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Preface 

Symmetry has accompanied our attempts to understand the inner workings of 
nature ever since the birth of science. The powerful concept of spontaneous 
symmetry breaking (SSB) makes it possible to reconcile the complex experimental 
phenomenology with the simplicity of underlying natural laws. It is therefore a 
necessary ingredient of virtually any textbook on quantum field theory. However, 
a typical textbook-level treatment offers a mere simplified version of the state of 
the art of the subject in its early days of the 1960s. This hardly does justice to the 
richness and beauty of SSB. Moreover, the subject has undergone development in 
the last two decades that has substantially sharpened our understanding of SSB in 
quantum many-body systems. 

This book is an attempt to fill the gap in the literature and to provide an up-to-
date survey of the landscape of SSB from the perspective of effective field theory 
(EFT). In writing the book, I was aiming at learners of all seniority levels who are 
familiar with the basic notions of quantum field theory. The style of the text and 
the mathematical background required will probably be a best match for graduate 
students of theoretical physics. However, the introductory parts of the book might be 
accessible even to advanced undergraduates. Those will benefit from studying first 
Part I of the book, which introduces the concepts of SSB and the EFT description 
thereof at an elementary level. More experienced readers might proceed directly to 
Part II. This offers an overview of the physics of SSB at a standard textbook level. 
However, it already contains numerous details that are hard to find in a student-
friendly form elsewhere. The core techniques of EFT for SSB are developed in 
Parts III and IV. These provide a comprehensive account of the subject, from the 
pioneering works of the 1960s to some recent developments that are otherwise only 
found scattered in the research literature. 

The most important recent results included are, as of writing this book, about 
a decade old. This applies in particular to the completed classification of Nambu– 
Goldstone (NG) bosons (Chap. 6), the EFT formalism for spontaneously broken 
internal symmetries in quantum many-body systems (Chap. 8), and some applica-
tions of EFT to systems with spontaneously broken spacetime symmetry (Chaps. 13 
and 14). However, some of the material included also reflects new works that 
appeared while I was already writing the book. This is the case especially for the 
discussion of scattering of NG bosons in Chap. 10. Finally, Chap. 12 puts forward a 
novel formalism for implementation of spontaneously broken spacetime symmetry

vii



viii Preface

that, to the best of my knowledge, has not appeared in this form before. This 
significantly influences the narrative surrounding the EFT for broken spacetime 
symmetries in Chaps. 13 and 14. My hope is that the change is for the better. 

The one thing I have learned while writing this book is that one’s understanding 
of any topic is a never-ending process of evolution. I would therefore like to 
extend my gratitude to those who helped me along the way. First and foremost, I 
am indebted to Angelo Esposito, Yoshimasa Hidaka, and Jiří Novotný, who have 
read critically parts of the manuscript and given me constructive feedback, helping 
me improve the text on multiple fronts. My personal view of the subject of this 
book and of effective field theory in general has been shaped by interactions with 
numerous mentors and collaborators throughout the years, including Jens O. Ander-
sen, Christoph P. Hofmann, Jiří Hošek, Martin Mojahed, Sergej Moroz, Hitoshi 
Murayama, Jiří Novotný, Riccardo Penco, Aleksi Vuorinen, Haruki Watanabe, and 
Naoki Yamamoto. Last but not least, I would like to thank Stefan Theisen for 
encouraging me to write this book. 

Stavanger, Norway Tomáš Brauner 
September 2023
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Notation and Conventions 

List of Acronyms 

Acronyms that appear in the book and their use in established collocations: 

ChPT Chiral perturbation theory 
CS Chern–Simons (Lagrangian, theory) 
DBI Dirac–Born–Infeld (Lagrangian, theory) 
DM Dzyaloshinskii–Moriya (interaction, term) 
EFT Effective field theory 
EM Energy–momentum (tensor) 
EoM Equation of motion 
GW Goldstone–Wilczek (current) 
IHC Inverse Higgs constraint 
LC Levi-Civita (connection, symbol, tensor) 
LO Leading order 
MC Maurer–Cartan (equation, form) 
NG Nambu–Goldstone (boson, field, mode) 
NLO Next-to-leading order 
QCD Quantum chromodynamics 
SSB Spontaneous symmetry breaking 
VEV Vacuum expectation value 
VPD Volume-preserving diffeomorphism 
WZ Wess–Zumino (action, term) 

For the reader’s convenience, each of these acronyms is also defined in the text the 
first time it appears in a particular chapter. 

Mathematical Conventions 

This book aims at audiences from diverse areas of physics, which makes it virtually 
impossible to maintain coherent notation without alienating some of the readers. I 
therefore try to adopt conventions that are as close as possible to practice, at the cost 
of being somewhat dependent on the context.
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xvi Notation and Conventions

Thus, a “relativistic” notation is used to discuss physical systems whose dynam-
ics is Lorentz-invariant. I assume a flat Minkowski spacetime unless (exceptionally) 
stated otherwise. Much of the content of the book is valid for spacetimes of any 
dimension .D ≥ 3; see Sect. 15.2 for a justification of this constraint. The timelike 
Minkowski metric, 

. gμν ≡ diag(+1,−1,−1, . . . ) ,

is implicitly assumed when needed. Spacetime vectors (or, in .D = 4 dimensions, 
four-vectors) are denoted using italics: .p, q, . . . . An inner product of spacetime 
vectors, implied by the Minkowski metric, is indicated with a dot, 

. p · q ≡ gμνp
μqν = pμqμ = pμqμ .

Here the Einstein summation convention is applied to any pair of repeated indices, 
one covariant and one contravariant. The Levi-Civita tensor .εμνλ··· in Minkowski 
spacetime is normalized so that .ε012··· = 1. Finally, I consistently use the “natural 
units” of high-energy physics where both the speed of light c and the reduced Planck 
constant . ̄h are set to one. Thus, the energy and momentum of a relativistic particle 
are identified respectively with the frequency and wave vector of the corresponding 
quantum-mechanical plane wave. Moreover, the Minkowski square of the energy– 
momentum of the particle is .p2 ≡ p ·p = m2, m being the rest mass of the particle. 

On the contrary, in systems lacking manifest Lorentz invariance, typical for 
applications to condensed-matter physics, I adopt a “nonrelativistic” notation. Here, 
spatial vectors are denoted using boldface italics: .a, b, . . . . The Einstein summation 
convention is still used, but indices are no longer raised or lowered with the 
Minkowski metric. Instead, upper and lower indices are used interchangeably just 
for visual clarity and are treated as equivalent. Formally, this amounts to using the 
flat Euclidean metric, .grs ≡ δrs . The dot product of two spatial vectors can then be 
written in a number of equivalent forms such as 

. a · b = δrsa
rbs = arbr = arbr = arbr = arb

r .

The symbol . ∇ is used for the gradient operator, that is, a spatial-vector differential 
operator with components .∂r ≡ ∂/∂xr . Wherever needed explicitly, the number of 
spatial dimensions is denoted as .d ≡ D − 1.
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1Introduction 

1.1 What Is Effective Field Theory? 

The laws of nature have a hierarchical structure, stratified by the resolution scale 
of our observations. When Isaac Newton published in 1687 his gravitational law 
explaining Kepler’s laws of planetary motion, he did not need to know the details of 
the planets’ inner structure. His theory gives an accurate description of the dynamics 
of the solar system while treating the planets as point-like objects. 

The phenomenological understanding of the basic material properties of solids, 
liquids and gases culminated in the mid-ninetenth century through the work of 
Clausius, Gibbs, Kelvin, Maxwell and others. Much about these different phases 
of matter and the transitions between them can be, and was, learned without insight 
into the molecular structure of matter. It was only about a half-century later that 
quantum mechanics provided an adequate framework for the description of atoms 
and molecules. 

Quantum mechanics itself is extremely successful in explaining the chemical 
properties of different substances and mechanical properties of solids, liquids and 
gases. In fact, virtually all natural phenomena observed at macroscopic scales boil 
down either to gravity or to Maxwell’s electromagnetism combined with quantum 
mechanics. Up to rare exceptions, for instance radioactivity, one does not need to 
understand the structure of atomic nuclei. Nuclear physics itself only advanced later, 
in the 1930s. And again, much about nuclear structure and reactions was understood 
before the discovery in the 1960s that individual nucleons are composed of yet 
smaller particles, the quarks. 

The smallest currently known constituents of matter are quarks, bound in atomic 
nuclei, and leptons, of which the electron is but one example. How do we know 
that the chain of successive divisions into smaller and smaller constituents ends 
here? We do not. Perhaps, one day, even smaller building blocks of nature will be 
discovered. Nevertheless, we do have a successful theory that is able to account for 
experimental observations at the current resolution frontier: the Standard Model of 
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4 1 Introduction

particle physics. This theory does not depend on the details of as yet undiscovered 
microscopic physics. Our ignorance of such microscopic structure currently out of 
reach is subsumed into the values of the input parameters of the Standard Model. 

This is the essence of effective field theory (EFT). Going back to where 
we started, the information about the detailed structure of planets, unknown to 
Newton, could be subsumed into the values of the planets’ masses. Likewise, 
the quantum-mechanical nature of molecular interactions only affects macroscopic 
thermodynamics through material constants such as specific heats or elastic moduli. 
All that quantum mechanics in turn needs to know about atomic nuclei are their 
masses and electric charges. Finally, the quark structure of nucleons only manifests 
itself through binding forces between nucleons that hold the nuclei together. These 
nuclear forces were studied thoroughly already in the mid-1930s by Fermi, Yukawa 
and others, three decades before the existence of quarks was conceived by Gell-
Mann and Zweig. 

Generally speaking, EFT is a framework for a quantitative description of nature 
at certain level of resolution. Whatever physics might exist at shorter, unresolved 
length scales can be taken into account through the values of the parameters of 
the EFT. In the absence of further information about the microscopic physics, 
these parameters have to be determined by experiment. This line of reasoning 
has implicitly accompanied the evolution of physics from its early stages. In the 
second half of the twentieth century, it was however developed into a full-fledged 
quantitative formalism with tremendous impact, from concrete physical applications 
to the philosophy of science. One of the founders of modern EFT, Steven Weinberg, 
offers a nice account of the early history of EFT in [1]. The array of successful 
applications of the EFT program has grown so long in the last decades that I cannot 
even list them all here. Instead, I point the reader to the literature. References 
to introductory-level expositions of EFT with applications are given below in 
Sect. 1.3.1. 

1.2 Broken Symmetry Zoo 

Most macroscopic phenomena observed in nature are dominated by the collective 
dynamics of the fundamental constituents of matter. In hindsight, this is the 
reason why nineteenth-century physics was so successful in describing nature. 
Consider, for instance, a single-component fluid in thermodynamic equilibrium. 
All the thermodynamic properties of the fluid are determined by the values of two 
independent observables such as temperature and pressure. If we now disturb the 
fluid locally, the interactions among the fluid molecules will cause the perturbation 
to propagate. This propagation manifests macroscopically as a sound wave, possibly 
accompanied by a background flow. Such small perturbations from thermodynamic 
equilibrium are described by hydrodynamics, which is an early example of an EFT 
of the modern type. The microscopic input required here is the equation of state of 
the fluid along with a set of transport coefficients. Other than that, hydrodynamics 
is based only on a set of local conservation laws including energy, momentum and
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T<TC T>TC 

Fig. 1.1 Schematic picture of the ordered state of a ferromagnet below the Curie temperature . TC
and of the disordered state above the Curie temperature . TC

whatever other conserved charge the fluid might carry. We know from Noether’s 
theorem that local conservation laws are a consequence of continuous symmetries. 
One can therefore say that the dynamics of fluids near equilibrium is largely dictated 
by symmetry. That is typical of spontaneous symmetry breaking (SSB). 

Let me illustrate this on another example. Ferromagnets are materials which, 
below certain temperature called the Curie temperature, exhibit spontaneous align-
ment of magnetic moments of their atoms. A solid ferromagnet can be pictured as a 
lattice, each of whose nodes carries a single spin degree of freedom, see Fig. 1.1. The  
mutual interactions between the spins may be perfectly isotropic, that is invariant 
under spatial rotations. Yet, the ferromagnetic state below the Curie temperature 
obviously possesses a preferred direction of alignment of the spins. This direction 
is a priori arbitrary and may be set for instance by boundary conditions, not by the 
internal dynamics of the ferromagnet itself. The emergence of an equilibrium state 
that breaks the intrinsic symmetry of the system is a hallmark of SSB. 

A local perturbation of the ferromagnetic state will be propagated by spin– 
spin interactions and manifest itself macroscopically as a spin wave. The existence 
of wave-like excitations which dominate the physics at long distances is another 
general feature of SSB; these are called Nambu–Goldstone (NG) bosons. Just like 
for sound waves in fluids, the dynamics of ferromagnetic spin waves is controlled 
by symmetry. A quantitatively accurate EFT of spin waves can be constructed solely 
based on the underlying spacetime translation invariance, spatial rotation invariance, 
and the fundamental commutation relations of angular momentum (spin). 

The above two examples hint at a particular type of EFT that governs the long-
distance physics of systems with SSB. The relevant degrees of freedom of this EFT 
are the NG bosons whereas the details of the EFT are dictated by symmetry. It 
should therefore not come as a surprise that many of the techniques developed in this 
book rely on the theory of Lie groups, and to a lesser extent on differential geometry. 
The precise mathematical structure of the EFT depends on the kind of symmetry in 
question. It is common to use the term internal symmetry for symmetries that act 
directly on the dynamical degrees of freedom of a given physical system. SSB of an 
internal symmetry lies for instance behind the phenomena of (anti)ferromagnetism
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or superfluidity. On the other hand, a spacetime symmetry is a geometric property 
of space and time. It affects the dynamical degrees of freedom indirectly as fields 
living in the physical spacetime. SSB of spacetime symmetries is more subtle 
yet ubiquitous and relevant for all phases of matter. This is the reason why the 
form of hydrodynamics is largely fixed by the local conservation laws of energy 
and momentum. A different pattern of SSB gives rise to the elasticity theory of 
solids. There are also examples of phenomena that exhibit a combination of SSB 
of internal and spacetime symmetry. These include for instance vortex lattices in 
rotating superfluids or type-II superconductors, anisotropic Cooper pairing in p-
wave superconductors, or the helical order in chiral magnets. 

1.3 Structure of This Book 

The subject of this book is of central importance to quantum field and many-body 
theory. As such, it connects several branches of physics including, but not limited to, 
high-energy physics, condensed-matter physics, astrophysics and cosmology. With 
the explicit aim to cater to these different communities, I have tried my best to make 
the text relevant and comprehensible to audiences with different backgrounds. It is 
up to the reader to judge to what extent this effort has been successful. 

The book aims primarily at graduate students of theoretical physics regardless 
of their concrete specialization. The text should in principle be accessible to 
anyone who has taken a first course on quantum field theory. With this target 
group in mind, I have interspersed the text with two didactic elements. On the 
one hand, there are numbered examples, graphically separated from the main 
text, that mostly serve to illustrate newly introduced theoretical concepts or 
arguments. Occasional more advanced examples mention interesting applica-
tions that would disrupt the line of discussion if included in the text. On the 
other hand, gray blocks such as this one point to important facts or subtleties 
that might otherwise be missed. They are meant to encourage the reader to 
take a critical look at the presented material. 

The mathematics background required to benefit from this book likewise cor-
responds to that of a typical student of theoretical physics. It consists mostly 
of linear algebra, advanced calculus including complex calculus and the calculus 
of variations, and the theory of partial differential equations. The only piece of 
background I assume that might go beyond the curriculum of some graduate 
programs is certain familiarity with group theory and its applications to physics. 
The level and extent as covered by Georgi [2] is fully sufficient; Chaps. 14 and 15 
of [3] are a good start that will get the reader very far. Some more advanced parts 
of the book rely on basic background in differential geometry. Everything that is
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needed in this regard (and presumably more) is covered in a self-contained manner 
in Appendix A. 

In order to make the book potentially useful also for more experienced 
researchers, the content is composed of several layers. In the following Chaps. 2 
and 3, I introduce the concepts of SSB, NG bosons and the EFT description thereof 
through the case study of a simple toy model. This is intended for an uninitiated 
reader. Anybody else can proceed directly to Part II. Chapters 5 and 6 of this part 
give a thorough introduction to the physics of SSB. This serves as a supplement to 
advanced courses on field theory and may thus be suitable for graduate students or 
junior researchers. An expert reader can skip this part as well. 

Parts III and IV constitute the core of this book that will bring the reader 
close to the research frontier. Part III is dedicated to spontaneously broken internal 
symmetries. Here the EFT methodology is by now well-settled, and is developed 
in detail in Chaps. 7 and 8. Chapters 9 and 10 work out some concrete applications 
of the general formalism. In contrast to internal symmetries, spontaneously broken 
spacetime symmetries remain a rather active area of research with a number 
of open questions left to answer. The choice and organization of material in 
Part IV is therefore necessarily more subjective. I however try to draw on the 
analogy with broken internal symmetries as much as possible. This largely fixes 
the content of Chap. 12, which details the necessary modifications to the techniques 
of Chap. 7. The following Chaps. 13 and 14 then develop the EFT for spontaneously 
broken spacetime symmetry using numerous examples, roughly sorted by increasing 
complexity. 

In spite of the rather large extent of the book, I was forced to make compromises 
regarding the choice of material. Sadly, some very exciting aspects of SSB had to 
be left out altogether. Covering them at the same level of detail as in the rest of the 
book would have required a substantial amount of additional background. Some of 
these topics are mentioned at least briefly in Part V. 

Let me conclude this introduction with a remark on the chosen style of the book. 
In writing the text, I have not tried to give a review of all existing research literature 
on the subject. My intention was instead to create a unified narrative that would give 
the reader the tools necessary to critically assess existing results and approaches, 
and to launch a research program of their own. In line with this philosophy, I have 
deliberately adopted a very restrictive policy regarding bibliography. The purpose 
of references in this book is primarily to aid the reader. Generally, I thus only 
include references to point the reader to specified supplementary information, or 
occasionally to fill in a gap in the argumentation. Only when I explicitly borrow an 
idea or example from a single identifiable source, do I credit this with a citation. I 
therefore apologize to all those who might be missing their name in the reference 
list.
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1.3.1 Further Reading 

This book revolves around the application of EFT to physical systems with SSB. 
Most of the graduate-level physics background that is needed to follow the advanced 
parts of the book is covered in Part II. This however does not mean that the text is 
comprehensive. Here is a (biased) list of suggestions for readers who wish to learn 
more details than what this book can cover. 

A monograph fully devoted to EFT was missing on the market for years. This gap 
has now been filled by the new opus by Burgess [4]. A reader seeking a more concise 
introduction to EFT will find a variety of excellent resources with slightly different 
balance of topics included. Thus, for instance, [5] and [6] cover a spectrum of 
applications to particle phenomenology and nuclear physics. Reference [7] includes 
a discussion of physics beyond the Standard Model and of the application of EFT to 
fluid dynamics, which is hard to find in a student-friendly form elsewhere. Cohen’s 
lectures [8] are a comprehensive source on EFT with a very useful list of further 
references including annotations. There are also great texts that mostly focus on 
EFT for NG bosons. This is true especially of [9, 10] and to some extent of [11]. 

SSB is rarely a subject of a dedicated monograph. An exception is the classic 
by Strocchi [12], which will satisfy a mathematically oriented reader desiring a 
rigorous treatment of SSB. The comprehensive early review [13] remains a valuable 
source of insight, including details that seem to have been forgotten by practitioners. 
The lecture notes [14] give a modern introduction to SSB that covers recent 
developments. They omit a discussion of EFT for NG bosons though, and are thus 
nicely complemented by [15] which focuses largely on the latter. Finally, the specific 
topic of classification of NG bosons is addressed in detail by [16]. 
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2Our First Model 

The purpose of this chapter is to introduce the uninitiated reader to the key concepts 
underlying the book. I assume that the reader has taken a first course on quantum 
field theory, but has not necessarily heard about spontaneous symmetry breaking 
(SSB). The field theory tools we are going to need include identification of a 
continuous symmetry and the corresponding conserved current via Noether’s theo-
rem, extraction of interaction vertices from the Lagrangian and their representation 
by Feynman diagrams, and their use in a perturbative calculation of scattering 
amplitudes. 

I will start straight away by introducing a simple toy model for a complex scalar 
field . φ and a Dirac field . Ψ, defined by the Lagrangian density 

.

L = ∂μφ∗∂μφ + m2φ∗φ − λ(φ∗φ)2 + (ϵ∗φ + ϵφ∗)

+ Ψi/∂Ψ − g(ΨLΨRφ + ΨRΨLφ∗) .
(2.1) 

Here m, . λ and g are parameters that are assumed to be real and positive but otherwise 
arbitrary. The parameter . ϵ is complex and should be sufficiently small in a sense 
made more precise below. Finally, the usual slash notation indicates contraction of 
a Lorentz vector with Dirac .γ -matrices, thus ./∂ ≡ γ μ∂μ. I am not going to explain 
the motivation for the choice of this particular model. Let us rather take this as an 
invitation to explore with open mind its interesting physical properties. 

I have chosen the relativistic notation just to make the mathematical anal-
ysis of the model as simple as possible. It is not essential for qualitative 
understanding of the results; much of the calculation could be repeated with 
nonrelativistic (Schrödinger) fields. This would of course require some minor 
modifications of the Lagrangian (2.1). First, the kinetic terms for . φ and . Ψ

(continued) 
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would have to be changed. Second, the chiral components .ΨL,R of the Dirac 
field . Ψ would have to be replaced with two species of nonrelativistic spin-. 1/2
fermions. 

Apart from Poincaré symmetry, guaranteed by the manifestly relativistic setup, 
the model (2.1) has two natural symmetries, 

.

φ → φ , Ψ → exp(iϵV)Ψ (exact) ,

φ → exp(−2iϵA)φ , Ψ → exp(iϵAγ5)Ψ (approximate) .
(2.2) 

In the context of relativistic theories with fermionic degrees of freedom, the trans-
formations with the parameters .ϵV,A are known respectively as vector and axial. 
The axial transformation only becomes a true symmetry of the Lagrangian (2.1) 
in the limit .ϵ → 0. For small nonzero . ϵ, it is therefore sensible to think of it as 
an approximate symmetry. By means of Noether’s theorem, the vector and axial 
symmetries imply the existence of the following currents and conservation laws, 

.

J
μ
V = Ψγ μΨ , J

μ
A = Ψγ μγ5Ψ − 2i(φ∗∂μφ − ∂μφ∗φ) ,

∂μJ
μ
V = 0 , ∂μJ

μ
A = 2i(ϵ∗φ − ϵφ∗) .

(2.3) 

The expression for .∂μJ
μ
A confirms the observation that the axial symmetry becomes 

exact in the limit .ϵ → 0. 
In the rest of this chapter, we will analyze the physical properties of our toy 

model. To that end, we will utilize the basic workflow of perturbative quantum field 
theory, rooted in the theory of oscillations of mechanical systems [1]: 

• Find the ground state (Sect. 2.1). This is the mandatory first step for any quantum 
system and is carried out by minimizing the (classical) Hamiltonian of the model. 

• Identify the spectrum of excitations above the ground state (Sect. 2.2). This is 
based on the part of the Lagrangian, bilinear in the fluctuations of the fields . φ,Ψ

around the ground state. 
• Work out the physical consequences of interactions of the excitations (Sect. 2.2). 

This follows from the part of the Lagrangian of higher orders in the fluctuations. 

Finally, in Sect. 2.3 we will see how the most distinguishing features of the model 
can be captured by a low-energy effective field theory (EFT).
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2.1 Spontaneous Symmetry Breaking 

As the first step, we would like to find the (classical) ground state of the model (2.1). 
To that end, we need the classical Hamiltonian density, 

. H = ∂0φ
∗∂0φ + ∇φ∗ · ∇φ + V (φ, φ∗) − Ψiγ · ∇Ψ + g(ΨLΨRφ + ΨRΨLφ∗) ,

(2.4) 

where the scalar potential .V (φ, φ∗) is given by 

.V (φ, φ∗) ≡ −m2φ∗φ + λ(φ∗φ)2 − (ϵ∗φ + ϵφ∗) . (2.5) 

In the ground state of any quantum system, the vacuum expectation value (VEV) 
of a fermionic field must be zero. We can therefore focus on the scalar sector of 
the Hamiltonian (2.4). The part thereof containing derivatives of .φ, φ∗ is positive-
semidefinite. Hence, the lowest-energy state will be such that the VEV of . φ, . 〈φ〉, 
is a coordinate-independent constant. The value of this constant is determined by 
minimizing the potential .V (φ, φ∗). It is rather obvious that the ground state is 
nontrivial in that .〈φ〉 /= 0. First, for any nonzero . ϵ, the first partial derivatives of 
.V (φ, φ∗) at .φ = φ∗ = 0 are nonzero as well. Second, even in the limit .ϵ → 0, 
the Hessian matrix of .V (φ, φ∗) at .φ = φ∗ = 0 is negative-definite. In the jargon 
of high-energy physics, this is a consequence of the “mass term” .m2φ∗φ in (2.1) 
having a “wrong sign.” 

What is the ground state then? The VEV . 〈φ〉 must be a solution to the condition 
.0 = ∂V/∂φ∗ = −m2φ + 2λφ(φ∗φ) − ϵ. It must therefore have the same complex 
phase as . ϵ, possibly up to an overall minus sign. Let us introduce the notation 

.ϵ = w√
2
eiθ , 〈φ〉 = v√

2
eiθ , (2.6) 

where . θ is the common complex phase and .v,w are real. The value of v 
characterizing the scalar VEV is then related to the parameter w by 

.v(λv2 − m2) = w . (2.7) 

Being a cubic equation, (2.7) has up to three real solutions for v. In the limit .w → 0, 
these are .v = 0,±m/

√
λ. Note that for .ϵ = 0, the potential .V (φ, φ∗) only depends 

on .φ∗φ and thus is insensitive to the phase . θ . There is then a continuum of states of 
lowest energy, having .v = ±m/

√
λ and arbitrary . θ . This can be traced to the fact 

that for .ϵ = 0, the axial transformation in (2.2), which changes the phase of . φ, is an  
exact symmetry of the Lagrangian (2.1). For any field configuration .φ(x), the field 
.eiθφ(x) with constant . θ therefore has the same energy as .φ(x) itself. The existence 
of degenerate ground states is a hallmark of SSB. The defining property of SSB, in 
the context of our toy model, is that the VEV .〈φ〉 is not invariant under the axial 
transformation (2.2). The ground state has a lower symmetry than the Lagrangian.
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The reader might be concerned that having multiple degenerate ground states 
could lead to subtleties. (It does.) In any case, this was not anticipated by our 
algorithmic workflow outlined below (2.3). A simple workaround is to keep nonzero 
. ϵ, which ensures the existence of a unique state of lowest energy. For positive w, 
this is the solution of (2.7) with the highest value of v. Using the closed formula for 
the solutions of a cubic equation would be impractical. It is however easy to find 
an approximate expression for v as long as w is small enough. One just needs to 
rewrite (2.7) in a form suitable for iteration, 

.v = m√
λ

√
1 + w

m2v
= m√

λ

(
1 +

√
λw

2m3 + · · ·
)

= m√
λ

+ w

2m2 + · · · . (2.8) 

We end up with an infinite series with the expansion parameter .
√

λw/m3. This gives 
us a precise mathematical condition for w being “small enough,” .w ⪡ m3/

√
λ. 

The condition guarantees that the value of v in the ground state differs very little 
from .m/

√
λ. In other words, . ϵ now acts merely as a perturbation that enables us 

to pin down a unique ground state, without modifying this state appreciably. In the 
following, I will implicitly assume that the condition .w ⪡ m3/

√
λ is satisfied. 

2.2 Nambu–Goldstone Boson and Its Interactions 

The next step is to identify the spectrum of excitations above our ground state, and 
to work out the consequences of their interactions. To that end, we need to find 
field variables with vanishing VEV that make the bilinear part of the Lagrangian 
diagonal. Such variables correspond to the normal modes, well-known from the 
classical theory of small oscillations [1]. Upon expansion in powers of the new 
fields, the bilinear part of the Lagrangian determines the spectrum of normal modes, 
and the higher-order parts their interactions. 

The change of variables to the normal modes can be thought of as a choice 
of parameterization of . φ. (The Dirac field . Ψ already has a vanishing VEV, so 
we do not have to do anything about it.) There is no a priori preferred choice of 
parameterization. Below, I will illustrate two different options, one of which is 
intuitively natural, whereas the other is more physical and practically convenient. 

2.2.1 Linear Parameterization 

One obvious possibility how to parameterize . φ is to shift it by its VEV, and represent 
the resulting complex field in terms of its real and imaginary parts. This is still not
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completely unambiguous, but a smart choice is for instance1 

.φ(x) = eiθ√
2
[v + χ(x) + iπ(x)] . (2.9) 

Taking out an overall factor . eiθ ensures that the phase . θ drops out of the Lagrangian. 
Inserting this parameterization into (2.1), we get a Lagrangian in terms of . χ, π,Ψ

that can be organized by the dependence on the scalar fields, 

.L = Lvac + Lbilin + Lint + LΨ . (2.10) 

The piece independent of the fields, .Lvac = (3/4)λv4 − (1/2)m2v2, determines up 
to a minus sign the energy density of the ground state. There are no terms linear in 
.χ, π ; this is ensured by their definition (2.9) through removing from . φ its VEV. The 
bilinear part of the Lagrangian is of greatest interest to us, 

.Lbilin = 1

2
(∂μχ)2 − 1

2
m2

χχ2 + 1

2
(∂μπ)2 − 1

2
m2

ππ2 , (2.11) 

where the mass parameters are given by 

.m2
χ = 2m2 + 3w

v
, m2

π = w

v
. (2.12) 

An obvious corollary is that in the limit of exact axial symmetry (.ϵ = 0), the 
field . π becomes massless. This is our first Nambu–Goldstone (NG) boson. It is  
easy to see the origin of the massless mode in the spectrum. With a canonically 
normalized kinetic term for . φ in the Lagrangian, the mass spectrum is determined 
by the eigenvalues of the Hessian matrix of the potential .V (φ, φ∗) in the ground 
state. But I have already argued that for any .φ(x), changing its overall phase 
will give a configuration of the same energy. Hence for any .φ /= 0, there 
is a direction in the field space in which the potential does not change. This 
guarantees that the Hessian has an eigenvector with zero eigenvalue. The existence 
of the NG boson is therefore a direct consequence of the axial symmetry and its 
spontaneous breakdown, independent of the specific Lagrangian. This is the essence 
of Goldstone’s theorem [2, 3]. 

Equation (2.12) likewise tells us that in the limit of exact axial symmetry, that is 
.ϵ = 0, the mass of . χ approaches .m

√
2. The massive counterpart of the NG boson is 

usually referred to as the Higgs boson (or Higgs mode). The interaction part of the

1 The somewhat unusual notation is required for compatibility with the later discussion in Chap. 7. 
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scalar Lagrangian in (2.10) consists of cubic and quartic terms, 

.Lint = −λvχ(χ2 + π2) − λ

4
(χ2 + π2)2 . (2.13) 

Finally, the fermion part of the Lagrangian reads 

.LΨ = ψ(i/∂ − mψ)ψ − g√
2
ψ(χ + iγ5π)ψ , (2.14) 

where I have redefined the Dirac field by .Ψ = exp [−(i/2)θγ5]ψ in order to bring 
the kinetic term into the standard Dirac form. We can see that the originally massless 
fermion has acquired mass, .mψ = gv/

√
2. This is an example of generation 

of fermion mass by spontaneous breaking of chiral symmetry, which plays an 
important role in the Standard Model of particle physics. 

2.2.2 Scattering of Nambu–Goldstone Bosons 

Now that we know the mass spectrum of our model, let us see how the different 
particles interact with each other. We are going to need Feynman rules for the 
interaction vertices, encoded in the Lagrangians (2.13) and (2.14), 

. 

(2.15) 

The undirected solid and dashed lines represent respectively . χ and . π . The oriented 
solid lines stand for the fermion . ψ . These Feynman rules for the interaction 
vertices must be augmented with standard relativistic propagators for .χ, π,ψ with 
respective masses .mχ,mπ,mψ . 

I will work out a few sample scattering processes including the NG boson . π . 
All of these processes will have the simple four-particle kinematics displayed in 
Fig. 2.1. In all cases, I will use the same notation .p1, p2 for the energy–momentum 
of the incoming particles and .p3, p4 for the energy–momentum of the outgoing 
particles. For the sake of brevity, I will also use the Lorentz-invariant Mandelstam 
variables .s ≡ (p1 +p2)

2, .t ≡ (p1 −p3)
2 and .u ≡ (p1 −p4)

2. As a consequence of 
energy and momentum conservation, theMandelstam variables satisfy the constraint 
.s+t+u = m2

1+m2
2+m2

3+m2
4, where .m1,m2,m3,m4 are the masses of the particles 

participating in the scattering process.
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p1 

p2 p4 

p3 

Fig. 2.1 Kinematics of the four-particle scattering processes discussed in this chapter. The arrows 
indicate flow of energy–momentum. In other words, the initial state includes two particles with 
momenta .p1,p2, whereas the final state two particles with momenta . p3,p4

Let us first inspect .ππ → ππ scattering. The invariant amplitude for this process 
is given in terms of Feynman diagrams by 

. (2.16) 

Using the Feynman rules (2.15), this evaluates to 

.Aππ→ππ = 6λ + 4λ2v2
(

1

s − m2
χ

+ 1

t − m2
χ

+ 1

u − m2
χ

)
. (2.17) 

Of particular interest is the behavior of this amplitude at low energies. Given that 
the NG boson . π becomes massless in the limit .ϵ → 0, we can certainly find a 
kinematical regime such that .s, t, u ⪡ m2

χ for sufficiently small w. It then makes 
sense to expand the amplitude in powers of the Mandelstam variables. Upon a bit of 
manipulation using (2.7) and (2.12), one finds 

.Aππ→ππ = − 4λw

m4
χv

(
m2 − w

2v

)
− 4λ2v2

m6
χ

(s2+ t2+u2)+O(s3, t3, u3) . (2.18) 

Interestingly, the leading term vanishes in the limit .ϵ → 0. But that is not all. In 
the same limit, we find that .s = 2p1 · p2 = 2p3 · p4, . t = −2p1 · p3 = −2p2 · p4
and .u = −2p1 · p4 = −2p2 · p3. If we now take the additional limit in which 
the momentum of any of the four particles goes to zero, then all the Mandelstam 
variables, and thus the amplitude .Aππ→ππ , will vanish. This property is concealed 
in (2.17), where all the four individual contributions coming from the diagrams 
in (2.16) have a nonzero limit. The algebraic cancellation leading to the eventual 
vanishing of the amplitude requires an interplay of the cubic and quartic interactions 
in the Lagrangian. This seems to be too much of a coincidence. In fact, it is our first 
example of the Adler zero principle: scattering amplitudes of a NG boson vanish
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in the limit that its momentum goes to zero. In plain terms, low-energy NG bosons 
interact weakly. 

I have just made a much stronger statement than what the single amplitude 
worked out so far would seem to justify. We need more examples to check whether 
the Adler zero principle actually holds. To keep things simple, I will from now 
on take the limit of exact axial symmetry, .ϵ = 0, in which the NG boson . π is 
exactly massless. The next example we will look at is .χπ → χπ scattering, with 
the amplitude 

. (2.19) 

Here a straightforward application of the Feynman rules gives 

.Aχπ→χπ = 2λ + 4λ2v2
(
1

s
+ 3

t − m2
χ

+ 1

u

)
. (2.20) 

Suppose that we again take the momentum of one of the NG bosons, . p2 or . p4, to  
zero. In this limit, .s, u → m2

χ = 2m2 whereas .t → 0. Using finally the fact that 
.v = m/

√
λ, it is easy to see that the whole amplitude .Aχπ→χπ vanishes. 

We are starting to see a pattern. We have now checked two different scattering 
processes, which together involve all the scalar interaction vertices in (2.15) except 
for the . χ4 one. The Adler zero principle seems to hold, but it emerges out of a 
nontrivial interplay of different interaction terms and a cancellation among different 
Feynman diagrams. 

As the last example, consider the scattering of a NG boson off a fermion, . ψπ →
ψπ . The invariant amplitude for this process is 

. (2.21) 

The Feynman rules (2.15) now give us 

.

Aψπ→ψπ = g2

2
u(p3)

(
1

/p1 + /p2 + mψ

+ 1

/p3 − /p2 + mψ

)
u(p1)

+
√
2λgv

t − m2
χ

u(p3)u(p1) ,

(2.22)
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where .u(p1) and .u(p3) are the usual plane-wave Dirac spinors with polarization 
indices suppressed for brevity. In order to further simplify the expression for the 
amplitude, we invert the Dirac propagators and use the Dirac equation for the Dirac 
spinors, .(/p1 − mψ)u(p1) = u(p3)(/p3 − mψ) = 0. Using finally the fact that 
.s − m2

ψ = 2p1 · p2 and .u − m2
ψ = −2p2 · p3, the amplitude (2.22) can be cast as 

.Aψπ→ψπ = g2

4
u(p3)

(
/p2

p1 · p2
+ /p2

p2 · p3

)
u(p1)+

√
2λgv

t − m2
χ

u(p3)u(p1) . (2.23) 

This form is suitable for checking the limit .p2 → 0. Should one prefer to take 
the momentum of the other NG boson, . p4, to zero, it is possible to replace the 
expression in the large parentheses with ./p4/(p3 · p4) + /p4/(p1 · p4). Either way, 
the amplitude does not go to zero in the limit of vanishing momentum of the NG 
boson, in contrast to the previously discussed scalar amplitudes. The problem lies 
in the first term in (2.23), which does not even have a well-defined limit when . p2 or 
. p4 is taken to zero. That is because the fermion propagators become singular in this 
limit. I will only be able to offer a proper discussion of this issue in Chap. 10. For  
the moment, it suffices to keep in mind that the Adler zero principle has exceptions. 

2.2.3 Nonlinear Parameterization 

The whole preceding discussion of scattering amplitudes in our toy model was based 
on the linear parameterization (2.9). However, as already pointed out, this is not the 
only choice. Let us try something else. In elementary complex calculus, one learns 
about two different representations of complex numbers: the linear (“Cartesian”) 
and exponential (“polar”). I will thus replace (2.9) with 

.φ(x) = ei[θ+π(x)/v]
√
2

[v + χ(x)] . (2.24) 

With this parameterization, it is natural to think of . χ as the fluctuation of the 
magnitude of . φ, and of . π as the fluctuation of its phase. 

We can now follow the same steps as in Sect. 2.2.1. Using the partition (2.10) 
of the Lagrangian, we find that the constant part .Lvac and the bilinear part . Lbilin
remain unchanged. This follows from the fact that we are expanding around the 
same ground state as before, and that the parameterizations (2.9) and (2.24) agree to 
first order in .χ, π . The scalar interaction Lagrangian is now different though,2 

.Lint = −λvχ3 − λ

4
χ4 +

(
χ

v
+ χ2

2v2

)
(∂μπ)2 . (2.25) 

2 Remember that I have already set .ϵ = 0. Otherwise, the interaction Lagrangian would include 
additional terms proportional to w. This is in contrast to (2.13), which is correct for any .ϵ ∈ C.
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Likewise, the fermionic part of the Lagrangian (2.14) turns into 

.LΨ = ψ(i/∂ − mψ)ψ − g√
2
χψψ + ∂μπ

2v
ψγ μγ5ψ , (2.26) 

where I have redefined the fermion field as .Ψ = exp[−(i/2)(θ + π/v)γ5]ψ . 
Note that the NG field . π now enters the Lagrangian only through its derivatives. 

This remarkable feature is a direct consequence of the exponential parameteriza-
tion (2.24). Namely, since .π(x) appears therein together with the constant phase . θ , 
any constant field . π must drop out of the Lagrangian as a consequence of the axial 
symmetry. Another way to look at this is that the axial transformation (2.2) acts on 
the fields .χ, π,ψ via 

.χ → χ , π → π − 2vϵA , ψ → ψ . (2.27) 

While . χ and . ψ are left intact by the axial transformation, . π is shifted by a constant. 
Hence, there is no other way to construct a Lagrangian invariant under the axial 
symmetry than to forbid operators containing . π without any derivatives. This is 
typical for NG bosons, and it gives us insight into the origin of the Adler zero 
principle. If the NG field only interacts via its derivatives, it should not be surprising 
that its interactions are suppressed at low energies. 

Let us check how this works explicitly. We will need the Feynman rules for the 
interaction vertices contained in (2.25) and (2.26), 

. (2.28) 

The notation is such that .p, q are energy–momenta carried by the NG legs, oriented 
towards the vertex. A comparison with (2.15) shows that, unsurprisingly, the 
interaction vertices involving only . χ or . ψ remain unchanged. The vertices of . π
now depend on energy–momentum though. 

Since there is no . π4 vertex, the .ππ → ππ amplitude is now given by the last 
three diagrams in (2.16). A brief calculation leads to 

.Aππ→ππ = 1

v2

(
s2

s − m2
χ

+ t2

t − m2
χ

+ u2

u − m2
χ

)
, (2.29) 

which is easily seen to be equivalent to our previous result (2.17) in the limit .ϵ → 0. 
Note, however, that in the exponential parameterization (2.24), the Adler zero 
property is manifest. Each of the three contributions to (2.29) vanishes separately 
when the momentum of any of the four particles is taken to zero. There is no need
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for cancellation between different Feynman diagrams. This is a direct consequence 
of the fact that the NG field . π is now derivatively coupled. An important lesson 
of this exercise is that while the scattering amplitude can be calculated in any 
parameterization of . φ, not all parameterizations are equal. Indeed, some make the 
physical properties of the amplitude manifest. 

I have glossed over the fact that the scattering amplitude .Aππ→ππ , and in 
fact the whole S-matrix, is independent of the choice of parameterization 
of . φ around its VEV. This may seem intuitively obvious. After all, it is 
common lore that physical predictions of a theory should not depend on 
arbitrary choices such as a reference frame or a coordinate system. Yet, 
the mathematical proof of such reparameterization invariance of the S-
matrix is nontrivial [4, 5]. Moreover, the independence on the choice of 
parameterization really only applies to physical observables. Quantities that 
are in principle unobservable, such as off-shell Green’s functions of fields, 
may differ in different parameterizations. Finally, verifying the reparameter-
ization invariance of the S-matrix explicitly beyond the tree-level (classical) 
approximation may require taking carefully account of the Jacobian of the 
functional integral measure [6]. 

The next amplitude to check is that for the .χπ → χπ process. In this case, the 
same four diagrams as in (2.19) contribute, although the individual graphs of course 
take different values in the two parameterizations (2.9) and (2.24). A straightforward 
application of the Feynman rules (2.28) leads to 

.Aχπ→χπ = 1

v2

[
t + (s − m2

χ )2

s
+ 3m2

χ t

t − m2
χ

+ (u − m2
χ )2

u

]
, (2.30) 

which is equivalent to the previous result (2.20). In its present form, the amplitude 
however vanishes manifestly, diagram by diagram, in the limit where the momentum 
of one of the NG bosons is taken to zero. 

The last amplitude we are interested in is for .ψπ → ψπ . Again the same 
diagrams as in (2.21) contribute, but again they take individually different values 
than before due to the different Feynman rules (2.28). The result can be written 
in a number of different forms; one that is not too far from a direct application of 
Feynman rules is 

.

Aψπ→ψπ = 1

8v2
u(p3)

[
/p4(/p1 − mψ)/p2

p1 · p2
− /p2(/p1 − mψ)/p4

p2 · p3

]
u(p1)

+ g√
2 v

t

t − m2
χ

u(p3)u(p1) .

(2.31)
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This time it takes more effort to prove equivalence with our previous result (2.23). 
I will spare the reader of the details, making use of the Dirac equation and the 
properties of the Dirac .γ -matrices. What matters is that the contribution of every 
single diagram now carries a factor of . p2 and . p4 in the numerator, coming from 
the derivative couplings of the NG field . π . Yet, this is not sufficient to make the 
amplitude vanish if either . p2 or . p4 goes to zero. 

2.3 Low-Energy Effective Field Theory 

The spectrum of our model (2.1) contains the massless NG boson . π , the Higgs mode 
. χ with mass .mχ = m

√
2, and the Dirac fermion . ψ with mass . mψ = gv/

√
2 =

mg/
√
2λ. At energies well below the mass scales of .mχ and . mψ , these massive 

modes will not be excited. As a consequence, the physics of the toy model will 
reduce to that of the NG boson . π . Yet, in both parameterizations (2.9) and (2.24), 
the Higgs field is needed even at low energies since it mediates interactions between 
NG bosons. In fact, in the exponential parameterization (2.24), the Lagrangian does 
not contain any direct self-interaction of . π at all. This sounds like an overkill. We 
should not need any other fields just to describe self-interactions of the NG bosons. 
In the spirit of EFT, introduced in Chap. 1, we should be able to describe the low-
energy physics of NG bosons using the . π field alone. 

Such a low-energy EFT should respect the symmetries of the underlying theory 
defined by (2.1). With the transformation rules (2.27), this does not place any 
constraints on .χ,ψ , which can thus be safely dropped. The shift transformation 
of . π , on the other hand, forbids operators without derivatives on . π . It follows that 
the effective Lagrangian for the NG boson must be described by some, a priori 
unknown, function of derivatives of . π . 

We also observed above that derivatives in the interaction vertices suppress 
their contribution to the S-matrix at low energies. More derivatives imply stronger 
suppression. This suggests an organization principle, whereby operators (with the 
same number of . π fields) are hierarchically ordered according to the number of 
derivatives they contain. The dominant contributions to the S-matrix will come from 
operators with the fewest derivatives possible. Since each field . π must still carry 
at least one derivative, the EFT will be dominated by interaction operators with 
exactly one derivative per each . π . Lorentz invariance then constrains the effective 
Lagrangian to 

.Leff = 1

2
(∂μπ)2 +

∞∑
n=2

c2n[(∂μπ)2]n + · · · , (2.32) 

where the ellipsis stands for operators with more than one derivative per . π . 
The as yet undetermined couplings .c2n govern the low-energy properties of 

scattering amplitudes of NG bosons. It remains to find out what these couplings are. 
In a concrete physical system, this could be done by performing a set of scattering
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experiments. It is however also possible to fix the values of . c2n theoretically from 
the underlying model (2.1). I will outline two strategies for doing so. 

2.3.1 Matching 

One possibility is to evaluate a set of scattering amplitudes, or other observables, 
in both the underlying model (2.1) and its low-energy EFT (2.32). Comparing the 
predictions allows one to fix . c2n in terms of the parameters .m, λ, g. In the jargon of 
EFT, this is called matching. 

Let us see how it works in practice on the example of the .ππ → ππ scattering. 
Within the EFT, this is described by the . c4 coupling. There is a single Feynman 
diagram, namely the first diagram in (2.16). The corresponding invariant amplitude 
reads, in terms of the Mandelstam variables, .Aππ→ππ = −2c4(s2 + t2 + u2). Note  
how the dependence on the particle momenta exactly copies the leading contribution 
to the previously calculated amplitude (2.18) in the limit of exact axial symmetry. 
Upon comparing the coefficients of the kinematical invariant .s2 + t2 + u2, we find 

.c4 = λ

4m4 . (2.33) 

The same procedure could in principle be followed to determine . c6, . c8 and so 
on. That would however be a tedious task, since the number of Feynman diagrams 
contributing to an n-particle process grows rapidly with n. Sometimes, an alternative 
approach is feasible whereby the EFT is deduced from the underlying theory directly 
at the level of the Lagrangian. I will now demonstrate how to do this in the case of 
our toy model. 

A cautious reader might be wondering why I have made no mention of 
Feynman diagrams containing loops in all the discussion above. Within the 
toy model (2.1), restricting to tree level amounts to considering the leading 
contribution to scattering amplitudes in a power expansion in the small 
couplings . λ, g. The  result  (2.33) should therefore likewise be interpreted as 
the leading contribution to . c4, induced by the presence of the heavy modes . χ

and . ψ . See Sect. 2.3 of [7] for more details. 

2.3.2 Eliminating the Heavy Modes 

In the exponential parameterization (2.24), all tree-level scattering amplitudes of NG 
bosons in the model (2.1) arise from Feynman diagrams that include virtual . χ modes 
in the propagators. Recall now that quantum field theory at tree level is equivalent
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to its classical limit. Including the effect of virtual . χ quanta is then equivalent to 
solving the classical equation of motion (EoM) for . χ and inserting the result back 
to the Lagrangian. In this way, one can obtain an EFT for . π alone that takes into 
account all the interactions of the original model (2.1). 

Let us see this program through to its end. We start by dropping the fermion 
field and putting the scalar interactions (2.25) together with the kinetic term into a 
complete scalar Lagrangian, 

.L = 1

2
(∂μχ)2 − m2χ2 − λvχ3 − λ

4
χ4 + 1

2

(
1 + χ

v

)2
(∂μπ)2 . (2.34) 

The parameters .m, λ, v are related by .v = m/
√

λ. The EoM for . χ , which we would 
like to solve  for . χ in terms of . π , reads 

.□χ + 2m2χ + 3λvχ2 + λχ3 − 1

v

(
1 + χ

v

)
(∂μπ)2 = 0 . (2.35) 

It is of course not possible to solve this equation in a closed form, we can however 
still extract useful information from it. At low energies, we expect . χ to be very 
small. (The probability to excite virtual . χ quanta far away from their mass shell 
is tiny.) In the first approximation, the terms in (2.35) quadratic and cubic in . χ
can therefore be neglected. We can likewise drop the .□χ term, suppressed by two 
derivatives. Equation (2.35) then becomes a linear algebraic equation for . χ with 
the solution .χ ≈ (∂μπ)2/(2m2v). In order to go beyond this approximation, we 
rewrite (2.35) in a form suitable for iteration, 

.χ = 1

v

[
2m2 + □ − 1

v2
(∂μπ)2 + 3λvχ + λχ2

]−1

(∂μπ)2 . (2.36) 

All terms but .2m2 in the square brackets are small due to containing either 
derivatives or extra factors of . χ . This makes it possible to iteratively expand (2.36) 
in inverse powers of . m2 up to any desired order in . π and its derivatives. Up to and 
including the first subleading contribution to . χ , we thus get 

.χ = (∂μπ)2

2m2v
− [(∂μπ)2]2

8m4v3
+ · · · . (2.37) 

When inserted back into (2.34), this is enough to generate the couplings . c4 and . c6
in the Lagrangian (2.32). When the dust settles, we find .c4 = λ/(4m4) and .c6 = 0. 
The result for . c4 agrees with our previous calculation relying on direct matching of 
scattering amplitudes. It may however come as a surprise that . c6 vanishes.
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To get further insight, we multiply the EoM (2.35) by .χ/2 and add to the 
Lagrangian (2.34), giving  

.L ≃ λv

2
χ3 + λ

4
χ4 + 1

2

(
1 + χ

v

)
(∂μπ)2 . (2.38) 

The symbol . ≃ indicates that I have dropped a surface term. The obtained Lagrangian 
can be further manipulated by rewriting the EoM (2.35) as 

.λχ(χ + 2v) = (∂μπ)2

v2
− □χ

χ + v
. (2.39) 

Using this twice in sequence, it is possible to remove from (2.38) all terms that only 
contain . χ without any derivatives. One thus arrives at an equivalent Lagrangian, 

.L ≃ 1

2
(∂μπ)2 + λ

4m4
[(∂μπ)2]2 −

[
(∂μπ)2

m2
+ χ2

] □χ

4(χ + v)
. (2.40) 

The first two terms here are just the kinetic term for . π and the . c4 coupling. The 
last term, upon expansion in . π using (2.36), contains only operators with more than 
one derivative per . π . This allows one to make the strong conclusion that all the 
couplings in the effective Lagrangian (2.32) except for . c4 vanish. 

2.4 Moral Lessons 

In this introductory chapter, we have analyzed a simple toy model, introducing along 
the way some concepts that will play a key role throughout the rest of the book. Let 
me briefly summarize what we have found, and draw a few morals. 

Lesson #1 Some physical systems have multiple degenerate ground states. Barring 
accidental degeneracy, this happens typically when the system possesses a symme-
try under which the ground states are not invariant. This is the defining property of 
SSB. 

Lesson #2 When the spontaneously broken symmetry is continuous, the spectrum 
of the system contains a massless particle: the NG boson. This is Goldstone’s 
theorem. 

Lesson #3 The scattering amplitude for a process involving a NG boson vanishes in 
the limit where its momentum is taken to zero. That is, NG bosons interact weakly 
at low energy. This is the Adler zero principle. The principle may be violated in case 
taking the NG boson momentum to zero brings some of the virtual particles in the 
process on the mass shell.
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Lesson #4 It is convenient to choose a nonlinear field parameterization in which 
a constant NG field can be eliminated by a symmetry transformation. In such 
a parameterization, the NG field is derivatively coupled, making its physical 
properties of zero mass and weak interactions at low energy manifest. 

Lesson #5 The nonlinear field parameterization allows one to construct a low-
energy EFT in terms of the NG field alone. This captures the physics of NG bosons 
at energies well below the mass scale of other, massive particles present in the 
system. 
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3Generalizations of the Model 

In the previous chapter, I worked out in detail a model of a single complex scalar 
field, in which a continuous symmetry is spontaneously broken. The corresponding 
axial transformations span the Abelian group .U(1). Due to its simplicity, such a 
model is suitable for a first encounter with spontaneous symmetry breaking (SSB). 
However, it falls short of exhibiting the full spectrum of possible realizations of 
SSB. In this chapter, I will therefore generalize the model in two aspects. First, 
I will allow for multiple scalar fields carrying a nontrivial representation of a 
possibly non-Abelian symmetry group. This will take us to the level of standard 
expositions of SSB in textbooks on quantum field theory, oriented towards high-
energy physics. Second, I will pay off my debt to readers with other backgrounds 
and show how the story changes if one gives up relativistic (Lorentz) invariance. 
This is particularly relevant for applications to condensed-matter physics, but also 
concerns dense relativistic matter that one deals with, for instance, in astrophysics 
and cosmology. 

The primary goal of this chapter is to introduce the reader to the intricate 
interplay between the pattern of SSB and the spectrum of the associated Nambu– 
Goldstone (NG) bosons. This goes a long way towards a broad qualitative under-
standing of the behavior of physical systems with SSB at low energies. Namely, as 
explained in the previous chapter, NG bosons tend to interact weakly. In the absence 
of other massless particles, the low-temperature thermodynamics of the system will 
then be accurately described in terms of a free gas of NG bosons. The latter is 
completely characterized by the number of NG bosons in the spectrum and their 
dispersion relations. 

Within the landscape of relativistic field theory, a NG boson is always a massless 
particle whose dispersion relation is fixed by Lorentz invariance. Section 3.1 
illustrates how, in this case, the number of NG bosons can be determined solely 
from group theory. As soon as we give up Lorentz invariance, however, interesting 
things start to happen. Importantly, the NG state in the spectrum requires more data 
to specify than mere rest mass. Section 3.2 shows that the asymptotic behavior of 
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the dispersion relation of NG bosons at low momentum is intimately related to their 
number. Within this chapter, I will not discuss interactions of NG bosons any further, 
since there are no qualitative changes compared to the toy model of Chap. 2. 

3.1 Relativistic Models with Non-Abelian Symmetry 

Suppose we are given a set of real scalar fields, . φi . Similarly to the previous chapter, 
I will introduce at once a class of toy model Lagrangians with a fixed kinetic term 
and a generic potential, 

.L = 1

2
δij ∂μφi∂μφj − V (φ) . (3.1) 

Here .V (φ) is an a priori arbitrary function of . φi , only restricted by the requirements 
that it is bounded from below and its Taylor expansion around .φi = 0 starts at the 
quadratic order. Since any complex scalar field can always be represented by two 
real ones, the class of Lagrangians (3.1) includes our original toy model (2.1). I  
have however dropped the fermion sector of (2.1). I have also set to zero the terms 
proportional to . ϵ and . ϵ∗, as they only serve to select a unique ground state. With 
the experience gathered in Chap. 2, the reader should by now be comfortable with 
degenerate ground states. 

The symmetry of the theory defined by (3.1) will play a key role throughout 
this chapter. I will assume that the fields . φi carry a linear representation of some 
Lie group G. Invariance of the whole Lagrangian (3.1) under transformations from 
G requires that the kinetic term and the potential are invariant separately. Let the 
total number of scalar fields be n. Then the kinetic term alone is invariant under 
continuous rotations of . φi , forming the orthogonal group .SO(n). We therefore 
expect that G is a subgroup of .SO(n), depending on the concrete choice of potential. 
With this in mind, I will focus in the following on the symmetry of the potential 
.V (φ) itself. 

Suppose that the fields . φi transform in some (real) representation . R of G. The  
invariance of the potential .V (φ) under G is expressed by the condition 

.V (R(g)φ) = V (φ) for any g ∈ G . (3.2) 

For continuous symmetries, it is usually more convenient to work with infinitesimal 
transformations. Denoting the generators of G as .QA,B,..., the condition (3.2) then 
boils down to 

.
∂V (φ)

∂φi
R(QA)ijφ

j = 0 for any QA ∈ g , (3.3)
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where . g is the Lie algebra of G. This will be the starting point for the analysis of the 
spectrum of NG bosons below. 

Example 3.1 

It is straightforward to construct a potential that is invariant under the complete 
group of rotations, .SO(n). Indeed, any function of the quadratic invariant, . Ф2 ≡
δijφ

iφj , will do. For instance, a generic .SO(n)-invariant quartic polynomial 
potential will take the form .V (φ) = −m2Ф2 + λФ4, which generalizes (2.5) from 
.n = 2 to any n. The fields . φi transform under the vector representation of .SO(n), in  
which .R(g) are .n × n orthogonal matrices. The generators of .SO(n) are labeled by 
a pair of vector indices; up to overall normalization, .R(Qkl)

i
j equals .δi

kδjl − δi
l δjk . 

3.1.1 Spectrum of Nambu–Goldstone Bosons 

Let us choose a potential .V (φ) so that there is a ground state in which some of 
the fields . φi have a nonzero vacuum expectation value (VEV), .〈φi〉. The elements 
of G that leave the VEVs unchanged form a group H , referred to as the unbroken 
subgroup of G, 

.H ≡ {h ∈ G |R(h)ij 〈φj 〉 = 〈φi〉} . (3.4) 

The generators of H will be labeled as .Qα,β,.... As an immediate consequence 
of (3.4), such unbroken generators satisfy 

.R(Qα)ij 〈φj 〉 = 0 for any Qα ∈ h , (3.5) 

where . h is the Lie algebra of H . In many physical systems,H is a proper subgroup of 
G. That is, there are transformations from G that do change some of the VEVs .〈φi〉, 
hence also the ground state itself. Representing a symmetry of the Lagrangian (3.1) 
but not of the ground state, these are said to be spontaneously broken. 

By definition of symmetry, acting with an element of G on any field configuration 
gives a (possibly different) field configuration with the same energy. Hence, as 
already observed in the previous chapter, the existence of symmetry transformations 
that do not leave the ground state invariant implies the existence of degenerate 
ground states. We also previously found that this is closely related to the presence 
of massless particles in the spectrum. 

Let us see how the NG bosons emerge in the present general setting. We start by 
choosing a basis .{Qα,Qa} of the Lie algebra . g such that .{Qα} is a basis of . h and 
.Qa /∈ h, that is .R(Qa)

i
j 〈φj 〉 /= 0. Next, we take a derivative of (3.3) with respect to
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. φ. Upon some relabeling of indices, this becomes 

.
∂2V (φ)

∂φi∂φj
R(QA)

j
kφ

k + ∂V (φ)

∂φj
R(QA)

j
i = 0 . (3.6) 

Finally, we evaluate this condition in the chosen ground state and use the fact that 
by definition, the first derivatives of .V (φ) in the ground state vanish, 

.
∂2V (φ)

∂φi∂φj

∣
∣
∣
∣
φ=〈φ〉

R(QA)
j
k〈φk〉 = 0 . (3.7) 

This does not say anything about the unbroken generators . Qα , for which the left-
hand side identically vanishes. However, for the broken generators . Qa , this implies 
that .R(Qa)

i
j 〈φj 〉 is an eigenvector of the Hessian matrix of .V (φ) in the ground state 

with zero eigenvalue (zero mode). Moreover, the set of eigenvectors . R(Qa)
i
j 〈φj 〉

with all the different choices of . Qa is linearly independent. To see why, suppose that 
there are coefficients . ca such that .caR(Qa)

i
j 〈φj 〉 = 0. Then by (3.5), .caQa ∈ h. 

But we have assumed that the set .{Qα,Qa} is linearly independent, hence .ca = 0. 
This proves that for every broken symmetry generator . Qa , the Hessian matrix of 

.V (φ) in the ground state has a corresponding independent zero mode. Now recall 
that with a canonically normalized kinetic term as in (3.1), the Hessian of . V (φ)

represents the mass matrix of the theory. That is, its eigenvalues give the squared 
masses of elementary one-particle excitations in the spectrum. Thus, there is one 
NG boson in the spectrum for each broken symmetry generator. The total number 
of NG bosons in the toy model (3.1) is .dimG − dimH . 

What I have just presented is (a simplified version of) one of the original 
proofs of Goldstone’s theorem [1]. It is worth stressing that the number 
of zero modes of the Hessian matrix of the potential may be larger than 
.dimG − dimH . First, I have not proven that the Hessian cannot have zero 
modes entirely unrelated to symmetry. (It can.) Second, it is possible that 
the symmetry group of the potential .V (φ) alone is larger than that of the 
kinetic term, and thus of the whole Lagrangian (3.1). In both cases, a classical 
analysis as worked out in this and the preceding chapter may yield “fake” 
NG bosons. These are scalar fields that have no classical mass term in the 
Lagrangian, but acquire mass solely due to quantum corrections [2, 3]. As 
I will explain in Chap. 6, the vanishing of the mass of true NG bosons is 
guaranteed by SSB. This is an exact result that must also hold within any 
approximation that respects the symmetry of the given theory. 

Let me stress that everything said so far relies on the kinetic term in the 
Lagrangian being a positive-definite quadratic form in the time derivatives 
of . φi . Finding the mass spectrum of a scalar theory such as (3.1) is then 

(continued)
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equivalent to finding the normal modes using the theory of small oscillations 
of classical mechanical systems [4]. Section 3.2 revolves largely around the 
subtleties that arise when this requirement is not satisfied, which may happen 
once we depart from the landscape of Lorentz-invariant field theory. 

Example 3.2 

Consider a model of an n-plet of scalar fields . φi whose Lagrangian is invariant under 
the group .G ≃ SO(n). Any ground state in which at least one of the VEVs .〈φi〉 is 
nonzero will be invariant under the subgroup .H ≃ SO(n − 1) of transformations 
that leave .〈φi〉 fixed. In other words, H consists of field rotations in the . n − 1
directions orthogonal to .〈φi〉. By the general argument developed above, we expect 
the spectrum of such a model to contain .dimSO(n) − dimSO(n − 1) = n − 1 NG 
bosons. Note that the special case of .n = 2 correctly recovers the single NG boson 
we found in Chap. 2. 

3.1.2 Low-Energy Effective Field Theory 

On general grounds, we expect the dynamics of NG bosons to be captured by a low-
energy effective field theory (EFT). In Sect. 2.3.2, I showed how to derive such an 
EFT explicitly from the underlying Lagrangian. Here we do not know the precise 
form of the potential .V (φ) or its symmetry. It is however still possible to gain useful 
insight by following, if only schematically, the same argument as in Sect. 2.3.2. 

The first step towards the EFT for NG bosons is a suitable choice of parameteri-
zation of the fields . φi . The exponential parameterization (2.24) for a single complex 
field can be generalized to the set of real fields . φi as 

.φi(x) = Ui
j (π(x))

[〈φj 〉 + χj (x)
]

. (3.8) 

Here .U(π) is a matrix taking values in the representation . R of G. It encodes a set of 
NG fields . πa , one for each broken generator . Qa . One can for instance choose the 
generators as real antisymmetric matrices and imagine that .U(π) is the orthogonal 
matrix .exp[iπaR(Qa)]. But a precise form of .U(π) is not important. All that I will 
need is that when expanded in powers of . πa , the leading term is .U(0) = 1 and the 
linear term is proportional to .πaR(Qa). Finally, . χi encodes a set of Higgs modes 
whose masses are expected to be nonzero.
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In spite of the suggestive notation, the different components of . χi are not 
linearly independent. By mere counting of degrees of freedom, the number 
of independent Higgs fields should be .n − dimG + dimH . What exactly 
these independent linear combinations of . χi are, can be identified using 
group theory. One just has to decompose the space of . φi into irreducible 
representations of H and drop the representations corresponding to the NG 
bosons. 

The advantage of the parameterization (3.8) is that the matrix .U(π) drops out of 
the potential .V (φ), because the latter is by construction G-invariant, cf. (3.2). The  
fact that .U(π) depends implicitly on spacetime coordinates through the fields . πa(x)

does not need to bother us since the potential does not contain any derivatives. In 
this parameterization, the Lagrangian (3.1) will therefore have a similar structure 
to that in (2.34). The NG fields . πa will only enter through the kinetic term, that is 
together with derivatives. The nonderivative potential, on the other hand, will only 
depend on the Higgs fields . χi . Using the shorthand notation .φ,χ for the vectors 
.φi, χi , the Lagrangian reads explicitly 

. L = 1

2
∂μχ · ∂μχ + ∂μχ · UT ∂μU · (〈φ〉 + χ)

+ 1

2
(〈φ〉 + χ) · ∂μUT ∂μU · (〈φ〉 + χ) − V (χ) . (3.9) 

We would now like, at least in principle, to eliminate . χi by using its equation of 
motion (EoM). It is important to make sure that the expansion of . χi in powers of . πa

generalizing (2.37) starts with a term with (at least) two derivatives and two powers 
of . πa . This in turn requires that the Lagrangian (3.9) does not contain any mixing 
term, linear in both . φi and . χi . The vanishing of such mixing terms can be achieved 
by choosing the vector . χ to be orthogonal to all .R(Qa) · 〈φ〉. 

The rest of the argument is simple. Inserting the solution for . χi in the 
Lagrangian (3.9) gives terms that contain at least four derivatives. The effective 
Lagrangian for the NG fields will however be dominated by operators with only 
two derivatives, since a higher number of derivatives means stronger suppression at 
lower energies. Such two-derivative terms are obtained by simply setting . χi → 0
in (3.9), 

.Leff = 1

2
〈φ〉 · ∂μUT ∂μU · 〈φ〉 + · · · , (3.10) 

where the ellipsis stands for contributions with more than two derivatives. Remark-
ably, this leading contribution to the EFT arises solely from the kinetic term in (3.1). 
The concrete choice of potential .V (φ) does not matter. All we need to know are the
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VEVs .〈φi〉 and the ensuing symmetry-breaking pattern .G → H . These together fix 
the matrices .U(π) up to a choice of parameterization in terms of the NG fields . πa . 

Example 3.3 

Let me illustrate this on the case of spontaneous breaking . SO(n) → SO(n − 1)
by an n-vector field . φ, introduced in Example 3.2. Here  .U(π) takes values in the 
defining (vector) representation of .SO(n). Thus, .U(π) · 〈φ〉 is a vector of the same 
length as . 〈φ〉. By a suitable choice of units, we can make this length whatever we 
want. It is conventional to set .U(π) · 〈φ〉 ≡ vn(π), where . n is a unit vector field 
and v is a dimensionful constant. Then the effective Lagrangian (3.10) acquires the 
form 

.Leff = v2

2
∂μn · ∂μn + · · · , (3.11) 

which is known as the nonlinear sigma model. Note that in spite of the appearance, 
this is not a noninteracting field theory. The unit vector field . n takes values from 
the unit .(n − 1)-sphere, .Sn−1. The NG fields . πa can be thought of as . n − 1
independent coordinates on the sphere. Once a choice of coordinates is made and 
the Lagrangian (3.11) is expanded in powers of . πa , it is going to contain operators 
with two derivatives and an arbitrarily high number of NG fields. 

This example underlines an important distinction between the broader class of 
theories (3.1) and the special case analyzed in Chap. 2, where the symmetry group 
.G ≃ U(1) was Abelian. In the latter case, the leading contribution to the effective 
Lagrangian contains operators with exactly one derivative on each NG field . π . The  
part of the Lagrangian with two derivatives is then just the kinetic term, and any 
interactions necessarily come with four or more derivatives. Once G is allowed to be 
non-Abelian, the two-derivative part of the Lagrangian (3.10) contains interactions 
bringing together an arbitrarily high number of NG bosons. 

Equation (3.10) gives us the first hint that the form of the EFT for NG bosons 
is controlled by symmetry, regardless of the details of the underlying model. The 
Lagrangian can be cast solely in terms of the NG fields . πa , 

. Leff = 1

2
gab(π)∂μπa∂μπb + · · · ,

gab(π) ≡ 〈φ〉 · ∂U(π)T

∂πa

∂U(π)

∂πb
· 〈φ〉 . (3.12) 

I will show in Chap. 8 that the matrix function .gab(π) can be interpreted in terms 
of the geometry of the Lie groups G and H . The dependence of .gab(π) on the NG 
fields is fixed by this geometry. All that is left of the concrete model leading to the 
EFT (3.12) is the numerical value of the constant matrix .gab(0).
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3.2 Going Nonrelativistic 

In all the examples worked out in the previous and this chapter so far, I restricted 
myself to relativistic, Lorentz-invariant field theories. This choice was based on 
technical simplicity. The notation using Lorentz indices is more compact, and 
the calculations of scattering amplitudes in terms of the relativistic Mandelstam 
variables are more transparent. There are good reasons to step out of the box, 
though. First, the great majority of natural phenomena occurs at energies well 
below the scale at which relativity starts to matter. In the spirit of EFT, such 
phenomena should therefore have an accurate description in terms of nonrelativistic 
field theory. Second, as we shall see in this section, relaxing the requirement of 
Lorentz invariance leads to rich phenomenology. The examples developed below 
will prepare the reader for the more thorough discussion of SSB that comes in Part II 
of the book. 

Operationally, what I will do is to modify the previously discussed toy models 
in a way that respects invariance under spatial rotations, and spatial and temporal 
translations. While this does not place any restrictions on the potential .V (φ), the  
kinetic term may now assume a more general form. The Lagrangian may then 
contain independent terms with either two spatial derivatives, or one or two temporal 
derivatives. The very possibility of adding terms with a single time derivative 
constitutes the main qualitative difference compared to relativistic field theory. 

3.2.1 Single Schrödinger Field 

In order to copy as closely as possible the previous discussion of relativistic field 
theory, let us start with the following model, 

.L = 2iMφ∗∂0φ − ∇φ∗ · ∇φ + m2φ∗φ − λ(φ∗φ)2 . (3.13) 

Here . φ is a complex scalar field and . ∂0 stands for a time derivative. This Lagrangian 
is almost identical to the scalar sector of (2.1), except for the temporal part of the 
kinetic term. For .m = λ = 0, the corresponding EoM is the Schrödinger equation 
for a free particle of mass M . It is therefore natural to refer to the field . φ as a 
“Schrödinger field.” 

The analysis of the model (3.13) now follows the same steps as in Chap. 2. The  
classical Hamiltonian density reads 

.H = ∇φ∗ · ∇φ − m2φ∗φ + λ(φ∗φ)2 . (3.14) 

The lowest energy is achieved by a coordinate-independent state such that 

.〈φ〉 = v√
2
eiθ , v ≡ m√

λ
, (3.15)
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where . θ is an arbitrary phase, reflecting the ground state degeneracy. Making use of 
the exponential parameterization (2.24) brings the Lagrangian to the form 

.L = Lvac + Lbilin + Lint . (3.16) 

The vacuum piece equals .Lvac = (1/2)m2v2 − (λ/4)v4 = m4/(4λ). The bilinear 
and interaction parts of the Lagrangian read, respectively, 

. Lbilin = −2Mχ∂0π − 1

2
(∇χ)2 − m2χ2 − 1

2
(∇π)2 ,

Lint = −λvχ3 − λ

4
χ4 − M

v
χ2∂0π −

(
χ

v
+ χ2

2v2

)

(∇π)2 , (3.17) 

where I have discarded some contributions that amount to a total time derivative. 
Just like for the relativistic model (2.1), the NG field . π enters the Lagrangian 

only with derivatives. This is an immediate consequence of the choice of parame-
terization (2.24). Here is where the similarity ends, though. It would be a mistake to 
conclude that . π represents a NG boson and . χ describes a massive, Higgs mode. The 
two fields are mixed by the bilinear term .−2Mχ∂0π , which makes .χ, π canonically 
conjugated to each other. We therefore expect that the spectrum of the model (3.13) 
contains just one type of excitation, which should then be a NG boson. 

In order to describe this excitation more accurately, let us rewrite the bilinear part 
of the Lagrangian in a matrix form, 

.Lbilin ≃ 1

2

(

χ π
)
(∇2 − 2m2 −2M∂0

2M∂0 ∇2

) (

χ

π

)

. (3.18) 

The symbol . ≃ again indicates that I have dropped a surface term. What is entirely 
new compared to relativistic field theory is that the bilinear Lagrangian cannot be 
diagonalized by any local field redefinition. This is just a minor nuisance when 
it comes to finding the spectrum of one-particle states. It is however a major 
complication if one wants to study scattering of the particles. Calculating a cross-
section for a scattering process now requires a careful mapping of one-particle states 
to fields in the Lagrangian, and a revision of rules for phase space integration. Some 
discussion of these issues can be found for instance in [5–7]. 

In order to find the dispersion relation of the NG mode, we Fourier-transform 
and set the determinant of the matrix in (3.18) to zero. This gives the energy E of 
the NG boson as a function of its momentum . p, 

.E(p) = |p|
2M

√

p2 + 2m2 . (3.19) 

Note that in the limit .m → 0, this recovers the conventional dispersion relation of a 
nonrelativistic particle, .E(p) = p2/(2M).
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Once the dispersion relation is no longer fixed by Lorentz invariance and the 
rest mass, it makes little sense to refer to a NG boson as a massless particle. 
Instead, it is common to say that the NG boson is a gapless mode or excitation. 
This is however a bit of a misnomer. The gap in the excitation spectrum is 
defined as .minp E(p). On the other hand, the characteristic property of NG 
bosons is, as I will explain in detail in Chap. 6, that 

. lim
p→0

E(p) = 0 . (3.20) 

Since the excitation energy above a stable ground state is by definition 
positive, a NG boson is always gapless. However, a gapless excitation may 
not necessarily be a NG boson. There are physical systems where the 
dispersion relation of a one-particle excitation develops a local minimum due 
to dynamical effects. This is the case for instance for the “roton” mode in 
superfluid helium [8]. I am however not aware of any example where the 
energy of the excitation at the local minimum could be tuned to zero without 
breaking some symmetry. 

One might hope that it is possible to get rid of the annoying mixing between the 
.χ, π fields by eliminating the Higgs field . χ as in Sect. 2.3.2. Let us see how the 
derivation of the low-energy EFT for . π alone goes. We start by writing the bilinear 
and interaction parts of the Lagrangian (3.17) together as 

.L ≃ −1

2
(∇χ)2 − m2χ2 − λvχ3 − λ

4
χ4 − 1

2

(

1 + χ

v

)2
𝚵 , (3.21) 

up to terms that are a total time derivative. I have introduced a shorthand notation, 

.𝚵 ≡ 2Mv∂0π + (∇π)2 . (3.22) 

Note that the Lagrangian (3.21) is nearly identical to (2.34) except for the replace-
ment .(∂μχ)2 → −(∇χ)2 and a different identification of . 𝚵; in  (2.34) it is simply 
.−(∂μπ)2. We can therefore follow the same steps as in Sect. 2.3.2 to eliminate . χ . 
All we have to do is to take the results thereof and substitute .(∂μπ)2 → −𝚵 and 
.□ → −∇2 wherever appropriate. Thus, an iterative solution of the EoM for . χ is 
obtained at once from (2.36), 

. χ = −1

v

(

2m2 − ∇2 + 𝚵

v2
+ 3λvχ + λχ2

)−1

𝚵

= −
(

1 − ∇2

2m2

)−1
𝚵

2m2v
+ O(𝚵2) . (3.23)
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By using this in (2.40), we then readily determine the first two terms of the effective 
Lagrangian expanded in powers of . 𝚵, 

.Leff ≃ −𝚵

2
+ 𝚵

4m2v2

(

1 − ∇2

2m2

)−1

𝚵 + O(𝚵3) . (3.24) 

While restricted to the lowest orders in . 𝚵 and hence . π , this Lagrangian still 
contains terms with an arbitrarily high number of derivatives. The price for having 
eliminated the kinetic mixing between . χ and . π therefore is an introduction of 
nonlocal operators. This is necessary to get the dispersion relation of the NG boson 
right. Indeed, by substituting from (3.22), we find 

.Leff ≃ 2M2∂0π
∂0

2m2 − ∇2
π − 1

2
(∇π)2 + O(π3) . (3.25) 

Fourier transformation to the energy–momentum space then recovers our previous 
result (3.19). 

3.2.2 Multiple Nambu–Goldstone Fields 

We would of course like to understand also what happens in models that contain 
multiple nonrelativistic scalar fields. Are there any further surprises awaiting us? 
Instead of developing a general picture akin to the relativistic framework of 
Sect. 3.1, I will focus here on some instructive examples. A more complete analysis 
will follow in Chap. 8 using the powerful machinery of EFT. 

Let us first contemplate what we expect to find. Consider a model with multiple 
(real) scalar fields . φi and a generic potential .V (φ) as in (3.1). The argument of 
Sect. 3.1.1 then goes through without change. The conclusion that there is a well-
defined injective mapping from broken symmetry generators to zero modes of the 
Hessian matrix of .V (φ) in the ground state remains. One can say that the number 
of linearly independent NG fields still equals .dimG − dimH , in one-to-one corre-
spondence with the broken generators. However, with a generalized, nonrelativistic 
kinetic term, we are no longer guaranteed the existence of an independent NG mode 
for each such NG field. In presence of terms in the Lagrangian with a single time 
derivative, some of the NG fields may be canonically conjugated to each other. We 
then expect one NG mode in the spectrum to be associated with a pair of NG fields. 

Let me conclude this chapter and the whole Part I of the book with a couple of 
illustrative examples. 

Example 3.4 

Consider the limit .m = λ = 0 of (3.13), already briefly mentioned previously, 

.L = 2iMφ∗∂0φ − ∇φ∗ · ∇φ . (3.26)
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Here the potential is vanishing, hence the real and imaginary parts of . φ are both 
trivially zero modes. There is a single one-particle excitation in the spectrum 
with dispersion relation .E(p) = p2/(2M). This is a theory of a noninteracting 
Schrödinger field, which seems to be rather uninspiring. Things get more interesting, 
though, once we look at the theory from the point of view of symmetry. 

There is a .U(1) ≃ SO(2) symmetry under which the field transforms as 
.φ → eiϵφ. The natural choice of ground state with .〈φ〉 = 0 leaves this symmetry 
unbroken. However, the free Schrödinger theory (3.26) has another symmetry, 
namely .φ → φ + ϵ1 + iϵ2, where both .ϵ1,2 are real parameters. This shifts the 
Lagrangian by a total time derivative and thus leaves the action invariant. Such a 
shift symmetry is necessarily spontaneously broken no matter how the VEV . 〈φ〉
is chosen. At the end of the day, we have two spontaneously broken generators 
but only one NG mode with a quadratic dispersion relation. In some aspects, 
the free Schrödinger theory (3.26) constitutes a rather nontrivial realization of 
a nonrelativistic NG boson. A detailed discussion of SSB in the quantized free 
Schrödinger theory is offered in Sect. 5.3. 

For an example of an interacting field theory, replace the single complex field . φ
in (3.13) with a two-component complex field (doublet) . Ф, 

.L = 2iMФ†∂0Ф − ∇Ф† · ∇Ф + m2Ф†Ф − λ(Ф†Ф)2 . (3.27) 

Here the dagger indicates Hermitian conjugation. This Lagrangian possesses a . U(2)
symmetry. It has an Abelian subgroup, .U(1), under which the doublet . Ф changes 
its overall phase, .Ф → eiϵФ. What is new is the non-Abelian .SU(2) subgroup of 
.U(2) under which .Ф → R(g)Ф, where .g ∈ SU(2) and . R stands for the fundamental 
representation thereof. 

The analysis of the model (3.27) proceeds as before. The classical Hamiltonian 
is minimized by any constant field . Ф such that .〈Ф†Ф〉 = v2/2 ≡ m2/(2λ). 
Geometrically, the set of all degenerate ground states corresponds to a 3-sphere, . S3. 
This is easy to see if one thinks of . Ф as a four-component real vector whose length 
is fixed by minimization of the Hamiltonian. While any of the different degenerate 
ground states is equally good, the conventional choice that simplifies notation is1 

.〈Ф〉 = v√
2

(

0
1

)

. (3.28) 

Out of all the generators of .U(2), the only one (up to normalization) that leaves this 
VEV unchanged is .1 + τ3, where . τ3 is the third Pauli matrix. The remaining three 

1 Any other choice of ground state can be obtained from our .〈Ф〉 by multiplication with a constant 
.U(2) matrix. This generalizes the arbitrary phase . eiθ in (3.15).
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linearly independent generators are spontaneously broken.We therefore expect three 
of the four degrees of freedom contained in . Ф to represent NG fields. 

The low-energy spectrum of the model (3.27) is most easily addressed within an 
EFT for the three NG fields. To that end, we need to choose a parameterization for 
. Ф. Inspired by (3.8), let us set 

.Ф(x) = 1√
2
U(π(x))

(

0
v + χ(x)

)

, (3.29) 

where .U(π) is a unitary matrix encoding the three NG degrees of freedom and . χ is 
a (real) Higgs field. A straightforward manipulation then leads to a Lagrangian of 
the type (3.21), except that we now have to set 

.𝚵 = −2iMv2(U†∂0U)22 + v2(∇U† · ∇U)22 . (3.30) 

The leading contributions to the effective Lagrangian are again given by (3.24). To  
complete the analysis, we parameterize .U(π) in terms of a triplet of NG fields, 
.π(x), 

.U(π) = exp

(
i

v
τ · π

)

. (3.31) 

Up to second order in the NG fields, which is needed to pin down the bilinear part 
of the effective Lagrangian, one finds 

.𝚵 = −2Mv∂0π
3 − 2M(π × ∂0π)3 + δab∇πa · ∇πb + O(π3) . (3.32) 

Upon using this in (3.24), one thus obtains 

. L ≃ 2M2∂0π
3 ∂0

2m2 − ∇2π3 − 1

2
(∇π3)2

+ M(π1∂0π
2 − π2∂0π

1) − 1

2
(∇π1)2 − 1

2
(∇π2)2 + O(π3) . (3.33) 

The dispersion relation of . π3 is the same as for the model (3.13) with a single  
complex field, namely (3.19). The  .π1, π2 sector is however very different. The 
second line of (3.33) is just the free Schrödinger theory in disguise; .π1, π2 are 
the real and imaginary parts of the complex Schrödinger field. The corresponding 
dispersion relation is .E(p) = p2/(2M). It is interesting to note that the bilinear 
Lagrangian in the .π1, π2 sector comes entirely from the term in the effective 
Lagrangian (3.24) linear in . 𝚵. It is therefore insensitive to the choice of potential in 
the underlying Lagrangian (3.27). 

The above discussion has an immediate generalization to a class of models 
described by the same Lagrangian (3.27), in which . Ф is an n-component complex
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field. The symmetry is then .G ≃ U(n). The ground state can still be chosen 
as any constant field such that .〈Ф†Ф〉 = v2/2. It is convenient to pick .〈Ф〉 so 
that, analogously to (3.28), only its the n-th component is nonzero and equals 
.v/

√
2. The symmetry group G is then spontaneously broken down to the subgroup 

.H ≃ U(n − 1), acting on the first .n − 1 components of . Ф. Accordingly, there are 

.dimU(n)−dimU(n−1) = 2n−1 broken symmetry generators as well as NG fields. 
The analysis of the excitation spectrum also proceeds following the same steps, 
except for the necessary complications due to the presence of unitary .n×n matrices. 
At the end of the day, one finds one NG boson with dispersion relation (3.19). The  
remaining .2n − 2 NG fields pair up into .n − 1 modes with the Schrödinger-like 
dispersion relation .E(p) = p2/(2M). 

3.3 Moral Lessons 

In this chapter, I have refined the discussion of toy models for SSB in two ways. 
First, I have allowed for the possibility of multiple scalar fields and multiple broken 
symmetries. I have however remained within the territory of internal symmetries, 
that is symmetries only acting on the fields, independently of spacetime coordinates. 
Second, we explored the consequences of giving up Lorentz invariance, in particular 
by adding to the Lagrangian terms with a single time derivative. With the newly 
gathered experience, let me briefly revisit the four lessons drawn in Sect. 2.4. 

Lesson #1 Nothing to change. The statement made in Sect. 2.4 is generally valid. 

