
think of it as some manifold. Section 7.1 introduces the necessary mathematical 
terminology. The main argument, leading to a classification of possible nonlinear 
realizations of symmetry, is presented in Sect. 7.2. A reader interested mainly in 
ready-made results of the formalism may want to proceed directly to Sect. 7.3; 
this collects a number of practically useful formulas that I will refer to in the 
following chapters. Finally, Sect. 7.4 offers an alternative geometric viewpoint 
which illuminates some of the mathematical structure used to realize a symmetry 
nonlinearly. While most of the chapter is phrased in a rather elementary language, 
this last section relies on some concepts of differential geometry in an extent covered 
in Appendix A.
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7.1 Group Action on Manifolds 

To motivate the mathematical language that I need to introduce, suppose that we 
are given a theory of a set of fields, . ψi , that possesses a symmetry group, G.1 We 
would like to understand how to realize the symmetry group in terms of a set of 
transformations of the fields, 

.Tg : ψi → ψ 'i ≡ Fi (ψ, g) , g ∈ G , (7.1) 

where the functions . Fi are assumed to be smooth in both of their arguments. The 
set of transformations . Tg is constrained by the requirement that it respects the group 
structure of G. Thus, the unit element .e ∈ G must be represented by the identity 
map . id, .Fi (ψ, e) = ψi . Consistency with group multiplication requires that 

.Fi (ψ, g1g2) = Fi (F(ψ, g2), g1) , g1, g2 ∈ G . (7.2) 

Finally, the transformation induced by the inverse of an element .g ∈ G has to satisfy 

.Fi (F(ψ, g), g−1) = ψi , g ∈ G . (7.3) 

In the terminology introduced in Chap. 4, (7.1) is an example of a point 
transformation [2, 3]. The class of point transformations is clearly much broader 
than that of mere linear transformations, induced by a representation of G on 
the fields. It is therefore worthwhile to recall that even point transformations do 
not exhaust all conceivable, and physically relevant, realizations of symmetry. 
First, the field transformation may in principle depend explicitly on the spacetime 
coordinates. This feature can be included under the umbrella of point symmetries by 
treating fields and coordinates on the same footing; this will become relevant later 
when we talk about spacetime symmetries. Moreover, it is perfectly possible that 
the transformation of the fields also depends on their derivatives; this was dubbed 
generalized local transformation in Sect. 4.1. Such generalized symmetries play a 
minor role in this book, yet we will see some concrete examples in Chap. 10. 

The restriction to point symmetries of the type (7.1), which I will make from now 
on unless explicitly stated otherwise, is a matter of practical convenience. Namely, 
it will allow us to disregard the fact that . ψi actually are fields, that is functions 
of spacetime coordinates. Instead, I will treat them as independent variables that 
the group G acts upon. With this important technical assumption, we can now 
reformulate the problem of finding all possible realizations of a given symmetry 
group G on the fields . ψi in geometric terms.

1 Many of the concepts introduced below can be applied without change to any, even finite, group. 
However, I will always have implicitly in mind a connected Lie group, or the component of a Lie 
group connected to the unit element. 
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Consider a manifold . M such that each point .x ∈ M is uniquely specified by 
a set of values . ψi . We can think of . ψi as a set of (possibly only locally defined) 
coordinates on . M. An  action of the group G on . M is a set of smooth invertible 
maps .Tg :M→M that satisfy the group constraints 

. Te = id , Tg1g2 = Tg1 ◦ Tg2 , Tg−1 = (Tg)
−1 , g, g1, g2 ∈ G .

(7.4) 

In somewhat more abstract terms, the action of the group on the manifold is defined 
by a homomorphism from G to the group of diffeomorphisms on . M. 

It is important to distinguish actual symmetry transformations on . M from 
a mere change of coordinates. The action of the group G on . M is defined 
geometrically by the maps . Tg without reference to a particular set of 
coordinates . ψi . Depending on the choice of coordinates, the same map . Tg

may correspond to different functions . Fi as defined by (7.1). The freedom 
to choose coordinates on . M mirrors the freedom to choose field variables 
in a given field theory. On the one hand, the independence of geometric 
properties of manifolds on the choice of local coordinates is a cornerstone 
of the language of differential geometry. On the other hand, it is an important 
result of quantum field theory that physical observables such as the S-matrix 
are invariant under (nearly) arbitrary field redefinitions [4, 5]. See [6] for  a  
recent pedagogical discussion of this issue. 

Let us now introduce some further terminology. For a given action of the group 
G on the manifold . M, the  orbit of a point .x ∈M is the set of all points on . M that 
can be reached from x by the action of some group element, 

.Ox ≡ {Tgx | g ∈ G} . (7.5) 

The relation .y ∼ x if and only if there is a .g ∈ G such that .y = Tgx is an 
equivalence. Orbits of the group G on the manifold . M are the equivalence classes 
of this relation. As a consequence, . M is a disjoint union of a (possibly infinite) set 
of orbits. 

For a given point .x ∈M, one defines its isotropy group (also called the stabilizer 
or the little group of x) as the subgroup of G that maps x to itself, 

.Hx ≡ {h ∈ G | Thx = x} . (7.6) 

Two points lying on the same orbit of G have isomorphic isotropy groups. Indeed, 
if .y = Tgx, then for any .h ∈ Hx we have . Tghg−1y = TgThTg−1y = TgThx = Tgx =
y. Conversely, it is easy to check that .Thy = y implies .g−1hg ∈ Hx . Thus, . Hx and
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Fig. 7.1 Illustration of the 
action of the rotation group 
.SO(2) on the Euclidean 
plane. Some orbits of . SO(2)
for which the isotropy group 
is trivial are displayed using 
dashed lines. The  black dot 
indicates the single orbit 
whose isotropy group is the 
whole of . SO(2)

. Hy are conjugate as subgroups, 

.HTgx = gHxg
−1 . (7.7) 

Example 7.3 

The rotation group .SO(2) acts on the Euclidean plane by rotations around the origin, 
see Fig. 7.1 for an illustration. All points of the plane away from the origin have a 
trivial isotropy group. The corresponding orbits of .SO(2) are circles centered at the 
origin. The origin itself forms an orbit with the isotropy group .SO(2). 

This example has a straightforward generalization to the action of .SO(n) on the 
Euclidean space . Rn. There, the origin has the isotropy group .SO(n). All other points 
.x ∈ Rn have the isotropy group .SO(n − 1), corresponding to .(n − 1)-dimensional 
rotations that leave the line connecting x to the origin fixed. The corresponding 
orbits are .(n − 1)-dimensional spheres centered at the origin. 

In somewhat loose terms, we can say that all points lying on the same orbit of 
G on the manifold . M have “the same” properties, since they can be related by a 
symmetry transformation. We thus expect manifolds consisting of a single orbit to 
have particularly simple geometric properties. In this case, the action of the group 
G on the manifold . M is called transitive; any point on the manifold can be reached 
from any other point by the action of a suitable group element. A manifold equipped 
with a transitive action of a group is referred to as a homogeneous space. 

Homogeneous spaces will play a central role throughout the rest of this book. 
One of the special properties of a homogeneous space is that its structure is 
completely determined by the group G and its subgroup H that specifies the isotropy
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group of the homogeneous space.2 To see why, let us introduce a relation between 
two elements of G: .g2 ∼ g1 if and only if there is an .h ∈ H such that .g2 = g1h. 
This is an equivalence relation. As a consequence, the group G is partitioned into a 
disjoint union of the corresponding equivalence classes. The equivalence class 

.gH ≡ {gh | h ∈ H } , g ∈ G , (7.8) 

is called the left coset (or simply coset) of  H in G. Incidentally, the cosets 
themselves can be viewed as orbits of a group action if we treat the group G as 
the manifold on which the subgroup H acts by multiplication from the right. 