Lesson #2 Suppose that the given system possesses a continuous symmetry group 
G which is spontaneously broken to its subgroup H . If the action of the system is 
Lorentz-invariant, its spectrum contains dim G − dim H massless particles: the NG 
bosons. If the system is not Lorentz-invariant, NG bosons are characterized as one-
particle excitations with dispersion relation E(p) such that limp→0 E(p) = 0. The 
low-energy dynamics of the system can still be captured in terms of dim G− dim H 
NG fields. However, the actual number of NG modes in the spectrum may be lower 
than dim G − dim H . This happens when two NG fields are canonically conjugated 
by a term with a single time derivative, leading to a single NG mode. The dispersion 
relation of such a NG mode is typically quadratic in momentum. 

Lesson #3 Nothing to change. The statement made in Sect. 2.4 is generally valid. 

Lesson #4 It is convenient to choose a field parameterization in which a set of 
constant NG fields can be eliminated by a symmetry transformation. In such a 
parameterization, every operator in the Lagrangian containing NG fields carries 
at least one derivative. If the symmetry group G is non-Abelian, it is however 
not necessary that every NG field carries a derivative. The nonlinear constraints 
imposed by the broken symmetry nevertheless ensure that the Adler zero property
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of scattering amplitudes is preserved, modulo the exceptions alluded to in Lesson 
#3. 

Lesson #5 Nothing to change. The statement made in Sect. 2.4 is generally valid. 
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Part II 

Foundations



4Symmetry and Conservation Laws 

Anybody who has taken a first course on field theory has been exposed to the 
correspondence between symmetry and conservation laws via Noether’s theorem. 
Indeed, I already assumed basic familiarity with this correspondence in Part I. The  
semiclassical analysis of the toy models therein would have hardly been possible 
without the concepts of symmetry of a Lagrangian and Noether current. 

In this chapter, I will however restart the discussion of symmetries largely from 
scratch. With the rich spectrum of modern applications that emerged in the last 
decades, it appears appropriate to start by carefully defining the basic notions. I will 
not attempt to give the most general definition of symmetry. In particular, most of 
this chapter is phrased in the language of classical field theory, tailored to the needs 
of Parts III and IV of the book. Some remarks on a further generalization of the 
concept of symmetry developed here are postponed to the concluding Sect. 15.4. 
Nevertheless, within the conservative exposition offered here, I will devote more 
space to stressing exceptions rather than to repeating ad nauseam familiar concepts. 

4.1 What Is Symmetry? 

In very general terms, any definition of symmetry must include two ingredients. 
The first of these is an object that we wish to declare to be symmetric. The second 
is the operation, or transformation, that should constitute the desired symmetry. In 
classical physics, one usually defines symmetry by its action on a set of local fields. 
I will use the notation . ψi for a set of fields treated as functions .ψi : xμ → ψi(x). 
Here . xμ denotes collectively a set of coordinates, which may for the time being 
include space, time, or both. The case where . xμ includes only time t corresponds to 
mechanics with .ψi(t) as the dynamical variables. In mathematics, it is common to 
refer to . xμ and . ψi respectively as the independent and dependent variables. These 
(in)dependent variables may take values from some linear space or from a more 
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general mathematical structure such as a manifold. In the latter case, . xμ and . ψi are 
identified with the corresponding local coordinates in the sense of Appendix A.1. 

4.1.1 Symmetry Transformations 

Let us initially focus on the second ingredient of symmetry, that is the operation. 
This book revolves largely around the consequences of continuous symmetries, 
for which it is sufficient to consider infinitesimal transformations. We shall deal 
with the following generic class of simultaneous transformations of the fields and 
coordinates, 

. δψi(x) ≡ ψ 'i (x') − ψi(x) = ϵF i[ψ, x](x) ,

δxμ ≡ x'μ − xμ = ϵXμ[ψ, x](x) . (4.1) 

Here . ϵ is an infinitesimal parameter of the transformation. The square bracket 
notation indicates that . F i and .Xμ are local functions of the fields and (a finite 
number of) their derivatives, possibly depending explicitly on the coordinates. 
Transformations of the type (4.1) are known in mathematical literature as gener-
alized local transformations. The terminology is historical. Namely, the class (4.1) 
generalizes so-called point transformations, first studied by Sophus Lie in the 1860s. 
For those, . F i and . Xμ are only allowed to depend on fields and coordinates, not on 
field derivatives. 

Indicating that the fields and coordinates should be transformed simultane-
ously is, while conventional, a red herring. The coordinates are independent 
variables that can be chosen at will. Any nonsingular transformation of 
coordinates can be undone by a change of variables. The content of (4.1) can 
therefore be equivalently encoded in a transformation of the fields alone, 

.ψ 'i (x) − ψi(x) = ϵF i[ψ, x](x) − ϵXμ[ψ, x](x)∂μψi(x) . (4.2) 

This is the evolutionary form of the transformation (4.1). More generally, the 
representation (4.1) of the transformation is ambiguous with respect to the 
redefinition .Xμ → Xμ + X̃μ and .F i → F i + X̃μ∂μψi , where . X̃μ[ψ, x]
is any local function of the coordinates, fields and their derivatives. The 
evolutionary form can thus be viewed as fixing the ambiguity by setting 
.Xμ = 0. 

The class of transformations (4.1) is so broad that it is often convenient to 
consider special cases. Throughout this book, I will use the term internal symmetry
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for a point transformation with .Xμ = 0 and a coordinate-independent . F i , that is 

.δψi(x) = ϵF i(ψ(x)) , δxμ = 0 (internal symmetry) . (4.3) 

A point transformation for which . Xμ is nonzero but only depends on the spacetime 
coordinates will be referred to as a spacetime symmetry, 

. δψi(x) = ϵF i(ψ(x), x) , δxμ = ϵXμ(x) /= 0 (spacetime symmetry) .

(4.4) 

These definitions of internal and spacetime symmetries define the agenda for 
Parts III and IV of the book. The reader should however be warned that these are 
not standard definitions aligned with published literature. Of all the reasons, this is 
because a precise definition of internal and spacetime symmetries is rarely found. 

Example 4.1 

A spacetime translation in the direction of coordinate . xν is most naturally imple-
mented by setting .δνψ

i(x) = 0 and .δνx
μ = ϵδ

μ
ν . According to (4.2), this can be 

equivalently encoded as .δνψ
i(x) = −ϵ∂νψ

i(x) without any change of coordinates. 
Translations are an example of a “purely spacetime” transformation, illustrated in 
the right panel of Fig. 4.1. As the figure shows, one can intuitively think of internal 
and spacetime symmetries as point transformations, generating flows along different 
subspaces of the space of fields and coordinates. 

x 

ψ 

x 

ψ 

Fig. 4.1 Schematic illustration of internal (left panel) and spacetime (right panel) symmetries. 
The oriented curves indicate the flow in the space of fields and coordinates (see Appendix A.3), 
generated respectively by the infinitesimal transformations (4.3) and (4.4). To stress the difference 
between the two cases, the right panel shows a “purely spacetime” transformation, for which .F i =
0
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4.1.2 Object of Symmetry 

I will assume throughout the book that the set of all symmetry transformations, 
generated by the infinitesimal motions (4.1), constitutes a group. Historically, the 
mathematical field of Lie groups arose from the study of symmetries of differential 
equations. This is now a mature subject with a large body of literature devoted to 
it. An interested reader is referred to [1–3] for more details. Very briefly, the major 
applications of symmetry methods to differential equations include: 

• Finding new solutions of a given differential equation from already known ones. 
• Finding solutions respecting the symmetry of the differential equation. 
• Classifying differential equations with given symmetry. 

In physics, it is much more common to define symmetry by invariance of the action 
of a system under some transformation. It is worth stressing that the two notions of 
symmetry are not equivalent. On the one hand, there are differential equations that 
do not originate from any variational principle, yet may have nontrivial symmetries. 
On the other hand, differential equations that do descend from an action functional 
may have a larger symmetry group than the action itself. 

The chief advantage of defining symmetry through an action functional is that 
this gives us a direct link to conservation laws. The link is supplied by the celebrated 
Noether theorem, which is the subject of most of Sect. 4.2. It is in principle also 
possible to define conservation laws directly on the level of a differential equation. 
This allows one to deduce a restricted correspondence between symmetries and 
conservation laws that generalizes the Noether theorem [3]. However, as far as I 
know, such a generalized notion of symmetry is of limited use in physics, and I will 
therefore not pursue it any further. 

4.2 Lagrangian Approach to Symmetry 

The correspondence between continuous symmetries and conservation laws has 
a fascinating history. A nice overview of the developments following Noether’s 
groundbreaking discovery, including an account of the contributions of various 
authors to the subject, can be found in [4]. Noether’s theorem is covered to some 
extent in virtually any textbook on classical mechanics or (classical or quantum) 
field theory. Unfortunately, this is frequently done under unnecessary restrictions 
on the Lagrangian or on the type of symmetry transformation. Here I will present a 
fairly general version of Noether’s theorem following a trick, which to the best of 
my knowledge goes back to Gell-Mann and Lévy [5].
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4.2.1 Noether’s Theorem 

I consider a class of field theories defined by a Lagrangian density . L , which is a 
local function of a set of fields . ψi and their derivatives, 

.S =
∫

dDx L [ψ, x](x) . (4.5) 

Here D is the dimension of the space of independent variables, which may still 
include space, time or both. The Lagrangian density may depend explicitly on the 
coordinates, and there is no restriction on the order of field derivatives it contains. 
Suppose that the action S is invariant under the infinitesimal transformation (4.1).1 

Then there is a local vector field .Jμ[ψ, x], called Noether current, which is 
divergence-less, 

.∂μJμ[ψ, x] = 0 (on-shell) . (4.6) 

The qualifier on-shell reminds us that the conservation law (4.6) only holds for fields 
satisfying the Euler–Lagrange equation of motion (EoM). 

To prove this claim, we evaluate the variation of the action . δS under a modifi-
cation of (4.1) where the parameter .ϵ(x) is allowed to depend on the coordinates. 
With the assumption of invariance under the original transformation (4.1), . δS may 
only depend on derivatives of .ϵ(x). Using integration by parts, it can then always be 
brought to the form 

.δS =
∫

dDx Jμ[ψ, x](x)∂μϵ(x) (off-shell) . (4.7) 

Here the qualifier off-shell indicates that I have not yet imposed the EoM on the 
fields. We can see that the Noether current can be extracted as the coefficient of 
.∂μϵ in the variation of the action. Once the EoM is applied, . δS must vanish by 
the definition of the variational principle. This guarantees the on-shell conservation 
law (4.6). 

Example 4.2 

For a simple example, consider a free massless relativistic scalar field . φ with the 
Lagrangian density .L [φ] = (1/2)(∂μφ)2. This is obviously invariant under a shift 
of the field, .φ → φ+ϵ. Making the shift coordinate-dependent, we find the variation 
of the action .δS = ∫

dDx ∂μφ(x)∂μϵ(x). Comparison with (4.7) tells us that the 
Noether current is .Jμ[φ] = ∂μφ. Conservation of this current is equivalent to the 

1 When evaluating the variation of the action under (4.1), it is allowed to drop whatever boundary 
terms might appear. Thus, the “invariance of the action” should be more accurately interpreted as 
invariance of the Lagrangian density up to the divergence of a vector field.
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EoM for . φ, which is the massless Klein–Gordon equation. As an aside, such an 
equivalence holds for any theory of a real scalar . φ, invariant under the shift . φ →
φ + ϵ. This follows immediately from the variation of the action under the localized 
transformation .φ(x) → φ(x) + ϵ(x), 

.δS =
∫

dDx
δS

δφ(x)
ϵ(x) = −

∫
dDx ∂μJμ[φ, x](x)ϵ(x) , (4.8) 

which implies that .∂μJμ[φ, x](x) = −δS/δφ(x) off-shell. 

The statement of Noether’s theorem is well-known. Instead of collecting numer-
ous examples, I will thus focus on a few comments and illustrations that go 
somewhat off the beaten track. To start with, one should keep in mind that 
the Noether current is not uniquely determined by the assumed symmetry. The 
variation (4.7) only allows us to extract .Jμ[ψ, x] up to addition of a vector field 
whose divergence vanishes off-shell. Such a modification of the current does not 
affect the conservation law (4.6). 

There is another, somewhat more subtle ambiguity in the Noether current, related 
to the definition of the transformation used to produce (4.7). Namely, it would be 
tempting to simply take (4.1) and make it local by replacing .ϵ → ϵ(x). But there 
is a more general possibility that the localized transformation also depends on the 
derivatives of .ϵ(x). All that is required is that for constant . ϵ, the transformation 
reduces to (4.1). To see how this ambiguity affects the Noether current, consider a 
local transformation of the form 

.δψi(x) = ϵ(x)F i[ψ, x](x) + ∂μϵ(x)Kiμ[ψ, x](x) , (4.9) 

where .Kiμ[ψ, x] is an arbitrary local function of the fields and their derivatives. To 
keep things simple, I have used the evolutionary form of the transformation where 
the coordinates . xμ do not change. Applying (4.7), one finds that the new term in the 
transformation rule for . ψi shifts the Noether current by a term linear in .Kiμ[ψ, x], 

.Jμ[ψ, x](x) = Jμ[ψ, x](x)

∣∣∣
K=0

+ Kiμ[ψ, x](x)
δS

δψi(x)
. (4.10) 

The argument is easily generalized to transformations depending on arbitrarily high 
derivatives of .ϵ(x). All the ensuing corrections to the current are proportional to 
.δS/δψi , which defines the EoM for the fields. The moral is that the ambiguity in the 
definition of the localized symmetry transformation leads to new contributions to 
the Noether current that vanish on-shell [6]. Neither this ambiguity does therefore 
affect the conservation law (4.6).
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Example 4.3 

By the naive replacement .ϵ → ϵ(x), we can localize the action of spacetime 
translation in the .xν-direction as .δνψ

i(x) = −ϵ(x)∂νψ
i(x). Assuming that the 

Lagrangian density does not depend explicitly on the coordinates and on higher 
than first derivatives of . ψi , (4.7) gives us the set of currents 

.T μ
ν = δμ

ν L − ∂L

∂(∂μψi)
∂νψ

i . (4.11) 

This is the familiar canonical energy–momentum (EM) tensor. (The unusual overall 
sign is a consequence of the conventions used here.) This EM tensor is known to 
possess some undesired features that have inspired various “improvements” with a 
history as long as Noether’s theorem itself. For an illustration, consider a relativistic 
theory of a scalar field . φ and a vector field . Aμ, defined by 

.L [φ,A] = Aμ∂μφ − 1

2
AμAμ . (4.12) 

The canonical EM tensor of this theory is .T μν = gμνL − Aμ∂νφ; I have raised 
the second index with the flat Minkowski metric . gμν . This EM tensor is notably not 
symmetric, which is a general trait shared by theories that contain nonscalar fields. 
This is quite troubling, if only for the fact that (4.12) is actually the free massless 
scalar theory in disguise. Indeed, using the EoM for the vector field, .Aμ = ∂μφ, 
turns the Lagrangian into .L [φ] = (1/2)(∂μφ)2. 

One way to solve this problem is to note that the naive local translation, 
.δνAμ(x) = −ϵ(x)∂νAμ(x), is not compatible with the EoM for . Aμ. Under a local 
translation, . Aμ should transform as a covariant vector field. Let us therefore try 

. δνφ(x) = −ϵ(x)∂νφ(x) , δνAμ(x) = −ϵ(x)∂νAμ(x) − Aν(x)∂μϵ(x) .

(4.13) 

This is a generalized local transformation of the type (4.9), which leads to the 
correspondingly modified EM tensor, .T̃ μν = gμνL +AμAν − (Aμ∂νφ +Aν∂μφ). 
This is symmetric off-shell, which is ultimately because the transformation (4.13) 
has a well-defined geometric meaning [6]. In the language of Appendix A.3, (4.13) 
represents the Lie derivative of . φ and . Aμ along the vector field .−ϵ(x)∂ν . 

The above example shows that the ambiguity in the definition of the local 
transformation used to produce the Noether current is not just a nuisance. It may 
be used as a tool to construct “improved” Noether currents with desired properties. 
Quite recently, this idea was exploited to systematically construct EM tensors 
tailored to Lorentz, scale and conformal symmetry [7]. For further background 
and references on Noether’s theorem and improvement of Noether currents, see for 
instance [8].
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4.2.2 Tensor Conservation Laws 

Before closing the discussion of Noether’s theorem, let me stress that (4.6), while 
generic, is not the only form the ensuing conservation law may take. It may happen 
that the variation of the action (4.7), or its parts, only depends on higher than first 
derivatives of .ϵ(x). This leads to conservation laws with likewise higher than first 
derivatives of a generalized tensor current. 

Example 4.4 

Consider the theory of a free real Lifshitz scalar field . φ [9], 

.L [φ] = 1

2
(∂0φ)2 − 1

2
(∂r∂sφ)2 . (4.14) 

This Lagrangian is, just like that of the massless relativistic scalar theory, invariant 
under the shift .φ → φ + ϵ. Making the replacement .ϵ → ϵ(x) leads to the variation 

.δS =
∫

dDx
{
J 0[φ](x)∂0ϵ(x) − J rs[φ](x)∂r∂sϵ(x)

}
, (4.15) 

where .J 0[φ] ≡ ∂0φ and .J rs[φ] ≡ ∂r∂sφ. The corresponding on-shell conservation 
law takes the form 

.∂0J
0[φ] + ∂r∂sJ

rs[φ] = 0 . (4.16) 

This is, unsurprisingly, equivalent to the EoM for . φ. 

From now on I will always assume that the coordinates . xμ include both space and 
time. We can then integrate the local conservation law (4.6) over space. Assuming 
asymptotic behavior of the fields at infinity such that the boundary term produced 
by integrating .∂rJ

r [ψ, x] vanishes, we conclude that the integral charge 

.Q ≡
∫

ddx J 0[ψ, x](x) (4.17) 

is time-independent. Curiously, a local conservation law of the type (4.16) is 
stronger. Namely, apart from conservation of Q, it also implies time-independence 
of 

.Qr ≡
∫

ddx xrJ 0[ψ, x](x) . (4.18) 

This looks like the dipole moment of the charge distribution defined by the density 
.J 0[ψ, x]. Conservation laws of the dipole type (4.16) have recently attracted
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considerable attention due to their relevance for so-called fracton phases of matter. 
The reader is referred to [10, 11] for more details about this intriguing subject. 

4.3 Symmetry and Conservation Laws 
in Hamiltonian Formalism 

The Lagrangian formalism provides a natural framework for the discussion of 
symmetries and conservation laws, yet it also offers numerous other benefits. 
For applications to effective field theory (EFT), it is particularly important that 
the formalism works without change for Lagrangians depending on higher field 
derivatives. Also, it makes the transition from classical to quantum theory straight-
forward within the path-integral approach to quantization. However, we will see 
in Chap. 5 that the most striking manifestations of spontaneous symmetry breaking 
(SSB) include peculiar properties of the quantum ground state and the spectrum of 
excitations above it. Such features are not easily addressed using path integrals; here 
it is more natural to use the operator approach to quantization. 

With this in mind, I will now devote some space to the Hamiltonian formalism, 
which is the classical counterpart of the operator language of quantum field theory. 
This comes at the cost of having to restrict the discussion to theories whose action 
functional depends only on the first time derivatives of fields. In return, we gain the 
reverse of Noether’s theorem, allowing us to extract the corresponding symmetry 
from a given conservation law. What follows is a brief survey of the symplectic 
formulation of the Hamiltonian formalism, adapted to local field theory. The 
background developed here will prove useful in Chap. 8. For a further generalization 
of the approach outlined below, see for instance [12]. A reader interested in modern 
developments of this approach is advised to consult [13]. 

4.3.1 Symplectic Formulation of Hamiltonian Dynamics 

The starting point is a manifold called the target space of the given theory. This 
manifold carries a geometric structure fixed by a (locally defined) 1-form . ω called 
the symplectic potential. I will use the notation .ω ≡ ωi(ξ)dξ i where . ξ i is a set of 
(local) coordinates on the target space. The phase space of the theory consists of 
all time-independent fields taking values in the target space. With some abuse of 
notation, I will denote such fields as .ξ i(x). The Hamiltonian of the theory is a local 
functional on the phase space, .H = ∫

ddx H [ξ, x](x). As indicated by the square 
bracket notation, the Hamiltonian density . H is a local function of the fields and 
their spatial derivatives, possibly also depending explicitly on spatial coordinates. 

The action is now a functional of trajectories on the phase space, which I with 
some further abuse of notation denote as .ξ i(x, t) ≡ ξ i(x). It is fixed by the choice
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of symplectic potential and Hamiltonian, 

.S =
∫

dDx
{
ωi(ξ(x))ξ̇ i(x) − H [ξ, x](x)

}
. (4.19) 

The EoM for the variational principle based on (4.19) takes the form 

.Ωij (ξ(x))ξ̇ j (x) = δH

δξ i(x)
, Ωij (ξ) ≡ ∂ωj (ξ)

∂ξ i
− ∂ωi(ξ)

∂ξj
. (4.20) 

Here .δ/δξ i(x) indicates taking the variational derivative of a functional on the phase 
space with respect to .ξ i(x), and substituting the trajectory .ξ i(x) in the result. The 
antisymmetric matrix .Ωij (ξ) collects the components of the symplectic 2-form, . Ω ≡
(1/2)Ωij (ξ)dξ i ∧ dξj . This is an object of central importance for the Hamiltonian 
approach to mechanics and field theory. In the language of Appendix A.8, it is a  
closed 2-form, for it is related to the symplectic potential via .Ω = dω. Moreover, 
the matrix .Ωij (ξ) is assumed to be nonsingular so that (4.20) constitutes a complete 
set of evolution equations for the fields . ξ i . One can then rewrite (4.20) as 

.ξ̇ i (x) = Ωij (ξ(x))
δH

δξj (x)
, (4.21) 

where .Ωij (ξ) is the matrix inverse of .Ωij (ξ). 

Example 4.5 

Consider a Lagrangian field theory of n scalar fields . φi , taking values in . Rn. The  
target space of the Hamiltonian description of this theory is .Rn × Rn, spanned on 
the fields . φi and their conjugate momenta . πi . The Lagrangian and Hamiltonian 
densities are related by the Legendre transform, .L = πiφ̇

i − H . Matching this 
to (4.19) allows one to identify the symplectic potential, .ω(φ, π) = πidφi . The  
symplectic 2-form in turn becomes .Ω(φ, π) = dπi ∧ dφi , and the EoM (4.20) 
reduces to the familiar form 

.φ̇i (x) = δH

δπi(x)
, π̇i(x) = − δH

δφi(x)
. (4.22) 

In general, coordinates .φi, πi on the target space in which the symplectic 2-form 
acquires the simple form .Ω(φ, π) = dπi ∧ dφi are called Darboux coordinates. 
By the Darboux theorem, such coordinates exist at least locally on any manifold 
endowed with a symplectic 2-form (see for instance Sect. 43 of [14]). The global 
existence of Darboux coordinates on the target space is however not guaranteed. 
In fact, it is ruled out whenever the symplectic 2-form is closed but not exact. 
Example 4.7 below provides a nontrivial illustration of this possibility. The geome-
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try of manifolds carrying a symplectic structure is therefore locally identical to that 
of .Rn × Rn, but may be globally nontrivial. 

With the symplectic 2-form at hand, one can define the Poisson bracket of any 
two local functionals .F,G on the phase space, 

.{F,G} ≡
∫

ddx Ωij (ξ(x))
δF

δξ i(x)

δG

δξj (x)
. (4.23) 

A special case is the fundamental Poisson bracket of the phase space coordinates, 

.{ξ i(x), ξ j (y)} = Ωij (ξ(x))δd(x − y) . (4.24) 

In local Darboux coordinates, (4.23) reduces to the textbook definition of Poisson 
bracket in terms of derivatives with respect to canonical coordinates . ψi(x)

and momenta .πi(x). Likewise, (4.24) generalizes the fundamental brackets 
.{ψi(x), ψj (y)} = {πi(x), πj (y)} = 0 and .{ψi(x), πj (y)} = δi

j δ
d(x − y) in 

a way independent of the choice of coordinates on the target space. It is easy to 
check that (4.23) has the following properties. First, .{F,G} is obviously linear in 
both arguments and antisymmetric. Moreover, it satisfies the Leibniz (product) rule. 
Finally, it satisfies the Jacobi identity; this takes more effort to prove and requires 
using the closedness of the symplectic 2-form. 

The Poisson bracket offers a very compact expression for time evolution. For any 
local functional F on the phase space that does not depend explicitly on time, 

.Ḟ =
∫

ddx
δF

δξ i(x)
ξ̇ i(x) = {F,H } , (4.25) 

where I used (4.21). The latter is itself equivalent to .ξ̇ i = {ξ i,H }. In this form, it is 
natural to think of time evolution as a flow on the phase space, generated by H . 

This completes the preparation required to address the main objective of this 
survey of the Hamiltonian formalism: the connection of symmetries and conser-
vation laws. First, everything said in Sect. 4.2 about Noether’s theorem remains 
valid in the present Hamiltonian setting. For the sake of identifying the Noether 
current, there is no difference between the action functionals (4.5) and (4.19). We  
can therefore conclude at once that a continuous symmetry of the action (4.19) 
implies the existence of a current .Jμ[ξ, x] conserved on-shell. This current can 
be identified by localizing the symmetry transformation and using (4.7).
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Example 4.6 

The Hamiltonian density of a free massless relativistic scalar field . φ is . H [φ, π ] =
(1/2)π2 + (1/2)(∇φ)2. The symplectic potential takes the Darboux form, 
.ω(φ, π) = πdφ. The action functional 

.S =
∫

dDx
{
π(x)φ̇(x) − 1

2
π(x)2 − 1

2
[∇φ(x)]2

}
(4.26) 

is invariant under the constant shift .φ → φ + ϵ with . π kept unchanged. Making the 
shift coordinate-dependent, the action varies by . δS = ∫

dDx [π(x)∂0ϵ(x)−∇φ(x) ·
∇ϵ(x)]. This leads to the identification of the temporal and spatial components of 
the Noether current as .J 0[φ, π ] = π , .J r [φ, π ] = −∂rφ = +∂rφ. Upon using the 
EoM for . φ, .φ̇ = π , the current is seen to coincide with that derived in Example 4.2, 
.Jμ[φ] = ∂μφ. 

What is new in the Hamiltonian framework is that we can now reverse Noether’s 
theorem and reconstruct the symmetry from a given conservation law. By (4.25), 
a local functional F that does not depend explicitly on time defines an integral of 
motion (conserved charge) if and only if .{F,H } = 0. Moreover, if F and G are 
both conserved, then so is .{F,G} thanks to the Jacobi identity. Thus, all conserved 
charges of the theory furnish a Lie algebra with respect to the Poisson bracket. 
Finally, every conserved charge generates a flow on the phase space, defined by the 
infinitesimal transformation 

.δξ i(x) = ϵ{ξ i(x), F } = ϵΩij (ξ(x))
δF

δξj (x)
. (4.27) 

We thus have an explicit realization of a geometric transformation, associated with 
a given conserved charge. It remains to demonstrate that this is in fact a symmetry 
of the action (4.19). To that end, a short calculation using the definition of the 
symplectic 2-form shows that under the transformation (4.27), the action varies by 

.δS = −ϵ

∫
dDx

δF

δξ i(x)
ξ̇ i(x) − ϵ

∫
dt {H,F }(t) . (4.28) 

The first term vanishes upon integration, being a total time derivative. The second 
term vanishes by the assumption that F is conserved. This completes the proof 
that every conserved charge (that does not depend explicitly on time) generates a 
symmetry of the action.
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Example 4.7 

The low-energy physics of ferromagnets can be encoded in a continuous field theory 
whose basic degree of freedom is the local spin (magnetization) density. In the 
first approximation, fluctuations of the ferromagnetic equilibrium correspond to 
local changes in spin orientation, while the magnitude M of spin density remains 
constant. The target space is thus equivalent to the sphere . S2. The local spin variable 
.ni(x) is a unit three-vector field that satisfies the fundamental Poisson bracket 

.{ni(x), nj (y)} = 1

M
ε
ij

kn
k(x)δd(x − y) , (4.29) 

reflecting the Lie algebra of angular momentum. This is a prominent example of a 
system with a phase space whose symplectic structure is largely fixed by symmetry 
alone. Other examples can be found in [15]. 

For any Hamiltonian that is a local functional of . ni , the ensuing EoM is . ̇ni =
{ni,H }. Using the chain rule, this can be put into a neat vector form2 

.ṅ(x) = 1

M

δH

δn(x)
× n(x) , (4.30) 

known as the Landau–Lifshitz equation. The concrete form of the Hamiltonian 
depends on the physical system. For isotropic ferromagnets, the simplest choice 
is quadratic in gradients of .n(x), as suggested by the Landau theory of phase 
transitions, 

.H =
∫

ddx
ϱs

2
δij∇ni(x) · ∇nj (x) . (4.31) 

Here . ϱs is the so-called spin stiffness. The EoM then reduces to 

.ṅ(x) = ϱs

M
n(x) × ∇2n(x) . (4.32) 

Matching (4.30) to the general EoM (4.20) allows one to extract the symplectic 
2-form on . S2, corresponding to the Poisson bracket (4.29), 

.Ω = −M

2
εijkn

idnj ∧ dnk . (4.33) 

This is, up to normalization, the area 2-form on . S2, see Example A.7 in 
Appendix A.3. The area 2-form is closed but not exact. Hence the sphere . S2 is 
an example of a symplectic manifold on which globally well-defined Darboux

2 This is a slight abuse of notation. I am using boldface italics both for spatial vectors living in . Rd

with arbitrary d and for the spin vector living on .S2 ⊂ R3. 
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coordinates do not exist. This fact has deep consequences for the topological 
properties of ferromagnets. As to symmetry, the symplectic 2-form (4.33) and 
the Hamiltonian (4.31) are both manifestly invariant under .SO(3) rotations of the 
spin variable . ni . This symmetry corresponds to the conservation of total spin, 
.S = M

∫
ddx n(x). 

Ferromagnets are fascinating materials that exhibit many of the nontrivial 
features of SSB. This example is just a taster; in Sect. 9.2, I will serve the reader 
a much more thorough discussion of the low-energy physics of spin systems. 

4.3.2 Symmetry in Quantum Physics 

Our discussion of symmetries in field theory has been strictly classical so far. 
The implementation of symmetries in quantum field theory comes with numerous 
subtleties. Some of these are related to SSB and I will return to them in the next 
chapter. Here I will therefore just briefly outline the transition from classical to 
quantum physics. As is well known, this transition is streamlined in the Hamiltonian 
formalism. Local functionals on the phase space .F,G, . . . are replaced with 
operators .F̂ , Ĝ, . . . on the Hilbert space of physical states. The commutator of these 
operators is then obtained from the Poisson bracket of their classical counterparts, 
roughly speaking, by the replacement .{F,G} → −i[F̂ , Ĝ]. In the following, 
I will drop the hat on operators, but otherwise closely follow the Hamiltonian 
representation of symmetries outlined above. For the sake of simplicity, I will only 
consider conserved charges that do not explicitly depend on time. 

With this qualification, a Hermitian operator Q represents a conserved charge of 
a quantum system if and only if it commutes with the Hamiltonian, .[Q,H ] = 0. 
By analogy with (4.27), the conserved charge generates a flow on the algebra of 
observables. For a given Hermitian operator A, the shift induced by Q is 

.δA = −iϵ[A,Q] . (4.34) 

This can be extended to a transformation with a finite parameter . ϵ. One can think of 
such a transformation as a map .A → A(ϵ) where .A(ϵ) satisfies the “flow equation” 

.
dA(ϵ)

dϵ
= −i[A(ϵ),Q] = i[Q,A(ϵ)] . (4.35) 

This has the formal solution 

.A(ϵ) = eiϵQA(0)e−iϵQ . (4.36) 

The duality between the Schrödinger and Heisenberg pictures of quantum mechan-
ics suggests an interpretation of (4.36) in terms of a formal unitary operator 
.U(ϵ) ≡ e−iϵQ, acting on the Hilbert space of states. Instead of transforming
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operators via (4.36), we could then equivalently transform physical states by .U(ϵ). 
In either case, the fact that Q is a conserved charge is reflected by the invariance 
of the Hamiltonian under the transformation generated by Q, .H(ϵ) = H or 
.[U(ϵ),H ] = 0. 

As I will demonstrate in Sect. 5.3, when the symmetry in question is sponta-
neously broken, the operator .U(ϵ) may in fact not exist. This is one of the 
quirks of SSB. The symmetry may not be realized by unitary operators on the 
Hilbert space. As we will see, this feature is related to the nontrivial structure 
of the Hilbert space in presence of spontaneously broken symmetries. Even 
then, it makes sense to ask how the symmetry affects results of measurements. 
The transformation of physical observables under the symmetry remains well-
defined and is still expressed by the flow equation (4.35). 

The starting point of the discussion in this chapter was that a definition of 
symmetry requires a transformation and an object. All the objects we have worked 
with so far—actions, Hamiltonians, and EoM—capture the dynamics of the entire 
physical system. It is however no less interesting and useful to study the symmetries 
of a particular state of the system, whether classical or quantum. This brings us to 
the realm of SSB, which will be addressed in detail in the next chapter. 
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5Spontaneous Symmetry Breaking 

In this chapter, I will finally spell out a formal definition of spontaneous symmetry 
breaking (SSB). While the previous chapter was largely phrased in terms of classical 
field theory, I will now switch entirely to the quantum-theoretic language. This 
is more than justified by Sect. 5.3, which gives the reader a flavor of the many 
subtleties, associated with SSB in quantum systems. Some further details on the 
physical aspects of SSB can be found for instance in the recent lecture notes [1]. 
A mathematically oriented reader will find the classic book [2] a unique source of 
additional information. 

To motivate what comes below, let me briefly return to the roots of Lie group 
theory in the study of symmetries of differential equations. Suppose that we 
have a set of (partial) differential equations invariant under some group G of 
transformations. A given solution to the equations can fall into one of two classes: 

(i) The solution is not invariant under G. This is the generic case, in which one can 
use the symmetry to obtain new solutions by the action of transformations from 
G on the solution already known. 

(ii) The solution is invariant under G. Such solutions are special, and are usually 
easier to find than a general solution to the same equations. The reason for this 
is that assuming a priori G-invariance of the solution reduces the number of 
independent variables of the differential equations. 

The situation in quantum physics maps closely to what one does in the context of 
the theory of differential equations. The major difference is that one tends to focus 
on the eigenstates of the quantum Hamiltonian as the primary tool to investigate 
physical observables. For this reason, it is common to start with the ground state, or 
at least a metastable equilibrium state, and study the excitations above it. This is the 
quantum counterpart of the theory of small oscillations in classical mechanics [3]. 
We will see that quantum physics offers natural analogs to both of the above-
mentioned cases (i) and (ii) one encounters in differential equations. In both cases, 
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symmetry has profound consequences for the structure of the excitation spectrum. 
For most of this chapter, I will focus on the symmetry properties of the equilibrium 
state. I will return to the excitation spectrum in Sect. 5.3, and then again in detail in 
Chap. 6. 

5.1 Physical State and Its Symmetry 

A proper discussion of SSB requires a number of new concepts. In order to make the 
narrative as natural as possible, I will augment it with some simple examples from 
condensed-matter and statistical physics. This will highlight the close connection 
between SSB and phase transitions. To parallel the language of statistical mechanics, 
I will represent the state of a quantum system with a density operator (or density 
matrix) . ϱ. Readers who need to refresh their memory of the density operator 
formalism will find an undergraduate-level introduction for instance in [4–6]. 

We already know that symmetries of quantum systems are represented, if only 
formally, by unitary operators. An operator U is said to constitute a symmetry of the 
(pure or mixed) state . ϱ if the density operators . ϱ and .UϱU† are indistinguishable 
by any measurement. The latter means equal probabilities for any specific outcome 
of any measurement, and by extension equal averages of all observables. Insofar as 
our description of the state of the system is free of redundancies, this implies that 
the density operators must be equal, 

.UϱU† = ϱ (symmetry of a state) . (5.1) 

Suppose that . ϱ is a pure state, that is .ϱ = |ψ〉 〈ψ | for some normalized ket-vector 
.|ψ〉 in the Hilbert space. Then a unitary operator U represents a symmetry of . ϱ
if and only if .|ψ〉 is an eigenstate of U . One side of the equivalence is obvious: 
if .|ψ〉 is an eigenstate of U , then .UϱU† = ϱ. To prove the opposite implication, 
write .|〈ψ | U |ψ〉|2 as .〈ψ | U |ψ〉 〈ψ | U† |ψ〉 = 〈ψ | UϱU† |ψ〉 = 1. Thus, the states 
.|ψ〉 and .U |ψ〉 are both normalized to unity and have a unit overlap, which is only 
possible if they are equal up to a phase. It follows that .|ψ〉 is an eigenstate of U . 

In the following, I will frequently use a shorthand notation for the average of an 
observable A in the state . ϱ, 

.〈A〉ϱ ≡ tr(ϱA) . (5.2) 

It is a simple corollary of (5.1) that a symmetry transformation of observables, 
.A → U†AU , does not affect their average in symmetric states. To see this, 
write .〈U†AU〉ϱ as .tr(ϱU†AU) = tr(UϱU†A) = tr(ϱA), which is just .〈A〉ϱ. This  
conclusion holds for discrete and continuous symmetries alike.
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5.1.1 Broken and Unbroken Symmetry 

Suppose now that the Hamiltonian of a system is invariant under a set of trans-
formations that span a group G. These are represented, even if just formally, by 
a set of unitary operators .U(g), .g ∈ G. A randomly chosen state . ϱ will not be 
symmetric under all of these. Those transformations that are symmetries of . ϱ will 
span a subgroup of G called the unbroken subgroup of . ϱ, denoted by 

.Hϱ ≡ {g ∈ G | U(g)ϱU(g)† = ϱ} . (5.3) 

All other elements of G are said to be  spontaneously broken in the state . ϱ. This is  
our formal definition of SSB. 

Example 5.1 

Pure spin states of a spin-.1/2 particle comprise a two-dimensional Hilbert space 
isomorphic to . C2. This Hilbert space carries a representation of the spin group, 
.G ≃ SU(2), generated by the spin operator . S. Consider the projection of spin to a 
direction, defined by the unit vector .n = (sin θ cosϕ, sin θ sinϕ, cos θ), 

.n · S = h̄

2
n · τ = h̄

2

(
cos θ e−iϕ sin θ

eiϕ sinϕ − cos θ

)
. (5.4) 

Here .θ, ϕ are the standard spherical angles and . τ is the vector of Pauli matrices. The 
projected spin operator has an eigenvector .|n,+〉 with eigenvalue .+h̄/2, 

.n · S |n,+〉 = h̄

2
|n,+〉 , |n,+〉 =

(
cos θ/2

eiϕ sin θ/2

)
. (5.5) 

Any nonzero vector in . C2 can, up to an overall factor, be cast in this form with 
a suitable choice of . θ, ϕ. Hence, any nonzero vector in this Hilbert space is an 
eigenstate of a projection of the spin operator to some direction. We conclude that 
for any pure state of a spin-.1/2 particle, the unbroken subgroup is isomorphic to 
.U(1), and consists of spin rotations generated by .n · S. 

How do we check whether a given symmetry is spontaneously broken in a given 
state . ϱ? For the density operators . ϱ and .UϱU† to be different, there must be at least 
one observable A whose average in the two states differs. This observable must itself 
not be invariant under the symmetry, as .U†AU = A would imply 

.〈A〉UϱU† = tr(UϱU†A) = tr(ϱU†AU) = tr(ϱA) = 〈A〉ϱ . (5.6)
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In order to detect SSB, one must therefore use an observable that itself breaks 
the symmetry. This fairly simple observation forms a conceptual foundation of the 
approach to SSB developed in Sect. 5.2. 

One observable that is by definition invariant under all the operators . U(g)

from the symmetry group is the Hamiltonian itself. Hence, for those .g ∈ G that 
are spontaneously broken, the state .U(g)ϱU(g)† differs from . ϱ but has the same 
average energy. This presents a serious conundrum. Suppose that . ϱ is a purported 
ground state of a quantum system. From quantum mechanics, we are used to 
thinking about the ground state as a unique vector in the Hilbert space. But now 
.U(g)ϱU(g)† for any .g /∈ Hϱ is a different state of the same energy. How do we 
know which of the different states having the same energy to choose as the ground 
state? 

We noticed already in Chap. 2 that SSB implies the existence of degenerate 
ground states. This property is so universal that it earned the privilege of being my 
first “moral lesson” in Sect. 2.4. But now our problem is even worse. In the classical 
analysis of Chap. 2, the various candidate ground states could be uniquely labeled 
by the expectation value of a scalar field. In the present fully quantum setting, we 
have not only the set of density operators .U(g)ϱU(g)† with .g ∈ G. We can even 
make linear combinations of these states. In the desire to identify a unique ground 
state, we might wish to take a “democratic average” of all the would-be ground 
states, connected by transformations from G. This is an idea that certainly deserves 
at least consideration, even if it will eventually turn out to be physically incorrect. 
However, the related mathematical procedure of averaging over different elements 
of the symmetry group will actually prove quite useful. 

5.1.2 Symmetrization by Group Averaging 

When performing an average over the symmetry group, I will repeatedly make use 
of a simple statement that I will formulate as a standalone lemma. Let G be a finite 
group or a compact Lie group, and .U(g) be its unitary representation on a finite-
dimensional vector space. Then 

.P ≡ 1

|G|
∑
g∈G

U(g) (5.7) 

is a projector to the subspace of vectors invariant under G. In particular, if the 
representation of G by .U(g) does not contain in its decomposition any singlet 
(that is, a trivial one-dimensional representation of G), then the action of . P on any 
vector gives zero. The proof of the lemma is very simple and I will therefore leave 
it up to the reader. Let me just add a comment on the sum over group elements. 
Equation (5.7) as it stands is only valid for finite groups; .|G| then denotes the 
number of group elements. For compact Lie groups, the sum has to be replaced by 
group integration with an invariant measure on G; .|G| then stands for the volume
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of G with respect to this measure. An interested reader will find more details in 
Chap. 3 of [7]. In the following, I will pragmatically use a sum over .g ∈ G as 
in (5.7) without repeating this disclaimer. 

Let us now get back to density operators. The action of the group G on these 
is defined by .g : ϱ → U(g)ϱU(g)†. This suggests that we consider the following 
statistical average, 

.ϱ̄ ≡ 1

|G|
∑
g∈G

U(g)ϱU(g)† . (5.8) 

This average still satisfies the requirements on a density operator: it is Hermitian, 
positive-semidefinite and has a unit trace. Moreover, it is manifestly invariant under 
all transformations from G. It therefore represents a (mixed) physical state of the 
system which is perfectly symmetric under the whole group G, yet has the same 
average energy as . ϱ. 

In case the original state is pure, .ϱ = |ψ〉 〈ψ |, we have the alternative choice 
to symmetrize the ket-vector .|ψ〉 rather than the density operator, 

. |ψ〉 → P |ψ〉 = 1

|G|
∑
g∈G

U(g) |ψ〉 . (5.9) 

This averaged ket-vector, if well-defined, represents a pure state of the same 
energy as .|ψ〉 that is symmetric under the whole group G. The catch is that 
the ket-vector may be ill-defined. By our symmetrization lemma, this happens 
whenever .|ψ〉 belongs to a representation of G that does not contain any 
singlet. Recall, for instance, Example 5.1. There, the whole Hilbert space . C2

constitutes an irreducible representation of the spin group .G ≃ SU(2). The  
naive average (5.9) therefore gives zero no matter which pure state we start 
from. On the other hand, the average density operator (5.8) must describe 
some physical state of the spin-.1/2 particle. By Schur’s lemma, . ̄ϱ must be 
proportional to the identity operator on . C2. The requirement that . tr ϱ̄ = 1
then fixes the normalization so that .ϱ̄ = (1/2) id, for any choice of the initial 
state . ϱ. This mixed state describes an unpolarized distribution on the Hilbert 
space. 

It seems that we managed to have our cake and eat it. By the simple averaging 
procedure, we can make any state G-invariant without changing its energy. Have we 
done away with the whole notion of SSB? To see that the group averaging is not so 
innocuous, we need to work out the consequences. Consider a set of observables . Ai

such that under the action of the operators .U(g), they transform by some (real and
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orthogonal) matrix representation . R of G, 

.U(g)†AiU(g) = R(g)ijA
j , g ∈ G . (5.10) 

Suppose that all these observables and their nontrivial linear combinations break 
(part of) the symmetry under G. In other words, the representation . R does 
not contain any singlet of G in its decomposition. It then follows as a simple 
consequence of the definition of the density operator (5.8) and the symmetrization 
lemma that 

. 〈Ai〉ϱ̄ = tr(ϱ̄Ai) = 1

|G|
∑
g∈G

tr
[
U(g)ϱU(g)†Ai

]

= 1

|G|
∑
g∈G

tr
[
ϱU(g)†AiU(g)

] = 1

|G|
∑
g∈G

R(g)ij 〈Aj 〉ϱ = 0 . (5.11) 

We could have anticipated this: in the G-invariant state . ̄ϱ, the average of any 
observable breaking the symmetry vanishes. 

Why should this be bad? Any quantum system possesses a distinguished state 
invariant under its symmetry group G: the thermodynamic equilibrium. This is 
represented by the canonical density operator 

.ϱβ ≡ 1

Z
e−βH , (5.12) 

where . β is the inverse temperature and .Z ≡ tr exp(−βH) the canonical partition 
function. The claim therefore is that in thermodynamic equilibrium, any observable 
breaking the symmetry of the system must average to zero. There cannot be any SSB 
in thermodynamic equilibrium. This would be very pretty, were it not in a blatant 
contradiction with empirical evidence. 

Example 5.2 

Solid ferromagnets can be visualized in terms of a lattice of mutually aligned 
spins (see the left panel of Fig. 5.1). The ferromagnetic state obviously breaks 
rotational symmetry. Moreover, the presence of the crystal lattice also breaks spatial 
translations. Both rotations and translations are fundamental symmetries that are 
expected to be preserved by the microscopic dynamics of any material. Hence 
ferromagnetism certainly is a macroscopic manifestation of SSB. 

In nematic liquid crystals (right panel of Fig. 5.1), long organic molecules are 
aligned along the same direction. However, the positions of the molecules are 
random as in ordinary liquids. As far as symmetry is concerned, the molecules can 
be represented by (undirected) rigid rods or ellipsoids with randomized positions.
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ferromagnet nematic 

Fig. 5.1 Comparison of the symmetry-breaking states of ferromagnets and nematic liquid crys-
tals. The symmetry of the former corresponds to that of a regular lattice of oriented, mutually 
aligned spins. Nematics, on the other hand, can be represented by mutually aligned undirected 
rods with random positions 

Hence the nematic state breaks rotational symmetry but not spatial translations. See 
Sect. 2.7 of [8] for basic phenomenology of liquid crystals. 

One of the greatest accomplishments of physics is the discovery that the 
fundamental laws of nature possess a high degree of symmetry. How is it then 
possible at all that we observe so many manifestly asymmetric macroscopic states 
of matter? There seem to be two logical possibilities to avoid a contradiction: 

• The observed asymmetric states are not in thermodynamic equilibrium, and thus 
may be at most metastable. 

• The asymmetry of the observed states is a result of perturbations breaking the 
symmetry of the microscopic interactions. 

Both of these possibilities are relevant. In order to understand their role, we have to 
dive deeper into the thermodynamics of physical systems with SSB. In the next 
section, I will focus solely on the canonical density operator . ϱβ as the state of 
greatest importance for macroscopic observations. 

5.2 Effect of External Perturbations 

In Sect. 5.1.2, I introduced the set of operators . Ai as mere observables. Let us now 
see what happens if we allow them to actually affect the dynamics of the system. To 
that end, I couple each . Ai to an external field . λi and perturb the Hamiltonian of the 
system by a term linear in both, 

.H(λ) ≡ H − λiA
i . (5.13)
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In the case of a spin-.1/2 particle discussed in Example 5.1, . Ai can be chosen for 
instance as the components of the spin operator. The perturbations . λi can then be 
interpreted as an external magnetic field. In general, one can think of . λi as a set 
of “chemical potentials” associated with the observables . Ai . In presence of the 
perturbations, the canonical density operator is deformed to 

.ϱβ,λ = 1

Z(λ)
e−βH(λ) , (5.14) 

and the modified partition function is .Z(λ) = tr e−βH(λ) = tr exp[−β(H − λiA
i)]. 

The symmetry of the Hamiltonian H under the group G is reflected in the invariance 
of the partition function under the transformation .λi

g−→ λjR(g)
j
i of its variables. 

This follows from a simple manipulation, 

. Z(λ) = tr
[
U(g)†e−βH(λ)U(g)

] = tr exp
[ − βU(g)†H(λ)U(g)

]
= tr exp

{ − β
[
H − λiR(g)ijA

j
]} = Z(λR(g)) . (5.15) 

It is convenient to trade the partition function for the free energy .F(λ) by . Z(λ) ≡
e−βF(λ). The free energy inherits the symmetry of the partition function under G-
transformations of . λi . Moreover, it makes it easy to evaluate the statistical average 
of . Ai in presence of the perturbations, 

.〈Ai〉ϱβ,λ = 1

Z(λ)
tr

{
Ai exp

[ − β(H − λjA
j )

]} = −∂F (λ)

∂λi

. (5.16) 

One of the distinguishing features of ferromagnets is that once magnetized by 
an external magnetic field, the macroscopic magnetization persists even after the 
external field is turned off. With this in mind, we will be particularly interested in the 
behavior of .〈Ai〉ϱβ,λ when the volume V of the system is large and simultaneously 
. λi is small. In other words, we want to take the double limit .V → ∞ and .λi → 0. 
This is where interesting things start to happen. 

5.2.1 Taking the Thermodynamic Limit 

In a finite volume and for any nonzero temperature, the partition function, and thus 
the free energy, is analytic in . λi . When all the . λi are small, one can therefore perform 
a Taylor expansion, 

.F(λ) = F(0) + ∂F (λ)

∂λi

∣∣∣∣
λ=0

λi + O(λ2) . (5.17) 

But the linear term in the expansion is forbidden by the G-invariance of the free 
energy combined with the symmetrization lemma. Thus, in a finite volume and at



5.2 Effect of External Perturbations 69

nonzero temperature, one has a well-defined limit 

. lim
λ→0

〈Ai〉ϱβ,λ = 0 . (5.18) 

This should not be particularly surprising. 
How does the behavior of free energy as a function of . λi change when we 

take the limit of infinite volume or zero temperature? Some common mathematical 
features of these two limits may be discussed jointly. It is however the large-volume 
(thermodynamic) limit that is responsible for the existence of macroscopically 
distinct phases of matter. Only in special cases may the zero-temperature limit 
lead to nontrivial physics even in a finite volume; I will give an explicit example 
below. The general discussion of the effects of external perturbations will however 
be phrased in terms of the limit .V → ∞. The temperature will be assumed to be 
fixed and nonzero unless explicitly stated otherwise. 

It is convenient to trade the free energy for its density, .F (λ) ≡ F(λ)/V , which 
is expected to be well-defined for any volume, including the limit .V → ∞. It is  
sensible to assume that even in this limit, the free energy density remains continuous 
as a function of . λi . However, the analyticity may be lost. With regard to the behavior 
of the average of . Ai around the point .λi = 0, there are three possible scenarios: 

• The free energy density remains analytic in the limit .V → ∞. This automatically 
guarantees the validity of (5.18). There is no SSB once the external field . λi is 
turned off. 

• The free energy density becomes nonanalytic in the limit .V → ∞, yet (5.18) 
remains valid. This is an interesting borderline case that is relevant for the physics 
of low-dimensional systems. 

• The free energy density becomes nonanalytic in the limit .V → ∞. The average 
.〈Ai〉ϱβ,λ remains nonzero even if the limit .λi → 0 is subsequently taken. This is 
the paradigm of SSB, illustrated by the right panel of Fig. 5.2. 

F 
λ 

F 
λ 

Fig. 5.2 Schematic illustration of scenarios in which the free energy density . F is (left panel) and 
is not (right panel) analytic at .λi = 0. In the latter case, the observables . Ai may retain a nonzero 
average even in the limit .λ → 0. Its value may however depend on the way the limit is taken
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An alert reader might wonder why I focused on possible nonanalytic behavior 
of . F at .λi = 0, yet tacitly assumed that analyticity survives the thermody-
namic limit for nonzero . λi . This is intimately related to the degeneracy of the 
ground (equilibrium) state. What I really assumed was that adding the external 
fields . λi breaks the symmetry of the system sufficiently so as to make the 
ground state unique. I will further elaborate on this assumption in Sect. 5.2.2. 
The point is that the free energy density typically becomes nonanalytic as 
a consequence of a competition of degenerate ground states with different 
values of .〈Ai〉ϱβ,λ . This is something one expects only at the G-invariant point 
.λi = 0. 

It is instructive to work out at least one concrete example to verify our prediction 
how SSB may emerge when a particular limit of the equilibrium state is taken. 
Ideally, this example should be exactly solvable in order to leave no doubt about the 
validity of the conclusions. It is therefore time to meet the Ising model, the  most  
well-known and best-understood model of ferromagnetism in statistical physics. 
The price for all its benefits is that the limit in which the free energy density becomes 
nonanalytic is realized by taking the temperature to zero; the .V → ∞ limit itself is 
nearly trivial. I will largely follow the treatment in Sect. 2.2 of [9]. 

Example 5.3 

Consider a one-dimensional chain of N spin variables . σi , allowed to take values . ±1. 
The Hamiltonian is given by 

.H = −J

N∑
i=1

(σiσi+1 − 1) − B

N∑
i=1

σi , (5.19) 

where .σN+1 is identified with . σ1 to ensure a periodic boundary condition. The 
(positive) coupling J represents interaction of nearest-neighbor spins, and B an 
external magnetic field. In the absence of the external field, the Hamiltonian (5.19) 
has a .G ≃ Z2 symmetry under the spin flip .σi → −σi . 

The partition function of the model is easily calculable thanks to the fact that the 
exponential of a sum equals a product of exponentials. Thus, the contribution of a 
spin configuration .{σi}Ni=1 to the partition function equals .

∏N
i=1 V (σi, σi+1), where 

.V (σ, σ ') ≡ exp

[
βJ (σσ ' − 1) + βB

2
(σ + σ ')

]
. (5.20)
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The latter can be thought of as a matrix element of the so-called transfer matrix, 

.V =
(

eβB e−2βJ

e−2βJ e−βB

)
. (5.21) 

With the periodic boundary condition on the spins, the partition function of the Ising 
model is now .Z = trV N = λN+ +λN− , where . λ± = coshβB ± √

sinh2 βB + e−4βJ

are the eigenvalues of the transfer matrix. The average spin at each site of the chain 
is obtained by applying (5.16) to .F (B) ≡ F(B)/N , 

. 〈σi〉ϱβ,B
= sinhβB√

sinh2 βB + e−4βJ

λN+ − λN−
λN+ + λN−

N→∞−−−−→ sinhβB√
sinh2 βB + e−4βJ

.

(5.22) 

The total number of spins N plays the role of volume, and sending it to infinity 
amounts to the thermodynamic limit. 

It is obvious from (5.22) that the Ising model does not feature SSB at any nonzero 
temperature. Indeed, whetherN is finite or not, the average spin necessarily vanishes 
in the limit .B → 0 whenever the temperature is nonzero. On the other hand, taking 
the temperature to zero gives 

. lim
β→∞〈σi〉ϱβ,B

= sgnB , (5.23) 

again regardless of whether N is finite or not. Taking subsequently a (one-sided) 
limit of vanishing magnetic field will render the average spin nonzero, with a sign 
aligned with that of the magnetic field. This can be traced to the properties of the 
canonical density operator, which in the zero-temperature limit becomes a projector 
to the subspace of states with lowest energy. For the Ising Hamiltonian (5.19), 

. B > 0 : lim
β→∞ ϱβ,B = |+ + · · ·〉 〈+ + · · ·| ,

B = 0 : lim
β→∞ ϱβ,B = 1

2

( |+ + · · ·〉 〈+ + · · ·| + |− − · · ·〉 〈− − · · ·| ) ,

B < 0 : lim
β→∞ ϱβ,B = |− − · · ·〉 〈− − · · ·| , (5.24) 

where .|+ + · · ·〉 and .|− − · · ·〉 denote respectively the normalized states with all 
spins being positive and negative. Note that the .Z2-symmetric state on the second 
line of (5.24) is unstable: an infinitesimally weak external field will project it onto 
one of the two fully polarized states. 

The example demonstrates that taking an appropriate (infinite-volume or zero-
temperature) limit in the presence of a perturbation may lead to an equilibrium state
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violating the symmetry of the system. The system then remains in an asymmetric 
state even if the perturbation is subsequently removed. It is very important that 
the limits of infinite volume and vanishing external field are performed in this 
order. Indeed, taking .λi → 0 first would delete the average of any symmetry-
breaking observable in line with (5.18). Colloquially, one often speaks of the 
“noncommutativity of limits,” 

. lim
λ→0

lim
V →∞〈Ai〉ϱβ,λ /= lim

V →∞ lim
λ→0

〈Ai〉ϱβ,λ , (5.25) 

as a smoking gun of SSB. 
This concludes our excursion to thermodynamics. We have seen why asymmetric 

macroscopic states of matter can—and why symmetric macroscopic states may 
not—be stable. Identifying a (meta)stable equilibrium is a necessary first step if 
we ever want to understand the spectrum of a quantum system. Our next goal is 
therefore to establish a general operational procedure for finding a stable ground 
state. 

5.2.2 Order Parameter and the Vacuum Manifold 

In the Ising model, it was enough to distinguish the two possible asymmetric 
ground states by the sign of the external field. This is eventually because the model 
possesses a discrete . Z2 symmetry. In systems with continuous symmetry we expect 
a continuum of degenerate equilibrium states. An already familiar example is the 
isotropic ferromagnet, where the spontaneous magnetization can take an arbitrary 
direction in space. Thus, we must be careful when taking the limit of vanishing 
external fields. 

Suppose that we are given a specific set of fields, . ̂λi . I will define the limit of 
vanishing perturbations by changing the magnitude but keeping the “direction” 
of these fields. This can be implemented precisely by using a positive scaling 
parameter . ϵ. We can thus construct a macroscopic thermal state .ϱ∞

β,λ̂
by first taking 

the thermodynamic limit and then removing the external fields via 

.ϱ∞
β,λ̂

≡ lim
ϵ→0+ lim

V →∞ ϱ
β,ϵλ̂

. (5.26) 

In presence of SSB, the average 

.〈Ai〉ϱ∞
β,λ̂

= lim
ϵ→0+ lim

V →∞〈Ai〉ϱ
β,ϵλ̂

(5.27) 

is expected to be nonzero. This is an important proxy of SSB, known as the order 
parameter. It does exactly what its name suggests: parameterize the appearance of 
order in the thermodynamic state of matter described by the density operator .ϱ∞

β,λ̂
. 

Is the state (5.26) stable? This question is closely related to the choice of 
observables . Ai . Namely, the set . Ai should be “complete” in the sense that the values
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of the order parameters .〈Ai〉ϱ∞
β,λ̂

determine the thermal state .ϱ∞
β,λ̂

uniquely. In the 
limit of zero temperature, this means that .ϱ∞

β,λ̂
should be a pure state, analogously 

to the .B /= 0 states in (5.24) for the Ising model. 

Example 5.4 

In the Ising model, the role of the order parameter is played by the average spin . 〈σi〉. 
According to (5.23), in the zero-temperature limit in the presence of a nonzero 
magnetic field, .〈σi〉 acquires one of two possible values. These uniquely specify 
the corresponding symmetry-breaking pure ground states via (5.24). 

In an isotropic ferromagnet, the order parameter can be taken as the average 
of the operator of total spin (magnetization) . S. Specifying the vector .〈S〉 is then 
sufficient to determine the stable macroscopic equilibrium uniquely. This is however 
not necessarily the only possible choice of order parameter. Instead of the three 
components of the vector . Si , we might try to consider for instance the traceless 
symmetric tensor .Tij ≡ SiSj + SjSi − (2/3)δijS

2. This set of operators transforms 
under a nontrivial irreducible representation of the spin group .G ≃ SU(2), hence it 
satisfies the requirements we have imposed on the operators . Ai . The average .〈Tij 〉, 
however, does not specify a unique equilibrium state. Namely, this order parameter 
cannot distinguish between the two states that only differ by the overall sign of . 〈S〉. 

The order parameter is usually much easier to determine, or at least estimate, 
than the actual equilibrium state, .ϱ∞

β,λ̂
. Its real value lies in the fact that it carries 

the same information about the symmetry of the equilibrium state as the density 
operator .ϱ∞

β,λ̂
itself. To see this, just note that 

.〈Ai〉U(g)ϱ∞
β,λ̂

U(g)† = tr
[
U(g)ϱ∞

β,λ̂
U(g)†Ai

] = R(g)ij 〈Aj 〉ϱ∞
β,λ̂

. (5.28) 

This shows that for any .g ∈ G that is a symmetry of .ϱ∞
β,λ̂

, the matrix .R(g) leaves 
the order parameter unchanged. But the opposite is true as well. For any .g ∈ G such 
that .R(g)ij 〈Aj 〉ϱ∞

β,λ̂
= 〈Ai〉ϱ∞

β,λ̂
, the assumed completeness of the set of operators 

. Ai guarantees that the states .ϱ∞
β,λ̂

and .U(g)ϱ∞
β,λ̂

U(g)† are the same. The pattern of 
SSB in a macroscopic equilibrium state is therefore completely determined by the 
associated order parameter(s). 

Finally, let me briefly return to the correspondence between the order parameter 
and the pure ground state (vacuum) obtained by taking the zero-temperature 
limit of (5.26). It is in principle possible that the physical system possesses two 
completely unrelated ground states of equal energy. (This happens for instance at 
a first-order phase transition.) Barring such accidental degeneracy, however, one 
expects the possible candidate vacua to be mutually related by (broken) symmetry 
transformations. It is therefore sufficient to know just one of the vacuum states; it 
should be possible to reconstruct all the others by the action of the operators .U(g), 
.g ∈ G. We will see in Sect. 5.3 that this procedure is subtle in the limit of infinite
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volume. What one can however do safely is to trade the chosen vacuum state . ϱ
for the corresponding order parameter .〈Ai〉ϱ. All other possible values of the order 
parameter can then be generated by acting on .〈Ai〉ϱ with the matrices .R(g). 

In case G is a Lie group, the possible vacuum values of the order parameter span 
a manifold of dimension .dimG − dimHϱ; see Appendix A.1 for the mathematical 
background. This is known as the vacuum manifold. The central tenet of this book 
is that the physics of systems with spontaneously broken continuous symmetry can 
be captured by a low-energy effective field theory (EFT). The form of this EFT 
is largely fixed by the geometry of the vacuum manifold. The latter can in turn 
be understood in terms of G and its unbroken subgroup . Hϱ. To develop the EFT 
framework based on the pattern of SSB is the goal of Parts III and IV of the book. 

Example 5.5 

Quantum chromodynamics (QCD) is a gauge theory of the strong nuclear inter-
action. Strongly-interacting matter is represented by the quark field . Ψα

i . This is a  
Dirac spinor where . α is an index of the fundamental representation of the . SU(3)
gauge group of QCD. The index i represents quark flavor and belongs to the 
fundamental representation of .SU(nf). In applications, the number of relevant (light) 
quark flavors . nf is usually two or three. 

In the limit of vanishing quark masses, QCD possesses a . G ≃ SU(nf)L ×
SU(nf)R symmetry, consisting of independent flavor transformations of the left-
and right-handed components of . Ψα

i . In the ground state of QCD, this symmetry 
is spontaneously broken by the complex order parameter .〈Σij 〉 ≡ 〈δαβΨ

α

iLΨ
β
jR〉. 

Note that .tr(Σ + Σ†) is the usual mass term for a Dirac spinor, here with equal 
masses for all quark flavors. We can therefore think of “switching on” small equal 
quark masses as an analog of the external field . λi that selects a particular vacuum 
state. In this vacuum state, .〈Σij 〉 = σδij , where the constant . σ is an intrinsic 
scale of QCD. The unbroken, “vector” subgroup of G, .H ≃ SU(nf)V, consists of 
identical unitary transformations of left- and right-handed quarks. Broken symmetry 
transformations convert this vacuum to other vacuum states, in which .〈Σij 〉/σ is 
unitary. The vacuum manifold is therefore diffeomorphic to the Lie group .SU(nf). 

5.2.3 Intermediate Summary 

We have taken quite a conceptual tour to arrive at the notions of order parameter and 
vacuum manifold, essential for understanding the physics of SSB. Let us therefore 
make a little break and review what we have done in this chapter so far. 

I started Sect. 5.1 with a basic definition of a state of a quantum system in terms of 
a density operator, and of its symmetry. Section 5.1.1 makes the distinction between 
broken and unbroken symmetries, and highlights energetic degeneracy of different 
states as a universal feature of SSB. A naive way out of the puzzle this poses 
might be to consider only states respecting the full symmetry G of the system. In
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Sect. 5.1.2, I motivated the consideration of such G-symmetric states by recalling 
the thermal (canonical) density operator. The latter however renders the average 
of any observable breaking the symmetry zero. This is in a striking contradiction 
with the existence of asymmetric, macroscopically stable states of matter in nature. 
A careful consideration of the effects of small external perturbations in Sect. 5.2.1 
shows that these may drive the system towards a symmetry-breaking state. In fact, in 
the large-volume limit, even an infinitesimally small perturbation may be sufficient 
to destabilize the G-invariant thermal state. 

For most applications, it is mandatory to build a physical description of a given 
system upon a stable ground state. Such vacuum states are constructed in Sect. 5.2.2 
by taking the thermodynamic limit in presence of a perturbation, before the latter 
may be switched off. The different, degenerate vacuum states can now be labeled 
uniquely by different values of an order parameter, corresponding to the average of 
a suitably chosen set of observables. The choice of the order parameter itself is not 
unique. Depending on this choice, the same vacuum state may be represented by a 
point in different order parameter spaces. However, the set of all degenerate vacuum 
states spans a vacuum manifold, whose geometric structure is determined solely by 
the symmetry group G and its unbroken subgroup. 

This completes the background needed to understand the following chapters. 
When talking about a vacuum or ground state, I will always implicitly have in mind 
a pure state, obtained by the limiting procedure in (5.26). Also, I will from now on 
always assume vanishing thermodynamic temperature. Nonzero temperature was 
only used in this chapter as a tool to avoid singularities in the partition function. 

The story of SSB, however, does not end here. A closer look reveals a number 
of intriguing aspects that I have skipped so far in the desire to provide a minimal 
self-contained introduction to SSB. While not of direct relevance for the rest of the 
book, it would be a pity to omit these aspects altogether. I therefore mention some 
of them at least briefly in the next section, in the form of a case study. 

5.3 Some Subtle Features of Spontaneous Symmetry Breaking 

In the previous section, the thermodynamic limit played a crucial role in selecting 
a unique symmetry-breaking ground state. This begs the question of what one can 
expect in volumes that are large yet finite. After all, real macroscopic systems in 
nature certainly are finite, albeit possibly large from the point of view of microscopic 
physics. To what extent are then symmetry-breaking states stabilized by an external 
perturbation? Besides, how does the finite-volume quantum ground state look in the 
absence of perturbations? 

These are some of the questions I will address here. I am not aware of any formal 
framework that would allow one to tackle these questions in full generality. In fact, 
the answer to some of them may depend on the specific physical system. Instead 
of trying to be general, I will therefore work out in detail one concrete example, 
just to illustrate what is at stake. Some rigorous results on the spectrum of quantum 
systems with SSB in a finite volume can be found in [10] or in Part I of [11].
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5.3.1 Free Schrödinger Field in Finite Volume 

Following Sect. 3 of [12], consider the theory of a free Schrödinger field . ψ , defined 
by the Lagrangian density 

.L = iψ†∂0ψ − 1

2m
∇ψ† · ∇ψ , (5.29) 

where m is a mass parameter. I will quantize this theory in a d-dimensional box of 
size L, with volume .V = Ld , endowed with a periodic boundary condition. The 
boundary condition admits only discrete values of momentum . p, given component-
wise by 

.pr = 2πnr

L
, nr ∈ Z . (5.30) 

The field operator can be Fourier-expanded in terms of plane-wave solutions to the 
Schrödinger equation. In the Schrödinger picture, 

.ψ(x) = 1√
V

∑
p

ape
ip·x , (5.31) 

where . ap is the annihilation operator for a single-particle state of momentum 
. p. This is normalized so that together with the creation operator . a†p, it satisfies 
.[ap, a

†
q ] = δpq . The normalization of the plane-wave expansion by the factor . 1/

√
V

then guarantees that the canonical coordinate .ψ(x) and its conjugate momentum 
.iψ†(x) obey the canonical commutation relation .[ψ(x), iψ†(y)] = iδd(x − y). 

Within second quantization, all these operators act on a Hilbert space, built using 
the Fock construction. The starting point is the Fock vacuum . |0〉, defined by the 
condition .ap |0〉 = 0 for all allowed values of . p. An orthogonal basis of the space 
is then obtained by acting on . |0〉 with a finite number of creation operators in all 
possible ways. The Schrödinger Hamiltonian has a simple expression in terms of 
the annihilation and creation operators, 

.H = 1

2m

∫
ddx ∇ψ†(x) · ∇ψ(x) =

∑
p

p2

2m
a†pap . (5.32) 

This is a positive-semidefinite operator. The lowest (zero) energy is reached by any 
state .|Ω〉 in the Hilbert space that satisfies 

.ap |Ω〉 = 0 for all p /= 0 (ground state) . (5.33) 

There are infinitely many such states in the Hilbert space, in particular any state 
obtained from . |0〉 using the zero-momentum creation operator . a†0 . Hence, the
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subspace of states of zero energy is identical to the Fock space of a linear harmonic 
oscillator. 

The infinite degeneracy of the ground state hints at SSB. To see what symmetry 
might be spontaneously broken here, let us think what conserved charges there are 
in the first place. There turn out to be infinitely many of them. One can take for 
instance any operator of the form 

.Qf ≡
∑
p

f (p)a†pap =
∫

ddx ψ†(x)f (−i∇)ψ(x) , (5.34) 

where f is assumed to be a real analytic function. This class of operators includes 
the Hamiltonian itself, with .f (p) = p2/(2m), the momentum operator . P =∑

p pa
†
pap, and the operator of particle number .Q1 = ∑

p a
†
pap. From  (5.34) it is 

obvious that all the operators .Qf mutually commute with each other, hence all are 
conserved. By (4.34), they induce a local transformation of .ψ(x) with parameter . ϵ, 
.δψ(x) = −iϵf (−i∇)ψ(x). In addition to the class (5.34), any Hermitian operator 
constructed out of . a0 and . a

†
0 commutes with the Hamiltonian, and thus represents a 

conserved charge as well. Not all of these, however, descend from a local Noether 
current. Two notable exceptions are the two possible Hermitian operators linear in 
. a0 and . a

†
0 . I will list them alongside the symmetry transformations they generate: 

.

QR ≡ i
∫

ddx [ψ(x) − ψ†(x)] = i
√

V (a0 − a
†
0) , ψ → ψ − ϵ ,

QI ≡
∫

ddx [ψ(x) + ψ†(x)] = √
V (a0 + a

†
0) , ψ → ψ − iϵ .

(5.35) 

With all the symmetry transformations at hand, the associated Noether currents can 
be extracted from the Lagrangian (5.29) using the technique outlined in Sect. 4.2.1. 

The Lie algebra of our conserved charges is defined by the commutators 

. [Qf ,QR] = −if (0)QI , [Qf ,QI] = +if (0)QR , [QR,QI] = 2iV .

(5.36) 

These make it natural to split the space of charges .Qf into the one-dimensional 
subspace of charges proportional to . Q1, and a subspace of charges with . f (0) =
0. The latter commute with .QR,QI and moreover annihilate any ground state 
.|Ω〉 as defined by (5.33). We can therefore drop them and focus on the set 
.Q1,QR,QI. By  (5.36), this set furnishes a central extension of the Lie algebra 
.iso(2), corresponding to Euclidean transformations in the complex plane of . ψ . 
The generator . Q1 induces (phase) rotations, whereas .QR,QI generate respectively 
translations of the real and imaginary parts of . ψ . 

The Fock vacuum . |0〉 is annihilated by . Q1, but not by .QR,QI. This suggests that 
alternative vacuum states may be obtained from . |0〉 by transformations generated by
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.QR,QI. We can pick any .z ≡ z1 + iz2 ∈ C and define a new vacuum state by 

. |z〉 ≡ exp
[
i(z1QR + z2QI)

] |0〉 = exp
[√

V (za
†
0 − z∗a0)

] |0〉 . (5.37) 

This is a coherent state in the Fock space of zero-energy states. Indeed, it is easily 
seen to be an eigenstate of the annihilation operator, .a0 |z〉 = √

V z |z〉. In fact, 
. |z〉 is simultaneously an eigenstate of the field operator at any point in space, 
.ψ(x) |z〉 = z |z〉. We thus end up with a continuum of vacuum states, labeled by 
a complex parameter z. The order parameter distinguishing these states from each 
other is provided by the expectation value of .ψ(x). The vacuum manifold is the 
complex plane . C. For any choice of z, the state . |z〉 possesses an unbroken . SO(2)
symmetry, corresponding to rotations of the complex plane around the point z. Its  
generator is .

zQ1 ≡ Q1+z2QR−z1QI. The state . |z〉 is an eigenstate of this operator, 
.
zQ1 |z〉 = −V |z|2 |z〉. 

Interestingly, it is not possible to select the state . |z〉 by adding to the Hamiltonian 
a perturbation linear in . ψ as I did in Sect. 5.2. That would make the Hamiltonian 
unbounded from below. This is the price to pay for the vacuum manifold not being 
compact. An alternative is to add to the Hamiltonian a chemical potential . μ for the 
conserved charge . zQ1, so that it becomes .Hμ ≡ H − μ zQ1. The expectation value 
of such a perturbed Hamiltonian in the state . 

∣∣z'〉 with any .z' ∈ C is 

.
〈
z'∣∣Hμ

∣∣z'〉 = −V μ
[ ∣∣z − z'∣∣2 − |z|2 ]

. (5.38) 

An infinitesimally small negative . μ will then select . |z〉 as the unique ground state 
with energy .V μ |z|2. 

5.3.2 Pathologies of the Infinite-Volume Limit 

The analysis of the free Schrödinger theory has been perfectly clean so far. Most of 
the properties of the quantized theory match their classical counterparts, in particular 
the existence of infinitely many conservation laws, and infinitely many degenerate 
ground states. What happens when we try to take the limit of infinite volume? Let 
us evaluate the overlap of two different coherent states of the type (5.37), 

. 
∣∣〈z'∣∣z〉∣∣2 = ∣∣〈z'∣∣U(z)

∣∣0〉∣∣2 = exp
( − V

∣∣z − z'∣∣2 )
,

U(z) ≡ exp
[
i(z1QR + z2QI)

]
. (5.39) 

We therefore find that 

. lim
V →∞

∣∣〈z'∣∣z〉∣∣2 = lim
V →∞

∣∣〈z'∣∣U(z)
∣∣0〉∣∣2 = δzz' . (5.40)
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In the limit .V → ∞, any two states . |z〉 and . ∣∣z'〉 with .z /= z' become orthogonal. 
It is easy to generalize the above calculation to show that, in fact, any vector in the 
Fock space built above . |z〉 must be orthogonal to . 

∣∣z'〉 in this limit.1 In other words, 
the ket-vector . 

∣∣z'〉 does not lie in the Fock space built above . |z〉 at all. Moreover, the 
matrix element of any observable constructed using a finite number of annihilation 
and creation operators between the . |z〉 and . 

∣∣z'〉 states vanishes. Altogether, the states 
. |z〉 with .z ∈ C therefore give rise to a completely disconnected Fock space each. 
Transitions between Fock spaces with different vacuum states are forbidden. This is 
certainly not what we expected! 

This singular behavior of the .V → ∞ limit is easy to understand. Just remember 
that . |z〉 is an eigenstate of . a0 with the eigenvalue .

√
V z. Thus, if we insist on keeping 

z fixed, then scaling V towards infinity makes the eigenvalue diverge as well. This 
is ultimately the reason why .

∣∣z'〉 does not lie in the Fock space built above . |z〉. 
We might, on the other hand, try to keep the eigenvalue of . a0 fixed, which would 
require scaling z as .1/

√
V as the volume grows. Roughly speaking, this means that 

in a large but finite volume V , transitions between Fock spaces with different z are 
allowed, but only within a range .

∣∣z − z'∣∣ ≲ 1/
√

V . 
There is another way of looking at this, emphasizing the properties of the 

operator .U(z) defined by (5.39). Since the states . |0〉 and .
∣∣z'〉 do not lie in the 

same Fock space, the operator .U(z) becomes ill-defined in the limit .V → ∞. 
Spontaneously broken symmetry may not be realized by unitary operators on 
the Hilbert space of the physical system! That however does not mean that in 
presence of SSB, it makes no sense to speak of symmetry transformations that are 
spontaneously broken. The transformation of the field operator by .U(z), 

.U(z)†ψ(x)U(z) = ψ(x) + z , (5.41) 

is perfectly well-defined even in the limit .V → ∞. The same applies to any 
local operator built out of a finite number of . ψ and . ψ†. In each of the Fock 
spaces built above any . |z〉, we thus have a well-defined notion of broken symmetry 
transformations in terms of averages of observables. We just have to be careful not 
to think of broken symmetry as an operator connecting different states in the same 
space. 

The distinction between the realizations of broken symmetries by operators 
on states and by transformations of observables is not a mere mathematical 
curiosity one can safely ignore. It has observable consequences. One of 
the earliest applications of group theory to physics was to classify energy 

(continued)

1 Recall that the basis of the Fock space consists of states obtained by acting with a finite number 
of creation operators on the vacuum. 
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levels of a quantum system in terms of representations of its symmetry 
group. In quantum mechanics, the so-called Wigner theorem guarantees that 
any symmetry is represented by a unitary or antiunitary operator on the 
Hilbert space (see Chap. 2 of [13]). Energy levels are therefore classified by 
irreducible representations of the symmetry group G. In quantum field theory, 
on the other hand, only the unbroken subgroup H is as a rule realized by 
unitary operators on the Hilbert space. Thus, energy levels form irreducible 
multiplets of H . SSB implies degeneracy of the ground state, accompanied 
by a reduced degeneracy of the excitation spectrum. 

For example, the spectrum of hadrons is organized into (approximately 
degenerate) multiplets of the isospin group .SU(2). We know from Exam-
ple 5.5 that this is the unbroken subgroup of QCD with two light quark 
flavors. There is an even higher degeneracy, corresponding to multiplets of 
.SU(3). This is however less accurate due to the large splitting between the 
masses of the up, down and strange quarks. There are no multiplets of the 
.SU(nf)L × SU(nf)R symmetry of QCD. Such multiplets would be easily 
noticeable. For instance, the pseudoscalar mesons such as pions or kaons 
would have to appear in the spectrum together with particles of opposite 
parity. The lack of such particles is a directly observable manifestation 
of the nonexistence of unitary operators representing spontaneously broken 
symmetry. 

5.3.3 Uniqueness of the Finite-Volume Ground State 

The above excursion into the subtleties of SSB was purposefully limited to a single, 
exactly solvable example. The conclusion that in infinite volume, spontaneously 
broken symmetry is not realized by unitary operators on the Hilbert space is, 
however, general [14]. Likewise, it is generally true that different symmetry-
breaking vacuum states belong to disconnected Hilbert spaces. 

One property of the free Schrödinger theory (5.29) that is not general is the 
existence of exactly degenerate ground states already in a finite volume. This is 
typical for systems where the order parameter is constructed using an operator that 
commutes with the Hamiltonian. In our case, this operator can be taken as the spatial 
average of the Schrödinger field, 

.ψ̄ ≡ 1

V

∫
ddx ψ(x) = 1√

V
a0 . (5.42) 

Another system of this type is the ferromagnet, where the order parameter is sup-
plied by a selected component of total spin. Historically, the very special properties 
of such systems led to a controversy (involving some famous individuals [15]) as to 
whether they should count as SSB at all or not.
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An alternative is that in any finite volume, the system possesses a unique ground 
state, which is then necessarily G-invariant. Above this ground state, there is a tower 
of closely spaced energy levels, which all become exactly degenerate in the limit 
.V → ∞. A notable, much studied example of such a system are antiferromagnets. 
The realization of SSB is then quite nontrivial. Although a detailed discussion would 
be beyond the scope of this book, let me make at least a few remarks. The reader is 
encouraged to consult Sect. 19.1 of [16] or Sect. 2 of [1] for further information. 

If one tries to take the naive limit .V → ∞, the unique, finite-volume G-invariant 
ground state turns into a likewise G-invariant state in infinite volume. The latter is, 
however, unstable under infinitesimally small external perturbations. The instability 
has its precursor already in a finite volume. Namely, the magnitude of a perturbation 
needed to drive the system away from the G-invariant vacuum scales as the inverse 
of the system’s volume. Such a perturbation may be supplied in particular by the 
measurement of any symmetry-breaking observable. This makes the system relax 
into one of the pure symmetry-breaking states constructed in Sect. 5.2.2. 

Another way to understand the distinction between the various would-be ground 
states is through correlations of spatially separated observables. For any two local 
observables .A(x) and .B(x), one may construct the spatial correlation function 
.〈A(x)B(y)〉; the angular brackets indicate expectation value in a chosen ground 
state. The so-called cluster decomposition principle dictates that 

. lim|x−y|→∞
[〈A(x)B(y)〉 − 〈A(x)〉〈B(y)〉] = 0 . (5.43) 

It encodes the fundamental requirement that the outcomes of distant measurements 
should not be correlated with each other. The naive G-invariant ground state 
obtained by taking the .V → ∞ limit violates this principle, and thus displays long-
range entanglement. The entanglement is destroyed by any measurement of a local 
symmetry-breaking observable, which brings the system to a stable, symmetry-
breaking ground state satisfying (5.43). 

To illustrate some of the above general observations, I will conclude the 
discussion of SSB by working out one more simple toy model. We return to the 
free Schrödinger theory, but twist the boundary condition to 

.ψ(x + erL) = eiθr ψ(x) . (5.44) 

Here . er is a unit vector along the r-th Cartesian coordinate axis, and . θr ∈
(−π,+π ] is an arbitrarily chosen phase. I assume that at least one of . θr is nonzero, 
otherwise (5.44) would be just the periodic boundary condition we used previously. 

The quantization of the theory proceeds as before, except for the allowed values 
of momenta, where (5.30) is replaced with 

.pr = θr

L
+ 2πnr

L
, nr ∈ Z . (5.45)
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Fig. 5.3 Schematic 
visualization of the spectrum 
of the free Schrödinger theory 
with the twisted boundary 
condition (5.44), for small 
(positive) . θr . Each of the 
indicated groups of energy 
levels consists of states with 
multiple quanta of 
momentum .θ/L; the number 
of such quanta is denoted as 
n. The lowest-lying multiplet 
includes no other particles. 
The higher multiplets include 
one or more particles where 
some of the . nr in (5.45) are 
nonzero. For simplicity, all 
the . θr are assumed to be 
equal; otherwise the spectrum 
would feature additional 
structure 

The Hamiltonian (5.32) now has a unique ground state, namely the Fock vacuum 
. |0〉. The lowest-lying excitation of this ground state corresponds to .nr = 0 for all 
r , that is, .p = θ/L. This is a one-particle state .|θ/L〉 ≡ a

†
θ/L

|0〉 with excitation 
energy 

.Eθ/L = θ2

2mL2 . (5.46) 

As long as all the . θr are sufficiently small, the low end of the excitation spectrum 
will consist entirely of states with .n ∈ N quanta of momentum .θ/L and excitation 
energy .nEθ/L. Only above these will one find states for which some of the . nr are 
nonzero. See Fig. 5.3 for a visualization of the spectrum of energy levels. 

How is the Fock vacuum . |0〉 affected by perturbations? Since the .p = 0 state 
is excluded by the boundary condition, we can now add a perturbation linear in the 
field without running into an instability. Let us therefore add to (5.29) the term 

.Lϵ[ψ, x](x) ≡ ϵ∗
√

V
ψ(x)e−iθ ·x/L + ϵ√

V
ψ†(x)e+iθ ·x/L , (5.47) 

where . ϵ is a small constant parameter with the dimension of energy. The expo-
nential, coordinate-dependent factors are added in order that .Lϵ itself satisfies
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a periodic boundary condition. The corresponding correction to the Hamilto-
nian (5.32) is 

.Hϵ = −(
ϵ∗aθ/L + ϵa

†
θ/L

)
. (5.48) 

This perturbation will change the energy eigenstates within the multiplets shown 
in Fig. 5.3. It will however not lead to any mixing between states from different 
multiplets, that is states with different . nr . Let us focus on the lowest-lying multiplet, 
which is where the ground state resides. Here the Hamiltonian is projected down to 

. Hθ/L ≡ Eθ/La
†
θ/L

aθ/L − (
ϵ∗aθ/L + ϵa

†
θ/L

)
= Eθ/L

[
(a

†
θ/L

− z∗
ϵ )(aθ/L − zϵ) − |zϵ |2

]
, (5.49) 

where .zϵ ≡ ϵ/Eθ/L. There is still a unique ground state, but it is now the coherent 
state . |zϵ〉. The perturbation has lowered the energy compared to the Fock vacuum 
. |0〉 to .−Eθ/L |zϵ |2 = − |ϵ|2 /Eθ/L. 

Let us see what we have found. The original vacuum . |0〉 is nondegenerate. Its 
separation from the nearest excited states is however only of the order of . Eθ/L ∼
1/L2. In the limit of infinite volume, all the different multiplets of states shown 
in Fig. 5.3 become degenerate. Accordingly, the Fock vacuum becomes unstable 
under small perturbations. For small fixed . θr , one can always find . ϵ that satisfies the 
bounds 

.1 ⪡ |ϵ|
Eθ/L

⪡ 2π

|θ | . (5.50) 

The lower bound makes the change in energy caused by the perturbation much larger 
than the level spacing within a given multiplet. Thus, even a small perturbation can 
drive the ground state from . |0〉 to a coherent state .|zϵ〉with large . zϵ . The upper bound 
in (5.50) ensures that the shift of energy eigenvalues induced by the perturbation is 
much smaller than the separation of the different multiplets in the spectrum. 

The free Schrödinger theory with the twisted boundary condition (5.44) serves 
as a good example of the instability of the finite-volume ground state with 
respect to small perturbations. Likewise, it provides a decent illustration 
of the structure of the spectrum of systems with SSB in a finite volume. 
One important feature that it does not illustrate is the G-invariance of the 
finite-volume ground state. This is because the symmetries (5.35) of the free 
Schrödinger theory are broken by the boundary condition (5.44) for any 
nonzero . θr . In fact, insofar as the expectation value .〈ψ(x)〉 is well-defined, 
shift symmetries of the type (5.35) must always be spontaneously broken.
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6Nambu–Goldstone Bosons 

In Chaps. 2 and 3, we saw examples of how spontaneous symmetry breaking (SSB) 
gives rise to massless particles in the spectrum. Our operational understanding of 
these Nambu–Goldstone (NG) bosons was based on a classical (tree-level) analysis 
of certain scalar field potentials. The purpose of this chapter is to develop a 
general understanding of NG bosons without the limitations of a particular model 
or approximation. The basic intuition is built in Sect. 6.1. This explains both where 
NG bosons come from, and how their spectrum is related to the nature of broken 
symmetry. The subsequent sections put this intuition on a solid footing. In Sect. 6.2 
I prove the so-called Goldstone theorem, which asserts the very existence of a NG 
boson as a consequence of SSB. Section 6.3 then delves into the question how 
many NG bosons there are in a given system, and how their number relates to 
their dispersion relations. This generalizes the observations made in Chap. 3; see  
Sect. 3.3 for a quick summary. Altogether, this chapter completes the background 
needed in Parts III and IV, where the effective field theory (EFT) formalism for SSB 
is developed in detail. 

6.1 Intuitive Picture 

The intuitive understanding of NG bosons relies heavily on the concept of order 
parameter. Consider for simplicity a system whose ground state is spatially uniform, 
and imagine that we disturb it by a weak, local perturbation. Locally, it is 
energetically favorable for the system to remain in one of the degenerate ground 
states. The order parameter will therefore respond to the perturbation by developing 
spatial variation while remaining on the vacuum manifold everywhere. The energy 
cost of creating such a spatially varying excited state must be proportional to 
gradients of the order parameter. This is because changing the order parameter 
uniformly just amounts to a different choice of ground state. We can then imagine 
order parameter configurations that vary over progressively longer and longer length 
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scales. In the limit that the scale of spatial variation goes to infinity, the gradient of 
the order parameter vanishes, and the energy cost must go to zero. 

This is a completely general observation, valid regardless of the choice of field 
variables and dynamics behind SSB. The only assumption that is really necessary is 
that the spontaneously broken symmetry is continuous. This makes smooth spatial 
variation of the order parameter possible while keeping it on the vacuum manifold 
everywhere. We conclude that NG bosons are local, propagating fluctuations of the 
order parameter whose energy goes to zero in the infinite-wavelength limit. 

The identification of NG bosons with fluctuations of the order parameter is not 
necessarily one-to-one. Eventually, we would like to know the precise spectrum 
of NG bosons; this among others governs the low-temperature thermodynamics of 
systems with SSB. What we really need in order to establish a dictionary between 
broken symmetries and NG bosons is to answer the following questions: 

• How many different types of order parameter fluctuations (NG fields) are there 
in a given system? 

• What is the correspondence between the various order parameter fluctuations 
(NG fields) and NG modes in the spectrum? 

I will deal with these two questions in the given order in the next two subsections. 

6.1.1 Redundancy of Order Parameter Fluctuations 

I will build upon the intuitive picture of a NG boson in terms of a fluctuation of 
the order parameter that locally remains on the vacuum manifold. One can imagine 
such a fluctuation as being generated from the ground state by a broken symmetry 
transformation with a coordinate-dependent parameter. This leads immediately to 
the important observation that fluctuations induced by different broken symmetry 
generators may coincide. 

Example 6.1 

The Lagrangian of a free massless relativistic scalar field . φ is .L [φ] = (1/2)(∂μφ)2. 
The action of this theory is invariant under the polynomial shift transformation 
.φ(x) → φ(x)+ϵ1+ϵ2μxμ, where .ϵ1, ϵ2μ are constant parameters. This symmetry is 
necessarily spontaneously broken, and the order parameter can be chosen as .〈φ(x)〉. 
One might expect to obtain .D + 1 different fluctuations of the order parameter by 
applying a polynomial shift with coordinate-dependent parameters .ϵ1(x), .ϵ2μ(x). 
However, shifting .φ(x) by .ϵ2μ(x)xμ is identical to shifting it by .ϵ1(x) if we 
set .ϵ1(x) ≡ ϵ2μ(x)xμ. The  set of  .D + 1 broken generators associated with our 
polynomial shift therefore corresponds to a single independent fluctuation, induced 
by .φ(x) → φ(x) + ϵ1(x). The only independent NG field in the theory is . φ itself.
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Symmetries that become equivalent once their parameters are made coordinate-
dependent are called redundant. Such a redundancy is typical for spacetime 
symmetries. As Example 6.1 shows, however, it is also possible for point symme-
tries that do not affect spacetime coordinates. Here is a less trivial example, relevant 
for any crystalline phase of matter. 

Example 6.2 

In relativistic theories of scalar fields, the generators of spacetime rotations . Jμν

and translations .P μ are known to satisfy the relation .Jμν = xμP ν − xνP μ. A  
local rotation .exp[(i/2)ϵ2μν(x)Jμν] with antisymmetric matrix parameter .ϵ2μν is 
thus equivalent to a local translation .exp[iϵ1μ(x)P μ] with .ϵ1μ(x) ≡ −ϵ2μν(x)xν . 
Imagine now a system where spacetime rotations and translations (or a subset 
thereof) are both spontaneously broken. For example, in crystalline solids, all the 
continuous spatial rotations and translations are spontaneously broken. The rotations 
are clearly redundant; the only independent NG fields are those associated with 
broken translations. These parameterize the vibrations of the crystal lattice. 

The basic moral to remember is that the number of independent order parameter 
fluctuations may be lower than the number of broken symmetry generators. I will 
further refine this observation in Sect. 6.3.1. The discussion of redundancy of local 
symmetry transformations will be of great importance for the development of EFT 
for broken spacetime symmetries in Part IV. 

6.1.2 Canonical Conjugation of Nambu–Goldstone Fields 

The number of NG modes in the spectrum may be lower than the number of 
independent NG fields in case some of the latter are canonically conjugated. We 
saw this in Sect. 3.2. To make statements independent of a specific model, we need 
to relate the possibility of canonical conjugation of NG fields directly to the broken 
symmetry. 

Suppose we have two NG fields, . π1 and . π2, associated with two broken 
symmetry generators .Q1,2. We can assume without loss of generality that under 
the respective transformations generated by .Q1,2, these fields transform as 

.πa → πa + ϵb[δa
b + O(π)] , a = 1, 2 . (6.1) 

Indeed, one can always choose the fields so that the ground state corresponds 
to .πa = 0. That the leading, constant piece of the Taylor expansion of the 
transformation rule for . πa around this ground state is nonzero, follows from the 
assumption of broken symmetry. The bases of NG fields and broken generators can 
then be aligned so that this constant piece is simply .πa → πa + ϵa .
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Suppose in addition that we can construct a low-energy EFT for the NG fields 
whose Lagrangian contains a term with a single time derivative, 

.Leff = ϱ12π
1∂0π

2 + · · · . (6.2) 

The ellipsis stands for terms with more than one derivative or more than two NG 
fields. Recall from Sect. 4.2.1 that the Noether currents corresponding to (6.1) can 
be identified by making the parameters . ϵa coordinate-dependent. From (6.2) alone, 
one can then extract the leading contributions to the Noether charge densities, 

.J 0
1 [π ] = −ϱ12π

2 + · · · , J 0
2 [π ] = +ϱ12π

1 + · · · . (6.3) 

The ellipses now represent terms with derivatives or more than one NG field. 
Here comes the key step: I will evaluate the transformation of .J 0

2 [π ] under the 
symmetry generated by . Q1 in two different ways. On the one hand, it is obvious 
that under (6.1), .J 0

2 [π ] → J 0
2 [π ] + ϱ12ϵ

1 + · · · . On the other hand, one may think 
of the currents as quantum operators and represent the same transformation as 

. exp(iϵ1Q1)J
0
2 exp(−iϵ1Q1) = J 0

2 + iϵ1[Q1, J
0
2 ] + O((ϵ1)2) . (6.4) 

The NG fields vanish in the ground state. Hence, upon taking the vacuum expecta-
tion value (VEV), a comparison of our two little calculations leads to 

.ϱ12 = i〈[Q1, J
0
2 ]〉 = −i〈[Q2, J

0
1 ]〉 , (6.5) 

where the second equality follows by running the same argument on .J 0
1 [π ] and . Q2. 

This is a remarkable result that is as model-independent as it gets. In any theory 
that realizes the same symmetry-breaking pattern, one can construct the Noether 
currents via Noether’s theorem. Evaluating the VEV of the commutator (6.5) then 
gives us a simple criterion for when to expect two NG fields to be canonically 
conjugated: whenever (6.5) is nonzero. 

Example 6.3 

We already saw the relation between canonical conjugation and the charge com-
mutator (6.5) at work in Sect. 5.3.1. Indeed, one can think of the free Schrödinger 
field . ψ therein as corresponding to two real NG fields. These are in turn associated 
with the invariance of the free Schrödinger theory under independent shifts of the 
real and imaginary parts of . ψ . The commutator of the generators of these shifts, 
.QR and . QI, turns out to be nonzero upon quantization. It is easy to check that the 
normalization of the commutator as shown in (5.36) agrees with (6.5). The factor 
of spatial volume V in (5.36) arises from the latter displaying a commutator of two 
charges rather than a charge and a charge density.
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Although noninteracting, the free Schrödinger theory is nontrivial in that it makes 
the VEV (6.5) arise from a central charge in the symmetry algebra. Let us have a 
look at one more example, which is mathematically simpler and physically familiar. 

Example 6.4 

In the ideal (that is spatially uniform and isotropic) approximation, both ferro-
magnets and antiferromagnets possess a symmetry .G ≃ SU(2), generated by the 
operator . S of total spin. In the ground state of both, this is spontaneously broken 
down to .H ≃ U(1), consisting of spin rotations around the axis along which the 
spins are aligned. Suppose that one chooses the ground state oriented along the third 
direction in the spin space. Then H is generated by . S3, whereas the two independent 
broken generators can be chosen as . S1,2. 

The difference between ferro- and antiferromagnets is that the former feature a 
nonzero net magnetization. This amounts to a nonzero VEV .〈S3〉 = −i〈[S1, S2]〉. 
As a consequence, the two NG fields in a ferromagnet are canonically conjugated. 
The spectrum only contains a single NG mode: the ferromagnetic magnon. Its  
dispersion relation at long wavelengths is known to be quadratic in momentum. 
In antiferromagnets, on the other hand, .〈S〉 = 0. As a consequence, the spectrum of 
antiferromagnets features two different magnon branches. Their dispersion relation 
is known to be linear in momentum in the long-wavelength limit. 

6.1.3 The Big Picture 

Let me summarize what we have learned so far. Spontaneous breaking of a 
continuous symmetry implies the existence of a gapless mode in the spectrum: the 
NG boson. This can be viewed as a propagating fluctuation of the order parameter. 
The number of such NG modes may be lower than the number of broken symmetry 
generators. There are two basic mechanisms how such a reduction may occur. 

First, different broken symmetry generators may induce fluctuations of the order 
parameter that are indistinguishable from each other. I will refer to this mechanism 
as “geometric” to keep in mind that it represents a restriction on the configuration 
space of off-shell NG fields. Second, there may not be a one-to-one correspondence 
between the independent NG fields and the independent NG modes in the spectrum. 
This happens whenever a pair of NG fields is canonically conjugated, which in turn 
requires a nonzero VEV of the charge commutator (6.5). This mechanism I will 
refer to as “dynamical” since it restricts the space of on-shell fields, or eigenstates 
of the Hamiltonian. For the reader’s convenience, an outline of the correspondence 
between broken symmetry, NG fields and NG modes is shown graphically in
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geometric reduction by 
redundancy of fluctuations 

dynamical reduction by 
canonical conjugation 

broken 
generators 

fluctuations of 
order parameter 

gapless modes 
in the spectrum 

Fig. 6.1 Basic mechanisms that may cause the number of independent NG modes in the spectrum 
to be lower than the number of broken symmetry generators. The geometric reduction arises when-
ever fluctuations of the order parameter, induced by different generators, are indistinguishable from 
each other. The dynamical reduction is signaled by a nonzero VEV of the charge commutator (6.5), 
or by a term in the effective Lagrangian for NG fields with a single time derivative 

Fig. 6.1. This scheme is intuitively simple yet somewhat imprecise. I will return 
to the question of how many NG modes there are in a given system in Sect. 6.3. 

6.2 Goldstone Theorem 

The Goldstone theorem is one of the most profound exact results in quantum field 
theory that deserves a more careful justification than the intuitive but hand-waving 
argument of Sect. 6.1. In the next two subsections, I will give two different proofs, 
following in spirit the original work of Goldstone, Salam and Weinberg [1,2]. Along 
the way, I will clarify the technical assumptions on which the theorem is based. A 
reader seeking a higher level of mathematical rigor than what I can offer here is 
advised to consult the early review [3] or the book [4]. 

6.2.1 Operator Proof 

I will start with a proof using the operator formalism of quantum field theory in the 
Heisenberg picture. Before proceeding to the details of the proof, however, I need 
to spend some time listing its technical assumptions. 

First, I assume that in the limit of infinite spatial volume, the system possesses 
unbroken continuous (spacetime) translation invariance. This ensures the existence 
of a basis of the Hilbert space consisting of eigenstates of the energy–momentum 
operator . P μ. It is always possible, and I will implicitly do so, to define this 
operator so that the energy and momentum of the ground state are both zero. The
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assumption of continuous spatial translation invariance is, in fact, unnecessarily 
strong. The minimum requirement is unbroken discrete translation invariance, 
which is necessary to have a well-defined notion of quasiparticles. The proof then 
proceeds along the same steps at the cost of a somewhat cluttered notation [5]. 

Second, I assume the existence of a local operator .J 0(x), interpreted as the 
density of a conserved charge. The charge density should not depend explicitly on 
spacetime coordinates; this is needed to ensure the translation property 

.J 0(x) = eiP ·xJ 0(0)e−iP ·x . (6.6) 

Now define the total charge contained in a finite spatial domain . Ω, 

.QΩ(t) ≡
∫

Ω

ddx J 0(x, t) . (6.7) 

The last assumption we need is the existence of a local, time-independent operator 
. Ф such that the VEV in the chosen ground state . |0〉, 

. 〈0| [QΩ(t),Ф] |0〉 , (6.8) 

is nonzero and time-independent in the limit .Ω → ∞. 
It is this last assumption that captures the essence of SSB. Think of .QΩ as the 

Noether charge associated with a continuous symmetry. One would be tempted to 
say that in the limit .Ω → ∞, .QΩ itself becomes time-independent. But we saw in 
Sect. 5.3 that in the infinite-volume limit, the operators representing spontaneously 
broken symmetry may be ill-defined. The limit .Ω → ∞ is only safe if performed 
on the commutator in (6.8), not on .QΩ itself. 

Usually, the time-independence of the integral charge is a consequence of 
a local conservation law, .∂μJμ = 0. That is however strictly speaking not 
necessary. Taking this additional step requires the vanishing of the surface 
integral .

∫
Ω
ddx ∂rJ

r(x, t) as .Ω → ∞. This condition, or even its weaker 
form imposed only on the VEV .〈0| [∂rJ

r(x, t),Ф] |0〉, may be compromised 
in systems with long-range interactions [3]. Here I avoid having to deal with 
this issue simply by assuming right away the time-independence of (6.8). 

Think of .〈0| Ф |0〉 as an order parameter. Then (6.8) is, up to a factor, its 
infinitesimal variation under the transformation .Ф → exp(iϵQΩ)Ф exp(−iϵQΩ). 
The assumption that (6.8) is nonzero guarantees that . |0〉 cannot be an eigenstate of 
. QΩ. Hence the symmetry generated by .QΩ must be spontaneously broken. 

We are now ready to prove the existence of a NG mode in the system. I will 
initially assume that the system is enclosed in a finite volume V with a periodic
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boundary condition. The Hilbert space then admits a basis of momentum eigenstates 
.|n,p〉, where . p stands for a set of discrete momenta consistent with the boundary 
condition. In a finite volume, the basis states can be normalized as . 〈m,p|n, q〉 =
δmnδpq . The label n indicates all other quantum numbers the states may possess, 
such as relative momenta in multiparticle states, or internal degrees of freedom. 

Upon inserting the partition of unity in terms of .|n,p〉 and using the translation 
property (6.6), the  VEV  (6.8) can be rewritten as 

. 

〈0| [QΩ(t),Ф] |0〉 =
∑
n,p

∫
Ω

ddx
[
exp(−ipn · x) 〈0| J 0(0) |n,p〉 〈n,p| Ф |0〉

− exp(+ipn · x) 〈0| Ф |n,p〉 〈n,p| J 0(0) |0〉
]

.

(6.9) 

Here . pn is a shorthand notation for the energy–momentum of .|n,p〉. Now recall that 
SSB implies the existence of degenerate ground states. Even if one picks a unique 
vacuum . |0〉, the other, alternative ground states do not disappear. They contribute 
to (6.9) among the states .|n, 0〉 with .p = 0. Is this something to worry about? 

In the free Schrödinger theory, worked out in Sect. 5.3.1, .〈0| J 0(0) |n, 0〉 scales 
as .1/

√
V , cf.  (5.35). This observation turns out to be general. With the periodic 

boundary condition, the integral charge .QV (t) is translationally invariant. A classic 
argument [6] then shows that the norm of .QV (t) |0〉 scales as . 

√
V , 

. 
∥∥QV (t) |0〉 ∥∥2 =

∫
V

ddx 〈0| J 0(x, t)QV (t) |0〉 = V 〈0| J 0(0)QV (0) |0〉 .

(6.10) 

This means, roughly, that the norm of .J 0(0) |0〉 scales as .1/
√

V , and so does 
therefore .〈0| J 0(0) |n, 0〉. Altogether, the contribution of the alternative ground 
states to (6.9) at fixed . Ω and increasing V is suppressed as .1/

√
V . Should (6.8) 

be nonzero in the infinite-volume limit, it must be dominated by excitations with 
nonzero momentum. 

We can now switch to infinite volume. This requires changing the normalization 
of the basis states to .〈m,p|n, q〉 = (2π)dδmnδ

d(p − q) and replacing the sum over 
. p in (6.9) with an integral. Keeping . Ω still finite, the integration over . x then amounts 
to a Fourier transform of unity, .

∫
Ω
ddx eip·x ≡ (2π)dδd

Ω(p). The notation underlines 
that .δd

Ω(p) is a finite-volume approximation of the Dirac .δ-function. We then have 

. 〈0| [QΩ(t),Ф] |0〉 =
∑
n

∫
ddp

{
exp[−iEn(p)t]δd

Ω(p) 〈0| J 0(0) |n,p〉 (6.11) 

× 〈n, p| Ф |0〉 − exp[+iEn(p)t]δd
Ω(−p) 〈0| Ф |n, p〉 〈n, p| J 0(0) |0〉 }

, 

where .En(p) = p0
n is the dispersion relation of the state .|n,p〉.
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By our assumptions, (6.8) should be nonzero and time-independent in the limit 
.Ω → ∞. For  large  . Ω, the function .δd

Ω(p) is smooth but sharply peaked around 
.p = 0. The time-independence thus requires that only states such that 

. lim
p→0

En(p) = 0 (6.12) 

contribute to (6.11). The assumption that (6.8) should be nonzero guarantees 
that such states exist. These must be one-particle states, for if the one-particle 
spectrum had a gap, then so would the multiparticle one. We have thus established 
the existence of one-particle states .|n,p〉 with the property (6.12), for  which  
both .〈0| J 0(0) |n,p〉 and .〈0| Ф |n,p〉 are nonzero. This concludes the proof of 
Goldstone’s theorem. 

There is a simple, intuitive way to understand why NG modes must 
satisfy (6.12). Suppose we know beforehand that there is a one-particle state 
.|n,p〉 created by .J 0 and that the latter descends from a local conservation 
law, .∂μJμ = 0. Extending the translation property (6.6) to . Jμ, we get at 
once .〈0| Jμ(x) |n,p〉 = exp(−ipn · x) 〈0| Jμ(0) |n,p〉. Upon using current 
conservation and the fact that .〈0| J 0(0) |n,p〉 is nonzero, it then follows that 
.En(p) = p · 〈0| J (0) |n,p〉/〈0| J 0(0) |n,p〉. This shows that the vanishing of the 
energy of NG modes in the long-wavelength limit is an immediate consequence of 
symmetry. The nontrivial part of Goldstone’s theorem is that such NG states exist 
at all. 

6.2.2 Effective Action Proof 

I will now present an entirely different proof of Goldstone’s theorem which will 
prepare the ground for the discussion of redundancies among NG fields in the next 
section. In spirit, this proof is not based on current conservation but rather directly 
on the symmetry of the action. I will follow closely the appendix of [7]. 

The starting assumption is the existence of an action . 𝚪 as a functional of a set 
of fields . ψi . The notation indicates that . 𝚪 is the quantum effective action, since 
we want to make exact statements about a quantum field theory. The argument 
below applies in principle equally well to the classical action S. However, the fields 
. ψi need not be the “elementary” fields that appear in S. They may be composite 
operators, and are chosen so that the VEV .〈ψi〉 is a suitable order parameter for 
SSB. The action is assumed to be invariant under the infinitesimal transformation 

.δψi(x) = ϵF i[ψ, x](x) . (6.13) 

Unlike in the previous, operator proof of Goldstone’s theorem, the symmetry 
transformation, and thus the Noether current, is allowed to depend explicitly on 
coordinates.
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It is not guaranteed a priori that the quantum effective action . 𝚪 inherits 
verbatim all the symmetries of the classical action S. It turns out that the 
symmetry transformations on the classical and quantum actions are the same 
at least if .F i[ψ, x] is linear in the fields; see Sect. 16.4 of [8]. This is 
something I assumed already back in Sect. 5.2 when I introduced the very 
concept of order parameter. The only restriction involved in the transition to 
the quantum effective action therefore is that the symmetry should preserve 
the functional integral measure. This is needed to exclude quantum anomalies, 
whose presence would invalidate Goldstone’s theorem. 

The invariance of the action is encoded in the condition 

.

∫
dDy

δ𝚪

δψj(y)
F j [ψ, y](y) = 0 . (6.14) 

Taking one more variational derivative and setting the fields equal to their VEVs, 
.〈ψi(x)〉 ≡ ϕi(x), one gets 

.

∫
dDy

δ2𝚪

δψi(x)δψj (y)

∣∣∣∣
ψ=ϕ

F j [ϕ, y](y) = 0 . (6.15) 

Now we need the assumption of continuous translation invariance of the action and 
of the ground state. The second variational derivative of . 𝚪 can thus be traded for 
its Fourier transform, which is the inverse propagator of the theory, .G−1

ij [ϕ](p). 
Multiplying (6.15) with .eip·x and integrating over x then yields the condition 

.G−1
ij [ϕ](p)

∫
dDy eip·yF j [ϕ, y](y) = 0 . (6.16) 

Hence, the propagator .Gij [ϕ](p) has a singularity at energy–momentum . pμ

whenever the integral in (6.16) is nonzero. The spectral representation ensures that 
such singularities arise solely from states in the spectrum of the Hamiltonian. 

By the assumption of broken symmetry, .Fj [ϕ, y], which represents the sym-
metry transformation of the order parameter, is nonzero. This alone implies that 
the integral in (6.16) must be nonzero for some . pμ. For coordinate-independent 
symmetries, the integral is proportional to .δD(p). Moreover, for known examples 
of coordinate-dependent symmetries, .Fj [ϕ, y] is polynomial in coordinates. In such 
cases, integration over y leads to a linear combination of derivatives of .δD(p). One  
way or another, we conclude that SSB implies the existence of a mode whose energy 
vanishes in the limit of zero momentum, as expected.
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6.3 Classification and Counting 

None of the above two proofs of the Goldstone theorem addresses the question how 
many NG bosons there are. To that end, we have to put in some extra effort. I will 
follow closely the scheme outlined in Sect. 6.1.3. This means that as the first step, 
we need to know, given the symmetry-breaking pattern, how many independent NG 
fields, or order parameter fluctuations, there are. 

6.3.1 Independent Order Parameter Fluctuations 

We add to (6.13) an index A, distinguishing the action of different symmetry 
generators . QA, .δψi(x) = ϵAF i

A[ψ, x](x). Recall the view of NG fields as local 
fluctuations of the order parameter. The easiest (albeit not the only; cf. Sect. 4.2.1) 
way to generate such fluctuations is by replacing .ϵA → ϵA(x). Redundancies 
among order parameter fluctuations are then detected by the existence of nonzero 
functions .ϵA(x) such that 

.ϵA(x)F i
A[ϕ, x](x) = 0 . (6.17) 

This relation between symmetry transformations implies an analogous dependence 
between the zero modes of the inverse propagator of the quantum theory. Namely, 
trading the coordinate inside .ϵA(x) for a derivative with respect to the momentum 
variable . pμ, denoted as . ∇μ, a combination of (6.16) and (6.17) gives 

.ϵA(−i∇)

∫
dDy eip·yF j

A[ϕ, y](y) = 0 . (6.18) 

The conclusion is that the number of independent NG fields equals the dimension of 
the symmetry groupG minus the number of linearly independent solutions of (6.17). 
Note that the linear independence is meant in the functional sense: multiplying all 
the .ϵA(x) by the same function .f (x) does not count as a new solution. 

The rule for counting the number of independent NG fields does not have 
an established form in the literature. My formulation is close in spirit 
to [9] where, however, the functions .ϵA(x) were only allowed to depend on 
coordinates corresponding to unbroken continuous translations. That seems 
too restrictive for instance in case of crystalline solids where only a discrete 
translation invariance survives in the ground state. 

Another condition for redundancy similar to (6.17) was put forward in [10]; 
see also the review [11]. Their criterion is however phrased in terms of the 
vacuum ket-vector and charge density operators. As such, it also includes 

(continued)



96 6 Nambu–Goldstone Bosons

the redundancy of NG states under canonical conjugation, which I treat 
separately in Sect. 6.3.2. Finally, in [12] a rule counting independent NG fields 
is formulated directly in terms of the zero modes of the inverse propagator. 

In case of broken spacetime symmetries, the number of independent 
would-be NG fields identified with the help of (6.17) turns out to depend 
on the precise choice of order parameter(s). Remarkably, some of these fields 
may couple to gapped states in the spectrum. This subtlety is missed by the 
classical counting rule for NG fields based on (6.17). It is best addressed 
having the full EFT machinery at hand. I will do so in Chap. 13. 

As a basic sanity check, consider spontaneously broken internal symmetries 
in systems with unbroken translation invariance. In that case, .F i

A[ϕ, x] does not 
depend on coordinates, either explicitly or implicitly through the order parameter. 
Also, it is an ordinary local function of . ϕi , hence the condition (6.17) reduces to 
.ϵA(x)F i

A(ϕ) = 0. The only nontrivial solutions for .ϵA(x) are then those corre-
sponding to generators of the unbroken subgroup H . The number of independent 
NG fields therefore equals .dimG − dimH . For spontaneously broken internal 
symmetries, there is a one-to-one correspondence between NG fields and broken 
symmetry generators. This is one of the moral lessons we reached in Chap. 3 by 
analyzing a set of specific models. 

Oftentimes, the solutions to (6.17) descend from redundancy among local 
symmetry transformations acting on an arbitrary field configuration. This was 
certainly the case for Example 6.1 and Example 6.2. The condition (6.17) is however 
much weaker, as it only demands redundancy of local symmetry transformations of 
the ground state. Here is a nontrivial example of this latter type. 

Example 6.5 

Helimagnets are magnetic materials in which the alignment axis of spins gradually 
changes with position; see [13] for basic phenomenology. The simplest type of 
helimagnetic state can be modeled by the unit-vector order parameter 

.〈n(x, t)〉 = (cos kz, sin kz, 0) , (6.19) 

where k is a positive constant. The local axis of alignment lies in the xy plane but 
rotates around the z axis, forming a helix with the pitch .2π/k. 

Suppose for simplicity that the material in which the helical order develops has 
a cubic crystal lattice. This is the case for instance for the inorganic compounds 
MnSi and FeGe; see Sect. 2 of [14] for a more comprehensive list of known
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helimagnetic materials. Then the low-energy physics of the material exhibits the 
following approximate continuous symmetries (in addition to time translations): 

• Spatial translations (T): .n'(x', t) = n(x, t) with .x' = x + ϵ, .ϵ ∈ R3. 
• Space–spin rotations (R): .n'(x', t) = Rn(x, t) with .x' = Rx, .R ∈ SO(3). 

Unlike in ordinary (anti)ferromagnets, spin rotations cannot be considered 
separately from spatial rotations as a consequence of the spin-orbit coupling. 
This induces the so-called Dzyaloshinskii–Moriya interaction, which is eventually 
responsible for the development of the helical order (6.19). 

In their evolutionary form, the above transformations correspond respectively 
to the functions .TF i

r = −∂rn
i and .RF i

r = −ε u
rs xs∂un

i + εi
rj n

j . Denoting the 
corresponding infinitesimal parameters as .ϵr(x, t) (translation in the r-th direction) 
and .ωr(x, t) (rotation around the r-th axis), (6.17) turns into 

.ϵr(x, t)∂r 〈ni(x, t)〉+ωr(x, t)
[
ε u
rs xs∂u〈ni(x, t)〉−εi

rj 〈nj (x, t)〉] = 0 . (6.20) 

This boils down to the following constraints on the parameter functions, 

.

ω1(x, t) sin kz = ω2(x, t) cos kz ,

ω3(x, t) = k[ϵ3(x, t) + yω1(x, t) − xω2(x, t)] .
(6.21) 

Some of the solutions of (6.21) are trivial. First of all, . ϵ1 and . ϵ2 can be chosen 
arbitrarily since they do not appear in (6.21) at all. These represent unbroken 
translations in the .x, y directions. Furthermore, there is another unbroken symmetry, 
corresponding to simultaneous translation in the z-direction and rotation around 
the z-axis. This extends to the solution of (6.21) with .ω3(x, t) = kϵ3(x, t) and 
.ω1,2(x, t) = 0. 

In addition to the three trivial solutions that identify unbroken symmetries, 
there is one solution of (6.21) that represents a genuine redundancy of order 
parameter fluctuations. This can be thought of for instance as picking . ω1 arbitrarily 
and adjusting . ω2 and . ω3 so that (6.21) is satisfied. Altogether, this makes four 
independent solutions of (6.17) in case of the order parameter (6.19). With six 
different symmetry generators, three translations and three rotations, this leaves us 
with mere two independent NG fields. That is a result we could have guessed: the 
unit vector field .n(x, t) contains exactly two degrees of freedom. 

This example demonstrates that while possibly tedious, finding the solutions 
to (6.17) as a set of linear equations for .ϵA(x) is completely straightforward. Even 
though (6.17) does not give an explicit expression for the number of independent 
NG fields, it therefore offers a streamlined algorithmic procedure how to find them.
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6.3.2 Type-A and Type-B Nambu–Goldstone Bosons 

Now we finally get to the question how many NG bosons there are in the spectrum. 
I will start with the simpler case of spontaneously broken internal symmetry in 
systems with unbroken translation invariance. In this case, there are guaranteed to 
be .dimG − dimH NG fields, in a one-to-one correspondence to broken symmetry 
generators. Finding the number of NG modes requires just a mild generalization of 
the argument in Sect. 6.1.2. 

As the first step, one introduces the commutator matrix 

.ϱAB ≡ i〈[QA, J 0
B ]〉 . (6.22) 

Translation invariance allows to rewrite this as .ϱAB = i limV →∞〈[QA,QB ]〉/V . 
This makes it clear that .ϱAB = 0 whenever .QA or .QB is unbroken. The nontrivial 
part of the commutator matrix therefore resides in its restriction to broken generators 
.Qa,b,..., that is . ϱab. Moreover, .ϱAB is real antisymmetric, and as such can be block-
diagonalized by an orthogonal change of basis of symmetry generators. With the 
shorthand notation .rϱ ≡ rank ϱ, this implies that the part of the effective Lagrangian 
for NG fields . πa , linear in time derivatives, takes the form 

.Leff = ϱ12π
1∂0π

2 + · · · + ϱrϱ−1,rϱπ
rϱ−1∂0π

rϱ + · · · . (6.23) 

The ellipsis indicates operators with more than one derivative or two NG fields. 
This allows a unique categorization of NG fields. The . rϱ NG fields . πa with . a =

1, . . . , rϱ are canonically conjugated into .rϱ/2 pairs. Each such pair corresponds to 
one type-B NG boson. Barring accidental cancellations in the spatial gradient part 
of the effective Lagrangian, the dispersion relation of type-B NG bosons is typically 
quadratic in momentum. The remaining NG fields . πa with . a = rϱ +1, . . . , dimG−
dimH do not appear in any bilinear operator with a single time derivative. They 
correspond to one type-A NG boson each. As a rule of thumb, free type-A bosons 
are described by bilinear operators in the Lagrangian with two temporal or two 
spatial derivatives. Hence, their dispersion relation is linear in momentum. 

We have arrived at a simple counting rule for the respective numbers of type-A 
and type-B NG bosons [15, 16], 

.nA = dimG − dimH − rank ϱ , nB = 1

2
rank ϱ . (6.24) 

This characterizes the spectrum of NG bosons based solely on the pattern of 
symmetry breaking and a bit of additional information about the ground state, 
encoded in the matrix .ϱAB . The possible values of .ϱAB are strongly restricted by 
the unbroken symmetry. To start with, in systems with unbroken Lorentz invariance, 
terms in the Lagrangian with a single time derivative are forbidden, hence .ϱAB = 0. 
This means that .nA = dimG − dimH and .nB = 0. All relativistic NG bosons are 
massless particles with a strictly linear dispersion relation.
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Let us now relax the requirement of Lorentz invariance, but keep the assumption 
that only internal symmetry is spontaneously broken and that the system possesses 
continuous translation invariance. If in addition the internal symmetry group G is 
compact and semisimple, we can write 

.ϱAB = i lim
V →∞

〈[QA,QB ]〉
V

= −f C
AB lim

V →∞
〈QC〉

V
, (6.25) 

where .f C
AB are the structure constants of G. This shows that the VEV of the 

conserved charges themselves can serve as an order parameter for SSB. The set 
of VEVs .〈QC〉 furnishes a vector in the adjoint representation of G. At the  same  
time, it must remain unchanged under the action of H . As a consequence, the vector 
.〈QC〉 must correspond to a trivial one-dimensional representation (singlet) of H . 
Finding such singlets in the decomposition of the Lie algebra . g of G into irreducible 
multiplets of H is a quick way to isolate candidate order parameters. 

Focusing on singlets of H in the decomposition of the adjoint representation of G 
may not be restrictive enough in case H is small or even trivial. We can however do 
much better than that. Namely, it is always possible to choose the ground state and 
basis of generators .QA such that all the charges that have a nonzero VEV mutually 
commute. A detailed proof of this statement is given in the appendix of [7]. Thus, 
to identify conserved charge order parameters, it is sufficient to restrict to a Cartan 
subalgebra of . g and find singlets of H therein. By the usual root decomposition of 
Lie algebras, all the generators of G are organized into pairs whose commutator lies 
in the Cartan subalgebra of . g. This maps type-B NG bosons uniquely to pairs of 
mutually conjugate roots of . g. 

Example 6.6 

Consider the symmetry-breaking pattern .SU(n) → U(n − 1) with integer .n ≥ 2. 
The unbroken subgroup .H ≃ U(n − 1) can be realized explicitly for instance as the 
set of unitary block-diagonal matrices with blocks of sizes 1 and .n−1, respectively. 
The Lie algebra .g ≃ su(n) contains a unique singlet of H , namely the generator of 
the .U(1) factor of H , .Q ≡ diag(−n + 1, 1, . . . , 1). 

The .2n − 2 broken generators can be chosen as matrices with nonzero elements 
located in the first row and column. These span a complex .(n − 1)-plet of 
.SU(n − 1) ⊂ H . Since all the broken generators reside in a single multiplet of H , 
we expect all the corresponding NG bosons to be either type-A or type-B. Which 
of these two options is realized depends on the VEV . 〈Q〉. If  .〈Q〉 = 0, we find that 
.nA = 2n − 2 and .nB = 0. This happens in Lorentz-invariant theories, but also for 
instance in antiferromagnets where .n = 2. If, on the other hand, .〈Q〉 /= 0 then 
the broken generators contribute pairwise to .ϱAB . As a result, .rank ϱ = 2n − 2. 
According to (6.24), we then find .nA = 0 and .nB = n − 1. The special case of 
.n = 2 corresponds to ferromagnets.
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ferromagnet antiferromagnet 

Fig. 6.2 Schematic illustration of spin order in canted (anti)ferromagnets. In ferromagnets, the 
individual spins are slightly tilted away from perfect alignment. Antiferromagnets, on the other 
hand, exhibit overall antialignment of spins, tilted so that a nonzero net magnetization arises. In 
both cases, the whole .SU(2) group of spin rotations is spontaneously broken 

Example 6.7 

For an example of a system where a type-B NG boson arises from the VEV of a 
broken symmetry generator, consider the symmetry-breaking pattern .SU(2) → {e}. 
Here the unbroken subgroup is trivial and any generator may develop a nonzero 
VEV. However, the rank of antisymmetric matrices is always even. The only 
possibilities are therefore .rank ϱ = 0 and .rank ϱ = 2. In the latter case, we find 
.nA = nB = 1. This is realized in so-called canted (anti)ferromagnets, schematically 
shown in Fig. 6.2. 

So far I have assumed that the internal symmetry group G is compact and 
semisimple so that (6.25) holds. When this assumption is not satisfied, the commuta-
tor matrix (6.22) may receive contributions from central charges of the Lie algebra 
. g. This is the case for instance for the free Schrödinger field. Without going into 
detail, let me just mention that such central extensions are classified by the so-called 
second Lie algebra cohomology of . g. See Chap. 6 of [17] for further information. 

How does the counting of NG bosons change for symmetries that are not 
internal, such as spacetime symmetries? In this case, there are no established 
general results in the literature. However, the simplicity of the argument given 
in Sect. 6.1.2 suggests that the reduction of independent NG modes based on the 
charge commutator (6.22) is robust. Suppose that we have already identified a set of 
independent NG fields . πa . Let us further assume that we can map these to a set of 
broken generators . Qa that act on the fields by a shift such as (6.1). We can restrict 
the definition of the commutator matrix to the generators . Qa . The  VEV in  (6.22) 
may now in principle be coordinate-dependent, and it may no longer be appropriate 
to replace . J 0

B with the spatial average of . QB . However, the rest of the argument 
will still go through. We will then get the same identification of type-B NG bosons 
with pairs of broken generators whose commutator has a nonzero VEV. Nontrivial 
examples of systems where the counting rule (6.24) for type-B NG bosons was still 
found to be valid include the centrally extended algebra of spatial translations in an
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external magnetic field [15], and central extensions of commutators of spatial and 
internal symmetries in presence of topological defects such as a domain wall [18] 
or a line defect [19]. 

6.4 Nambu–Goldstone-Like Modes 

The defining property of a NG boson is its relation to symmetry and its sponta-
neous breaking. In the operator proof of Goldstone’s theorem (Sect. 6.2.1), this 
manifests through the coupling of the NG state to the broken symmetry current, 
.〈0| J 0(0) |n,p〉. In the effective action proof (Sect. 6.2.2), the NG boson appears 
through a flat direction of the effective potential or action. Many physical systems 
possess excitations with the above properties that however lack the main attribute 
of a NG boson, that is being exactly gapless. Due to their similarity to genuine NG 
modes, I will call such excitations NG-like bosons. 

The existence of SSB-related modes that are not exactly gapless is of course 
only possible if some of the assumptions of Goldstone’s theorem are violated. The 
usual suspect is the symmetry. There are very few exact symmetries in nature; such 
usually only exist in our models, valid to certain, possibly high, accuracy. In this 
last section of the chapter, I will give a brief survey of different mechanisms how a 
NG-like boson may arise from a symmetry that is only approximate. 

6.4.1 Pseudo-Nambu–Goldstone Bosons 

Consider a theory whose Lagrangian can be split into a part invariant under a group 
G, and a small perturbation invariant only under some proper subgroup of G, 

.L = Linv + ϵLpert . (6.26) 

This is a setup that I used previously to isolate a unique ground state. The difference 
is that now I want to keep the parameter . ϵ small but nonzero. This is called explicit 
symmetry breaking. 

Suppose that in the limit .ϵ → 0, the symmetry under G is broken spontaneously. 
It is sensible to expect that by restoring small but nonzero . ϵ, the spectrum will evolve 
adiabatically. The NG mode predicted by Goldstone’s theorem will then survive, but 
its mass (gap) will no longer be exactly zero. Such “approximate” NG bosons are 
usually called pseudo-NG bosons. 

Let us try to make an educated guess at how the gap of a pseudo-NG boson 
depends parametrically on . ϵ. Imagine that we have already derived a low-energy 
EFT for the (pseudo-)NG bosons in our system. The contributions of the perturba-
tion .Lpert to the effective Lagrangian can be organized by powers of . ϵ. The leading 
contribution to the bilinear part of the effective Lagrangian typically comes from a 
nonderivative operator linear in . ϵ. I will justify this claim more carefully in Chap. 8, 
where I actually construct the effective Lagrangian.
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The rest of the argument depends on the type of the NG boson in the limit of 
vanishing perturbation. This type is still defined by the presence or absence of a 
term with a single time derivative, containing the given NG field. For type-A NG 
bosons, the bilinear Lagrangian contains two time derivatives which translate to 
squared energy in the Fourier space. For type-B NG bosons, on the other hand, a 
term with a single time derivative is present and dominates in the low-energy limit. 
This leads to the following parametric dependence of energy at zero momentum on 
. ϵ, 

.

lim
p→0

E(p) ∝ √
ϵ (“type-A” pseudo-NG boson) ,

lim
p→0

E(p) ∝ ϵ (“type-B” pseudo-NG boson) .
(6.27) 

I have just used quotation marks for a reason. There is no established, 
unambiguous classification of pseudo-NG bosons. All I did was to rely on 
the continuity of the spectrum in the limit .ϵ → 0. Moreover, the parametric 
scaling in (6.27) is based on the assumption of a rather specific form of 
perturbation in the effective Lagrangian. It is imaginable that even for an 
originally type-A NG boson, .Lpert will induce an operator in the effective 
Lagrangian with a single time derivative and a coefficient proportional to 
some power of . ϵ. That may change the way the gap of the pseudo-NG mode 
scales with . ϵ. This is exactly what happens for the “massive” NG bosons, 
introduced in Sect. 6.4.3. 

It is a simple application of the discussion in Sect. 6.3.2 to find howmany pseudo-
NG bosons one should expect in a given system. I will denote as . Gϵ and . Hϵ the 
symmetries of the action and of the ground state in presence of the perturbation. In 
analogy with (6.22), I will define the commutator matrix . ϱϵ by 

.ϱϵ,AB ≡ i〈[QA, J 0
B ]〉ϵ . (6.28) 

The . ϵ in the subscripts reminds us that the indices .A,B run over the generators of 
. Gϵ , and that the VEV is taken in the perturbed vacuum. According to (6.24), there 
are altogether .dimG − dimH − (1/2) rank ϱ NG modes in the limit .ϵ → 0. By the  
same formula, .dimGϵ − dimHϵ − (1/2) rank ϱϵ genuine NG bosons survive upon 
switching on the perturbation. On the assumption of continuity of the spectrum, the 
number of pseudo-NG bosons therefore equals 

. npseudoNG = (dimG − dimGϵ) − (dimH − dimHϵ) − 1

2
(rank ϱ − rank ϱϵ) .

(6.29)
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We saw an example of a pseudo-NG boson already in Chap. 2. In that case, . G ≃
U(1)V × U(1)A and .H ≃ U(1)V, whereas .Gϵ ≃ Hϵ ≃ U(1)V. The counting 
rule (6.29) is trivially satisfied and the prediction (6.27) for the scaling of the gap 
agrees with our explicit calculation of the mass, cf. (2.12). Next, let us have a look 
at a couple of less trivial examples. 

Example 6.8 

We already met quantum chromodynamics (QCD) in Chap. 5, see Example 5.5. 
In this case, the quark mass plays the role of the perturbation . ϵ. With . nf flavors 
of massless quarks, QCD possesses a .G ≃ SU(nf)L × SU(nf)R symmetry, 
spontaneously broken down to the “vector” subgroup .H ≃ SU(nf)V. In presence 
of the perturbation (with equal masses of all quarks), this reduces to . Gϵ ≃ Hϵ ≃
SU(nf)V. The vacuum of QCD is Lorentz-invariant, so the matrices . ϱ and . ϱϵ are 
both identically zero. According to the counting rule (6.29), this leaves us with 
.n2f − 1 pseudo-NG bosons, which can be identified with a multiplet of pseudoscalar 
mesons. The fact that their mass scales with the square root of the quark mass, as 
predicted by (6.27), has been verified in numerical lattice simulations of QCD. 

Example 6.9 

As discussed before, ideal (isotropic) antiferromagnets possess a .G ≃ SU(2) spin 
symmetry, spontaneously broken down to .H ≃ U(1). The low-energy EFT for 
antiferromagnetic spin waves (magnons) is a nonrelativistic version of the nonlinear 
sigma model, introduced in Example 3.3, 

.Leff = ϱs

2v2
(
δij ∂0n

i∂0n
j − v2δij∇ni · ∇nj

) + ϵ(n3)2 . (6.30) 

Here . ϱs is the so-called spin stiffness, . n a unit-vector variable encoding the two NG 
fields, and v the magnon phase velocity in the symmetric limit .ϵ = 0. 

For .ϵ > 0, the perturbation proportional to .(n3)2 describes a crystal anisotropy, 
corresponding to “easy-axis” antiferromagnets; see [20] for a mild introduction to 
antiferromagnetic magnons. The perturbation breaks the continuous spin symmetry 
explicitly down to .Gϵ ≃ U(1), consisting of rotations around the third spin axis. At 
the same time, it leaves only two possible ground states, .〈n〉ϵ = (0, 0,±1), both of 
which preserve .Hϵ ≃ U(1). By the counting formula (6.29), both magnons become 
pseudo-NG bosons. Their gap is proportional to . 

√
ϵ in accord with (6.27).
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6.4.2 Quasi-Nambu–Goldstone Bosons 

The above general discussion of pseudo-NG bosons applies in principle to any 
NG-like mode, associated with an approximate symmetry. However, the strength 
of the perturbation, and hence the size of the gap in the spectrum, may depend on 
the concrete mechanism of explicit symmetry breaking. It is in particular possible 
to have systems with a well-defined classical limit whose symmetry is explicitly 
broken only by quantum corrections. The ensuing pseudo-NG modes have been 
dubbed quasi-NG bosons [21]. I refer the reader to [22,23] for a detailed discussion 
of the spectrum of quasi-NG modes. 

To be more concrete, suppose we are given a Lorentz-invariant Lagrangian whose 
potential has a higher symmetry than the kinetic term. At the classical level, the 
spectrum of NG bosons is determined by the zero modes of the Hessian of the 
potential in the ground state. But some of these zero modes may correspond to 
symmetries of the potential that do not preserve the kinetic term. The corresponding 
fluctuations of the order parameter will receive a mass generated by quantum 
corrections. 

The lifting of the mass of the would-be NG modes does not have to be induced 
by the kinetic term. What matters is that the classical ground state is determined 
entirely by a part of the Lagrangian that has a higher symmetry than the whole. The 
reduction of the symmetry may also be caused for instance by other contributions 
to the classical potential, or by a coupling to gauge fields. 

6.4.3 Massive Nambu–Goldstone Bosons 

What the pseudo-NG bosons and their subclass, quasi-NG bosons, have in common 
is that their gap can rarely be determined from first principles. In general, it depends 
on all parameters a given theory might have. One says that the gap is not protected by 
symmetry, in contrast to genuine NG bosons whose gap is guaranteed to vanish by 
SSB. There is however a remarkable special class of pseudo-NG bosons whose gap 
can be calculated exactly using symmetry alone. Their existence was first pointed 
out about a decade ago [24] and I will call them massive NG bosons following [25]. 

Consider a system with a “microscopic” Hamiltonian H , possessing an internal 
symmetry group G. Pick one generator, Q, of  G. In statistical physics, the many-
body ground state of the system with a fixed average value of Q is determined 
by minimizing the grandcanonical Hamiltonian .Hμ ≡ H − μQ. Here  . μ is the 
corresponding chemical potential, which is fixed by external conditions imposed on 
the system. If needed, one can always shift . Hμ by a constant so that the many-body 
ground state .|0〉μ satisfies .Hμ |0〉μ = 0. In this ground state, the symmetry under 
G may be spontaneously broken. We are particularly interested in the fate of those 
generators of G that are spontaneously broken but do not commute with Q. 

As long as G is compact, we can always choose Q to be part of a Cartan 
subalgebra of the Lie algebra . g of G. Those generators of G that do not commute



6.4 Nambu–Goldstone-Like Modes 105

with Q then organize themselves into pairs .Q± such that .Q− = Q
†
+ and 

.[Q,Q±] = ±qQ± . (6.31) 

The factor q is determined by the corresponding root vector, and is thus fixed by 
symmetry. We can always choose the generators so that both . μ and q are positive. I 
will now rerun the operator proof of Goldstone’s theorem detailed in Sect. 6.2.1 on 
the VEV .μ〈0|[Q+Ω(t), J 0−(0)] |0〉μ. 

Of course, (6.31) is only formal since we know that generators of spontaneously 
broken symmetry are ill-defined as operators on the Hilbert space. I therefore 
assume that (6.31) also holds for the finite-volume charges .Q±Ω, possibly up to 
a correction that vanishes in the limit .Ω → ∞. This can be ensured for instance if 
the charge densities satisfy the local commutation relation .[Q,J 0±(x)] = ±qJ 0±(x). 
One can then define a related pair of charges via “time evolution” with respect to 
. Hμ, 

.

μQ±Ω(t) ≡
∫

Ω

ddx exp(iHμt − iP · x)J 0±(0) exp(−iHμt + iP · x)

= e−iμQtQ±Ω(t)e+iμQt = e∓iμqtQ±Ω(t) .

(6.32) 

The point of this redefinition is that the spectrum of the many-body system consists 
of eigenstates of . Hμ rather than H . I will keep the notation .En(p) for the eigenvalue 
of .Hμ (excitation energy) in the eigenstate .|n,p〉. Following the same steps as in 
Sect. 6.2.1 then leads to an analog of (6.11), 

. μ〈0|[Q+Ω(t), J 0−(0)] |0〉μ = eiμqt
μ〈0|[μQ+Ω(t), J 0−(0)] |0〉μ

= eiμqt
∑
n

∫
ddp

{
exp[−iEn(p)t]δd

Ω(p)

∣∣∣μ〈0|J 0+(0) |n,p〉
∣∣∣2 (6.33) 

− exp[+iEn(p)t]δd
Ω(−p)

∣∣∣μ〈0|J 0−(0) |n, p〉
∣∣∣2

}
. 

With positive . μ and q, the assumed time independence of VEVs of commutators 
of .Q+Ω(t) in the .Ω → ∞ limit guarantees that .limp→0 μ〈0|J 0−(0) |n,p〉 = 0 for 
any eigenstate .|n,p〉. Assuming that the VEV we started with is nonzero, on the 
other hand, ensures the existence of a state for which .μ〈0|J 0+(0) |n,p〉 /= 0 and 

. lim
p→0

En(p) = μq . (6.34) 

This is our massive NG boson.With some extra effort, one can also derive a counting 
rule for the number of massive NG modes in a system. To formulate such a rule, 
we adapt (6.22) for the present problem by introducing .ϱμ,AB ≡ i〈[QA, J 0

B ]〉μ and 
.ϱ̃μ,AB ≡ i〈[Q̃A, J̃ 0

B ]〉μ. The matrix . ̃ϱ is constructed using the generators of the
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subgroup of G that commutes with Q. The number of massive NG modes then 
is 

.nmassiveNG = 1

2
(rank ϱμ − rank ϱ̃μ) . (6.35) 

See [25] for a detailed proof. 
The counting rule (6.35) may resemble the last term in (6.29) that counts 

pseudo-NG bosons. It may thus be worthwhile to stress the difference. Namely, the 
matrices . ϱ and . ϱϵ in (6.29) are evaluated in different ground states, corresponding 
respectively to the absence and presence of the perturbation. On the contrary, both 
matrices . ϱμ and . ̃ϱμ in (6.35) are evaluated in the same ground state, “perturbed” 
by the presence of the chemical potential. The difference is best illustrated on an 
example. 

Example 6.10 

Let us have one more look at antiferromagnets, this time assuming perfect isotropy 
and spin symmetry, that is .G ≃ SU(2) and .H ≃ U(1). In an external magnetic 
field . B, the Hamiltonian of the antiferromagnet receives a contribution .−μmB · S, 
where . μm is the magnetic moment and . S the operator of total spin. The combination 
.μm |B| plays the role of a chemical potential for the projection of . S into the direction 
of . B. The latter can without loss of generality be chosen as, say, . S3. 

Let us first treat the effect of the magnetic field as a perturbation in the sense 
of Sect. 6.4.1. The field breaks the spin symmetry explicitly down to . Gϵ ≃
U(1). This necessarily implies .rank ϱϵ = 0. Somewhat against the intuition, the 
antiferromagnet responds to the magnetic field by aligning its spins largely in a 
direction perpendicular to . B. This ground state breaks the residual exact symmetry 
so that .Hϵ ≃ {e}. At the same time, in the unperturbed antiferromagnetic ground 
state, there is no net magnetization so that .rank ϱ = 0. Equations (6.22) and (6.29) 
then tell us that there is one genuine, type-A NG boson and one pseudo-NG boson. 
Unlike in the case of an easy-axis anisotropy, one of the two magnons therefore 
remains gapless. 

The fact that the magnetic field acts as a chemical potential allows us to make 
a stronger statement about the spectrum. The magnetic field does induce net mag-
netization in the perturbed ground state, given by nonzero .〈S3〉μ = −i〈[S1, S2]〉μ. 
This implies .rank ϱμ = 2. At the same time, .rank ϱ̃μ = 0 simply because there 
are not enough symmetry generators left intact by the magnetic field. In accord 
with (6.35), we then expect one massive NG mode in the spectrum. In other words, 
the previously predicted pseudo-NG magnon has a gap exactly fixed by (6.34). 
The algebraic factor q equals one thanks to the commutator of . S3 with the ladder 
operators .S± ≡ S1 ± iS2, .[S3, S±] = ±S±. Hence the gap of the magnon equals 
.μm |B|.
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An interested reader will find further examples of massive NG bosons in [25]. 
Let me just stress that the exact expression (6.34) for the gap is not the only 
special property of massive NG bosons. The peculiar perturbation by a chemical 
potential coupled to a conserved charge leaves us with a set of exact, albeit modified, 
conservation laws. These in turn impose exact constraints on the interactions of 
massive NG bosons. As a result, the Adler zero principle (cf. Sect. 2.2) remains valid 
for massive NG modes, although it is generally violated for pseudo-NG bosons [26]. 

As an aside, note that not every NG boson that acquires a gap due to a chemical 
potential is a massive NG boson [27]. The simplest example of such an exception 
is provided by choosing .G ≃ SU(2) and breaking it completely in the ground state. 
Provided none of the three generators develops a VEV, the spectrum contains three 
type-A NG bosons. Upon adding a chemical potential . μ for one of the generators, 
two of the NG modes receive a gap, proportional to . μ. Only one of these is however 
a massive NG boson, as is easily checked using (6.35). 
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Part III 

Spontaneously Broken Internal Symmetry



7Nonlinear Realization of Symmetry 

In Parts I and II of the book, I reviewed the basic physics of spontaneous symmetry 
breaking (SSB) and the corresponding Nambu–Goldstone (NG) bosons. In order to 
keep the discussion simple, I relied mostly on general but elementary field-theoretic 
arguments. Where explicit results were necessary or useful, I resorted to simple 
models. However, one of the main virtues of SSB is universality: the low-energy 
physics is largely independent of the microscopic, short-distance details. This agrees 
with the general spirit of effective field theory (EFT); cf. Sect. 1.1. What SSB does 
for us is ensure a separation of resolution scales, which makes it possible to build a 
low-energy EFT solely using the NG degrees of freedom. 

I will now set out on the main quest of this book: to develop an EFT framework 
for SSB that is based on symmetry alone. Thanks to the universality of SSB, the 
predictions of such a framework are guaranteed to match those of any microscopic 
theory with the same symmetry-breaking pattern. The construction of the EFT 
requires two main steps. The first step is to realize the action of the symmetry solely 
in terms of a set of NG fields. This problem is dealt with in the present chapter. The 
results will be used in the next chapter to construct effective actions for NG bosons. 

The celebrated Wigner theorem of quantum mechanics states that any symmetry 
of a quantum system can be realized by a linear unitary or antilinear antiunitary 
operator on its Hilbert space (see Chap. 2 of [1] for a detailed discussion). As a 
consequence, states in the spectrum of a quantum system can be organized into 
multiplets, corresponding to irreducible representations of its symmetry group. In 
quantum field theory, the concept of linear realization of symmetry is naturally 
lifted from states to fields. In a perturbative setting, one usually has a one-to-one 
correspondence between one-particle states and (elementary) fields. Moreover, the 
fields span a linear space. One then expects the symmetry to act on fields linearly 
via some representation just like it does on states in the Hilbert space. 
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Example 7.1 

A field theory of a single complex scalar field . φ may possess a .U(1) symmetry under 
which the field transforms as .φ → eiϵφ, where . ϵ is a real parameter. In this case, 
the field . φ belongs to a complex one-dimensional representation of .U(1). Similarly, 
the .SO(n) “linear sigma model” includes an n-plet of real scalar fields . φi , subject to 
symmetry transformations .φi → Ri

jφ
j , where .R ∈ SO(n). In this case, the fields 

. φi belong to the vector representation of .SO(n). 

As we saw in Sect. 5.3, however, a symmetry that is spontaneously broken is 
not necessarily realized by a set of unitary operators on the Hilbert space of states. 
Likewise, as illustrated in Chap. 2, it may be convenient to use field variables that 
do not belong to a linear representation of the symmetry. This may even become a 
necessity in the low-energy EFT where only the NG bosons of the broken symmetry 
are present; we simply do not have enough degrees of freedom to fill complete 
multiplets of the symmetry group. 

Example 7.2 

The complex scalar field of Example 7.1 can be represented by its real and imaginary 
parts, .φ = φ1 + iφ2. These span the vector representation of .SO(2) ≃ U(1). When 
the .U(1) symmetry is spontaneously broken, it may however be more convenient to 
use the exponential parameterization of the field, .φ = ϱeiθ , in terms of its modulus 
. ϱ and phase . θ . In the low-energy EFT, the modulus field is integrated out and the 
only remaining degree of freedom is the NG field . θ . The latter transforms under 
.eiϵ ∈ U(1) as .θ → θ + ϵ, which is not a linear representation. This is not merely 
a matter of bad choice of parameterization; the EFT contains a single real field, yet 
the group .U(1) does not have any nontrivial real one-dimensional representations. 

With the above observations in mind, I will develop in this chapter a formalism 
for nonlinear realization of symmetries. Mathematically, this amounts to generaliz-
ing the concept of a linear representation of a symmetry group to that of an action 
of the group. The space on which the group acts need not be linear itself; we can 
think of it as some manifold. Section 7.1 introduces the necessary mathematical 
terminology. The main argument, leading to a classification of possible nonlinear 
realizations of symmetry, is presented in Sect. 7.2. A reader interested mainly in 
ready-made results of the formalism may want to proceed directly to Sect. 7.3; 
this collects a number of practically useful formulas that I will refer to in the 
following chapters. Finally, Sect. 7.4 offers an alternative geometric viewpoint 
which illuminates some of the mathematical structure used to realize a symmetry 
nonlinearly. While most of the chapter is phrased in a rather elementary language, 
this last section relies on some concepts of differential geometry in an extent covered 
in Appendix A.
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7.1 Group Action on Manifolds 

To motivate the mathematical language that I need to introduce, suppose that we 
are given a theory of a set of fields, . ψi , that possesses a symmetry group, G.1 We 
would like to understand how to realize the symmetry group in terms of a set of 
transformations of the fields, 

.Tg : ψi → ψ 'i ≡ Fi (ψ, g) , g ∈ G , (7.1) 

where the functions . Fi are assumed to be smooth in both of their arguments. The 
set of transformations . Tg is constrained by the requirement that it respects the group 
structure of G. Thus, the unit element .e ∈ G must be represented by the identity 
map . id, .Fi (ψ, e) = ψi . Consistency with group multiplication requires that 

.Fi (ψ, g1g2) = Fi (F(ψ, g2), g1) , g1, g2 ∈ G . (7.2) 

Finally, the transformation induced by the inverse of an element .g ∈ G has to satisfy 

.Fi (F(ψ, g), g−1) = ψi , g ∈ G . (7.3) 

In the terminology introduced in Chap. 4, (7.1) is an example of a point 
transformation [2, 3]. The class of point transformations is clearly much broader 
than that of mere linear transformations, induced by a representation of G on 
the fields. It is therefore worthwhile to recall that even point transformations do 
not exhaust all conceivable, and physically relevant, realizations of symmetry. 
First, the field transformation may in principle depend explicitly on the spacetime 
coordinates. This feature can be included under the umbrella of point symmetries by 
treating fields and coordinates on the same footing; this will become relevant later 
when we talk about spacetime symmetries. Moreover, it is perfectly possible that 
the transformation of the fields also depends on their derivatives; this was dubbed 
generalized local transformation in Sect. 4.1. Such generalized symmetries play a 
minor role in this book, yet we will see some concrete examples in Chap. 10. 

The restriction to point symmetries of the type (7.1), which I will make from now 
on unless explicitly stated otherwise, is a matter of practical convenience. Namely, 
it will allow us to disregard the fact that . ψi actually are fields, that is functions 
of spacetime coordinates. Instead, I will treat them as independent variables that 
the group G acts upon. With this important technical assumption, we can now 
reformulate the problem of finding all possible realizations of a given symmetry 
group G on the fields . ψi in geometric terms.

1 Many of the concepts introduced below can be applied without change to any, even finite, group. 
However, I will always have implicitly in mind a connected Lie group, or the component of a Lie 
group connected to the unit element. 
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Consider a manifold . M such that each point .x ∈ M is uniquely specified by 
a set of values . ψi . We can think of . ψi as a set of (possibly only locally defined) 
coordinates on . M. An  action of the group G on . M is a set of smooth invertible 
maps .Tg :M→M that satisfy the group constraints 

. Te = id , Tg1g2 = Tg1 ◦ Tg2 , Tg−1 = (Tg)
−1 , g, g1, g2 ∈ G .

(7.4) 

In somewhat more abstract terms, the action of the group on the manifold is defined 
by a homomorphism from G to the group of diffeomorphisms on . M. 

It is important to distinguish actual symmetry transformations on . M from 
a mere change of coordinates. The action of the group G on . M is defined 
geometrically by the maps . Tg without reference to a particular set of 
coordinates . ψi . Depending on the choice of coordinates, the same map . Tg

may correspond to different functions . Fi as defined by (7.1). The freedom 
to choose coordinates on . M mirrors the freedom to choose field variables 
in a given field theory. On the one hand, the independence of geometric 
properties of manifolds on the choice of local coordinates is a cornerstone 
of the language of differential geometry. On the other hand, it is an important 
result of quantum field theory that physical observables such as the S-matrix 
are invariant under (nearly) arbitrary field redefinitions [4, 5]. See [6] for  a  
recent pedagogical discussion of this issue. 

Let us now introduce some further terminology. For a given action of the group 
G on the manifold . M, the  orbit of a point .x ∈M is the set of all points on . M that 
can be reached from x by the action of some group element, 

.Ox ≡ {Tgx | g ∈ G} . (7.5) 

The relation .y ∼ x if and only if there is a .g ∈ G such that .y = Tgx is an 
equivalence. Orbits of the group G on the manifold . M are the equivalence classes 
of this relation. As a consequence, . M is a disjoint union of a (possibly infinite) set 
of orbits. 

For a given point .x ∈M, one defines its isotropy group (also called the stabilizer 
or the little group of x) as the subgroup of G that maps x to itself, 

.Hx ≡ {h ∈ G | Thx = x} . (7.6) 

Two points lying on the same orbit of G have isomorphic isotropy groups. Indeed, 
if .y = Tgx, then for any .h ∈ Hx we have . Tghg−1y = TgThTg−1y = TgThx = Tgx =
y. Conversely, it is easy to check that .Thy = y implies .g−1hg ∈ Hx . Thus, . Hx and
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Fig. 7.1 Illustration of the 
action of the rotation group 
.SO(2) on the Euclidean 
plane. Some orbits of . SO(2)
for which the isotropy group 
is trivial are displayed using 
dashed lines. The  black dot 
indicates the single orbit 
whose isotropy group is the 
whole of . SO(2)

. Hy are conjugate as subgroups, 

.HTgx = gHxg
−1 . (7.7) 

Example 7.3 

The rotation group .SO(2) acts on the Euclidean plane by rotations around the origin, 
see Fig. 7.1 for an illustration. All points of the plane away from the origin have a 
trivial isotropy group. The corresponding orbits of .SO(2) are circles centered at the 
origin. The origin itself forms an orbit with the isotropy group .SO(2). 

This example has a straightforward generalization to the action of .SO(n) on the 
Euclidean space . Rn. There, the origin has the isotropy group .SO(n). All other points 
.x ∈ Rn have the isotropy group .SO(n − 1), corresponding to .(n − 1)-dimensional 
rotations that leave the line connecting x to the origin fixed. The corresponding 
orbits are .(n − 1)-dimensional spheres centered at the origin. 

In somewhat loose terms, we can say that all points lying on the same orbit of 
G on the manifold . M have “the same” properties, since they can be related by a 
symmetry transformation. We thus expect manifolds consisting of a single orbit to 
have particularly simple geometric properties. In this case, the action of the group 
G on the manifold . M is called transitive; any point on the manifold can be reached 
from any other point by the action of a suitable group element. A manifold equipped 
with a transitive action of a group is referred to as a homogeneous space. 

Homogeneous spaces will play a central role throughout the rest of this book. 
One of the special properties of a homogeneous space is that its structure is 
completely determined by the group G and its subgroup H that specifies the isotropy
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group of the homogeneous space.2 To see why, let us introduce a relation between 
two elements of G: .g2 ∼ g1 if and only if there is an .h ∈ H such that .g2 = g1h. 
This is an equivalence relation. As a consequence, the group G is partitioned into a 
disjoint union of the corresponding equivalence classes. The equivalence class 

.gH ≡ {gh | h ∈ H } , g ∈ G , (7.8) 

is called the left coset (or simply coset) of  H in G. Incidentally, the cosets 
themselves can be viewed as orbits of a group action if we treat the group G as 
the manifold on which the subgroup H acts by multiplication from the right. 

The quotient set .G/H , called the coset space, is the set of all cosets of H in G. 
Despite the different appearance, this is just another mathematical realization of a 
homogeneous space. Indeed, consider a homogeneous space . M along with a single 
point .x ∈ M and its isotropy group H . It is easy to see that for any two elements 
.g1, g2 ∈ G, .Tg1x = Tg2x if and only if .g1 ∼ g2, that is if . g1 and . g2 belong to the 
same coset. Hence there is a one-to-one correspondence between the elements of 
the coset space .G/H and the points of the manifold . M. 

Example 7.4 

The Euclidean group .ISO(n) consists of proper rotations and translations in . Rn

and their combinations. It obviously acts transitively on . Rn for the simple reason 
that any point in . Rn can be reached from any other point by a suitable translation. 
Each point in . Rn has a its stabilizer a particular subgroup of .ISO(n), consisting of 
.SO(n) rotations around that point. Hence . Rn equipped with the action of .ISO(n) is a 
homogeneous space, equivalent to the coset space .ISO(n)/SO(n). This view of the 
Euclidean space in terms of its symmetry group follows the “Erlangen program,” 
put forward by Felix Klein in 1872. 

Example 7.5 

The rotation group .SO(n + 1) acts naturally on the n-dimensional unit sphere . Sn if 
one thinks of the latter as embedded in .Rn+1. We can however think of the sphere . Sn

in itself as our manifold . M. In that case, the action of .SO(n+1) becomes transitive; 
any point on the sphere can be reached from any other point by a suitable rotation. 
The isotropy group of any point on the sphere is a particular .SO(n) subgroup of 
.SO(n + 1). Hence, the sphere . Sn equipped with the action of .SO(n + 1) is a 
homogeneous space, equivalent to the coset space .SO(n + 1)/SO(n).

2 Since the isotropy group is the same up to conjugation for all points on the same orbit, and hence 
all points of the homogeneous space, we can drop the subscript x. 
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Having set up the necessary mathematical background, I can now give a concise 
formulation of the main goal of this chapter. In order to understand how a given 
symmetry group G can act on a given set of fields, we need to classify all possible 
actions of G on a given manifold . M. This will be accomplished in the following 
section. A reader seeking further details on the mathematical background reviewed 
above is recommended to consult Chap. 13 of [7]. 

7.2 Classification of Nonlinear Realizations 

At first sight, the task to classify all actions of an arbitrary group G on an arbitrary 
manifold . M seems hopeless. We would only know what to do in the case of a 
linear action on a vector space, where the problem boils down to the good old 
representation theory of Lie groups. How can we make use of this? 

In this section, I will answer the above question, following the classic work of 
Coleman, Wess and Zumino [8]. The key step is to observe that the action of a group 
on a manifold can be partially linearized by a suitable choice of coordinates on the 
manifold. Let us choose a fixed point .x0 ∈ M. We can always introduce a set of 
coordinates . ψi in the neighborhood of . x0 such that . x0 maps to the origin, .ψi = 0. 
Now any linear transformation leaves the origin intact. On the contrary, only the 
isotropy group .Hx0 keeps . x0 fixed; all the other elements of G translate . x0 to some 
other point on the manifold. Thus, the best we can hope for is that we find a set of 
coordinates in which the action of . Hx0 , not of the whole group G, becomes linear. 

We will see that provided the isotropy group .Hx0 is compact, one can indeed 
construct a set of local coordinates on . M in the neighborhood of . x0 in which the 
action of .Hx0 is linear. The good news is that this is in fact sufficient to classify 
all nonlinear realizations of the whole group G. The details of the argument are the 
subject of the following two subsections. 

While this whole chapter is intended to develop a mathematical formalism that 
will prove invaluable later, it might be helpful for the reader already now to keep in 
mind the corresponding concepts pertinent to SSB, introduced in Chap. 5. The fixed 
point .x0 ∈ M corresponds to the selected vacuum state, or the associated order 
parameter. The subgroup .Hx0 that leaves . x0 intact is analogous to the subgroup 
of unbroken symmetries. Finally, the coset space .G/Hx0 , which will turn out to 
span a submanifold of . M, is analogous to the vacuum manifold. For the reader’s 
convenience, this correspondence is summarized in Table 7.1. 

Table 7.1 Correspondence between the mathematical terminology used in this chapter and the 
physics terminology introduced in Chap. 5 

Mathematics terminology Physics terminology 

“Origin” .x0 ∈M Vacuum state (order parameter) 

Isotropy group .Hx0 Unbroken subgroup H 
Coset space .G/Hx0 Vacuum manifold
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7.2.1 Linearization of Group Action 

To simplify the notation, I will from now on denote the functions . Fi defined in (7.1) 
directly as . ψ 'i whenever possible. Suppose that we have a set of local coordinates . ψi

on . M in which the chosen point . x0 maps to zero. In these coordinates, the isotropy 
group .Hx0 will be represented by some nonlinear functions of . ψi whose Taylor 
expansion in . ψi starts at the linear order, 

.ψ 'i (ψ, h) = D(h)ijψ
j + O(ψ2) , (7.9) 

where .h ∈ Hx0 and .D(h)ij is a set of matrix coefficients. The conditions (7.2) 
and (7.3) require that the matrices .D(h) form a representation of . Hx0 . We can then 
change the coordinates in the vicinity of . x0 to 

.Ψi(ψ) ≡
∫

Hx0

dh D(h−1)ijψ
'j (ψ, h) , (7.10) 

where . dh is an invariant measure on .Hx0 normalized so that the total volume of . Hx0

is one.3 The normalization ensures that near the origin, .Ψi = ψi + O(ψ2). Hence, 
. Ψi are a well-defined set of coordinates in some neighborhood of the origin. In these 
new coordinates, the action of the isotropy group is linear. This can be seen upon a 
short manipulation, 

. Ψ 'i (Ψ, h') =
∫

Hx0

dh D(h−1)ijF
j (F(ψ, h'), h) =

∫
Hx0

dh D(h−1)ijF
j (ψ, hh')

= D(h')ij
∫

Hx0

d(hh') [D(hh')−1]jkψ
'k(ψ, hh') = D(h')ijΨj , (7.11) 

for any .h' ∈ Hx0 , where I used respectively the group composition law (7.2), the  
invariance of the integration measure, the representation property of the matrices 
.D(h), and the definition (7.10) of the new coordinates. This concludes the proof 
of the statement that the action of the isotropy group .Hx0 can be linearized by a 
suitable choice of coordinates. 

In defining the new coordinates (7.10), I tacitly assumed that .Hx0 has a finite 
volume so that the invariant measure on .Hx0 in fact can be normalized to unity. 
This is a key step in the proof, which requires that the isotropy group .Hx0 be 

(continued)

3 A reader not familiar with group integration may find more information in Chap. 3 of [9]. I will 
not dwell on details, since we shall not need group integration again in this book. 
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compact. The technique of nonlinear realization of symmetry developed in 
this chapter is often introduced straight away under the assumption that the 
whole group G is compact. That is, however, not necessary. 

Equation (7.10) can serve as a useful practical tool to find explicitly the 
coordinates that linearize the action of the isotropy group. Let us have a look at 
a simple example, following [10]. 

Example 7.6 

The action of .SO(2) on the Euclidean plane, introduced in Example 7.3, can be 
recast in terms of an action of .U(1) ≃ SO(2) on the complex plane . C. Thus, under 
.eiϵ ∈ U(1), the complex coordinate z transforms as .z → z' ≡ eiϵz. This action 
is linear. One can however tweak it by changing the coordinate z to w such that 
.z = f (w), where f is a function analytic in the neighborhood of the origin of . C
such that .f (w) = w + O(w2). In the new coordinate w, the .U(1) group acts via 

.w → w' = f −1(z') = f −1(eiϵf (w)) . (7.12) 

In general, . w' will be a nonlinear function of w. The original coordinate z, in which 
the action of .U(1) is linear, can be reconstructed using (7.10). In case of .U(1), 
the group integration in (7.10) amounts to averaging over the phase . ϵ of the . U(1)
rotation. It can be written as an integral over a unit circle in the complex plane, 

.
1

2π

∫ 2π

0
dϵ e−iϵf −1(eiϵf (w)) = − i

2π

∮
dc

c2
f −1(cf (w)) , (7.13) 

where I introduced a new complex integration variable .c ≡ eiϵ . Given  the  
assumptions I made on f , the function .f −1(cf (w))/c2 of the complex variable 
c has a simple pole at the origin with the residue .f (w). It then follows at once from 
the residue theorem that the integral in (7.13) evaluates to .f (w) = z, as expected. 

Note that the coordinate z is not uniquely specified by the requirement that the 
action of .U(1) is linear. We can for instance introduce a new variable w via 

.w = zf (zz̄) , (7.14) 

where f is a smooth real function such that near the origin, .f (zz̄) = 1 + O(zz̄). 
Then w is a well-defined coordinate in some neighborhood of the origin of . C, upon 
which .eiϵ ∈ U(1) acts linearly as .w → eiϵw.
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The above example suggests that the local coordinates . Ψi in which the isotropy 
group .Hx0 acts linearly are generally ambiguous. Namely, under the action of . Hx0 , 
the manifold . M splits into a disjoint union of orbits. The action of .Hx0 will remain 
linear if we rescale the coordinates . Ψi by an arbitrary .Hx0 -invariant function on 
. M, that is a function which takes a constant value on any orbit of . Hx0 . The only 
constraint is that such a rescaling leads to a well-defined set of new coordinates. 
The following example provides a nontrivial illustration of this ambiguity. 

Example 7.7 

Consider the action of .G ≃ SU(2) × SU(2) on .M ≃ SU(2). As already hinted 
in Example 5.5 and explained in detail in Sect. 9.1, this is important for a low-
energy EFT description of hadron physics. For a given .U ∈M and a given element 
.(gL, gR) ∈ G, the action is defined by 

.U→ gLUg−1
R . (7.15) 

The isotropy group of .U0 ≡ 1 is the “diagonal” subgroup of G, .HU0 ≃ SU(2), 
consisting of elements of the type .(g, g), that is .gL = gR = g. It is easy to guess 
a triplet of coordinates . ψi , parameterizing . M in the vicinity of . U0, on which . HU0

acts linearly. Some common choices are 

.U = eiψ ·τ , U = 1 + i
2ψ · τ

1 − i
2ψ · τ

, U = 1
√
1 − ψ2 + iψ · τ , (7.16) 

where . τ is the vector of Pauli matrices. All these choices coincide to linear order 
when expanded in powers of . ψi , .U = 1+ iψ ·τ +O(ψ2). All of them are mutually 
connected by coordinate redefinitions of the type .ψ 'i = ψif (ψ2), where f is a 
suitably chosen function. The isotropy group .HU0 acts on . U in all parameterizations 
shown in (7.16) via rotations of . ψ . Hence . ψ2 is invariant under the action of . HU0

and any function .f (ψ2) is constant on the orbits of .HU0 , as expected. 

7.2.2 From Linear Representation to Nonlinear Realization 

The ambiguity in the choice of coordinates that linearize the action of .Hx0 around 
a chosen point .x0 ∈M can be used to complete the classification of group actions. 
First of all, note that the set .{Tgx0 | g ∈ G} defines a submanifold of . M. On this  
submanifold, G acts transitively; it is thus equivalent to the coset space .G/Hx0 . We  
can choose a set of coordinates . πa , .a = 1, . . . , dimG/Hx0 , on it. Then we add 
another set of coordinates . χϱ, .ϱ = 1, . . . , dimM − dimG/Hx0 , so that . (π

a, χϱ)

together is a well-defined coordinate system on . M in the vicinity of . x0. In this
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coordinate system, the coset space .G/Hx0 is embedded in . M as the set of points 
.(πa, 0). 

As the next step, we subject the coordinates .(πa, χϱ) to the linearization (7.10); 
with a slight abuse of notation, I will use the same symbols .(πa, χϱ) for the resulting 
new coordinates. Importantly, the condition .χϱ = 0 is preserved by the procedure. 
We thus end up with a set of coordinates .(πa, χϱ) in which the isotropy group 
.Hx0 is represented by linear transformations, and moreover the subset .(πa, 0), 
parameterizing .G/Hx0 , is invariant under the action of G. The latter implies that 
the representation of .Hx0 on the coordinates .(πa, χϱ) has an invariant subspace, 
that is, it is reducible. I now use once again the assumption that .Hx0 is compact. 
This ensures that the representation of .Hx0 is completely reducible. The action of 
.Hx0 can then be brought to a block-diagonal form, 

. Th(π, χ) ≡ (π 'a, χ 'ϱ) = (D(π)(h)abπ
b,D(χ)(h)ϱσ χσ ) , h ∈ Hx0 ,

(7.17) 

by orthogonalization that leaves the subspace .(πa, 0) intact. The latter feature 
ensures that we can still use the coordinates . πa to parameterize the submanifold 
.G/Hx0 . 

A given point .x ∈ G/Hx0 with coordinates . πa can be reached from . x0 by the 
action of any element of G that lies in the coset of x. To proceed, we need to choose 
a concrete representative element of the coset. In line with the notation common 
in theoretical physics, I will denote this coset representative as .U(π). The concrete 
choice of the representative can be made fairly arbitrarily. There are however some 
natural requirements that will make our life easier: 

• .U(π) should be a smooth function of . πa near the origin . x0. 
• The origin . x0 itself, i.e. the trivial coset .eHx0 , should be represented by .U(0) = e. 
• The choice of .U(π) should reflect the linearity of the action of .Hx0 in the 

coordinates . πa . 

The first two constraints can always be satisfied. As to the third, the linearity of the 
action of .Hx0 requires that .Thx = ThTU(π)x0 = TU(π ')x0 where .π 'a are linear in 
. πa . Given that .Thx = ThTU(π)Th−1x0 = ThU(π)h−1x0, it is natural to pick .U(π) so 
that 

.U(π ') = hU(π)h−1 . (7.18) 

We need to make sure, however, that this can be done consistently. 
Consider the Lie algebra . g of G, which carries an adjoint action of . Hx0 , 

.Q → hQh−1 , Q ∈ g , h ∈ Hx0 . (7.19)
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This defines a linear representation of .Hx0 which has an invariant subspace, namely 
the Lie algebra . h of . Hx0 . Thus, the representation is reducible. Suppose now that 
it is, in fact, completely reducible. This is certainly the case when .Hx0 is compact. 
More generally, coset spaces .G/Hx0 for which the Lie algebra . g can be split as 
.g ≃ h⊕g/h where both . h and . g/h are invariant subspaces under the adjoint action of 
.Hx0 (7.19), are called reductive. For a reductive coset space, we can always choose 
.U(π) so that the linear action of .Hx0 on .G/Hx0 is realized by (7.18). We can for 
instance set .U(π) = exp(iπaQa), where .Qa,b,... is a basis of . g/h. This is however 
by far not the only choice, as illustrated by Example 7.7. 

Example 7.8 

There are many examples of reductive coset spaces for which the isotropy group H 
is not compact. One can for instance start with a compact H , for which the reductive 
property is guaranteed, and then switch to a related noncompact Lie group. For a 
concrete example, take as G the Poincaré group of isometries of D-dimensional 
Minkowski spacetime and as H its subgroup, the Lorentz group .SO(d, 1). The  
subspace .g/h can be spanned on the generators of spacetime translations, which 
carry the vector representation of the Lorentz group. This coset space is a cousin of 
the Euclidean space .RD ≃ ISO(D)/SO(D), for  which .H ≃ SO(D) is compact. 

It is easy to promote the action (7.18) of .Hx0 on .G/Hx0 to an action of the whole 
group G. Indeed, the action of any .g ∈ G on an element .x = TU(π)x0 of . G/Hx0

is completely characterized by the product .gU(π). The latter can be, at least in the 
vicinity of the unit element, uniquely decomposed as .U(π ')h(π, g), where .π 'a is 
defined by .Tgx = TU(π ')x0 and the factor .h(π, g) ∈ Hx0 ensures that the correct 
representative of the coset .Tgx is used. 