The quotient set .G/H , called the coset space, is the set of all cosets of H in G. 
Despite the different appearance, this is just another mathematical realization of a 
homogeneous space. Indeed, consider a homogeneous space . M along with a single 
point .x ∈ M and its isotropy group H . It is easy to see that for any two elements 
.g1, g2 ∈ G, .Tg1x = Tg2x if and only if .g1 ∼ g2, that is if . g1 and . g2 belong to the 
same coset. Hence there is a one-to-one correspondence between the elements of 
the coset space .G/H and the points of the manifold . M. 

Example 7.4 

The Euclidean group .ISO(n) consists of proper rotations and translations in . Rn

and their combinations. It obviously acts transitively on . Rn for the simple reason 
that any point in . Rn can be reached from any other point by a suitable translation. 
Each point in . Rn has a its stabilizer a particular subgroup of .ISO(n), consisting of 
.SO(n) rotations around that point. Hence . Rn equipped with the action of .ISO(n) is a 
homogeneous space, equivalent to the coset space .ISO(n)/SO(n). This view of the 
Euclidean space in terms of its symmetry group follows the “Erlangen program,” 
put forward by Felix Klein in 1872. 

Example 7.5 

The rotation group .SO(n + 1) acts naturally on the n-dimensional unit sphere . Sn if 
one thinks of the latter as embedded in .Rn+1. We can however think of the sphere . Sn

in itself as our manifold . M. In that case, the action of .SO(n+1) becomes transitive; 
any point on the sphere can be reached from any other point by a suitable rotation. 
The isotropy group of any point on the sphere is a particular .SO(n) subgroup of 
.SO(n + 1). Hence, the sphere . Sn equipped with the action of .SO(n + 1) is a 
homogeneous space, equivalent to the coset space .SO(n + 1)/SO(n).

2 Since the isotropy group is the same up to conjugation for all points on the same orbit, and hence 
all points of the homogeneous space, we can drop the subscript x. 
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Having set up the necessary mathematical background, I can now give a concise 
formulation of the main goal of this chapter. In order to understand how a given 
symmetry group G can act on a given set of fields, we need to classify all possible 
actions of G on a given manifold . M. This will be accomplished in the following 
section. A reader seeking further details on the mathematical background reviewed 
above is recommended to consult Chap. 13 of [7]. 

7.2 Classification of Nonlinear Realizations 

At first sight, the task to classify all actions of an arbitrary group G on an arbitrary 
manifold . M seems hopeless. We would only know what to do in the case of a 
linear action on a vector space, where the problem boils down to the good old 
representation theory of Lie groups. How can we make use of this? 

In this section, I will answer the above question, following the classic work of 
Coleman, Wess and Zumino [8]. The key step is to observe that the action of a group 
on a manifold can be partially linearized by a suitable choice of coordinates on the 
manifold. Let us choose a fixed point .x0 ∈ M. We can always introduce a set of 
coordinates . ψi in the neighborhood of . x0 such that . x0 maps to the origin, .ψi = 0. 
Now any linear transformation leaves the origin intact. On the contrary, only the 
isotropy group .Hx0 keeps . x0 fixed; all the other elements of G translate . x0 to some 
other point on the manifold. Thus, the best we can hope for is that we find a set of 
coordinates in which the action of . Hx0 , not of the whole group G, becomes linear. 

We will see that provided the isotropy group .Hx0 is compact, one can indeed 
construct a set of local coordinates on . M in the neighborhood of . x0 in which the 
action of .Hx0 is linear. The good news is that this is in fact sufficient to classify 
all nonlinear realizations of the whole group G. The details of the argument are the 
subject of the following two subsections. 

While this whole chapter is intended to develop a mathematical formalism that 
will prove invaluable later, it might be helpful for the reader already now to keep in 
mind the corresponding concepts pertinent to SSB, introduced in Chap. 5. The fixed 
point .x0 ∈ M corresponds to the selected vacuum state, or the associated order 
parameter. The subgroup .Hx0 that leaves . x0 intact is analogous to the subgroup 
of unbroken symmetries. Finally, the coset space .G/Hx0 , which will turn out to 
span a submanifold of . M, is analogous to the vacuum manifold. For the reader’s 
convenience, this correspondence is summarized in Table 7.1. 

Table 7.1 Correspondence between the mathematical terminology used in this chapter and the 
physics terminology introduced in Chap. 5 

Mathematics terminology Physics terminology 

“Origin” .x0 ∈M Vacuum state (order parameter) 

Isotropy group .Hx0 Unbroken subgroup H 
Coset space .G/Hx0 Vacuum manifold
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7.2.1 Linearization of Group Action 

To simplify the notation, I will from now on denote the functions . Fi defined in (7.1) 
directly as . ψ 'i whenever possible. Suppose that we have a set of local coordinates . ψi

on . M in which the chosen point . x0 maps to zero. In these coordinates, the isotropy 
group .Hx0 will be represented by some nonlinear functions of . ψi whose Taylor 
expansion in . ψi starts at the linear order, 

.ψ 'i (ψ, h) = D(h)ijψ
j + O(ψ2) , (7.9) 

where .h ∈ Hx0 and .D(h)ij is a set of matrix coefficients. The conditions (7.2) 
and (7.3) require that the matrices .D(h) form a representation of . Hx0 . We can then 
change the coordinates in the vicinity of . x0 to 

.Ψi(ψ) ≡
∫

Hx0

dh D(h−1)ijψ
'j (ψ, h) , (7.10) 

where . dh is an invariant measure on .Hx0 normalized so that the total volume of . Hx0

is one.3 The normalization ensures that near the origin, .Ψi = ψi + O(ψ2). Hence, 
. Ψi are a well-defined set of coordinates in some neighborhood of the origin. In these 
new coordinates, the action of the isotropy group is linear. This can be seen upon a 
short manipulation, 

. Ψ 'i (Ψ, h') =
∫

Hx0

dh D(h−1)ijF
j (F(ψ, h'), h) =

∫
Hx0

dh D(h−1)ijF
j (ψ, hh')

= D(h')ij
∫

Hx0

d(hh') [D(hh')−1]jkψ
'k(ψ, hh') = D(h')ijΨ

j , (7.11) 

for any .h' ∈ Hx0 , where I used respectively the group composition law (7.2), the  
invariance of the integration measure, the representation property of the matrices 
.D(h), and the definition (7.10) of the new coordinates. This concludes the proof 
of the statement that the action of the isotropy group .Hx0 can be linearized by a 
suitable choice of coordinates. 

In defining the new coordinates (7.10), I tacitly assumed that .Hx0 has a finite 
volume so that the invariant measure on .Hx0 in fact can be normalized to unity. 
This is a key step in the proof, which requires that the isotropy group .Hx0 be 

(continued)

3 A reader not familiar with group integration may find more information in Chap. 3 of [9]. I will 
not dwell on details, since we shall not need group integration again in this book. 
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compact. The technique of nonlinear realization of symmetry developed in 
this chapter is often introduced straight away under the assumption that the 
whole group G is compact. That is, however, not necessary. 

Equation (7.10) can serve as a useful practical tool to find explicitly the 
coordinates that linearize the action of the isotropy group. Let us have a look at 
a simple example, following [10]. 

Example 7.6 

The action of .SO(2) on the Euclidean plane, introduced in Example 7.3, can be 
recast in terms of an action of .U(1) ≃ SO(2) on the complex plane . C. Thus, under 
.eiϵ ∈ U(1), the complex coordinate z transforms as .z → z' ≡ eiϵz. This action 
is linear. One can however tweak it by changing the coordinate z to w such that 
.z = f (w), where f is a function analytic in the neighborhood of the origin of . C
such that .f (w) = w + O(w2). In the new coordinate w, the .U(1) group acts via 

.w → w' = f −1(z') = f −1(eiϵf (w)) . (7.12) 

In general, . w' will be a nonlinear function of w. The original coordinate z, in which 
the action of .U(1) is linear, can be reconstructed using (7.10). In case of .U(1), 
the group integration in (7.10) amounts to averaging over the phase . ϵ of the . U(1)
rotation. It can be written as an integral over a unit circle in the complex plane, 

.
1

2π

∫ 2π

0
dϵ e−iϵf −1(eiϵf (w)) = − i

2π

∮
dc

c2
f −1(cf (w)) , (7.13) 

where I introduced a new complex integration variable .c ≡ eiϵ . Given  the  
assumptions I made on f , the function .f −1(cf (w))/c2 of the complex variable 
c has a simple pole at the origin with the residue .f (w). It then follows at once from 
the residue theorem that the integral in (7.13) evaluates to .f (w) = z, as expected. 

Note that the coordinate z is not uniquely specified by the requirement that the 
action of .U(1) is linear. We can for instance introduce a new variable w via 

.w = zf (zz̄) , (7.14) 

where f is a smooth real function such that near the origin, .f (zz̄) = 1 + O(zz̄). 
Then w is a well-defined coordinate in some neighborhood of the origin of . C, upon 
which .eiϵ ∈ U(1) acts linearly as .w → eiϵw.
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The above example suggests that the local coordinates . Ψi in which the isotropy 
group .Hx0 acts linearly are generally ambiguous. Namely, under the action of . Hx0 , 
the manifold . M splits into a disjoint union of orbits. The action of .Hx0 will remain 
linear if we rescale the coordinates . Ψi by an arbitrary .Hx0 -invariant function on 
. M, that is a function which takes a constant value on any orbit of . Hx0 . The only 
constraint is that such a rescaling leads to a well-defined set of new coordinates. 
The following example provides a nontrivial illustration of this ambiguity. 

Example 7.7 

Consider the action of .G ≃ SU(2) × SU(2) on .M ≃ SU(2). As already hinted 
in Example 5.5 and explained in detail in Sect. 9.1, this is important for a low-
energy EFT description of hadron physics. For a given .U ∈M and a given element 
.(gL, gR) ∈ G, the action is defined by 

.U→ gLUg−1
R . (7.15) 

The isotropy group of .U0 ≡ 1 is the “diagonal” subgroup of G, .HU0 ≃ SU(2), 
consisting of elements of the type .(g, g), that is .gL = gR = g. It is easy to guess 
a triplet of coordinates . ψi , parameterizing . M in the vicinity of . U0, on which . HU0

acts linearly. Some common choices are 

.U = eiψ ·τ , U = 1 + i
2ψ · τ

1 − i
2ψ · τ

, U = 1
√
1 − ψ2 + iψ · τ , (7.16) 

where . τ is the vector of Pauli matrices. All these choices coincide to linear order 
when expanded in powers of . ψi , .U = 1+ iψ ·τ +O(ψ2). All of them are mutually 
connected by coordinate redefinitions of the type .ψ 'i = ψif (ψ2), where f is a 
suitably chosen function. The isotropy group .HU0 acts on . U in all parameterizations 
shown in (7.16) via rotations of . ψ . Hence . ψ2 is invariant under the action of . HU0

and any function .f (ψ2) is constant on the orbits of .HU0 , as expected. 

7.2.2 From Linear Representation to Nonlinear Realization 

The ambiguity in the choice of coordinates that linearize the action of .Hx0 around 
a chosen point .x0 ∈M can be used to complete the classification of group actions. 
First of all, note that the set .{Tgx0 | g ∈ G} defines a submanifold of . M. On this  
submanifold, G acts transitively; it is thus equivalent to the coset space .G/Hx0 . We  
can choose a set of coordinates . πa , .a = 1, . . . , dimG/Hx0 , on it. Then we add 
another set of coordinates . χϱ, .ϱ = 1, . . . , dimM − dimG/Hx0 , so that . (π

a, χϱ)

together is a well-defined coordinate system on . M in the vicinity of . x0. In this
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coordinate system, the coset space .G/Hx0 is embedded in . M as the set of points 
.(πa, 0). 

As the next step, we subject the coordinates .(πa, χϱ) to the linearization (7.10); 
with a slight abuse of notation, I will use the same symbols .(πa, χϱ) for the resulting 
new coordinates. Importantly, the condition .χϱ = 0 is preserved by the procedure. 
We thus end up with a set of coordinates .(πa, χϱ) in which the isotropy group 
.Hx0 is represented by linear transformations, and moreover the subset .(πa, 0), 
parameterizing .G/Hx0 , is invariant under the action of G. The latter implies that 
the representation of .Hx0 on the coordinates .(πa, χϱ) has an invariant subspace, 
that is, it is reducible. I now use once again the assumption that .Hx0 is compact. 
This ensures that the representation of .Hx0 is completely reducible. The action of 
.Hx0 can then be brought to a block-diagonal form, 

. Th(π, χ) ≡ (π 'a, χ 'ϱ) = (D(π)(h)abπ
b,D(χ)(h)ϱσ χσ ) , h ∈ Hx0 ,

(7.17) 

by orthogonalization that leaves the subspace .(πa, 0) intact. The latter feature 
ensures that we can still use the coordinates . πa to parameterize the submanifold 
.G/Hx0 . 

A given point .x ∈ G/Hx0 with coordinates . πa can be reached from . x0 by the 
action of any element of G that lies in the coset of x. To proceed, we need to choose 
a concrete representative element of the coset. In line with the notation common 
in theoretical physics, I will denote this coset representative as .U(π). The concrete 
choice of the representative can be made fairly arbitrarily. There are however some 
natural requirements that will make our life easier: 

• .U(π) should be a smooth function of . πa near the origin . x0. 
• The origin . x0 itself, i.e. the trivial coset .eHx0 , should be represented by .U(0) = e. 
• The choice of .U(π) should reflect the linearity of the action of .Hx0 in the 

coordinates . πa . 

The first two constraints can always be satisfied. As to the third, the linearity of the 
action of .Hx0 requires that .Thx = ThTU(π)x0 = TU(π ')x0 where .π 'a are linear in 
. πa . Given that .Thx = ThTU(π)Th−1x0 = ThU(π)h−1x0, it is natural to pick .U(π) so 
that 

.U(π ') = hU(π)h−1 . (7.18) 

We need to make sure, however, that this can be done consistently. 
Consider the Lie algebra . g of G, which carries an adjoint action of . Hx0 , 

.Q → hQh−1 , Q ∈ g , h ∈ Hx0 . (7.19)
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This defines a linear representation of .Hx0 which has an invariant subspace, namely 
the Lie algebra . h of . Hx0 . Thus, the representation is reducible. Suppose now that 
it is, in fact, completely reducible. This is certainly the case when .Hx0 is compact. 
More generally, coset spaces .G/Hx0 for which the Lie algebra . g can be split as 
.g ≃ h⊕g/h where both . h and . g/h are invariant subspaces under the adjoint action of 
.Hx0 (7.19), are called reductive. For a reductive coset space, we can always choose 
.U(π) so that the linear action of .Hx0 on .G/Hx0 is realized by (7.18). We can for 
instance set .U(π) = exp(iπaQa), where .Qa,b,... is a basis of . g/h. This is however 
by far not the only choice, as illustrated by Example 7.7. 

Example 7.8 

There are many examples of reductive coset spaces for which the isotropy group H 
is not compact. One can for instance start with a compact H , for which the reductive 
property is guaranteed, and then switch to a related noncompact Lie group. For a 
concrete example, take as G the Poincaré group of isometries of D-dimensional 
Minkowski spacetime and as H its subgroup, the Lorentz group .SO(d, 1). The  
subspace .g/h can be spanned on the generators of spacetime translations, which 
carry the vector representation of the Lorentz group. This coset space is a cousin of 
the Euclidean space .RD ≃ ISO(D)/SO(D), for  which .H ≃ SO(D) is compact. 