In order to lift the action of G from the submanifold .G/Hx0 to the whole of . M, 
we now make one last change of coordinates. Namely, we define new coordinates 
. π̃a and . χ̃ϱ by the requirement that the point .(πa, χϱ) ∈M can be expressed as 

.(πa, χϱ) = TU(π̃)(0, χ̃) . (7.20) 

This notation can be intuitively thought of as defining a slicing of . M by orbits 
of G, starting from the subset of points .(0, χ̃ϱ). The submanifold .G/Hx0 is a 
special case corresponding to .χ̃ϱ = 0. In order to see that .π̃a, χ̃ϱ in fact are 
well-defined coordinates on . M, note that (7.20) defines uniquely .πa, χϱ for given 
.π̃a, χ̃ϱ. It follows from the fact that .U(0) = e that if .π̃a = 0, then .πa = 0 and 
.χϱ = χ̃ϱ. Likewise, it follows from the definition of coordinates on the submanifold 
.G/Hx0 that if .χ̃ϱ = 0, then .χϱ = 0 and .πa = π̃a . Hence the Jacobian matrix 
.∂(π, χ)/∂(π̃, χ̃) equals . 1 at the origin, and (7.20) defines a valid coordinate system 
in some neighborhood of . x0.
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The linearity of the action of .Hx0 is preserved in the new coordinates since 

.ThTU(π̃)(0, χ̃) = ThU(π̃)h−1Th(0, χ̃) = ThU(π̃)h−1(0,D(χ)(h)χ̃) (7.21) 

for any .h ∈ Hx0 . It is now a matter of a short manipulation to see that the action of 
an arbitrary .g ∈ G on (7.20) is already completely fixed, 

. 
TgTU(π̃)(0, χ̃) = TgU(π̃)(0, χ̃) = TU(π̃ ')h(π̃,g)(0, χ̃) = TU(π̃ ')Th(π̃,g)(0, χ̃)

= TU(π̃ ')(0,D
(χ)(h(π̃, g))χ̃) .

(7.22) 

This is the end of the line. Equation (7.22) shows that in some neighborhood of a 
chosen point .x0 ∈M, the action of any Lie group G can by a change of coordinates 
be brought to a “standard form” such that (dropping the tildes) 

. U(π) → U(π ') = gU(π)h(π, g)−1 , χϱ → χ 'ϱ = D(χ)(h(π, g))ϱσ χσ ,

(7.23) 

where .h(π, g) ∈ Hx0 and .D(χ) is a matrix representation of . Hx0 . The only technical 
assumption that was required in the proof was that the isotropy group .Hx0 is 
compact. This is the main result of the chapter. We can now harvest the fruits of 
our labors. 

7.3 Standard Realization of Symmetry 

Having in mind that the reader might have skipped the last, somewhat technical 
section, let me give here a brief but self-contained summary of its main result. 
Consider a manifold . M equipped with an action of a group G, and let us choose 
a fixed point .x0 ∈ M. Suppose that the isotropy group .Hx0 of . x0 is compact. Then 
it is always possible to redefine coordinates in a neighborhood of . x0 so that the new, 
“standard” coordinates .(πa, χϱ) have the following properties. First, the point . x0
itself corresponds to the origin .(0, 0). The subset .(πa, 0) spans a submanifold of . M, 
equivalent to the coset space .G/Hx0 . Every point on the coset space can be uniquely 
characterized by a choice of a representative element .U(π) of the corresponding 
coset. The representative .U(π) can be chosen so that .U(0) = e, and that the adjoint 
action of .h ∈ Hx0 , .U(π) → hU(π)h−1, defines a linear transformation of the 
coordinates . πa . The group G acts on the coset space via left multiplication, which 
defines implicitly an element .h(π, g) of .Hx0 through 

.gU(π) = U(π '(π, g))h(π, g) , g ∈ G . (7.24) 

The last two properties of .U(π) imply that .h(π, g) = g for any .g ∈ Hx0 .
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The action of an element .g ∈ G on the whole manifold . M is now defined in 
terms of the standard coordinates .(πa, χϱ) as 

.

U(π)
g−→ U(π '(π, g)) = gU(π)h(π, g)−1 ,

χϱ g−→ χ 'ϱ(χ, π, g) = D(h(π, g))ϱσ χσ ,

(7.25) 

where the matrices .D(h) define some linear representation of . Hx0 . Altogether, the 
action of G is fully specified by the choice of coset representative .U(π), which fixes 
the first line of (7.25), and the choice of representation .D(h) of . Hx0 , which fixes the 
second line thereof. 

The above construction of the standard realization of group action goes 
through without change even if .Hx0 is noncompact provided the coset space 
.G/Hx0 is reductive. In that case, however, the line of argument in Sect. 7.2 
fails and it is no longer guaranteed that the standard realization is unique up 
to a coordinate redefinition. There may then be more mutually inequivalent 
nonlinear realizations of the group G on the manifold . M, of which the 
standard realization is but one example. 

Finally, one may try to follow the same steps of the construction of the 
standard realization even when the coset space .G/Hx0 is not reductive. Then, 
however, many of the simple features of the standard realization are lost. A 
concrete example of a nonreductive coset space is worked out in [11]. 

In the standard nonlinear realization (7.25), the coordinates . πa transform under 
G on their own, independently of . χϱ. The transformation of the latter, on the other 
hand, is nonlinear in . πa but linear in . χϱ themselves. It is therefore possible to set 
the . χϱs to zero consistently. This is not surprising. In the field theory language, 
the coordinates . πa correspond to NG bosons and their universal presence therefore 
mirrors the Goldstone theorem as reviewed in Chap. 6. The remaining coordinates 
on . M, . χϱ, represent other degrees of freedom that are not of NG nature. In the 
jargon of EFT, they are usually called matter fields. Among all the nonlinear 
realizations of the given symmetry group G with the given subgroup H , there is 
therefore a “minimal” nonlinear realization, defined on the coset space .G/H , which 
only includes the NG degrees of freedom. On a general manifold . M, additional 
matter fields may be present. Throughout this book, I will focus mostly on minimal 
nonlinear realizations due to their significance for low-energy EFT description of 
broken symmetries.
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Example 7.9 

One can gain insight into the standard realization (7.25) of the action of G by 
looking at some special choices of the isotropy group. If there is a point . x0 ∈ M
such that .Hx0 ≃ G, then in its vicinity, we do not have any coordinates . πa . The coset 
space .G/Hx0 consists of a single point that we can represent with .U = e, which is 
consistent with the first line of (7.25) if .h(g) = g for all .g ∈ G. All coordinates in 
the neighborhood of . x0 are of the . χϱ type. The second line of (7.25) guarantees that 
the action of G can be completely linearized, .χ 'ϱ(χ, g) = D(g)

ϱ
σ χσ . This is the 

usual textbook realization of symmetry via a linear representation. 
The opposite extreme, .Hx0 ≃ {e}, is more interesting. Here (7.25) reduces to 

.U(π)
g−→ gU(π) , χϱ g−→ χϱ . (7.26) 

The coset space .G/Hx0 corresponds to the group manifold G and carries an action 
of G defined by simple left multiplication. Whatever other coordinates . χϱ on . M
are present can always be chosen to be invariant under G. This is quite surprising. 
We are used to working with fields spanning linear multiplets of G; it is not obvious 
that the same physical content can be encoded in a set of fields that do not transform 
under G at all. The resolution of this apparent paradox lies in the freedom to choose 
coordinates at will. Namely, if we start with a set of fields . Ψϱ transforming under G 
as .Ψϱ g−→ D(g)

ϱ
σ Ψσ , we can make the redefinition .χϱ ≡ D(U(π)−1)

ϱ
σ Ψσ . The  

new variables . χϱ are invariant under G in accord with (7.26). 

7.3.1 Nonlinear Realization on Coset Spaces 

Can we be more explicit about the way that the coordinates .(πa, χϱ) transform 
under the action of G? The standard realization (7.25) of the group action requires 
the knowledge of the nonlinear functions .π 'a(π, g) and .h(π, g) . We would like 
to be able to compute these, at least for small transformations, that is for . g ∈ G

infinitesimally close to unity.4 To that end, it is sufficient to consider the action of G 
on the coset space .G/H ; from now on will I drop the subscript . x0 on H unless it is 
needed to explicitly distinguish the isotropy groups of different points on the coset 
space. Once the minimal realization of G on .G/H is found, it can be extended to 
any other manifold by specifying the linear representation .D(h) of H under which 
the additional coordinates . χϱ transform.

4 I will only introduce the concept of a metric on a group, and more generally on a homogeneous 
space, in Sect. 7.4. Statements about infinitesimal distance of group elements should therefore be 
interpreted within a faithful matrix representation of the group using some standard matrix norm. 
The same remark applies whenever a sum or difference of group elements is considered below. 
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The general algorithm for calculation of the desired functions .π 'a(π, g) and 
.h(π, g) is as follows. Take the first line of (7.25), multiply it with .U(π)−1, and 
subtract .U(π)−1U(π) = e. This gives the master relation 

.U(π)−1δU(π) = U(π)−1gU(π)h(π, g)−1 − e , (7.27) 

where .δU(π) ≡ U(π ') − U(π). For  .g ∈ G that is infinitesimally close to unity, 
both .U(π)−1gU(π) and .h(π, g) are infinitesimally close to unity as well. By a 
systematic comparison of the left- and right-hand sides of (7.27), one can then 
determine .δπa(π, g) ≡ π 'a(π, g) − πa as well as .h(π, g). 

To make further progress, we first have to establish some notation. In order to be 
able to discuss different symmetry transformations from G separately, we choose 
a basis .QA,B,... of . g. A subset of these spans a basis of the Lie subalgebra . h and 
will be denoted with Greek indices, .Qα,β,.... The rest of the generators spans the 
subspace .g/h and will be denoted as .Qa,b,.... The structure constants of the Lie 
algebra . g will be called .f C

AB with a conventional factor of . i in the commutation 
relations, that is, .[QA,QB ] = if C

ABQC . The structure constant does not have to be 
fully antisymmetric in its three indices even if G is compact. It does have to be 
antisymmetric under the exchange of its lower two indices though. It also has to 
satisfy the Jacobi identity, 

.f E
ABf D

EC + f E
BCf D

EA + f E
CAf D

EB = 0 . (7.28) 

The basic commutator of the Lie algebra . g, .[QA,QB ] = if C
ABQC , can be unfolded 

into three separate conditions on the subsets of generators .Qα,β,... and .Qa,b,..., 

.

[Qα,Qβ ] = if γ
αβQγ ,

[Qα,Qb] = if c
αbQc ,

[Qa,Qb] = i(f γ

abQγ + f c
abQc) .

(7.29) 

The first of these encodes the requirement that the generators .Qα,β,... span a closed 
Lie algebra (that is .f c

αβ = 0). The second of these likewise expresses the assumption 
that the coset space .G/H is reductive (that is .f

γ

αb = 0). 
Next, we are going to need two simple statements from linear algebra, which I 

reproduce here for the sake of completeness. The first of these is usually known 
under the name Hadamard lemma, 

.eABe−A = B + [A,B] + 1

2! [A, [A,B]] + 1

3! [A, [A, [A,B]]] + · · · , (7.30)
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where .A,B are arbitrary (square) matrices. The second identity, which to the best 
of my knowledge does not have an established name, reads 

.e−AdeA =
∫ 1

0
dt e−tA(dA)etA . (7.31) 

Here the symbol . d acting on A and . eA can be thought of as a differential, but also as 
a derivative with respect to whatever parameter A might depend on. Once multiplied 
from the left with . eA, we can think of (7.31) as a continuous version of the Leibniz 
(product) rule, applied to . eA. It follows  from  (7.31) combined with the Hadamard 
lemma (7.30) that whenever A is a function with values in a Lie algebra, . e−AdeA

will take values in the same Lie algebra. 
Equation (7.31) prepares the ground for the introduction of a concept of central 

importance for calculus on coset spaces: the Maurer–Cartan (MC) form, 

.ω(π) ≡ −iU(π)−1dU(π) . (7.32) 

For the time being, the reader may think of the . d herein as an ordinary differential of 
a function. The true geometric significance of the MC form as a differential 1-form 
will become clear in Sect. 7.4. Recall that any element of a Lie group sufficiently 
close to unity, in our case .U(π), can be obtained as the exponential of an element of 
the corresponding Lie algebra. Equation (7.31) then implies that the MC form takes 
values in the Lie algebra . g. We can split it into pieces that belong to . h and . g/h, and 
represent each of these in terms of their components in a chosen basis of generators, 

.

ω ≡ ω‖ + ω⊥ ,

ω ≡ ωAQA , ω‖ ≡ ωαQα , ω⊥ ≡ ωaQa .
(7.33) 

Finally, by writing .dU(π) = [∂U(π)/∂πa]dπa , one can introduce explicit 
components of the MC form in a chosen set of local coordinates . πa on .G/H , 
.ωA ≡ ωA

a dπ
a . 

It is instructive to check how the MC form is affected by the action of G on the 
coset space. This follows directly from (7.25). It is a simple exercise to verify that 
for given .g ∈ G, 

. 
ω‖(π)

g−→ ω‖(π '(π, g)) = h(π, g)ω‖(π)h(π, g)−1 − ih(π, g)dh(π, g)−1 ,

ω⊥(π)
g−→ ω⊥(π '(π, g)) = h(π, g)ω⊥(π)h(π, g)−1 .

(7.34) 

Note how (7.31) guarantees that .ω‖(π ') still takes values in the Lie algebra . h. While 
not of direct relevance right here and now, the transformation rules (7.34) will help 
us understand the geometric meaning of the MC form in Sect. 7.4.
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We still need a few last pieces of notation. Conjugation of elements of . g by . U(π)

will be abbreviated as 

.U(π)−1QAU(π) ≡ νB
A(π)QB , (7.35) 

which defines a set of nonlinear functions .νB
A(π) on the coset space. Finally, for the 

action of an element .g ∈ G infinitesimally close to unity, I will use the notation 

.

g ≈ e + iϵAQA ,

δπa(π, g) ≈ ϵAξa
A(π) , h(π, g) ≈ e + iϵAkα

A(π)Qα .
(7.36) 

The . ≈ symbol indicates that I have expanded all the quantities to linear order in the 
transformation parameters . ϵA, defined by the first line of (7.36). The second line 
thereof introduces notation for the infinitesimal versions of the functions . π 'a(π, g)

and .h(π, g). Of particular interest are the functions .ξa
A(π) that realize the motion 

induced on the coset space .G/H by the group G. 
With all the notation at hand, we can now expand (7.27) to linear order in . ϵA and 

compare coefficients of the various generators of . g on the left- and right-hand sides. 
This leads to the identities 

.

να
A(π) = ξa

A(π)ωα
a (π) + kα

A(π) ,

νa
A(π) = ξb

A(π)ωa
b(π) .

(7.37) 

These are still valid for any choice of the coset representative .U(π). Once it is 
fixed, the functions .ωA

a (π) are determined by (7.32). Likewise, the functions . νB
A(π)

are fixed by (7.35). The identities (7.37) then constitute a set of linear equations 
for .ξa

A(π) and .kα
A(π). At the  origin,  .νB

A(0) = δB
A as a consequence of the fact that 

.U(0) = e. The second line of (7.37) then implies that .ωa
b(0) is nonsingular. By 

continuity, it must remain nonsingular in some neighborhood of the origin. This 
guarantees that a solution of (7.37) for .ξa

A(π) and .kα
A(π) exists and it is unique. 

I have now achieved the main goal of this subsection: to give an algorithm how, 
for a chosen set of coordinates . πa , to realize the action of the group G on the 
coset space .G/H . None of the nonlinear functions involved—.ωA

a (π), .νB
A(π), . ξa

A(π)

and .kα
A(π)—can however in general be evaluated in a closed form. For practical 

applications, it is useful to have explicit expressions for these functions, even if just 
as a series expansion in a specific set of coordinates . πa . One popular choice of 
parameterization for which this can easily be done is 

.U(π) = exp(iπaQa) . (7.38) 

The Hadamard lemma (7.30) then tells us at once that 

.νA
B (π) = δA

B − f A
Baπ

a + 1

2
f C

Baf
A
Cbπ

aπb + O(π3) . (7.39)
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Likewise, it follows quickly from (7.31) that 

.ωA
a (π) = δA

a − 1

2
f A

abπ
b + 1

6
f B

abf
A
Bcπ

bπc + O(π3) . (7.40) 

Finally, (7.37) can be solved iteratively for the remaining pieces, 

. 

ξa
A(π) = δa

A −
(

f a
Ab − 1

2
δe
Af a

eb

)
πb

+ 1

2

(
f α

Abf
a
αc − 1

3
δe
Af B

ebf
a
Bc + 1

2
δe
Af d

ebf
a
dc

)
πbπc + O(π3) ,

kα
A(π) = δα

A −
(

f α
Aa − 1

2
δe
Af α

ea

)
πa

+ 1

2

(
f

β
Aaf

α
βb − 1

3
δe
Af B

eaf
α
Bb + 1

2
δe
Af d

eaf
α
db

)
πaπb + O(π3) .

(7.41) 

With these explicit expressions at hand, it is easy to illustrate some of the general 
properties of the standard nonlinear realization. For instance, the action of the 
isotropy group H reduces to the linear adjoint transformation of the coordinates, 
.ξa
α (π) = −f a

αbπ
b. Likewise, we find that .kα

β (π) = δα
β , which is an infinitesimal 

version of the relation .h(π, g) = g for any .g ∈ H . 

Example 7.10 

All the structure introduced above takes a particularly simple form when the group 
G is Abelian. Then .ξa

A(π) = δa
A: the group G acts on the standard coordinates . πa

by a mere set of shifts. The MC form reduces to .ω(π) = dπaQa . This suggests a 
simple interpretation of .ω⊥ = ωa

bdπ
bQa in the general situation when G is non-

Abelian. Namely, . ωa supplies us with a generalized derivative (or differential) of 
. πa which, as (7.34) shows, is covariant under the action of G. 

7.3.2 Symmetric Coset Spaces 

Up to some technical assumptions, we have already accomplished a complete 
classification of possible nonlinear realizations of symmetry on manifolds. In the 
language of field theory, this amounts to finding all possible point symmetry 
transformations of a given set of fields under a given symmetry group G. The  
price we had to pay for the generality of this result was the rather complicated 
transformation rule (7.25). This involves nonlinear functions on the coset space 
.G/H that cannot be evaluated in a closed explicit form. There is, however, an 
important class of coset spaces for which we can do much better.
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The coset space .G/H is called symmetric, and the associated homogeneous space 
is called a symmetric space, if the Lie algebra . g admits an involutive automorphism 
under which . h is even and . g/h is odd. In other words, we require that there is a linear 
map .R : g→ g such that 

.

R([Q1,Q2]) = [R(Q1),R(Q2)] , Q1,Q2 ∈ g ,

R(Q) = Q , Q ∈ h ,

R(Q) = −Q , Q ∈ g/h .

(7.42) 

This property guarantees the vanishing of any structure constant with an odd 
number of .g/h indices. In particular, .f γ

αb = 0: any symmetric coset space 
is automatically reductive. In addition, .f c

ab = 0, that is the last term in the 
commutation relations (7.29) is missing. 

Example 7.11 

The fundamental commutation relation of the .SO(n) group reads 

.[Jij , Jkl] = i(δikJjl + δjlJik − δilJjk − δjkJil) , (7.43) 

where .i, j, k, l = 1, . . . , n and . Jij is the antisymmetric tensor of angular momentum 
in n spatial dimensions. The Lie algebra of .SO(n) possesses an automorphism . R
under which .R(Jαβ) = Jαβ and .R(Jαn) = −Jαn, where .α, β = 1, . . . , n − 1. One  
can think of this automorphism geometrically as an inversion of the n-th coordinate 
axis. The coset space .SO(n)/SO(n − 1) ≃ Sn−1 is therefore symmetric. 

In a similar vein, the Euclidean space . Rn is a symmetric space. This can be seen 
most easily by recalling that .Rn ≃ ISO(n)/SO(n). The desired automorphism . R
is the spatial inversion. Under this, all the generators of .SO(n) (rotations) remain 
intact, whereas the remaining generators of .ISO(n)/SO(n) (translations) change 
sign. 

Example 7.12 

Consider the “chiral” coset spaces of the type .GL × GR/GV, where all the three 
groups .GL,GR,GV are isomorphic to the same Lie group G; this is a generalization 
of Example 7.7 where .G ≃ SU(2). The chiral group .GL × GR consists of elements 
.(gL, gR) where .gL, gR ∈ G. The “vector” isotropy group .GV consists of elements 
of the type .(g, g), that is .gL = gR = g. The generators of the chiral group include
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two copies, .QL,A and .QR,A, of the generators of G. The Lie algebra of the chiral 
group is defined in terms of the structure constants .f C

AB of G by 

.
[QL,A,QL,B ] = if C

ABQL,C , [QR,A,QR,B ] = if C
ABQR,C ,

[QL,A,QR,B ] = 0 .
(7.44) 

These commutation relations are invariant under the exchange of .QL,A and .QR,A, 
which defines the desired automorphism, 

.R(QL,A) = QR,A , R(QR,A) = QL,A . (7.45) 

The generators of . GV, equal to .QL,A + QR,A up to overall normalization, are even 
under this automorphism. The generators of the complementary space . g/h, which 
are to be odd under . R, can be taken as .QL,A − QR,A up to an overall factor. 

The automorphism . R of the Lie algebra . g can be lifted, at least locally near the 
unit element, to the Lie group G. It is then possible to choose the coset representative 
.U(π) so that .R(U(π)) = U(π)−1; one can use for instance the exponential 
parameterization (7.38). We now take the first line of (7.25) and multiply it with the 
inverse of its image under . R. The result is a surprise: for symmetric coset spaces, 
there is a parameterization of .G/H in which the whole group G is realized linearly, 

.Σ(π) ≡ U(π)2 , Σ(π)
g−→ Σ(π '(π, g)) = gΣ(π)R(g)−1 . (7.46) 

This is of such utility that whenever one deals with a symmetric coset space, one 
almost always uses the linearly transforming variable . Σ instead of working directly 
with the coordinates . πa . Note, however, that one may need the coordinates . πa if 
one wishes to extend the coset space .G/H to a larger manifold . M. This is because 
the transformation of . χϱ in (7.25) requires the functions .h(π, g) that depend on . πa . 

With the automorphism . R at hand, one may easily project out the . ω‖ and . ω⊥
components of the MC form, 

.ω‖ = 1

2
[ω + R(ω)] , ω⊥ = 1

2
[ω − R(ω)] . (7.47) 

The latter has a practically convenient expression in terms of . Σ, 

.ω⊥ = − i

2
U−1dΣU−1 = i

2
UdΣ−1U . (7.48)
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Example 7.13 

Let us see how the variable .Σ(π) is realized on the chiral coset spaces . GL×GR/GV
discussed in Example 7.12. Here we can choose the coset representative as . U =
(u, u−1) where .u ∈ G; this satisfies the requirement that under the automorphism 
.R(gL, gR) = (gR, gL) of the chiral group .GL ×GR, U is turned into its inverse. The 
general transformation rule as given by the first line of (7.25) then translates to 

.(u, u−1)
(gL,gR)−−−−→ (gL, gR)(u, u−1)(h−1, h−1) , (7.49) 

where .h ∈ G. The linearly transforming variable (7.46) is given by . Σ = U2 =
(u2, u−2), where .u2 ≡ U transforms under .GL × GR as .U→ gLUg−1

R . 

It turns out that (7.46) can be further simplified in case . R is an inner automor-
phism of G, that is, when there is an element .R ∈ G such that 

.R(g) = R−1gR , g ∈ G . (7.50) 

Then a slight modification of (7.46) leads to a variable that transforms linearly under 
the adjoint action of G, 

. N(π) ≡ Σ(π)R = U(π)RU(π)−1 , N(π)
g−→ N(π '(π, g)) = gN(π)g−1 .

(7.51) 

An advantage of trading .Σ(π) for .N(π) is that .N(π)2 is a constant independent of 
. πa , which may be convenient in concrete applications. Indeed, since . R(R(g)) = g

for any .g ∈ G, it follows  from  (7.50) that . R2 belongs to the center of G. 
Consequently, .N(π)2 = U(π)R2U(π)−1 = R2. 

Example 7.14 

Consider the coset space .SU(2)/U(1), relevant for description of quantum systems 
with magnetic ordering such as (anti)ferromagnets. In the fundamental represen-
tation, the generators of .SU(2) are .QA = τA/2, and the generator of the . U(1)
isotropy group can be taken as .τ3/2. This coset space is symmetric thanks to an 
inner automorphism (7.50) with .R = iτ3. While the factor of . i here is required to 
make R an element of .SU(2), we do not need it for the definition of .N(π). Let us 
therefore set 

.N(π) ≡ U(π)τ3U(π)−1 . (7.52)
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This matrix variable is unitary and Hermitian. Moreover, it is traceless and it squares 
to . 1. It can thus be mapped on a unit vector variable .n(π) such that 

.N(π) = τ · n(π) , (7.53) 

which belongs to the vector representation of .SU(2). The fact that we ended up 
describing the coset space in terms of a unit vector is not a coincidence. Thanks to 
the local isomorphism of .SU(2) and .SO(3) we also have a local equivalence of coset 
spaces, .SU(2)/U(1) ≃ SO(3)/SO(2) ≃ S2. 

7.4 Geometry of the Coset Space 

In this final section of the chapter, I will show that some of the structure that enters 
the standard realization of symmetry on a coset space can be given a neat geometric 
interpretation. A reader not familiar with basics of differential geometry is advised 
to consult Appendix A before proceeding. Further information about the geometry 
of homogeneous spaces at an easily accessible level can be found in [12]. 

To start, recall that each point of a coset space .G/H corresponds to an entire class 
of elements of the group G. The approach I have used so far was to parameterize 
each .x ∈ G/H with coordinates . πa in terms of a fixed coset representative 
.U(π). The choice of .U(π) is however arbitrary and can be changed locally by 
multiplication from the right; any .Ũ (π) = U(π)h(π) with .h(π) ∈ Hx0 is equally 
good. One can then promote the basic transformation rule (7.25) for .U(π) to 

.U(π)
g,h(π)−−−−→ U(π '(π, g)) = gU(π)h(π)−1 , (7.54) 

where .h(π) is independent of g. This realizes an action of the product group 
.G × Hgauge. The group G acts on .U(π) by left multiplication as usual. The 
local group .Hgauge isomorphic to H acts on .U(π) by right multiplication with 
.h(π)−1 and encodes the freedom to choose locally the coset representative. This 
is a typical example of a gauge redundancy; any geometrically or physically well-
defined quantity must be independent of the arbitrary choice of coset representative. 
In theoretical physics, the approach that views the left action of G separately from 
the right action of the local group .Hgauge is called “hidden local symmetry” [13]. 

The different geometric roles of G and its isotropy subgroup can be intuitively 
understood by looking at Fig. 7.2. One-parameter subgroups of G define a set of 
flows on .G/H that in general translate a given point x to some other point. The 
isotropy group . Hx maps x to itself. It does, however, act nontrivially in the vicinity 
of x. Based on the figure, we expect that the action of . Hx projects to a set of 
linear maps on the tangent space .TxG/H at x. By induction, such linear .Hx-
transformations should exist for any tensor at x.
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Fig. 7.2 Illustration of the action of G and . Hx around a fixed point x (black dot) on the coset 
space. The thick solid lines indicate orbits of one-parameter subgroups of G passing through x; 
these correspond to generators from . g/h and act as translations on the coset space. The thick dashed 
lines indicate some orbits of . Hx in the vicinity of x. The action of . Hx naturally induces a set of 
linear transformations on the tangent space at x 

The local group .Hgauge gives us the freedom to do independent H -
transformations of tangent vectors (and generally tensors) point by point. In order 
to be able to analyze the properties of vector (tensor) fields on .G/H , we therefore 
need a way to relate tangent vectors (tensors) at different points. This resembles 
closely the motivation behind the construction of a local frame, or vielbein, and 
the corresponding connection on a manifold. The only difference to the formalism 
reviewed in Appendix A.5 is that here the structure group is not .GL(dimG/H) but 
H itself. This restriction makes it possible to realize changes in the local frame in 
terms of a fixed matrix representation of H . 

It turns out that we already have both the local frame and the connection: they are 
granted to us by the MC form (7.32). Specifically, the components . ωa of . ω⊥ define 
a coframe on .G/H . By the second line of (7.34), these indeed transform linearly 
under the local action of .Hgauge as they should. Likewise, the . h part of the MC form, 
. ω‖, provides the necessary H -connection. This is confirmed by the transformation 
rule on the first line of (7.34). 

This observation stresses the significance of the MC form as a differential 1-form, 
taking values in the Lie algebra . g. Its exterior derivative reflects the structure of G, 

.

dω = −idU−1 ∧ dU = iU−1dU ∧ U−1dU = −iω ∧ ω

= − i

2
ωB ∧ ωC[QB,QC] = 1

2
f A

BCωB ∧ ωCQA .
(7.55)
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This can be split into a pair of equations, one for . ω‖ and one for . ω⊥, 

.

dωα = 1

2
f α

βγ ωβ ∧ ωγ + 1

2
f α

bcω
b ∧ ωc ,

dωa = f a
βcω

β ∧ ωc + 1

2
f a

bcω
b ∧ ωc ,

(7.56) 

where I used the facts that .f a
βγ = 0 (the Lie algebra . h closes) and that .f α

βc = 0 (the 
coset space is reductive). These so-called Maurer–Cartan equations provide a link 
between the algebraic and geometric properties of the coset space. 

7.4.1 Canonical and Torsion-Free Connection 

The local basis of 1-forms . ωa transforms under the action of the structure group H 
as a tangent vector. It follows from (7.34) that upon an infinitesimal transformation 
by .h ≈ e + iϵαQα , .δωa = −ϵαf a

αbω
b. This determines the matrix elements of the 

action of the H -connection . ω‖ on tangent vectors, in the notation of Appendix A.5, 

.Ωa
b = −f a

αbω
α . (7.57) 

The MC equations (7.56) encode information about both the torsion and the 
curvature of this so-called canonical connection on .G/H . The torsion 2-form 
follows from the second line of (7.56), 

.T a ≡ dωa + Ωa
b ∧ ωb = 1

2
f a

bcω
b ∧ ωc . (7.58) 

Similarly, the curvature 2-form follows from the first line of (7.56), 

.Ra
b ≡ dΩa

b + Ωa
c ∧ Ωc

b = −1

2
f a

αbf
α
cdωc ∧ ωd , (7.59) 

where I used the Jacobi identity (7.28) to simplify the result. In the language of field 
theory, this is nothing but the field-strength 2-form of . ω‖. 

The definition (7.57) of the canonical connection arises naturally from the 
splitting (7.33) of the MC form into the . h and .g/h subspaces. This is not the only 
possible connection on .G/H though. In fact, there is an infinite class of them. Let 
us set 

.
λΩa

b ≡ −f a
αbω

α − λf a
cbω

c , λ ∈ R . (7.60)
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This time, it takes some manipulation to derive the corresponding torsion and 
curvature 2-forms. The final result is 

.

λT a =
(
1

2
− λ

)
f a

bcω
b ∧ ωc ,

λRa
b = −1

2

(
f a

αbf
α
cd + λf a

ebf
e
cd − 2λ2f a

ecf
e
bd

)
ωc ∧ ωd ,

(7.61) 

which generalizes (7.58) and (7.59) to any nonzero . λ. 
Within the class of connections (7.60), there is one with vanishing torsion, 

corresponding to .λ = 1/2. One might expect that it should be possible to recover 
this connection from a suitable Riemannian metric on the coset space. This is indeed 
the case under some further technical assumptions, as I will explain below. For 
symmetric coset spaces, the whole class of connections (7.60) becomes degenerate, 
and is automatically torsion-free. 

7.4.2 Riemannian Metric 

Every Lie algebra . g possesses a bilinear form invariant under the adjoint action 
of the corresponding Lie group G. To see this, just take any faithful matrix 
representation of the generators .QA and set 

.gAB ≡ tr(QAQB) . (7.62) 

The invariance under .QA → gQAg−1 for any .g ∈ G is manifest. The infinitesimal 
version of the invariance condition follows by setting .g ≈ e+iϵCQC and expanding 
to linear order in . ϵC , 

.f D
CAgDB + f D

CBgAD = 0 . (7.63) 

Since the components . ωa of the MC form define a basis of the space of 1-forms 
on .G/H , any rank-2 covariant tensor can be constructed as a linear combination of 
.ωa ⊗ ωb. Given the invariant bilinear form .gAB , it is then natural to introduce the 
following metric on .G/H , 

.gG/H ≡ gabω
a ⊗ ωb , (7.64) 

where . gab is the restriction of .gAB to the . g/h subspace. 
This construction is not guaranteed to work without further assumptions. A 

Riemannian metric should be positive-definite. A sufficient, though not necessary, 
condition for this is that .gAB itself is positive-definite, which is generally only true 
for compact semisimple Lie algebras. For what follows, I will only need the weaker 
assumption that .gAB is nondegenerate and that .gaβ = 0, i.e. that the subspace . g/h
can be chosen to be “orthogonal” to . h. Interestingly, this alone already ensures that
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.G/H is a reductive coset space. Namely, a short manipulation using (7.63) gives 

.0 = f δ
αβgδc = f D

αβgDc = −f D
αcgβD = −f δ

αcgβδ , (7.65) 

which implies that .f δ
αc = 0 thanks to the fact that .gαβ is nondegenerate. With the 

assumption that .gaβ = 0, the invariance condition (7.63) also splits into two separate 
conditions on . gab, 

.f d
γ agdb + f d

γ bgad = 0 , f d
cagdb + f d

cbgad = 0 . (7.66) 

The metric (7.64) is invariant under the left action of G, since the MC form 
itself is. It is however also invariant under the right action of .Hgauge as defined 
by (7.34). This follows from the first condition in (7.66). The  G-invariance of 
the metric guarantees the existence of a set of Killing vector fields that realize 
infinitesimal group motions on the coset space. In the local coordinates . πa , these 
are nothing but the functions .ξa

A(π) introduced in (7.36). According to (7.37), we  
have .ξb

A(0)ωa
b(0) = δa

A at the origin. This means that the Killing vectors . ξa(0)
corresponding to generators from .g/h define a local frame dual to .ωa(0), which 
further illuminates the geometric nature of the MC form. Away from the origin, 
the duality between .ω⊥ and the subset of Killing vectors realizing infinitesimal 
translations on .G/H is still expressed by the second line of (7.37). One just has 
to recall that the isotropy group of .x = TU(π)x0 is .Hx = U(π)Hx0U(π)−1. This  
conjugation is supplied by the matrix .νB

A(π) on the left-hand side of (7.37). The  
local basis of 1-forms .ωa(π) is then dual to the local frame consisting of Killing 
vectors of the generators .U(π)QaU(π)−1. 

Example 7.15 

The metric (7.64) is particularly easy to evaluate explicitly on symmetric coset 
spaces. Using the expression (7.48) for . ω⊥ in terms of the linearly transforming 
variable . Σ, we find at once that 

.gG/H = 1

4
tr(dΣ ⊗ dΣ−1) = 1

4
tr(∂aΣ∂bΣ

−1)dπa ⊗ dπb , (7.67) 

where I used the abbreviation .∂a ≡ ∂/∂πa . As an illustration, consider the coset 
space .SU(2)/U(1) ≃ SO(3)/SO(2) ≃ S2 discussed in Example 7.14. Here we find 
that up to an overall factor, 

.gS2 ∝ dn ⊗ dn = dθ ⊗ dθ + sin2 θ dϕ ⊗ dϕ , (7.68) 

where I used standard spherical coordinates to parameterize the unit vector . n. This  
is just an elaborate way to show that the unique .SO(3)-invariant Riemannian metric 
on . S2 is given by projecting (pulling back) the Euclidean metric on . R3 to the sphere.
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It remains to clarify the relationship between the metric (7.64) and the connec-
tions (7.60). The covariant derivative of the metric with respect to these connections, 
in the direction of an arbitrary vector field . v, is easily calculated in the local frame, 

.(∇vgG/H )ab = v[gab] − gcb
λΩc

a(v) − gac
λΩc

b(v) . (7.69) 

The first term vanishes since .gab is merely a set of constants. The sum of the 
second and the third term vanishes for any . λ as a consequence of the combination 
of (7.60) and (7.66). Thus, the whole class of connections (7.60) is compatible with 
the metric (7.64). In case the metric is (pseudo-)Riemannian, it is known that there 
is a unique metric connection without torsion, called the Levi-Civita connection. As  
shown in the previous subsection, this corresponds to the choice .λ = 1/2. 

The metric on the coset space is not uniquely fixed by the requirement of 
invariance under .G×Hgauge. Although it was natural to start the construction 
with the Cartan–Killing form (7.62) on the whole Lie algebra . g and then 
restrict it to the .g/h subspace, we could have as well started from the latter. 
One then finds that possible metrics on .G/H invariant under .G × Hgauge are 
classified by constant symmetric tensors . gab invariant under the adjoint action 
of .Hgauge, that is .gab satisfying the first relation in (7.66). For  .gab that does 
not satisfy the second relation in (7.66), the connections (7.60) with .λ /= 0 are 
not metric-compatible. In particular .1/2Ωa

b is not the Levi-Civita connection 
despite being torsion-free. 
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8Low-Energy Effective Field Theory 

We are now finally in the position to construct a low-energy effective field theory 
(EFT) for systems with a spontaneously broken internal symmetry. We do not need 
any specific model to describe the dynamics of spontaneous symmetry breaking 
(SSB). All we need is information about the internal symmetry group G and its 
unbroken subgroup H . These determine the basic degrees of freedom of the EFT: 
the Nambu–Goldstone (NG) fields. With the known symmetry and field content, one 
must then include in the effective Lagrangian all operators allowed by the symmetry 
(Chap. 12 of [1]). This ensures that the predictions of the EFT match, to the desired 
accuracy, those of any microscopic theory with the same pattern of SSB. 

The NG fields can be thought of as (local) coordinates on the coset space .G/H . 
In the previous chapter, I showed that the action of the symmetry on these fields can 
be assumed to take the “standard form,” cf. Sect. 7.3. The task to construct the most 
general action invariant under such nonlinear realization of symmetry is nontrivial. 
In Sects. 8.1 and 8.2, I will offer two different approaches to this problem. The first 
of these is more general but requires substantial background in differential geometry. 
The second approach is based on certain simplifying assumptions but has the benefit 
of only requiring elementary field theory. In the concluding Sect. 8.3, I use the EFT 
to derive the equation of motion (EoM) for the NG fields. With the help of the latter, 
I then reanalyze the spectrum of NG bosons. 

8.1 Structure of the Effective Lagrangian 

To keep the discussion simple, I will assume unbroken symmetry under continuous 
spacetime translations and continuous spatial rotations. This is just a matter of 
practical convenience; the same methodology can be applied, for instance, to 
systems whose spatial rotation symmetry spans a (possibly finite) subgroup of 
.SO(d). I will also assume that the spatial dimension is .d ≥ 2. On the practical side, 
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this is needed for any continuous rotations to exist. On a more fundamental note, 
the possibility of SSB in one spatial dimension is severely restricted; see Sect. 15.2. 

The action of the low-energy EFT must inherit the symmetries of the underlying 
microscopic theory. As a rule, the symmetry admits an infinite number of operators 
in the effective Lagrangian, which require an infinite number of a priori unknown 
coupling constants. In order that the EFT has any predictive power, we need an 
organizing principle to tell us which of the allowed operators are “relevant.” Recall 
that the EFT is expected to be valid at low energies such that the only active degrees 
of freedom are the NG bosons. The individual operators in the Lagrangian can 
then be sorted by the number of derivatives they contain. The more derivatives, 
the smaller effects the operator is expected to produce. Such ordering of operators 
in the effective Lagrangian is called derivative expansion. 

Since spatial and temporal derivatives are not related by any of the assumed 
symmetries, we must count them separately. The low-energy effective Lagrangian 
can then be organized as a double series, 

.Leff[π ] =
∑

s,t≥0

L (s,t)
eff [π ] , (8.1) 

where .s, t denote respectively the numbers of spatial and temporal derivatives. 
Following loosely [2], I will focus in this section on contributions with at most 
two derivatives, .s + t ≤ 2. These are needed to pin down the kinetic term for all 
the NG fields, and thus carry information about the spectrum of NG bosons. At the 
same time, they encode the dominant interactions of NG bosons at low energies. 
Operators with a higher number of derivatives are classified more easily using the 
approach developed in Sect. 8.2. 

Within the diagrammatic expansion of quantum field theory, a given observable 
may receive contributions from graphs with different numbers of loops. The 
relative importance of various contributions depends on the operators that enter 
the interaction vertices and the number of loops. I will work out a precise power-
counting scheme in Chap. 9, where concrete examples of EFTs are discussed at 
length. For the time being, I will content myself with the rule of thumb that loops 
lead to parametric suppression just like derivatives in the interaction vertices. This 
justifies the approach adopted throughout the whole book, whereby NG bosons are 
treated in the classical (tree-level) approximation. 

The analysis of the structure of the effective Lagrangian (8.1) is considerably 
simplified using the language of differential geometry. Following the presentation 
below will therefore require some familiarity with the contents of Appendix A. A  
reader uninterested in the details will find a summary of the leading part of the 
effective Lagrangian (that is operators with .s + t ≤ 2) in Sect. 8.1.4.
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8.1.1 Reminder of the Standard Nonlinear Realization 

I will start with a brief reminder of the standard nonlinear realization of symmetry. 
The intention is to have the basic elements of the formalism at one place for easy 
reference. Further details can, if needed, be found in Chap. 7. 

Every point on the coset space .G/H is labeled with a representative . U(π) ∈ G

of the corresponding coset, where . πa are local coordinates on .G/H (NG fields). The 
action of the group G on the coset space can then be defined via left multiplication, 

.U(π)
g−→ U(π '(π, g)) = gU(π)h(π, g)−1 , (8.2) 

where .h(π, g) ∈ H . The choice of the representative .U(π) is not unique, but can 
be made so that .U(0) = e and that any .g ∈ H acts on .U(π) by conjugation, 
.U(π)

g−→ gU(π)g−1. In other words, .h(π, g) = g for any .g ∈ H independently of 
. πa . 

The generators of G are denoted as .QA,B,.... A subset of these, .Qα,β,..., spans the 
Lie algebra . h of the unbroken subgroup H . The remaining, broken generators of G 
are denoted by .Qa,b,....1 The structure of the Lie algebra . g is fixed by the structure 
constants .f C

AB through .[QA,QB ] = if C
ABQC . Under the action of a group element 

infinitesimally close to unity, .g ≈ e + iϵAQA, (8.2) reduces to 

.δπa(π, g) ≈ ϵAξa
A(π) , h(π, g) ≈ e + iϵAkα

A(π)Qα . (8.3) 

The functions .ξa
A(π) define a set of vector fields on .G/H , .ξA(π) ≡ ξa

A(π)∂/∂πa , 
whose Lie bracket reproduces the structure of . g, 

.[ξA, ξB ] = f C
ABξC . (8.4) 

An object of fundamental importance is the .g-valued Maurer–Cartan (MC) form, 

.ω(π) ≡ −iU(π)−1dU(π) ≡ ωA(π)QA . (8.5) 

This can be split into a part belonging to the subspaces . h and . g/h, 

.ω ≡ ω‖ + ω⊥ , ω‖ ≡ ωαQα , ω⊥ ≡ ωaQa . (8.6) 

The components . ωA of the MC form and the vector fields . ξA are mutually dual in a 
well-defined sense. Their precise relationship is expressed by the identities 

.ιξA
ωα = να

A − kα
A , ιξA

ωa = νa
A , (8.7)

1 The basis .Qa,b,... is to be chosen so that it spans a subspace . g/h of the Lie algebra . g of G carrying 
a representation of H , hence .g ≃ h⊕ g/h. 
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where the matrix function .νB
A(π) is defined by the conjugation 

.U(π)−1QAU(π) ≡ νB
A(π)QB . (8.8) 

Under G, the unbroken and broken parts of the MC form transform as 

. 
ω‖(π)

g−→ ω‖(π '(π, g)) = h(π, g)ω‖(π)h(π, g)−1 − ih(π, g)dh(π, g)−1 ,

ω⊥(π)
g−→ ω⊥(π '(π, g)) = h(π, g)ω⊥(π)h(π, g)−1 .

(8.9) 

In the language of differential geometry, infinitesimal symmetry transformations of 
tensor fields on .G/H are given by the Lie derivative along the vector fields . ξA. 
Combining (8.3) and (8.9) thus corresponds to 

.LξA
ωα = −f α

βγ k
β
Aωγ − dkα

A , LξA
ωa = −f a

βck
β
Aωc . (8.10) 

Finally, the exterior derivative of the MC 1-form is expressed by the MC equation 
.dωA = (1/2)f A

BCωB ∧ωC . In terms of the . ω‖ and . ω⊥ components of the MC form, 
this breaks down into 

.

dωα = 1

2
f α

βγ ωβ ∧ ωγ + 1

2
f α

bcω
b ∧ ωc ,

dωa = f a
βcω

β ∧ ωc + 1

2
f a

bcω
b ∧ ωc .

(8.11) 

8.1.2 Lagrangians with Two Spatial or Two Temporal Derivatives 

Invariance of the effective action under a symmetry group G requires that the 
Lagrangian (density) be quasi-invariant, that is invariant up to a surface term. 
Internal symmetry transformations, covered in this part of the book, do not 
involve any derivatives of NG fields. This implies that all the different parts 
.L (s,t)

eff of the effective Lagrangian (8.1) must be quasi-invariant separately. The 
piece without any derivatives, .L (0,0)

eff , must be strictly G-invariant; its varia-
tion under G cannot be a derivative of any local operator.2 However, requiring 
.LξA

L (0,0)
eff = ξa

A∂L (0,0)
eff /∂πa = 0 leaves a constant, .πa-independent .L (0,0)

eff as the 
only option. The derivative expansion of the effective Lagrangian thus starts with 
operators with at least one derivative. Having a sole spatial derivative is forbidden 
by rotational invariance, hence .L (1,t)

eff = 0 for any .t ≥ 0. The only options for .(s, t)

2 It is in principle possible that the variation of .L (0,0)
eff under G is a field-independent constant. 

This can however only happen if .L (0,0)
eff is a tadpole operator, linear in . πa . Such operators must be 

discarded for the EFT to be perturbatively well-defined. 
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with .s + t ≤ 2 that are left are therefore .(0, 1), .(0, 2) and .(2, 0). The Lagrangian 
.L (0,1)

eff with one temporal derivative will be analyzed in Sect. 8.1.3. Here I will focus 
on .L (2,0)

eff and .L (0,2)
eff , which turn out to be much easier to understand and thus 

constitute a good starting point. 
Invariance under spacetime translations and spatial rotations restricts the two-

derivative Lagrangians to the generic form 

.

L (2,0)
eff = −1

2
gab(π)∇πa · ∇πb − 1

2
bab(π)εrs∂rπ

a∂sπ
b ,

L (0,2)
eff = 1

2
ḡab(π)π̇aπ̇b ,

(8.12) 

where .bab(π), .gab(π) and .ḡab(π) are some functions on .G/H . Note that the . bab

term can only exist in .d = 2 spatial dimensions. Also, I have discarded from the 
outset operators containing a second derivative of . πa , since those can be brought to 
the form (8.12) by partial integration. 

The . gab and . ḡab terms must be strictly G-invariant. Indeed, should an infinitesi-
mal transformation of, say, the . gab term produce a surface term, it would have to be 
of the form .∇ · [fa(π)∇πa]. But that would inevitably contain a second derivative 
of . πa that was not present in the original Lagrangian. This argument does not apply 
to the . bab term, which is antisymmetric in spatial derivatives. However, in that case, 
possible quasi-invariance can be disregarded on physical grounds. Namely, the . bab

term contributes to the canonical Hamiltonian density, and its mere quasi-invariance 
would imply that the energy density of the EFT is ill-defined. All in all, both . L (2,0)

eff
and .L (0,2)

eff must be strictly invariant under the symmetry group G. 
Let us see what strict G-invariance tells us about the function .gab(π). The latter 

gives rise to a symmetric rank-2 tensor field on .G/H , 

.g(π) ≡ gab(π)dπa ⊗ dπb . (8.13) 

We know that the broken components of the MC form, .ωa(π), furnish a basis of the 
cotangent space (coframe) to .G/H ; see Sect. 7.4 for a detailed justification. In this 
basis, the tensor .g(π) can be expanded as 

.g(π) = κab(π)ωa(π) ⊗ ωb(π) , (8.14) 

where the components .κab(π) are some as yet unknown functions on .G/H . 
Using (8.10), we readily calculate the Lie derivative along . ξA, 

.LξA
g = (

LξA
κab − κcbf

c
βak

β
A − κacf

c
βbk

β
A

)
ωa ⊗ ωb . (8.15) 

The requirement of strict G-invariance then leads to the following condition on . κab, 

.k
β
A(f c

βaκcb + f c
βbκac) = ξc

A

∂κab

∂πc
. (8.16)
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It is now convenient to resort to the exponential parameterization, 

.U(π) = exp(iπaQa) , (8.17) 

in which .ξa
A(π) = δa

A + O(π) and .kα
A(π) = δα

A + O(π), cf.  (7.41). By choosing the 
index A in (8.16) in turn as an unbroken and broken index, we thus get the following 
initial conditions at the origin of .G/H , 

. f c
αaκcb + f c

αbκac

∣∣
π=0 = 0 ,

∂κab

∂πc

∣∣∣∣
π=0

= 0 . (8.18) 

For a fixed broken index A, (8.16) can be viewed as an ordinary differential equation 
that uniquely determines .κab(π) along the integral curve of . ξA, passing through the 
origin of .G/H . We conclude that . κab must be constant, subject to the constraint 

.f c
αaκcb + f c

αbκac = 0 . (8.19) 

This is equivalent to requiring that . κab is a constant invariant tensor under the adjoint 
action of the unbroken subgroup H . 

The same reasoning applies without change to any G-invariant operator con-
structed solely out of the broken part of the MC form, . ω⊥. As a consequence, the 
most general form consistent with G-invariance that the functions .bab(π), . gab(π)

and .ḡab(π) can take is 

.

bab(π) = λcdωc
a(π)ωd

b (π) ,

gab(π) = κcdωc
a(π)ωd

b (π) , ḡab(π) = κ̄cdωc
a(π)ωd

b (π) .
(8.20) 

The constant matrices . λab, .κab and .κ̄ab are all invariant tensors under the adjoint 
action of H . In the exponential parameterization (8.17), .ωa

b(π) = δa
b + O(π) and 

thus .λab = bab(0), .κab = gab(0) and .κ̄ab = ḡab(0). 
For the kinetic term of the NG fields to have the correct signature, the symmetric 

matrices . κab and . ̄κab should be positive-definite. Hence, both .g(π) and its cousin 
.ḡ(π) constitute a G-invariant Riemannian metric on .G/H . These two metrics are 
in principle independent from each other. However, in case G is compact and 
semisimple and all the broken generators . Qa span a single irreducible multiplet of 
H , Schur’s lemma requires that .κab, κ̄ab be proportional to each other. The metrics 
.g(π) and .ḡ(π) then coincide up to an overall factor. 

Example 8.1 

Suppose that the symmetry group G is completely broken. Then the matrices . κab, 
. ̄κab, .λab remain unconstrained by symmetry, the only physical requirement being 
the positive-definiteness of .κab and . ̄κab. This, however, does not mean that when 
constructing an EFT for NG bosons on .G/{e} ≃ G, we have to work with arbitrary
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matrices of couplings of rank .dimG. The number of independent parameters can 
be reduced by a judicious choice of coordinates . πa on G. In the theory of small 
oscillations of mechanical systems [3], it is known that two quadratic forms, at least 
one of which is positive-definite, can be simultaneously diagonalized. Thus, we can 
always assume that, say, .κab = δab and moreover that . ̄κab is diagonal and positive-
definite. We just have to keep in mind that this simplicity is a consequence of a 
particular choice of coordinates, not of symmetry. This may restrict the otherwise 
arbitrary choice of parameterization of the coset space. 

8.1.3 Lagrangians with One Temporal Derivative 

The part of the effective Lagrangian with one time derivative reads, generically, 

.L (0,1)
eff = ca(π)π̇a . (8.21) 

The functions .ca(π) define locally a 1-form on .G/H , .c(π) ≡ ca(π)dπa . The  
requirement of quasi-invariance of .L (0,1)

eff under the action of G is then equivalent to 

.LξA
c = dc̄A , (8.22) 

where .c̄A(π) is a set of local functions (0-forms) on .G/H . Using the fact that the 
Lie derivative commutes with the exterior derivative, one deduces that . LξA

(dc) =
d(LξA

c) = d(dc̄A) = 0. Hence .dc(π) is a strictly G-invariant closed 2-form on 
.G/H . Strict G-invariance requires that 

.dc(π) = 1

2
σabω

a(π) ∧ ωb(π) , (8.23) 

where .σab is a constant antisymmetric matrix, invariant under the adjoint action of 
H . This follows by the same argument I used above to derive (8.20). 

Not every H -invariant matrix . σab will do, however, since the 2-form .dc(π) must 
also be closed. Upon using (8.11), closedness of .dc(π) is seen to be equivalent to 

.f c
αaσcb + f c

αbσac = 0 , f d
abσcd + f d

bcσad + f d
caσbd = 0 . (8.24) 

The former of these conditions just reasserts the H -invariance of . σab. The latter 
constitutes a new constraint that we must now deal with. I will not be able to give a 
fully general explicit solution to the algebraic conditions on . σab, and thus a general 
solution for .L (0,1)

eff . We can get very far even without an explicit solution, though. 
First, note that (8.24) is a set of linear equations for . σab. In a concrete case where 
the structure constants are known, the space of solutions to (8.24) can therefore 
be found using elementary linear algebra. Second, we can do even better and link
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possible solutions for .σab to the structure of the Lie groups G, H and their Lie 
algebras . g, . h. 

In the parameterization (8.17), .dc(π) = (1/2)[σab +O(π)]dπa ∧dπb. Thus, the 
corresponding Lagrangian can be power-expanded in the NG fields as 

.L (0,1)
eff = 1

2
σabπ

a∂0π
b + O(π3) . (8.25) 

Following the argument of Sect. 6.3.2, the matrix .σab can be related to the set of 
vacuum expectation values (VEVs) of commutators of broken generators, 

.σab = i lim
V →∞

〈[Qa,Qb]〉
V

. (8.26) 

There is a possibility that the representation of the symmetry group G on the 
Hilbert space of our system features a central extension. Let us write the extended 
commutation relation of symmetry generators as .[QA,QB ] = if C

ABQC + iV zAB , 
where .zAB are the densities of the central charges. Then we find that 

.σab = −f C
ab lim

V →∞
〈QC〉

V
− 〈zab〉 . (8.27) 

We conclude that possible solutions for .σab directly reflect the Lie algebra of 
symmetry generators, including possible central extensions. One class of solutions 
to (8.24) that always exists is 

.σab = −f C
abσC such that f A

αBσA = 0 . (8.28) 

The latter constraint expresses, once again, the invariance of the constant tensor 
. σA under the adjoint action of H . This solution corresponds to vanishing (VEVs 
of) central charges, and . σA can then be interpreted as the density of .QA in the 
ground state. The H -invariance of . σA descends directly from the H -invariance of 
the ground state. For this class of solutions, (8.23) is readily integrated using the 
MC equation (8.11), leading to 

.c(π) = −σAωA(π) or L (0,1)
eff = −σAωA

a (π)π̇a , (8.29) 

up to addition of a closed 1-form (surface term). The variation of .L (0,1)
eff under 

infinitesimal transformations from G can now be computed with the help of (8.10), 

.LξA
c = −σBLξA

ωB = σB(f B
αCkα

AωC + δB
α dk

α
A) = d(σαkα

A) , (8.30) 

where in the last step I used that .σBf B
αC = 0 by (8.28). The operators proportional 

to . σa are strictly G-invariant. Mere quasi-invariance of the Lagrangian thus requires 
nonzero . σα , that is nonzero VEV of an unbroken charge in the ground state.
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Example 8.2 

In ferromagnets, .G/H ≃ SU(2)/U(1) ≃ S2. Up to an overall factor, there is a 
unique closed and G-invariant 2-form on . S2, provided by the volume (area) form. 
In terms of the unit-vector parameterization of the sphere, this is proportional to 
.εijkn

idnj ∧ dnk , cf. Example A.7. The solution (8.28) descends from the nonzero 
magnetization in the ferromagnetic ground state, corresponding to a nonzero VEV 
of the generator of the unbroken .U(1) subgroup. I will give an explicit form of the 
Lagrangian .L (0,1)

eff for ferromagnets in Sect. 9.2. 

In case the symmetry group G is semisimple, its Lie algebra . g cannot have any 
nontrivial central charges (Sect. 2.7 of [1]). Equation (8.29) is then the only possible 
solution for the 1-form .c(π) and the corresponding Lagrangian .L (0,1)

eff . For  G that 
are not semisimple, solutions with nonzero . zab may exist. 

Example 8.3 

Consider the coset space .G/H ≃ U(1) × U(1)/{e} ≃ T 2. In this case, the 
symmetry group is Abelian so the conditions (8.24) are trivially satisfied. Up to an 
overall factor, there is a unique rank-2 antisymmetric tensor, .σab = εab. According 
to (8.27), this necessarily arises from a central extension of the Lie algebra . g
of G. In the exponential parameterization (8.17), .ωa(π) = dπa , which leads to 
.c(π) = (1/2)εabπ

adπb. This is merely quasi-invariant under the action of G as 
expected. Note that the NG fields . πa are angular variables on the torus . T 2 that 
are only locally defined, and so is therefore the 1-form .c(π). What is well-defined 
globally on the whole coset space is only the G-invariant 2-form .dc(π). 

To conclude the analysis of the Lagrangian .L (0,1)
eff , let us see under what condi-

tions we can expect it to actually shift by a surface term upon a G-transformation. 
Should .L (0,1)

eff be strictly G-invariant, it would necessarily assume the form 

.L (0,1)
eff = −σbω

b
a(π)π̇a , (8.31) 

with a constant H -invariant . σa , that is .f b
αaσb = 0. This follows by imposing directly 

the constraint .LξA
(σaω

a) = 0. The corresponding closed 2-form is then 

.dc = −σadω
a = −1

2
σaf

a
bcω

b ∧ ωc , (8.32) 

that is, .σab = −f c
abσc. Quasi-invariant Lagrangians .L (0,1)

eff are therefore in a one-to-
one correspondence with antisymmetric matrices .σab satisfying (8.24) that cannot 
be written as .σab = −f c

abσc with some H -invariant tensor . σa . Such antisymmetric
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matrices span the so-called second Lie algebra cohomology of . g relative to the 
subalgebra . h. See Sect. 3 of [4] for a mild introduction and further references. 

Example 8.4 

In case the symmetry under G is completely spontaneously broken, only the second 
of the conditions in (8.24) survives. In this case, nontrivial solutions for . σab, that 
is those that cannot be written as .σab = −f c

abσc with some . σc, are in a one-to-
one correspondence with the central charges . zab. Both of these are classified by the 
second Lie algebra cohomology of . g. 

8.1.4 Overview of the Lowest-Order Effective Lagrangian 

Let me summarize what we have found so far. The basic assumptions I made are 
that an internal symmetry group G is spontaneously broken to its subgroup H , but  
the symmetry under continuous spacetime translations and spatial rotations remains 
intact. Then in .d ≥ 2 spatial dimensions, the parts of the effective Lagrangian with 
up to two derivatives of NG fields take the generic form 

. L (0,1)
eff = ca(π)π̇a ,

L (2,0)
eff = −1

2
κcdωc

a(π)ωd
b (π)∇πa · ∇πb − 1

2
λcdωc

a(π)ωd
b (π)εrs∂rπ

a∂sπ
b ,

L (0,2)
eff = 1

2
κ̄cdωc

a(π)ωd
b (π)π̇aπ̇b . (8.33) 

Here . κab and . ̄κab are constant symmetric H -invariant matrices, 

.f c
αaκcb + f c

αbκac = 0 , f c
αaκ̄cb + f c

αbκ̄ac = 0 . (8.34) 

Likewise, . λab is a constant antisymmetric matrix invariant under H , 

.f c
αaλcb + f c

αbλac = 0 . (8.35) 

The .λab term can only exist in .d = 2 spatial dimensions. In the special case of 
a Lorentz-invariant system, both .L (0,1)

eff and the .λab term in .L (2,0)
eff are forbidden. 

Moreover, .κab = κ̄ab under the convention that the speed of light is set to unity. The 
entire effective Lagrangian with up to two derivatives then shrinks to a single term, 

.L (2)
eff = 1

2
κcdωc

a(π)ωd
b (π)∂μπa∂μπb . (8.36) 

Both .L (2,0)
eff and .L (0,2)

eff are strictly G-invariant. On the other hand, . L (0,1)
eff

may be only quasi-invariant. The functions .ca(π) on .G/H are constrained by the
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requirement that the 2-form .dc ≡ d(cadπa) = (∂cb/∂πa)dπa ∧ dπb is closed and 
G-invariant. This implies 

.dc(π) = 1

2
σcdωc

a(π)ωd
b (π)dπa ∧ dπb , (8.37) 

where . σab is a constant antisymmetric matrix subject to the conditions 

.f c
αaσcb + f c

αbσac = 0 , f d
abσcd + f d

bcσad + f d
caσbd = 0 . (8.38) 

Those Lagrangians .L (0,1)
eff that are strictly G-invariant assume the form 

.L (0,1)
eff = −σbω

b
a(π)π̇a , where f b

αaσb = 0 . (8.39) 

In this case, .ca(π) = −σbω
b
a(π) and .σab = −f c

abσc. In general, the 1-form . c(π)

is determined by (8.37), hence by . σab, up to addition of a closed 1-form, . c(π) →
c(π) + dc̃(π). Such a shift only changes the Lagrangian by a total time derivative, 

.L (0,1)
eff → L (0,1)

eff + ∂c̃(π)

∂πa
π̇a = L (0,1)

eff + dc̃(π)

dt
, (8.40) 

and so does not affect the dynamics of the low-energy EFT. 
Let me conclude the overview with some remarks on the topological aspects of 

the effective Lagrangian. First of all, the broken part of the MC form . ω⊥ is globally 
well-defined on the coset space .G/H . This is because it furnishes a coframe, dual 
to the frame built out of the vector fields that realize the action of G on .G/H . 
All the parts of the effective Lagrangian (8.33) that are strictly invariant under G 
are constructed out of products of .ωa(π) with constant tensor coefficients. As a 
consequence, all these parts are themselves globally well-defined on .G/H , even  
though their explicit form may depend on the local coordinates . πa . In particular the 
.κab, κ̄ab terms correspond to G-invariant Riemannian metrics on .G/H . 

The global existence of .L (0,1)
eff , on the other hand, is not guaranteed by 

our construction. Problems may arise only if .L (0,1)
eff is merely quasi-invariant, 

otherwise the same argument as that for .L (2,0)
eff and .L (0,2)

eff applies. Quasi-invariant 
Lagrangians .L (0,1)

eff are classified by the second Lie algebra cohomology of . g
relative to the subalgebra . h. Should the group G be compact and connected and 
the subgroup H closed and connected, this relative Lie algebra cohomology is 
isomorphic to the second de Rham cohomology of .G/H (Theorem 7.4 in [5]). 
Cohomologically nontrivial .σab then ensures that the 2-form . dc is closed but not 
exact. As a consequence, the 1-form .c(π) cannot be extended from the local 
coordinate patch to the entire coset space.
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Example 8.5 

Let us contrast the coset spaces .G/H ≃ G/{e} with respectively . G ≃ U(1) ×U(1)
and .G ≃ R×R. These have identical Lie algebras . g, h that possess a single generator 
of the second (relative) Lie algebra cohomology, .σab = εab. The single-derivative 
Lagrangian .L (0,1)

eff = (1/2)εabπ
a∂0π

b is quasi-invariant under G in both cases. 
Now in the first case, .G/H ≃ U(1) × U(1) ≃ T 2. The 2-form .dc(π) is 

proportional to the volume form on the torus, and constitutes the single generator of 
the second de Rham cohomology of . T 2. This agrees with the fact that G is compact 
and connected and thus the two cohomology groups are necessarily isomorphic. The 
Lagrangian .L (0,1)

eff is obviously not globally well-defined on . T 2 because the fields 
. πa are not. 

In the second case, on the other hand, .G/H ≃ R2. In the Euclidean plane, the 
Poincaré lemma holds and the second de Rham cohomology is trivial. Accordingly, 
.L (0,1)

eff is globally well-defined, since . πa are now nothing but the two Cartesian 
coordinates in the plane. 

A pedant might object that a Lagrangian that is not well-defined everywhere 
on the coset space renders the whole EFT ill-defined. However, in classical 
field theory, one is largely interested just in the EoM. The latter only involves 
the functions .ca(π) through the combinations .∂cb/∂πa − ∂ca/∂πb, that is, 
only depends on .dc(π). Unlike the Lagrangian, the classical EoM is therefore 
globally well-defined on .G/H . 

The situation is quite different in quantum theory where we need to be 
able to perform a functional integral over all field configurations on the coset 
space. Luckily, we do not really need the Lagrangian .Leff[π ], or even the  
action . Seff, to be well-defined. What should be unambiguous is just the phase 
factor .exp(iSeff). To ensure this, one needs to cover the coset space with a 
set of coordinate patches and define the action by piecewise integration. A 
detailed analysis is well-beyond the scope of this book. A curious reader 
will find more details and further references in [6], which puts forward a 
modern classification of topological terms in the action using a homology-
based approach. Here I will just state without proof that consistency and 
G-invariance require that the so-called Manton condition be satisfied: the 1-
forms .ιξA

(dc) must be exact for all the vector fields . ξA realizing the action of 
G on .G/H . This is a stronger condition than G-invariance of . dc that I used 
above, which implies merely that .ιξA

(dc) is closed. The Manton condition is 
automatically satisfied by our .L (0,1)

eff whenever the first de Rham cohomology 
of .G/H is trivial. This is the case for instance when G is compact and simply 
connected and H is connected; cf. Example A.28.
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8.2 Effective Lagrangians from Background Gauge Invariance 

I this section I will switch gears and outline another approach to the construction 
of effective Lagrangians for SSB. This is based on a technical assumption that rules 
out some of the more exotic theories covered by the method of Sect. 8.1, notably 
systems with a central extension of the symmetry algebra. The reward for making 
this sacrifice is a drastic simplification of the classification of possible contributions 
to the effective action. All we shall need will be elementary field theory with no 
recourse to differential geometry. The method presented here was pioneered by 
Leutwyler [7, 8], and I will largely follow the pedagogical account of [9]. 

The generating functional formalism constitutes an arsenal of important tools 
in both classical and quantum field theory. In this framework, one couples a 
given theory to a set of classical external (or background) fields and subsequently 
integrates, if only formally, over the dynamical degrees of freedom. The physical 
properties of the theory are encoded in the ensuing generating functional of the 
background fields. See Chap. 16 of [10] for an introduction to the formalism. 

In principle, one has the freedom to choose the background at will. However, in 
presence of a continuous internal symmetry group G, it is convenient to introduce 
a set of background gauge fields . AA

μ , one for each generator .QA of G. These can 
be clustered into a matrix-valued gauge field .Aμ ≡ AA

μQA. The important technical 
assumption I am making here is that the symmetry under G is gaugeable. That is, 
it is possible to add the gauge fields so that the generating functional .W {A} of the 
system3 is invariant under the gauge transformation 

.Aμ
g−→ TgAμ ≡ gAμg−1 + ig∂μg−1 . (8.41) 

Example 8.6 

Consider a theory of a set of (not necessarily scalar) fields . φi , whose Lagrangian 
density .L [φ] is strictly invariant under a linear representation of the symmetry 
group G, .φi g−→ R(g)ijφ

j . Such a Lagrangian can always be made invariant under 
the simultaneous local transformation of . φi and (8.41). All one has to do is to replace 
derivatives of . φi with gauge-covariant derivatives, 

.∂μφi → [
δi
j ∂μ − iR(Aμ)ij

]
φj . (8.42) 

In order to assert gauge invariance of the generating functional .W {A}, one still 
needs to check that the functional integral measure does not change upon the local 
transformation of . φi . That would indicate an anomaly. In general, the assumption of

3 I follow [7, 8] and use braces to indicate the arguments of a functional. Square brackets are 
reserved for local functions of fields and their derivatives. 
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gauge invariance of .W {A} essentially amounts to the absence of anomalies or other 
obstructions to gauging. 

A linear realization of symmetry is typical for microscopic field theory models. 
There, one can usually check explicitly that the assumption of gauge invariance of 
the generating functional is satisfied. The low-energy EFT for the NG bosons should 
then, when coupled to the same external fields, reproduce the same generating func-
tional. In other words, we expect that the effective action . Seff{π} = ∫

dDx Leff[π ]
can be replaced with a “gauged” action .Seff{π,A} = ∫

dDx Leff[π,A] such that 

.eiW {A} =
∫
Dπ exp[iSeff{π,A}] . (8.43) 

Leutwyler [7] showed that gauge invariance of .W {A} is sufficient to ensure that 
the effective action .Seff{π,A} is invariant under the simultaneous local transfor-
mations (8.2) and (8.41) of the NG and gauge fields. The locality of (8.2) is 
implemented by allowing g therein to depend arbitrarily on spacetime coordinates 
as in (8.41). 

It is common to gloss over this detail and simply assume right away that 
the effective action is G-invariant. I did the same in Sect. 8.1. It is therefore 
worth stressing that this is a consequence of the properties of the generating 
functional, established at the microscopic level. The proof is technical and I 
refer the reader to [7] for details. 

We have replaced the problem of classifying possible G-invariant actions . Seff{π}
with that of constructing locally G-invariant actions .Seff{π,A}. How does that make 
our task easier? In short, a lot. I will now show in a series of simple steps how 
the problem of finding all possible gauged actions .Seff{π,A} can be reduced to an 
exercise in group theory. If desired, one can then always discard the background 
gauge fields and thus recover (most of) the results of Sect. 8.1. But the gauged 
action in fact carries more information, as it tells us how the EFT responds to certain 
external perturbations. 

8.2.1 Methodology of Construction of Effective Actions 

In the first step, we exploit the gauge invariance to eliminate explicit dependence of 
the action on the NG fields. Namely, by setting .g = U(π)−1, we get 

.Seff{π,A} = Seff{0, TU(π)−1A} . (8.44)
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By combining (8.2) and (8.41), we find that under the local action of G, the  
composite field .TU(π)−1Aμ transforms as 

.TU(π)−1Aμ
g−→ TU(π '(π,g))−1TgAμ = Th(π,g)TU(π)−1Aμ . (8.45) 

This is a special case of a local transformation of .TU(π)−1Aμ from H . Thus, gauged 
actions .Seff{π,A} locally invariant under G are in a one-to-one correspondence with 
locally H -invariant functionals of .TU(π)−1Aμ. 

Let us have a closer look at this composite field. By (8.41), 

.

TU(π)−1Aμ = U(π)−1AμU(π) + iU(π)−1∂μU(π)

= iU(π)−1(∂μ − iAμ)U(π) .
(8.46) 

Up to an overall sign, this is just a gauged version of the MC form (8.5). We can 
make the analogy explicit by turning the gauge field into a 1-form, .A ≡ Aμdxμ, 
and defining the gauged MC form via4 

. Ω(π,A) ≡ ΩA
μ(π,A)QAdx

μ ≡ −TU(π)−1A = −iU(π)−1(d − iA)U(π) .

(8.47) 

This .g-valued 1-form can again be split into unbroken and broken parts, . Ω = Ω‖ +
Ω⊥. These inherit the transformation rules (8.9) under the local action of G, 

. Ω‖(π,A)
g−→ Ω‖(π ', A') = h(π, g)Ω‖(π,A)h(π, g)−1 − ih(π, g)dh(π, g)−1 ,

Ω⊥(π,A)
g−→ Ω⊥(π ', A') = h(π, g)Ω⊥(π,A)h(π, g)−1 . (8.48) 

The second step is to realize that we can temporarily forget about the origin 
of .Ω‖,Ω⊥ in terms of the NG fields . πa and gauge fields . AA

μ . For the purposes of 
constructing the effective action, all we need is that .−Ω‖ transforms as a gauge field 
of H , whereas . Ω⊥ transforms linearly under the adjoint action of H . Once a locally 
H -invariant action .Seff{Ω‖,Ω⊥} has been found, we can reconstruct the dependence 
on .πa,AA

μ using (8.47). Now define two new vector fields by taking a variation of 
the action with respect to . Ω‖ and . Ω⊥, 

.Jμ
α [Ω‖,Ω⊥] ≡ δSeff{Ω‖,Ω⊥}

δΩα
μ

, Σμ
a [Ω‖,Ω⊥] ≡ δSeff{Ω‖,Ω⊥}

δΩa
μ

. (8.49)

4 This is a slight abuse of notation. The gauge field A is a 1-form on the spacetime. In order for 
.Ω(π,A) to be a well-defined 1-form on the spacetime as well, the MC form .ω(π) has to be pulled 
back by the map .πa : x → πa(x). 
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Fig. 8.1 Integration path in 
the space of parameters . u, v

(shown by the oriented solid 
line), used to reconstruct the 
effective action from its 
partial derivatives (8.50) 

u 

v 

10 

1 

In spite of the different transformation properties of . Ω‖ and . Ω⊥, both . Jμ
α and . Σμ

a

transform linearly under the adjoint action of H . This is just an auxiliary statement, 
and I therefore refer the reader to Appendix C of [9] for a detailed proof. The main 
message is that to construct such covariantly transforming objects is straightforward, 
and once we have done so, we can reconstruct the action. 

To that end, introduce real scaling parameters . u, v. It follows from (8.49) that 

.

∂Seff{uΩ‖, vΩ⊥}
∂u

=
∫

dDx Ωα
μ(x)Jμ

α [uΩ‖, vΩ⊥](x) ,

∂Seff{uΩ‖, vΩ⊥}
∂v

=
∫

dDx Ωa
μ(x)Σμ

a [uΩ‖, vΩ⊥](x) .

(8.50) 

Setting without loss of generality .Seff{0, 0} = 0, the full action is then obtained by 
integration along the path in the . u v space, shown in Fig. 8.1, 

.

Seff{Ω‖,Ω⊥} =
∫

dDx

∫ 1

0
duΩα

μ(x)Jμ
α [uΩ‖, 0](x)

+
∫

dDx

∫ 1

0
dv Ωa

μ(x)Σμ
a [Ω‖, vΩ⊥](x) .

(8.51) 

Equivalently, the effective Lagrangian .Leff[Ω‖,Ω⊥] can be split into two pieces, 
.Leff[Ω‖,Ω⊥] = LCS[Ω‖] + Linv[Ω‖,Ω⊥], such that 

.

LCS[Ω‖] =
∫ 1

0
duΩα

μJμ
α [uΩ‖, 0] ,

Linv[Ω‖,Ω⊥] =
∫ 1

0
dv Ωa

μΣμ
a [Ω‖, vΩ⊥] .

(8.52) 

As a consequence of the linear transformation properties of .Ωa
μ and . Σμ

a , the part 
.Linv[Ω‖,Ω⊥] is strictly invariant under the local action of G. Possibly quasi-
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invariant contributions to the effective Lagrangian reside in the part .LCS[Ω‖], which 
only depends on the .h-valued gauge field .−Ω‖. I will refer to this part as Chern– 
Simons (CS) due to its resemblance of the CS theory with gauge group H . 

The strategy to reconstruct the effective Lagrangian is now as follows. The 
gauge-invariant part of the Lagrangian, .Linv[Ω‖,Ω⊥], can be built directly out 
of . Ωa

μ, the field-strength of .−Ωα
μ, .G

α
μν ≡ −∂μΩα

ν + ∂νΩ
α
μ + f α

βγ Ω
β
μΩ

γ
ν , and their 

covariant derivatives. This is common lore but if desired, a detailed proof can be 
found in Appendix D of [9]. In the same way, one can construct possible gauge-
covariant “currents” . Jμ

α , except that now the available building blocks are only 
.Gα

μν and its covariant derivatives. In both cases, products of the covariant building 
blocks must be contracted with tensor coefficients that ensure invariance under the 
residual linearly realized symmetries (spatial rotations and the unbroken subgroup 
H ). Finally, the CS part of the Lagrangian is obtained from the current . Jμ

α by 
integration over u as indicated in (8.52). Here the quasi-invariance under H must be 
checked explicitly and may impose further constraints on the tensor couplings. 

Up to any desired order in the derivative expansion, only a finite number of 
covariant operators can contribute to .Linv[Ω‖,Ω⊥] or .Jμ

α [Ω‖], and they can be 
enumerated by inspection. See [9] for a full list up to order four in derivatives. The 
problem of constructing all gauge-invariant actions then boils down to solving the 
group-theoretic linear constraints on the tensor couplings of the individual operators. 
The full dependence on the fields .πa,AA

μ is already completely fixed by the structure 
of the operators. The practical use of this algorithmic procedure is best illustrated 
on the sample analysis of effective Lagrangians with up to two derivatives, worked 
out below. 

8.2.2 Lagrangians Up to Order Two in Derivative Expansion 

For the derivative expansion to be consistent, the Lorentz index on . AA
μ has to count 

equally to the derivative .∂/∂xμ. Each of .Ωα
μ,Ωa

μ is then of order one in (spatial or 
temporal) derivatives. Up to order two, the invariant Lagrangian .Linv[Ω‖,Ω⊥] may 
contain the following contributions, 

.Ωa
μ (order 1) , Ωa

μΩb
ν,DμΩa

ν,G
α
μν (order 2) , (8.53) 

where .DμΩa
ν ≡ ∂μΩa

ν + i[Ω‖μ,Ω⊥ν]a . However, a G-invariant Lagrangian density 
built out of .DμΩa

ν alone would be a pure surface term. Similarly, a term of the type 
.cαGα

μν would boil down to .cαf α
βγ Ω

β
μΩ

γ
ν , the rest of .Gα

μν being a surface term. But 
the combination .cαf α

βγ would necessarily vanish due to the H -invariance condition 
imposed on the coefficient . cα . Altogether, upon adding the appropriate tensor 
couplings, the most general gauge-invariant and rotationally invariant Lagrangian
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up to second order in derivatives is 

. Linv[Ω‖,Ω⊥] = −σaΩ
a
0 + 1

2
κ̄abΩ

a
0Ω

b
0 − 1

2
κabδ

rsΩa
r Ω

b
s − 1

2
λabε

rsΩa
r Ω

b
s .

(8.54) 

From (8.48), the coefficients .σa, κab, κ̄ab, λab must be invariant under the adjoint 
action of H , that is satisfy the constraints 

.
f b

αaσb = 0 , f c
αaλcb + f c

αbλac = 0 ,

f c
αaκcb + f c

αbκac = 0 , f c
αaκ̄cb + f c

αbκ̄ac = 0 .
(8.55) 

In order to pin down .LCS[Ω‖] up to second order in derivatives, we need . J
μ
α [Ω‖]

up to order one. But the basic building block available, .Gα
μν , already has order 

two. The only possibility left therefore is a constant current, restricted by rotation 
invariance to .J

μ
α [Ω‖] = −δ

μ
0 σα . By  (8.52), this leads in turn to 

.LCS[Ω‖] = −σαΩα
0 (8.56) 

as the sole possibility. Quasi-invariance under H imposes a constraint on . σα , 

.f
γ
αβσγ = 0 . (8.57) 

Note how effortlessly we recovered the effective Lagrangian, obtained in 
Sect. 8.1 and summarized in (8.33). The only difference is that out of all the 
possible solutions for the .ca(π) functions, those found here correspond to vanishing 
VEV of the central charges . zab in (8.27). This class of solutions is selected by the 
requirement that the symmetry under G is gaugeable. 

However, our newly deduced effective Lagrangian consisting of (8.54) and (8.56) 
does not just reproduce the previously found results. It also tells us how the NG 
fields couple to the background gauge fields . AA

μ . To see how the Lagrangian depends 
on the latter, we combine the definition (8.47) with (8.7) and (8.8) to write 

.Ω⊥(π,A) = ω⊥(π) − AAνa
A(π)Qa = ωa

b(π)[dπb − AAξb
A(π)]Qa . (8.58) 

This makes perfect sense: the vector fields . ξA define infinitesimal group motions on 
the coset space. As a consequence, 

.Dμπa ≡ ∂μπa − AA
μξa

A(π) (8.59) 

is the correct definition of a derivative of the NG field, covariant under local 
G-transformations. Altogether, the effective Lagrangian up to second order in
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derivatives can then be written as 

. L (0,1)
eff = −σAωA

a (π)π̇a + σAνA
B (π)AB

0 ,

L (2,0)
eff = −1

2
κcdωc

a(π)ωd
b (π)Dπa · Dπb − 1

2
λcdωc

a(π)ωd
b (π)εrsDrπ

aDsπ
b ,

L (0,2)
eff = 1

2
κ̄cdωc

a(π)ωd
b (π)D0π

aD0π
b . (8.60) 

Example 8.7 

A chemical potential describing a statistical many-body state of a system can be 
introduced into its Lagrangian as a constant temporal gauge field (see Chap. 2 
of [11]). Replacing .AA

μ → δμ0μ
A in (8.60) therefore allows us to analyze the effect 

on the EFT of a set of chemical potentials . μA. In particular, one can thus determine 
the ground state triggered by the chemical potentials as well as the spectrum of NG 
modes above it. A detailed discussion can be found in [12], where this setup was 
used to pin down the spectrum of massive NG bosons, introduced in Sect. 6.4.3. 

In spin systems, the chemical potentials . μA for the generators of .G ≃ SU(2) can 
be interpreted as the components of an external magnetic field . B. This is because 
the magnetic field couples to the conserved charge of .SU(2): spin. With the help 
of Example 7.14, one can easily check that the second term in .L (0,1)

eff in (8.60) is 
proportional to .B ·n. This is the Zeeman interaction of spins with the magnetic field. 
Its normalization is fixed by . σA, hence by the magnetization of the ground state. 

8.2.3 Effects of Explicit Symmetry Breaking 

So far in this chapter, I have assumed the symmetry of the EFT to be perfect. 
There are however good reasons to consider the effects of (presumably small) 
perturbations breaking the symmetry explicitly. First, I already used this idea in 
Sect. 5.2 to isolate a unique ground state in presence of SSB. Second, symmetries of 
real physical systems are almost always just approximate, even if to a high precision. 

I will not attempt a general analysis of explicit symmetry breaking in the 
EFT, but rather focus on a special case that is commonplace and admits a very 
simple treatment. Suppose that the microscopic Lagrangian of the system contains 
a contribution .mϱOϱ where . mϱ are real constant parameters and . Oϱ a set of local 
operators. Suppose these operators transform under some (real) linear representation 
. R of G, 

.Oϱ g−→ O'ϱ = R(g)ϱσOσ , g ∈ G . (8.61)
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Such a perturbation violates the invariance of the action under G unless .mϱ = 0 for 
all the components . Oϱ that belong to a nontrivial irreducible representation of G. 

In order to understand how the effects of the perturbation propagate to the 
low-energy EFT, it is convenient to promote the parameters .mϱ to background 
fields. The generating functional .W {A,m} then remains exactly invariant under the 
simultaneous local transformation 

.Aμ
g−→ TgAμ = gAμg−1 + ig∂μg−1 , mϱ

g−→ m'
ϱ = R(g−1)σϱmσ . (8.62) 

This translates to the invariance of the gauged effective action .Seff{π,A,m} under 
a simultaneous transformation of .πa,AA

μ,mϱ, generalizing (8.44) to 

.Seff{π,A,m} = Seff{0, TU(π)−1A,mR(U(π))} . (8.63) 

The action therefore depends on . πa , . AA
μ and . mϱ only through two composite fields, 

.TU(π)−1Aμ and .𝚵ϱ(π,m) ≡ R(U(π))σϱmσ . The field .𝚵ϱ(π,m) transforms under 
G through a linear representation of H , 

. 𝚵ϱ(π,m)
g−→ 𝚵ϱ(π ',m') = R(U(π '))σϱm'

σ = R(U(π))τσR(h(π, g)−1)σϱmτ

= R(h(π, g)−1)σϱ𝚵σ (π,m) . (8.64) 

By extension of the argument in Sect. 8.2.1, we can localize .𝚵ϱ in the strictly 
invariant part of the Lagrangian. The complete Lagrangian then takes the form 

.Leff[π,A,m] = LCS[Ω‖] + Linv[Ω‖,Ω⊥, 𝚵] . (8.65) 

Exactly which operators containing . 𝚵ϱ should be included at a given order of 
the derivative expansion depends on how we decide to count . 𝚵ϱ. It does not contain 
any derivatives of NG fields but, being proportional to the perturbations . mϱ, it makes 
sense to treat it as small. Depending on the concrete system, only a finite number of 
operators including . 𝚵ϱ is then needed at any fixed order of the derivative expansion. 
The leading perturbation of the effective Lagrangian is linear in . 𝚵ϱ, 

.Lpert[π,m] = ηϱ𝚵ϱ(π,m) . (8.66) 

The effective coupling . ηϱ must be H -invariant, which amounts to . R(Qα)
ϱ
σ ησ = 0

for any generator .Qα of H . A more complete list of operators containing . 𝚵ϱ and 
contributing to the effective Lagrangian can be found in [9]. 