It is easy to promote the action (7.18) of .Hx0 on .G/Hx0 to an action of the whole 
group G. Indeed, the action of any .g ∈ G on an element .x = TU(π)x0 of . G/Hx0

is completely characterized by the product .gU(π). The latter can be, at least in the 
vicinity of the unit element, uniquely decomposed as .U(π ')h(π, g), where .π 'a is 
defined by .Tgx = TU(π ')x0 and the factor .h(π, g) ∈ Hx0 ensures that the correct 
representative of the coset .Tgx is used. 

In order to lift the action of G from the submanifold .G/Hx0 to the whole of . M, 
we now make one last change of coordinates. Namely, we define new coordinates 
. π̃a and . χ̃ϱ by the requirement that the point .(πa, χϱ) ∈M can be expressed as 

.(πa, χϱ) = TU(π̃)(0, χ̃) . (7.20) 

This notation can be intuitively thought of as defining a slicing of . M by orbits 
of G, starting from the subset of points .(0, χ̃ϱ). The submanifold .G/Hx0 is a 
special case corresponding to .χ̃ϱ = 0. In order to see that .π̃a, χ̃ϱ in fact are 
well-defined coordinates on . M, note that (7.20) defines uniquely .πa, χϱ for given 
.π̃a, χ̃ϱ. It follows from the fact that .U(0) = e that if .π̃a = 0, then .πa = 0 and 
.χϱ = χ̃ϱ. Likewise, it follows from the definition of coordinates on the submanifold 
.G/Hx0 that if .χ̃ϱ = 0, then .χϱ = 0 and .πa = π̃a . Hence the Jacobian matrix 
.∂(π, χ)/∂(π̃, χ̃) equals . 1 at the origin, and (7.20) defines a valid coordinate system 
in some neighborhood of . x0.
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The linearity of the action of .Hx0 is preserved in the new coordinates since 

.ThTU(π̃)(0, χ̃) = ThU(π̃)h−1Th(0, χ̃) = ThU(π̃)h−1(0,D(χ)(h)χ̃) (7.21) 

for any .h ∈ Hx0 . It is now a matter of a short manipulation to see that the action of 
an arbitrary .g ∈ G on (7.20) is already completely fixed, 

. 
TgTU(π̃)(0, χ̃) = TgU(π̃)(0, χ̃) = TU(π̃ ')h(π̃,g)(0, χ̃) = TU(π̃ ')Th(π̃,g)(0, χ̃)

= TU(π̃ ')(0,D
(χ)(h(π̃, g))χ̃) .

(7.22) 

This is the end of the line. Equation (7.22) shows that in some neighborhood of a 
chosen point .x0 ∈M, the action of any Lie group G can by a change of coordinates 
be brought to a “standard form” such that (dropping the tildes) 

. U(π) → U(π ') = gU(π)h(π, g)−1 , χϱ → χ 'ϱ = D(χ)(h(π, g))ϱσ χσ ,

(7.23) 

where .h(π, g) ∈ Hx0 and .D(χ) is a matrix representation of . Hx0 . The only technical 
assumption that was required in the proof was that the isotropy group .Hx0 is 
compact. This is the main result of the chapter. We can now harvest the fruits of 
our labors. 

7.3 Standard Realization of Symmetry 

Having in mind that the reader might have skipped the last, somewhat technical 
section, let me give here a brief but self-contained summary of its main result. 
Consider a manifold . M equipped with an action of a group G, and let us choose 
a fixed point .x0 ∈ M. Suppose that the isotropy group .Hx0 of . x0 is compact. Then 
it is always possible to redefine coordinates in a neighborhood of . x0 so that the new, 
“standard” coordinates .(πa, χϱ) have the following properties. First, the point . x0
itself corresponds to the origin .(0, 0). The subset .(πa, 0) spans a submanifold of . M, 
equivalent to the coset space .G/Hx0 . Every point on the coset space can be uniquely 
characterized by a choice of a representative element .U(π) of the corresponding 
coset. The representative .U(π) can be chosen so that .U(0) = e, and that the adjoint 
action of .h ∈ Hx0 , .U(π) → hU(π)h−1, defines a linear transformation of the 
coordinates . πa . The group G acts on the coset space via left multiplication, which 
defines implicitly an element .h(π, g) of .Hx0 through 

.gU(π) = U(π '(π, g))h(π, g) , g ∈ G . (7.24) 

The last two properties of .U(π) imply that .h(π, g) = g for any .g ∈ Hx0 .
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The action of an element .g ∈ G on the whole manifold . M is now defined in 
terms of the standard coordinates .(πa, χϱ) as 

.

U(π)
g−→ U(π '(π, g)) = gU(π)h(π, g)−1 ,

χϱ g−→ χ 'ϱ(χ, π, g) = D(h(π, g))ϱσ χσ ,

(7.25) 

where the matrices .D(h) define some linear representation of . Hx0 . Altogether, the 
action of G is fully specified by the choice of coset representative .U(π), which fixes 
the first line of (7.25), and the choice of representation .D(h) of . Hx0 , which fixes the 
second line thereof. 

The above construction of the standard realization of group action goes 
through without change even if .Hx0 is noncompact provided the coset space 
.G/Hx0 is reductive. In that case, however, the line of argument in Sect. 7.2 
fails and it is no longer guaranteed that the standard realization is unique up 
to a coordinate redefinition. There may then be more mutually inequivalent 
nonlinear realizations of the group G on the manifold . M, of which the 
standard realization is but one example. 

Finally, one may try to follow the same steps of the construction of the 
standard realization even when the coset space .G/Hx0 is not reductive. Then, 
however, many of the simple features of the standard realization are lost. A 
concrete example of a nonreductive coset space is worked out in [11]. 

In the standard nonlinear realization (7.25), the coordinates . πa transform under 
G on their own, independently of . χϱ. The transformation of the latter, on the other 
hand, is nonlinear in . πa but linear in . χϱ themselves. It is therefore possible to set 
the . χϱs to zero consistently. This is not surprising. In the field theory language, 
the coordinates . πa correspond to NG bosons and their universal presence therefore 
mirrors the Goldstone theorem as reviewed in Chap. 6. The remaining coordinates 
on . M, . χϱ, represent other degrees of freedom that are not of NG nature. In the 
jargon of EFT, they are usually called matter fields. Among all the nonlinear 
realizations of the given symmetry group G with the given subgroup H , there is 
therefore a “minimal” nonlinear realization, defined on the coset space .G/H , which 
only includes the NG degrees of freedom. On a general manifold . M, additional 
matter fields may be present. Throughout this book, I will focus mostly on minimal 
nonlinear realizations due to their significance for low-energy EFT description of 
broken symmetries.



7.3 Standard Realization of Symmetry 125

Example 7.9 

One can gain insight into the standard realization (7.25) of the action of G by 
looking at some special choices of the isotropy group. If there is a point . x0 ∈ M
such that .Hx0 ≃ G, then in its vicinity, we do not have any coordinates . πa . The coset 
space .G/Hx0 consists of a single point that we can represent with .U = e, which is 
consistent with the first line of (7.25) if .h(g) = g for all .g ∈ G. All coordinates in 
the neighborhood of . x0 are of the . χϱ type. The second line of (7.25) guarantees that 
the action of G can be completely linearized, .χ 'ϱ(χ, g) = D(g)

ϱ
σ χσ . This is the 

usual textbook realization of symmetry via a linear representation. 
The opposite extreme, .Hx0 ≃ {e}, is more interesting. Here (7.25) reduces to 

.U(π)
g−→ gU(π) , χϱ g−→ χϱ . (7.26) 

The coset space .G/Hx0 corresponds to the group manifold G and carries an action 
of G defined by simple left multiplication. Whatever other coordinates . χϱ on . M
are present can always be chosen to be invariant under G. This is quite surprising. 
We are used to working with fields spanning linear multiplets of G; it is not obvious 
that the same physical content can be encoded in a set of fields that do not transform 
under G at all. The resolution of this apparent paradox lies in the freedom to choose 
coordinates at will. Namely, if we start with a set of fields . Ψϱ transforming under G 
as .Ψϱ g−→ D(g)

ϱ
σ Ψσ , we can make the redefinition .χϱ ≡ D(U(π)−1)

ϱ
σ Ψσ . The  

new variables . χϱ are invariant under G in accord with (7.26). 

7.3.1 Nonlinear Realization on Coset Spaces 

Can we be more explicit about the way that the coordinates .(πa, χϱ) transform 
under the action of G? The standard realization (7.25) of the group action requires 
the knowledge of the nonlinear functions .π 'a(π, g) and .h(π, g) . We would like 
to be able to compute these, at least for small transformations, that is for . g ∈ G

infinitesimally close to unity.4 To that end, it is sufficient to consider the action of G 
on the coset space .G/H ; from now on will I drop the subscript . x0 on H unless it is 
needed to explicitly distinguish the isotropy groups of different points on the coset 
space. Once the minimal realization of G on .G/H is found, it can be extended to 
any other manifold by specifying the linear representation .D(h) of H under which 
the additional coordinates . χϱ transform.

4 I will only introduce the concept of a metric on a group, and more generally on a homogeneous 
space, in Sect. 7.4. Statements about infinitesimal distance of group elements should therefore be 
interpreted within a faithful matrix representation of the group using some standard matrix norm. 
The same remark applies whenever a sum or difference of group elements is considered below. 



126 7 Nonlinear Realization of Symmetry

The general algorithm for calculation of the desired functions .π 'a(π, g) and 
.h(π, g) is as follows. Take the first line of (7.25), multiply it with .U(π)−1, and 
subtract .U(π)−1U(π) = e. This gives the master relation 

.U(π)−1δU(π) = U(π)−1gU(π)h(π, g)−1 − e , (7.27) 

where .δU(π) ≡ U(π ') − U(π). For  .g ∈ G that is infinitesimally close to unity, 
both .U(π)−1gU(π) and .h(π, g) are infinitesimally close to unity as well. By a 
systematic comparison of the left- and right-hand sides of (7.27), one can then 
determine .δπa(π, g) ≡ π 'a(π, g) − πa as well as .h(π, g). 

To make further progress, we first have to establish some notation. In order to be 
able to discuss different symmetry transformations from G separately, we choose 
a basis .QA,B,... of . g. A subset of these spans a basis of the Lie subalgebra . h and 
will be denoted with Greek indices, .Qα,β,.... The rest of the generators spans the 
subspace .g/h and will be denoted as .Qa,b,.... The structure constants of the Lie 
algebra . g will be called .f C

AB with a conventional factor of . i in the commutation 
relations, that is, .[QA,QB ] = if C

ABQC . The structure constant does not have to be 
fully antisymmetric in its three indices even if G is compact. It does have to be 
antisymmetric under the exchange of its lower two indices though. It also has to 
satisfy the Jacobi identity, 

.f E
ABf D

EC + f E
BCf D

EA + f E
CAf D

EB = 0 . (7.28) 

The basic commutator of the Lie algebra . g, .[QA,QB ] = if C
ABQC , can be unfolded 

into three separate conditions on the subsets of generators .Qα,β,... and .Qa,b,..., 

.

[Qα,Qβ ] = if γ
αβQγ ,

[Qα,Qb] = if c
αbQc ,

[Qa,Qb] = i(f γ

abQγ + f c
abQc) .

(7.29) 

The first of these encodes the requirement that the generators .Qα,β,... span a closed 
Lie algebra (that is .f c

αβ = 0). The second of these likewise expresses the assumption 
that the coset space .G/H is reductive (that is .f

γ

αb = 0). 
Next, we are going to need two simple statements from linear algebra, which I 

reproduce here for the sake of completeness. The first of these is usually known 
under the name Hadamard lemma, 

.eABe−A = B + [A,B] + 1

2! [A, [A,B]] + 1

3! [A, [A, [A,B]]] + · · · , (7.30)
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where .A,B are arbitrary (square) matrices. The second identity, which to the best 
of my knowledge does not have an established name, reads 

.e−AdeA =
∫ 1

0
dt e−tA(dA)etA . (7.31) 

Here the symbol . d acting on A and . eA can be thought of as a differential, but also as 
a derivative with respect to whatever parameter A might depend on. Once multiplied 
from the left with . eA, we can think of (7.31) as a continuous version of the Leibniz 
(product) rule, applied to . eA. It follows  from  (7.31) combined with the Hadamard 
lemma (7.30) that whenever A is a function with values in a Lie algebra, . e−AdeA

will take values in the same Lie algebra. 
Equation (7.31) prepares the ground for the introduction of a concept of central 

importance for calculus on coset spaces: the Maurer–Cartan (MC) form, 

.ω(π) ≡ −iU(π)−1dU(π) . (7.32) 

For the time being, the reader may think of the . d herein as an ordinary differential of 
a function. The true geometric significance of the MC form as a differential 1-form 
will become clear in Sect. 7.4. Recall that any element of a Lie group sufficiently 
close to unity, in our case .U(π), can be obtained as the exponential of an element of 
the corresponding Lie algebra. Equation (7.31) then implies that the MC form takes 
values in the Lie algebra . g. We can split it into pieces that belong to . h and . g/h, and 
represent each of these in terms of their components in a chosen basis of generators, 

.

ω ≡ ω‖ + ω⊥ ,

ω ≡ ωAQA , ω‖ ≡ ωαQα , ω⊥ ≡ ωaQa .
(7.33) 

Finally, by writing .dU(π) = [∂U(π)/∂πa]dπa , one can introduce explicit 
components of the MC form in a chosen set of local coordinates . πa on .G/H , 
.ωA ≡ ωA

a dπ
a . 

It is instructive to check how the MC form is affected by the action of G on the 
coset space. This follows directly from (7.25). It is a simple exercise to verify that 
for given .g ∈ G, 

. 
ω‖(π)

g−→ ω‖(π '(π, g)) = h(π, g)ω‖(π)h(π, g)−1 − ih(π, g)dh(π, g)−1 ,

ω⊥(π)
g−→ ω⊥(π '(π, g)) = h(π, g)ω⊥(π)h(π, g)−1 .

(7.34) 

Note how (7.31) guarantees that .ω‖(π ') still takes values in the Lie algebra . h. While 
not of direct relevance right here and now, the transformation rules (7.34) will help 
us understand the geometric meaning of the MC form in Sect. 7.4.
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We still need a few last pieces of notation. Conjugation of elements of . g by . U(π)

will be abbreviated as 

.U(π)−1QAU(π) ≡ νB
A(π)QB , (7.35) 

which defines a set of nonlinear functions .νB
A(π) on the coset space. Finally, for the 

action of an element .g ∈ G infinitesimally close to unity, I will use the notation 

.

g ≈ e + iϵAQA ,

δπa(π, g) ≈ ϵAξa
A(π) , h(π, g) ≈ e + iϵAkα

A(π)Qα .
(7.36) 

The . ≈ symbol indicates that I have expanded all the quantities to linear order in the 
transformation parameters . ϵA, defined by the first line of (7.36). The second line 
thereof introduces notation for the infinitesimal versions of the functions . π 'a(π, g)

and .h(π, g). Of particular interest are the functions .ξa
A(π) that realize the motion 

induced on the coset space .G/H by the group G. 
With all the notation at hand, we can now expand (7.27) to linear order in . ϵA and 

compare coefficients of the various generators of . g on the left- and right-hand sides. 
This leads to the identities 

.