Example 8.8 

The choice of background fields and their transformation properties is up to us. To 
illustrate this freedom, note that it is possible to treat the gauge fields . AA

μ themselves 
as linear perturbations. In this case, the operators . Oϱ are the Noether currents .Jμ

A
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of the symmetry group G. These transform according to the dual of the adjoint 
representation of G, 

.J
μ
A

g−→ J
'μ
A = R(g−1)BAJ

μ
B , (8.67) 

where . R is the adjoint representation itself. The gauge fields . AA
μ are now introduced 

to the microscopic Lagrangian through the linear coupling .AA
μJ

μ
A . Equation (8.62) 

assigns them the transformation rule .AA
μ

g−→ R(g)ABAB
μ , which amounts to discard-

ing the derivative piece of the background gauge transformation (8.41). Follow-
ing (8.63) then leads to the composite field 

.𝚵A
μ(π,A) ≡ R(U(π)−1)ABAB

μ = νA
B (π)AB

μ . (8.68) 

The leading contribution of such a perturbation to the effective Lagrangian is then 
.ηAνA

B (π)AB
0 . The coupling . ηA must be H -invariant, that is .f A

αBηA = 0. 
We have successfully recovered the structure of the second term in . L (0,1)

eff
in (8.60). Note that treating . AA

μ as a linear perturbation leaves the effective coupling 
. ηA unfixed. One could in principle apply the same reasoning case by case to 
other operators in the effective Lagrangian containing . AA

μ . However, imposing 
full background gauge invariance is obviously much more efficient, as it fixes the 
dependence of the EFT on the gauge fields entirely without any free parameters. 

8.2.4 Coupling to Matter Fields 

Throughout the whole book, I mostly assume that the NG bosons are the only 
low-energy degrees of freedom present in the given system. This is justified in 
case any other, non-NG modes in the spectrum possess a gap. The validity of 
the low-energy EFT for NG bosons is then limited to energies well below this 
gap. However, there are physical systems where strictly gapless non-NG degrees 
of freedom naturally occur. One generic possibility is that the spectrum includes 
a Fermi sea of particles such as electrons, protons, neutrons, or quarks. Any local 
low-energy EFT must then necessarily include such additional gapless degrees of 
freedom. It is therefore worthwhile to digress and see how such modes fit into the 
EFT framework developed in this chapter. 

The question how non-NG fields (also called matter fields) transform under the 
nonlinearly realized symmetry was already resolved in Chap. 7. Namely, any set of 
(not necessarily scalar) matter fields . χϱ can without loss of generality be assumed 
to transform under some linear representation D of the unbroken subgroup H . The  
action of the whole group G is then given by 

.χϱ g−→ χ 'ϱ(χ, π, g) = D(h(π, g))ϱσ χσ , (8.69) 

alongside (8.2) which defines the matrix .h(π, g) ∈ H .



162 8 Low-Energy Effective Field Theory

We are now looking for the most general effective action . Seff{π,A,m, χ}
consistent with the background gauge invariance under G. Our basic trick has 
been to eliminate explicit dependence on the NG fields by performing a gauge 
transformation with .g = U(π)−1. For this transformation, .h(π,U(π)−1) = e, 
hence the matter fields . χϱ remain unaffected. The effective action can therefore be 
built out of the composite fields .TU(π)−1Aμ and .𝚵ϱ(π,m), and . χϱ. The rest is just 
group theory. Since the matter fields may also enter the Lagrangian with derivatives, 
it is useful to have at hand their covariant derivative, 

.Dμχϱ ≡ ∂μχϱ + iΩα
μD(Qα)ϱσ χσ . (8.70) 

The transformation rule (8.69) is not necessarily the only possible choice 
for the action of G on matter fields. Suppose that the (presumably 
reducible) representation D of H can be extended to a linear representation 
of the whole group G on the same set of fields . χϱ. The redefinition 
.χϱ → Ψϱ ≡ D(U(π))

ϱ
σ χσ then gives variables that transform linearly 

under the whole G, .Ψϱ g−→ D(g)
ϱ
σ Ψσ . Such fields, while superficially nat-

ural, however conceal the physical structure of the spectrum. The degenerate 
energy levels are still organized in multiplets of the unbroken subgroup H . 
States from different multiplets of H , even if formally belonging to the 
same multiplet of G, will have different dispersion relations, and different 
interactions. In the extreme case, it may not even be possible to form complete 
multiplets of G. The arguably more complicated nonlinear transformation 
rule (8.69) is then the only option. An explicit example will illustrate this 
best. 

Example 8.9 

Most natural ferromagnets are metals, which betrays the presence of gapless, 
conducting electrons. While their appearance in spin doublets would seem natural, 
this is no longer mandatory once the .G ≃ SU(2) spin symmetry is spontaneously 
broken down to .H ≃ U(1). Let us denote the two possible polarizations of the 
electron as up (. ↑) and down (. ↓). Each of these carries a one-dimensional complex 
representation of H . The action of the full spin group G is then defined in accord 
with (8.69), 

.χ↑
g−→ D↑(h(π, g))χ↑ , χ↓

g−→ D↓(h(π, g))χ↓ . (8.71)
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In the effective Lagrangian, Schrödinger-type terms for the up and down electrons 
can be added independently from each other, 

.Leff ϶
∑

σ=↑,↓
cσ χ†

σ

(
iD0 + D2

2mσ

+ μσ

)
χσ + · · · . (8.72) 

Here . mσ and . μσ are the effective mass and chemical potential of . χσ , and the ellipsis 
denotes other possible operators, compatible with all the assumed symmetries. The 
covariant derivatives induce coupling between the electrons and the magnon (spin 
wave) degrees of freedom. There is nothing that prevents us from setting one of . c↑, 
. c↓ to zero: we do not need both spin polarizations to preserve the invariance under 
.SU(2). Physically, this amounts to the possibility of magnons interacting with a 
fully polarized Fermi sea of electrons or other spin-.1/2 fermions such as neutrons. 

Another important application of the formalism for coupling matter fields to NG 
bosons is the description of interactions between baryons and pseudoscalar mesons. 
The latter are pseudo-NG bosons a of spontaneously broken symmetry of quantum 
chromodynamics. Baryons play the role of matter fields that are much heavier than 
the NG modes, but may nevertheless be added to the low-energy EFT if desired. An 
interested reader will find more details in Chap. 4 of [13]. 

8.3 Equation of Motion 

For many applications, it is useful to have at hand the EoM for the NG bosons. 
This is of obvious value in classical physics, it is however also very useful in 
quantum field theory. First, the linearized EoM can be used to identify the spectrum 
of excitations above the ground state and their perturbative propagators. Second, 
within a derivative expansion of the EFT, knowing the leading-order EoM helps to 
eliminate redundancies in the effective Lagrangian at higher orders. 

Let us return to the general effective Lagrangian (8.33) without background 
gauge fields, this time augmented with the perturbation (8.66). Deriving the EoM 
from the effective action amounts in principle to a mere variation with respect to 
the NG field . πa . However, the complicated dependence of the Lagrangian on . πa

makes this a rather odious task. I will therefore make a rare exception and leave out 
all details, simply displaying the final result. A reader wishing to verify it should be 
prepared to a repeated use of the MC equation (8.11) and of the algebraic constraints 
on all the effective couplings. 

I will use the shorthand notation .ωA
μ(π) ≡ ωA

a (π)∂μπa . Also, I will need the 
covariant derivative of the broken part of the MC form, 

.Dμωa
ν (π) ≡ ∂μωa

ν (π) − f a
αbω

α
μ(π)ωb

ν(π) . (8.73)



164 8 Low-Energy Effective Field Theory

With these preparations, the EoM descending from the lowest-order effective 
Lagrangian (8.33) can be written as 

.σabω
b
0 − (κ̄abD0ω

b
0 − f d

abκ̄cdωb
0ω

c
0) + (κabδ

rsDrω
b
s − f d

abκcdδrsωb
r ω

c
s ) (8.74) 

+ 
1 

2 
(f d 

abλcd + f d 
bcλad + f d 

caλbd)εrs ωb 
r ω

c 
s + mϱR(U(π))ϱσR(iQa)

σ 
τ η

τ = 0 . 

This does not appear particularly elegant, but it is not that bad. In concrete 
applications, one or more of the terms in (8.74) are often missing. The last term 
obviously vanishes in the limit of exact symmetry. The term proportional to . εrs is 
absent in .d /= 2 spatial dimensions. Moreover, all the terms containing a structure 
constant with three broken indices, . f c

ab or similar, drop for symmetric coset spaces 
(see Sect. 7.3.2). One last special case, in which the form of (8.74) drastically 
simplifies, deserves spelling out explicitly. 

Example 8.10 

Consider the class of EFTs for Lorentz-invariant systems. This amounts to setting 
.κ̄ab = κab as well as to dropping the single-time-derivative term and the purely 
spatial two-dimensional term proportional to . εrs , 

.κabg
μνDμωb

ν − f d
abκcdgμνωb

μωc
ν − mϱR(U(π))ϱσR(iQa)

σ
τ η

τ = 0 . (8.75) 

Under the additional assumption that the coset space .G/H is symmetric, which is 
the case for many relevant physical systems, the EoM takes the extremely compact 
form .κabg

μνDμωb
ν−mϱR(U(π))

ϱ
σR(iQa)

σ
τ η

τ = 0. This is essentially a nonlinear 
generalization of the Klein–Gordon equation to symmetric coset spaces. 

A couple of remarks on the main result (8.74) are due. First, the last term 
proportional to . mϱ looks like it might contribute a nonzero constant in the limit 
.πa → 0. That would indicate an instability of the origin of the coset space under 
the symmetry-breaking perturbation. This is hardly surprising; in presence of the 
perturbation, we can no longer expect all the points of the coset space to correspond 
to physically equivalent vacua. In order to ensure that .πa = 0 is at least a stationary 
point of the potential induced by the perturbation, one has to demand that such a 
constant term in (8.74) is absent. That amounts to the condition 

.mϱR(Qa)
ϱ
σ ησ = 0 . (8.76) 

Second, the contribution of the two-dimensional term proportional to . εrs van-
ishes if .f d

abλcd + f d
bcλad + f d

caλbd = 0. This implies by means of (8.24) that the 
2-form .(1/2)λabω

a(π) ∧ ωb(π) is closed, hence contributes a mere surface term to 
.L (2,0)

eff . This makes sense, since surface terms do not affect the EoM.
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What if we want to know how the EoM depends on the external gauge fields 
. AA

μ? It might appear we could obtain a gauge-invariant EoM by replacing 
everywhere in (8.74) . ωa

μ and . ωα
μ with their gauged counterparts .Ωa

μ,Ωα
μ. Yet,  

there are subtleties hidden in this naive guess. First, we know from Sects. 8.1 
and 8.2 that there are admissible values of .σab for which the symmetry 
under G cannot be gauged. The catch is that not every modification of (8.74) 
renders it a well-defined variational equation. That is, it may not be possible 
to construct a Lagrangian bottom-up from the gauged EoM. It is not difficult 
to show that consistency of the gauged EoM and background gauge invariance 
of the corresponding action require that . σab satisfies the constraints (8.28). 

Second, it is not obvious that even when the symmetry under G can be 
gauged, the minimal replacement of . ωa

μ and . ωα
μ with .Ωa

μ and .Ωα
μ gives the 

correct gauged EoM. Repeating the derivation of the EoM but this time 
starting with the gauged Lagrangian (8.60), one finds instead of (8.74) the 
following, 

. − f C
abσCΩb

0 − (κ̄abD0Ω
b
0 − f d

abκ̄cdΩb
0Ω

c
0) + (κabδ

rsDrΩ
b
s

− f d
abκcdδrsΩb

r Ω
c
s) + 1

2
(f d

abλcd + f d
bcλad + f d

caλbd)εrsΩb
r Ω

c
s (8.77) 

− 
1 

2 
λabε

rs
[
U(π)−1FrsU(π)

]b + mϱR(U(π))ϱσR(iQa)
σ 
τ η

τ = 0 . 

Here .Fμν ≡ ∂μAν − ∂νAμ − i[Aμ,Aν] is the field-strength tensor of 
. Aμ. The slight modification of the first term agrees with the fact that the 
symmetry under G can only be gauged if .σab = −f C

abσC . Most importantly, 
however, there is an extra term that could not have been guessed by the 
naive gauging of (8.74). This has interesting consequences. Even when the 
2-form .(1/2)λabω

a(π) ∧ ωb(π) is closed, thus contributing a mere surface 
term, gauging it leads to a nontrivial modification of the Lagrangian as well 
as the EoM. 

8.3.1 Spectrum of Nambu–Goldstone Bosons Revisited 

It is common to analyze the excitation spectrum by expanding the Lagrangian to 
second order in fluctuations around the ground state. Here I will take an alternative 
route to illustrate the utility of the EoM. Namely, I will linearize (8.74), that is 
expand it to first order in the NG fields . πa . For the sake of simplicity, I will discard 
all external fields including the perturbations . mϱ. By invoking the exponential 
parameterization (8.17) in which .ωa

b(0) = δa
b , we get at once 

.σabπ̇
b − κ̄abπ̈

b + κab∇2πb ≈ 0 . (8.78)
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The . ≈ symbol reminds us of the linearization done. This has plane-wave solutions 

.πa(x, t) = π̂ae−iEteip·x , (8.79) 

where the amplitude . π̂a , energy E and momentum . p satisfy 

. − iEσabπ̂
b + E2κ̄abπ̂

b − p2κabπ̂
b = 0 . (8.80) 

We would now like to understand how the dispersion relations of the various 
NG modes are related to the matrices . κab, . ̄κab and . σab. From Sect. 6.3.2, we expect 
to find type-A and type-B NG bosons. I even declared therein that the dispersion 
of type-A NG modes is linear in momentum, whereas that of type-B NG modes 
is quadratic. We are now in the position to justify this claim. First, one can always 
change the basis of the variables . π̂a so that .κab = δab. Moreover, . σab can be brought 
by an additional orthogonal transformation to a block-diagonal form, 

. σab =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 σ12

σ21 0
0 σ34

σ43 0
...

...

0
...

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡

⎛

⎜⎜⎝
Σ 0

0 0

⎞

⎟⎟⎠ .

(8.81) 

The upper-left block . Σ corresponds to the type-B sector; these are the fields that 
enter the bilinear part of .L (0,1)

eff . The lower-right block will analogously correspond 
to the type-A sector. The numbers of the different types of modes agree with our 
previous counting rule (6.24). 

One last simplification we can make is to diagonalize the lower-right part of 
. ̄κab by yet another orthogonal transformation without spoiling the already reduced 
forms of . κab and . σab. Thus, . ̄κab can be assumed to take the generic form 

.κ̄ab =

⎛

⎜⎜⎝
A B

BT Δ

⎞

⎟⎟⎠ , (8.82)
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where A is symmetric and . Δ is positive-definite and diagonal. Altogether, the 
spectrum of NG bosons is obtained by imposing the condition that the determinant 
of the matrix of coefficients in (8.80) vanishes, 

. det

(−iEΣ + E2A − p2 E2B

E2BT E2Δ − p2

)
= 0 . (8.83) 

The exact solution .E(p) for the dispersion relation of the various modes will be very 
complicated. However, the asymptotic behavior of the dispersion in the limit of low 
momentum is easy to extract from (8.83). Namely, in this limit, the contribution 
of the off-diagonal blocks can be neglected, as can be the .E2A term in the upper-
left block. The asymptotic dispersions in the type-A and type-B sectors therefore 
descend from the already diagonalized matrix equations 

.E2Δ − p2 ≈ 0 (type-A) , iEΣ + p2 ≈ 0 (type-B) . (8.84) 

The presence of both first and second time derivatives in the type-B sector 
indicates that (8.83) has solutions .E(p) with nonzero limit as .p → 0. 
Taken at face value, the linearized EoM (8.78) thus predicts the existence 
of gapped modes, accompanying type-B NG states. The required balance 
of operators with one and two time derivatives may however violate the 
derivative expansion of the EFT. In general, the presence of such gapped 
partners of type-B NG bosons cannot be asserted from the symmetry-breaking 
pattern alone. 

8.3.2 More on the Geometry of the Coset Space 

We had a first look at homogeneous spaces from the point of view of differential 
geometry in Sect. 7.4. I showed that any coset space .G/H possesses a collection 
of G-invariant (pseudo-)Riemannian metrics. In this chapter, we found a use for 
them: two such metrics, .g(π) and .ḡ(π), enter the part of the effective Lagrangian 
for NG bosons with two derivatives. In Sect. 7.4, I also introduced a class of affine 
connections on coset spaces. I have not made use of the ensuing curvature and 
torsion so far. However, we will see in Chap. 10 that these appear naturally in 
scattering amplitudes of NG bosons. 

What I want to briefly discuss now is yet another geometric structure on 
homogeneous spaces that is intimately connected to the spectrum of NG bosons. The 
reader might, if needed, want to recall the contents of Sect. 4.3.1 before proceeding. 
The exposition below follows [2], to which the reader is referred for a much more 
thorough discussion of geometric and topological aspects of type-B NG bosons.
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Suppose that the spectrum of NG bosons were purely type-B as in ferromagnets. 
The matrix . σab must then be nonsingular. The same applies to the 2-form .dc(π) that 
defines the part of the effective Lagrangian with one time derivative, .L (0,1)

eff . Being 
simultaneously closed, this 2-form therefore establishes a symplectic structure on 
the coset space. The 1-form .c(π) is the corresponding symplectic potential. The 
NG fields that block-diagonalize the bilinear part of .L (0,1)

eff as in (6.23) constitute a 
set of (local) Darboux coordinates. The existence of a symplectic structure on . G/H

underlines that it should be treated as the phase space of the EFT. The EoM is of 
first order in time derivatives. The number of independent modes in the spectrum 
equals .(1/2) dimG/H . 

What if the spectrum includes both type-A and type-B NG bosons? Then the 
2-form .dc(π) becomes singular, yet it still defines a new structure on .G/H , 
called presymplectic. Intuitively, the coset space becomes partially a phase space 
and partially a configuration space. The paired NG fields giving rise to type-B 
NG bosons are “phase space coordinates.” These are augmented with additional 
“configuration space coordinates,” corresponding to the type-A NG fields. The 
dynamics of the former and the latter is respectively of first and second order in 
time. 

Let us try to be a bit more precise while remaining physically intuitive. Suppose 
that the commutator matrix (8.26) were the sole order parameter our system 
possesses. This would break the symmetry group G to some subgroup K . Suppose 
also that G is compact and that its Lie algebra . g does not have any nontrivial central 
charges (for instance because G is semisimple). According to the discussion in 
Sect. 6.3.2, our order parameter then corresponds to the VEVs of a set of conserved 
charges that belong to a Cartan subalgebra of . g. These charges together generate an 
Abelian subgroup .T ⊂ G, usually called a torus. In group theory terminology, the 
subgroup .K = {g ∈ G | gh = hg ∀h ∈ T } is the centralizer of the torus T in G. 

The NG modes owing their existence to the order parameter .σab should be 
described by an EFT that lives on the coset space .G/K . A coset space .G/K where 
K is the centralizer of a torus in G is called a flag manifold; see Chap. 7 of [14] for  
an introduction. Flag manifolds are known to carry a natural symplectic structure, 
corresponding to (8.23) with our order parameter . σab. In physics terms, the spectrum 
of the EFT on .G/K contains by construction only type-B NG modes. Their number 
is .(1/2) dimG/K . 

Example 8.11 

Consider .G ≃ U(n) and the torus T generated by the diagonal matrices 

.

(
λ11m×m 0

0 λ21(n−m)×(n−m)

)
, (8.85) 

where .λ1,2 ∈ R. The centralizer of this torus in G consists of all block-diagonal 
unitary matrices, .K ≃ U(m)×U(n−m). The flag manifold .U(n)/[U(m)×U(n−m)]
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is called the (complex) Grassmannian. The special case of .m = 1 is the complex 
projective space, .CP n ≃ U(n + 1)/[U(n) × U(1)]. 

How do we add the type-A NG bosons then? In presence of additional order 
parameters, the symmetry will be broken further down from K to H . This will lead 
to additional .dimK/H modes, which we can identify with the type-A NG bosons. 
All this of course does not mean that we will have two different EFTs, one living 
on .K/H for the type-A NG bosons, and the other living on .G/K for the type-B 
NG bosons. The two coset spaces are geometrically integrated into .G/H through a 
fiber bundle structure,5 .K/H → G/H

π−→ G/K . Ignoring the type-A NG degrees 
of freedom amounts to the projection .π : G/H → G/K from the total space . G/H

to the base space .G/K . The type-A NG fields span the fiber .K/H above each point 
of the base space. The presymplectic structure on .G/H is obtained by pulling back 
the symplectic 2-form on the base space .G/K via the projection map . π . 

Example 8.12 

Consider a theory with a .G ≃ U(n) symmetry. Suppose that the symmetry is broken 
down to .H ≃ U(n − 1) by the expectation value of a complex scalar field . Ф that 
transforms in the fundamental representation of G. Since the action of G preserves 
the norm of . Ф, the coset space .U(n)/U(n−1) is obviously equivalent to .S2n−1. For  
convenience, we can choose the order parameter as .〈Ф〉 = (1, 0, . . . , 0)T . The  Lie  
algebra . g of G includes two linearly independent singlets of H , .Q1 ≡ 1 and . Q2 ≡
diag(−n + 1, 1, . . . , 1). Their linear combination, . Q‖ ≡ [Q2 + (n − 1)Q1]/n =
diag(0, 1, . . . , 1), generates the sole .U(1) factor of H . The generator . Q1 is a singlet 
of the whole group G and its VEV therefore does not break the symmetry. On the 
other hand, the VEV of . Q2 constitutes a candidate order parameter responsible for 
type-B NG bosons in the spectrum. See the closely related Example 6.6. 

If .〈Q2〉 = 0, or  .〈Q‖〉 = (n − 1)/n〈Q1〉, we have no order parameter, hence 
.K ≃ G. In this case, the coset space .G/H is pure type-A; there are .2n−1 type-ANG 
modes. If, however, .〈Q2〉 /= 0, there are .n − 1 type-B NG modes that parameterize 
the coset space .G/K ≃ U(n)/[U(1) × U(n − 1)] ≃ CP n−1. Above each point of 
this base space, there is a fiber .K/H ≃ U(1), carrying one type-A NG degree of 
freedom.

5 Since this is the only place in the book where the concept of a fiber bundle appears, I have decided 
not to include a detailed explanation in Appendix A. I hope that even a reader without the necessary 
mathematical background can extract some useful information from the discussion. 
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9Applications to Particle and 
Condensed-Matter Physics 

The material of Chaps. 7 and 8 is in principle sufficient to construct the low-energy 
effective field theory (EFT) for any system with a spontaneously broken internal 
symmetry. However, the implementation of the general methodology for a concrete 
physical system often still requires a nontrivial amount of effort. Moreover, the 
actual phenomenology of the EFT may depend sensitively on the internal and 
spacetime symmetries present. In this chapter, I will therefore work out in detail two 
applications of the general formalism, one in particle physics and one in condensed-
matter physics. Apart from serving as an extensive illustration, this will allow us 
to dive deeper into some technical details of EFTs for Nambu–Goldstone (NG) 
bosons: the consistency of the derivative expansion of the effective Lagrangian, and 
the topological aspects of quasi-invariant Lagrangians. 

9.1 Chiral Perturbation Theory of Mesons 

Historically, the development of EFT for NG bosons was largely motivated by the 
need for a phenomenological description of low-energy hadron physics.1 On the one 
hand, computation of hadron properties from first principles is challenging because 
the strong nuclear interaction is not amenable to a perturbative treatment at energies 
below the intrinsic scale of quantum chromodynamics (QCD). On the other hand, 
the spectrum of lightest hadrons exhibits scale separation; see Fig. 9.1. The eight 
lightest particles in the spectrum—the three pions, four kaons and the .η-meson— 
are all pseudoscalars with varying quark flavor composition. Their masses are much 
lower that what one would expect given the constituent mass of about .300 MeV for 
the .u, d quarks and nearly .500 MeV for the s quark. This suggests that the low-
energy physics of the light pseudoscalar mesons should be captured by an EFT. 

1 This is also reflected by the widespread terminology. In the high-energy physics literature, it is 
still quite common to refer to NG bosons collectively as “pions.” 
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Fig. 9.1 Mass spectrum of 
light hadrons. All the masses 
in parentheses are shown in 
MeV. Current numerical 
values as of writing this book 
can be found in the Review of 
Particle Physics [1] 

π± (140) 
π0 (135) 
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K0,K0 (498) 
η (548) 

ω (783) 

p (938) 
n (940) 

K± (494) 
¯ 

QCD vacuum 

The key to understanding the observed scale separation in the hadron spectrum 
is provided by spontaneous symmetry breaking (SSB). The gauge interaction of 
QCD is vector-like, that is, gluons couple equally to left- and right-handed quarks. 
Moreover, the interaction is insensitive to the quark flavor. As a consequence, in 
the limit of vanishing quark masses, QCD with . nf quark flavors possesses a . G ≃
SU(nf)L × SU(nf)R × U(1)B symmetry. Under an element .(gL, gR, eiϵ) ∈ G, the  
left- and right-handed quark spinors .ΨL,R transform as 

.ΨL → eiϵ/3gLΨL , ΨR → eiϵ/3gRΨR . (9.1) 

The unitary matrices .gL,R act on the flavor index of the quark field. The vector-like 
.U(1)B group corresponds to conservation of baryon number, and the factors . 1/3
in (9.1) indicate the baryon number of a single quark. In addition to this internal 
chiral symmetry, QCD is invariant under the spacetime Poincaré group, and under 
the discrete symmetries of charge conjugation, parity and time reversal. 

In the ground state of (still massless) QCD, the chiral symmetry is spontaneously 
broken down to the “vector” subgroup, .H ≃ SU(nf)V × U(1)B, consisting of 
elements of the type .(g, g, eiϵ), that is, .gL = gR. This implies the existence of . n2

f −1
pseudoscalar NG bosons. Restricting to .nf = 2 accounts for the lightest mesons: the 
pion triplet. The additional five modes that appear with .nf = 3 are the strange 
pseudoscalar mesons (kaons) and the .η-meson. Of course, in reality, none of these 
is exactly massless. They are all pseudo-NG bosons owing to the fact that the chiral 
symmetry is only approximate, being explicitly broken by current quark masses. 
The fact that the strange mesons are heavier than the pions is a consequence of the



9.1 Chiral Perturbation Theory of Mesons 173

s quark being considerably heavier than the u and d quarks. The masses of the c, t 
and b quarks are so high (above the intrinsic scale of QCD) that with . nf ≥ 4, QCD  
does not possess even an approximate chiral symmetry. In practice, it is therefore 
sufficient to focus on the .nf = 2, 3 cases. 

The classical Lagrangian of massless QCD is also invariant under the 
axial symmetry .U(1)A, which amounts to .ΨL,R → e±iϵΨL,R. Being also 
spontaneously broken in the QCD vacuum, this would suggest the existence 
of another, flavor-singlet, pseudoscalar meson. Yet the lightest available 
candidate is the .η'-meson with the mass of .958 MeV. This is too high to 
be accounted for by explicit symmetry breaking due to quark masses. The 
resolution of this so-called .U(1)A problem is that the axial symmetry is broken 
at the quantum level by the axial anomaly, arising from nonperturbative gluon 
dynamics. See Sect. 13.6 of [2] for further details. 

The EFT for the light pseudoscalar mesons, constructed below, is called chiral 
perturbation theory (ChPT).2 The reader will find a modern graduate-level expo-
sition of ChPT in the dedicated monograph [3]. However, the pioneering works of 
Gasser and Leutwyler [4,5] remain a valuable source of insight. The construction of 
ChPT will follow the general machinery developed in Sect. 8.2 with the appropriate 
coset space, .G/H ≃ [SU(nf)L×SU(nf)R]/SU(nf)V. Here I have tacitly dropped the 
.U(1)B factor of the symmetry group of QCD. This remains unbroken and moreover 
leaves the meson fields intact, and so has no effect on the invariant part of the ChPT 
Lagrangian. I will reinstate the .U(1)B symmetry in Sect. 9.1.4, where it will help us 
build the quasi-invariant (anomalous) part of the Lagrangian. 

9.1.1 Power Counting 

In a Lorentz-invariant EFT, the effective Lagrangian is organized by the total 
number, .n = s + t , of spatial and temporal derivatives, 

.Leff[π ] =
∑

n≥2

L (n)
eff [π ] . (9.2) 

Discounting possible tadpole operators, linear in . πa , a minimum of two derivatives 
is enforced by the nonlinearly realized internal symmetry and Lorentz invariance. 
The latter is ensured by contracting Lorentz indices of spacetime derivatives with

2 I will adhere to this established name but stress that it is a misnomer. The derivative expansion of 
ChPT, worked out below, has nothing do to with ordinary perturbation theory known from quantum 
field theory. 
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the Minkowski metric .gμν or the Levi-Civita (LC) tensor, .εμνλ···. Hence, in an even 
number of spacetime dimensions D (which is the case of QCD, where .D = 4), only 
operators with even n can contribute to (9.2). 

In order to assess the relative importance of the individual parts .L (n)
eff , consider 

a generic Feynman diagram . 𝚪, contributing to a given observable. Suppose the 
diagram contains altogether I internal propagators, L loops and .Vn interaction 
vertices from each of .L (n)

eff . Upon Fourier transform, the diagram will evaluate to a 
homogeneous function of energy–momenta on the external legs. Adding up all the 
powers of energy–momentum from the vertices, propagators and loop integrals, the 
degree of the diagram as a function of the external energy–momenta then reads 

. deg 𝚪 = DL − 2I +
∑

n≥2

nVn . (9.3) 

The variable I can be eliminated using the identity .I = L+∑
n Vn−1, known from 

graph theory to hold for any connected graph (see, for instance, Sect. 13.4 of [6]). 
This leads to 

. deg 𝚪 = 2 + (D − 2)L +
∑

n≥2

(n − 2)Vn . (9.4) 

Diagrammatic contributions to a given observable can now be organized by 
increasing powers of energy–momentum; higher powers imply stronger suppression 
at low energies. Any Feynman diagram will have .deg 𝚪 ≥ 2. The  leading-order 
(LO) contribution to the observable corresponds to .deg 𝚪 = 2 and consists of all 
tree-level (.L = 0) diagrams with all vertices from .L (2)

eff . This justifies a posteriori 
the focus of this book on classical Lagrangians with the lowest possible number of 
derivatives. 

The degree .deg 𝚪 can be increased by adding vertices from higher-order (.n ≥ 3) 
parts of the Lagrangian or by adding loops. In .D = 4 dimensions, the next-to-
leading order (NLO) corresponds to .deg 𝚪 = 4. This can be reached in two different 
ways. Either we restrict ourselves to tree-level diagrams but allow for one vertex 
from .L (4)

eff , or allow one loop but keep all vertices from .L (2)
eff . It is easy to extend 

this reasoning to classify possible contributions to any observable at even higher 
orders of the derivative expansion. 

Let me conclude the discussion of power counting with several remarks. First, 
for pseudo-NG bosons, the propagator .i/(p2 − m2) is actually not a homogeneous 
function of the energy–momentum .pμ because of the mass m. That can be fixed 
by assigning the mass a formal counting degree 1 so that .m2 counts equally to 
. p2. This affects the classification of operators in the effective Lagrangian of ChPT 
that incorporate the effects of explicit breaking of chiral symmetry by the quark 
mass, . mq . We expect based on Sect. 6.4.1 that m will scale as .

√
mq . Hence, we 

can continue using (9.4), as long as we count the quark mass as a small quantity of 
degree .deg mq = 2. Similarly, we will want to couple ChPT to a set of background
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gauge fields, . Aμ. In order for the power counting to be consistent with background 
gauge invariance, we must assign these fields the degree .deg Aμ = 1. 

Second, the counting rule (9.4) also tells us how to renormalize the EFT. In order 
to remove an overall divergence in a Feynman graph . 𝚪, we need a counterterm 
among the operators in .L (deg 𝚪)

eff . Since all diagrams at .deg 𝚪 = 2 are tree-
level, the effective couplings in .L (2)

eff are finite constants that do not run with the 
renormalization scale. The effective couplings in .L (n≥3)

eff must include divergences 
that cancel against loop diagrams with degree n. Their running will be determined 
by the corresponding renormalization group equation. Important is that to any finite 
order in the derivative expansion, only a finite number of operators, and a finite 
number of counterterms, is needed. 

Third, note that for .D = 2, all loop diagrams with the same .Vn≥4 and arbitrary 
. V2 contribute at the same order of the derivative expansion. The lack of suppression 
of loop effects hints that the EFT is no longer weakly coupled. Eventually, it turns 
out that the infrared fluctuations of NG bosons are so wild in .D = 2 dimensions that 
they destroy the order parameter leading to SSB. I will return to this in Sect. 15.2. 

Finally, the basic counting rule (9.4) and much of the above comments applies 
equally to any EFT with only type-A NG bosons, relativistic or not. The LO 
Lagrangian will still be .L (2)

eff . The LO contribution to any observable will come from 
tree-level diagrams with all vertices from .L (2)

eff . The classification of contributions 
at higher orders may however be modified by the presence of operators with odd 
.n ≥ 3 regardless of the spacetime dimension D. The details for any particular choice 
of effective Lagrangian and D are easy to work out using (9.4). 

9.1.2 Effective Lagrangian 

The coset space of QCD, .G/H ≃ [SU(nf)L×SU(nf)R]/SU(nf)V, is symmetric. Let 
me therefore start by recalling some general properties of symmetric coset spaces; 
see Sect. 7.3.2 for full detail. 

By definition, a coset space is symmetric if the Lie algebra . g of G possesses an 
automorphism . R that acts as identity on the unbroken subalgebra . h and as minus 
identity on the complementary subspace .g/h of . g. Loosely speaking, . R changes the 
sign of all broken generators of G while leaving all unbroken generators intact. The 
automorphism . R can be, at least locally, lifted from the Lie algebra . g to the Lie group 
G. One can then choose the coset representative .U(π) so that .R(U(π)) = U(π)−1. 
With this choice, one can build a matrix-valued NG field that transforms linearly 
under the entire group G, 

.Σ(π) ≡ U(π)2 , Σ(π)
g−→ Σ(π '(π, g)) = gΣ(π)R(g)−1 . (9.5)
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The automorphism . R makes it easy to project out the broken component of the 
gauged Maurer–Cartan (MC) form (8.47), 

.Ω⊥(π,A) = 1

2
[Ω(π,A) − R(Ω(π,A))] , (9.6) 

where .A ≡ Aμdxμ is the .g-valued 1-form gauge field of G. Upon a brief 
manipulation using the definition of . R, we find that 

.Ω⊥(π,A) = − i

2
U(π)−1DΣ(π)U(π)−1 = i

2
U(π)DΣ(π)−1U(π) , (9.7) 

where 

.DΣ(π) = dΣ(π) − iAΣ(π) + iΣ(π)R(A) (9.8) 

is the G-covariant derivative of .Σ(π), and .DΣ(π)−1 is defined analogously. 
What does all this translate to in case of ChPT? Here . R acts by swapping the 

transformations of left- and right-handed quarks, .R(gL, gR) = (gR, gL). It is then 
natural to choose the coset representative as 

.U(π) = (u(π), u(π)−1) where u(π) ∈ SU(nf) . (9.9) 

The matrix variable .Σ(π) = (u(π)2, u(π)−2) is subject to the linear transformation 
.Σ(π)

(gL,gR)−−−−→ (gL, gR)Σ(π)(gR, gL)−1. All information about the NG fields can 
then be encoded in a single .SU(nf)-valued matrix variable, 

.U(π) ≡ u(π)2 , U(π)
(gL,gR)−−−−→ U(π '(π, gL, gR)) = gLU(π)g−1

R . (9.10) 

The Lie algebra of .SU(nf)L ×SU(nf)R is .su(nf)L ⊕su(nf)R. In our pair notation, the 
matrix-valued gauge field .Aμ can thus be decomposed as .Aμ = (AL

μ,1) + (1, AR
μ), 

where .AL,R
μ are independent .su(nf)-valued gauge fields acting respectively on 

the left- and right-handed quarks. A straightforward manipulation then leads to 
.DΣ(π) = (DU(π),U(π)−1) + (U(π),DU(π)−1), where 

.

DμU(π) = ∂μU(π) − iAL
μU(π) + iU(π)AR

μ ,

DμU(π)−1 = ∂μU(π)−1 − iAR
μU(π)−1 + iU(π)−1AL

μ .
(9.11) 

This eventually gives 

.Ω⊥ = − i

2

[(
u−1(DU)u−1,1

) + (
1, u(DU−1)u

)]
. (9.12) 

Before we can write down even the LO effective Lagrangian of ChPT, we still 
have to discuss the explicit breaking of chiral symmetry by the quark masses.
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The mass term in the microscopic Lagrangian of QCD takes the form . ΨLMΨR +
ΨRM†ΨL, where .M = diag(mu,md, . . . ) is a real diagonal matrix, collecting the 
quark masses. In the spirit of Sect. 8.2.3, this is promoted to a complex matrix field 
that transforms under the chiral symmetry as .M (gL,gR)−−−−→ gLMg−1

R , thus restoring 
exact chiral invariance of the QCD Lagrangian. The basic building block for 
incorporating the effects of explicit symmetry breaking in ChPT is then the matrix 
field 

.𝚵(π,M) = u(π)−1Mu(π)−1 . (9.13) 

Being linear in quark masses, this is assigned the order .deg 𝚵 = 2. 
The operators we now have for building the LO effective Lagrangian of ChPT 

are, schematically, .Ω⊥μΩ
μ
⊥ and . 𝚵. The only way to ensure invariance of these 

operators under the linearly realized unbroken subgroup, .SU(nf)V, is to take a trace. 
Moreover, . 𝚵 has to enter the Lagrangian through .tr(𝚵 + 𝚵†). This is required 
by parity invariance of QCD and the fact that parity interchanges left- and right-
handed quarks, thereby acting on both .u(π) and . M by Hermitian conjugation. At 
the end of the day, there are only two independent operators one can put into the LO 
Lagrangian, 

.L (2)
eff = f 2

π

4
tr

[
DμU(π)†DμU(π)

] + f 2
πB

2
tr

[
MU†(π) +M†U(π)

]
. (9.14) 

Accordingly, there are two independent parameters, conventionally denoted as . fπ

and B, both with mass dimension 1. 

Example 9.1 

Let us work out some immediate consequences of the LO Lagrangian (9.14). To  
that end, I will drop the background gauge fields and parameterize .U(π) in terms 
of a Hermitian traceless matrix .Π(π) as .U(π) = exp[iΠ(π)/fπ ]. This is a matrix 
version of the familiar exponential parameterization of the coset space; the factor 
. fπ is inserted to give . Π mass dimension 1. Upon expansion in powers of . Π, the  
Lagrangian becomes 

. 

L (2)
eff = f 2

πB

2
tr(M+M†)

+ 1

4
tr

[
∂μΠ(π)∂μΠ(π)

] − B

4
tr

[
(M+M†)Π(π)2] + O(Π4) ,

(9.15) 

where I used that . M is ultimately Hermitian to drop terms linear and cubic in .Π(π). 
The first, constant term contributes to the energy density of the chiral-symmetry-

breaking vacuum. Taking the derivative of the vacuum energy density with respect 
to any of the quark masses in turn gives the vacuum expectation value (VEV) of
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the corresponding mass operator; cf. (5.16). The latter serves as the order parameter 
for spontaneous breaking of chiral symmetry. The LO prediction of ChPT, based 
on (9.15), is that this so-called chiral condensate is independent of the quark flavor. 
The total condensate, summed over all quark flavors, equals 

.〈ΨΨ〉 = −nff
2
πB . (9.16) 

Let us now turn attention to the bilinear part of (9.15). It is convenient to further 
parameterize the matrix .Π(π) in terms of .n2

f − 1 meson fields . πa as .Π(π) = πaλa . 
Here . λa is a basis of traceless Hermitian .nf ×nf matrices, normalized as . tr(λaλb) =
2δab. This ensures canonical normalization of the kinetic term for the meson fields. 
In case of . nf = 2, the . λas are just the usual Pauli matrices . τa , whereas for .nf = 3, 
the so-called Gell-Mann matrices can be used instead. The next step is to find the 
eigenvalues of the mass matrix for . πa . Setting .nf = 3 and using the known flavor 
composition of the light pseudoscalar mesons, these eigenvalues can be identified 
with the masses of the individual states in Fig. 9.1 as 

. m2
π0 = 2B

3

(
mu + md + ms −

√
m2

u + m2
d + m2

s − mumd − mums − mdms

)
,

m2
π± = B(mu + md) ,

m2
K± = B(mu + ms) , (9.17) 

m2 
K0 = B(md + ms) ,  

m2 
η = 

2B 
3

(
mu + md + ms +

√
m2 

u + m2 
d + m2 

s − mumd − mums − mdms

)
. 

This determines the five different meson masses in terms of the three current quark 
masses, yet the latter are not uniquely fixed by (9.17). Indeed, any overall rescaling 
of the quark masses can be absorbed into a redefinition of the B parameter. It is 
however possible to use (9.17) to eliminate B and the quark masses altogether and 
thus obtain a constraint on the meson spectrum, 

.2(m2
π± + m2

K± + m2
K0) = 3(m2

π0 + m2
η) . (9.18) 

This so-called Gell-Mann–Okubo formula can be interpreted, for instance, as giving 
an estimate for the mass of the .η-meson in terms of those of the pions and kaons. 
With the data shown in Fig. 9.1 as input, one gets .mη ≈ 568 MeV, which is less 
than four per cent off the correct value. 

The machinery developed in Sect. 8.2 can in principle be applied to an arbitrarily 
high order of the derivative expansion of ChPT. However, already at NLO (.n = 4), 
constructing the effective Lagrangian is a nontrivial exercise. I will therefore content
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myself with spelling out the final result and refer the reader to Sect. 3.2 of [7], where 
all details are worked out rather pedantically. For both .nf = 2 and . nf = 3, the  
invariant part of the ChPT Lagrangian at NLO can be written as 

. L (4)
eff = c1 tr(DμUDμU†DνUDνU†) + c2 tr(DμUDμU†) tr(DνUDνU†)

+ c3 tr(DμUDνU†) tr(DμUDνU†)

+ c4 tr(F L
μνD

μUDνU† + F R
μνD

μU†DνU)

+ c5 tr(F L
μνUF RμνU†) + c6(F

L
μνF

Lμν + F R
μνF

Rμν) (9.19) 

+ d1 tr(MU†) tr(M†U) + d2
[
(trMU†)2 + (trM†U)2]

+ d3 tr(MU†MU† +M†UM†U) + d4 tr(MM†) 

+ d5 tr(MU† +M†U) tr(DμUDμU†) 

+ d6 tr
[
(MU† +UM†)DμUDμU†] . 

Here .F L
μν and .F R

μν are the field-strength tensors of the background gauge fields. The 
12 effective couplings .c1–6 and .d1–6 are mutually independent in the .nf = 3 case. In 
case of .nf = 2, special properties of .2 × 2 matrices make the . c1 operator redundant 
with . c2, and the . d6 operator redundant with . d5. 

The form of the NLO Lagrangian shown in (9.19) matches the detailed 
derivation offered in [7]. However, in the literature, a somewhat different basis 
of operators is often used. For the reader’s convenience, I list here detailed 
relations between the parameters .c1–6, d1–6 introduced above and the more 
common NLO couplings of ChPT .L1–10,H1–2, cf. Sect. 3.5.1 of [3], 

. 

c1 = L3 , c2 = L1 , c3 = L2 , c4 = −iL9 ,

c5 = L10 , c6 = H1 , d1 = 2(L6 − L7) , d2 = L6 + L7 ,

d3 = L8 , d4 = H2 , d5 = L4 , d6 = L5 .

(9.20) 

9.1.3 Interaction with External Fields 

For further illustrations of the use of ChPT, I will utilize its simplest version: the 
.nf = 2 ChPT in the “isospin-symmetric” limit. In this limit, one sets . mu = md = m

so that all three pions have the same squared mass, .m2
π = 2Bm. Accordingly, the
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LO Lagrangian (9.14) reduces to 

.L (2)
eff = f 2

π

4

[
tr(DμU†DμU) + m2

π tr(U+U†)
]

. (9.21) 

The kinetic term can be further expanded and organized by powers of the back-
ground gauge fields, 

. tr(DμU†DμU) = tr
[
∂μU†∂μU− iAL

μ(U∂μU† − ∂μUU†) (9.22) 

− iAR 
μ(U†∂μU− ∂μU†U) 

− 2UAR 
μU†ALμ + AL 

μALμ + AR 
μARμ

]
. 

Knowing the explicit dependence on the background fields is, among others, a useful 
starting point for deriving the Noether currents of chiral symmetry. I will however 
focus on illustrating the implications of some particular choices of actual, physical 
background fields. 

Example 9.2 

As explained in Example 8.7, a chemical potential parameterizing the statistical 
equilibrium of a many-body system can be introduced in the Lagrangian as a 
constant temporal gauge field. Thus, the effects of nonzero density of isospin, that 
is the diagonal generator of .SU(2)V, can be captured by setting 

.AL
μ = AR

μ = δμ0μI
τ3

2
, (9.23) 

where . μI is the isospin chemical potential. The actual statistical ground state is 
found by minimizing the Hamiltonian of ChPT with respect to . U. A detailed 
analysis shows that the ground state can be represented by a real orthogonal matrix, 

.〈U〉 =
(

cos α sin α

− sin α cos α

)
. (9.24) 

For .|μI| ≤ mπ , the value of the angle . α minimizing energy is .α = 0, implying 
.〈U〉 = 1. This is the usual QCD vacuum. On the other hand, for .|μI| ≥ mπ , the  
ground state corresponds to .cos α = m2

π/μ2
I . This state describes Bose–Einstein 

condensation of charged pions. The condensate carries nonzero isospin density 
obtained as minus the derivative of the Hamiltonian density with respect to . μI, 

.nI = f 2
πμI sin2 α = f 2

πμI

(
1 − m4

π

μ4
I

)
. (9.25)



9.1 Chiral Perturbation Theory of Mesons 181

Next, let us look at the spectrum of excitations above the ground state (9.24). 
This can be extracted by expanding the Lagrangian (9.21) to second order in 
fluctuations around (9.24). In the vacuum phase (.|μI| < mπ ), the neutral pion 
maintains its relativistic dispersion relation, .Eπ0(p) = √

p2 + m2
π . The energy of 

the charged pions is, on the other hand, trivially shifted by the chemical potential, 
.Eπ±(p) = √

p2 + m2
π ∓ μI. In the pion condensation phase (.|μI| > mπ ), the 

dispersion of the neutral pion changes to 

.Eπ0(p) =
√

p2 + μ2
I . (9.26) 

This is a relativistic-looking dispersion, except that the “mass” equals .|μI|. That is 
not a coincidence. In the pion condensation phase, the neutral pion mode can be 
interpreted as a massive NG boson of the isospin .SU(2)V symmetry; see Sect. 6.4.3 
and [8] for details. In the charged pion sector, it is no longer possible to distinguish 
isospin (or electric charge) eigenstates as a result of SSB. There are two excitation 
branches that are mixtures of .π+ and . π−, and their squared energies are 

. E±(p)2 = p2 + μ2
I

2
(1 + 3 cos2 α) ± μI

2

√
(1 + 3 cos2 α)2μ2

I + 16p2 cos2 α .

(9.27) 

The lower of the two branches is gapless, .E−(0) = 0. This is the NG boson of the 
spontaneously broken isospin symmetry. Further discussion of meson condensates 
in QCD can be found for instance in the pedagogical review [9]. 

QCD alone does not encompass all of particle physics. Hadrons can also interact 
via the weak and electromagnetic forces. ChPT makes it easy to couple pseudoscalar 
mesons to the electroweak sector of the Standard Model (see, for instance, Sect. 20.2 
of [10] for an overview). Indeed, we can imitate the coupling of quarks to the 
electroweak gauge bosons by setting 

.AL
μ = g

2
τ · Aμ + g'

6
Bμ , AR

μ = g'QBμ . (9.28) 

Here .Aμ is a triplet of potentials of the weak isospin gauge group, .SU(2)I. Similarly, 
.Bμ is the potential of the hypercharge gauge group, .U(1)Y. The corresponding 
gauge couplings are .g, g'. Finally, Q is the matrix of electric charges of the u and d 
quarks, 

.Q =
(

2/3 0
0 −1/3

)
= 1

6
1 + 1

2
τ3 . (9.29)
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A complete set of LO electroweak interactions of pions is then obtained by inserting 
the above definitions into (9.22). 

Example 9.3 

A glance at (9.22) shows that adding the electroweak gauge sector leads to nontrivial 
effects even in the ground state of ChPT, .〈U〉 = 1. Namely, the last three terms 
in (9.22) generate a mass term for the electroweak gauge bosons, 

. 
f 2

π

4
tr

(
AL

μALμ + AR
μARμ − 2AL

μARμ
) = f 2

π

4
tr

[
(AL

μ − AR
μ)(ALμ − ARμ)

]

(9.30) 

= 
f 2 

π 
8

[
(gA1 

μ)2 + (gA2 
μ)2 

+ (gA3 
μ − g'Bμ)2]

= 
f 2 

π 
8

[
2g2W+

μ W
−μ + (g2 + g'2)ZμZμ

]
. 

Here, I introduced the charged gauge boson fields by .W±
μ ≡ (A1

μ ± iA2
μ)./

√
2, 

and the neutral weak gauge boson via .Zμ ≡ A3
μ cos θW − Bμ sin θW. Finally, the 

Weinberg angle .θW is related to the gauge couplings by .cos θW = g/
√

g2 + g'2. 
Thus, spontaneous breaking of chiral symmetry in QCD leads to the following 
contributions to the masses of the electroweak gauge bosons, 

.m2
W = 1

4
f 2

πg2 , m2
Z = 1

4
f 2

π (g2 + g'2) . (9.31) 

Given the characteristic scale of QCD, encoded in the value of . fπ (fixed precisely 
below), these contributions are tiny. However, the idea that the gauge boson masses 
might be generated by a strong dynamics that spontaneously breaks chiral symmetry 
is intriguing. It lies behind the “technicolor” scenario of dynamical electroweak 
symmetry breaking. In this scenario, the Higgs boson is not elementary, but rather 
a composite bound state of constituent “techniquarks.” The value of . fπ is expected 
to be of the order of the electroweak scale, that is a few hundreds of .GeV. See [11] 
for a pedagogical introduction to technicolor models. 

The physical value of . fπ can be fixed by likewise utilizing the coupling of pions 
to the electroweak sector of the Standard Model. All we need is a single observable 
that does not depend on any other as yet unknown parameter. A suitable candidate 
is the leptonic decay of the charged pion.
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μ + 

π + W + 

νμ 

Fig. 9.2 Feynman diagram for the leading (tree-level) contribution to charged pion decay. The 
. π+–.W+ coupling is provided by ChPT whereas the interaction vertex between .W+ and the 
charged lepton current follows from the Standard Model of electroweak interactions 

Example 9.4 

The charged pion .π+ decays with the probability of .99.988% into an antimuon . μ+
and a muon neutrino . νμ. The leading perturbative contribution to the amplitude 
for this decay is shown in Fig. 9.2. The conversion of an on-shell pion into a 
virtual W -boson is described by our Lagrangian (9.21). Indeed, by expanding it 
to the first order in both .W±

μ and .π± ≡ (π1 ± iπ2)/
√

2, we find the bilinear 
term .−(fπg/2)(W+μ∂μπ− + W−μ∂μπ+). The subsequent decay of the virtual W -
boson into a lepton pair is governed by the “charged-current” interaction of the 
Standard Model, specifically the operator .(g/

√
2)

(
W+

μ μLγ μνμL + W−
μ νμLγ μμL

)
. 

I used an obvious notation for the spinor fields representing the leptons. Putting 
all the pieces together, the invariant amplitude for the .π+ → μ+ + νμ process 
becomes 

.Aπ+→μ++νμ
= ifπGFu(p)/k(1 − γ5)v(q) . (9.32) 

Here .kμ, pμ, qμ are respectively the four-momenta of the pion, muon neutrino and 
antimuon. Also, .u(p) and .v(q) are the corresponding Dirac spinors; polarization 
indices are suppressed for clarity. Finally, .GF is the Fermi coupling constant, 

.GF = g2

4
√

2m2
W

≈ 1.166 × 10−5 GeV−2 . (9.33) 

Upon squaring the amplitude and summing over polarizations of the particles in the 
final state, the integrated decay rate in the rest frame of the pion is found to be 

.𝚪π+→μ++νμ
= f 2

πG2
F

4π

m2
μ(m2

π − m2
μ)2

m3
π

. (9.34) 

I have treated the neutrino as a massless particle. The masses of the pion and 
antimuon are, respectively, .mπ ≈ 139.6 MeV and .mμ ≈ 105.7 MeV. Finally, we 
need an input on the lifetime of the charged pion, .τ ≈ 2.60 × 10−8 s. This converts 
to the total decay rate of .𝚪 ≈ 2.53 × 10−8 eV. At the end of the day, we get an
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estimate for the pion decay constant, 

.fπ ≈ 91 MeV . (9.35) 

The result (9.34) tells us more than merely a good estimate for the total decay rate 
of the charged pion. Namely, leptons from different families have identical weak 
interactions. Upon replacing .mμ with the electron mass . me, (9.34) therefore also 
gives us a decay rate for the process .π+ → e+ + νe. This is more conveniently 
expressed in terms of the branching ratio, 

.Rπ+→e++νe
≈ 𝚪π+→e++νe

𝚪π+→μ++νμ

= m2
e

m2
μ

(m2
π − m2

e)
2

(m2
π − m2

μ)2
≈ 1.28 × 10−4 . (9.36) 

This is very close to the experimental value, which is about .1.23 × 10−4 [1]. The 
suppression of the electron decay channel compared to the muon one is purely 
kinematical. By angular momentum conservation, one of the leptons in the final 
state must be left-handed and one right-handed. Yet, the W -boson only couples to 
left-handed fermion fields. The combination of these two effects requires a helicity 
flip and is responsible for the proportionality of (9.34) to the lepton mass squared. 

9.1.4 Effects of the Chiral Anomaly 

So far I have tacitly assumed, following Sect. 8.2, that the effective action of 
ChPT is gauge-invariant in presence of the background fields. This allowed us to 
construct strictly gauge-invariant Lagrangians at LO (9.14) and NLO (9.19) of the 
derivative expansion of ChPT. Are there any contributions to the ChPT Lagrangian 
that are merely quasi-invariant? A detailed derivation of such contributions and 
their coupling to background gauge fields would require a differential-geometric 
approach akin to that of Sect. 8.1. The problem of finding all such Wess–Zumino 
(WZ), or Wess–Zumino–Witten, terms was studied thoroughly in the 1980s and 
1990s. For a discussion close in spirit to this book, I refer the reader to [12, 13]. A 
pedagogical account of the method including explicit expressions for quasi-invariant 
Lagrangians for a broad class of coset spaces can be found in [14]. 

Here I will resort to a trick, which gives the right answer in case of .nf = 2 quark 
flavors. Suppose we were able to construct a current . Jμ, conserved off-shell, that 
is without imposing the equation of motion (EoM) for the NG fields in our EFT. If 
in addition the EFT includes an Abelian gauge field . Aμ, then the operator .AμJμ is 
quasi-invariant and can be added to the Lagrangian density. It remains to guess what 
.Jμ and .Aμ might be within ChPT. The current is the tricky bit. For the moment, I
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will simply write it down, a partial a posteriori justification will be offered below; 

.

J
μ
GW = λεμναβ tr

{
(UDνU†)(UDαU†)(UDβU†)

− 3i

2

[
(DνUU†)F L

αβ − (DνU†U)F R
αβ

]}
.

(9.37) 

This is the Goldstone–Wilczek (GW) current; the overall factor . λ is in principle 
arbitrary. In the absence of the background fields, the GW current would be 
manifestly conserved thanks to the antisymmetry of the LC tensor and cyclicity 
of trace. With the background in place, it is a nontrivial but straightforward exercise 
to show that3 

.∂μJ
μ
GW = 3λ

4
εμναβ tr

( − F L
μνF

L
αβ + F R

μνF
R
αβ

)
. (9.38) 

The current is not conserved as promised, except for backgrounds that are purely 
vector-like, .AL

μ = AR
μ. Luckily, this is not a problem. In fact, the nonconservation 

of the GW current turns out to be exactly what is needed to implement correctly the 
microscopic physics of QCD within ChPT. 

To that end, recall that the flavor symmetry of QCD has a single .U(1) factor, 
namely the baryon number .U(1)B. This can also be coupled to a background gauge 
field, . AB

μ, even if such a field may not have an obvious experimental realization. 
The presence of a coupling .AB

μJ
μ
GW in the ChPT action implies that it is possible to 

create baryon number solely out of meson fields. This intriguing possibility was first 
proposed by Skyrme in the 1960s. In presence of the chiral background fields .AL,R

μ , 
baryon number is not conserved due to the chiral anomaly. An explicit calculation 
(see Sect. 22.3 of [15]) shows that this anomaly is reproduced at the ChPT level 
by (9.38) if we set .λ = −1/(24π2). This brings us to the final expression for the 
WZ term in the ChPT Lagrangian for .nf = 2 quark flavors, 

. 

L (4)
WZ = − 1

24π2 εμναβAB
μ tr

{
(UDνU†)(UDαU†)(UDβU†)

− 3i

2

[
(DνUU†)F L

αβ − (DνU†U)F R
αβ

]}
.

(9.39) 

The superscript . (4) indicates that the WZ term enters at the NLO of the derivative 
expansion of ChPT. Note also that it does not come with an arbitrary coupling. The

3 A reader willing to check this should note that the GW current is manifestly gauge-invariant. It is 
thus sufficient, and advantageous, to compute its gauge-covariant derivative. This maintains gauge 
invariance at every step and simplifies the calculation thanks to the Bianchi identity for .F L,R

μν . 
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normalization of the WZ term is fixed by anomaly matching and does not receive 
any radiative corrections. 

The WZ term (9.39) is manifestly invariant under background gauge trans-
formations from the .SU(2)L × SU(2)R chiral group. On the contrary, under a 
background .U(1)B transformation, .AB

μ → AB
μ +∂μϵB, the corresponding WZ 

action changes by 

.δSWZ = −
∫

d4x ϵB(x)∂μJ
μ
GW(x) , (9.40) 

with the divergence of .Jμ
GW given by (9.38). Watch the interplay of two 

symmetries: the variation of the action under .U(1)B is proportional to the 
background fields for .SU(2)L × SU(2)R. What we have here is an example of 
a mixed ’t Hooft anomaly. This should be contrasted to the naive .U(1)A axial 
symmetry of QCD. The divergence of the axial current receives a contribution 
from the dynamical gluon fields, giving an example of an Adler–Bell– 
Jackiw anomaly. This kind of anomaly fundamentally invalidates a would-be 
classical symmetry of a quantum system. On the other hand, a symmetry 
exhibiting a ’t Hooft anomaly still implies exact relations (Ward identities) 
for the generating functional of the theory. This makes ’t Hooft anomalies a 
powerful tool for constraining low-energy EFTs, as I have illustrated here. 

The construction of the WZ term (9.39) is not a mere academic exercise, as one 
might suspect from the presence of the “baryon number gauge field.” The term has 
measurable consequences for the electromagnetic interactions of pions. To see why, 
recall (9.29), which shows that electric charge does not belong to the chiral Lie 
algebra .su(2)L × su(2)R due to not being traceless. Interactions of pions with an 
external electromagnetic field (with all other background fields switched off) can 
then be generated by setting 

.AL
μ = AR

μ = e

2
τ3A

Q
μ , AB

μ = e

2
AQ

μ . (9.41) 

Here .A
Q
μ is the electromagnetic gauge potential and e the electromagnetic coupling. 

The effects of interaction with the electromagnetic field via the WZ term are most 
striking in case of the neutral pion. 

Example 9.5 

Let us keep only the electromagnetic background field and the neutral pion . π0. The  
charged pions are discarded by using the replacement .U → exp(iπ0τ3/fπ). Upon
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simple integration by parts, the whole WZ term (9.39) then boils down to 

.L (4)
WZ → − e2

32π2fπ

π0εμναβFQ
μνF

Q
αβ . (9.42) 

This operator governs the electromagnetic decay of .π0 into a pair of photons. 
Denoting the four-momentum of the pion as . kμ and those of the photons as .pμ, qμ, 
the invariant amplitude for the decay turns out to be 

.Aπ0→γ+γ = − e2

4π2fπ

εμναβpμϵ∗
ν (p)qαϵ∗

β(q) . (9.43) 

Here .ϵ∗
μ(p) and .ϵ∗

μ(q) are the polarization vectors of the photons in the final state. 
It remains to take the square and sum over polarizations of the photons. The final 
result for the decay rate in the rest frame of the pion is 

.𝚪π0→γ+γ = α2m3
π

64π3f 2
π

, (9.44) 

where .α ≡ e2/(4π) is the fine structure constant. Using the numerical input . mπ ≈
135.0 MeV and .α ≈ 7.297×10−3 along with the value for . fπ found in Example 9.4, 
our final result is .𝚪π0→γ+γ ≈ 8.0 eV. This is less than .3% off the experimental 
value of .7.81 eV [1]. 

The two-flavor WZ term (9.39) has remarkable physical consequences, yet 
vanishes by construction in the absence of external fields. A new twist in the story 
comes for .nf = 3 quark flavors. Here another WZ term appears, which remains 
nonzero even in the absence of background fields. This governs scattering processes 
with an odd number of mesons, such as .K+ + K− → π+ + π− + π0, which 
would otherwise be forbidden in ChPT. The mathematical origin of this WZ term 
parallels that of the quasi-invariant Lagrangians with one time derivative, analyzed 
in Sect. 8.1. The Lagrangian density of the WZ term can be mapped to a 4-form 
.ωWZ such that the 5-form .dωWZ is chirally invariant and closed but not exact. Such 
5-forms are classified by the fifth de Rham cohomology group of the coset space. 
The coset space .[SU(3)L × SU(3)R]/SU(3)V has a unique generator of degree-5 
cohomology, 

. dωWZ ∝ tr
[
(U−1dU) ∧ (U−1dU) ∧ (U−1dU) ∧ (U−1dU) ∧ (U−1dU)

]
.

(9.45) 

The overall normalization is again fixed by matching to the flavor anomalies of 
QCD. More details about the geometric nature of this WZ term and its coupling to 
background gauge fields can be found in the original work of Witten [16].
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The two-flavor coset space .[SU(2)L × SU(2)R]/SU(2)V, being three-
dimensional, obviously has vanishing fifth cohomology group. However, it does 
have a nontrivial third de Rham cohomology with a single generator, 

.ωGW ∝ tr
[
(U−1dU) ∧ (U−1dU) ∧ (U−1dU)

]
. (9.46) 

When pulled back to the four-dimensional Minkowski spacetime, .ωGW is just the 
Hodge dual of the GW current (9.37) in absence of external fields. This explains why 
such an identically conserved current exists in the first place. Moreover, the integral 
of .J 0

GW over . R3 defines a conserved charge that is a topological invariant. Upon 
a suitable normalization, it coincides with the Brouwer degree of the pion fields 
viewed as a map .S3 → S3; cf. Example A.25. A  skyrmion is a configuration of pion 
fields for which the topological charge is nonvanishing. Thanks to the coupling to 
.AB

μ in (9.39), the topological charge has the interpretation as baryon number. This 
provides a mathematical foundation for the Skyrme model of baryons. 

9.2 Spin Waves in Ferro- and Antiferromagnets 

I have already used ferromagnets repeatedly to illustrate various features of SSB, 
including the peculiarities of the spectrum of NG bosons in nonrelativistic systems. 
In order to make the present section self-contained, I will however start with a 
concise summary of the basic facts. 

Ferro- and antiferromagnets are phases of matter that exhibit spin order. 
Although such order may also be induced in relativistic matter, I will have implicitly 
in mind its realization in ordinary crystalline solids. The advantage of this restriction 
is that in the nonrelativistic limit, spin can be treated as an internal degree of 
freedom. One can then base the construction of EFT for (anti)ferromagnets on 
spontaneous breakdown of the internal .G ≃ SU(2) spin symmetry. In both types of 
systems, the unbroken subgroup is .H ≃ U(1), corresponding to spin rotations about 
the axis of spin alignment. The coset space is therefore .G/H ≃ SU(2)/U(1) ≃ S2. 
From the point of view of low-energy EFT, the only difference between ferro- and 
antiferromagnets is a nonzero VEV of spin in the former. This is directly reflected 
by the spectrum of NG bosons: spin waves, or magnons. In ferromagnets, there is a 
single type-B magnon, whereas antiferromagnets feature two type-A magnons. 

The generators of .G ≃ SU(2) can be taken as .τA/2. Without loss of generality, 
we may choose the spin axes so that .H ≃ U(1) is generated by .τ3/2. The coset space 
.SU(2)/U(1) is then symmetric thanks to the inner automorphism . R(g) = R−1gR

with .g ∈ SU(2) and .R = iτ3. This makes it possible to map the coset representative 
.U(π) on a unit-vector variable .n(π) ∈ S2 via 

.τ · n(π) ≡ N(π) = U(π)2τ3 = U(π)τ3U(π)−1 . (9.47)
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The matrix field .N(π) transforms linearly in the adjoint representation of G. As a  
consequence, the G-covariant derivative (9.8) boils down to 

.Dn(π) = dn(π) + A × n(π) , (9.48) 

where .Aμ is a triplet of background gauge fields of .SU(2). The covariant derivative 
.Dμn(π) is the basic building block for construction of EFT for (anti)ferromagnets. 

In addition to the internal spin symmetry, I will assume invariance under 
continuous spacetime translations and continuous spatial rotations. This is of 
course just a crude idealization of real materials, where such ideal symmetry may 
be explicitly broken by a variety of perturbations. These include especially the 
anisotropy induced by the underlying crystal lattice, and the effects of spin–orbit 
coupling. I will nevertheless initially assume the ideal, unperturbed limit. An outline 
of some phenomenological consequences of explicit symmetry breaking is deferred 
to Sect. 9.2.3. 

9.2.1 Power Counting and Effective Lagrangian 

The general philosophy of the derivative expansion of the EFT for (anti)ferromagnets 
copies closely that for ChPT, detailed in Sect. 9.1.1. However, the two cases 
differ substantially due to the qualitatively different spectra of (anti)ferromagnetic 
magnons. I will start with the more nontrivial, genuinely nonrelativistic case of 
ferromagnets. 

9.2.1.1 Ferromagnets 
The energy of ferromagnetic magnons is quadratic in momentum, at least in the 
long-wavelength limit. In order to assign to a given Feynman diagram a well-defined 
degree, we therefore count momentum as order one and energy as order two. The 
Schrödinger-like propagator of the magnon then has overall degree . −2. In close  
parallel with (9.3), the degree of a Feynman diagram . 𝚪 becomes 

. deg 𝚪 = (D + 1)L − 2I +
∑

s,t

(s + 2t)Vs,t . (9.49) 

Here .Vs,t denotes the number of vertices from .L (s,t)
eff , the part of effective 

Lagrangian with s spatial and t temporal derivatives. As before, the number of 
propagators I can be eliminated via .I = L + ∑

s,t Vs,t − 1, which leads to the 
final result 

. deg 𝚪 = 2 + (D − 1)L +
∑

s,t

(s + 2t − 2)Vs,t . (9.50) 

The LO of the derivative expansion, .deg 𝚪 = 2, corresponds to tree-level 
diagrams (.L = 0) with all vertices satisfying .s + 2t = 2. Thus, the LO effective
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Lagrangian consists of .L (0,1)
eff and .L (2,0)

eff . Before we construct these, let us briefly 
consider higher orders of the derivative expansion. First, note that unlike in ChPT, 
here we have a well-defined derivative expansion even in .D = 2 spacetime 
dimensions. Indeed, ferromagnetic order that can be described by a derivatively 
coupled low-energy EFT exists even in one-dimensional spin chains. This is special 
to type-B NG bosons, as I will show in Sect. 15.2. 

What exactly constitutes the NLO of the derivative expansion depends on the 
number of dimensions. For .D = 2 (ferromagnetic chains), the NLO corresponds to 
.deg 𝚪 = 3. It collects contributions from one-loop diagrams with all vertices from 
the LO Lagrangian, and from tree-level diagrams with one vertex from .L (3,0)

eff , if any  
such operators exist. (They may be forbidden by parity.) In .D = 4 dimensions (bulk 
ferromagnets), on the other hand, there are two options. In case .L (3,0)

eff is allowed, 
then tree-level diagrams with one such vertex constitute the sole contribution with 
.deg 𝚪 = 3. Otherwise, the NLO corresponds to .deg 𝚪 = 4, and consists of tree-
level diagrams with one vertex from .L (4,0)

eff , . L (2,1)
eff , or .L (0,2)

eff . Up to and including 
NLO, there are no quantum corrections; loops only start contributing at .deg 𝚪 = 5. 
Perhaps the most interesting is the case of .D = 3 (thin ferromagnetic films or 
layers). Barring the possible existence of .L (3,0)

eff , the NLO here is .deg 𝚪 = 4. It  
includes both one-loop diagrams with all vertices from the LO Lagrangian and tree-
level diagrams with one vertex from the NLO Lagrangian. 

Clearly, the setup of the derivative expansion depends very sensitively on the 
specific choice of material (which affects discrete symmetries such as parity) and 
sample (which controls the dimension D). I will therefore limit the discussion to 
the effective Lagrangian at LO. A detailed classification of possible operators up 
to order four in derivatives, including the effects of the discrete crystal and time-
reversal symmetries, can be found in [17]. 

The .L (2,0)
eff part of the LO Lagrangian is trivial. According to the general analysis 

in Sect. 8.2, we expect it to be of the type .κabδ
rsΩa

r Ω
b
s , where the coupling .κab must 

be invariant under the adjoint action of .H ≃ U(1). The broken part of the gauged 
MC form (9.7) now takes the specific form 

.Ω⊥(π,A) = − i

2
U(π)−1DN(π)U(π)τ3 = i

2
τ3U(π)−1DN(π)U(π) . (9.51) 

The H -invariant part of the symmetric tensor product of .Ω⊥ with itself is projected 
out by taking the trace. This leads immediately to the Lagrangian 

.L (2,0)
eff = −ϱs

4
tr[DN(π) · DN(π)] = −ϱs

2
δrsDrn(π) · Dsn(π) . (9.52) 

The parameter . ϱs is called spin stiffness and controls the gradient energy arising 
from “bending” the uniform ground state magnetization.
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In .d = 2 spatial dimensions, it is also possible to construct an invariant 
operator using antisymmetric tensor product, .λabε

rsΩa
r Ω

b
s . This leads to the 

operator .εrsn · (Drn × Dsn). In the absence of background fields, the latter 
is a pure surface term; its integral over . R2 gives, up to normalization, the 
Brouwer degree of the map .n : R2 → S2. That is however no longer the case 
when the EFT is coupled to background gauge fields. A quick calculation 
shows that up to surface terms, .εrsn · (Drn × Dsn) ≃ εrsn · F rs , where 
.Fμν = ∂μAν −∂νAμ+Aμ×Aν is the field strength of the background. When 
added to the Lagrangian, this operator will modify the EoM for spin waves; 
cf. the discussion of EoM in Sect. 8.3. In the following, I will nevertheless 
disregard this contribution to the EFT. First, it only exists in .d = 2 dimensions 
and moreover violates time reversal, under which .n(x, t) → −n(x,−t). 
Second, it requires a specific, nontrivial background to be nonzero, and thus 
does not affect the propagation of free magnons. 

Let us now focus on the .L (0,1)
eff part of the LO Lagrangian. According to the 

general discussion in Sect. 8.2, this reads 

.L (0,1)
eff = −Mω3

a(π)π̇a + Mν3
A(π)AA

0 , (9.53) 

where M is the density of spin (magnetization) in the ferromagnetic ground state. 
The second term in (9.53) is seen to equal .MA0 · n(π). To evaluate the first term, 
we project out the third component of the MC form by taking trace with . τ3. Then 
we apply the exponential parameterization, .U(π) = exp(iπaτa/2), and use (7.31), 

. − Mω3
a(π)π̇a = iM tr

[
τ3U(π)−1∂0U(π)

]

= −M

2
π̇a

∫ 1

0
dτ tr

[
τ3U(τπ)−1τaU(τπ)

]

= −Mπ̇a

∫ 1

0
dτ na(τπ) ≃ Mπa

∫ 1

0
dτ ṅa(τπ) , (9.54) 

where . ≃ indicates equality up to a total derivative. The index a runs over . 1, 2, we  
can however formally extend . πa to a three-component vector . π and write . πaṅa =
π · ṅ = (n×π) · (n× ṅ). Using the definition (9.47) to take the derivative .∂τN(τπ), 
we find that .n(τπ) × π = ∂τn(τπ). Putting all the pieces together, we then arrive
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at the final expression for the LO effective Lagrangian for ferromagnets, 

.

L LO
eff = M

∫ 1

0
dτ ∂τn(τπ) · [n(τπ) × ṅ(τπ)] + MA0 · n(π)

− ϱs

2
δrsDrn(π) · Dsn(π) .

(9.55) 

The second term in (9.55) is the usual Zeeman coupling of spin to an external 
magnetic field, whereas the third term represents the gradient energy of the spin 
configuration. The first term, however, deserves a comment, since the presence of 
integration over the parameter . τ makes it look nonlocal. To get rid of the integral, let 
us take a step back. Consider a one-parameter family of fields, .n(τ, π), .τ ∈ [0, 1], 
such that .n(0, π) = (0, 0, 1) ≡ n0 (ground state) and .n(1, π) = n(π). The explicit 
choice of interpolation used in (9.55) corresponds to .n(τ, π) = n(τπ). It is easy  
to check that upon a smooth deformation of the field, .δn(τ, π), the variation of the 
action only depends on .δn(1, π) = δn(π). The concrete choice of interpolation 
between the .τ = 0 and .τ = 1 limits therefore does not matter. Assuming for 
simplicity that .n3(x, t) as a function on the spacetime is non-negative everywhere, 
we can change the interpolation to 

.n(τ, π) = (
τn1(π), τn2(π),

√
1 − τ 2[(n1(π))2 + (n2(π))2]) , (9.56) 

which makes it possible to carry out the integral over . τ , 

.L LO
eff = −M

εabn
a(π)ṅb(π)

1 + n3(π)
+ MA0 · n(π) − ϱs

2
δrsDrn(π) · Dsn(π) . (9.57) 

This is as far as we can get. The Lagrangian is local and manifestly invariant under 
.H ≃ U(1). Moreover, it only depends on the NG fields .πa through .n(π), and 
thus does not rely on the exponential parameterization of .U(π), originally used to 
derive (9.55). 

9.2.1.2 Antiferromagnets 
As far as the construction of the effective Lagrangian is concerned, antiferromagnets 
are much simpler than ferromagnets. The spectrum consists of two type-A NG 
bosons whose energy is, in the long-wavelength limit, linear in momentum. For the 
sake of power counting, we therefore have to treat spatial and temporal derivatives 
on equal footing. The resulting expression for the degree of a given Feynman 
diagram is a trivial generalization of (9.4) we found in ChPT, 

. deg 𝚪 = 2 + (D − 2)L +
∑

s,t

(s + t − 2)Vs,t . (9.58)
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The only difference to ChPT is that spatial and temporal derivatives may enter the 
effective Lagrangian independently. 

Owing to the same symmetry-breaking pattern, the building blocks for construct-
ing the EFT are the same for ferro- and antiferromagnets. The main difference 
is that the part with a single time derivative, .L (0,1)

eff , is missing in the latter; 
antiferromagnets have zero net magnetization. The LO Lagrangian then consists 
of .L (2,0)

eff and .L (0,2)
eff , and we can write it down at once, 

.L LO
eff = ϱs

2v2

[
D0n(π) · D0n(π) − v2δrsDrn(π) · Dsn(π)

]
. (9.59) 

There are two independent parameters which are easy to relate to physical observ-
ables. The spin stiffness . ϱs measures the gradient energy of the order parameter, 
whereas v turns out to be the phase velocity of antiferromagnetic magnons. 

Similarly to ferromagnets, the organization of the derivative expansion beyond 
LO depends sensitively on D and the presence of discrete symmetries such as parity 
or time reversal. I will therefore stop the discussion of power counting here, and 
turn to the consequences of the EFT at LO. 

9.2.2 Equation of Motion and Magnon Spectrum 

We already know the number and type of magnons in both ferro- and antiferro-
magnets. However, the EFT tells us more, in particular what the corresponding 
fluctuations of the order parameter look like. To that end, I will drop the background 
gauge fields and derive the EoM corresponding to the LO effective Lagrangian. 

Let us start with ferromagnets. As hinted above, taking a variation of (9.55) gives 
a surface term in . τ , which allows one to write the variation of the action solely in 
terms of .δn(π), 

.δSLO
eff =

∫
dDx δn · (

Mn × ṅ + ϱs∇2n
)

. (9.60) 

The variation . δn is not arbitrary but rather should keep . n on the coset space, that is 
the unit sphere . S2. In other words, . δn should be a tangent vector to the sphere. The 
vanishing of .δSLO

eff therefore requires that 

.Mn × ṅ + ϱs∇2n = λn ; (9.61) 

. λ can be interpreted as a Lagrange multiplier for the constraint .n ·n = 1. We can get 
rid of it by taking a cross product with . n, which gives the Landau–Lifshitz equation, 

.ṅ = ϱs

M
n × ∇2n . (9.62)
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Previously, in Sect. 4.3.1, I derived this equation using the Hamiltonian (symplectic) 
formulation of field theory from the postulated Poisson bracket for the spin variable 
. n(x); cf.  (4.29). The Lagrangian and Hamiltonian descriptions of ferromagnets are 
of course equivalent. For instance, the symplectic 2-form (4.33) can be recovered 
by noting that according to (9.53), the symplectic potential is .−Mω3. The exterior 
derivative thereof is easily evaluated using the MC equation (8.11). This shows that 
the fundamental Poisson bracket for .n(x) is already automatically built in the low-
energy Lagrangian EFT for ferromagnets. 

To solve the Landau–Lifshitz equation (9.62) is a hard problem due to its 
nonlinearity. What one can do easily is to linearize the equation in small fluctuations 
around the ground state. Inserting .n = n0 + δn and keeping only terms linear in . δn, 
we get 

.δṅ = ϱs

M
n0 × ∇2δn . (9.63) 

We can now look for plane-wave solutions by using the ansatz 

.δn(x, t) = Ae−iEteip·x , (9.64) 

where . A is a complex amplitude orthogonal to .n0 = (0, 0, 1). Inserting the ansatz 
in (9.63) shows that the energy and momentum satisfy the dispersion relation 

.E(p) = ϱs

M
p2 , (9.65) 

typical for type-B NG bosons. The amplitude must satisfy the constraint . iA = n0 ×
A. This is solved by any .A ∝ (1,−i, 0). Ferromagnetic spin waves are circularly 
polarized in the plane transverse to the direction of the ground state magnetization, 
. n0, regardless of the direction of momentum . p. This can be understood as Larmor 
precession of individual spins around the effective magnetic field generated by the 
spin-polarized background. 

Antiferromagnets can be treated in the same way, without the complications 
due to the single-time-derivative operator in the Lagrangian. The EoM obtained 
from (9.59) can be written as 

.
ϱs

v2

(
∂2

0n − v2∇2n
) = λn , (9.66) 

where . λ is a Lagrange multiplier. Upon linearization around the ground state, . n0, 
we find plane-wave solutions of the same general form as in (9.64). However, 
the dispersion relation is now .E(p) = v |p|, typical for type-A NG bosons. The 
complex amplitude . A must be orthogonal to . n0. We conclude that antiferromagnetic 
spin waves are also polarized in the plane transverse to the direction of . n0, regardless 
of the direction of momentum. However, the polarization can be both linear and
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circular, or in general elliptic. There are therefore two different, independent types 
of antiferromagnetic magnons, which can be chosen to be linearly polarized. 

9.2.3 Effects of Symmetry-Breaking Perturbations 

So far, we have assumed exact symmetry under .SU(2) spin rotations, continuous 
spacetime translations and spatial rotations. Let us now briefly consider the effects 
of some phenomenologically important perturbations. These can be classified into 
two broad groups: perturbations controlled by external fields, and those intrinsic to 
the given material. 

The most natural tunable perturbation that the spins in (anti)ferromagnets can be 
exposed to is an external magnetic field, . B. Insofar as its effect on orbital degrees 
of freedom can be neglected, the magnetic field couples directly to the conserved 
charge of .G ≃ SU(2): the total spin. It can therefore be treated as a vector-valued 
chemical potential. In the low-energy EFT, this is implemented by setting . Aμ(x) =
δμ0B(x); the magnetic moment of the spins is absorbed into the definition of . B. I  
will now show that treating . B as a background gauge field allows us to make some 
exact statements about magnon spectrum. Importantly, we do not have to introduce 
any new arbitrary parameters into the Lagrangian. 

Example 9.6 

According to (9.55), the effect of an external magnetic field on ferromagnets is 
taken into account by adding the Zeeman term, .MB · n(π), to the Lagrangian. 
As long as the magnetic field is uniform (which I will from now on assume), the 
ground state . n0 will remain uniform as well. However, its orientation is no longer 
arbitrary, but rather has to be aligned parallel to . B. The magnetic field selects a 
unique stable equilibrium state. The effect on the magnon spectrum is also easy 
to work out. The left-hand side of the Landau–Lifshitz equation (9.62) has to be 
modified by replacing .ṅ → D0n = ṅ + B × n. Upon linearization, the plane-wave 
magnon solutions are still found to be circularly polarized in the plane transverse to 
.n0 ‖ B. The only effect of the magnetic field is a constant shift of the dispersion 
relation (9.65), 

.E(p) = |B| + ϱs

M
p2 . (9.67) 

The reason why the response of ferromagnets to a uniform magnetic field is so 
simple is that the conserved charge that . B couples to remains unbroken. Energy 
levels can therefore be labeled by the projection of spin into the direction of . B. The  
excitation energy of a state with spin S (relative to the ground state) will be shifted 
by the magnetic field by .−S |B|. The ferromagnetic ground state is maximally 
polarized, and a single magnon carries a unit of spin less than the ground state. This 
explains why the magnon receives a gap equal to . |B|. This is an exact result valid to
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all orders of the derivative expansion; the ferromagnetic magnon is an example of a 
massive NG boson in the sense of Sect. 6.4.3. 

Example 9.7 

The effect of magnetic fields on antiferromagnets is somewhat less trivial. Accord-
ing to (9.59), their LO Lagrangian (in absence of other perturbations than . B) 
becomes 

.L LO
eff = ϱs

2v2

{[∂0n(π) + B × n(π)]2 − v2δrs∂rn(π) · ∂sn(π)
}

. (9.68) 

The corresponding Hamiltonian density is 

.H LO
eff = ϱs

2v2

{[∂0n(π)]2 − [B × n(π)]2 + v2δrs∂rn(π) · ∂sn(π)
}

. (9.69) 

The response of the ground state is quite different from ferromagnets: the energy 
is minimized by any .n0 ⊥ B. Hence the .U(1) group of spin rotations around the 
direction of . B is spontaneously broken. We expect the spectrum to contain one true 
NG boson, whereas the other magnon should receive a gap from the magnetic field. 

To see this explicitly, let us choose .B = (0, 0, |B|) and .n0 = (1, 0, 0). We  
can use . n2 and . n3 as two independent fluctuations of the order parameter, and 
parameterize the latter as 

.n(x) = (√
1 − [(n2(x))2 + (n3(x))2], n2(x), n3(x)

)
. (9.70) 

To the second order in the fluctuations and up to a total time derivative, the 
Lagrangian then reads 

.L LO
eff ≃ ϱs

2v2

{ ∑

i=2,3

[
(∂0n

i)2 − v2∇ni · ∇ni
] + B2[1 − (n3)2]

}
+ · · · . (9.71) 

This makes it clear that .n2(x) remains gapless, as expected. On the other hand, the 
.n3(x) mode receives a gap, its full dispersion relation being .E(p) = √

v2p2 + B2. 
The conclusion that .E(0) = |B| is exact. The spectrum of an ideal antiferromagnet 
in a uniform magnetic field contains one true NG boson and one massive NG boson. 

As opposed to the effect of external fields, perturbations induced by the 
underlying crystal lattice are intrinsic to the given material and therefore cannot 
be “switched off.” A prominent position among these is occupied by anisotropy in 
either spatial or spin structure of the microscopic interactions. I will content myself 
with the simplest illustrative example of such a crystal anisotropy, whereby one spin
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axis is distinguished from the other two, 

.Lpert = ϵ(n3)2 . (9.72) 

For .ϵ > 0, the perturbation favors spin alignment along the third axis; this kind 
of anisotropy is called easy-axis. In the opposite case of .ϵ < 0, spin alignment 
along the first or second axis is preferred. This is an easy-plane anisotropy. The 
effects of easy-axis and easy-plane anisotropy on ferro- and antiferromagnets are 
very different. It is therefore best to discuss them separately. In each individual 
case, I will proceed by first identifying the ground state and then expanding the 
Lagrangian to second order in fluctuations. 

Example 9.8 

Let us start with ferromagnets. In the absence of background gauge fields but 
presence of the anisotropy, the Lagrangian (9.57) becomes 

.L LO
eff = −M

εabn
aṅb

1 + n3
− ϱs

2
δrs∂rn · ∂sn + ϵ(n3)2 . (9.73) 

In easy-axis ferromagnets, the ground state is unique up to overall sign, . n0 =
(0, 0, 1). The two independent fluctuations can be taken as . n1 and . n2. Both the 
anisotropy and the ground state preserve the .U(1) group of spin rotations around 
the third axis. We can thus look for normal modes as eigenstates of this symmetry. 
This motivates the introduction of a complex field, .ψ ≡ (n1 + in2)/

√
2. Dropping 

the energy density of the ground state and expanding the Lagrangian to second order 
in . ψ , we get 

.L LO
eff ≃ iMψ†∂0ψ − ϱs∇ψ† · ∇ψ − 2ϵψ†ψ + · · · . (9.74) 

This leads to a Schrödinger-like equation, describing circularly polarized spin waves 
with dispersion relation 

.E(p) = 2ϵ

M
+ ϱs

M
p2 . (9.75) 

The anisotropy gives the magnon a gap since both generators of .SU(2), sponta-
neously broken in the preferred ground state, are also broken explicitly. In contrast 
to (9.67), the gap predicted by (9.75), .E(0) = 2ϵ/M , is only a LO result and will 
receive corrections at higher orders of the derivative expansion. The same is true for 
all the other magnon dispersion relations, derived below. The magnon has become 
a pseudo-NG boson. 

In the easy-plane case, any uniform state with .〈n3〉 = 0 minimizes the energy. I 
will choose the ground state as .n0 = (1, 0, 0) and the independent fluctuations as 
. n2 and . n3. Upon series expansion in the latter using the parameterization (9.70), the
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Lagrangian becomes 

.L LO
eff ≃ Mn3∂0n

2 − ϱs

2

∑

i=2,3

∇ni · ∇ni − |ϵ| (n3)2 + · · · . (9.76) 

We already found the spectrum of this type of Lagrangian back in Sect. 3.2.1, I can 
therefore just write down the final result, 

.E(p) = ϱs

M
|p|

√

p2 + 2 |ϵ|
ϱs

. (9.77) 

The dispersion relation remains gapless but has become linear. This is because the 
.U(1) group of spin rotations, left intact by the anisotropy, is now spontaneously 
broken. The anisotropy has turned the magnon into a type-A NG boson. 

Example 9.9 

Next we turn to antiferromagnets, which are now for a change much easier to 
analyze. In the absence of background gauge fields but upon adding the anisotropy 
term, the Lagrangian (9.59) turns into 

.L LO
eff = ϱs

2v2

[
(∂0n)2 − v2δrs∂rn · ∂sn

] + ϵ(n3)2 . (9.78) 

This Lagrangian is diagonal in the spin index of . ni . We can therefore read off the 
spectrum immediately upon identification of the ground state and its independent 
fluctuations. In easy-axis antiferromagnets, the ground state is .n0 = (0, 0, 1) up to 
a sign, and its fluctuations are . n1 and . n2. These excite two gapped magnons, 

.E1,2(p) =
√

v2p2 + 2v2ϵ

ϱs
. (9.79) 

We can choose the basis of independent spin waves freely, either as linear, circular, 
or generally elliptic. In the easy-plane case, on the other hand, we can choose the 
ground state as .n0 = (1, 0, 0) and its fluctuations as . n2 and . n3. Here we find two 
different excitation branches with different dispersion relations, corresponding to 
linearly polarized spin waves, 

.E2(p) = v |p| , E3(p) =
√

v2p2 + 2v2 |ϵ|
ϱs

. (9.80)
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The reason why one of the excitations remains gapless is that there is an exact . U(1)

symmetry, left intact by the perturbation, that is spontaneously broken. 

I will conclude the discussion of perturbations in spin systems with a very 
peculiar example that leads to fascinating phenomenology. Until now, I have ruled 
out the existence of .L (1,0)

eff based on invariance under spatial rotations. However, 
one can, in fact, construct an operator with a single spatial derivative that does 
not break rotations, as long as two conditions are satisfied. First, parity must be 
broken, typically by the structure of the underlying crystal lattice. Second, spin– 
orbit coupling must be taken into account. This breaks the separate symmetries 
under spatial (orbital) and spin rotations to a single .SU(2), under which spatial 
coordinates . x and the spin vector . n transform simultaneously. One can then add to 
the Lagrangian of (anti)ferromagnets the Dzyaloshinskii–Moriya (DM) term, 

.L (1,0)
eff = −2πϱs

λDM
n · (∇ × n) , (9.81) 

where .λDM is a new parameter with the dimension of length. This length scale 
is fixed by the choice of concrete material, and is usually much larger than the 
scale of the underlying crystal lattice. For instance, in MnSi one finds . λDM ≈
18 nm and in FeGe .λDM ≈ 70 nm [18]. This justifies treating the perturbation 
coupling .2πϱs/λDM as a small parameter of degree one in the power counting. The 
Lagrangian .L (1,0)

eff can then be consistently included in the LO of the derivative 
expansion. 

Example 9.10 

The ground state induced by the DM interaction can be discussed jointly for ferro-
and antiferromagnets if one restricts to time-independent spin configurations. In the 
absence of external gauge fields and anisotropy, the LO Hamiltonian then reduces 
to 

.H LO
eff = ϱs

2
δrs∂rn · ∂sn + 2πϱs

λDM
n · (∇ × n) . (9.82) 

The condition for minimum energy follows by “completing the square,” 

.

H LO
eff ≃ ϱs

2

[
(∇ · n)2 + (∇ × n)2] + 2πϱs

λDM
n · (∇ × n)

= ϱs

2
(∇ · n)2 + ϱs

2

(
∇ × n + 2π

λDM
n

)2

− 2π2ϱs

λ2
DM

.

(9.83) 

The second term will be minimized by any spin configuration satisfying the first-
order differential equation .∇ × n = −(2π/λDM)n. This guarantees without
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further conditions minimization of the first term, .(∇ · n)2, and thus of the whole 
Hamiltonian. 

Let us now temporarily forget that .n(x) should be a unit vector at any . x, and 
Fourier-transform it to momentum space. The complex amplitude . np of the plane 
wave with momentum . p is then subject to the condition .ip ×np = −(2π/λDM)np. 
This requires that .p ⊥ np and .|p| = 2π/λDM for any . p such that .np is 
nonzero. This gives the parameter .λDM the interpretation as the wavelength of a 
spatially inhomogeneous order, induced by the DM interaction. An arbitrary linear 
combination of plane waves with fixed . |p| is, however, not allowed by the constraint 
.n·n = 1. Without going into further technical details, let me spell out the final result. 
The ground state corresponds to a real helix that is right-handed for .λDM > 0 and 
left-handed for .λDM < 0. The direction of the axis of the helix is arbitrary and 
spontaneously breaks the symmetry under spatial and spin rotations. Choosing it for 
illustration along the z-axis, and . n to point along the x-axis at .z = 0, the ground 
state becomes 

.〈n(x)〉 = (cos 2πz/λDM, sin 2πz/λDM, 0) . (9.84) 

In presence of the DM interaction, the spin system becomes a helimagnet. 
The magnon spectrum of helimagnets is no less fascinating than their ground 

state. In case the underlying spin order is ferromagnetic, there is a single magnon 
branch (cf. Example 6.5). It has an unusual, strongly anisotropic dispersion relation. 
Along the axis of the helix, the energy is linear in momentum for wavelengths much 
longer than .λDM, whereas in the two transverse directions it is quadratic [19]. One 
can show in addition that in the former case, the spin wave is linearly polarized, 
while in the latter case it is polarized circularly as usual in ferromagnets. 

9.2.4 Some Topological Aspects of Ferromagnets 

The list of interesting features of spin systems does not end with the multitude of 
textures that can be induced by various perturbations. In particular ferromagnets 
exhibit a number of intriguing topological properties that can be traced to the 
part .L (0,1)

eff of the effective Lagrangian. A brief sample is presented below. A 
reader wishing to learn more about the topology of spin systems is encouraged to 
consult [20]. 

Let us start by rewriting the single-time-derivative part of the ferromagnet 
Lagrangian (9.55) in a way that exposes its geometric nature. Suppose the field 
.n(x, t) converges to a constant for .t → ±∞; this is a usual assumption when 
setting up the variational principle for fields. Viewed as a function of . τ and t , . n then 
maps .[0, 1] × R to a “disk” D on . S2 whose boundary . 𝚪 carries the physical field
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Fig. 9.3 Geometric 
interpretation of the 
single-time-derivative term in 
the effective 
Lagrangian (9.55) for 
ferromagnets. The spin 
configuration .n(x, t) maps 
the time axis to a closed curve 
. 𝚪 on the coset space . S2. 
Manifest invariance of the 
Lagrangian under .SU(2) spin 
rotations can be saved at the 
cost of extending the 
integration from . 𝚪 to the disk 
D (shaded area) whose 
boundary is . 𝚪

ΓD 

(.τ = 1). The action defined by (9.55) can be cast as 

.SLO
eff {n,A} = M

∫
ddx

∫

D

Ω[n](x, t, τ ) + · · · , (9.85) 

where .Ω[n] ≡ n · (∂tn × ∂τn)dt ∧ dτ ; the ellipsis stands for the spacetime integral 
of the second and third term in (9.55). Note that .n · (dn × dn) is the area form on 
. S2. The action is therefore determined geometrically by the area of the domain on 
. S2, bounded by the curve . 𝚪; see Fig. 9.3 for a visualization. 

But how do we know which domain? I showed already that smoothly varying the 
interpolation .n(τ, π) between the fixed limits at .τ = 0 and .τ = 1 does not change 
the action. However, there are distinct classes of maps that cannot be smoothly 
deformed into each other. We could, for instance, think of the interpolation as 
filling the domain D shown by shading in Fig. 9.3, or its complement on the sphere. 
There is no a priori way to distinguish the “inside” and “outside” of the curve . 𝚪. 
The interpolation .n(τ, π) could even cover the whole sphere multiple times, before 
converging to the curve . 𝚪 in the limit .τ → 1. The only way around this intrinsic 
ambiguity is to ensure that it is not physically observable. 

To that end, consider two domains, .D1 and . D2, swept by two different interpo-
lations .n1(τ, π) and .n2(τ, π) of the same physical field, . n1(1, π) = n2(1, π) =
n(π). We can glue the two maps into a single one, .ñ(τ, π), .τ ∈ [0, 2], by setting 

.

ñ(τ, π) ≡ n1(τ, π) for τ ∈ [0, 1] ,

ñ(τ, π) ≡ n2(2 − τ, π) for τ ∈ [1, 2] .
(9.86)
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This new map satisfies .ñ(0, π) = ñ(2, π) = n0. Thanks to the compactification of 
the time axis to the circle . S1, we can think of it as a map .S2 → S2 with the domain 
spanned by the variables . τ, t . The points .τ = 0 and .τ = 2 are the poles of the 
domain and .τ = 1 is the equator. As a consequence, 

.

∫

D1

Ω[n1] −
∫

D2

Ω[n2] = 4πw[ñ] , (9.87) 

where .w[ñ] is the integer-valued Brouwer degree (A.145) of . ̃n. The conclusion 
is that the classical action of a ferromagnet suffers from a topological ambiguity, 
shifting it by .4πMV w[ñ] where V is spatial volume. The functional integral of 
the EFT as a quantum theory will still be well-defined provided the action is only 
ambiguous up to an integer multiple of . 2π . This requires that the total spin MV be 
quantized in half-integers. The low-energy EFT for ferromagnets, constructed solely 
based on the geometry of the coset space, “knows” about quantization of spin! 

Now that we have established the topological nature of the .L (0,1)
eff Lagrangian, 

let us look at some of its consequences. The most immediate one is the presence 
of a Berry phase; see Sect. 1.5 of [21] for a general introduction and [22] for the  
application to EFTs for NG bosons. Let us denote the quantum-mechanical ground 
state of a ferromagnet, corresponding to the order parameter .〈n〉 = n0, as .|n0〉. 
Suppose we expose the ferromagnet to a weak, uniform magnetic field . B. This  
forces it to align its magnetization with the field so that .〈n〉 ≡ n(B) = B/ |B|, with 
the corresponding vacuum state .|n(B)〉. 

Consider now a time-dependent magnetic field .B(t) and arrange the ferromagnet 
state .|ψ(0)〉 at .t = 0 to be the vacuum state .|n(B(0))〉. If the variation of . B(t)

with time is sufficiently slow, the evolution of the state of the system .|ψ(t)〉 will be 
adiabatic. We can set the ground state energy E to zero to eliminate the trivial phase 
factor of .e−iEt . Even then, we cannot expect .|ψ(t)〉 to equal .|n(B(t))〉. Rather, 

. |ψ(t)〉 = exp[iγB(t)] |n(B(t))〉 , (9.88) 

where .γB(t) is the Berry phase. Taking the time derivative of (9.88) and projecting 
the result to .|ψ(t)〉 leads to .γ̇B(t) = i 〈n(B(t))|∂0|n(B(t))〉. The total phase 
accumulated over an interval .[t1, t2], .

∫ t2
t1

γ̇B(t) dt , only depends on the path followed 
by . B, not on its precise time dependence. To underline the geometric nature of the 
Berry phase, we introduce the Berry connection, 

.ωB(B) ≡ i 〈n(B)|d|n(B)〉 , (9.89) 

which is a 1-form on the space of all quantum ground states of the ferromagnet. The 
gauge freedom associated with the Berry connection amounts to the arbitrary choice 
of phase of .|n(B)〉 for every value of . B. Since the state .|n(B)〉 only depends on the 
direction of . B, the Berry connection naturally induces a 1-form on the coset space 
. S2 of the ferromagnet. When the magnetic field varies so that it traces a closed loop
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in the parameter space, the total Berry phase is 

.γB(𝚪) =
∫

𝚪

ωB =
∫

D

dωB . (9.90) 

Here . 𝚪 is the loop on . S2 traced by the order parameter in the process and D the disk 
bounded by it, as in Fig. 9.3. The 2-form .dωB is called the Berry curvature. 

To see the connection between the Berry phase and the effective Lagrangian 
for ferromagnets, recall the parameterization of the coset space by matrices .U(π). 
With a slight abuse of notation, one can write .|n(B)〉 = U(π(B)) |n0〉. The Berry 
connection then reads 

.ωB = i 〈n0|U(π)−1dU(π)|n0〉 = − 〈n0|ω(π)|n0〉 = −MV ω3(π) . (9.91) 

Comparing this to (9.53), we see that up to the factor of volume, the Berry 
connection is precisely the 1-form that defines the Lagrangian density . L (0,1)

eff . On  
the other hand, it follows from (9.85) and the Stokes theorem that .−dω3 is the area 
form on . S2. The Berry phase (9.90) therefore equals the total spin of the system 
times the area of D. 

Mathematically, the area 2-form is the single generator of the second de Rham 
cohomology group of . S2. The topological features of .L (0,1)

eff stem from pulling this 
2-form back to the space of variables . τ, t . However, interesting physics also arises 
from pulling it back to the whole spacetime. For simplicity, I will now restrict to 
.d = 2 spatial dimensions. The resulting closed spacetime 2-form is then Hodge-
dual to a current, conventionally normalized as 

.Jμ[n] = 1

8π
εμνλεijkn

i∂νn
j ∂λn

k . (9.92) 

This current is conserved off-shell, similarly to the GW current introduced in 
Sect. 9.1.4. Following the analogy, we expect the density .J 0[n] to give rise to 
a topological charge, that is a topological invariant of the field .n(x, t). Indeed, 
.
∫

d2x J 0[n](x, t) is just the Brouwer degree .w[n] of the map .n : R2 → S2. In  
.d = 2 dimensions, there are smooth spin configurations carrying nonzero value 
of .w[n], called skyrmions, or sometimes baby skyrmions, to distinguish them from 
their counterparts in QCD. See the dedicated monograph [20] for further details 
about this fascinating subject. 

Recall now the symplectic approach to ferromagnets, outlined in Sect. 4.3.1. It  
is easy to check explicitly that as a functional on the phase space of a ferromagnet, 
.w[n] has a vanishing Poisson bracket with any other functional. This is an example 
of a general feature that topological charges do not generate any flow on the phase 
space. Let us see what happens if we deform .w[n] by inserting an arbitrary function 
of spatial coordinates. Changing for convenience the overall normalization, we
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define a class of functionals, 

.Qf [n] ≡ M

2

∫
d2x f (x)εrsεijkn

i(x)∂rn
j (x)∂sn

k(x) . (9.93) 

It is a simple exercise to verify that the Poisson algebra of these functionals 
reproduces the algebra of functions on . R2, 

.{Qf ,Qg} = Qεrs∂rf ∂sg ≡ Q{f,g} . (9.94) 

In addition, the functional .Qf generates a flow on the phase space through 

.{n(x),Qf [n]} = εrs∂rf (x)∂sn(x) . (9.95) 

Curiously, this makes it possible to identify .P r ≡ Qεrsxs with the generator of 
spatial translations, that is momentum. The real surprise comes now: according 
to (9.94), 

.{P r [n], P s[n]} = 4πMεrsw[n] . (9.96) 

For skyrmions, which carry nonzero .w[n], the two components of momentum do 
not commute with each other. This has a simple physical interpretation. Namely, for 
nonzero .w[n], 

. xr
w[n] ≡ 1

8πw[n]
∫

d2x xrεuvεijkn
i(x)∂un

j (x)∂vn
k(x) = − εrsPs[n]

4πMw[n]
(9.97) 

represents the center of the topological charge distribution. Conservation of momen-
tum in the absence of external forces then implies conservation of the center of 
charge. Skyrmions are pinned to a fixed position unless an external field is applied 
to them. The fact that .{xr

w[n], xs
w[n]} = εrs/(4πMw[n]) hints that the dynamics of 

skyrmions closely resembles that of a charged particle in a magnetic field. 
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10Scattering of Nambu–Goldstone Bosons 

In our survey of spontaneous symmetry breaking (SSB), we have so far been mostly 
concerned with the ground state and excitation spectrum. Yet, the effective field 
theory (EFT) framework developed in Chap. 8 captures full nonlinear dependence 
of the action on the Nambu–Goldstone (NG) fields. It thus also includes all 
interactions among NG bosons and their interactions with other excitations, if 
present. Microscopic interactions in quantum systems may have many different 
macroscopic manifestations. However, there is an important class of observables 
that are amenable to both systematic computation and experiment: scattering 
amplitudes of free asymptotic states. I will therefore conclude the part of the 
book devoted to spontaneous breaking of internal symmetry with a short primer 
on scattering of NG bosons. 

I will start in Sect. 10.1 by revisiting the Adler zero principle that scattering 
amplitudes of NG bosons tend to vanish in the long-wavelength limit. I will offer a 
general justification of this phenomenon, and underline the nature of exceptions 
to the rule. A modern approach to scattering of NG bosons that utilizes the 
geometry of the coset space of broken symmetry is introduced in Sect. 10.2. In  
Sect. 10.3, I demonstrate that there are exceptional EFTs whose long-wavelength 
scattering amplitudes are even softer that naively expected from the Adler zero 
principle. These theories set a benchmark for many modern developments in the 
rapidly expanding field of scattering amplitudes. One important line of development 
concerns the recursive reconstruction of all (tree-level) scattering amplitudes from 
a finite number of “seed” amplitudes. This is the subject of Sect. 10.4. 

Scattering amplitudes as observables are arguably more important in fundamen-
tal (subatomic) physics than in other branches such as condensed-matter physics. I 
will therefore restrict the discussion to Lorentz-invariant systems. Here NG bosons 
are massless particles and the kinematics of their scattering is well-understood. 
Much of the material of this chapter can however be generalized to nonrelativistic 
EFTs with continuous spatial rotation symmetry; see [1, 2] for details. Let me 
stress that even amplitudes in relativistic systems have grown into a vast subject, 
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208 10 Scattering of Nambu–Goldstone Bosons

of which this chapter only exposes a small corner. A reader interested in a broader 
introduction to the physics of scattering amplitudes is recommended to start with 
the lecture notes [3] or the book [4]. 

10.1 Adler Zero Revisited 

One of the hallmarks of SSB is the existence of a local conserved current .Jμ that 
couples to the NG boson state; cf. the proof of Goldstone’s theorem in Sect. 6.2.1. 
This can be used to extract nonperturbative information about scattering processes 
involving one or more NG bosons. We start with a generic process whose initial 
and final states .|α〉 and .|β〉 may include any set of particles of arbitrary mass and 
spin, and inspect the matrix element .〈β|Jμ(x)|α〉. This receives two qualitatively 
different types of contributions, schematically shown in Fig. 10.1. We shall focus on 
the first contribution, which amounts to the creation or annihilation of a one-particle 
NG boson state by the current. 

The NG boson may be an elementary excitation of a field in the action. 
The contributions with an intermediate one-particle NG state then correspond to 
one-particle-reducible diagrams where cutting a single propagator disconnects the 
current from the .α → β process. However, the NG boson may also be composite. 
The NG state then reveals itself through a single-particle pole in the matrix element 
.〈β|Jμ(x)|α〉 at energy–momentum .pμ ≡ p

μ
α − p

μ
β . Contributions to the matrix 

element without such a single-particle pole are represented by the second diagram 
in Fig. 10.1. 

We use the translation property of the current operator, .Jμ(x) = eiP ·xJμ(0)e−iP ·x , 
where .P μ is the operator of energy–momentum. This holds whenever the current 
does not depend explicitly on spacetime coordinates, which is the case for internal 
symmetry. According to the rules of polology (Sect. 19.2 of [5]), the residue of 
.〈β|Jμ(x)|α〉 at the one-particle NG pole is then .e−ip·x 〈0|Jμ(0)|π(p)〉Aα→β+π(p). 
Here .Aα→β+π(p) is the invariant amplitude for the process where a NG boson of 

αβ 

J μ J μ 

αβ 

+ 

Fig. 10.1 Sketch of contributions to the matrix element .〈β|Jμ(x)|α〉. In the former, the current 
creates an intermediate one-particle NG state .|π(p)〉 (dashed line) that couples to .|α〉 and . |β〉
through the amplitude .Aα→β+π(p). In the latter, the current connects to . |α〉, .|β〉 via a multiparticle 
intermediate state
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momentum . p is added to the final state.1 With a Lorentz-invariant vacuum . |0〉, 
the matrix element .〈0|Jμ(0)|π(p)〉 transforms as a Lorentz vector, as one readily 
verifies using the properties of single-particle states (Sect. 2.5 of [6]). Lorentz 
invariance therefore dictates that .〈0|Jμ(0)|π(p)〉 = ipμ

onF , where F is a constant 
and .pμ

on ≡ (|p| ,p) is an on-shell energy–momentum with spatial part . p. The  
matrix element .〈β|Jμ(0)|α〉 can now be split into a pole part and a regular part as 

.
〈
β
∣∣Jμ(0)

∣∣α
〉 = 〈

0
∣∣Jμ(0)

∣∣π(p)
〉
off

1

p2Aα→β+π(p) + R
μ
βα(p) , (10.1) 

where .〈0|Jμ(0)|π(p)〉off ≡ ipμF . The as yet unspecified function .Rμ
βα(p) collects 

all the nonpole contributions, and thus remains regular in the on-shell limit .p2 → 0. 

Polology suggests that the numerator of the pole in (10.1) should be pro-
portional to .〈0|Jμ(0)|π(p)〉. Replacing this with .〈0|Jμ(0)|π(p)〉off amounts 
to trading .p

μ
on for . pμ, and in turn to a redefinition of .Rμ

βα(p) without 
changing the residue at the pole. The reason for doing so will become clear 
below when we work out an explicit example. Here let me just stress that 
.〈0|Jμ(0)|π(p)〉off is a mere symbolic notation for .ipμF . This object is not a 
well-defined matrix element but rather depends on the energy–momenta . pμ

α

and . pμ
β . 

We now combine (10.1) with current conservation expressed as . pμ 〈β|Jμ(0)|α〉 =
0. This leads to a master identity which allows one to reconstruct the on-shell 
scattering amplitude from the remainder function .Rμ

βα(p), 

.Aα→β+π(p) = i

F
pμR

μ
βα(p) . (10.2) 

Example 10.1 

Recall the toy model (2.1), introduced in Chap. 2. To simplify the notation, I will 
only consider the limit of exact symmetry, .ϵ → 0, and disregard the fermionic

1 In contrast to Chap. 6, I use here the normalization .〈π(p)|π(q)〉 = (2π)d2 |p| δd(p − q) of the 
one-particle NG states. The amplitude .Aα→β for a generic process .α → β is normalized by its 
relation to the S-matrix, .Sα→β = −(2π)D iAα→βδD(pα − pβ). Finally, adding the NG boson to 
.|β〉 rather than .|α〉 is a convention, amounting to the choice of orientation of . pμ. 
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degrees of freedom. In the linear parameterization of the complex field, . φ(x) =
eiθ [v + χ(x) + iπ(x)]/√2, the axial current in (2.3) becomes 

.J
μ
A = −2i(φ∗∂μφ − ∂μφ∗φ) = 2v∂μπ + 2(χ∂μπ − π∂μχ) , (10.3) 

whence we read off .F = −2v. Let us have a look at the process .χπ → χπ in which 
a NG boson scatters off a massive (Higgs) particle. We set .|α〉 = |χ(p1)π(p2)〉 and 
.|β〉 = |χ(p3)〉. The “missing” energy–momentum .pμ

4 is supplied by the current. 
Using the Feynman rules (2.15), the remainder function .R

μ
βα(p4) collecting nonpole 

contributions to .〈β|Jμ
A (0)|α〉 turns out to be 

. 

(10.4) 

where the solid squares indicate an insertion of the axial current operator. Contract-
ing this with . pμ

4 gives 

.ip4μR
μ
βα(p4) = −4λv

[
1 + m2

χ

(
1

s
+ 3

t − m2
χ

+ 1

u

)]
. (10.5) 

Using finally (10.2), this reproduces the previously calculated amplitude (2.20). 
Note that when evaluating the remainder function .R

μ
βα(p4), I ignored the 

contributions of Feynman diagrams where an external .π -type leg terminates in 
the current operator. These arise from the part of the current linear in . π , and are 
included in the pole part of (10.1). Had we used therein the on-shell matrix element 
.〈0|Jμ(0)|π(p)〉, we would have had to include in (10.4) the contributions of the 
mentioned diagrams with the pole canceled by the numerator factor .pμ − p

μ
on. At  

the same time, the right-hand side of (10.2) would receive an additional factor of 2, 
owing to the fact that the on-shell limit of .p ·pon/p

2 is . 1/2. The conclusion that the 
amplitude can be reconstructed from .Rμ

βα(p4) would however remain. 
It is instructive to reproduce the same result also with the other parameterization 

considered in Chap. 2, .φ(x) = eiθ exp[iπ(x)/v][v + χ(x)]/√2. In this case, the 
axial current reads 

.J
μ
A = 2v∂μπ + 4χ∂μπ + 2

v
χ2∂μπ , (10.6)
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whereas the Feynman rules change to (2.28). The presence of the cubic term in the 
current adds another Feynman diagram to the expression for the remainder function, 

. 

(10.7) 

This reproduces the same scattering amplitude, in the form shown in (2.30). 

What is most interesting about (10.2) is the extra factor of . pμ on the right-hand 
side, arising from current conservation. This shows that 

. lim
p→0
Aα→β+π(p) = 0 , (10.8) 

provided the remainder function is nonsingular in this limit. This is the Adler zero. 
The same conclusion applies to processes with a NG boson inserted in the initial 
state. This distinction is trivial in Lorentz-invariant systems; a pedagogical proof 
of (10.8) for systems with mere spatial rotation invariance can be found in Sect. 3.1 
of [1]. I will not reproduce the details here since they have no bearing on the result. 

The function .R
μ
βα(p) is by construction nonsingular in the on-shell limit .p2 → 0. 

The absence of singularities for .p → 0 (or equivalently .pμ → 0) is an additional 
assumption. Finding a mechanism that leads to a violation of this assumption is 
required for understanding the origin of exceptions to the Adler zero principle. 

10.1.1 Generalized Soft Theorem 

Before we embark on a more detailed analysis of the conditions under which 
the Adler zero (10.8) is realized, let me introduce some terminology. Taking the 
momentum of a massless particle (a NG boson or, for instance, a gauge boson) to 
zero is generally referred to as the (single) soft limit. The statement of Adler zero is 
equivalent to the vanishing of the soft limit of scattering amplitudes of NG bosons. 
A universal statement about the soft limit of scattering amplitudes such as (10.8) 
is called a soft theorem. We will see that even in theories where the soft limit of 
.Aα→β+π(p) is nonvanishing, one can still establish a generalized soft theorem. This 
relates the soft limit of .Aα→β+π(p) to the amplitude .Aα→β with the NG boson 
removed.
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We noticed in Chap. 2 that scattering the NG boson off the fermion within our 
toy model violates the Adler zero principle. Operationally, this could be understood 
as a consequence of the singularity of the fermion propagator in (2.21) in the soft 
limit for the NG boson. This singularity in turn arises from the cubic coupling 
between the NG boson and the fermion. The origin of the singularity is however 
purely kinematical and not specific to coupling of NG bosons to fermions; the same 
obstruction to the Adler zero may occur in purely bosonic theories. It is, in fact, 
commonplace in EFTs where all degrees of freedom are NG bosons, as constructed 
in Chap. 8. The Adler zero is therefore a much less robust consequence of SSB than, 
say, the very existence of gapless NG bosons. 

Let us now examine the hypothesis that the violation of the Adler zero principle 
arises from the presence of cubic interaction vertices in the theory. To keep things 
simple, I will from now on restrict to relativistic EFTs of NG bosons, disregarding 
any non-NG degrees of freedom. The argument below closely follows [7]. 

Consider a set of NG fields . πa in a theory defined by the generic Lagrangian 

.Leff = 1

2
δab∂μπa∂μπb + 1

2
λabc∂μπa∂μπbπc + O(π4, ∂4) . (10.9) 

The coupling .λabc can be assumed to be symmetric in its .a, b indices. There are 
no terms without derivatives as guaranteed by the broken symmetry. Also, we can 
restrict the discussion to operators with two derivatives in line with the power 
counting laid out in Sect. 9.1.1. Finally, I assume that the kinetic term is diagonal 
in the NG flavor indices and properly normalized. This can always be ensured by a 
linear transformation of the NG fields. Other than that, however, I do not implicitly 
assume any particular parameterization of the fields. 

The first thing to notice is that the cubic vertex in (10.9) alone cannot be 
the sole culprit in violating the Adler zero principle. Observable properties of 
scattering amplitudes must be unchanged by a field redefinition of the type 

.πa → π 'a(π) = πa + 1

2
ca
bcπ

bπc + O(π3) , (10.10) 

where . ca
bc is symmetric in . b, c. In particular, choosing . ca

bc = (1/2)δad(λdbc +
λdcb − λbcd) eliminates the cubic interaction vertex altogether. In fact, even 
cubic operators with more than two derivatives can be removed analogously. 
This redundancy of cubic couplings of NG bosons is inherent to relativistic 
EFTs for SSB. 

For the Lagrangian (10.9) to actually represent an EFT for NG bosons, it must 
preserve a symmetry that is spontaneously broken. We do not need to invoke the 
full machinery of nonlinear realizations at this stage. It is sufficient to assume the
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existence of a set of spontaneously broken symmetries, one for each NG field, 

.δπa ≡ ϵb[Fa
b + Ga

bcπ
c + O(π2)] . (10.11) 

The independence of these transformations and the fact that they are all sponta-
neously broken amount to the condition that .Fa

b is an invertible square matrix. The 
assumed invariance of (10.9) then leads to the following set of Noether currents, 

.Jμ
a = δbcF

c
a ∂μπb + Kabc∂

μπbπc + O(π3) , (10.12) 

where .Kabc ≡ δbdGd
ac + Fd

a λdbc. 
Let us now evaluate, schematically, the amplitude .Aα→β+πa(p) for a process 

where .|α〉 , |β〉 are states with an arbitrary number of NG bosons. The soft NG 
boson state .|πa(p)〉 is added to the final state . |β〉. Then (10.1) is replaced with 

. 〈β|Jμ
a (0)|α〉 =

∑

b

〈0|Jμ
a (0)|πb(p)〉off

1

p2Aα→β+πb(p) + R
μ
βαa(p) . (10.13) 

From (10.12) we find that .〈0|Jμ
a (0)|πb(p)〉 = −ipμ

onF
b
a . Applying momentum 

conservation leads to .
∑

b F b
aAα→β+πb(p) = −ipμR

μ
βαa(p). We expect the Adler 

zero property of .Aα→β+πb(p) to be violated if the limit .p → 0 makes some 
of the propagators in the process on-shell. Barring fine tuning of the kinematics, 
this happens when the NG state .|πb(p)〉 is “attached” to an external leg of the 
.α → β process via a cubic interaction vertex. In terms of .Rμ

βαa(p), such singular 
contributions map to insertions of the bilinear part of .Jμ

a into one of the external 
legs of .α → β. See Fig. 10.2 for a visualization and the index notation. 

αβ 

Jμ a bc 

Fig. 10.2 Sketch of nonpole contributions to .〈β|Jμ
a (0)|α〉 that are singular in the limit 

.pμ ≡ p
μ
α − p

μ
β → 0. These contributions arise from inserting the bilinear part of the Noether 

current (10.12) into an external leg of the .α → β process. The insertion is indicated by the solid 
square
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Near the limit of vanishing . pμ, inserting the current into an external leg with 
flavor b, carrying energy–momentum . pμ

b , gives the singular contributions 

. 

R
μ
βαa(p) ⊃

∑

c

(−iAb→c
α→β)

i

(pb − p)2

[ − iKabcp
μ
b + iKacb(pb − p)μ

]

≈ i

2

∑

c

Ab→c
α→β

p
μ
b

p · pb

(Kabc − Kacb) .

(10.14) 

The superscript .b → c indicates a replacement of the flavor index on the leg where 
the insertion has been made. Upon summing over all possible insertions, we arrive 
at the final form of our generalized soft theorem, 

. lim
p→0

∑

b

F b
aAα→β+πb(p) = 1

2

∑

b∈α∪β

∑

c

(Kabc − Kacb)Ab→c
α→β . (10.15) 

Let me spell out some properties of this result explicitly. First, the soft theo-
rem (10.15) relates the soft limit of an n-particle amplitude to a set of .(n−1)-particle 
amplitudes, in which the soft NG leg is removed and the label on one other leg is 
changed. The only other ingredient needed is the set of algebraic coefficients .Kabc, 
which is independent of the concrete scattering process considered. In this sense, 
the soft theorem (10.15) is universal. 

Second, as is evident from (10.12), the coefficients .Kabc receive two types of 
contributions: one from the cubic coupling .λabc, the other from the part .Ga

bc of the 
symmetry transformation (10.11), linear in NG fields. Importantly, the combination 
.Kabc − Kacb, antisymmetric under the exchange .b ↔ c, is manifestly invariant 
under the field redefinition (10.10). This ensures that the soft theorem (10.15) has a 
physical meaning independent of the choice of field parameterization. 

10.1.2 Application to Coset Effective Theories 

The above argument is fairly general and in principle also applies to scattering 
amplitudes in theories where some of the particles in . |α〉 and .|β〉 are not NG bosons. 
The only essential constraint is that there are no cubic operators without derivatives 
in the Lagrangian. The sum in (10.15) is then to be restricted to c such that . πc

has the same mass as . πb. However, once the Lagrangian (10.9) does represent an 
EFT with only NG boson degrees of freedom, we can use the wealth of information 
accumulated in Chaps. 7 and 8.
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Let us recall some of the basic relations that we are going to use here. First, the 
two-derivative part of the effective Lagrangian for the coset space .G/H reads 

.L (2)
eff = 1

2
κcdωc

a(π)ωd
b (π)∂μπa∂μπb , (10.16) 

where the constant symmetric matrix .κab satisfies the constraint . f c
αaκcb + f c

αbκac =
0. The index . α labels generators of the unbroken subgroup H . With the exponential 
parameterization of the coset space, .U(π) = exp(iπaQa), the  Maurer–Cartan 
(MC) form can be computed explicitly as a power series in the NG fields, 

.ωA
a (π) = δA

a − 1

2
f A

abπ
b + O(π2) , (10.17) 

where the index A runs over all generators of G. Likewise, infinitesimal transfor-
mations induced on the coset space by G, .δπ = ϵAξa

A(π), are determined by a set 
of Killing vectors, 

.ξa
A(π) = δa

A −
(

f a
Ab − 1

2
δe
Af a

eb

)
πb + O(π2) . (10.18) 

To make the bilinear (kinetic) part of the Lagrangian (10.16) canonically normal-
ized, one can set .κab = δab by a suitable linear transformation of the NG fields. 
To preserve the form of the exponential parameterization and hence of (10.17) 
and (10.18), this has to be compensated by a linear transformation of the basis of 
broken generators . Qa . That in turn affects the values of the structure constants. 
Below, I will assume that such a choice of basis of broken generators has already 
been made. 

With all these pieces at hand, it is easy to construct the Noether currents for the 
spontaneously broken generators of G, 

.

Jμ
a = ∂L (2)

eff

∂(∂μπb)
ξb
a (π)

= δab∂
μπb −

(
δbdf d

ac + 1

2
δadf d

bc

)
∂μπbπc + O(π3) .

(10.19) 

By matching this to (10.12), we can read off the algebraic coefficients needed in the 
soft theorem (10.15), namely .Fb

a = δb
a and 

.Kabc − Kacb = δcdf d
ab − δbdf d

ac − δadf d
bc . (10.20)
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Example 10.2 

Let G be compact and semisimple. Using a faithful matrix representation of G, one 
can define the Cartan–Killing form on the Lie algebra . g as .ΔAB ≡ tr(QAQB). The  
cyclicity of trace, .tr([QA,QB ]QC) = tr(QA[QB,QC]), implies the identity 

.f D
CAΔDB + f D

CBΔAD = 0 . (10.21) 

This encodes the invariance of the Cartan–Killing form under the adjoint action 
of G on . g. At the same time,  (10.21) ensures that the covariant structure constant 
.fABC ≡ ΔADf D

BC is fully antisymmetric in its three indices. 
It is convenient to choose the basis of broken generators .Qa so that the space 

.g/h is “orthogonal” to . h, that is, .Δaβ = 0. The unbroken and broken indices can 
then be raised and lowered independently using .Δαβ and .Δab, respectively. The 
constraint .f c

αaκcb + f c
αbκac = 0 can be rewritten as .κa

cf
c
αb − f a

αcκ
c
b = 0. Thus, 

the matrix .κa
b commutes with the representation of H on the space . g/h. Suppose in 

particular that this representation is irreducible, that is, all the NG modes of . G/H

span a single irreducible multiplet of H . This is the case for a number of physically 
important coset spaces such as .SO(n + 1)/SO(n) ≃ Sn, .ISO(n)/SO(n) ≃ Rn, or  
.GL × GR/GV with simple G. Then by Schur’s lemma, .κa

b must be proportional 
to . δa

b , and thus .κab to .Δab. The choice .κab = δab here corresponds to the common 
normalization of symmetry generators such that .tr(QAQB) ∝ δAB . Finally, (10.20) 
reduces to 

.Kabc − Kacb ∝ fcab − fbac − fabc = fabc . (10.22) 

In this special case, the right-hand side of (10.15) becomes . (1/2)
∑

b∈α∪β

∑

c

fabcAb→c
α→β

up to an overall factor. 

It is obvious from (10.15) and (10.20) that a sufficient condition for the 
presence of Adler zero is that the coset space .G/H is symmetric so that . f a

bc =
0. In fact, for symmetric coset spaces, the reason for vanishing of the right-
hand side of (10.15) is twofold. Namely, in the exponential parameterization, the 
automorphism .R(U(π)) = U(π)−1 is equivalent to the inversion .πa → −πa . 
As a consequence, the components of the broken part of the MC form, .ωa

b(π), 
are manifestly even functions of the NG fields. Hence, for symmetric coset spaces, 
the effective Lagrangian (10.16) can only give scattering amplitudes with an even 
number of particles. For theories with only even interaction vertices, the soft 
theorem (10.15) applied to an amplitude with an even number of particles yields 
Adler zero without any further requirements on the coefficients .Kabc.
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10.2 Geometric Framework for Scattering Amplitudes 

In the analysis in Sect. 10.1.1, the freedom to redefine the field variables .πa was 
something of a nuisance. Indeed, we had to demonstrate explicitly that our soft 
theorem (10.15) is invariant under field reparameterization and thus physically 
meaningful. Here we will take control and make the freedom to redefine fields work 
for us. The discussion in this section loosely follows [8]. 

Suppose we are given a set of fields . πa taking values from some manifold . M. 
For the moment, we do not even have to assume that these are NG fields and . M is 
a coset space, .M ≃ G/H . All we need is that the low-energy physics of the system 
is captured by the Lagrangian 

.Leff = 1

2
gab(π)∂μπa∂μπb . (10.23) 

In particular, this requires that there are no interactions without derivatives, and 
any higher-derivative operators can be treated as subleading. Under a point trans-
formation, .πa → π 'a(π), the symmetric matrix function .gab(π) on . M behaves 
as a rank-2 covariant tensor. Moreover, it must be positive-definite in some 
neighborhood of the origin, .πa = 0, to give a kinetic term with the correct signature. 
It can therefore be interpreted as a Riemannian metric on the target manifold . M. 

Perturbative interactions among the fields .πa are generated by expanding the 
metric in powers of the fields. Individual interaction vertices are thus determined by 
derivatives of the metric at the origin. However, physical observables must at the 
same time be invariant under an arbitrary redefinition of the fields. We can use this 
fact and switch to the Riemannian (geodesic) normal coordinates on . M, in which 
(see Appendix A.6.4) 

. gab(π) = gab(0) − 1

3
πcπdRacbd(0) − 1

6
πcπdπe(∇̂eR)acbd(0) + O(π4) .

(10.24) 

Moreover, we can always assume (and I will henceforth do so) that . gab(0) = δab

so that the kinetic term in (10.23) is canonically normalized. This shows that 
any observable such as an on-shell scattering amplitude depends on .gab(π) solely 
through the Riemann curvature tensor and its covariant derivatives at the origin.
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To see how the curvature tensor enters the amplitudes, let me spell out explicitly 
the simplest cases of the 4-particle and 5-particle amplitude, 

. 

(10.25) 

Here I have introduced a compact notation for a scattering amplitude with parti-
cles of energy–momentum .pμ

i and flavor . ai . All the energy–momenta are (now 
and henceforth) oriented inwards. The variables .sij ≡ (pi + pj )

2 generalize the 
standard Mandelstam variables to processes with an arbitrary number of particles. 
Finally, I have dropped the argument .(0) of the curvature tensor for notation 
simplicity. 

The presentation of the amplitudes is highly ambiguous due to the redundan-
cies among the Mandelstam variables and the components of the curvature 
tensor. To arrive at the expressions in (10.25), I have adopted the following 
conventions. First, the variables .s1i with any .i ≥ 2 can be eliminated 
through .s1i = −∑

j≥2 sji , which follows from overall energy–momentum 
conservation for massless particles. Second, one of the remaining Mandelstam 
variables can be eliminated by means of .0 = p2

1 = (p2 + p3 + · · · )2. I use  
this to get rid of . s23. Similarly, all components .Raiaj akal

can be expressed 
solely in terms of those for which .i ≤ min(j, k, l) simultaneously with . k < l

and .j ≤ max(k, l). This is guaranteed by the symmetries of the curvature 
tensor and the algebraic Bianchi identity (see Appendix A.6.3). Finally, the 
differential Bianchi identity (A.99) can be utilized to remove . ∇̂amRaiaj akal

where .m < min(k, l). 

With the above remarks out of the way, let us have a look at the result. First, the 
4-particle amplitude vanishes in the limit where any of the energy–momenta .pμ

i is 
taken to zero. This boils down to the very special kinematics of relativistic 4-particle 
scattering processes. The 5-particle amplitude is more interesting. Our expression is
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designed to make the soft limit for the last particle transparent,2 

. lim
p5→0

Aa1a2a3a4a5(p1, p2, p3, p4, p5) = −s24∇̂a5Ra1a2a3a4 − s34∇̂a5Ra1a3a2a4

= ∇̂a5Aa1a2a3a4(p1, p2, p3, p4) .

(10.26) 

This is a special case of a geometric soft theorem, 

. lim
pn→0

Aa1···an(p1, . . . , pn) = ∇̂anAa1···an−1(p1, . . . , pn−1) , (10.27) 

valid for any scalar theory that does not contain nonderivative interactions. There 
may be other, higher-order derivative couplings additional to (10.23). The covariant 
derivative of the amplitude in (10.27) is taken in the target space . M with respect to 
the Levi-Civita (LC) connection defined by the metric .gab(π). 

The reader is referred to [8] for a general nonperturbative proof of (10.27). 
Here we are mostly interested in EFTs for NG bosons, defined on a coset space 
of spontaneously broken symmetry. For this class of theories, I will derive below a 
dedicated geometric soft theorem using the more elementary approach of Sect. 10.1. 

10.2.1 Geometric Soft Theorem for Nambu–Goldstone Bosons 

Inspired by the above discussion, we shall now reinterpret the results of Sect. 10.1.2 
in terms of the geometric properties of the coset space .G/H . The Noether current 
for the spontaneously broken generator .Qa can be written as 

.Jμ
a = ∂L (2)

eff

∂(∂μπb)
ξb
a (π) = gbc(π)ξb

a (π)∂μπc . (10.28) 

Expanding this in powers of the NG fields . πa gives 

.Jμ
a = gbc(0)ξb

a (0)∂μπc + ∂d(gbcξ
b
a )(0)∂μπcπd + O(π3) . (10.29) 

I have already made the assumption that the kinetic term is canonically normal-
ized, that is .gab(0) = δab. Accordingly, the coupling of the current .Jμ

a (x) to the 
one-particle state .|πb(p)〉 is defined by the matrix element . 〈0|Jμ

a (0)|πb(p)〉 =
−ipμ

onξ
b
a (0). The bilinear part of the current (10.29) yields in turn the algebraic 

coefficient .Kabc = ∂c(gdbξ
d
a )(0) = ∂c(ξ

b
a)b(0). We only need the part of this, 

2 The amplitude is of course invariant under any simultaneous permutation of the energy–momenta 
and the flavor labels. This permutation invariance is just hidden in the economic expression (10.25).



220 10 Scattering of Nambu–Goldstone Bosons

antisymmetric under the exchange .b ↔ c, which can be simplified to 

.Kabc − Kacb = (∇̂cξ
b
a)b(0) − (∇̂bξ

b
a)c(0) = 2(∇̂cξ

b
a)b(0) (10.30) 

using the Killing equation (A.92). Putting all the pieces together, we infer 
from (10.15) a geometric soft theorem for the amplitude . Aa1···an(p1, . . . , pn)

for scattering of n NG bosons with flavors . ai and energy–momenta . pμ
i , 

.

lim
pn→0

ξb
a (0)Aa1···an−1b(p1, . . . , pn)

=
n−1∑

i=1

(∇̂bξ b
a)ai

(0)Aa1···ai−1bai+1···an−1(p1, . . . , pn−1) .

(10.31) 

In [8], the same result was obtained from (10.27) by invoking the G-invariance of 
the scattering amplitude in the schematic form 

. Lξa
Aa1···an−1 = ξb

a ∇̂bAa1···an−1 +
n−1∑

i=1

(∇̂ai
ξa)

bAa1···ai−1bai+1···an−1 = 0 .

(10.32) 

The formulation (10.31) of the soft theorem is manifestly covariant under field 
redefinitions that preserve the normalization of the kinetic term. One can take 
advantage of this and compute the algebraic coefficient .(∇̂bξ

b
a)ai

(0) in suitably 
chosen local coordinates on .G/H . Specifically, in the exponential parameterization, 
we already have an expression for the Killing vector in (10.18). Likewise, the 
expression (10.17) for the MC form can be used to recover the metric .gab(π) and 
in turn the Christoffel symbols, needed to evaluate the covariant derivative of the 
Killing vector. Putting everything together, one finds 

.(∇̂cξ
b
a)b(0) = 1

2
(δcdf d

ab − δbdf d
ac − δadf d

bc) , (10.33) 

in accord with (10.20). This confirms that the soft theorems (10.15) and (10.31), 
formulated respectively in terms of the algebraic and geometric properties of the 
coset space, are equivalent. 

10.2.2 Adler Zero or Not? 

We have already observed that if the coset space .G/H is symmetric, the right-hand 
side of the soft theorem (10.15) or (10.31) automatically vanishes. Is the symmetry 
of .G/H also a necessary condition for the Adler zero? We cannot exclude the 
possibility that the soft limit of a specific amplitude in a given theory vanishes due
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to fine tuning of the effective couplings. However, in order that all amplitudes of the 
EFT vanish in the soft limit, the coefficients (10.33) must vanish for any choice of 
.a, b, c. Using the shorthand notation .fabc ≡ δadf d

bc, the vanishing of (10.33) is in 
turn equivalent to .fabc = fbca + fcab. Applying this twice gives 

. fabc = fbca + fcab = (fcab + fabc) + (fabc + fbca) = 2fabc + fbca + fcab .

(10.34) 

This is only possible if .fabc = 0. Thus, the set of all scattering amplitudes of 
the EFT satisfies the Adler zero principle if and only if the coset space .G/H is 
symmetric. 

Incidentally, there is a neat geometric way to understand the one-way implica-
tion, ensuring Adler zero for symmetric coset spaces. Namely, the latter have the 
property that all covariant derivatives of the Riemann curvature tensor identically 
vanish (Theorem 10.19 in [9]). The Adler zero can then be seen as a direct 
consequence of (10.27). On coset spaces that are not symmetric, the nontrivial soft 
limit of scattering amplitudes is governed by the structure constants . f a

bc. According 
to Sect. 7.4.1, these are in a one-to-one correspondence with the (frame components 
of the) torsion 2-form of the canonical connection on .G/H . Thus, the nonvanishing 
soft limit can be said to arise geometrically from the torsion of the coset space. 

Example 10.3 

One of the simplest symmetry groups leading to a nonvanishing soft limit of some 
scattering amplitudes is the Heisenberg group . H3. This is a three-dimensional 
nilpotent Lie group. One can choose a basis of its Lie algebra . h3, .Qa with . a = 1, 2
and Q, so that the only nontrivial commutation relation among the generators is 

.[Qa,Qb] = iεabQ . (10.35) 

Suppose the symmetry of a system under the Heisenberg group is completely 
broken. Denoting the NG fields associated with .Qa and Q respectively as . πa and . θ , 
the coset space .H3/{e} ≃ H3 can be parameterized by 

.U(π, θ) = exp

(
i

v
πaQa

)
exp

(
i

v
θQ

)
, (10.36) 

where v is a positive dimensionful constant. The corresponding components of the 
MC form are .ωa = (1/v)dπa and .ωθ = (1/v)dθ + 1/(2v2)εabπ

adπb. The most  
general two-derivative effective Lagrangian would now be given by a generic rank-2 
symmetric tensor built out of the MC form. For illustration, it is however sufficient 
to consider a particularly simple special case, 

.L (2)
eff = 1

2
δab∂μπa∂μπb + 1

2

(
∂μθ + 1

2v
εabπ

a∂μπb

)2

. (10.37)
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This makes the calculation of various scattering amplitudes easy. Namely, the sole 
cubic interaction operator equals, up to a surface term, .−1/(2v)θεabπ

a□πb. As  
a consequence, any Feynman diagram where a .θ -propagator is attached to two 
external .π -type legs will vanish on-shell. 

Any on-shell 3-particle amplitude in a derivatively coupled relativistic theory 
of massless scalars automatically vanishes. Hence we need to consider a process 
with at least five particles to have a hope for a nonzero soft limit. Leaving out 
straightforward details, a simple example is 

.Aθ1222(p1, p2, p3, p4, p5) = s12

2v3 . (10.38) 

In order to compare this to the prediction of our soft theorem (10.31), we have to  
keep in mind the factors of v in (10.36). These make the only nonzero structure 
constant effectively .f θ

ab = εab/v. Together with .ξb
a (0) = δb

a , (10.31) and (10.33) 
then predict 

.

lim
p5→0

Aθ1222(p1, . . . , p5) = 1

2v
[A1122(p1, . . . , p4)

−Aθθ22(p1, . . . , p4)] .

(10.39) 

This is easily verified by calculating the two 4-particle amplitudes and finding that 

.A1122(p1, p2, p3, p4) = 3s12

4v2
, Aθθ22(p1, p2, p3, p4) = − s12

4v2
. (10.40) 

By permutation invariance, the same kind of result applies to the soft limit in 
which either .pμ

3 or .pμ
4 is taken to zero. On the other hand, the soft limit of 

.Aθ1222(p1, . . . , p5) for . pμ
1 or . pμ

2 manifestly vanishes, as is clear from (10.38). 
The cubic interaction operator in (10.37) can be removed by the field redefinition 

.πa = φa + cθεa
bφ

b with .c ≡ 1/(2v). This leads to the Lagrangian 

. 

L (2)
eff = 1

2
(1 + c2θ2)∂μφ · ∂μφ + 1

2
(1 − c2φ2)(∂μθ)2 + c2

4
∂μ(θ2)∂μ(φ2)

+ c3

3
∂μ(θ3)φ × ∂μφ + c2

2

[
(1 + c2θ2)φ × ∂μφ − cφ2∂μθ

]2
,

(10.41) 

where I used the notation .φ ≡ (φ1, φ2) and .φ × ∂μφ ≡ εabφ
a∂μφb to avoid 

proliferation of indices. The first term on the second line of (10.41) is equivalent 
to .−(c3/3)θ3φ × □φ by partial integration, and thus does not contribute to tree-
level 5-particle amplitudes of the theory. All such amplitudes are therefore encoded 
in a single operator, .−c3∂μθφ2(φ × ∂μφ). This shows that .Aθ1222 and .Aθ2111 are 
the only nonzero 5-particle amplitudes, and makes it easy to reproduce (10.38).
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10.2.3 Symmetric Coset Spaces 

Expressing the scattering amplitudes in terms of the curvature tensor and its 
covariant derivatives is elegant and gives us useful insight. However, calculating 
the covariant derivatives of the curvature tensor from the metric .gab(π) in practice 
may be a tiresome task. The situation is much better for symmetric coset spaces 
where all the covariant derivatives of the curvature tensor vanish. Here we have 
a closed expression for the Riemannian metric in the normal coordinates (see 
Appendix A.6.4), 

. gab(π) = gac(0)

⎡

⎣
sin2

√
R̂(π)

R̂(π)

⎤

⎦

c

b

= gac(0)

∞∑

k=0

(−1)k22k+1

(2k + 2)! [R̂(π)k]cb ,

(10.42) 

where .R̂a
b(π) ≡ Ra

cbd(0)πcπd . All we need to know are the constants .Ra
cbd(0). 

These can be extracted from our discussion of the geometry of coset spaces in 
Sect. 7.4. First, however, a word of caution is in place. 

Throughout Appendix A, I dutifully distinguish components of tensors in a local 
frame from those in a local coordinate basis by using different types of indices. 
This has not been necessary in the main text of the book so far. Here, to avoid 
confusion, I will use lowercase indices .a, b, . . . to indicate a local coordinate 
system, and underlined indices .a, b, . . . for components in the frame defined by 
the MC form. Thus, for instance, a comparison of (10.16) and (10.23) shows that 
the G-invariant Riemannian metric on the coset space is .g(π) = κabω

a(π)⊗ωb(π). 
The components of the metric in the MC form basis are constant, as shown explicitly 
in Sect. 8.1.2. 

According to Sect. 7.4.1, the same is true for the curvature 2-form of the LC 
connection on symmetric coset spaces, 

.Ra
b(π) = −1

2
f a

αbf
α
cdωc(π) ∧ ωd(π) . (10.43) 

Combining this with (10.42) gives upon a brief manipulation a practically more 
useful expression for the metric, 

. g(π) = κac

⎡

⎣
sin2

√
R̂(π)

R̂(π)

⎤

⎦

c

b

dπa ⊗ dπb , R̂a
b(π) ≡ −f a

αcf
α
bdπcπd ,

(10.44) 

where .πa ≡ ωa
a(0)πa . Here .ωa

a(0) is a constant matrix that can easily be evaluated 
from the definition of the MC form, .ω⊥(π) = ωa(π)Qa = ωa

a(π)Qadπa .
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Combining (10.23) with (10.44) determines the complete two-derivative effective 
Lagrangian on symmetric coset spaces in a closed form. 

The structure constant .f a
αc in (10.44) defines the adjoint action of the unbroken 

subgroup H on the broken generators, and thus also the NG fields. For compact 
and semisimple groups G, the other type of structure constant in (10.44), . f α

bd , can 
be related to the former using the Cartan–Killing form on . g; cf. Example 10.2. This  
leads to the intriguing conclusion that the effective Lagrangian (10.16) is completely 
fixed by the set of low-energy constants . κab, spanning a symmetric invariant tensor 
of H , and certain linear representation of H . No specific information about the full 
symmetry group G is needed, as was first emphasized in [10]. 

Example 10.4 

The requirement that G be compact and semisimple is essential. Contrast the coset 
spaces .SO(n + 1)/SO(n) ≃ Sn and .ISO(n)/SO(n) ≃ Rn. Both of these are 
symmetric, share the same H , and in both the set of broken generators transforms 
as a vector of .SO(n). Yet, the corresponding EFTs are different; .SO(n + 1) is 
compact but .ISO(n) is not. In case of .SO(n + 1)/SO(n), the low-energy EFT is 
most easily presented as a nonlinear sigma model for a linearly-transforming unit 
vector field, .n ∈ Sn. It implies nontrivial interactions among the n NG bosons. On 
the other hand, in case of .ISO(n)/SO(n), the leading-order EFT (10.16) reduces to 
a noninteracting theory, .Leff = (1/2)δab∂μπa∂μπb. This follows from the fact that 
the broken generators of .ISO(n) commute with each other so that . f α

bc = 0. The  
curvature tensor is trivial. After all, .ISO(n)/SO(n) is just the flat Euclidean space. 

10.3 Beyond Adler Zero 

Until now, we have been solely preoccupied with the question whether or not a given 
scattering amplitude vanishes in the soft limit for a chosen particle. This amounts 
to restricting the amplitude to a special hypersurface in the space of all allowed 
(on-shell and energy–momentum-conserving) kinematical configurations. There are 
however other interesting kinematical regimes that also probe the algebraic and 
geometric structure of the underlying EFT. One simple possibility is to take a 
consecutive soft limit for two particles. Here the geometric soft theorem (10.27) 
proves invaluable, giving immediately 

. lim
pn−1→0

lim
pn→0

Aa1···an(p1, . . . , pn) = ∇̂an∇̂an−1Aa1···an−2(p1, . . . , pn−2) .

(10.45)
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Of particular interest is the commutator of the two limits, probing the extent to 
which the limits interfere with each other, 

.

[
lim

pn−1→0
, lim
pn→0

]
Aa1···an(p1, . . . , pn)

=
n−2∑

i=1

Rb
aian−1an

Aa1···ai−1bai+1···an−2(p1, . . . , pn−2) ,

(10.46) 

where I used (A.79). Another possibility is to take a simultaneous soft limit for 
two or even more particles. This may lead to a kinematic singularity even in the 
absence of cubic interaction vertices. See [8, 11] for a precise formulation of such a 
simultaneous double-soft theorem and further details. 

Here I will remain within the confines of the single soft limit, but look more 
closely at the asymptotic behavior of the scattering amplitude near the limit. I will 
promote the energy–momenta .pμ

i in an n-particle process to functions .p̂μ
i (z) of a 

scaling parameter .z ∈ C such that .p̂μ
i (1) = p

μ
i for all i and moreover .p̂

μ
n (z) = zp

μ
n . 

The other functions .p̂μ
i (z) with .i = 1, . . . , n − 1 must be chosen so as to preserve 

overall energy–momentum conservation, .
∑n

i=1 p̂
μ
i (z) = 0, and remain on-shell, 

.[p̂i(z)]2 = 0, for any .z ∈ C. Also, it is required that .p̂μ
i (z) with . i = 1, . . . , n − 1

have a nonzero limit for .z → 0, that is, only the n-th particle becomes soft for small 
z. 

For a generic kinematical configuration, the complexified tree-level amplitude 
.Âa1···an(p̂1(z), . . . , p̂n(z)) will presumably be analytic in z in some neighborhood 
of the origin. It can thus be expanded in a series with a nonzero radius of 
convergence, 

.Âa1···an(p̂1(z), . . . , p̂n−1(z), zpn) =
∞∑

k=0

zkc(k)
a1···an

. (10.47) 

The soft theorems derived in Sects. 10.1 and 10.2 determine the leading 
term, .c

(0)
a1···an

, in terms of .(n − 1)-particle amplitudes with energy–momenta 
.p̂

μ
1 (0), . . . , p̂

μ
n−1(0). The asymptotic behavior of the amplitude at small z is 

dominated by the first term in (10.47) for which .c
(k)
a1···an

is nonzero. In the following, 
I will refer to the corresponding value of k as the soft scaling parameter and use the 
symbol . σ ; 

.Âa1···an(p̂1(z), . . . , p̂n−1(z), zpn) = zσ c(σ)
a1···an

+ O(zσ+1) . (10.48) 

The notation used in  (10.47) may suggest that the coefficients .c(k)
a1···an

are 
independent of the detailed choice of functions .p̂i(z) beyond the basic 
requirements laid out above (10.47). I am not aware of any proof of this 

(continued)
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implicit assumption, or even a study addressing the issue. Still, it is plausible 
to assume that at least the leading term in (10.48) is independent of such 
arbitrary choices. 

Clearly, .σ = 0 if the soft limit of the amplitude is nontrivial (nonvanishing). The 
Adler zero amounts to .σ ≥ 1. Barring accidental cancellations, we expect a generic 
EFT satisfying the Adler zero principle to have .σ = 1. 

Example 10.5 

Recall that for .n = 4, all the Mandelstam variables .s, t, u vanish in the soft limit for 
any of the four particles. This automatically guarantees Adler zero for the 4-particle 
amplitude in any derivatively coupled EFT of massless scalars. Moreover, in EFTs 
of a single species of massless scalar, permutation invariance allows only one linear 
function of Mandelstam variables, .s + t + u, which is identically zero. Hence, in 
EFTs of a single NG boson, the 4-particle amplitude automatically satisfies .σ ≥ 2. 

In case .σ ≥ 2 for all (tree-level) scattering amplitudes in a given EFT, we say 
that the soft limit of the amplitudes is enhanced. The rest of the present section is 
devoted to two immediate questions. Are there, in fact, any theories where scattering 
amplitudes feature an enhanced soft limit? If yes, is there any generic mechanism 
that makes the soft limit enhanced beyond the simple Adler zero? 

10.3.1 Dirac–Born–Infeld Theory 

The cleanest way to answer the first question is to find an explicit example. We 
will make an educated guess, loosely following [12]. Consider the class of EFTs 
of a single real NG field, . π . We already know that .σ ≥ 2 for the 4-particle 
amplitude. In fact, the constraint .s + t + u = 0 leaves us with a single candidate, 
algebraically independent permutation-invariant 4-particle amplitude with .σ = 2, 
namely .A(p1, p2, p3, p4) = (s2 + t2 + u2)/(4ΛD). Here .ΛD is a nonzero 
constant of mass dimension D, the dimension of spacetime; the factor of 4 is a 
mere convention. This amplitude can be reproduced by a local quartic interaction 
operator, .−[(∂μπ)2]2/(8ΛD). This interaction in turn gives nontrivial amplitudes 
also for any even number of particles higher than four. 

The problem is that already the next, .n = 6 amplitude fails to satisfy the 
desired scaling with .σ = 2. By dimensional analysis, the .n = 6 amplitude is a 
homogeneous function of degree 6 in energy–momenta. A detailed computation 
shows that the leading, .c(1) term in its expansion (10.47) can be canceled by adding 
a new interaction operator carrying six derivatives, .[(∂μπ)2]3/(16ΛD). This pattern
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extends inductively to all higher orders. For any n, the .σ = 2 scaling of the (tree-
level) .(2n)-particle amplitude can be rescued by adding an interaction operator 
.[(∂μπ)2]n and tuning its coefficient to a unique value. This ensures cancellation of 
the .c(1) contribution to the .(2n)-particle amplitude, generated by exchange diagrams 
with lower-point interaction vertices. Altogether, we end up with a unique theory 
modulo the choice of . ΛD; all the iteratively constructed interaction operators fold 
neatly into a closed-form Lagrangian, 

.LDBI = ΛD

√
1 + (∂μπ)2/ΛD . (10.49) 

This is the so-called Dirac–Born–Infeld (DBI) theory. 
A combination of (10.49) with the volume element, .dDx

√
1 + (∂μπ)2/ΛD , 

admits a remarkable geometric interpretation. This is the induced volume measure 
on a D-dimensional hypersurface (“brane”), embedded in a flat .(D+1)-dimensional 
spacetime and parameterized by the Minkowski coordinates . xμ. The NG field . π(x)

arises from spontaneous breaking of the symmetry under translations in the extra 
dimension by the brane. Properly normalized, the displacement of the brane along 
the extra dimension is .π(x)/

√|ΛD|. The sign of .ΛD determines the signature of 
the metric in the extra dimension. For positive . ΛD , the spacetime Lorentz group 
.SO(d, 1) is thus extended to .SO(d, 2), whereas for negative .ΛD it is extended to 
.SO(d + 1, 1). Up to an arbitrary choice of scale, we end up with two distinct DBI 
theories, differing by the geometry in the extra dimension. 

The fact that the DBI Lagrangian (10.49) does not contain any fields without 
derivatives automatically guarantees the Adler zero. The realization of the . σ = 2
enhancement is however highly nontrivial. At first sight, it is not even obvious 
why the order-by-order cancellations required to make the soft limit enhanced 
should be possible at all. In Chap. 11, I will show that this is a consequence of 
the extended symmetry of the DBI theory. Let us therefore have a closer look at this 
symmetry. Under the translation in the extra dimension, the NG field shifts simply 
as .π(x) → π '(x) = π(x)+ϵ. What is more interesting are the rotations connecting 
the D physical dimensions to the extra dimension. These can be parameterized by a 
Lorentz vector . ϵμ and their infinitesimal form reads 

.δπ(x) = √|ΛD|ϵμxμ , δxμ = − sgn ΛD√|ΛD| ϵ
μπ(x) . (10.50) 

Note that this is not a spacetime symmetry by the definition given in Sect. 4.1, since 
.δxμ depends on the field .π(x). Rather, (10.50) is an example of a generalized local 
transformation. Its evolutionary form is 

.π '(x) − π(x) = √|ΛD|ϵμxμ + sgn ΛD√|ΛD| ϵ
μπ(x)∂μπ(x) , (10.51) 

which depends on both .π(x) and its derivative. It is easy to verify that (10.49) is 
quasi-invariant under (10.51).



228 10 Scattering of Nambu–Goldstone Bosons

10.3.2 Galileon and Special Galileon Theory 

Operationally, the form of the DBI theory is so strongly constrained because its 
Lagrangian only depends on the first derivatives of the NG field. One might hope 
to find more examples of theories with scattering amplitudes enhanced beyond the 
plain Adler zero by allowing for higher derivatives. Indeed, one can realize . σ = 2
trivially by setting 

.Leff = 1

2
(∂μπ)2 + Lint(∂∂π) , (10.52) 

where .Lint is an arbitrary function of second derivatives of .π(x) whose Taylor 
expansion in . π starts at the fourth or higher order. This, while not very interesting 
per se, points in the right direction. Namely, the class of theories (10.52) is 
manifestly invariant under the so-called Galileon symmetry, 

.δπ(x) = ϵ + ϵμxμ . (10.53) 

The interaction Lagrangian is strictly invariant, whereas the kinetic term is quasi-
invariant. Mere invariance under the constant shift with scalar parameter . ϵ, together 
with the absence of cubic interaction vertices, already guarantees Adler zero. 
However, it is ultimately the full Galileon symmetry (10.53) that makes the soft 
limit of the scattering amplitudes enhanced; I will again return to this in Chap. 11. 
It is now natural to ask whether there might be any interactions that, similarly to the 
kinetic term, are merely quasi-invariant under (10.53). If present, such interactions 
would necessarily contain less than two derivatives per field, and thus realize a soft 
limit with .σ = 2 in a nontrivial manner. Moreover, by power counting, they would 
dominate over the interactions of type .Lint(∂∂π) in (10.52). 

Finding all quasi-invariant Lagrangians requires an inspection of the relative Lie 
algebra cohomology of the spontaneously broken symmetry, as observed in a special 
case in Sect. 8.1. In case of the Galileon symmetry, a detailed analysis shows [13] 
that in D spacetime dimensions, there are .D + 1 algebraically independent quasi-
invariant Galileon Lagrangians, 

.L (n)
Gal ≡ εμ1···μnλn+1···λDε

ν1···νn

λn+1···λD
π(∂μ1∂ν1π) · · · (∂μn∂νnπ) , (10.54) 

where .n = 0, . . . , D. The quasi-invariance of all .L (n)
Gal under the Galileon 

symmetry (10.53) is manifest. The first of these, .L (0)
Gal = (−1)D−1D!π , is a mere  

tadpole. This should be discarded in order for the EFT to be perturbatively well-
defined. The next Galileon Lagrangian, .L (1)

Gal = (−1)D−1(D − 1)!π□π , is just the 
kinetic term up to a rescaling and integration by parts. Each of the interaction 
Lagrangians .L (n)

Gal with .n ≥ 2, or any linear combination thereof, realizes the . σ = 2
enhanced soft limit of scattering amplitudes. One might be concerned about the 
presence of the cubic operator, .L (2)

Gal . This is however harmless. Namely, within the
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class of Lagrangians 

.LGal =
D∑

n=0

cnL
(n)

Gal , (10.55) 

the couplings . cn can be recalibrated by a one-parameter group of transformations, 
known as the Galileon duality [14,15]. This amounts to a field redefinition, and thus 
does not affect the S-matrix of the theory. It can always be used to set . c2 to zero. 

The 4-particle amplitude in the Galileon theory (10.55) is a homogeneous 
function of degree 6 in the particle energy–momenta. Permutation invariance 
together with the constraint .s + t + u = 0 implies that the amplitude equals 
.s3 + t3 + u3 up to overall normalization. Hence, in Galileon theories, the 4-particle 
amplitude is doubly enhanced, .σ = 3. Is it possible to adjust the values of . cn

in (10.55) so as to maintain .σ = 3 for all multiparticle amplitudes? The answer 
to this question is positive, and the resulting one-parameter family of theories is 
dubbed special Galileon. 

The further enhancement of the soft limit of scattering amplitudes is associated 
with yet another, hidden symmetry [16]. Consider the infinitesimal transformation 

.δϵπ(x) ≡ ϵμν

[
xμxν + 1

ΛD+2
∂μπ(x)∂νπ(x)

]
, (10.56) 

where .ΛD+2 is a (nonzero) constant with mass dimension .D + 2 and .ϵμν is 
a traceless symmetric tensor of parameters. This is another nontrivial exam-
ple of a generalized local transformation. To check whether (10.56) leaves the 
Lagrangian (10.55) quasi-invariant, it is sufficient to inspect the variation of the shift 
of the corresponding action, .δϵSGal, with respect to . π . A direct calculation gives 

. 

δ(δϵSGal)

δπ
= 2

D∑

n=0

cn

[
n(n + 1)Xn + 1

ΛD+2
(D − n)(D − n − 1)Xn+2

]
,

Xn ≡ εμ1···μnλn+1···λDε
ν1···νn

λn+1···λD
ϵμnνn

n−1∏

i=1

(∂μi
∂νi

π) ;
(10.57)
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a reader wishing to verify this might want to take advantage of the auxiliary identity 

. εμ1···μn+2λn+3···λDε
ν1···νn+2

λn+3···λD
ϵμn+2νn+2

n+1∏

i=1

(∂μi
∂νi

π)

= n + 1

(D − n)(D − n − 1)
εμ1···μnλn+1···λDε

ν1···νn

λn+1···λD
(10.58) 

× ϵαβ

[
n(∂α∂μnπ)(∂β∂νnπ)  

n−1∏

i=1 

(∂μi ∂νi π) − (∂α∂βπ)  
n∏

i=1 

(∂μi ∂νi π)

]
. 

The quasi-invariance of the Lagrangian (10.55) is now equivalent to the vanishing 
of (10.57), which leads to a recurrence relation for the couplings . cn, solved by  

.c2n = (−1)n

Λn
D+2

(
D

2n

)
c0

2n + 1
, c2n+1 = (−1)n

Λn
D+2

1

D

(
D

2n + 1

)
c1

n + 1
. (10.59) 

What we have here are in principle two independent types of theories. However, 
the even set . c2n inevitably includes the tadpole operator .L (0)

Gal that we have discarded 
on physical grounds. We are thus left only with the odd terms .c2n+1, that is those 
Galileon operators (10.54) that are even in the NG field . π . The parameter . c1 is 
fixed by demanding proper normalization of the kinetic term. The only genuine 
parameter of the special Galileon theory is therefore the scale .ΛD+2 that enters the 
symmetry transformation (10.56). Specifically in .D = 4 spacetime dimensions, we 
have .c3 = −c1/(2Λ6) as the sole effective coupling. Upon some integration by 
parts, the Lagrangian of the special Galileon theory can then be cast as 

.L D=4
sGal ≃ 1

2
(∂μπ)2 − 1

12Λ6
(∂μπ)2[(□π)2 − (∂ν∂λπ)2] . (10.60) 

See [17] for a recent overview of the many intriguing properties of the special 
Galileon theory. 

So far we have discovered three theories that realize in a nontrivial manner an 
enhanced soft limit of scattering amplitudes: DBI, Galileon and special Galileon. 
Remarkably, this is it as far as relativistic EFTs of a single NG boson are con-
cerned [18]. Mapping the landscape of theories with .σ ≥ 2 and multiple NG bosons 
remains, as of writing this book, an open problem. Below, I outline a symmetry-
based approach that makes the identification of candidate multiflavor EFTs in 
principle straightforward. In Sect. 10.4, I will then introduce an entirely different 
method, which utilizes solely known infrared properties of on-shell amplitudes and 
general quantum-field-theoretic principles. This approach is very efficient in proving 
that other nontrivial soft behavior than that observed in the above three theories is 
not possible.



10.3 Beyond Adler Zero 231

10.3.3 Effective Theories with Enhanced Soft Limit from Symmetry 

I have already hinted, so far without proof, that the enhanced soft limit of scattering 
amplitudes in the DBI and Galileon theories is a consequence of symmetry. 
The additional symmetry cannot be internal, for that would lead to mere linear 
constraints on scattering amplitudes or, even worse, additional NG bosons if 
spontaneously broken. Indeed, a glance at (10.50) and (10.53) shows that we are 
dealing with transformations with nontrivial dependence on spacetime coordinates, 
parameterized by a Lorentz vector. Guided by this observation, I will now show 
that the presence of such symmetries is severely constrained by group-theoretical 
consistency requirements. The discussion in this subsection is a special case of a 
framework developed in [19]. 

Consider an EFT for a single species of NG bosons. The symmetry of this EFT 
is generated by the operators of angular momentum .Jμν and energy–momentum 
. Pμ, and a spontaneously broken scalar generator Q. The commutation relations 
between .Jμν and . Pμ are fixed by the Poincaré algebra. Furthermore, . [Jμν,Q] = 0
expresses the fact that Q is a scalar, whereas .[Pμ,Q] = 0 is needed for Q to 
generate an internal symmetry. Let us now add a Lorentz-vector operator . Kμ, 
generating the tentative hidden symmetry responsible for enhancement of the soft 
limit of scattering amplitudes. Lorentz invariance restricts the commutation relations 
between .Kμ and the other generators to3 

. 
[Jμν,Kλ] = i(gνλKμ − gμλKν) , [Pμ,Kν] = i(agμνQ + bJμν) ,

[Kμ,Kν] = icJμν , [Kμ,Q] = i(dPμ + eKμ) .

(10.61) 

The parameters .a, b, c, d, e cannot take arbitrary values, since to correspond to a 
well-defined Lie algebra, the commutators must satisfy a set of Jacobi identities. 
A straightforward calculation leads to the algebraically independent constraints 
.ae = 0, .b = 0 and .c = −ad. Should .[Pμ,Kν] be nonzero, which is necessary for 
the symmetry generated by .Kμ to affect the momentum dependence of scattering 
amplitudes, a must be nonzero as well. Upon absorbing it into a redefinition of Q 
via .Q → Q/a, the three commutators in (10.61) not fixed by Lorentz invariance 
reduce to 

. [Pμ,Kν] = igμνQ , [Kμ,Kν] = −ivJμν , [Kμ,Q] = ivPμ ,

(10.62) 

with the shorthand notation .v ≡ ad.

3 Additional terms containing the LC tensor can be added to some of the commutators in . D = 3
or .D = 4 spacetime dimensions. These however turn out to be irrelevant in the sense that they are 
either forbidden by Jacobi identities or can be absorbed into a redefinition of the generators. 
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The case of .v = 0 describes the Lie algebra of Galileon transformations (10.53). 
Here Q generates the constant shift with parameter . ϵ, whereas .Kμ generates the 
linear shift with parameter . ϵμ. It remains to address the case .v /= 0. Here the 
parameter can be nearly eliminated by rescaling both Q and .Kμ by .

√|v|. What is 
left of v is just its sign, entering through .[Kμ,Kν] = ∓iJμν and .[Kμ,Q] = ±iPμ. 
Finally, merge .Kμ with .Jμν and Q with .Pμ by identifying .Jμ,D+1 ≡ Kμ and 
.PD+1 ≡ Q together with .gD+1,D+1 ≡ ±1 and voilà, we find the .(D + 1)-
dimensional Poincaré algebra. Its .v = +1 version is based on the .SO(d, 2) group of 
spacetime rotations, whereas the .v = −1 version is based on .SO(d + 1, 1). These 
correspond precisely to the two mutations of the DBI theory. 

We have successfully recovered the symmetries of the DBI and Galileon theories 
by a simple Lie-algebraic argument. The utility of the symmetry-based approach of 
course does not end here. It can be pursued further towards an explicit construction 
of effective actions, respecting the symmetry. This however requires a generalization 
of the techniques developed in Chaps. 7 and 8 to coordinate-dependent symmetries. 

The classification of candidate symmetries leading to enhancement of the soft 
limit of scattering amplitudes, outlined here, can be extended in various directions. 
First, we may want to see how the special Galileon theory fits in. As suggested 
by (10.56), this requires adding another set of generators that span a traceless 
symmetric tensor representation of the Lorentz group. While the derivation of all 
the Lie-algebraic constrains is now more laborious, one eventually recovers (10.56) 
along with (10.60) as the only physically relevant solution [19]. A similar reasoning 
was used in [20] to show that in .D = 4 dimensions, there are no EFTs of a single 
NG boson that would realize .σ ≥ 4 enhancement of the soft limit in a nontrivial 
manner. Finally, the Lie algebra (10.61) can be extended to allow for multiple flavors 
of NG bosons. This turns out to be an efficient tool for carving out the landscape 
of potentially interesting EFTs [21]. The DBI and Galileon theories have a natural 
multiflavor generalization. However, the precise relation between the symmetry and 
the asymptotic behavior of scattering amplitudes in the soft limit that would allow 
us to unambiguously predict the value of . σ , remains unknown. 

10.4 Soft Recursion 

No primer on scattering of NG bosons can be complete without at least briefly 
mentioning on-shell methods for scattering amplitudes, developed in the last 
decades. Given the context of this book, I will restrict the discussion to on-shell 
recursion relations for EFTs of NG bosons. These emerged as an adaptation of the 
framework, originally designed for the Yang–Mills theory by Britto, Cachazo, Feng 
and Witten. An interested reader will find an introduction to the latter in Chap. 3 
of [4]. 

We return to the broad class of EFTs for multiple NG boson flavors. For notation 
simplicity, I will however suppress flavor and momentum labels and denote the 
on-shell tree-level amplitude for an n-particle scattering process simply as . An. 
Suppose now that we are able to complexify the energy–momenta in the process,
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.p
μ
i → p̂

μ
i (z), so that all the .p̂μ

i (z) are linear functions of .z ∈ C, satisfying 
.p̂

μ
i (0) = p

μ
i . We of course still require that the .p̂

μ
i (z) add up to zero and remain on-

shell, .[p̂i(z)]2 = 0, for any .z ∈ C. Then the scattering amplitude .An is complexified 
to a meromorphic function .Ân(z) in the complex plane. Furthermore, for any 
holomorphic function .Fn(z) such that .Fn(0) = 1, the function . Ân(z)/[zFn(z)]
is also meromorphic and has a simple pole at .z = 0 with residue .Ân(0) = An. 
The residue theorem then implies that upon integration along an infinitesimal circle 
enclosing the origin, 

.An = 1

2π i

∮
dz
Ân(z)

zFn(z)
. (10.63) 

By the same residue theorem, the integral can also be expressed in terms of residues 
at the other poles in the complex plane, possibly including the residue at infinity. 
This is the central idea behind on-shell recursion techniques. To progress further, 
we need to be more specific about the complexification of the energy–momentum 
variables. We also need input on the asymptotic behavior of the amplitude at . z →
∞. Together, these will allow us to tailor the function .Fn(z) to the EFT at hand. 

10.4.1 Complexified Kinematics 

Our requirements that .p̂μ
i (z) be linear in z and reduce to . pμ

i at .z = 0 are solved by 

.p̂
μ
i (z) = p

μ
i + zq

μ
i (10.64) 

with arbitrary . qμ
i . However, the on-shell condition .[p̂i(z)]2 = 0 is most easily 

satisfied if . qμ
i is parallel to . pμ

i . I will parameterize such . qμ
i by a real constant . ci ,4 

.p̂
μ
i (z) ≡ p

μ
i (1 − ciz) . (10.65) 

This is called the all-line soft shift of the energy–momentum variables. The last 
requirement we have to take care of is overall energy–momentum conservation, 
which leads to 

.

n∑

i=1

cip
μ
i = 0 . (10.66) 

I will always assume a generic kinematical configuration, disregarding accidental 
linear dependencies among the energy–momenta . pμ

i . This is equivalent to the 

4 Within this section, I always indicate summation over particles in the scattering process explicitly. 
Hence, no summation is implied by the repeated index “i” in  (10.65).
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assumption that .pμ
i as a .D × n matrix has the maximum possible rank consistent 

with energy–momentum conservation, that is .min(D, n − 1). By the rank–nullity 
theorem, the set of solutions to (10.66) then spans a vector space of dimension 
.n − min(D, n − 1) ≥ 1. The one-dimensional subspace that is always guaranteed 
to exist corresponds to .c1 = · · · = cn. However, it is desirable to have solutions for 
which all the . cis are different. This will allow us to probe the single soft limit for the 
individual particles by tuning .z → 1/ci . The existence of such solutions requires 
that .D < n − 1, or better .n ≥ D + 2. 

The all-line soft shift (10.65) cannot access the single soft limit of all scattering 
amplitudes, and the problem gets worse with increasing the spacetime dimension 
D. This motivated [18] to introduce alternative prescriptions, combining (10.64) 
and (10.65) for disjoint subsets of the n particles. To illustrate the idea, I will briefly 
outline the minimal modification of (10.65), dubbed the all-but-one-line soft shift. 
This applies (10.65) to the first .n − 1 particles but uses (10.64) for the last one, 

.p̂
μ
i (z) ≡ p

μ
i (1−ciz) for i = 1, . . . , n−1 , p̂μ

n (z) ≡ pμ
n +zqμ

n . (10.67) 

Energy–momentum conservation and the on-shell condition now dictate that 

.qμ
n =

n−1∑

i=1

cip
μ
i , q2

n = pn · qn = 0 . (10.68) 

The first relation in (10.68) can be viewed as a definition of . q
μ
n . The second relation 

then constitutes two homogeneous constraints on .c1, . . . , cn−1, one linear and one 
quadratic. This defines an .(n − 3)-dimensional hypersurface in the .Rn−1 space of 
all . ci . The hypersurface always includes a one-dimensional linear subspace where 
.c1 = · · · = cn−1, as guaranteed by energy–momentum conservation. The existence 
of other, nontrivial solutions for . ci requires that .n − 3 > 1, or .n ≥ 5, independently 
of the spacetime dimension D. We find that the all-but-one-line shift is applicable 
to a broader set of amplitudes than the all-line shift for any .D ≥ 4. The price to pay 
is that it only allows us to access the soft limit for .n − 1 particles out of n. 

10.4.2 Recursion Relation for On-Shell Amplitudes 

We are now ready to deal with the complexified amplitudes. Consider an EFT 
with soft scaling parameter . σ . By definition, any complexified n-particle amplitude 
.Ân(z) in this theory has a zero of order . σ at .z = 1/ci for any of the particles to 
which (10.65) has been applied. It is then advantageous to set 

.Fn,σ (z) ≡
ns∏

i=1

(1 − ciz)
σ , (10.69)
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where .ns = n for the all-line shift and .ns = n − 1 for the all-but-one-line shift. This 
choice of .Fn(z) is optimized for maximum suppression of the integrand in (10.63) 
at large z without introducing any new poles in it. This suppression is sufficient to 
eliminate the pole at infinity provided 

.m < nsσ , (10.70) 

where m is the degree of .An as a function of energy–momenta. 