να
A(π) = ξa

A(π)ωα
a (π) + kα

A(π) ,

νa
A(π) = ξb

A(π)ωa
b(π) .

(7.37) 

These are still valid for any choice of the coset representative .U(π). Once it is 
fixed, the functions .ωA

a (π) are determined by (7.32). Likewise, the functions . νB
A(π)

are fixed by (7.35). The identities (7.37) then constitute a set of linear equations 
for .ξa

A(π) and .kα
A(π). At the  origin,  .νB

A(0) = δB
A as a consequence of the fact that 

.U(0) = e. The second line of (7.37) then implies that .ωa
b(0) is nonsingular. By 

continuity, it must remain nonsingular in some neighborhood of the origin. This 
guarantees that a solution of (7.37) for .ξa

A(π) and .kα
A(π) exists and it is unique. 

I have now achieved the main goal of this subsection: to give an algorithm how, 
for a chosen set of coordinates . πa , to realize the action of the group G on the 
coset space .G/H . None of the nonlinear functions involved—.ωA

a (π), .νB
A(π), . ξa

A(π)

and .kα
A(π)—can however in general be evaluated in a closed form. For practical 

applications, it is useful to have explicit expressions for these functions, even if just 
as a series expansion in a specific set of coordinates . πa . One popular choice of 
parameterization for which this can easily be done is 

.U(π) = exp(iπaQa) . (7.38) 

The Hadamard lemma (7.30) then tells us at once that 

.νA
B (π) = δA

B − f A
Baπ

a + 1

2
f C

Baf
A
Cbπ

aπb + O(π3) . (7.39)



7.3 Standard Realization of Symmetry 129

Likewise, it follows quickly from (7.31) that 

.ωA
a (π) = δA

a − 1

2
f A

abπ
b + 1

6
f B

abf
A
Bcπ

bπc + O(π3) . (7.40) 

Finally, (7.37) can be solved iteratively for the remaining pieces, 

. 

ξa
A(π) = δa

A −
(

f a
Ab − 1

2
δe
Af a

eb

)
πb

+ 1

2

(
f α

Abf
a
αc − 1

3
δe
Af B

ebf
a
Bc + 1

2
δe
Af d

ebf
a
dc

)
πbπc + O(π3) ,

kα
A(π) = δα

A −
(

f α
Aa − 1

2
δe
Af α

ea

)
πa

+ 1

2

(
f

β
Aaf

α
βb − 1

3
δe
Af B

eaf
α
Bb + 1

2
δe
Af d

eaf
α
db

)
πaπb + O(π3) .

(7.41) 

With these explicit expressions at hand, it is easy to illustrate some of the general 
properties of the standard nonlinear realization. For instance, the action of the 
isotropy group H reduces to the linear adjoint transformation of the coordinates, 
.ξa
α (π) = −f a

αbπ
b. Likewise, we find that .kα

β (π) = δα
β , which is an infinitesimal 

version of the relation .h(π, g) = g for any .g ∈ H . 

Example 7.10 

All the structure introduced above takes a particularly simple form when the group 
G is Abelian. Then .ξa

A(π) = δa
A: the group G acts on the standard coordinates . πa

by a mere set of shifts. The MC form reduces to .ω(π) = dπaQa . This suggests a 
simple interpretation of .ω⊥ = ωa

bdπ
bQa in the general situation when G is non-

Abelian. Namely, . ωa supplies us with a generalized derivative (or differential) of 
. πa which, as (7.34) shows, is covariant under the action of G. 

7.3.2 Symmetric Coset Spaces 

Up to some technical assumptions, we have already accomplished a complete 
classification of possible nonlinear realizations of symmetry on manifolds. In the 
language of field theory, this amounts to finding all possible point symmetry 
transformations of a given set of fields under a given symmetry group G. The  
price we had to pay for the generality of this result was the rather complicated 
transformation rule (7.25). This involves nonlinear functions on the coset space 
.G/H that cannot be evaluated in a closed explicit form. There is, however, an 
important class of coset spaces for which we can do much better.
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The coset space .G/H is called symmetric, and the associated homogeneous space 
is called a symmetric space, if the Lie algebra . g admits an involutive automorphism 
under which . h is even and . g/h is odd. In other words, we require that there is a linear 
map .R : g→ g such that 

.

R([Q1,Q2]) = [R(Q1),R(Q2)] , Q1,Q2 ∈ g ,

R(Q) = Q , Q ∈ h ,

R(Q) = −Q , Q ∈ g/h .

(7.42) 

This property guarantees the vanishing of any structure constant with an odd 
number of .g/h indices. In particular, .f γ

αb = 0: any symmetric coset space 
is automatically reductive. In addition, .f c

ab = 0, that is the last term in the 
commutation relations (7.29) is missing. 

Example 7.11 

The fundamental commutation relation of the .SO(n) group reads 

.[Jij , Jkl] = i(δikJjl + δjlJik − δilJjk − δjkJil) , (7.43) 

where .i, j, k, l = 1, . . . , n and . Jij is the antisymmetric tensor of angular momentum 
in n spatial dimensions. The Lie algebra of .SO(n) possesses an automorphism . R
under which .R(Jαβ) = Jαβ and .R(Jαn) = −Jαn, where .α, β = 1, . . . , n − 1. One  
can think of this automorphism geometrically as an inversion of the n-th coordinate 
axis. The coset space .SO(n)/SO(n − 1) ≃ Sn−1 is therefore symmetric. 

In a similar vein, the Euclidean space . Rn is a symmetric space. This can be seen 
most easily by recalling that .Rn ≃ ISO(n)/SO(n). The desired automorphism . R
is the spatial inversion. Under this, all the generators of .SO(n) (rotations) remain 
intact, whereas the remaining generators of .ISO(n)/SO(n) (translations) change 
sign. 

Example 7.12 

Consider the “chiral” coset spaces of the type .GL × GR/GV, where all the three 
groups .GL,GR,GV are isomorphic to the same Lie group G; this is a generalization 
of Example 7.7 where .G ≃ SU(2). The chiral group .GL × GR consists of elements 
.(gL, gR) where .gL, gR ∈ G. The “vector” isotropy group .GV consists of elements 
of the type .(g, g), that is .gL = gR = g. The generators of the chiral group include
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two copies, .QL,A and .QR,A, of the generators of G. The Lie algebra of the chiral 
group is defined in terms of the structure constants .f C

AB of G by 

.
[QL,A,QL,B ] = if C

ABQL,C , [QR,A,QR,B ] = if C
ABQR,C ,

[QL,A,QR,B ] = 0 .
(7.44) 

These commutation relations are invariant under the exchange of .QL,A and .QR,A, 
which defines the desired automorphism, 

.R(QL,A) = QR,A , R(QR,A) = QL,A . (7.45) 

The generators of . GV, equal to .QL,A + QR,A up to overall normalization, are even 
under this automorphism. The generators of the complementary space . g/h, which 
are to be odd under . R, can be taken as .QL,A − QR,A up to an overall factor. 

The automorphism . R of the Lie algebra . g can be lifted, at least locally near the 
unit element, to the Lie group G. It is then possible to choose the coset representative 
.U(π) so that .R(U(π)) = U(π)−1; one can use for instance the exponential 
parameterization (7.38). We now take the first line of (7.25) and multiply it with the 
inverse of its image under . R. The result is a surprise: for symmetric coset spaces, 
there is a parameterization of .G/H in which the whole group G is realized linearly, 

.Σ(π) ≡ U(π)2 , Σ(π)
g−→ Σ(π '(π, g)) = gΣ(π)R(g)−1 . (7.46) 

This is of such utility that whenever one deals with a symmetric coset space, one 
almost always uses the linearly transforming variable . Σ instead of working directly 
with the coordinates . πa . Note, however, that one may need the coordinates . πa if 
one wishes to extend the coset space .G/H to a larger manifold . M. This is because 
the transformation of . χϱ in (7.25) requires the functions .h(π, g) that depend on . πa . 