Example 10.6 

The constraint (10.70) is satisfied for a large class of EFTs. First, any EFT of the 
type (10.16), defined on a symmetric coset space, has .(m, σ) = (2, 1) for any n. This  
follows from the relation .V = I + 1 between the numbers of interaction vertices 
V and internal propagators I , valid for any connected tree-level Feynman diagram. 
Second, the Lagrangian of the DBI theory (10.49) contains one derivative on each 
field. As a result, the negative powers of energy–momentum due to propagators are 
exactly canceled by the adjacent interaction vertices. What is left is in effect one 
derivative per each external leg of the Feynman diagram, hence .(m, σ) = (n, 2) for 
the DBI theory. Finally, the special Galileon theory in .D = 4 dimensions contains 
a single quartic interaction vertex with six derivatives. This gives .m = 6V − 2I and 
.n = 4V − 2I , hence .(m, σ) = (2n − 2, 3). 

With no pole at infinity and no new poles from .Fn,σ (z), all the .z /= 0 poles 
of the integrand in (10.63) come from the propagators inside .Ân(z). Consider a 
partition of all the particles in the scattering process into two disjoint subsets, I 
and . Ĩ . Among all diagrams contributing to the tree-level amplitude .Ân(z), there 
is a subset of graphs where the particles in I and . Ĩ can be separated by cutting a 
single propagator. This subset of diagrams defines a factorization channel, which 
I will label simply with the letter I ; see Fig. 10.3 for illustration. One can always 
assign the labels .I, Ĩ so that the n-th particle belongs to . Ĩ . Then . ci is well-defined 
for all particles in I even when the all-but-one-line shift is used. With the shorthand 

Fig. 10.3 Example of a 
factorization channel in an 
8-particle scattering process. 
The two sides of the 
factorization channel 
correspond respectively to 
.I = {1, 5, 6, 7} and 
.Ĩ = {2, 3, 4, 8}. The gray 
disks represent the sum of all 
possible Feynman diagrams 
with the given external legs 

p1 p2 

p4 

p3p5 

p6 

p7 p8 

PI
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notation 

.P
μ
I ≡

∑

i∈I

p
μ
i , Q

μ
I ≡

∑

i∈I

cip
μ
i , (10.71) 

the complex energy–momentum in the propagator separating I and . Ĩ is .P
μ
I − zQ

μ
I . 

This leads to two poles at .z = z±
I where 

.z±
I = 1

Q2
I

[
PI · QI ±

√
(PI · QI)2 − P 2

I Q2
I

]
. (10.72) 

Near these poles, the complex amplitude .Ân(z) factorizes as 

.Ân(z)
z→z±

I−−−→ ÂI (z
±
I )Â

Ĩ
(z±

I )

(PI − zQI )2 = z+
I z−

I

(z − z+
I )(z − z−

I )

ÂI (z
±
I )Â

Ĩ
(z±

I )

P 2
I

. (10.73) 

Here .ÂI (z
±
I ) is the complexified on-shell amplitude for scattering of particles in I , 

and likewise for .Â
Ĩ
(z±

I ). We arrive at the key result that the n-particle amplitude 
.An can be reconstructed from on-shell amplitudes with lower numbers of particles, 
as long as it can be complexified using one of the prescriptions introduced in 
Sect. 10.4.1. Importantly, this soft recursion applies to the entire amplitudes. This 
observation lies at the heart of an approach to symbolic computation of scattering 
amplitudes that avoids the combinatorial explosion of ordinary perturbation theory. 
In practice, one only needs to calculate explicitly a small number of “seed” 
amplitudes. All higher-point amplitudes can then be reconstructed recursively. 

Example 10.7 

In .D = 4 spacetime dimensions, the all-line shift (10.65) can be used for any 
amplitude with .n ≥ 6. This leaves us with .A4 and .A5 as the seeds that need to 
be known a priori. For theories with just even interaction vertices, such as those 
from Example 10.6, one only needs to calculate the 4-particle amplitude explicitly. 
This is consistent with what we learned previously about the structure of EFTs on 
symmetric coset spaces. Namely, it follows from (10.42) that the quartic interaction 
vertex already fixes uniquely the entire effective Lagrangian. The same applies to 
the DBI theory. 

Let us now see the recursion program through to the end. Upon summation over 
all factorization channels, (10.63) becomes [22] 

.An =
∑

I

1

P 2
I

[ ÂI (z
+
I )Â

Ĩ
(z+

I )

(1 − z+
I /z−

I )Fn,σ (z+
I )

+ ÂI (z
−
I )Â

Ĩ
(z−

I )

(1 − z−
I /z+

I )Fn,σ (z−
I )

]
. (10.74)
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The sum runs over all partitions of the particles, that is each pair .I, Ĩ is only 
counted once. This is our master equation, which allows recursive construction 
of tree-level scattering amplitudes by symbolic computation. However, the first 
step of the recursion can often be performed manually. Namely, if the functions 
.ÂI (z), ÂĨ

(z) themselves do not contain any factorization poles, the summand 
in (10.74) can be interpreted in terms of the residues of the meromorphic function 
.ÂI (z)ÂĨ

(z)/[zFn,σ (z)(PI − zQI )
2]. This function does have also poles at . z =

1/ci , since unlike .Ân(z) itself, .ÂI (z) and .Â
Ĩ
(z) are not on-shell and thus do not 

necessarily vanish at these points. We can then use the residue theorem to rewrite 
the sum over poles at . z±

I in terms of a sum over poles at .z = 0 and .z = 1/ci , 

.An =
∑

I

[ÂI (0)Â
Ĩ
(0)

P 2
I

+
ns∑

i=1

Res
z=1/ci

ÂI (z)ÂĨ
(z)

zFn,σ (z)(PI − zQI )2

]
. (10.75) 

The first term takes into account diagrammatic contributions to .An with an internal 
propagator. The second term must therefore match the contributions to .An from 
contact n-point operators in the effective Lagrangian. 

Example 10.8 

The special Galileon theory (10.60) in .D = 4 dimensions has a single, quartic 
interaction vertex. When applied to the 6-particle amplitude, we therefore expect 
the second term in (10.75) to vanish. To check this, rewrite the Lagrangian as 

.L D=4
sGal ≃ 1

2
(∂μπ)2 − 1

24Λ6
εμ1μ2μ3λε

ν1ν2ν3
λπ

3∏

i=1

(∂μi
∂νi

π) . (10.76) 

The Feynman rule for the interaction vertex is .[−i/(6Λ6)]G(p1, p2, p3), where 
.p

μ
1 , p

μ
2 , p

μ
3 are any three of the four four-momenta in the vertex and G denotes 

the corresponding Gram determinant. Since the latter is a homogeneous function of 
all its arguments of degree two, we have 

.ÂI (z)ÂĨ
(z) = 1

(6Λ6)2
G({pi}i∈I )G({pj }j∈Ĩ

)

6∏

k=1

(1 − ckz)
2 (10.77) 

for any partition of the six particles into two triples .I, Ĩ . I have implicitly used the 
all-line shift. Note that the criterion (10.70) is satisfied even if we take .Fn,σ (z) with 
.σ = 2 instead of .σ = 3. The advantage of this choice is that the denominator term 
.Fn,σ (z) is then completely canceled by the last factor in (10.77). This indeed makes 
the second term in (10.75) disappear since the residues at .z = 1/ci trivially vanish.
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The derivation of (10.74) does not apply to theories with a nonvanishing soft 
limit, where .σ = 0 and (10.70) cannot hold. Here we have two alternatives: either 
use .Fn,0(z) = 1 and deal with the residue at infinity, or use .Fn,σ (z) with . σ ≥
1 and deal with the ensuing poles at .z = 1/ci . The latter option is feasible, at 
least for two-derivative EFTs of the type (10.16), where sufficient suppression of 
the integrand in (10.63) is ensured by .Fn,1(z). The residues at the simple poles at 
.z = 1/ci can then be extracted from the geometric soft theorem (10.27) or its more 
explicit version (10.31). A minor modification of the steps leading to (10.74) now 
gives [8] 

.An =
∑

I

1

P 2
I

∑

±

ÂI (z
±
I )Â

Ĩ
(z±

I )

(1 − z±
I /z∓

I )Fn,1(z
±
I )

+
n∑

i=1

∇̂ai
Ân−1(1/ci)∏

j /=i (1 − cj /ci)
. (10.78) 

Here I used the shorthand notation .Ân−1 for the amplitude where the i-th particle 
with flavor index . ai has been removed. It is of course still possible to rewrite the 
first term in (10.78) as (10.75). 

10.4.3 Soft Bootstrap 

The modern scattering amplitude program strives to construct amplitudes, or even 
define what a quantum field theory is, without recourse to a Lagrangian or the 
symmetry thereof. It is therefore of great interest to understand what kind of soft 
behavior of scattering amplitudes is allowed on general grounds. Recursion relations 
such as (10.74) or its generalization (10.78) provide a versatile tool for constraining 
the landscape of possible EFTs. 

In [18], soft recursion was used to derive a set of bounds on the soft scaling 
parameter . σ . The most striking result is that in .D ≥ 4 spacetime dimensions, . σ = 3
is the maximum value that can be realized in a nontrivial manner. (Any . σ can be 
realized trivially by interactions with at least . σ derivatives per field.) Apart from 
this universal bound, the maximum achievable value of . σ in an EFT with a fixed set 
of interaction operators is also constrained by the number of derivatives per field. 
Consider a contact operator of the schematic type .(∂π)2∂m−2πn−2, and characterize 
the number of derivatives per field by the parameter .ϱ ≡ (m − 2)/(n − 2). We thus 
have .ϱ = 1 for the DBI theory and .ϱ = 2 for all the Galileon interactions (10.54). 
Then, the soft scaling parameter is bounded by .σ ≤ ϱ + 1. This shows that the DBI 
and special Galileon theories are “exceptional” in the sense that they maximize . σ in 
their respective classes of theories with fixed . ϱ. Similar bounds can be derived for 
translationally and rotationally invariant nonrelativistic EFTs [1]. 

The values of . σ and . ϱ alone do not necessarily specify a unique EFT. Here 
one can gain further insight by a procedure known as the soft bootstrap, see for  
instance [23, 24]. In .D ≤ 4 dimensions, the only seed amplitudes needed to apply 
soft recursion in combination with the all-line shift are .A4 and . A5. These are 
contact amplitudes without any exchange contributions. As such, they are given by
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polynomials of degree m in the particle energy–momenta, or .m/2 in the Mandelstam 
variables. These polynomials are restricted by energy–momentum conservation and 
permutation invariance, and their complete classification is usually straightforward. 
With a list of candidate seed amplitudes at hand, one then proceeds to construct 
higher-point amplitudes via (10.74) or (10.78). The result of the recursion must be 
independent of the choice of parameters . ci satisfying (10.66) or (10.68). Failure to 
pass this .ci-independence test indicates that the seed amplitudes do not correspond 
to any well-defined local field theory. 

Soft bootstrap cannot, strictly speaking, be used to prove that a theory based 
on a fixed set of seed amplitudes exists. That would require checking the 
.ci-independence of recursively constructed amplitudes to all orders of the 
recursion. In this aspect, soft bootstrap is nicely complemented by more 
conventional EFT approaches based on symmetry. The latter are efficient in 
isolating a set of candidate EFTs with desired particle composition and soft 
behavior, as illustrated in Sect. 10.3.3. What soft bootstrap can do is show that 
other theories with given soft behavior than those known a priori do not exist. 
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Part IV 

Spontaneously Broken Spacetime Symmetry



11Locally Equivalent Symmetries 

Our discussion of effective field theory (EFT) for Nambu–Goldstone (NG) bosons 
has so far been limited to internal symmetries. The application of the EFT program 
to symmetries that depend on or affect spacetime coordinates is associated with 
numerous subtleties. The first of these lies in the identification of the degrees of 
freedom of the low-energy EFT. We saw already in Chap. 6 that the fluctuations of 
the order parameter induced by independent broken symmetry generators may be 
related to each other. Very often, this is a consequence of a redundancy between the 
localized actions of different symmetry transformations. This chapter explores such 
local equivalence of coordinate-dependent symmetries as a preparation for the more 
detailed discussion of broken spacetime symmetries in the following chapters. 

The first two sections follow the pedagogical exposition in [1]. In Sect. 11.1, 
I show that local equivalence of symmetries leads to a linear relation between 
the corresponding Noether currents. This lifts the intuitive classical picture of 
redundancy among NG modes, outlined in Chap. 6, to the language of quantum 
field theory. In Sect. 11.2, I then reinterpret the local equivalence of symmetries in 
terms of their simultaneous gauging. The whole Sect. 11.3 is reserved for several 
physically relevant examples, illustrating the general theory of locally equivalent 
symmetries. Finally, in Sect. 11.4, I return to scattering of NG bosons of internal 
symmetries. I show how the relations between Noether currents derived in this 
chapter help explain the enhancement of the soft limit of scattering amplitudes in 
the Dirac–Born–Infeld (DBI) and Galileon theories. 

11.1 Relations Between Noether Currents 

Consider a theory of a set of (not necessarily scalar) fields . ψi , and suppose that 
its action is invariant under two different classes of continuous symmetries. As we 
know from Chap. 4, the associated Noether currents can be extracted by evaluating 
the variation of the action under the corresponding localized transformations. The 
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evolutionary form of these transformations can be written generally as 

.

δ1ψ
i(x) = ∈A

1 (x)F i
A[ψ, x](x) + ∂μ∈A

1 (x)K
iμ
A [ψ, x](x) + · · · ,

δ2ψ
i(x) = ∈A2 (x)F i

A[ψ, x](x) + ∂μ∈A2 (x)K
iμ
A

[ψ, x](x) + · · · .

(11.1) 

As before, the square bracket notation indicates local functions of the fields and 
their derivatives, possibly also depending explicitly on the spacetime coordinates. 
Furthermore, .∈A

1 (x) and .∈A2 (x) are the localized parameters of the transformations. 
The presence of derivatives of the parameters in (11.1) hints that I allow for a 
generic localization of the transformations; the ellipses represent terms with higher 
derivatives of .∈A

1 (x) and .∈A2 (x). The original symmetries are recovered by reducing 
the coordinate-dependent parameters to constants, .∈A

1 (x) → ∈A
1 and .∈A2 (x) → ∈A2 . I  

will call the two symmetries locally equivalent if there is a set of smooth functions 
.f A
A

(x) such that setting 

.∈A
1 (x) = f A

A (x)∈A2 (x) (11.2) 

makes the two transformations in (11.1) identical, .δ1ψ
i(x) = δ2ψ

i(x). 
Locally equivalent symmetry transformations should give the same variation of 

the action as expressed in terms of the corresponding Noether currents, 

.

δS =
∫

dDx J
μ
2A[ψ, x](x)∂μ∈A2 (x) =

∫
dDx J

μ
1A[ψ, x](x)∂μ∈A

1 (x)

=
∫

dDx J
μ
1A[ψ, x](x)

[
f A
A (x)∂μ∈A2 (x) + ∈A2 (x)∂μf A

A (x)
]

.

(11.3) 

However, the latter expression does not automatically vanish for constant . ∈A2 as it 
should. In order to ensure this, we have to impose the integrability condition 

.J
μ
1A[ψ, x]∂μf A

A = ∂μN
μ
A

[ψ, x] , (11.4) 

where .Nμ
A

[ψ, x] is some local vector function of the fields and their derivatives. 
Combining (11.4) with (11.3) and integrating by parts in the latter then leads to the 
Noether current equivalence relation 

.J
μ
2A[ψ, x] = f A

A J
μ
1A[ψ, x] − N

μ
A

[ψ, x] . (11.5) 

This is the main result of the chapter that deserves a few comments. First, 
an alternative approach to local equivalence is to start with constant . ∈A2 , that is 
the actual symmetry with generators .Q2A. One then demands the existence of 
smooth functions .f A

A
(x) such that this symmetry is reproduced by a localized 

transformation of the type .δ1ψ
i with parameter .∈A

1 (x) = f A
A

(x)∈A2 . This is the 
origin of the integrability condition (11.4). If needed, the localized transformation
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.δ2ψ
i can then be defined as .δ1ψ

i with the parameter .∈A
1 (x) as given in (11.2). It  

is therefore reasonable to think of .δ1ψ
i as a parent symmetry and of .δ2ψ

i as its 
descendant. 

Second, I have not imposed the equation of motion. Thus, both the equivalence 
relation (11.5) and the integrability condition (11.4) must hold off-shell. By taking 
a divergence of (11.5) and using (11.4), we obtain another off-shell relation, 

.∂μJ
μ
2A[ψ, x] = f A

A ∂μJ
μ
1A[ψ, x] . (11.6) 

This makes the Ward identities for the correlation functions of .Jμ
2A a consequence 

of those for .Jμ
1A. By the same token, the two sets of currents couple to the same 

one-particle NG states. This explains in a quantum-field-theoretic language the 
redundancy of NG modes generated by locally equivalent symmetries. 

Third, should .f A
A

be constant, the integrability condition (11.4) is fulfilled for 
.N

μ
A

= 0. The equivalence relation (11.5) is then strictly linear in the currents. The 
corresponding generators .Q1A and .Q2A are also linearly related, .Q2A = f A

A
Q1A. 

This special case therefore amounts to a mere change of basis of symmetry 
generators, or a choice of a subset thereof, and is of little interest. A nontrivial 
current equivalence relation only arises from a set of non-constant functions .f A

A
(x). 

Without loss of generality, one can drop the constant part of .f A
A

(x) and assume 
that .f A

A
(0) = 0. This assumption is satisfied for all the examples worked out below. 

It also guarantees a posteriori that the relation (11.2) cannot be inverted. In other 
words, the distinction between a parent symmetry and its descendant is well-defined 
and cannot be reversed. 

Finally, recall that the Noether current is determined by the symmetry transfor-
mation only up to addition of a vector field whose divergence vanishes off-shell. 
Suppose that we modify the parent Noether current by .J

μ
1A → J

μ
1A + δJ

μ
1A such that 

.∂μδJ
μ
1A = 0. Then the integrability condition (11.4) can still be satisfied if we shift 

.N
μ
A

appropriately, .Nμ
A

→ N
μ
A

+ f A
A

δJ
μ
1A. It follows that the ambiguity of the parent 

current does not affect the descendant current .Jμ
2A as given by (11.5). The descen-

dant current of course suffers from its own ambiguity under . Jμ
2A → J

μ
2A + δJ

μ
2A

such that .∂μδJ
μ
2A = 0 off-shell. The ambiguities of the two currents are therefore 

independent of each other and do not constrain the validity of the equivalence 
relation (11.5). 

11.2 Noether Currents from Background Gauging 

The derivation of the Noether current of a given symmetry, based on (4.7), treats 
the localized symmetry transformation as a mere technical trick. There is however 
an alternative approach to Noether’s theorem that takes the local transformation 
seriously and promotes it to an actual symmetry of the action. This offers additional 
insight into the structure of Noether currents, the price to pay being a technical 
assumption that has to be verified case by case.
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This key assumption is that it is possible to make the action of the theory 
exactly invariant under the localized symmetry transformation by adding a set of 
background gauge fields . AA

μ . More concretely, we want to promote the original 
action .S{ψ} to a functional .S̃{ψ,A} such that .S̃{ψ,A}∣∣vac = S{ψ}, where the 
subscript “vac” indicates removing the background. I allow for a generic local 
transformation of . ψi with parameters .∈A(x), following (11.1), 

.δψi(x) = ∈A(x)F i
A[ψ, x](x) + ∂μ∈A(x)K

iμ
A [ψ, x](x) + · · · . (11.7) 

As for the local transformation of the gauge field, we can assume a similar generic 
expansion in derivatives of the parameters .∈A(x), 

.δAA
μ(x) = ∈B(x)F̃ A

Bμ[A, x](x) + ∂ν∈
B(x)K̃Aν

Bμ[A, x](x) + · · · ; (11.8) 

the ellipsis again stands for terms with higher derivatives of .∈A(x). It is important 
that .δAA

μ does not depend on the dynamical fields . ψi so that .AA
μ can be treated as a 

fixed external background. 
The variation of action under a simultaneous transformation of .ψi and . AA

μ

consists of contributions from varying the former and the latter, .δS̃ ≡ δψS̃ + δAS̃, 
where 

.δAS̃ =
∫

dDx
δS̃

δAA
μ

(
∈BF̃A

Bμ + ∂ν∈
BK̃Aν

Bμ + · · · ) . (11.9) 

Next we remove the background. In this limit, .δψS̃ turns by construction into 
.
∫

dDx J
μ
A ∂μ∈A. In order that . δS̃ vanishes at least when . ∈A is constant, there must be 

a local function .Rμ
A[ψ, x] such that 

.
δS̃{ψ,A}
δAB

μ(x)
F̃ B

Aμ[A, x](x)

∣∣∣∣∣
vac

= ∂μR
μ
A[ψ, x](x) . (11.10) 

With this consistency condition satisfied, the vanishing of . δS̃ for any .∈A(x) leads to 
the identification 

.J
μ
A [ψ, x](x) = R

μ
A[ψ, x](x) − δS̃{ψ,A}

δAB
ν (x)

K̃
Bμ
Aν [A, x](x)

∣∣∣∣∣
vac

+ · · · . (11.11) 

Equations (11.10) and (11.11) already constitute a fairly general tool for derivation 
of Noether currents. Yet, the approach based on background gauge invariance can be 
further extended to higher-rank tensor background fields. Instead of cluttering the 
formalism with additional indices, I will content myself with a couple of illustrative 
examples, worked out in Sects. 11.3.2 and 11.3.3.
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The notation used in (11.10) and (11.11) is tailored to what I called the 
parent symmetry. What if the system possesses an additional, descendant set of 
symmetries? By (11.2), the localized transformations of the descendant type form 
a subset of all localized transformations of the parent type. All we therefore have 
to do is to gauge the parent symmetry by adding its background gauge fields . AA

μ . 
That we can in fact do so is the sole technical assumption we have to make. The 
descendant symmetry is then automatically gauged as well without the need for any 
additional gauge fields. This once again underlines the redundancy of the descendant 
symmetry. In particular, the background gauging makes it possible to recover the 
equivalence relation (11.5) for Noether currents; see [1] for a detailed proof. 

11.3 Examples 

I will now illustrate the general theory developed above with several examples. 
These are chosen mostly for their relevance to EFTs discussed elsewhere in the 
book. I will therefore not shy away from showing certain amount of details. 

11.3.1 Galileon Symmetry 

Consider a class of theories of a single real relativistic scalar field . φ, invariant under 
the Galileon symmetry 

.δφ(x) = ∈1 + ∈
μ
2 xμ . (11.12) 

This can be localized by replacing the constant parameters with arbitrary functions, 
.∈1 → ∈1(x) and .∈μ

2 → ∈
μ
2 (x). The shift by . ∈1 is the parent symmetry. The 

descendant symmetry with parameter .∈
μ
2 can be recovered locally by setting 

.∈1(x) = ∈
μ
2 (x)xμ. This is the local equivalence condition (11.2) where .fμ(x) = xμ. 

The integrability condition (11.4) and the current equivalence relation (11.5) then 
translate to 

. J1ν[φ, x] = ∂μNμ
ν [φ, x] , J

μ
2ν[φ, x](x) = xνJ

μ
1 [φ, x](x) − Nμ

ν [φ, x](x) .

(11.13) 

Interestingly, the set of functions .Nμ
ν [φ, x] is in this case the primary object, which 

by means of (11.13) determines both currents. 
Let us see how this works explicitly. Take the class of Lagrangians of the type 

.L =
D∑

n=0

cnL
(n)

Gal + Lint(∂∂φ) . (11.14)
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Here .Lint is an arbitrary function of second derivatives of . φ, which is manifestly 
invariant under (11.12). Furthermore, .L (n)

Gal with .n = 0, . . . , D is the set of quasi-
invariant Galileon Lagrangians, cf. Sect. 10.3.2, 

.L (n)
Gal = εμ1···μnλn+1···λDε

ν1···νn

λn+1···λD
φ(∂μ1∂ν1φ) · · · (∂μn∂νnφ) . (11.15) 

It is easy to extract the current . J
μ
1 by evaluating the variation of the action under the 

shift .φ(x) → φ(x) + ∈1(x). With the shorthand notation for the symmetric tensor 

.Xμν ≡ −
D∑

n=0

(n + 1)cnε
μμ2···μnλn+1···λDε

νν2···νn

λn+1···λD

n∏
i=2

(∂μi
∂νi

φ) , (11.16) 

the current takes the compact form 

.J
μ
1 = Xμν∂νφ − ∂ν

∂Lint

∂(∂μ∂νφ)
. (11.17) 

This matches the integrability condition in (11.13) since .Xμν obviously has 
vanishing divergence and so .Xμν∂νφ = ∂ν(X

μνφ). It follows that 

.Nμ
ν = Xμ

νφ − ∂Lint

∂(∂μ∂νφ)
, (11.18) 

and the current .Jμ
2ν is then given by the second relation in (11.13). This result can 

be easily verified by evaluating the variation of the action under . φ(x) → φ(x) +
∈
μ
2 (x)xμ. 

Example 11.1 

The simplest example of a theory from the class (11.14) is the theory of a free 
massless scalar, .L = (1/2)(∂μφ)2. This amounts to .c1 = (−1)D/[2(D − 1)!] and 
discarding all the other operators contributing to (11.14). By  (11.16), this leads to 
.Xμν = 2c1g

μν(−1)D(D − 1)! = gμν . We then find in turn 

.J
μ
1 = ∂μφ , Nμ

ν = δμ
ν φ , J

μ
2ν = xν∂

μφ − δμ
ν φ . (11.19) 

To illustrate the background gauging formalism, we need to gauge the parent 
symmetry. This is most easily done by first integrating the quasi-invariant Galileon 
terms by parts so that each factor of . φ carries at least one derivative. All one then
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has to do is to replace every .∂μφ with .Dμφ ≡ ∂μφ − Aμ. This gives the gauged 
action 

.S̃{φ,A} = −
D∑

n=0

cnε
μ1···μnλn+1···λDε

ν1···νn

λn+1···λD
(11.20) 

×
∫

dD x Dμ1φ(x)Dν1φ(x)  
n∏

i=2 

[∂μi Dνi φ(x)] +
∫

dD x Lint(∂Dφ)(x) . 

This is manifestly invariant under the simultaneous gauge transformation . δφ(x) =
∈1(x) and .δAμ(x) = ∂μ∈1(x). The latter corresponds to (11.8) with .F̃1μ = 0 and 
.K̃ν

1μ = δν
μ; no terms with higher derivatives of .∈1(x) are present. The consistency 

condition (11.10) is trivially satisfied with .Rμ = 0, and (11.11) then gives 

.J
μ
1 [φ, x](x) = − δS̃{φ,A}

δAμ(x)

∣∣∣∣∣
vac

. (11.21) 

It takes little effort to convince oneself that this exactly reproduces (11.17). 
To extract the descendant current .Jμ

2ν from the same gauged action, we set 
.∈1(x) = ∈

μ
2 (x)xμ, which changes the transformation rule for .Aμ to 

.δAμ(x) = ∈2μ(x) + xν∂μ∈ν
2 (x) . (11.22) 

This matches (11.8) with .F̃2μν = gμν and .K̃ν
2αμ = δν

μxα , and (11.10) then becomes 

.∂μRμ
ν [φ, x](x) = gμν

δS̃{φ,A}
δAμ(x)

∣∣∣∣∣
vac

= −J1ν[φ, x](x) . (11.23) 

With the help of the first relation in (11.13) this is seen to be solved by .R
μ
ν = −N

μ
ν . 

The master Eq. (11.11) then gives .Jμ
2ν in agreement with the current equivalence 

relation, that is the second identity in (11.13). 

11.3.2 Spacetime Translations and Rotations 

In relativistic theories with only scalar fields, spacetime translations and rotations 
can be implemented through their action on Minkowski coordinates, 

.xμ → xμ + ∈
μ
1 + ∈

μν
2 xν . (11.24)
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The vector . ∈μ
1 parameterizes infinitesimal translations and the antisymmetric tensor 

.∈
μν
2 infinitesimal spacetime rotations. The evolutionary form (11.1) of the transfor-

mations induced on the fields . ψi is obtained by setting, respectively,1 

.δ1ψ
i = ∈

μ
1 F i

μ = −∈
μ
1 ∂μψi , δ2ψ

i = 1

2
∈
μν
2 F i

μν = ∈
μν
2 xμ∂νψ

i . (11.25) 

Translations and rotations are locally equivalent via (11.2); the latter can be 
recovered from the former by setting 

.∈
μ
1 (x) = 1

2
f

μ
αβ(x)∈

αβ
2 (x) , f

μ
αβ(x) ≡ δμ

α xβ − δ
μ
β xα . (11.26) 

The translations are the parent symmetry and the rotations its descendant. The 
Noether current corresponding to the parent symmetry is the canonical energy– 
momentum (EM) tensor .T μ

ν , defined by 

.δ1S =
∫

dDx T μ
ν[ψ, x](x)∂μ∈ν

1 (x) . (11.27) 

The left-hand side of the integrability condition (11.4) then becomes 

.T μ
ν∂μf ν

αβ = Tβα − Tαβ . (11.28) 

It is known that in purely scalar theories, the canonical EM tensor is symmetric; 
I will justify this below using the background gauging approach. The integrability 
condition is then satisfied by .N

μ
αβ = 0. The equivalence relation (11.5) in turn gives 

the Noether current for spacetime rotations, that is the angular momentum tensor, 

.M
μ
αβ = f ν

αβT μ
ν = xβT μ

α − xαT
μ
β . (11.29) 

This is just the familiar relation between momentum and angular momentum. 

The equivalence relation (11.29) does not apply to theories of fields with 
nonzero spin without further qualification. Namely, in such theories, space-
time translations and rotations are not automatically locally equivalent. 
The reason for this is that the components of fields with spin undergo a 
transformation under spacetime rotations, which cannot be reproduced by the 

(continued) 

1 The factor .1/2 in .δ2ψ
i is conventional and compensates for the fact that the components . ∈αβ

2
and .∈βα

2 with fixed .α /= β parameterize the same transformation. The derivation of the angular 
momentum tensor .M

μ
αβ below assumes that the same factor .1/2 is used in its definition via (4.7).
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naive local translation, .δ1ψ
i(x) = −∈

μ
1 (x)∂μψi(x), for any choice of .∈μ

1 (x). 
The problem can be circumvented by a judicious choice of the localized 
transformation under translations. Instead of developing a general theory, let 
me illustrate the idea on a simple example. 

Example 11.2 

Recall Example 4.3 where I introduced the following theory of a real scalar field . φ
and a vector field . Aμ, 

.L = Aμ∂μφ − 1

2
AμAμ . (11.30) 

We found that the canonical EM tensor of this theory is not symmetric. However, 
we could solve the problem by considering a modified local translation, 

. δ1φ(x) = −∈ν
1 (x)∂νφ(x) , δ1Aμ(x) = −∈ν

1 (x)∂νAμ(x) − Aν(x)∂μ∈ν
1 (x) .

(11.31) 

This is motivated by the fact that under a general local coordinate transformation, 
.Aμ should transform as a covariant vector. Noether’s theorem then gives the 
improved, off-shell-symmetric EM tensor 

.T̃ μν = gμνL + AμAν − (Aμ∂νφ + Aν∂μφ) . (11.32) 

The prescription (11.31) restores local equivalence of spacetime translations 
and rotations in spite of the presence of the vector field. Namely, inserting 
.∈

μ
1 (x) = (1/2)f

μ
αβ(x)∈

αβ
2 with constant .∈αβ

2 in (11.31) gives 

.δ1Aμ(x)
∈
μ
1 (x)=∈

μν
2 xν−−−−−−−→ ∈αν

2 xα∂νAμ(x) + ∈2μνA
ν(x) . (11.33) 

This is exactly how .Aμ should transform under a spacetime rotation. We can then 
localize both translations and rotations by using (11.31) augmented with (11.26). 
Since .T̃ μν is symmetric, the integrability condition is now satisfied and we 
reproduce the angular momentum tensor by replacing (11.29) with 

.M
μ
αβ = xβT̃ μ

α − xαT̃
μ
β . (11.34) 

Let us now address the relation between spacetime translations and rotations 
within the background gauging formalism. We start by gauging the parent symme-
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try: spacetime translations. This amounts to promoting the flat Minkowski spacetime 
to a possibly curved spacetime manifold. Here it proves useful to invoke the 
differential-geometric language developed in Appendix A, to which I refer the 
reader for the basic terminology. Thus, the geometry of the spacetime manifold can 
be characterized by a local coframe (basis of differential 1-forms), .e∗α ≡ e∗α

μ dxμ.2 

Under an infinitesimal coordinate transformation, .xμ → xμ +∈
μ
1 (x), the coordinate 

components of the coframe change as 

.δe∗α
μ (x) = −∈ν

1 (x)∂νe
∗α
μ (x) − e∗α

ν (x)∂μ∈ν
1 (x) . (11.35) 

This matches (11.8) provided we identify .F̃ α
1νμ = −∂νe

∗α
μ and .K̃αν

1λμ = −δν
μe∗α

λ . A  
gauge-invariant action .S̃{ψ, e∗} is obtained from .S{ψ} by replacing derivatives of 
. ψi therein with covariant derivatives, and the flat Minkowski metric .gμν with the 
spacetime metric, .gμν(x) = gαβe∗α

μ (x)e∗β
ν (x). An appropriate volume element is 

built using the determinant of the coframe .e∗α
μ (x) as a matrix. 

Eventually, we want to remove the background and go back to the flat Minkowski 
spacetime. I assume that the latter is described by global coordinates . xμ in which 
the components .e∗α

μ are constant. Then the consistency condition (11.10) is solved 
by .Rμ

ν = 0, and (11.11) reduces to 

.T μ
ν[ψ, x](x) = e∗α

ν (x)
δS̃{ψ, e∗}
δe∗α

μ (x)

∣∣∣∣∣
vac

. (11.36) 

Suppose now that the theory at hand can be coupled to the background geometry 
in a way that the action .S̃{ψ, e∗} depends on .e∗α

μ only through the spacetime metric, 
. gμν . This is an example of a higher-rank tensor background hinted at above. Then 
the variation of the action (11.9) is replaced with 

.δgS̃ =
∫

dDx
δS̃

δgμν

(−∈λ
1 ∂λgμν − gλν∂μ∈λ

1 − gμλ∂ν∈
λ
1 ) . (11.37) 

On a flat Minkowski background, this automatically vanishes for constant . ∈μ
1 thanks 

to .∂λgμν

∣∣
vac = 0. The EM tensor is then identified as 

.T μν[ψ, x](x) = 2
δS̃{ψ, g}
δgμν(x)

∣∣∣∣∣
vac

. (11.38) 

This is the Hilbert EM tensor. Should our theory be Lorentz-invariant and only 
contain scalar fields, it can always be coupled to the spacetime background using 
the metric . gμν . At the same time, the scalar fields retain the transformation rule

2 Following the notation introduced in Sect. 10.2.3, I use underlined indices to indicate components 
within a local (co)frame. Ordinary Lorentz indices refer to a set of local spacetime coordinates, . xμ. 
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.δ1ψ
i(x) = −∈

μ
1 (x)∂μψi(x). This guarantees that the canonical and Hilbert EM 

tensors coincide, and shows that the canonical EM tensor is necessarily symmetric. 

Theories of fields with spin can be coupled to background geometry in 
different manners, depending on how the spin index of the fields is treated. 
Let me illustrate this in the case of a vector field . Aμ. One already mentioned 
possibility is to treat this as a covariant vector that transforms under a general 
coordinate transformation via the second relation in (11.31). It is then possible 
to construct a generally covariant action .S̃{A, g} that only depends on the 
background through the metric. The resulting EM tensor (11.38) is symmetric. 

On the other hand, we may project the field on the local frame . eμ
α and 

treat .Aα ≡ eμ
α Aμ as a set of spacetime scalars. This corresponds to keeping 

the naive transformation under local translations, .δAα(x) = −∈
μ
1 (x)∂μAα(x). 

In this case, the gauged action .S̃{A, e∗} may depend explicitly on the local 
frame. We then have to use (11.36) instead of (11.38). This gives the canonical 
EM tensor which is not necessarily symmetric. 

The general moral is that different choices of gauging the symmetry may 
lead to different expressions for the Noether current. This is tantamount 
to different choices of the localized symmetry transformation (11.7). The  
resulting alternative Noether currents however only differ by terms that vanish 
on-shell, modulo the inevitable ambiguity with respect to contributions whose 
divergence vanishes off-shell. 

With the EM tensor at hand, we can extract the Noether current for any 
descendant symmetry that can be locally reproduced by spacetime translations (see 
e.g. Sect. 14.3 of [2]). Consider a one-parameter group of symmetries, generated by 
a vector field .ξ(x). The corresponding local transformation with parameter . ∈2(x)

can be written as .xμ → xμ + ∈
μ
1 (x) with .∈μ

1 (x) = ∈2(x)ξμ(x). This turns (11.35) 
to 

.δe∗α
μ = −∈2(ξ

ν∂νe
∗α
μ + e∗α

ν ∂μξν) − ξνe∗α
ν ∂μ∈2 , (11.39) 

whence we extract .F̃ α
2μ = −(ξν∂νe

∗α
μ + e∗α

ν ∂μξν) and .K̃αν
2μ = −δν

μξλe∗α
λ . The con-

sistency condition (11.10) then boils down to 

.∂μRμ = −T μ
ν∂μξν = −1

2
T μν(∂μξν + ∂νξμ) . (11.40) 

In the last step, I assumed that .T μν is symmetric, which we now know to be 
guaranteed in case the action .S̃{ψ, e∗} only depends on the coframe through 
the metric. But should .ξ(x) actually generate a symmetry of the flat Minkowski 
spacetime, .∂μξν + ∂νξμ must vanish by the Killing equation (A.92). Then (11.10) is
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satisfied with .Rμ = 0 and (11.11) gives immediately 

.Jμ[ψ, x](x) = T μν[ψ, x](x)ξν(x) . (11.41) 

This confirms, among others, a general relation between the Hilbert EM tensor and 
the angular momentum tensor, anticipated in (11.34). 

11.3.3 Galilei Invariance 

The previous two examples were relativistic in spirit. Let us therefore have a look 
at one more example that is intrinsically nonrelativistic. Consider a theory of a 
complex Schrödinger field .ψ(x, t) whose excitations are nonrelativistic particles 
with mass m. Suppose that the theory is invariant under spatial translations 
and under the internal .U(1) group of phase transformations of the field. These 
symmetries act respectively on the spatial coordinates, .x' = x + ∈, and the field, 
.ψ ' = eiαψ , and so correspond to 

.δ1ψ(x, t) = iαψ(x, t) − ∈ · ∇ψ(x, t) . (11.42) 

Finally, it is well-known from elementary quantum mechanics that the Schrödinger 
equation for a free particle is invariant under Galilei boosts, 

.ψ '(x', t) = ψ '(x + vt, t) = exp

[
im

(
v · x + 1

2
v2t

)]
ψ(x, t) . (11.43) 

Here . v is the boost velocity which plays the role of the transformation parameter. Let 
us assume that the invariance under (11.43) is inherited by our possibly interacting 
nonrelativistic field theory. 

The evolutionary form of an infinitesimal Galilei boost is 

.δ2ψ(x, t) = imv · xψ(x, t) − tv · ∇ψ(x, t) . (11.44) 

This can be locally recovered as a combination of a spatial translation and a phase 
transformation if we set 

.α(x, t) = mx · v(x, t) , ∈(x, t) = tv(x, t) . (11.45) 

In this case, therefore, the combination of spatial translations and internal .U(1) is 
the parent symmetry, whereas the Galilei boosts are its descendants. The rest follows 
a familiar pattern. The integrability condition (11.4) requires that there is a local 
function .Nμr [ψ, x, t] of the field and its derivatives such that 

.mJr + T 0r = ∂μNμr , (11.46)
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where .Jμ is the current of the internal .U(1) symmetry. The general equivalence 
relation (11.5) then gives the current .Bμr corresponding to Galilei boosts, 

.Bμr = mxrJμ + tT μr − Nμr . (11.47) 

Should .Nμr happen to be zero, the integrability condition (11.46) would boil 
down to .T 0r = −mJr . Except for the sign convention in the definition of the two 
currents, this is the usual nonrelativistic relation between momentum and velocity. 
Moreover, (11.47) would imply .B0r = mxrJ 0 + tT 0r = m(xrJ 0 − tJ r ). This  
generalizes to field theory the well-known fact that the conserved charge for a Galilei 
boost of a particle of mass m is .mx−pt , where . p is the particle momentum. Whether 
or not, or under what conditions, .Nμr actually is zero needs to be inspected case by 
case. 

The story of Galilei invariance becomes very interesting, and nontrivial, once 
we consider background gauging. What we need is to gauge simultaneously spatial 
translations, Galilei boosts and the internal .U(1) phase transformations. Since the 
Galilei boosts are descendant, we want to primarily gauge spatial translations and 
the internal .U(1). The actions of these cannot be trivially separated as one could do 
in a Lorentz-invariant field theory. Namely, the gauged translations must affect the 
phase of the Schrödinger field in a way that reproduces (11.43). 

It turns out that the minimal setup that does the job includes a background 
spatial metric .grs(x) and a gauge field .Aμ(x) for the .U(1) symmetry [3]. Under 
a combination of an infinitesimal local translation, .x' = x + ∈(x, t), and a . U(1)

transformation with parameter .α(x, t), the background fields vary by 

. 

δgrs(x) = −∈u(x)∂ugrs(x) − gus(x)∂r∈
u(x) − gru(x)∂s∈

u(x) ,

δA0(x) = ∂0α(x) − ∈u(x)∂uA0(x) − Au(x)∂0∈
u(x) ,

δAr(x) = ∂rα(x) − ∈u(x)∂uAr(x) − Au(x)∂r∈
u(x) − mgrs(x)∂0∈

s(x) .

(11.48) 

The first two lines take the expected form. The only nontrivial ingredient really is 
the last term on the third line of (11.48), which depends on the mass parameter m. 
This reflects the fact that the realization of spatial translations and Galilei boosts 
on a Schrödinger field is centrally extended, with m playing the role of the central 
charge. The associated nonrelativistic spacetime geometry is known as Newton– 
Cartan. See [4, 5] for more details on nonrelativistic field theory in Newton–Cartan 
spacetimes, and [6] for broader background on nonrelativistic geometry. 

The localized transformation of the Schrödinger field itself is given by (11.42). 
By combining this with (11.48), we then generate at once the Noether currents of 
all the symmetries in terms of a gauged action .S̃{ψ, g,A}. First, the current of the
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.U(1) symmetry is given by a trivial modification of (11.21), 

.Jμ[ψ, x](x) = − δS̃{ψ, g,A}
δAμ(x)

∣∣∣∣∣
vac

, (11.49) 

where “vac” now indicates setting .grs to the flat Euclidean metric .δrs and .Aμ to 
zero. Next comes the EM tensor. By (11.27), the only components that the invariance 
under (time-dependent) spatial coordinate transformations gives us access to are 

. T 0r [ψ, x](x) = m
δS̃{ψ, g,A}

δAr(x)

∣∣∣∣∣
vac

, T rs[ψ, x](x) = 2
δS̃{ψ, g,A}

δgrs(x)

∣∣∣∣∣
vac

.

(11.50) 

Note that (11.49) and (11.50) together imply a relation between momentum 
density and the particle number current, .T 0r = −mJr . This corresponds 
to (11.46) with vanishing .Nμr . It might come as a surprise that the background 
gauge invariance yields a stronger constraint on the Noether currents than the 
original, physical symmetry. After all, background gauge invariance per se is 
merely a handy tool to encode the consequences of the symmetry. However, 
recall that the realization of Galilei transformations on the Schrödinger field is 
centrally extended. This is an obstruction that makes gauging of the symmetry 
nontrivial. It is ultimately the assumption that the gauging is possible that is 
responsible for the vanishing of .Nμr . This does not add any new physics, 
but rather constrains the class of theories to which the background gauging 
procedure can be applied. 

Next, the current .Bμr for Galilei boosts can be identified by using (11.9) together 
with .δψS̃ = ∫

dDx B
μ
r∂μvr . Upon inserting (11.45) in (11.48), we find that the 

consistency condition (11.10) is satisfied with .Rμ
r = 0. This leads via (11.11) to 

.

B0r [ψ, x](x) = −mxr δS̃{ψ, g,A}
δA0(x)

∣∣∣∣∣
vac

+ mt
δS̃{ψ, g,A}

δAr(x)

∣∣∣∣∣
vac

,

Brs[ψ, x](x) = −mxs δS̃{ψ, g,A}
δAr(x)

∣∣∣∣∣
vac

+ 2t
δS̃{ψ, g,A}

δgrs(x)

∣∣∣∣∣
vac

.

(11.51) 

These can be combined using (11.49) and (11.50) into .Bμr = mxrJμ+tT μr , which 
is just (11.47) without the .Nμr term. This is consistent with our conclusion above 
that .Nμr = 0 as a consequence of the assumption that the gauged action . S̃{ψ, g,A}
is invariant under (11.48).
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11.3.4 Changing the Background: Magnetic Translations 

Our discussion in this chapter started with declaring the existence of certain 
symmetry and its subsequent localization. However, it is also possible to adopt 
the opposite approach. Suppose we know a priori the type of background gauge 
fields and the local transformations that make the action .S̃{ψ,A} invariant. It is then 
possible to identify the original symmetry as the subset of the gauge transformations 
that preserve a trivial background. 

Example 11.3 

Recall the Galileon symmetry of Sect. 11.3.1. Out of all the gauge transformations 
.Aμ(x) → Aμ(x) + ∂μ∈(x), only those with constant . ∈ preserve the background, in 
this case regardless of the specific choice of .Aμ(x). Constant . ∈ corresponds exactly 
to the shift symmetry, acting on the Galileon scalar field . φ. 

Example 11.4 

In case of relativistic theories of fields with integer spin, we can consider as the 
background a generic spacetime metric .gμν(x). The set of local general coordinate 
transformations that preserve such a background corresponds to (the continuous 
part of) its isometry group (see Appendix A.6.2 for the necessary mathematical 
background). In case of the flat Minkowski spacetime, this is just the Poincaré 
group, as follows from a trivial modification of Example A.15. Note that choosing 
the background geometry is not equivalent to fixing the coframe .e∗α

μ as (11.36) 
might naively suggest. The reason is that the coframe is not uniquely determined for 
a given spacetime manifold. This underlines the necessity to carefully identify the 
geometric data, tailored to the given spacetime symmetry and uniquely representing 
the spacetime background. 

Once we have the gauged action .S̃{ψ,A}, we may use it to study physics on 
nontrivial backgrounds. Indeed, the vanishing of the variation of .S̃{ψ,A} under a 
localized symmetry transformation is an exact statement valid for any choice of 
. AA

μ . Imposing the equation of motion on the dynamical fields . ψi amounts to setting 
.δψS̃ = 0, which turns (11.9) into a generalized “conservation law,” 

.

∫
dDx

δS̃

δAA
μ

(
∈BF̃A

Bμ + ∂ν∈
BK̃Aν

Bμ + · · · )
∣∣∣∣∣
on-shell

= 0 . (11.52) 

For this to represent an actual divergence-type conservation law, the chosen 
background must possess some symmetry. This may however be different from the 
symmetry that we originally gauged by introducing the fields .AA

μ in the first place.
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I will illustrate this on an interesting example starting from Galilei invariance in 
.d = 3 spatial dimensions. 

The flat nonrelativistic spacetime corresponds to .grs = δrs and . Aμ = 0. The  
only infinitesimal transformations of type (11.48) that preserve this background are 
a linear combination of Euclidean translations and rotations, Galilei boosts, and the 
internal .U(1) transformations. This is not obvious but is straightforward to check. 

Let us now change the background by introducing a uniform magnetic field . B. 
Such a uniform background field should preserve some notion of translation 
invariance. This however cannot be the naive Euclidean translations due to the 
coordinate-dependence of the vector potential .A(x) of the magnetic field. The 
details turn out to depend on the choice of gauge; I will adopt the symmetric 
gauge, .A(x) = (B × x)/2. The translation invariance can now be rescued if it 
is accompanied by a local .U(1) transformation. In terms of the Schrödinger field 
.ψ(x, t), this so-called magnetic translation symmetry takes the form 

.ψ '(x', t) = ψ '(x + ∈, t) = exp

[
i

2
∈ · (x × B)

]
ψ(x, t) . (11.53) 

One remarkable consequence of this twisted translation symmetry is that the 
components of its generator . Pr no longer commute with each other. It is easy to 
check that they satisfy the commutation relation .[Pr, Ps] = −iεrsuB

uQ, where Q 
is the generator of the .U(1) symmetry. 

The magnetic translation symmetry (11.53) can be localized by promoting . ∈ to a 
function of spacetime coordinates and setting 

.ψ '(x + ∈(x), t) = exp[−i∈(x) · A(x)]ψ(x, t) , (11.54) 

where .A(x) is now the spatial part of the variable .Aμ(x). At the infinitesimal level, 
this is equivalent to (11.42) with .α(x) = −∈(x)·A(x). Following the same reasoning 
as in Sect. 11.3.3, we then get modified relations for the EM tensor, 

.

T 0r [ψ, x](x) = −mJr [ψ, x](x) − 2Ar(x)J 0[ψ, x](x)

∣∣∣
vac

,

T rs[ψ, x](x) = 2
δS̃{ψ, g,A}

δgrs(x)

∣∣∣∣∣
vac

− 2As(x)J r [ψ, x](x)
∣∣
vac ,

(11.55) 

which generalize (11.50) to a uniform magnetic background. Here “vac” refers to 
the background vector potential, .Aμ(x)

∣∣
vac = (1/2)δr

μεrsuB
sxu. The components 

of .Jμ[ψ, x] are still given by (11.49). 
The magnetic translations illustrate in a very nontrivial manner many of the 

concepts introduced in Chap. 4 and this chapter. On the magnetic background, 
the Lagrangian of the Schrödinger field depends explicitly on the spacetime 
coordinates, yet possesses a nontrivial notion of translation symmetry. The Lie 
algebra of infinitesimal translations is centrally extended. The translation symmetry
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can be gauged simultaneously with the internal .U(1) symmetry by introducing a 
spatial metric and allowing the background fields to transform according to (11.48). 
This allows one to identify a nontrivial relation between the EM tensor and the 
Noether current of the .U(1) symmetry, shown in (11.55). 

11.4 Application to Scattering of Nambu–Goldstone Bosons 

I will now return to the promise I made in Sect. 10.3.3 Therein, I suggested that the 
enhanced soft limit of scattering amplitudes of NG bosons in the DBI and Galileon 
theories arises from the presence of extended symmetry. We now have all we need 
to be able to understand why. The material of this section loosely follows [7]. 

11.4.1 Galileon Theory 

Let us start with the simpler Galileon theory and recall the discussion of the 
Galileon symmetry in Sect. 11.3.1. In any translationally-invariant theory endowed 
with the Galileon symmetry, the parent current .Jμ

1 [φ] will not depend explicitly on 
the coordinates. By the integrability condition in (11.13), the same holds for the 
local function .Nμ

ν [φ]. Following the philosophy of Sect. 10.1, we now consider an 
arbitrary scattering process .α → β. Using the translation property . Jμ

1 [φ](x) =
eiP ·xJμ

1 [φ](0)e−iP ·x and analogously .N
μ
ν [φ](x) = eiP ·xNμ

ν [φ](0)e−iP ·x , we  
deduce 

. 〈β|J1ν[φ](0)|α〉 = −ipμ 〈β|Nμ
ν [φ](0)|α〉 , (11.56) 

where .pμ ≡ p
μ
α − p

μ
β . 

The general rules of polology dictate that when .pμ approaches the mass shell 
of a massless particle, the matrix element .〈β|J1ν[φ](0)|α〉 develops a pole. This 
corresponds to the emission of a NG boson with momentum . p and allows one to 
extract the on-shell scattering amplitude .Aα→β+π(p); cf. (10.1). The same reasoning 
can however also be applied to the operator .Nμ

ν [φ], leading to 

. 〈β|Nμ
ν [φ](0)|α〉 = 〈0|Nμ

ν [φ](0)|π(p)〉off
1

p2
Aα→β+π(p) + R

μ
βαν(p) , (11.57) 

where .Rμ
βαν(p) is by definition free of poles. By combining this with (11.56), we  

find a relation between .Rμ
βαν(p) and the function .Rμ

βα(p) in (10.1), 

.Rβαν(p) = −ipμR
μ
βαν(p) . (11.58)

3 A reader interested primarily in the development of the general theory for spontaneously broken 
spacetime symmetry may proceed directly to the next chapter. 
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From (10.2) we then finally get an explicit expression for the on-shell amplitude, 

.Aα→β+π(p) = 1

F
pμpνR

μ
βαν(p) , (11.59) 

where F is determined by .〈0|Jμ
1 [φ](0)|π(p)〉 = ipμ

onF , and .pμ
on ≡ (|p| ,p). 

The general relation (10.2) allows one to assert the existence of Adler zero, 
provided the function .R

μ
βα(p) remains regular in the soft limit .pμ → 0. A sufficient 

condition to ensure this is, as we know from Chap. 10, the absence of bilinear 
operators in the current .J

μ
1 [φ]. This automatically translates into the absence 

of bilinear operators in .Nμ
ν [φ]. We then conclude from (11.59) without further 

assumptions that in the soft limit, the scattering amplitudes in the Galileon theory 
vanish at least with the second power of momentum. In other words, the soft limit 
of scattering amplitudes in the Galileon theory is enhanced with the soft scaling 
parameter .σ = 2. 

11.4.2 Theories with Generalized Shift Symmetry 

Having warmed up on the Galileon theory, we can now generalize the above 
argument to a much broader class of theories. For simplicity of notation, I will 
restrict the discussion to Lorentz-invariant theories of a single NG field . φ that are 
invariant under the constant shift .φ → φ + ∈ [7]. Further generalization to theories 
invariant under spacetime translations but mere spatial rotations can be found in [8]. 
A generalization to theories of multiple flavors of NG bosons presumably exists but, 
as far as I know, has not been worked out in the literature. 

Suppose that in addition to the constant shift symmetry, our theory is also 
invariant under a generalized shift of the type 

.δφ(x) = ∈
{
f (x) + Ф[φ, x](x)

}
. (11.60) 

Here .f (x) is assumed to be a polynomial function of the spacetime coordinates 
of degree .deg f ≡ n ≥ 1. The local operator .Ф[φ, x] may depend explicitly on 
the coordinates as well, but is required to be polynomial in .xμ of degree lower 
than n. Examples of symmetries of this type include both the symmetry of the DBI 
theory (10.51) and the special Galileon symmetry (10.56). 

Let us now localize (11.60) and treat it as a generalized coordinate-dependent 
shift of the field, that is .δφ(x) = ∈̃[φ, x](x) with . ̃∈[φ, x](x) ≡ ∈(x){f (x) +
Ф[φ, x](x)}. The corresponding variation of the action is 

.

δS =
∫

dDx J
μ
1 [φ](x)

{
∈(x)∂μ

[
f (x) + Ф[φ, x](x)

]

+ [
f (x) + Ф[φ, x](x)

]
∂μ∈(x)

}
,

(11.61)
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where .Jμ
1 [φ] is the parent current due to the constant shift symmetry. An integra-

bility condition required so that (11.60) really is a symmetry of the action reads 

.J
μ
1 [φ](x)∂μ

[
f (x) + Ф[φ, x](x)

] = ∂μNμ[φ, x](x) . (11.62) 

Unlike the parent current .J
μ
1 [φ], the local function .Nμ[φ, x] may depend explicitly 

on the coordinates. For (11.62) to hold, however, the polynomial degree of . Nμ[φ, x]
in . xμ can be at most that of .∂μf (x), that is .n − 1. 

The next step is to rewrite (11.62) in the form 

.

J
μ
1 [φ]∂μf = Ф[φ, x]∂μJ

μ
1 [φ] − ∂μ

(
Ф[φ, x]Jμ

1 [φ] − Nμ[φ, x])
≡ Ф[φ, x]∂μJ

μ
1 [φ] + ∂μMμ[φ, x] .

(11.63) 

The new local function .Mμ[φ, x] of the field and its derivatives is again of 
polynomial degree at most .n − 1 in the spacetime coordinates. It satisfies the 
translation property .Mμ[φ, x](x) = eiP ·xMμ[φ, x](0)e−iP ·x , with the fields on the 
right-hand side evaluated at the origin but the explicit coordinate dependence left 
intact. Applying the polology rules to this operator then gives, in analogy to (11.57), 

.

〈
β
∣∣Mμ[φ, x](0)

∣∣α〉 = 〈
0
∣∣Mμ[φ, x](0)

∣∣π(p)
〉
off

1

p2
Aα→β+π(p)

+ R
μ
Mβα(x, p) .

‘ (11.64) 

The coordinate dependence of the remainder function .Rμ
Mβα(x, p) comes entirely 

from that of .Mμ[φ, x](0). Therefore, .Rμ
Mβα(x, p) is a polynomial function of the 

coordinates with degree at most .n − 1. 
The crucial observation is that due to current conservation, the on-shell matrix 

element of .Ф[φ, x]∂μJ
μ
1 [φ] between any initial and final states, .|α〉 and . |β〉, 

vanishes. By combining (11.63) and (11.64), we then get a constraint on the 
remainder functions, generalizing (11.58), 

.R
μ
βα(p)∂μf (x) = −ipμR

μ
Mβα(x, p) + ∂μR

μ
Mβα(x, p) . (11.65) 

To understand the implications of this identity, we expand .Rμ
βα(p) and . Rμ

Mβα(x, p)

in a formal power series in . pμ. Let us denote their coefficients of order k in . pμ

respectively as . ak and .bk(x), and write (11.65) symbolically as 

.ak · ∂f (x) ≃ bk−1(x) + ∂ · bk(x) . (11.66) 

This must hold as an equality between polynomial functions of the coordinates. We 
now use repeatedly the fact that .deg bk(x) ≤ n − 1 for all k. Setting .k = 0, we infer 
that .a0 = 0 and simultaneously .∂ · b0(x) = 0, which implies that .b0(x) is constant, 
.deg b0(x) = 0. In case .n ≥ 2, we can next take (11.66) with .k = 1. This can only
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hold if .a1 = 0 and simultaneously .∂ · b1(x) ≃ −b0(x), that is, .deg b1(x) ≤ 1. By  
induction, we find that for any .k ≤ n−1, .ak = 0 and simultaneously .deg bk(x) ≤ k. 

The main conclusion is that for a generalized shift symmetry of the type (11.60) 
where .deg f (x) = n, the series expansion of .Rμ

βα(p) starts at order n in energy– 
momentum. By (10.2), the soft limit of scattering amplitudes of the theory is then 
enhanced with the soft degree .σ = n + 1. This confirms in particular that .σ = 2 for 
the DBI theory and .σ = 3 for the special Galileon theory. 
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12Nonlinear Realization 
of Spacetime Symmetry 

In Part III of the book, I assumed that whatever the full symmetry of the system, 
only internal symmetry is spontaneously broken. Moreover, I only considered two 
possibilities for the symmetry of the underlying spacetime. For nonrelativistic 
systems, I assumed invariance under spacetime translations and spatial rotations; 
this symmetry is sometimes called Aristotelian. In case of relativistic systems, 
the Aristotelian symmetry is turned into Poincaré symmetry by adding invariance 
under Lorentz boosts. Both of these spacetime symmetries are easy to implement 
provided they are not spontaneously broken. Invariance under spacetime translations 
is ensured by demanding that the Lagrangian density of the theory does not 
depend explicitly on spacetime coordinates. Invariance under spatial or spacetime 
rotations can be guaranteed by contracting indices appropriately using ordinary 
tensor calculus. 

The situation becomes subtle when the spacetime symmetry is spontaneously 
broken, or when a different spacetime symmetry than Poincaré or Aristotelian 
is present. It is known that there are in fact multiple mathematically consistent 
kinematical groups including spacetime translations, spatial rotations and boosts [1]. 
Here I will consider in particular the Galilei symmetry, relevant for effective field 
theories (EFTs) of many nonrelativistic systems. Due to the mathematical structure 
of the Galilei group, the theory of its representations, and thus construction of 
Galilei-invariant actions, is highly nontrivial. For an overview of other possible non-
Lorentzian kinematics and the associated spacetime geometry, see [2]. 

The EFT for broken spacetime symmetries finds natural application in cosmol-
ogy. To make the methodology developed below useful also there, I will make an 
exception and initially allow for theories defined on a generic spacetime manifold. 
Some simplifying assumptions on the spacetime manifold will be necessary, but will 
only be introduced when needed. Otherwise, the general philosophy of construction 
of EFTs for spontaneously broken spacetime symmetry is the same as in Part III. I  
will start in this chapter by classifying possible nonlinear realizations of spacetime 
symmetry. In Chaps. 13 and 14, I will then utilize the results to build effective 
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actions. Unfortunately, there are no general explicit expressions for effective 
Lagrangians akin to those for internal symmetries, worked out in Chap. 8. I will 
therefore have to resort to outlining the basic algorithm and working out some 
illustrative examples. 

12.1 Reminder of Nonlinear Realization of Internal Symmetry 

The material of this chapter closely parallels Chap. 7, which the reader is advised 
to remind themselves of before proceeding further. In order to underline the basic 
logic, let me however give at least a brief summary of the steps we took in Chap. 7. 

We used the fact that internal symmetries in the sense of Sect. 4.1.1 are point 
transformations that only act on fields and leave spacetime coordinates intact. This 
allows for a geometric reformulation of the problem of classifying all nonlinear 
realizations of internal symmetry. Namely, if the fields take values from a manifold 
. M, then realizing the internal symmetry group G on them amounts to defining an 
action of G on . M. While the action of the symmetry group is assumed to exist 
globally on the whole manifold . M, its explicit expression requires a set of local 
coordinates. Thus, all statements depending on a specific choice of coordinates are 
without further qualification valid only in a local coordinate patch. 

We start by picking a point .ψ0 ∈ M.1 The subgroup .Hψ0 of elements of G that 
map . ψ0 to itself is called its isotropy group. Whenever .Hψ0 is compact, there are 
local coordinates .(πa, χϱ) on . M such that . ψ0 corresponds to .πa = χϱ = 0 , and 
.Hψ0 acts separately and linearly on . πa and . χϱ. Moreover, the set of points . (πa, 0)

spans a submanifold of . M, equivalent to the coset space .G/Hψ0 . This makes it 
possible to encode . πa in a unique representative element .U(π) of the corresponding 
left coset of .Hψ0 in G. The representative element can be chosen so that the point 
. ψ0 is mapped to .U(0) = e. In addition, the linear representation of the isotropy 
group .Hψ0 on . πa is realized by the adjoint action, .U(π) → hU(π)h−1, .h ∈ Hψ0 . 
Altogether, the action of G on . M in the standard coordinates .(πa, χϱ) is fixed by 
the choice of representative .U(π) and of the linear representation of .Hψ0 on . χϱ. 

In physics terms, every point .ψ0 ∈ M defines a specific value of the order 
parameter for spontaneous symmetry breaking (SSB). The isotropy group . Hψ0

corresponds to the unbroken subgroup of G. Once treated as maps from the 
spacetime to . M, .πa become the Nambu–Goldstone (NG) fields implied by SSB, 
whereas . χϱ are usually called matter fields. The same symmetry-breaking pattern 
.G → H may be realized by different order parameters, and thus on different 
target manifolds . M. This however only affects the number and type of matter 
fields present. The NG fields are identified unambiguously as coordinates on the 
coset space .G/H , and are in a one-to-one correspondence with the generators of 
broken symmetry.

1 In Chap. 7, I used the symbol . x0 instead of . ψ0, which I will now reserve for a reference point on 
the spacetime manifold. 
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Moving now to spacetime symmetries, we will be able to follow the mathematical 
construction of nonlinear realization of internal symmetry very closely. We will only 
have to introduce one important modification, taking into account the distinction 
between fields and coordinates. However, the mapping to the physical concepts of 
SSB and NG bosons will turn out to be much more intricate. 

12.2 Spacetime Symmetry as a Point Transformation 

Consider a theory of a set of bosonic fields . ψi living on a D-dimensional spacetime 
manifold M . It is temporarily convenient to treat . ψi and the spacetime coordinates 
. xμ on equal footing as independent variables spanning the product manifold . M ×
M . This allows us to view the action of a spacetime symmetry (in the sense of 
Sect. 4.1.1) as a special case of a point transformation on .M× M . See Fig. 12.1 for 
a visualization. Formally, the action of a spacetime symmetry group G on . M × M

constitutes a set of maps . Tg , or equivalently functions . Fi and . Xμ, such that 

.Tg : (ψi, xμ) → (ψ 'i , x'μ) ≡ (Fi (ψ, x, g),Xμ(x, g)) , g ∈ G . (12.1) 

The functions . Fi and .Xμ cannot be chosen arbitrarily, but have to respect the 
structure of G. First, the unit element .e ∈ G must be realized by an identity 
transformation, 

.Te = id ⇔ Fi (ψ, x, e) = ψi , Xμ(x, e) = xμ . (12.2) 

x 

ψ 

x0 (x0,g) 

ψ1 

ψ2 

(ψ1,x0,g) 

(ψ2,x0,g) 

g 

g 

Fig. 12.1 Visualization of the action of a spacetime symmetry on the product manifold .M× M . 
The transformation of the spacetime coordinates . xμ is independent of the fields . ψi . For fixed . x0 ∈
M and .g ∈ G, the symmetry thus acts as a map between the slices .M× {x0} and .M× {X(x0, g)}, 
indicated by the dashed lines
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Second, the group multiplication law dictates that for any .g1, g2 ∈ G, 

. Tg1g2 = Tg1 ◦ Tg2 ⇔
{

Fi (ψ, x, g1g2) = Fi (F(ψ, x, g2),X(x, g2), g1) ,

Xμ(x, g1g2) = Xμ(X(x, g2), g1) .

(12.3) 
Finally, for any .g ∈ G the map .Tg−1 must be the inverse of . Tg , 

.Tg−1 = (Tg)
−1 ⇔

{
Fi (F(ψ, x, g),X(x, g), g−1) = ψi ,

Xμ(X(x, g), g−1) = xμ .
(12.4) 

The special case of (12.1) where .ψ 'i = Fi (ψ, g) and .Xμ(x, g) = xμ corresponds 
to an internal symmetry.2 Another special case is a purely spacetime transformation, 
where .Fi (ψ, x, g) = ψi for all .ψ ∈M and .x ∈ M . It follows from the conditions 
on the functions .Xμ in (12.2)–(12.4) that purely spacetime transformations form a 
subgroup of the symmetry group G. Here I will make a technical assumption that 
will prove essential for setting up standard coordinates on the product manifold 
.M × M . Namely, I will assume that the subgroup of G of purely spacetime 
transformations acts transitively on every slice .{ψ}×M with fixed .ψ ∈M. Loosely 
speaking, this requires that the spacetime manifold M has sufficient symmetry that 
turns it into a homogeneous space. Now choose an arbitrary .x0 ∈ M and keep it 
fixed. By our assumption, for any .x ∈ M there is a purely spacetime transformation 
.Tx0→x ∈ G that maps . x0 to x. Typically, there will be multiple such transformations; 
we then have to choose one .Tx0→x by convention. For flat spacetimes, it is natural 
to use a translation connecting the two points. However, we do not have to be that 
specific at this stage, keeping in mind that M may be curved. 

Eventually, we would like to treat . ψi as functions on the spacetime. Mathemati-
cally, this amounts to replacing the action of the symmetry group G on .M×M with 
one on maps .M →M. Such an induced action is easy to write down thanks to the 
assumption that the transformation of the coordinates is independent of the fields. 
Thus, the fields .ψi(x) are mapped to .ψ 'i (x, g) such that 

.

ψ 'i (X(x, g), g) = Fi (ψ(x), x, g) , or equivalently

ψ 'i (x, g) = Fi (ψ(X(x, g−1)),X(x, g−1), g) ,
(12.5) 

for any .g ∈ G. We will need (12.5) once we want to construct a G-invariant effective 
action for the fields. For the time being, however, I will pursue the analogy with 
Chap. 7 and focus on the action of G on the product manifold .M× M .

2 Strictly speaking, my previous definition of a spacetime symmetry included the assumption that 
.Xμ(x, g) /= xμ, at least for some .x ∈ M . This assumption is however immaterial in the present 
context. It will actually be convenient to think of the formalism developed here as a generalization 
rather than a modification of that in Part III of the book. 
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12.3 Standard Nonlinear Realization 

For every point .(ψ, x) ∈M× M there is an isotropy group consisting of elements 
of G that map the point to itself, 

.H(ψ,x) ≡ {h ∈ G | Th(ψ, x) = (ψ, x)} . (12.6) 

The setup of nonlinear realization of internal symmetry as reviewed in Sect. 12.1 
would naively suggest that we now choose a point .(ψ0, x0) ∈ M × M . In its 
neighborhood, we could then establish the standard nonlinear realization of G 
in the usual manner. There are however two problems with this naive approach. 
First, we eventually want to treat fields as functions, defined globally on the whole 
spacetime M , as long as global coordinates on M exist. Second, the fields should be 
functions of the original, physical coordinates . xμ, not of some new variables whose 
dependence on . ψi and . xμ is beyond our control. 

In order to reach these goals, we take an intermediate step, introducing an 
isotropy group of a chosen spacetime point, 

.Hx ≡ {g ∈ G | Xμ(x, g) = xμ} . (12.7) 

Obviously, .H(ψ,x) is a subgroup of .Hx for any .ψ ∈ M. Moreover, having fixed 
a reference point .x0 ∈ M , we can use the maps .Tx0→x to show that, in analogy 
with (7.7), isotropy groups at different spacetime points are related by conjugation, 

.Hx = Tx0→xHx0T −1
x0→x , H(ψ,x) = Tx0→xH(ψ,x0)T

−1
x0→x . (12.8) 

Example 12.1 

Let . ψ be a complex Schrödinger field so that .M ≃ C, and let M be the flat Galilei 
spacetime. The action (11.43) of a Galilei boost with velocity . v corresponds to 

.(ψ, x, t)
v−→ (

exp[im(v · x + v2t/2)]ψ, x + vt, t
)

. (12.9) 

We assume that in addition to boosts, the symmetry group G also includes spacetime 
translations, spatial rotations, and the internal .U(1) symmetry of phase transforma-
tions. For .x

μ
0 = (x0, t0) = (0, 0), we find .Hx0 ≃ [SO(d)⋉Rd ]×U(1), consisting of 

spatial rotations, Galilei boosts, and the phase transformations. In the special case of 
.ψ0 = 0, .H(ψ0,x0) ≃ Hx0 . Otherwise, for any .ψ0 /= 0, .H(ψ0,x0) ≃ SO(d)⋉Rd

⊊ Hx0 . 
The isotropy groups for other spacetime points are obtained by conjugation (12.8) 
using the spacetime translation .Tx0→x(ψ, x', t ') ≡ (ψ, x' + x − x0, t

' + t − t0).3 

3 In order to avoid cluttered notation, I use here and in the following the same symbol .Tx0→x to 
denote both the element of G and the corresponding map on .M× M .
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For any fixed .x ∈ M , the transformation of .(ψi, xμ) under .g ∈ Hx is determined 
by the functions .Fi (ψ, x, g). In other words, these functions define an action of . Hx

on the slice .M×{x} ≃M. This makes it possible, following now Chap. 7 verbatim, 
to introduce a standard set of field coordinates on . M. Together with the spacetime 
coordinates . xμ, this defines a parameterization of the whole manifold .M × M , in  
which the action of G takes a standard form. In order to keep the main results of 
this chapter together in one place, I will first give a concise overview of the ensuing 
standard realization of spacetime symmetry. Afterwards, I will stress some of its 
subtleties. A number of examples is worked out in detail in Sect. 12.4; the reader 
may want to consult these alongside the formal construction developed below. 

12.3.1 Summary of the Construction 

Consider the action of a continuous group G on the product manifold .M × M via 
a set of point transformations of the type (12.1). It is assumed that  G includes a 
set of purely spacetime transformations that act transitively on every slice . {ψ} × M

with fixed .ψ ∈ M. I will for simplicity choose the reference point .x0 ∈ M with 
.x

μ
0 = 0 and denote as .Tx ≡ T0→x the purely spacetime transformation that maps 

. x0 to .x ∈ M . 
The slice .M × {0} ≃ M carries an action of the isotropy group . H0. Choose 

a fixed point .ψ0 ∈ M. Assuming that the isotropy subgroup .H(ψ0,0) is compact, 
it is always possible to find coordinates .(πa, χϱ) on .M × {0} with the following 
properties:

• The point . ψ0 corresponds to .(πa, χϱ) = (0, 0). Also, the set of points . {(πa, 0)}
spans a submanifold of .M× {0}, equivalent to the coset space .H0/H(ψ0,0).

• The coordinates .πa parameterize uniquely a representative .U(π) ∈ H0 of the 
corresponding left coset of .H(ψ0,0) in . H0 such that .U(0) = e.

• The subgroup .H(ψ0,0) acts on .H0/H(ψ0,0) by adjoint action, . U(π) → hU(π)h−1

with .h ∈ H(ψ0,0), which induces a linear transformation of the coordinates . πa .
• The whole group . H0 acts on .M× {0} by left multiplication as 

.

U(π)
g0−→ U(π '(π, g0)) = g0U(π)h(π, g0)

−1 ,

χϱ g0−→ χ 'ϱ(χ, π, g0) = D(h(π, g0))
ϱ
σ χσ ,

(12.10) 

where .g0 ∈ H0 and .h(π, g0) ∈ H(ψ0,0). Moreover, .D(h) is a matrix representa-
tion of .H(ψ0,0). Altogether, the action of .H0 on .M × {0} is fixed by the choice 
of representation D of .H(ψ0,0) and the choice of parameterization .U(π) of the 
coset space .H0/H(ψ0,0). 

This finishes the setup of coordinates and the action of .H0 on the domain 
.Ωψ0 × {0}; .Ωψ0 is a neighborhood of . ψ0 in . M where the coordinates .(πa, χϱ) are
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Fig. 12.2 Schematic 
visualization of the domain 
(shaded area) on the manifold 
.M× M where the standard 
coordinates .(πa, χϱ, xμ) are 
well-defined. The domain 
.Ωψ0 ⊂M carries a local 
coordinate patch with the 
field variables . (πa, χϱ)

x 

ψ 

ψ0 ψ0Ω 

well-defined. As the next step, we transport the coordinates .(πa, χϱ) to the whole 
spacetime using the maps . Tx . This leads to coordinates .(πa, χϱ, xμ) on the domain 
.Ωψ0 × M (see Fig. 12.2). Intuitively, we require that all points of the slice . {ψ} × M

with fixed .ψ ∈ Ωψ0 have the same coordinates .πa, χϱ. Technically, we set 

.(πa, χϱ, xμ) ≡ Tx(π
a, χϱ, 0) . (12.11) 

By (12.8), this fixes the action of the isotropy group . Hx on .M×{x}. Indeed, for any 
.gx ∈ Hx there is a unique .g0 ∈ H0 such that .gx = Txg0T−1

x . This leads to 

. 
Tgx (π

a, χϱ, xμ) = Tx ◦ Tg0(π
a, χϱ, 0) = Tx(π

'a(π, g0), χ
'ϱ(χ, π, g0), 0)

= (π 'a(π, g0), χ
'ϱ(χ, π, g0), x

μ) .

(12.12) 

Moreover, (12.8) guarantees that for any .gx ∈ H(ψ0,x), .g0 ∈ H(ψ0,0). Therefore, the 
isotropy subgroup .H(ψ0,x) is realized on the slice .M×{x} by linear transformations 
of . πa and . χϱ for any .x ∈ M . 

The structure we already have extends uniquely to an action of the entire group G 
on the entire manifold .M×M , or at least on .Ωψ0 ×M . Namely, note that the action 
of any .g ∈ G on a chosen point .(ψ, x) can be composed of the action of an element 
of .Hx and a purely spacetime transformation, see Fig. 12.3. Indeed, decompose 

.g = Tx→X(x,g)T−1
x→X(x,g)

g ≡ Tx→X(x,g)gx(x, g) , (12.13) 

with the shorthand notation .Tx→x' ≡ Tx0→x'T −1
x0→x . The group element . gx(x, g)

maps .(ψi, xμ) to .(Fi (ψ, x, g), xμ) for any .ψ ∈M and thus belongs to . Hx . It corre-
sponds to an element .g0(x, g) ∈ H0 by .g0(x, g) = T−1

x gx(x, g)Tx = T−1
X(x,g)

gTx . 
Together with (12.12), this leads to the final expression for the action of G within 
.Ωψ0 × M , 

.Tg(π
a, χϱ, xμ) = (π 'a(π, g0(x, g)), χ 'ϱ(χ, π, g0(x, g)),Xμ(x, g)) . (12.14)
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Fig. 12.3 For any fixed point 
.(ψ, x) ∈M× M , the action 
of a chosen element . g ∈ G

can be composed from 
actions of an element of . Hx

and a purely spacetime 
transformation 

ψ 

x (x,g) 

(ψ,x,g) 

This completes the setup of the nonlinear realization of G. I assumed an a priori 
knowledge of the transformation properties of the spacetime coordinates, that is the 
functions .Xμ(x, g). With this provision, the action of G is uniquely fixed by the 
structure of the isotropy groups .H0 and .H(ψ0,0), and by the representation . D(h)

of .H(ψ0,0). In the process, we made some choices, including the choice of the 
representative .U(π) parameterized by . πa and of the element .Tx ∈ G representing 
a spacetime point .x ∈ M . These are just two sides of the same coin, pertinent 
respectively to the manifolds . M and M . 

Complicated as it might seem, (12.14) actually encodes in a rather simple manner 
the action of G by left matrix multiplication. Indeed, let us represent the point 
.(πa, χϱ, xμ) formally by .Tx(U(π), χϱ). Then left multiplication by any . g ∈ G

gives 

. Tg ◦ Tx(U(π), χϱ) = TX(x,g) ◦ Tg0(x,g)(U(π), χϱ)

= TX(x,g)

(
U(π '(π, g0(x, g)))h(π, g0(x, g)), (12.15) 

D(h(π, g0(x, g)))ϱσ χσ
)

, 

which exactly copies (12.14) in the matrix notation of (12.10). This shows that it is 
not actually necessary to decompose every .g ∈ G into a product of an element of 
.Hx and a purely spacetime transformation as in (12.13). It is sufficient to observe 
that for any .x ∈ M and .g ∈ G, .T−1

X(x,g)
gTx fixes the origin of M and thus belongs 

to . H0. 

12.3.2 Relation to Physics of Broken Spacetime Symmetry 

Mathematically, the generalization of the standard nonlinear realization from inter-
nal to spacetime symmetry was relatively straightforward, perhaps even deceivingly 
so. A number of its features thus deserve pointing out before we proceed to 
examples.
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Universality of the Construction In Chap. 7 we found out that provided the 
isotropy group H is compact, the standard nonlinear realization captures all possible 
actions of the symmetry group G. Furthermore, I remarked that even if H is 
noncompact, the construction still goes through, but is no longer guaranteed to be 
exhaustive, provided the coset space .G/H is reductive. The same applies here with 
the necessary modifications. The universality of the standard nonlinear realization is 
ensured if .H(ψ0,0) is compact. Even if it is not, the construction is still consistent, yet 
not necessarily exhaustive, if the coset space .H0/H(ψ0,0) is reductive. Reference [3] 
gives an explicit example of a group action that cannot be obtained from the standard 
nonlinear realization. There .G ≃ SO(2, 1) acts on .M ≃ R, the isotropy subgroup 
being the noncompact affine group .Aff(1) ≃ R+

⋉ R. 
A possible point of concern might be that I assumed an a priori knowledge of 

the action of G on spacetime coordinates. This is however not a source of any 
hidden ambiguity. For one thing, the action of symmetry on spacetime coordinates 
is usually known. It is the classification of NG fields and their transformation prop-
erties that we are after. Moreover, even if unknown a priori, the functions . Xμ(x, g)

can be constrained following the same philosophy. Namely, restricting (12.1) to 
the coordinates . xμ gives a group of well-defined transformations on M . If desired, 
possible forms of these transformations can be classified using the setup of Chap. 7. 

Fate of Descendant Symmetries Recall the discussion of locally equivalent 
symmetries in Sect. 11.1. As explained therein, one can assume without loss of 
generality that the functions .f A

A
(x) vanish at the origin, .xμ = 0. Provided the 

localized parent transformation in (11.1) does not involve any derivatives of .∈A
1 (x), 

the action of the descendant symmetry at the origin vanishes. In the standard 
nonlinear realization, such a descendant symmetry therefore automatically belongs 
to .H(ψ0,0) and does not give rise to any NG variables . πa . 

Physical Unbroken Symmetry In contrast to the internal symmetry case, a single 
point .(ψ, x) ∈ M × M cannot unambiguously represent the order parameter 
for SSB. The order parameter rather corresponds to a function .ϕi : M → M. 
A particular value of the order parameter then defines a submanifold, . Mϕ ≡
{(ϕi(x), xμ) | x ∈ M} ⊂ M × M . Accordingly, neither .Hx nor .H(ϕ(x),x) can be 
identified with the subgroup of unbroken symmetries, . Hϕ . The latter rather consists 
of all elements of G that preserve the manifold .Mϕ , that is map points on . Mϕ

to other points on .Mϕ . With the help of (12.5), this translates to the condition 
.ϕi(X(x, g)) = Fi (ϕ(x), x, g) for all .x ∈ M . This constraint is highly implicit; 
in practice it is usually much easier to check its infinitesimal form, 

.F i
A(ϕ(x), x) − X

μ
A(x)∂μϕi(x) = 0 for all x ∈ M . (12.16) 

The functions .F i
A and .X

μ
A define the action of the generator .QA of G. The  

reconstruction of the group .Hϕ from the solutions to (12.16) is based on the 
correspondence between a Lie group and its Lie algebra. An example of a possible
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pitfall this approach may fall into, in the context of isometries of a Riemannian 
manifold, is given in Appendix A.6.2. 

Example 12.2 

Suppose that the order parameter is constant, .ϕi(x) ≡ ϕi
0. It follows that the 

“vacuum submanifold” is .Mϕ = {ϕ0} × M . According to (12.1), the unbroken 
subgroup is 

.Hϕ0 = {g ∈ G | Fi (ϕ0, x, g) = ϕi
0 for all x ∈ M} . (12.17) 

Any purely spacetime symmetry automatically belongs to .Hϕ0 . In other words, 
purely spacetime symmetries can only be broken by a coordinate-dependent order 
parameter. On the other hand, for internal symmetries, the condition in (12.17) 
reduces to .Fi (ϕ0, g) = ϕi

0. Since internal symmetries by construction do not affect 
the coordinates . xμ, the definitions of .H(ϕ0,x) and .Hϕ0 in this special case coincide. 
At the same time, for internal symmetries we have trivially .Hx ≃ G for any .x ∈ M , 
hence .Hx/H(ϕ0,x) ≃ G/Hϕ0 . This verifies that for internal symmetries, the more 
general formalism developed here boils down to that of Chap. 7. 

Classification of Order Parameter Fluctuations For internal symmetries, inde-
pendent fluctuations of the order parameter are in a one-to-one correspondence with 
the NG fields . πa . It would therefore be tempting to conclude that in the more general 
case of spacetime symmetries, they are classified by the coset space .H0/H(ψ0,0). The  
latter however only counts the NG variables . πa , realizing nonlinearly the action of 
. H0. Our parameterization (12.11) of the manifold .M×M also involves the action of 
the “translations” . Tx . Being purely spacetime, these may be spontaneously broken 
if .∂μϕi(x) /= 0 for some .x ∈ M . We will only be able to introduce the corresponding 
NG modes in Chap. 13 once we treat . ψi as maps .M →M. The resulting EFT can 
be expected to feature a nontrivial realization of spacetime translations. 

It is possible to be more explicit in the special case of a constant order parameter, 
.ϕi(x) = ϕi

0, where purely spacetime symmetries remain unbroken. Here we expect 
a low-energy EFT in terms of NG fields . πa on which purely spacetime symmetries 
act trivially, .π 'a(X(x, g), g) = πa(x). The number of these NG fields is identified 
by the dimension of .H0/H(ϕ0,0). This generalizes our previous counting rule for NG 
fields of broken internal symmetry. 