With the automorphism . R at hand, one may easily project out the . ω‖ and . ω⊥
components of the MC form, 

.ω‖ = 1

2
[ω + R(ω)] , ω⊥ = 1

2
[ω − R(ω)] . (7.47) 

The latter has a practically convenient expression in terms of . Σ, 

.ω⊥ = − i

2
U−1dΣU−1 = i

2
UdΣ−1U . (7.48)
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Example 7.13 

Let us see how the variable .Σ(π) is realized on the chiral coset spaces . GL×GR/GV
discussed in Example 7.12. Here we can choose the coset representative as . U =
(u, u−1) where .u ∈ G; this satisfies the requirement that under the automorphism 
.R(gL, gR) = (gR, gL) of the chiral group .GL ×GR, U is turned into its inverse. The 
general transformation rule as given by the first line of (7.25) then translates to 

.(u, u−1)
(gL,gR)−−−−→ (gL, gR)(u, u−1)(h−1, h−1) , (7.49) 

where .h ∈ G. The linearly transforming variable (7.46) is given by . Σ = U2 =
(u2, u−2), where .u2 ≡ U transforms under .GL × GR as .U→ gLUg−1

R . 

It turns out that (7.46) can be further simplified in case . R is an inner automor-
phism of G, that is, when there is an element .R ∈ G such that 

.R(g) = R−1gR , g ∈ G . (7.50) 

Then a slight modification of (7.46) leads to a variable that transforms linearly under 
the adjoint action of G, 

. N(π) ≡ Σ(π)R = U(π)RU(π)−1 , N(π)
g−→ N(π '(π, g)) = gN(π)g−1 .

(7.51) 

An advantage of trading .Σ(π) for .N(π) is that .N(π)2 is a constant independent of 
. πa , which may be convenient in concrete applications. Indeed, since . R(R(g)) = g

for any .g ∈ G, it follows  from  (7.50) that . R2 belongs to the center of G. 
Consequently, .N(π)2 = U(π)R2U(π)−1 = R2. 

Example 7.14 

Consider the coset space .SU(2)/U(1), relevant for description of quantum systems 
with magnetic ordering such as (anti)ferromagnets. In the fundamental represen-
tation, the generators of .SU(2) are .QA = τA/2, and the generator of the . U(1)
isotropy group can be taken as .τ3/2. This coset space is symmetric thanks to an 
inner automorphism (7.50) with .R = iτ3. While the factor of . i here is required to 
make R an element of .SU(2), we do not need it for the definition of .N(π). Let us 
therefore set 

.N(π) ≡ U(π)τ3U(π)−1 . (7.52)
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This matrix variable is unitary and Hermitian. Moreover, it is traceless and it squares 
to . 1. It can thus be mapped on a unit vector variable .n(π) such that 

.N(π) = τ · n(π) , (7.53) 

which belongs to the vector representation of .SU(2). The fact that we ended up 
describing the coset space in terms of a unit vector is not a coincidence. Thanks to 
the local isomorphism of .SU(2) and .SO(3) we also have a local equivalence of coset 
spaces, .SU(2)/U(1) ≃ SO(3)/SO(2) ≃ S2. 

7.4 Geometry of the Coset Space 

In this final section of the chapter, I will show that some of the structure that enters 
the standard realization of symmetry on a coset space can be given a neat geometric 
interpretation. A reader not familiar with basics of differential geometry is advised 
to consult Appendix A before proceeding. Further information about the geometry 
of homogeneous spaces at an easily accessible level can be found in [12]. 

To start, recall that each point of a coset space .G/H corresponds to an entire class 
of elements of the group G. The approach I have used so far was to parameterize 
each .x ∈ G/H with coordinates . πa in terms of a fixed coset representative 
.U(π). The choice of .U(π) is however arbitrary and can be changed locally by 
multiplication from the right; any .Ũ (π) = U(π)h(π) with .h(π) ∈ Hx0 is equally 
good. One can then promote the basic transformation rule (7.25) for .U(π) to 

.U(π)
g,h(π)−−−−→ U(π '(π, g)) = gU(π)h(π)−1 , (7.54) 

where .h(π) is independent of g. This realizes an action of the product group 
.G × Hgauge. The group G acts on .U(π) by left multiplication as usual. The 
local group .Hgauge isomorphic to H acts on .U(π) by right multiplication with 
.h(π)−1 and encodes the freedom to choose locally the coset representative. This 
is a typical example of a gauge redundancy; any geometrically or physically well-
defined quantity must be independent of the arbitrary choice of coset representative. 
In theoretical physics, the approach that views the left action of G separately from 
the right action of the local group .Hgauge is called “hidden local symmetry” [13]. 

The different geometric roles of G and its isotropy subgroup can be intuitively 
understood by looking at Fig. 7.2. One-parameter subgroups of G define a set of 
flows on .G/H that in general translate a given point x to some other point. The 
isotropy group . Hx maps x to itself. It does, however, act nontrivially in the vicinity 
of x. Based on the figure, we expect that the action of . Hx projects to a set of 
linear maps on the tangent space .TxG/H at x. By induction, such linear .Hx-
transformations should exist for any tensor at x.
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Fig. 7.2 Illustration of the action of G and . Hx around a fixed point x (black dot) on the coset 
space. The thick solid lines indicate orbits of one-parameter subgroups of G passing through x; 
these correspond to generators from . g/h and act as translations on the coset space. The thick dashed 
lines indicate some orbits of . Hx in the vicinity of x. The action of . Hx naturally induces a set of 
linear transformations on the tangent space at x 

The local group .Hgauge gives us the freedom to do independent H -
transformations of tangent vectors (and generally tensors) point by point. In order 
to be able to analyze the properties of vector (tensor) fields on .G/H , we therefore 
need a way to relate tangent vectors (tensors) at different points. This resembles 
closely the motivation behind the construction of a local frame, or vielbein, and 
the corresponding connection on a manifold. The only difference to the formalism 
reviewed in Appendix A.5 is that here the structure group is not .GL(dimG/H) but 
H itself. This restriction makes it possible to realize changes in the local frame in 
terms of a fixed matrix representation of H . 

It turns out that we already have both the local frame and the connection: they are 
granted to us by the MC form (7.32). Specifically, the components . ωa of . ω⊥ define 
a coframe on .G/H . By the second line of (7.34), these indeed transform linearly 
under the local action of .Hgauge as they should. Likewise, the . h part of the MC form, 
. ω‖, provides the necessary H -connection. This is confirmed by the transformation 
rule on the first line of (7.34). 

This observation stresses the significance of the MC form as a differential 1-form, 
taking values in the Lie algebra . g. Its exterior derivative reflects the structure of G, 

.

dω = −idU−1 ∧ dU = iU−1dU ∧ U−1dU = −iω ∧ ω

= − i

2
ωB ∧ ωC[QB,QC] = 1

2
f A

BCωB ∧ ωCQA .
(7.55)
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This can be split into a pair of equations, one for . ω‖ and one for . ω⊥, 

.

dωα = 1

2
f α

βγ ωβ ∧ ωγ + 1

2
f α

bcω
b ∧ ωc ,

dωa = f a
βcω

β ∧ ωc + 1

2
f a

bcω
b ∧ ωc ,

(7.56) 

where I used the facts that .f a
βγ = 0 (the Lie algebra . h closes) and that .f α

βc = 0 (the 
coset space is reductive). These so-called Maurer–Cartan equations provide a link 
between the algebraic and geometric properties of the coset space. 

7.4.1 Canonical and Torsion-Free Connection 

The local basis of 1-forms . ωa transforms under the action of the structure group H 
as a tangent vector. It follows from (7.34) that upon an infinitesimal transformation 
by .h ≈ e + iϵαQα , .δωa = −ϵαf a

αbω
b. This determines the matrix elements of the 

action of the H -connection . ω‖ on tangent vectors, in the notation of Appendix A.5, 

.Ωa
b = −f a

αbω
α . (7.57) 

The MC equations (7.56) encode information about both the torsion and the 
curvature of this so-called canonical connection on .G/H . The torsion 2-form 
follows from the second line of (7.56), 

.T a ≡ dωa + Ωa
b ∧ ωb = 1

2
f a

bcω
b ∧ ωc . (7.58) 

Similarly, the curvature 2-form follows from the first line of (7.56), 

.Ra
b ≡ dΩa

b + Ωa
c ∧ Ωc

b = −1

2
f a

αbf
α
cdωc ∧ ωd , (7.59) 

where I used the Jacobi identity (7.28) to simplify the result. In the language of field 
theory, this is nothing but the field-strength 2-form of . ω‖. 

The definition (7.57) of the canonical connection arises naturally from the 
splitting (7.33) of the MC form into the . h and .g/h subspaces. This is not the only 
possible connection on .G/H though. In fact, there is an infinite class of them. Let 
us set 

.
λΩa

b ≡ −f a
αbω

α − λf a
cbω

c , λ ∈ R . (7.60)
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This time, it takes some manipulation to derive the corresponding torsion and 
curvature 2-forms. The final result is 

.

λT a =
(
1

2
− λ

)
f a

bcω
b ∧ ωc ,

λRa
b = −1

2

(
f a

αbf
α
cd + λf a

ebf
e
cd − 2λ2f a

ecf
e
bd

)
ωc ∧ ωd ,

(7.61) 

which generalizes (7.58) and (7.59) to any nonzero . λ. 
Within the class of connections (7.60), there is one with vanishing torsion, 

corresponding to .λ = 1/2. One might expect that it should be possible to recover 
this connection from a suitable Riemannian metric on the coset space. This is indeed 
the case under some further technical assumptions, as I will explain below. For 
symmetric coset spaces, the whole class of connections (7.60) becomes degenerate, 
and is automatically torsion-free. 

7.4.2 Riemannian Metric 

Every Lie algebra . g possesses a bilinear form invariant under the adjoint action 
of the corresponding Lie group G. To see this, just take any faithful matrix 
representation of the generators .QA and set 

.gAB ≡ tr(QAQB) . (7.62) 

The invariance under .QA → gQAg−1 for any .g ∈ G is manifest. The infinitesimal 
version of the invariance condition follows by setting .g ≈ e+iϵCQC and expanding 
to linear order in . ϵC , 

.f D
CAgDB + f D

CBgAD = 0 . (7.63) 

Since the components . ωa of the MC form define a basis of the space of 1-forms 
on .G/H , any rank-2 covariant tensor can be constructed as a linear combination of 
.ωa ⊗ ωb. Given the invariant bilinear form .gAB , it is then natural to introduce the 
following metric on .G/H , 

.gG/H ≡ gabω
a ⊗ ωb , (7.64) 

where . gab is the restriction of .gAB to the . g/h subspace. 
This construction is not guaranteed to work without further assumptions. A 

Riemannian metric should be positive-definite. A sufficient, though not necessary, 
condition for this is that .gAB itself is positive-definite, which is generally only true 
for compact semisimple Lie algebras. For what follows, I will only need the weaker 
assumption that .gAB is nondegenerate and that .gaβ = 0, i.e. that the subspace . g/h
can be chosen to be “orthogonal” to . h. Interestingly, this alone already ensures that
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.G/H is a reductive coset space. Namely, a short manipulation using (7.63) gives 

.0 = f δ
αβgδc = f D

αβgDc = −f D
αcgβD = −f δ

αcgβδ , (7.65) 

which implies that .f δ
αc = 0 thanks to the fact that .gαβ is nondegenerate. With the 

assumption that .gaβ = 0, the invariance condition (7.63) also splits into two separate 
conditions on . gab, 

.f d
γ agdb + f d

γ bgad = 0 , f d
cagdb + f d

cbgad = 0 . (7.66) 

The metric (7.64) is invariant under the left action of G, since the MC form 
itself is. It is however also invariant under the right action of .Hgauge as defined 
by (7.34). This follows from the first condition in (7.66). The  G-invariance of 
the metric guarantees the existence of a set of Killing vector fields that realize 
infinitesimal group motions on the coset space. In the local coordinates . πa , these 
are nothing but the functions .ξa

A(π) introduced in (7.36). According to (7.37), we  
have .ξb

A(0)ωa
b(0) = δa

A at the origin. This means that the Killing vectors . ξa(0)
corresponding to generators from .g/h define a local frame dual to .ωa(0), which 
further illuminates the geometric nature of the MC form. Away from the origin, 
the duality between .ω⊥ and the subset of Killing vectors realizing infinitesimal 
translations on .G/H is still expressed by the second line of (7.37). One just has 
to recall that the isotropy group of .x = TU(π)x0 is .Hx = U(π)Hx0U(π)−1. This  
conjugation is supplied by the matrix .νB

A(π) on the left-hand side of (7.37). The  
local basis of 1-forms .ωa(π) is then dual to the local frame consisting of Killing 
vectors of the generators .U(π)QaU(π)−1. 

Example 7.15 

The metric (7.64) is particularly easy to evaluate explicitly on symmetric coset 
spaces. Using the expression (7.48) for . ω⊥ in terms of the linearly transforming 
variable . Σ, we find at once that 

.gG/H = 1

4
tr(dΣ ⊗ dΣ−1) = 1

4
tr(∂aΣ∂bΣ

−1)dπa ⊗ dπb , (7.67) 

where I used the abbreviation .∂a ≡ ∂/∂πa . As an illustration, consider the coset 
space .SU(2)/U(1) ≃ SO(3)/SO(2) ≃ S2 discussed in Example 7.14. Here we find 
that up to an overall factor, 

.gS2 ∝ dn ⊗ dn = dθ ⊗ dθ + sin2 θ dϕ ⊗ dϕ , (7.68) 

where I used standard spherical coordinates to parameterize the unit vector . n. This  
is just an elaborate way to show that the unique .SO(3)-invariant Riemannian metric 
on . S2 is given by projecting (pulling back) the Euclidean metric on . R3 to the sphere.
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It remains to clarify the relationship between the metric (7.64) and the connec-
tions (7.60). The covariant derivative of the metric with respect to these connections, 
in the direction of an arbitrary vector field . v, is easily calculated in the local frame, 

.(∇vgG/H )ab = v[gab] − gcb
λΩc

a(v) − gac
λΩc

b(v) . (7.69) 

The first term vanishes since .gab is merely a set of constants. The sum of the 
second and the third term vanishes for any . λ as a consequence of the combination 
of (7.60) and (7.66). Thus, the whole class of connections (7.60) is compatible with 
the metric (7.64). In case the metric is (pseudo-)Riemannian, it is known that there 
is a unique metric connection without torsion, called the Levi-Civita connection. As  
shown in the previous subsection, this corresponds to the choice .λ = 1/2. 

The metric on the coset space is not uniquely fixed by the requirement of 
invariance under .G×Hgauge. Although it was natural to start the construction 
with the Cartan–Killing form (7.62) on the whole Lie algebra . g and then 
restrict it to the .g/h subspace, we could have as well started from the latter. 
One then finds that possible metrics on .G/H invariant under .G × Hgauge are 
classified by constant symmetric tensors . gab invariant under the adjoint action 
of .Hgauge, that is .gab satisfying the first relation in (7.66). For  .gab that does 
not satisfy the second relation in (7.66), the connections (7.60) with .λ /= 0 are 
not metric-compatible. In particular .1/2Ωa

b is not the Levi-Civita connection 
despite being torsion-free. 
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