Example 12.3 

Consider a theory of a single real relativistic scalar field . φ that is invariant under the 
Galileon transformations, 

.(φ, xμ)
∈,∈μ−−→ (φ'(φ, x, ∈), x'μ(x, ∈)) = (φ + ∈ + ∈μxμ, xμ) . (12.18)
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The symmetry group is .G ≃ ISO(d, 1) ⋉ RD+1, where .ISO(d, 1) is the D-
dimensional Poincaré group and the .RD+1 factor collects the constant and linear 
shifts of . φ in (12.18). Suppose the dynamics of the theory is such that the ground 
state has a constant vacuum expectation value (VEV), .〈φ(x)〉 ≡ ϕ. This order 
parameter breaks by (12.16) the entire Galileon symmetry, that is .Hϕ ≃ ISO(d, 1). 
The coset space .G/Hϕ ≃ RD+1 obviously does not correctly identify the NG 
modes. After all, our theory has a Lorentz-invariant vacuum and a single scalar 
field. Indeed, we find that .H0 ≃ SO(d, 1) ⋉ RD+1 where .SO(d, 1) is the Lorentz 
group. Likewise, .H(ϕ,0) ≃ SO(d, 1) ⋉ RD . This only includes the linear shifts of . φ
in (12.18), which act trivially at .xμ = 0. In the end, we thus find .H0/H(ϕ,0) ≃ R, 
corresponding to the symmetry under constant shifts of . φ. This gives the correct 
number of NG modes: one. The symmetry under linear shifts of . φ is descendant. 
While it constrains the effective Lagrangian, cf. Sect. 11.3.1, it cannot affect the 
physical spectrum. 

Domain of the Standard Nonlinear Realization As emphasized rather stub-
bornly, the standard field coordinates .(πa, χϱ) are in principle only well-defined 
in some domain .Ωψ0 ⊂ M. In order for our formalism to be able to capture 
all fluctuations of the order parameter, the manifold .Mϕ had better lie entirely 
in .Ωψ0 × M . This is obviously the case when the order parameter is constant as 
in Example 12.2. It is however not guaranteed in general and has to be checked 
case by case. In fact, it is easy to imagine a situation where this condition is very 
nontrivial. Consider a system with an order parameter .ϕi(x) where the isotropy 
group .H(ϕ(x),x) varies from place to place. This is in contrast to our setup where 
.H(ψ0,x) for all .x ∈ M are mutually isomorphic. It may happen e.g. in systems where 
the order parameter for spontaneous breaking of internal symmetry vanishes at some 
spacetime points. We might then be lucky and still get away with our standard 
nonlinear realization. The price to pay is the presence of .πa-type variables that 
locally excite gapped modes in the spectrum, or .χϱ-type variables that locally excite 
NG modes. I am not aware of any work in the literature that would systematically 
address this kind of situation. 

Example 12.4 

A two-dimensional superfluid vortex is a map .ψ : R2 → C, expressed in the polar 
coordinates .ϱ, θ on . R2 as .ψ(x) = f (ϱ)einθ . Here .f (ϱ) is a strictly increasing profile 
function such that .f (0) = 0 and the limit of .f (ϱ) for .ϱ → ∞ is finite. The nonzero 
parameter .n ∈ Z is the so-called winding number of the vortex. The target manifold 
.M ≃ C carries an action of .G ≃ U(1) under which .ψ

∈−→ ei∈ψ . This is an internal 
symmetry and thus .H0 ≃ G ≃ U(1). For .ψ0 = 0, corresponding to the core of the 
vortex, we find .H(ψ0,0) ≃ G ≃ U(1) as well. There are no NG variables, only two 
matter variables . χϱ, equivalent to the real and imaginary parts of . ψ . These are well-
defined in the entire complex plane, hence .Ωψ0 = C. On the other hand, choosing
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.ψ0 /= 0 as appropriate for the vortex away from the core leads to .H(ψ0,0) ≃ {e}. 
The coset space .H0/H(ψ0,0) ≃ U(1) is now parameterized by a single NG variable 
. π . The local parameterization of .M ≃ C is completed by one matter variable . χ . 
One can view .χ, π as polar coordinates on the target space. As such, their domain 
of validity .Ωψ0 can be extended at most to . C with a half-line starting at the origin 
removed. 

Some Literature on the Subject Nonlinear realizations of internal symmetry were 
classified in the pioneering work [4]. First attempts to generalize their results to 
spacetime symmetries appeared soon afterwards [5,6]. These early works addressed 
a narrow class of relativistic systems where an extended symmetry such as the 
conformal symmetry is spontaneously broken to the Poincaré group. They followed 
an approach, based on an abstract coset space wherein all spontaneously broken 
symmetries induce relevant, independent degrees of freedom. Formally, this can be 
viewed as working with a set of order parameters that is sufficiently large to prevent 
any symmetries from being locally equivalent. Alternatively, it can be interpreted as 
being “agnostic” about the choice of order parameter. It is then necessary to include 
in the EFT the maximum possible set of order parameter fluctuations that can be 
enforced by a given symmetry-breaking pattern. 

The price of this agnostic nonlinear realization is that it introduces extra degrees 
of freedom that at best correspond to gapped modes in the spectrum, and at worst are 
outright unphysical. Writing down an EFT solely in terms of the physical NG modes 
requires eliminating the superfluous degrees of freedom by an operational procedure 
known as inverse Higgs constraint (IHC) [7]. In spite of its obvious shortcomings, 
this framework has influenced the narrative surrounding spontaneous breaking of 
spacetime symmetries for decades. Much of the subsequent work focused on the 
machinery of IHCs and its physical interpretation. Namely, it has been known 
for some time that fluctuations of the order parameter, corresponding to locally 
equivalent symmetries, are redundant [8, 9]. Eliminating the would-be NG degrees 
of freedom corresponding to descendant symmetries by imposing a set of IHCs can 
then be interpreted as gauge-fixing [10]. The alternative possibility that the modes 
eliminated by the IHC may be physical but are necessarily gapped was recognized 
in [11, 12]. I will elaborate on the two scenarios later when we have at hand 
explicit examples. Finally, much work has been done on the question to what extent 
imposing an IHC might interfere with the universality of the standard nonlinear 
realization [13–15]. The moral is that a point transformation relating different 
parameterizations of an EFT may become nonlocal upon imposing the IHC. 

As far as I know, the fact that the would-be NG fields of descendant symmetries 
need not be included in the nonlinear realization at all was first pointed out in [16]. 
The approach developed here makes this explicit by identifying the relevant NG 
variables .πa with coordinates on the coset space .H0/H(ψ0,0). This has a simple 
classical interpretation, whereby . πa represent the deviation of the order parameter 
from its local value. They can be further augmented with additional NG fields,
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arising from the spacetime variation of the order parameter. To incorporate such 
additional NG fields will be the most challenging problem we will have to face in 
Chap. 13. 

12.4 Examples 

To illustrate the general construction of Sect. 12.3, I will now work out in detail 
several examples, covering a range of different symmetries. In all the examples, I 
assume flat (relativistic or not) spacetime where the map .Tx→x' is realized by the 
unique translation that moves the point .x ∈ M to .x' ∈ M . The isotropy group . H0 is 
fixed by the transformation properties of spacetime coordinates, known a priori. The 
subgroup .H(ψ0,0), on the other hand, may depend sensitively on the choice of the 
reference point . ψ0. This is demonstrated by the examples in Sects. 12.4.2–12.4.4. 

12.4.1 Lorentz Scalars with Internal Symmetry 

A good starting point is to check that our new algorithm can reproduce what we 
know from before about internal symmetries. Consider for simplicity a theory of a 
set of relativistic scalars . ψi with a symmetry group .G ≃ ISO(d, 1) × Gint. Here  
.ISO(d, 1) is the Poincaré group, acting as a purely spacetime symmetry, and .Gint is 
an internal symmetry. The actions of the purely spacetime and internal parts of G 
are completely independent of each other. Mathematically speaking, .ISO(d, 1) and 
.Gint possess a well-defined action on, respectively, .M ≃ RD and . M. Both actions 
are trivially extended to .M× M by embedding. 

It follows at once that .H0 ≃ SO(d, 1) × Gint and .H(ψ0,0) ≃ SO(d, 1) × Hint, 
where .Hint ⊂ Gint is the isotropy group of the point .ψ0 ∈ M. Unsurprisingly, we 
end up with a set of NG variables . πa , parameterizing the coset space . H0/H(ψ0,0) ≃
Gint/Hint. By  (12.10) and (12.14), a group element . (gs.t., gint) ∈ ISO(d, 1) × Gint
acts on the standard coordinates .(πa, χϱ, xμ) via 

. U(π)
(gs.t.,gint)−−−−−→ U(π '(π, gint)) = gintU(π)hint(π, gint)

−1 ,

χϱ (gs.t.,gint)−−−−−→ χ 'ϱ(χ, π, gint) = D(hint(π, gint))
ϱ
σ χσ , (12.19) 

xμ (gs.t.,gint)−−−−−→ x'μ (x, gs.t.) = (Tgs.t. x)μ . 

Here .hint ∈ Hint and .D(hint) is a matrix representation of .Hint. Finally, .Tgs.t. defines 
the action of the Poincaré group on the Minkowski spacetime. This is of course 
well-known, so the abstract notation just takes explicitly into account the possibility 
of using other coordinates . xμ than Minkowski.
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This might look like a mere idiosyncratic reformulation of the standard 
nonlinear realization of internal symmetry as laid out in Chap. 7. Indeed, 
should the order parameter be constant, .ϕi(x) ≡ ϕi

0, the unbroken subgroup 
is .Hϕ0 ≃ ISO(d, 1) × Hint so that .G/Hϕ0 ≃ Gint/Hint, in accord with Exam-
ple 12.2. However, the parameterization of .M × M by .(πa, χϱ, xμ) and 
the corresponding group action (12.19) are also valid for order parameters 
.ϕi(x) with arbitrary coordinate dependence. The true unbroken subgroup . Hϕ

can then be smaller than .ISO(d, 1) × Hint and in extreme cases even trivial. 
This is not mere pedantry. For instance, dense relativistic matter can often 
be described by a time-dependent condensate of scalar fields. Although such 
a background spontaneously breaks boosts, our construction guarantees that 
one can parameterize its fluctuations by the same degrees of freedom as in a 
Lorentz-invariant vacuum. A similar remark applies to all the other examples 
discussed below. 

The same setup can be used even if we replace .ISO(d, 1) with any other purely 
spacetime symmetry group that contains spacetime translations. The message is 
fairly simple: it does not matter what the spacetime symmetry is, as long as it does 
not act directly on the fields. 

12.4.2 Lorentz Scalars with Scale Invariance 

Next, we look at a simple example of a symmetry whose actions on coordinates 
and fields cannot be trivially separated. Consider a set of relativistic scalar fields 
. ψi , carrying the action of .G ≃ R+

⋉ ISO(d, 1). Here .ISO(d, 1) is again the 
Poincaré group. What is new is the factor . R+, representing scale transformations of 
the spacetime coordinates. It would be possible to add an internal symmetry factor 
.Gint in the same way as in Sect. 12.4.1, but I will not do so to keep the notation 
simple. 

It is now convenient to fix the spacetime coordinates .xμ as the standard 
Minkowski ones. The maps .Tx are then realized explicitly as .Tx = eix·P where 
.Pμ is the generator of spacetime translations. The action of translations on the 
Minkowski coordinates is .x'μ(x, ∈) ≡ ei∈·P xμ = xμ + ∈μ. Likewise, an element 
.eα ∈ R+ with real parameter . α is realized on the coordinates as . x'μ(x, α) ≡
eiαDxμ = eαxμ, where D is the dilatation operator. Accordingly, the action of 
the dilatation group .R+ on the Poincaré group is fixed by the commutation relations 
.[D,Pμ] = −iPμ and .[D, Jμν] = 0. 

It is now clear that .H0 ≃ R+ × SO(d, 1). Since Lorentz transformations act 
trivially on scalar fields, we have only two options for .H(ψ0,0), depending on 
whether or not . ψ0 also preserves scale invariance. Let us start with . H(ψ0,0) ≃ R+ ×
SO(d, 1), which corresponds to a scale-invariant order parameter .ψ0 ∈ M. This



12.4 Examples 277

implies .H0/H(ψ0,0) ≃ {e}, hence there are no NG variables . πa , only matter fields. 
These should carry a linear representation of the dilatation symmetry. Since . R+ only 
has one-dimensional irreducible representations, we can always choose a basis . χϱ

of coordinates on .M × {0} such that .χ 'ϱ(χ, α) ≡ eiαDχϱ = exp(−αΔϱ)χϱ.4 The 
parameter .Δϱ is the scaling dimension of . χϱ. The action of dilatations on the entire 
manifold .M× M ≃M× RD is then given by 

.(χϱ, xμ)
α−→ (χ 'ϱ(χ, α), x'μ(x, α)) = (exp(−αΔϱ)χϱ, eαxμ) . (12.20) 

It is instructive to see how this transformation rule is reproduced by (12.15). Namely, 
the commutator .[D,Pμ] = −iPμ together with the Hadamard lemma (7.30) gives 

.eiαDPμe−iαD = eαPμ or eiαDei∈·P e−iαD = exp(ieα∈ · P) . (12.21) 

This ensures that for .g = eiαD , .g0(x, g) = eiαD for any .x ∈ M . The scale 
transformation of .χϱ is independent of the spacetime coordinate as it should. 
Mathematically, the conjugation relation (12.21) boils down to the fact that the 
translation generators . Pμ carry a representation of the dilatation group . R+. 

The other option for the isotropy group is .H(ψ0,0) ≃ SO(d, 1), in which case 
.H0/H(ψ0,0) ≃ R. This can be thought of as arising from a Lorentz-invariant but 
dimensionful order parameter. We now have one NG variable, the dilaton . π , plus  
possibly a set of .dimM−1 matter fields . χϱ. With the exponential parameterization, 
.U(π) = eiπD , (12.10) tells us that .π '(π, α) = π + α and .χ 'ϱ(χ, π, α) = χϱ. The  
extension of the action to other spacetime points works exactly the same as in the 
previous case. The final result for the action of dilatations therefore is 

. (π, χϱ, xμ)
α−→ (π '(π, α), χ 'ϱ(χ, π, α), x'μ(x, α)) = (π + α, χϱ, eαxμ) .

(12.22) 

Note that the scaling dimension of all the matter fields is now zero. This is just a 
matter of a choice of variables. Namely, in presence of the dilaton, any field .Ψϱ with 
scaling dimension .Δϱ can be redefined to .χϱ = exp(Δϱπ)Ψϱ. 

I have not spelled out explicitly the action of spacetime translations and rotations. 
However, these are purely spacetime transformations and only affect the spacetime 
coordinates, similarly to the last line of (12.19). 

12.4.3 Lorentz Vector with(out) Lorentz Scalar 

Another possibility how to make the action of symmetry on coordinates and fields 
entangled is to keep the Poincaré group .G ≃ ISO(d, 1), but take a nonscalar field.

4 From now until the end of Chap. 12, a repeated index . ϱ does not imply any summation. 
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Consider for simplicity a single Lorentz-vector field, . Aμ, defining a D-dimensional 
target manifold .M ≃ RD . We then have .H0 ≃ SO(d, 1), but the isotropy group 
.H(A0,0) depends on the choice of . Aμ

0 . There are four qualitatively different options: 
.A

μ
0 = 0, or nonvanishing .Aμ

0 that is respectively timelike, lightlike, or spacelike. 
In the simplest case of .Aμ

0 = 0, we find .H(A0,0) ≃ H0 ≃ SO(d, 1) and 
consequently .H0/H(A0,0) ≃ {e}. There are no NG variables and the sole degree 
of freedom, .Aμ itself, is of the matter type. It carries the vector representation of 
the Lorentz group, .Aμ → A'μ(A, g) = Λ(g)

μ
νA

ν for any .g ∈ SO(d, 1). Since the 
translation generators . Pμ also carry the vector representation of the Lorentz group, 
we have a conjugation relation similar to (12.21) for dilatations. This guarantees 
that .g0(x, g) = g for any .g ∈ SO(d, 1) and .x ∈ M ≃ RD . From  (12.15), we then 
extract the expected result for the action of Lorentz transformations, 

.Tg(A
μ, xμ) = (Λ(g)μνA

ν,Λ(g)μνx
ν) , g ∈ SO(d, 1) . (12.23) 

Spacetime translations only affect the coordinates, .x'μ(x, ∈) = ei∈·P xμ = xμ + ∈μ. 
For illustration, I will work out in detail one more special case. Suppose that . Aμ

0
is nonzero and timelike. Without loss of generality, we can assume that . Aμ

0 = aδμ0

with .a /= 0. Then .H(A0,0) ≃ SO(d), the group of spatial rotations. The coset space 
.H0/H(A0,0) ≃ SO(d, 1)/SO(d) is now a noncompact d-dimensional manifold, best 
viewed as the mass shell of a massive relativistic particle. A convenient implicit way 
to parameterize it is by treating it as the d-dimensional hyperboloid in . M ≃ RD

satisfying the constraint .AμAμ = a2. That has the advantage of maintaining the 
linear transformation property (12.23) under all Lorentz transformations. This is just 
the noncompact version of the .SO(d + 1)/SO(d) ≃ Sd coset space, conventionally 
parameterized by a unit vector .n ∈ Rd+1. 

If needed, it is possible to introduce explicit coordinates . πr on .H0/H(A0,0), trans-
forming linearly as a vector under .H(A0,0) ≃ SO(d). One suitable coordinatization 
arises from thinking of .Aμ as the energy–momentum of a particle of mass . |a|. The  
d independent coordinates . πr are then the components of its spatial momentum. A 
pure Lorentz boost can be represented by .eiη·K , where . K is the boost generator and 
. η the rapidity. The latter is parallel to the velocity . v of the boost; its magnitude is 
determined implicitly by .|v| = tanh |η|. The action of the boost on . πr in terms of 
the velocity . v reads 

. π '(π , v) = π + γv − 1

v2 (v · π)v + γvv
√

a2 + π2 sgn a , γv ≡ 1√
1 − v2

.

(12.24) 

The parameterization of the target manifold .M ≃ RD is completed by adding to . πr

a matter field . χ , transforming in the singlet representation of . SO(d). By  (12.15), 
it then automatically transforms trivially under the whole Poincaré group. The 
transformation of coordinates . xμ remains of course the same as in (12.23).
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From internal symmetry, we are already used to the fact that the number and 
type of matter fields . χϱ present depend on the choice of order parameter. It 
is only the NG fields .πa that are fixed by the symmetry-breaking pattern. 
Here comes the surprise: for spacetime symmetries, even the number of 
NG variables . πa may depend on the order parameter. For an example, take 
a theory of a relativistic complex scalar field . φ where an internal . U(1)

symmetry is broken by the VEV .〈φ(x)〉 ≡ ϕ(x) = ϕ0e−iμt with constant 
nonzero . ϕ0 and . μ. This state describes matter with nonzero density of the 
.U(1) charge; . μ is the corresponding chemical potential. The state breaks the 
.G ≃ ISO(d, 1) × U(1) symmetry spontaneously down to .Hϕ ≃ ISO(d) × R, 
where .ISO(d) now includes spatial translations and rotations and . R stands 
for a combination of time translations and internal .U(1) transformations. 
In line with our discussion in Sect. 12.4.1, there is a single NG variable, 
parameterizing the coset space .H0/H(ϕ0,0) ≃ [SO(d, 1) × U(1)]/SO(d, 1). 
Now add a vector .Aμ as a secondary order parameter. A constant background, 
.〈Aμ(x)〉 ≡ A

μ
0 = aδμ0, can be interpreted for instance as the VEV of the 

current of the .U(1) symmetry. This does not affect the unbroken subgroup . Hϕ , 
yet it does add a vector . πr of NG variables. We will deal with this puzzle in 
Chap. 13. It will turn out that the number of physical gapless NG modes in the 
spectrum is still uniquely fixed by the symmetry-breaking pattern .G → Hϕ . 
The new variables .πr represent either spurious, nondynamical degrees of 
freedom or dynamical but gapped excitations of the order parameter. 

12.4.4 Schrödinger Scalars with Galilei Symmetry 

To work out at least one nonrelativistic example, we now return to Galilei invariance. 
The action of the Galilei group on spacetime coordinates is well-known. A spatial 
translation by . ∈ shifts Cartesian coordinates by .x → x + ∈, and likewise . t → t + ∈

represents a temporal translation by . ∈. Accordingly, the translation operator . Tx can 
be parameterized as .Tx,t = eitH eix·P , where H and . P are the respective generators. 
A Galilei boost with velocity . v acts on the coordinates as .(x, t) → (x + vt, t), and 
will be represented by .eiv·K with . K being the generator. One should also add the 
generator of spatial rotations, . Jrs . However, since we will be mostly concerned with 
the boosts, I will not spell out the action of rotations explicitly. 

From the transformation of the coordinates, we extract the conjugation property 

.ei∈H Ke−i∈H = K − ∈P or [H,K] = iP . (12.25) 

The actions of spatial translations and boosts on the coordinates commute with each 
other. However, it is known that representations of the Galilei symmetry admit a 
central extension of the commutator .[Pr,Ks]. Let us therefore introduce a tentative
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central charge Q so that5 

.[Pr,Ks] = iδrsQ or ei∈·P Ke−i∈·P = K − ∈Q . (12.26) 

The resulting central extension of the Galilei group is known as the Bargmann 
group. This has the structure .G ≃ SO(d) ⋉ {Rd

K ⋉ [RD × U(1)Q]}. The first factor 
stands for spatial rotations, .RD for spacetime translations, and .Rd

K for boosts. 
Finally, I use the notation .U(1)Q for the transformations generated by Q although 
at this stage it is not clear, or even important, that the symmetry is compact. 
What matters is that the action of Q on the coordinates is trivial. This ensures 
.H0 ≃ [SO(d) ⋉ Rd

K ] × U(1)Q. 
The isotropy group .H(ψ0,0) depends sensitively on the type of fields included. I 

will initially restrict to rotation scalars, . ψi , which makes the rotation .SO(d) into 
a purely spacetime symmetry. Moreover, the .Rd

K group of Galilei boosts is now 
descendant, as we saw in Sect. 11.3.3. This is confirmed by an explicit classification 
of low-spin indecomposable representations of the Galilei group [18]. In the end, 
the only part of the symmetry whose action on . ψi at the origin, .(x, t) = (0, 0), 
may be nontrivial is the .U(1)Q. We have a freedom to decide whether or not . U(1)Q
belongs to .H(ψ0,0) by a suitable choice of the reference point . ψi

0. 
Let us first assume that .H(ψ0,0) ≃ H0 so that .H0/H(ψ0,0) ≃ {e}. It is then 

possible to find a set of complex field coordinates .χϱ that form one-dimensional 
linear representations of .U(1)Q, .χ 'ϱ(χ, α) ≡ eiαQχϱ = exp(iαmϱ)χϱ, where . mϱ

are the corresponding charges of Q. This simple transformation property survives at 
all .(x, t) since Q is a central charge and so commutes with spacetime translations. 
Likewise, all of the spacetime translations and spatial rotations will act solely on 
the coordinates. The only nontrivial piece is the action of Galilei boosts. This is 
determined with the help of (12.15) and the relation 

.eiv·KeitH eix·P = eitH ei(x+vt)·P exp

[
i

(
v · x + 1

2
v2t

)
Q

]
eiv·K , (12.27) 

which follows from (12.25) and (12.26). The final result is 

.eiv·K(χϱ, x, t) = (exp[imϱ(v · x + v2t/2)]χϱ, x + vt, t) , (12.28) 

which reproduces using solely the Lie algebra of the Bargmann group the transfor-
mation rule (12.9) I simply postulated before. We can see that the central charge 
Q, introduced above ad hoc, measures the nonrelativistic (rest) mass. In systems of 
identical particles of a fixed mass, this is proportional to the number of particles.

5 In .d = 2 spatial dimensions, the Galilei group admits another, exotic central extension, 
.[Kr,Ks ] = iκεrs . The parameter . κ is however related to two-dimensional spin [17], and I will 
thus drop it. 



References 281

The other option for the isotropy group is .H(ψ0,0) ≃ SO(d) ⋉ Rd
K . This implies 

that .H0/H(ψ0,0) ≃ U(1)Q. The particle number symmetry .U(1)Q is going to 
be realized nonlinearly as for instance in superfluids. We need one NG variable, 
. π . With the exponential parameterization of the coset space, .U(π) = eiπQ, this  
transforms under .U(1)Q as .π '(π, α) = π +α. In addition, there will be a set of real 
matter fields . χϱ, invariant under .U(1)Q. Using again (12.27), we then find quite a 
different result then above, 

.eiv·K(π, χϱ, x, t) = (π + v · x + v2t/2, χϱ, x + vt, t) . (12.29) 

This completes the range of options accessible with scalar fields. Let us see at 
least briefly what may happen when higher-spin fields are present. For simplicity, 
consider a single multiplet .Aμ ≡ (A0,A) that transforms under boosts as a Galilean 
vector [18], .A'μ(A, v) ≡ eiv·K(A0,A) = (A0,A + vA0). Similarly to Sect. 12.4.3, 
one can think of .〈Aμ(x)〉 ≡ A

μ
0 (x) as the VEV of the density and current of the 

.U(1)Q symmetry, respectively. In this interpretation, a state with . Aμ
0 (x) = (a, 0)

and constant .a /= 0 corresponds to uniform dense matter in its rest frame. 
With this secondary order parameter, the isotropy group .H((ψ0,A0),0) is reduced to 
.SO(d)×U(1)Q or .SO(d), depending on whether or not the primary order parameter 
. ψi

0 preserves .U(1)Q. The coset space .H0/H((ψ0,A0),0) then necessarily includes a 
noncompact d-dimensional submanifold . Rd

K , carrying a vector of NG variables, 
. ξ r . The natural parameterization is .U(ξ) = eiξ ·K . Following our algorithm for the 
standard nonlinear realization, we find that (12.28) and (12.29) remain valid under 
the respective assumptions on .U(1)Q. The only change is a new transformation rule 
for . ξ r , 

.U(ξ '(ξ , v)) = eiv·KU(ξ) = U(ξ + v) . (12.30) 

The modification of the realization of the Bargmann group by adding . ξ r is nearly 
trivial, so why exactly have we done this? The reason will become clear in the next 
chapter where we address the problem of construction of invariant actions. Namely, 
invariance under the linearly realized isotropy subgroup .H(ψ0,0) has to be ensured by 
brute force using representation theory. The mathematical structure of the Bargmann 
group makes this a difficult task. With Galilei boosts realized nonlinearly by the NG 
field . ξ r , all that remains is to impose invariance under spatial rotations and possibly 
.U(1)Q, which is straightforward. 
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13Broken Spacetime Symmetry 
in Quantum Matter 

With the nonlinear realization of spacetime symmetry put forward in Chap. 12, 
we are now in the position to construct the low-energy effective field theory 
(EFT). As I already occasionally stressed, the EFT machinery for spontaneously 
broken spacetime symmetry is less developed than that for internal symmetry. As 
a consequence, I will not be able to offer an explicit general expression for the 
effective Lagrangian akin to what I did in Chap. 8. Instead, I will describe the basic 
framework in an algorithmic fashion, and then work out some illustrative examples. 

In this chapter, I only consider systems where the symmetry group G is known 
and dictated by the microscopic dynamics. This has been the underlying assumption 
of the whole book so far. Yet, there are physical systems whose low-energy physics 
may feature additional symmetry which itself may but need not be spontaneously 
broken. Such symmetry is usually called emergent, and appears among others in 
classical systems such as fluids or solids. I will defer a detailed discussion of such 
emergent symmetries and their spontaneous breaking to the next chapter. 

Following some preliminary work in Sect. 13.1, the survey of EFTs for sponta-
neously broken spacetime symmetry starts in Sect. 13.2. Here I deal with systems 
where the values of the order parameter at all points in space belong to the same 
orbit of the symmetry group. This requires a minimal modification of the setup 
for internal symmetries, but already involves some of the subtleties associated 
with the spacetime ones. A major issue is that the number of Nambu–Goldstone 
(NG) variables . πa depends on the choice of order parameter realizing the given 
symmetry-breaking pattern. This means that some would-be NG variables are not 
required by the symmetry-breaking pattern per se. In Sect. 12.3.2, I suggested that 
such fields may, but need not, be physical. In case they are, they necessarily excite 
gapped modes in the spectrum, not true NG modes. I illustrate this dichotomy by 
several examples in Sect. 13.3. Then I offer some comments on the inverse Higgs 
constraints (IHCs) as an operational prescription for eliminating such spurious 
degrees of freedom. 
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The generic case of systems where the order parameter may depend on coordi-
nates in an a priori arbitrary manner is considered in Sect. 13.4. Here the methods 
available for the construction of EFT appear to be least developed. I will therefore 
have to content myself with a careful discussion of the special case of one-
dimensional order parameter modulation, augmented with a couple of illustrative 
examples. 

13.1 Building Blocks for Construction of Effective Actions 

In Chap. 8, I showed that the effective action for NG bosons of spontaneously broken 
internal symmetry can always be expressed in terms of the associated Maurer– 
Cartan (MC) form. I am not aware of any proof of the equivalent statement for 
spacetime symmetries. I will however make the common assumption that this is 
still the case. 

13.1.1 Maurer–Cartan Form 

Recall that we deal generally with a set of bosonic fields . ψi , taking values from 
a target manifold . M. The spacetime is treated as a possibly curved manifold M 
of dimension D, parameterized by local coordinates . xμ. Together, . ψi and . xμ span 
the product manifold .M × M . In order to avoid excessive repetition, I will not 
review all the details of the standard nonlinear realization of spacetime symmetry. 
The reader is invited to consult Sect. 12.3 to refresh their memory. Let me just stress 
the important roles of the isotropy groups . Hx of a spacetime point .x ∈ M , and 
.H(ψ,x) of the point .(ψ, x) ∈ M × M . For chosen fixed .ψ0 ∈ M, the coset space 
.H0/H(ψ0,0) spans a submanifold of .M×{0} ≃M, parameterized by NG coordinates 
. πa . These are generally accompanied by a set of matter variables . χϱ. Together, 
.(πa, χϱ, xμ) constitute of a complete set of local coordinates on .M× M . 

Let us first focus on the variables .(πa, xμ), required for a successful nonlinear 
realization of spacetime symmetry. I will represent these jointly as 

.U(π, x) ≡ TxU(π) , (13.1) 

where . Tx is a fixed purely spacetime transformation that transports the spacetime 
origin to the point x (cf. Sect. 12.2). Moreover, .U(π) is a matrix representative of 
an element of the coset space .H0/H(ψ0,0). By  (12.15), the action of any .g ∈ G on 
.(πa, xμ) can then be expressed compactly as 

.U(π, x)
g−→ U(π '(π, g0(x, g)),X(x, g)) = gU(π, x)h(π, g0(x, g))−1 , (13.2)
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where .g0(x, g) = T−1
X(x,g)

gTx . Moreover, .π 'a(π, g0(x, g)) and .h(π, g0(x, g)) are 
defined by (12.10). The MC form can now be introduced through 

.

ω(π, x) ≡ −iU(π, x)−1dU(π, x)

= −iU(π)−1dU(π) + U(π)−1(−iT−1
x dTx)U(π) .

(13.3) 

The first piece that depends solely on . πa is familiar from our analysis of internal 
symmetries. The second piece is new and in some, as yet unclear, way reflects the 
action of the symmetry on the spacetime. Equation (13.2) induces the following 
transformation of the MC form, 

.
ω(π, x)

g−→ ω(π '(π, g0),X(x, g))

= h(π, g0)ω(π, x)h(π, g0)
−1 − ih(π, g0)dh(π, g0)

−1 ,

(13.4) 

where I for brevity dropped the arguments of .g0(x, g). 
In order to understand better the structure of the MC form, we need to make a 

digression. By definition of spacetime symmetry, the transformation of coordinates 
. xμ is independent of the field variables . ψi (or .πa, χϱ). One can thus restrict 
the action of G to the spacetime manifold, where it is defined by the maps 
.xμ g−→ x'μ ≡ Xμ(x, g). Under this restricted action, the spacetime behaves as a 
homogeneous space, .M ≃ G/H0. This implies the following local homeomorphism 
of manifolds, 

.G ≃ H(ψ0,0) × H0/H(ψ0,0) × G/H0 ≃ H(ψ0,0) × H0/H(ψ0,0) × M . (13.5) 

With the obvious notation for the Lie algebras of the three groups G, . H0 and .H(ψ0,0), 
the corresponding isomorphism of tangent spaces reads 

.g ≃ h(ψ0,0) ⊕ h0/h(ψ0,0) ⊕ g/h0 . (13.6) 

Here .h0/h(ψ0,0) and .g/h0 should be viewed as shorthand notation for the respective 
tangent spaces; these are themselves not Lie algebras without further qualifications. 

I previously assumed that at the very least, the coset space .H0/H(ψ0,0) is 
reductive. This ensures that both .h(ψ0,0) and .h0/h(ψ0,0) are invariant subspaces under 
the adjoint action of .H(ψ0,0). In the following, I will need a stronger assumption, 
namely that all three components of the direct sum (13.6) are invariant under the 
adjoint action of .H(ψ0,0). This is guaranteed if .H(ψ0,0) is compact, but in general has 
to be viewed as an additional assumption. 

Example 13.1 

Let us check the validity of this assumption for the examples of nonlinear realization 
worked out in Sect. 12.4. In case of a theory of Lorentz scalars with an internal
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symmetry group .Gint (Sect. 12.4.1), we have .H(ψ0,0) ≃ SO(d, 1) × Hint. As long as 
the coset space .Gint/Hint itself is reductive, the tangent space . h0/h(ψ0,0) ≃ gint/hint
is naturally invariant under the adjoint action of .H(ψ0,0). Likewise, the tangent space 
.g/h0 of .G/H0 ≃ M ≃ RD carries the vector representation of .SO(d, 1). It is easy 
to check that also for the examples in Sects. 12.4.2 and 12.4.3, our assumption on 
the decomposition (13.6) is satisfied. 

The case of Galilei symmetry (Sect. 12.4.4) is most nontrivial. Here the commu-
tation relation .[Pr,Ks] = iδrsQ implies that the d-dimensional space spanned on 
the components of the momentum operator does not carry a representation of Galilei 
boosts. Hence the boosts should not be included in the isotropy subgroup .H(ψ0,0). 
The way out, as shown in Sect. 12.4.4, is to introduce a vector order parameter . Aμ

that gives a vector of NG variables . ξ r , carrying a nonlinear realization of the boosts. 
Then, .H((ψ0,A0),0) is either .SO(d) or .SO(d) ×U(1)Q. In both cases, the Lie algebra 
. g of G naturally splits into invariant subspaces of .H((ψ0,A0),0) as in (13.6). This  
observation lends further support to the mathematical realization of Galilei boosts 
in terms of the auxiliary vector of NG fields . ξ r . I will return to this in Sect. 13.3.3. 

In order to reformulate the above basic assumption in a language more common 
in physics, we need a notation for the symmetry generators. In analogy with the 
treatment of internal symmetries in Chap. 7, I will denote generators that form a 
basis of . g as .QA,B,.... A subset of these generators that spans a basis of .h(ψ0,0) will 
be .Qα,β,.... Analogously, the basis of .h0/h(ψ0,0) will be .Qa,b,.... Finally, for the basis 
of the complementary space .g/h0, I will use the notation .Pμ,ν,.... In the fixed basis 
. QA, the structure of the Lie algebra . g is defined by the structure constants .f C

AB via 
.[QA,QB ] = if C

ABQC . Then, our assumption that all the components of the direct 
sum (13.6) carry a representation of .H(ψ0,0) restricts the commutators of . Qα to 

.[Qα,Qβ ] = if γ
αβQγ , [Qα,Qb] = if c

αbQc , [Qα,Pμ] = if ν
αμPν . (13.7) 

The remaining commutators of the Lie algebra . g take the generic form 

. [Qa,Qb] = i(f γ

abQγ + f c
abQc) , [Qa, Pμ] = i(f β

aμQβ + f b
aμQb + f ν

aμPν) ,

[Pμ, Pν] = i(f α
μνQα + f a

μνQa + f λ
μνPλ) . (13.8) 

There is no .f μ
abPμ term in .[Qa,Qb] since all the . Qα and . Qa together span a basis 

of . h0. As to  . Pμ, at this stage we do not need to assume that they are mutually 
commuting translation generators. 

We are now ready to return to the MC form. By its definition (13.3), . ω ≡ ωAQA

is a (locally defined) 1-form on .H0/H(ψ0,0) ×M that takes values in the Lie algebra 
. g of G. It consists of three parts, corresponding to the three spaces on the right-hand
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side of (13.6), 

.

ω ≡ ω‖ + ω⊥ + ωP ,

ω‖ ≡ ωαQα , ω⊥ ≡ ωaQa , ωP ≡ e∗μPμ .
(13.9) 

The notation for . ω‖ and .ω⊥ follows the conventions introduced in Chap. 7 for 
internal symmetries. The . ωP component, proportional to the generators . Pμ, is new  
here. Thanks to the assumption that both spaces .h0/h(ψ0,0) and .g/h0 are invariant 
under the adjoint action of .H(ψ0,0), the transformation rule (13.4) splits as 

.

ω‖(π, x)
g−→ h(π, g0)ω‖(π, x)h(π, g0)

−1 − ih(π, g0)dh(π, g0)
−1 ,

ω⊥(π, x)
g−→ h(π, g0)ω⊥(π, x)h(π, g0)

−1 ,

ωP (π, x)
g−→ h(π, g0)ωP (π, x)h(π, g0)

−1 .

(13.10) 

Following Chap. 7, it would now be possible to work out further technical details. 
These include for instance an explicit expression for the action of G on the 
coordinates .(πa, xμ), or the MC equations for the exterior derivative of .ω(π, x). 
I will however not do so even though it would be straightforward, for we will not 
need these details. Let us instead turn to the physical interpretation of the various 
parts of the MC form. 

13.1.2 Covariant Derivatives of Fields 

The first part of the MC form in (13.3), .−iU(π)−1dU(π), obviously takes values 
from the Lie algebra . h0. It follows  that  .ωP does not contain any contributions 
proportional to . dπa . In other words, .ωP is a well-defined 1-form on the slice 
.{π} × M ≃ M for any fixed point . πa in .H0/H(ψ0,0), 

.e∗μ(π, x) ≡ e∗μ
ν (π, x)dxν . (13.11) 

By assumption, the action of G on the spacetime M is transitive. This implies that at 
.πa = 0, the components of .ωP (0, x) = (−iT−1

x dTx)
μPμ span the whole cotangent 

space to M . By continuity, the same must be true in some neighborhood of the 
origin of .H0/H(ψ0,0), .π

a = 0. We conclude that the 1-forms .e∗μ(π, x) with fixed 
. πa define a (local) coframe on the spacetime manifold M . We are of course free to 
use any (local) frame or coframe on M we wish. Nevertheless, it will be convenient 
to stick to . ωP thanks to its covariant transformation properties under G, as shown  
in (13.10). This justifies a posteriori the notation .e∗μ for the components of . ωP . 

Next we have a look at the . ω⊥ part of the MC form, 

.ωa(π, x) ≡ ωa
b(π)dπb + ωa

μ(π, x)dxμ . (13.12)
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The .ωa
b piece comes from the .−iU(π)−1dU(π) term in (13.3) and is thus 

independent of the spacetime coordinates. The full 1-form . ω⊥ however contains 
components from cotangent spaces to both .H0/H(ψ0,0) and M . Unlike in the case 
of internal symmetries, it therefore cannot be interpreted as giving rise to a coframe 
on .H0/H(ψ0,0). 

At this point, recall that we eventually want to treat . πa as fields. These naturally 
define maps from M to .H0/H(ψ0,0) that take any .x ∈ M to .πa(x) ∈ H0/H(ψ0,0). 
Slightly more formally, one can view the fields as maps from M to . H0/H(ψ0,0) ×M

that assign to .x ∈ M the pair .(πa(x), xμ). This makes it possible to pull 
differential forms on .H0/H(ψ0,0)×M back to M . Thus, the coframe (13.11) becomes 
.e∗μ(π(x), x) = e∗μ

ν (π(x), x)dxν .1 More interesting is the pull-back of (13.12) to 
M , 

.ωa(π(x), x) = [ωa
b(π(x))∂μπb(x) + ωa

μ(π(x), x)]dxμ . (13.13) 

This obviously carries information about the derivatives of the NG fields .πa(x). To  
extract the covariant derivative .∇μπa of the NG field, we decompose the spacetime 
1-form .ωa(π(x), x) in the coframe .e∗μ(π(x), x), 

.ωa ≡ (∇μπa)e∗μ = (∇μπa)e∗μ
ν dxν . (13.14) 

Comparison with (13.13) then gives 

.∇μπa(x) = [ωa
b(π(x))∂νπ

b(x) + ωa
ν (π(x), x)]eν

μ(π(x), x) , (13.15) 

where .eμ(π, x) ≡ eν
μ(π, x)∂ν is the local frame on M , dual to .e∗μ(π, x). The cova-

riant derivative can also be expressed compactly as .∇μπa = ωa(eμ). 

I am using here the same symbol .∇μ for the covariant derivative as in 
Appendix A.5, yet the two objects do not seem to be the same. Let me clarify 
the difference. First, the first term on the right-hand side of (13.15) is not 
just the gradient of . πa projected to the frame . eμ. The extra factor . ωa

b , as  
well as the . ωa

ν term, is needed to ensure covariance under the action of G. In  
particular the . ωa

b factor is nontrivial even if G is an internal symmetry group. 
Second, we are not introducing here an all-purpose connection on M that 
would make .∇μπa covariant under the maximal structure group .GL(dimM). 
As follows from (13.10), we only allow changes of the local frame induced 
by a representation of the structure group .H(ψ0,0). This procedure is designed 

(continued)

1 I take the liberty to denote 1-forms on .H0/H(ψ0,0) ×M and their pull-backs to M using the same 
symbol. It should be clear from the context which of the two is meant. 
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to give a G-invariant EFT for the NG fields. In spite of using covariant 
derivatives, the EFTs constructed below are not covariant under general 
coordinate transformations on M . 

The remaining part of the MC form (13.9) that we have not discussed yet is . ω‖. 
This, as the transformation rule (13.10) suggests, plays the role of an .h(ψ0,0)-valued 
connection. Let us define the spacetime components of the connection after pull-
back to M through 

.ω‖(π(x), x) ≡ ωα
μ(π(x), x)Qαdx

μ . (13.16) 

Then for a matter field . χϱ that transforms linearly in a representation D of .H(ψ0,0), 
cf. (12.10), the covariant derivative can be defined as 

.∇μχϱ(x) ≡ [
∂νχ

ϱ(x) + iωα
ν (π(x), x)D(Qα)ϱσ χσ (x)

]
eν
μ(π(x), x) . (13.17) 

This generalizes the covariant derivative we constructed in the context of internal 
symmetries in Sect. 8.2.4. 

We conclude by checking in what precise sense the derivatives (13.15) 
and (13.17) of the NG and matter fields are covariant. To that end, consider 
a transformation by an element of .g ∈ G infinitesimally close to unity, 
.g ≈ e + i∈AQA, where . ∈A is a set of small constant parameters. The element 
.h(π, g0(x, g)) ∈ H(ψ0,0), defined by (12.10) with .g0(x, g) = T−1

X(x,g)
gTx , then 

reads, to linear order in . ∈A, 

.h(π, g0(x, g)) ≈ e + i∈Akα
A(π, x)Qα . (13.18) 

Here .kα
A(π, x) is a set of functions that are calculable following the guidance of 

Sect. 7.3, but we need not do so explicitly. It is easy to check that the last two lines 
of (13.10) now translate into the infinitesimal transformations 

δωa (π, x) = −∈A kα 
A(π, x)f a 

αbω
b (π, x) , 

δe∗μ (π, x) = −∈A kα 
A(π, x)f μ 

ανe
∗ν (π, x) . 

(13.19) 

By the duality between the frame . eμ and the coframe . e∗μ, the transformation of the 
latter gives .δeμ = ∈Akα

Af ν
αμeν . Equipped with these auxiliary identities, we arrive 

at the infinitesimal transformations of the covariant derivatives (13.15) and (13.17), 

δ(∇μπa ) = ∈A kα 
A(−f a 

αb∇μπb + f ν 
αμ∇νπ

a ) ,  

δ(∇μχϱ) = ∈A kα 
A[iD(Qα)ϱσ ∇μχσ + f ν 

αμ∇νχ
ϱ] . 

(13.20)
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The covariant derivatives transform linearly. This makes it possible to construct 
G-invariant Lagrangian densities out of the (possibly higher) covariant derivatives 
using standard methods of tensor algebra and representation theory. 

Example 13.2 

Recall the example worked out in Sect. 12.4.2. Here  .G ≃ R+
⋉ ISO(d, 1) acts 

on a set of relativistic scalars, where .ISO(d, 1) is the Poincaré group and . R+
represents scale transformations of spacetime coordinates. Suppose that the ground 
state of the system carries a uniform condensate, spontaneously breaking the scale 
invariance. We choose accordingly .ψ0 ∈ M that breaks the dilatation group . R+. 
Thus, .H(ψ0,0) ≃ SO(d, 1) whereas .H0 ≃ R+ × SO(d, 1). 

Let us disregard possible matter fields and focus on the dilaton field . π , 
parameterizing the coset space .H0/H(ψ0,0) ≃ R. We fix  . xμ to be the standard 
Minkowski coordinates, and . Pμ the energy–momentum operator. The manifold 
.H0/H(ψ0,0) × M ≃ Rd+2 is naturally parameterized by .U(π, x) = eix·P eiπD .2 

With the help of the commutation relation .[D,Pμ] = −iPμ, we compute the MC 
form 

.ω(π, x) = −iU(π, x)−1dU(π, x) = Ddπ + e−πP · dx . (13.21) 

From the second term, we extract the spacetime coframe .e∗μ = δμ
ν e

−πdxν and the 
corresponding dual frame, .eμ = δν

μe
π∂ν . The dual frame can be used as a covariant 

derivative operator, . ∇μ, that is scale-invariant. 
To produce an action, we still need a volume element. This is most easily 

obtained by constructing a volume form on the Minkowski spacetime using the 
coframe, 

. vol = e∗0 ∧ · · · ∧ e∗d = e−(d+1)πdx0 ∧ · · · ∧ dxd . (13.22) 

A generic Poincaré- and scale-invariant effective action for the dilaton then reads 

.Seff{π} =
∫

dd+1x e−(d+1)πLeff(∇π,∇∇π, . . . ) . (13.23) 

The Lagrangian .Leff can be built by writing down the most general Lorentz-
invariant operator in terms of the derivatives of . π , and then replacing . ∂μ with . ∇μ

everywhere.

2 In order to avoid notation clash with the dilatation operator D, I temporarily denote the dimension 
of spacetime as .d + 1. 
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13.2 Twisting Order Parameter for Internal Symmetry 

We have reached the point where we can start dealing with concrete systems 
featuring spontaneous breakdown of spacetime symmetry. As mentioned above, I 
will always assume that the effective action can be constructed solely out of the MC 
form. Any claim of having found the most general invariant action therefore has 
to be interpreted accordingly. It is not always straightforward to construct the most 
general effective action even in this restricted sense. To make further progress, it is 
convenient to narrow down the landscape of systems that we consider. 

In this section, I will elaborate on the example of nonlinear realization worked out 
in Sect. 12.4.1. Here is a brief reminder. Suppose that the symmetry group factorizes 
as .G ≃ Gs.t. × Gint, where “s.t.” and “int” stand respectively for “spacetime” 
and “internal.” Moreover, suppose that the target manifold . M is parameterized 
by a set of fields . ψi that are scalar in the sense that .Fi (ψ, x, gs.t.) = ψi for all 
.gs.t. ∈ Gs.t.. This is equivalent to requiring that .Gs.t. is a purely spacetime symmetry. 
Likewise, .Gint is internal in the sense that .Fi (ψ, x, gint) is independent of . xμ and 
.Xμ(x, gint) = xμ for all .gint ∈ Gint. The action of the symmetry group G on the 
standard coordinates .(πa, χϱ, xμ) is then given by (12.19). The isotropy group 
of the spacetime origin is .H0 ≃ Hs.t. × Gint, and the spacetime manifold M is 
equivalent to the homogeneous space .Gs.t./Hs.t.. Similarly, the isotropy group of 
.(ψ0, 0) ∈M× M is .Hs.t. × Hint, hence .H0/H(ψ0,0) ≃ Gint/Hint. 

I will now make one additional, important assumption. Let us choose the 
reference point .ψ0 ∈M so that it represents the actual value of the order parameter 
at the spacetime origin, .〈ψi(0)〉 = ψi

0. Suppose that in the resulting standard 
coordinates on . M, the  vacuum expectation value (VEV) of all the matter fields, 
.〈χϱ(x)〉, is zero. This is equivalent to requiring that the order parameter is fully 
specified by the VEVs .〈πa(x)〉. The values of the order parameter at different 
spacetime points lie on the same orbit of .Gint in . M. It is then mathematically 
consistent to eliminate the matter fields from the EFT altogether. After all, they 
are expected to excite gapped modes in the spectrum, which can be ignored at 
sufficiently low energies. 

Example 13.3 

Consider a theory of a single real relativistic scalar field . φ, equipped with an internal 
shift symmetry, .(φ, xμ)

∈−→ (φ + ∈, xμ). This corresponds to .Gs.t. ≃ ISO(d, 1), 
.Hs.t. ≃ SO(d, 1), and .Gint ≃ R. For any choice of the reference point . φ0, the  
internal isotropy group is trivial, .Hint ≃ {e}. In this case, the only degree of freedom, 
that is . φ itself, is of the NG type. There are no matter-type variables. Therefore, our 
assumption that the VEV of all . χϱ be vanishing is trivially satisfied. 

A slightly less trivial example is that of a complex relativistic scalar . φ, subject to 
the action of .Gint ≃ U(1) via .(φ, xμ)

∈−→ (ei∈φ, xμ). For any nonzero .φ0 ∈ C, we  
have again .Hint ≃ {e}. The field is then naturally parameterized by its modulus and 
phase, .φ = ϱeiθ , where . θ is the sole NG variable. Provided .〈ϱ(x)〉 ≡ ϱ0 is constant, 
. ϱ can be traded for a matter field with vanishing VEV as desired, .χ ≡ ϱ−ϱ0. On the
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other hand, the VEV of the phase, .〈θ(x)〉, can have arbitrary coordinate dependence. 
This kind of order parameter describes relativistic superfluids. 

Discarding the matter fields amounts to restricting our basic setup to the manifold 
.H0/H(ψ0,0) × M ≃ Gint/Hint × Gs.t./Hs.t.. Henceforth, I will only consider flat 
spacetimes such that .Gs.t. possesses a set of D mutually commuting translation 
generators . Pμ. With the parameterization .U(π, x) = eix·P U(π), the MC form 
becomes 

.ω(π, x) = −iU(π)−1dU(π) + P · dx . (13.24) 

The spacetime coframe is trivial, .e∗μ = δμ
ν dx

ν , and it is not necessary to distinguish 
frame and coordinate-basis indices. The . ω‖ and . ω⊥ parts of the MC form (13.24) 
are fixed by the internal symmetry. We can therefore reuse the wealth of information 
accumulated in Chap. 7 to evaluate them. 

So far, I have not made any assumptions about the coordinate dependence of the 
order parameter beyond the requirement that all .〈χϱ(x)〉 vanish. Whether or not 
the order parameter breaks any spacetime symmetries has no bearing on the set of 
degrees of freedom . πa of the EFT, their transformation under G, or the MC form. 
Yet, the devil is in the details, as we shall now see. 

13.2.1 New Features of the Old Setup 

A consistent low-energy EFT setup requires a number of ingredients to be in place. 
The first is of course having a set of well-defined degrees of freedom, well separated 
from whatever high-energy modes have been ignored. This is generally guaranteed 
by the broken symmetry. These low-energy degrees of freedom should map to 
positive-energy excitations of a stable ground state. Failure to satisfy this condition 
indicates that we have not identified the correct ground state. Finally, in the absence 
of further physical input, it is necessary to include in the effective Lagrangian 
all operators consistent with the given symmetry. Typically, infinitely many such 
operators exist. Hence, we need an organizing principle to decide which operators 
are relevant and which can be neglected: power counting. 

Stability of the Ground State Our choice of the reference point, .ψi
0 ≡ 〈ψi(0)〉, 

corresponds to .〈πa(0)〉 = 0, or  .〈U(π(0))〉 = e. The actual order parameter 
defines a map from M to the coset space .Gint/Hint, .〈U(π(x))〉 ≡ U0(x). Nontrivial 
coordinate dependence indicates that the order parameter is twisted. Importantly, not 
every choice of .U0(x) is physically consistent. A necessary condition is that . U0(x)

is a local minimum of the energy functional of the EFT. This is straightforward to 
check in two steps. First, .U0(x) should be a stationary state, that is a solution of 
the equation of motion (EoM); see Sect. 8.3 for details on the latter. Second, the
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spectrum of small fluctuations about this state should only contain positive-energy 
excitations. 

Example 13.4 

Recall the helimagnetic state, introduced in Example 6.5, 

.〈n(x, t)〉 = (cos kz, sin kz, 0) , (13.25) 

where k is a positive constant. In this case, the order parameter is . n ∈
SO(3)/SO(2) ≃ S2. It is spatially twisted so that it forms a helix oriented 
along the z-axis, with pitch .2π/k. In Example 9.10, I showed that this order 
parameter minimizes the energy in the EFT for ferromagnets augmented with the 
Dzyaloshinskii–Moriya (DM) interaction. The precise value of k is fixed by the 
coupling of the DM term. 

Ensuring the stability of the ground state is an integral part of the construction of 
the low-energy EFT. The requirement was already implicitly present in our analysis 
of internal symmetries in Part III of the book. The fact that the vacuum, .πa = 0, 
is a solution of the EoM was guaranteed by the absence of terms linear in . πa in 
the effective Lagrangian. Such terms were typically forbidden by the nonlinearly 
realized symmetry. Only in one exceptional example, namely the class of Galileon 
theories (Sect. 10.3.2), I enforced the absence of linear terms ad hoc by discarding 
the tadpole operator. Furthermore, stability under small fluctuations was ensured 
by fixing the signs of the parts of the effective Lagrangian bilinear in . πa , carrying 
respectively two temporal or two spatial derivatives. 

Power Counting Eventually, we would like to parameterize the EFT by NG fields 
.π̃a(x) such that .〈π̃a(x)〉 = 0. This makes it easy to distinguish the ground state 
from its fluctuations. It is often convenient to factorize the matrix variable .U(π) as 

.U(π(x)) ≡ U0(x)U(π̃(x)) . (13.26) 

This maintains a simple transformation rule for . π̃a under the action of . Gint. Indeed, 
a comparison with (12.19) shows that 

.U(π̃)
gint−−→ U(π̃ '(π̃, gint)) = (U−1

0 gintU0)U(π̃)hint(π̃, gint)
−1 . (13.27) 

In other words, the action of .Gint by left multiplication is simply conjugated by 
.U−1

0 . 
The challenge to face is that following blindly the machinery of Chap. 8, we  

arrive at an effective Lagrangian where derivatives act on .U(π) rather than on .U(π̃). 
This is not a problem if the characteristic length scale of the symmetry breaking 
.Gint → Hint is much shorter than the scale of variations of the ground state .U0(x).
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Such a hierarchical symmetry breaking occurs for instance in helimagnets. Indeed, 
the helix pitch in FeGe is about .70 nm [1], which is much longer than the scale of the 
crystal lattice at which the magnetic order is formed. In such systems, derivatives 
of both .U(π̃(x)) and .U0(x) can be considered small and counted together. Should, 
however, the order parameter feature short-distance variations, a different power 
counting is needed. The precise setup of the power counting that renders the EFT 
predictive is then best considered case by case. 

13.2.2 Case Study: Relativistic Superfluids 

From the point of view of symmetry, a superfluid is an ordered phase of matter where 
an internal .U(1) symmetry is spontaneously broken. We therefore need an order 
parameter charged under this symmetry. The simplest choice is to take a complex 
scalar field . φ carrying the action of .Gint ≃ U(1) via .(φ, xμ)

∈−→ (ei∈φ, xμ). We then 
assume that due to microscopic dynamics, this field develops a nonzero VEV. That 
is however not enough. We want the vacuum to describe matter, that is a state with 
nonzero density of the .U(1) charge. In a Lorentz-invariant scalar theory, a state of 
uniform nonzero charge density corresponds to a time-dependent VEV, 

.〈φ(x)〉 ≡ ϕ(x) = ϕ0e
−iμt . (13.28) 

The constants . ϕ0 and . μ are without loss of generality assumed to be positive. See 
Chap. 3 of [2] for an introduction to superfluidity from the field theory point of view. 

The same superfluid state can also be represented by a constant order param-
eter at the cost of redefining the Lagrangian. Indeed, introduce a new scalar 
field, .Ф(x) ≡ eiμtφ(x), so that our superfluid state amounts to .〈Ф(x)〉 = ϕ0. 
As a consequence of the field redefinition, .∂0φ = (∂0 − iμ)Ф. This agrees 
with my previous observation (see Example 8.7) that an equilibrium state 
parameterized by the chemical potential . μ can be described in the Lagrangian 
formalism by a constant background gauge field, .Aμ = (μ, 0). It is now  
clear that the order parameter (13.28) corresponds to a superfluid at rest. 
Using Lorentz invariance, a superfluid state in uniform motion can likewise 
be parameterized by a constant timelike . Aμ, or equivalently by the VEV 
.ϕ(x) = ϕ0e−iA·x . 

As we already saw in Example 13.3, the condensate (13.28) satisfies our technical 
assumption underlying the construction of EFT for systems with a twisted order 
parameter. Here we have .U(π(x)) = eiπ(x)Q, where .π(x) is the phase of . φ(x)

and Q is the generator of .Gint ≃ U(1). The NG field transforms under the internal 
symmetry as .π

∈−→ π + ∈. The  MC  form  (13.24) reduces to .ω(π, x) = Qdπ+P ·dx.
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Upon dropping the tadpole operator, . π , which is itself quasi-invariant, the most 
general Poincaré- and .U(1)-invariant effective action can be written as 

.Seff{π} =
∫

dDx Leff(∂π, ∂∂π, . . . ) . (13.29) 

The effective Lagrangian .Leff is an arbitrary function of the derivatives of . π in 
which all Lorentz indices have been contracted in a Lorentz-invariant manner. 

Let us check that the tentative ground state, .〈π(x)〉 = −μt , satisfies the 
EoM. This follows from the equivalence of the EoM and the conservation of the 
Noether current of the internal .U(1) symmetry; see Example 4.2 for a proof of the 
equivalence. The current carried by the condensate (13.28) is necessarily constant, 
and thus automatically conserved for any values of . ϕ0 and . μ. 

Next, we have to deal with power counting. I will follow closely the logic of 
Sect. 9.1.1, where a power-counting scheme for relativistic EFTs was worked out. A 
new complication is that we do not know a priori how large the chemical potential 
. μ is, and thus whether .∂μπ can be considered small. We therefore cannot naively 
expand the effective Lagrangian in the derivatives of . π . However, we can use the 
fact that every . π in the Lagrangian always carries at least one “persistent” derivative 
and only count additional derivatives. This makes sense: introducing the fluctuation 
field . π̃ via (13.26), that is .π(x) ≡ π̃(x)−μt , any higher derivative kills the chemical 
potential and thus captures directly the variation of . π̃ . 

To formalize this observation, expand the effective Lagrangian as 

.Leff[π ] =
∑

n≥0

L (n)
eff [π ] , (13.30) 

were .L (n)
eff collects all Lorentz-invariant operators with n additional derivatives. 

Now consider a generic Feynman diagram . 𝚪, contributing to a given observable. 
Denote as I the number of internal propagators in . 𝚪, as  E the number of external 
legs, as L the number of loops, and as . Vn the number of interaction vertices from 
each of .L (n)

eff . Think of the Fourier representation, in which the diagram amounts to 
a homogeneous function of energy–momenta on the external legs. Loop integration 
contributes altogether DL powers of energy–momenta, the internal propagators 
contribute .−2I powers. The persistent derivatives on each field give . 2I + E

powers of energy–momenta. Finally, the additional derivatives add up to .
∑

n≥0 nVn. 
Altogether, the naive degree of the diagram becomes 

. deg𝚪 = DL + E +
∑

n≥0

nVn . (13.31) 

For any given observable, E is fixed and .deg𝚪 ≥ E. The  leading-order (LO) 
contribution comes from diagrams with .L = 0 and .Vn = 0 for any .n ≥ 1. 
Accordingly, the LO effective Lagrangian for a relativistic superfluid is .L (0)

eff : 
an arbitrary Lorentz-invariant function of .∂μπ . The  next-to-leading-order (NLO)
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Lagrangian requires two additional derivatives, .n = 2. For any .D ≥ 3, the  NLO  
contribution to any observable corresponds to .deg𝚪 = E + 2 and amounts to tree-
level (.L = 0) diagrams with one interaction vertex from .L (2)

eff and all others from 
.L (0)

eff . Interestingly, the contributions from loop diagrams only start to matter beyond 
NLO of the derivative expansion. Most important is that at any finite degree, only 
a finite number of Lagrangians .L (n)

eff and a finite number of Feynman diagrams is 
required. This renders the power-counting scheme consistent and predictive. 

It might still look troublesome that the LO Lagrangian can be an arbitrary 
Lorentz-invariant function of .∂μπ . This surely contains an infinite number of 
unknown parameters, so how could such an EFT be useful? To address this question, 
note there is only one way to make such Lagrangians Lorentz-invariant, namely by 
contracting the Lorentz indices on .∂μπ pairwise. Then, upon separating the ground 
state from the fluctuations, the LO Lagrangian becomes 

.L (0)
eff [π̃ ] = P

(√
(∂μπ)2

)
= P

(√
(∂0π̃ − μ)2 − (∇π̃)2

)
, (13.32) 

where P is some as yet unknown function. In the superfluid ground state, the 
Lagrangian reduces to a function of the chemical potential, .P(μ). This can be 
related to the energy density of the equilibrium state by Legendre transformation, 

. H (0)
eff

∣∣∣
π̃=0

≡ U(μ) = μP '(μ) − P(μ) . (13.33) 

The prime indicates a derivative of P with respect to its argument. Also, I used 
that .∂L (0)

eff /∂(∂0π) = −∂L (0)
eff /∂μ and that .〈π(x)〉 = −μt . Equation (13.33) looks 

familiar: .P(μ) can be interpreted as the thermodynamic pressure of the superfluid 
at zero temperature, and .P '(μ) ≡ n(μ) as the density of the .U(1) charge. Our main 
result therefore is that the LO EFT for superfluids at zero temperature (13.32) is 
completely fixed by the thermodynamic equation of state [3]. 

To get a flavor of the physical content of the EFT, let us expand (13.32) to second 
order in the NG field, 

.L (0)
eff [π̃] ≃ P(μ) + P ''(μ)

2
(∂0π̃)2 − P '(μ)

2μ
(∇π̃)2 + · · · . (13.34) 

This shows that the NG bosons propagate with the phase velocity 

.v =
√

P '(μ)

μP ''(μ)
=
√

n

μ

dμ

dn
=
√
dP

dU
, (13.35)
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where I used the thermodynamic relations .dU = μdn and .dP = ndμ. It is  
remarkable that the phase velocity of the superfluid NG boson at zero temperature 
is given by the same expression (13.35) as that of hydrodynamic sound. 

Example 13.5 

For an illustration of these general results, let us have a look at dense matter 
consisting of relativistic (Dirac) fermions in .d = 3 dimensions [3]. Provided the 
interactions between the particles are sufficiently weak and their mass sufficiently 
small, the equation of state can be well approximated by that of a free gas of 
massless fermions,3 

.P(μ) = μ4

12π2
, n(μ) = μ3

3π2
, U(μ) = μ4

4π2
. (13.36) 

Suppose that the interaction between the fermions is attractive so that they form 
Cooper pairs in the spin-singlet, s-wave state. The fermionic quasiparticles near 
the Fermi surface then become gapped and decouple at sufficiently low energies. 
The low-energy physics of the system reduces to the dynamics of the condensate 
of scalar Cooper pairs. This is an example of a fermionic superfluid. According 
to (13.32), the low-energy EFT of such a system is dominated by a LO Lagrangian 
that is polynomial in the NG field, 

.L (0)
eff [π̃] = 1

12π2

[
(∂0π̃ − μ)2 − (∇π̃)2

]2
. (13.37) 

The NG bosons propagate at the speed .v = 1/
√
3, characteristic of a gas of weakly 

interacting ultrarelativistic particles. Note that in this case, the microscopic energy 
scale of the system is set by the chemical potential itself. The scale associated with 
the spontaneous breakdown of the .U(1) symmetry is assumed to be much smaller, 
which is ensured by the weak binding of the Cooper pairs. Thus, . μ could not have 
been treated as a small parameter in any reasonable sense. 

13.3 Vector Modes: The Relevant, the Irrelevant 
and the Unphysical 

As demonstrated in the previous chapter, the same symmetry-breaking pattern can 
be realized with various choices of order parameter. This ambiguity is innocuous 
for internal symmetries. On the other hand, in case of spacetime symmetries, it can 
lead to nonlinear realizations with apparently different numbers of NG variables. 

3 This restriction is of course just a matter of convenience. Our general result for the LO 
EFT (13.32) applies equally well to a strongly-interacting gas of massive fermions.
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For instance, the superfluid order parameter (13.28) breaks the combined spacetime 
and internal symmetry in a rather nontrivial manner. First, it obviously breaks 
Lorentz boosts. Second, it breaks time translations and the internal .U(1) symmetry 
down to a “diagonal” subgroup, where the phase generated by a time translation is 
compensated by a .U(1) rotation. In the setup of Sect. 13.2.2, all this is implicitly 
taken into account. However, as pointed out in Sect. 12.4.3, it might be meaningful 
to add a secondary, vector order parameter, representing the VEV of the Noether 
current of the .U(1) symmetry. This requires introducing an additional vector of 
NG fields. Similarly, we saw in Sect. 12.4.4 that nonlinear realization of Galilei 
symmetry is easier to implement if one adds a vector of NG variables corresponding 
to Galilei boosts. 

These observations raise obvious questions. Are the additional vector NG 
variables merely a useful mathematical tool, or do they correspond to actual modes 
in the spectrum? In case they are physical, what is their exact nature? To answer 
these questions, I will now work out several physically distinct examples, from 
nonlinear realization to concrete effective actions. With the additional insight, I will 
then in Sect. 13.3.4 attempt to draw general conclusions. 

13.3.1 The Relevant: Helimagnets 

Let us start with a familiar system where a vector field turns out to excite a physical, 
gapless NG mode. This will set a benchmark for our discussion of the role of vector 
NG modes. At the same time, it will provide the first example of an EFT going 
beyond the class of systems covered by Sect. 13.2. I already addressed spin systems 
in detail in Chap. 9. Moreover, I mentioned the exotic case of helimagnets on several 
occasions. I will therefore not spend time on reviewing the basic phenomenology, 
and instead start right away with a symmetry-based analysis. 

We are talking about a condensed-matter system whose symmetry is captured 
by the Aristotelian group in three spatial dimensions, .G ≃ SO(3) ⋉ R4. Unlike in 
Chap. 9, I will not include a separate internal symmetry under spin rotations. This 
is broken by the spin-orbit coupling, which plays a key role in the formation of the 
helimagnetic order. The order parameter is the local magnetization density, which 
is a vector under spatial rotations, hence .M ≃ R3. We are of course interested in 
the physics of ordered states where the magnetization is nonzero. This fixes the two 
isotropy groups .H0 ≃ SO(3) and .H(ψ0,0) ≃ SO(2). The local manifold decomposi-
tion (13.5) in this case becomes 

.G ≃ SO(2) × S2 × R4 . (13.38) 

The submanifold relevant for the nonlinear realization of the symmetry on the NG 
variables is .H0/H(ψ0,0) ×M ≃ S2 ×R4. I will parameterize the spacetime using the 
translation operator .Tx,t = eitH eix·P . The coset space . S2 is parameterized by two 
local coordinates . πa , encoded in an .SO(3)-valued matrix .U(π).
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Having fixed the basic setup, we can read off the MC form from (13.3), 

.

ω(π, x) = −iU(π)−1dU(π) + Hdt + U(π)−1(P · dx)U(π)

= −iU(π)−1dU(π) + Hdt + Pr [U(π)−1]rsdxs .
(13.39) 

The second equality follows from the fact that the momentum operator carries 
a vector representation of .SO(3) under the adjoint action thereof.4 Using (13.9), 
we subsequently identify the elements of the spacetime coframe, 

.e∗0(π, x) = dt , e∗r (π, x) = [U(π)−1]rsdxs . (13.40) 

The . ω⊥ part of the MC form comes entirely from .−iU(π)−1dU(π), i.e. is given by 
.ωa(π) = ωa

b(π)dπb. The related covariant derivatives of the NG variables . πa are 
extracted using (13.15), 

.∇0π
a = ωa

b(π)∂0π
b , ∇rπ

a = ωa
b(π)U(π)sr∂sπ

b . (13.41) 

Under the action of .H(ψ0,0) ≃ SO(2), these split into the irreducible multiplets 

.
δa
a∇aπ

a , εabδa
a∇aπb ,

∇0π
a , ∇απa , δa

a∇aπb + δa
b∇aπa − δabδ

c
c∇cπ

c .
(13.42) 

Those on the first line of (13.42) are singlets, while the first two items on the 
second line transform as vectors under .SO(2). Finally, the last operator in (13.42) 
transforms as a traceless symmetric tensor of .SO(2). That is also a two-dimensional 
real representation, but carries a double charge of .SO(2) compared to the vector 
representation. This is important when combining the irreducible multiplets into an 
effective Lagrangian in a way that preserves invariance under .H(ψ0,0) ≃ SO(2). 

Before we can construct an effective action, we still need to consider power 
counting. Here I will, unlike for superfluids in Sect. 13.2.2, assume that the spatial 
variation of the order parameter is slow. This allows us to apply the naive scheme 
where each (covariant) derivative counts. The EFT will then be dominated by 
operators with the lowest number of derivatives. It is convenient to express the 
effective Lagrangian in terms of a unit-vector parameterization of the coset space, 
.n(π) ∈ S2. This is related to .U(π) via .n(π) = U(π)n0, where .n0 ∈ S2 is an 
arbitrary but fixed reference vector. The advantage of using the . n variable is that it 
makes invariance under the whole .H0 ≃ SO(3) manifest. Dropping surface terms,

4 In Chap. 9, I worked out the EFT for spin systems using the fundamental (spinor) representation 
of .SO(3). It goes without saying that this is just a matter of convenience. The nonlinear realization 
of symmetry on coset spaces as detailed in Sect. 7.3 only depends on the structure of the symmetry 
group. In the present case, the use of the vector representation of .H0 ≃ SO(3) is suggested by the 
transformation properties of the momentum operator . P . 
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the most general invariant Lagrangian with up two derivatives consists of 

. L (1,0)
eff = c

(1,0)
1 n · (∇ × n) ,

L (2,0)
eff = c

(2,0)
1 δrs∂rn · ∂sn + c

(2,0)
2 (∇ · n)2 + c

(2,0)
3 [n · (∇ × n)]2

+ c
(2,0)
4 (∇ · n)[n · (∇ × n)] , (13.43) 

L (1,1) eff = c (1,1) 1 ∂0n · [(n · ∇)n] , 

L (0,2) eff = c (0,2) 1 (∂0n)2 . 

All the operators in (13.43) are clearly invariant under spatial rotations. 
What is less obvious is that there are no other algebraically independent 
contributions to the invariant Lagrangian with up to two derivatives. This 
follows from the formalism based on the MC form, but would not be 
straightforward to check in the language using the . n field. Let me at least 
clarify why some apparent candidate operators do not give anything new. 
Starting with .L (2,0)

eff , there is no operator of the type .(∇×n)2, since this equals 
.δrs∂rn·∂sn−(∇·n)2 up to a surface term. Likewise, the operator . [n×(∇×n)]2
is absent, being equal to .(∇ ×n)2 −[n · (∇ ×n)]2. Other candidate operators 
can be eliminated using the identity .(n ·∇)n = −n× (∇×n), valid for a unit 
vector field . n. Finally, there is no .∂0n · (∇ × n) in .L (1,1)

eff , since this is itself a 
surface term. Similar reasoning shows that no new operators can be produced 
using second covariant derivatives such as .δa

a∇0∇aπ
a or .δa

a∇α∇aπ
a . 

The presence of .L (1,0)
eff with a single spatial derivative is a new feature, arising 

from the vector order parameter. There is no invariant operator with a single time 
derivative. However, we know from Chap. 9 that an internal .SU(2) spin symmetry 
together with spatial rotational invariance admit a quasi-invariant Lagrangian, 

.L (0,1)
eff = c

(0,1)
1

εabn
a∂0n

b

1 + n3
, (13.44) 

where .a, b ∈ {1, 2}. Being free of spatial derivatives, this is also quasi-invariant 
under our .H0 ≃ SO(3) that acts on both . n and spatial coordinates. Finally, note that 
the coframe (13.40) yields the standard volume measure .d3x dt thanks to the fact that 
.U(π) is an .SO(3)-valued matrix. This justifies a posteriori dropping surface terms 
from (13.43), and makes it actually possible to include a quasi-invariant Lagrangian 
such as (13.44). 

In ferromagnets where the coupling .c(0,1)
1 is nonzero, every time derivative 

counts as two spatial derivatives (see Sect. 9.2.1 for a detailed justification). We 
can then discard the .L (1,1)

eff and .L (0,2)
eff Lagrangians as subleading. Even with this
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simplification, there are still six independent operators in the .L (1,0)
eff , .L (0,1)

eff and 
.L (2,0)

eff Lagrangians. In order to make the analysis of the physical consequences 
of the EFT feasible, we need to take one more step to reduce the Lagrangian. 
Namely, the spin-orbit interaction in real materials is typically much weaker than 
other interactions. It therefore makes sense to treat the couplings of all the operators 
that lock the spin and orbital rotations together, namely .c

(1,0)
1 , .c(2,0)

2 , .c(2,0)
3 and .c

(2,0)
4 , 

as small. Counting all of these formally as degree one in the derivative expansion, 
the entire LO (degree-two) effective Lagrangian will be just 

.L LO
eff = −M

εabn
a∂0n

b

1 + n3
− ϱs

2
δrs∂rn · ∂sn − 2πϱs

λDM
n · (∇ × n) . (13.45) 

Here I have already switched to the physical notation for the effective couplings: M 
for the local magnetization density, . ϱs for the spin stiffness, and .λDM for the length 
scale of the DM interaction. The latter is all that is left of the effects of the spin-orbit 
coupling at the LO of the derivative expansion. 

I showed already in Example 9.10 that the DM interaction inevitably leads to 
the formation of a helical structure in the ground state. One can without loss of 
generality choose a Cartesian system of coordinates such that 

.〈n(x, t)〉 ≡ n0(x) = (cos kz, sin kz, 0) , (13.46) 

where .k ≡ 2π/λDM. Let us next focus on the excitation spectrum. The first step in 
that regard is to reparameterize the field following the logic of (13.26), 

.n(x, t) ≡
⎛

⎝
cos kz − sin kz 0
sin kz cos kz 0
0 0 1

⎞

⎠N(x, t) . (13.47) 

The variable .N(x, t) is still a unit vector. Moreover, in the ground state it is constant, 
.〈N(x, t)〉 ≡ N0 = (1, 0, 0). This allows us to identify independent fluctuations 
around the ground state with the . N2 and . N3 components of . N . 

The task to express the Lagrangian (13.45) in terms of . N is a bit tedious, and the 
final result is not elegant. I will therefore skip the straightforward details and only 
spell out the part of the Lagrangian bilinear in .N2, N3. Up to a surface term, 

.L LO
eff ≃ ϱs

2

(
N2 N3

) ( ∇2 Δ(z)

−Δ(z) ∇2 − k2

)(
N2

N3

)
+ · · · , (13.48) 

where 

.Δ(z) ≡ −M

ϱs
∂0 + 4π

λDM
[(cos kz)∂1 + (sin kz)∂2] . (13.49)



302 13 Broken Spacetime Symmetry in QuantumMatter

The excitation spectrum is determined by the zero modes of the matrix differential 
operator in (13.48). Due to the explicit coordinate dependence, this is a complicated 
problem. I will therefore content myself with some simple observations that 
illustrate the peculiarities of helimagnets. To start with, the presence of operators 
with a single time derivative makes the two degrees of freedom .N2, N3 canonically 
conjugate to each other. The spectrum should therefore consist of a single type of 
magnon, just like in uniform ferromagnets in the absence of the DM interaction. 
The magnon dispersion relation can be calculated explicitly in the special case 
of propagation along the helix axis. The single-particle wave function is then 
independent of the .x, y coordinates so that .Δ → −(M/ϱs)∂0. A Fourier transform 
in time and the z-coordinate then gives the energy as a function of momentum, 

.E(pz) = ϱs

M
|pz|

√
p2

z + k2 . (13.50) 

The physical momentum . pz should be much smaller than the inverse of the length 
scale associated with the formation of the ferromagnetic order, which can be thought 
of as .

√
ϱs. This defines the range of validity of the EFT. Within this range, however, 

there are two qualitatively different regimes. At long wavelengths, .pz ⪡ k, (13.50) 
is well approximated by .E(pz) ≈ (kϱs/M) |pz|. The dispersion relation is linear. 
The corresponding one-particle state is a linearly polarized spin wave with .N3 ≈ 0. 
This amounts to spin oscillations in the xy plane along the direction perpendicular 
locally to .n0(x). On the other hand, at intermediate wavelengths, .k ⪡ pz ⪡ √

ϱs, 
the dispersion relation (13.50) turns into .E(pz) ≈ (ϱs/M)p2

z . This reproduces the 
standard ferromagnetic magnon spectrum we found in Sect. 9.2.2. Physically, this 
means that such short-distance oscillations of spin are insensitive to the helical 
structure of the ground state. The magnon is circularly polarized in the plane 
perpendicular to the local magnetization .n0(x). 

This concludes our excursion to helimagnetism. We have discovered very 
interesting physics, but no surprises as to the number and type of NG modes in the 
spectrum so far. To that end, we will capitalize on the experience we have collected 
here to explore another fascinating physical system: liquid crystals. 

13.3.2 The Irrelevant: Smectic Liquid Crystals 

Liquid crystals are an intriguing exotic state of matter; see [4] for a thorough 
account of the subject. The basic ingredient underlying the liquid crystal order is a 
strongly anisotropic microscopic constituent. This is typically an elongated organic 
molecule or a polymer, with a rigid, rod-like structure. An ordered ground state 
arises from a geometric arrangement of the molecules that breaks invariance under 
spatial translations or rotations, or both. 

I will be mostly concerned with the interplay of two simple liquid crystal phases: 
the nematic phase and the smectic (or more precisely smectic-A) phase. In the 
nematic phase, the microscopic constituents are aligned along a common direction



13.3 Vector Modes: The Relevant, the Irrelevant and the Unphysical 303

Fig. 13.1 Schematic 
visualization of nematic and 
smectic-A orders. A nematic 
consists of a set of mutually 
aligned undirected rods with 
random positions. In a 
smectic-A, the rods are in 
addition organized in layers. 
Their positions within each 
layer remain disordered nematic smectic-A 

but their spatial positions remain disordered as in an ordinary liquid. See the left 
panel of Fig. 13.1 for a visualization. In the smectic phase, the alignment persists 
but the constituents are in addition organized in parallel layers. Within each layer, 
however, their positions remain disordered; see the right panel of Fig. 13.1. Both of  
these phases feature an order parameter that defines the axis of alignment, and can 
be viewed as an “unoriented vector.” To describe smectics, one needs in addition a 
secondary order parameter that accounts for the layered structure of the medium. 

The microscopic symmetry governing the physics of liquid crystals is the same 
as that of spin systems with spin-orbit coupling, .G ≃ SO(3) ⋉ R4. In the  simpler  
nematic phase, which I will start with, the target space is .M ≃ R3/Z2, where 
any vector in . R3 is identified with its opposite. This setup is almost identical 
to that of Sect. 13.3.1, and we can therefore largely reuse the EFT developed 
therein. The change in the global structure of . M from . R3 to .R3/Z2 affects the 
nature of topological defects in the medium. However, as far as the dynamics 
of small fluctuations of the order parameter is concerned, all we have to do is 
impose invariance under the reflection .n → −n. This kills, first of all, the quasi-
invariant Lagrangian (13.44), for there is no equivalent of “magnetization” in liquid 
crystals that the coupling .c

(0,1)
1 could measure. Moreover, the .c

(2,0)
4 and .c

(1,1)
1 terms 

in (13.43) drop out, being odd in . n. In materials that respect spatial parity, we can 
finally discard the .c(1,0)

1 term.5 All in all, the LO Lagrangian for the fluctuations 
of the order parameter in nematics consists of the .c(2,0)

1 , .c(2,0)
2 , .c(2,0)

3 and . c(0,2)
1

operators. However, a somewhat different basis of operators with spatial derivatives 
is more common in the literature, namely 

. L LO
eff ⊃ −1

2

{
K1(∇ · n)2 + K2[n · (∇ × n)]2 + K3[n × (∇ × n)]2

}
.

(13.51) 

The advantage of this parameterization is that there are field configurations for 
which all but one of the operators in (13.51) vanish. Global stability of the 
uniform state with constant .〈n(x)〉 ≡ n0 thus requires that all the couplings

5 The .c(1,0)
1 term is relevant for cholesteric liquid crystals whose building blocks possess intrinsic 

chirality. The mathematics of cholesterics is largely identical to that of helimagnets [5]. 
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.K1,2,3 are positive. For completeness, let me add that they are related to the 
parameters in (13.43) by .K1 = −2(c(2,0)

1 + c
(2,0)
2 ), .K2 = −2(c(2,0)

1 + c
(2,0)
3 ) and 

.K3 = −2c(2,0)
1 up to integration by parts. 

Unlike in the case of helimagnets, I will not use the Lagrangian (13.51) to analyze 
the spectrum of excitations of a nematic. Namely, to get a physically correct picture 
of the dynamics, one would need to consider the interplay of the vector variable 
. n with hydrodynamic degrees of freedom (see Sect. 8.5 of [6]). After all, we are 
talking about liquids. Our restricted setting will however be sufficient to contrast 
the NG degrees of freedom in the nematic and smectic-A phases. 

To describe the smectic state, we need an additional order parameter accounting 
for the layered structure as shown in the right panel of Fig. 13.1. This can be 
done with a single real scalar field .φ(x). The layers of the medium are then 
defined as surfaces of constant . φ. The translation across one layer of molecules 
changes .φ(x) by a fixed amount; I will use a normalization of .φ(x) where the 
increment equals . 2π . Interestingly, this picture implies the existence of a new, 
emergent symmetry. Namely, for the sake of identification of the individual strata 
of the smectic, it does not matter what the attached value of . φ is. None of the 
surfaces of constant . φ changes if we shift .φ(x) by a constant. The EFT for 
smectic liquid crystals should therefore be invariant under the internal symmetry 
.(n, φ, xμ)

∈−→ (n, φ + ∈, xμ). This is our first example of an emergent symmetry 
arising from the spatial distribution of a medium; I will give a more systematic 
account of such symmetries in Chap. 14. The complete symmetry group of a 
smectic is then .G ≃ [SO(3) ⋉ R4] × R. The corresponding isotropy groups are 
.H0 ≃ SO(3) × R and .H(ψ0,0) ≃ SO(2). The degrees of freedom of the EFT are 
determined by the coset space .H0/H(ψ0,0) ≃ S2 × R. 

The values of the two order parameters in the smectic ground state are correlated. 
As indicated in Fig. 13.1, the axis of alignment . n0 of the molecules is perpendicular 
to the entire stack of parallel layers. Moreover, the individual molecular layers 
are equidistantly spaced. This implies that the VEV of the gradient .〈∇φ(x)〉 is a 
constant nonzero vector, parallel to . n0. I will use the notation 

.〈φ(x, t)〉 = kn0 · x , (13.52) 

where the parameter k defines the distance between neighboring layers, .2π/k. 
The shift symmetry . R guarantees that .φ(x) can only enter the effective 

Lagrangian with derivatives. Being a scalar under rotations, its covariant derivatives 
are 

.∇0φ = ∂0φ , ∇rφ = U(π)sr∂sφ , (13.53) 

where .U(π) is still the matrix related to . n by .n(π) = U(π)n0. Also, I used the 
previously derived coframe (13.40), which is not affected by adding the scalar field 
.φ(x). The appearance of these covariant derivatives in the effective Lagrangian is 
constrained by the isotropy group .H(ψ0,0) ≃ SO(2) and the reflection .n → −n. 
To these we should add the discrete symmetry under .φ → −φ which, just like
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the internal shifts of . φ, preserves the identification of the layers of the smectic. 
With these constraints, the contributions of .φ(x) to the LO effective Lagrangian are 
reduced to 

.L LO
eff ⊃ c0(∂0φ)2 + c‖(n · ∇φ)2 + c⊥(n × ∇φ)2 . (13.54) 

In order for the alignment of .∇φ and . n to be energetically preferred, the spatial 
gradient couplings . c‖ and . c⊥ should satisfy .c⊥ < c‖. 

Let us now turn the argument around and see how the background (13.52) affects 
the vector field . n. I will set without loss of generality .n0 = (0, 0, 1) so that the two 
independent fluctuations of . n correspond to . n1 and . n2. This reduces (13.54) to 

.L LO
eff ⊃ −(c‖ − c⊥)k2

[
(n1)2 + (n2)2

]
. (13.55) 

Thanks to the stability constraint on the couplings, .c‖ − c⊥ > 0. What we have here 
is therefore a well-defined, positive-definite mass term for the fluctuations of . n. 

Let us pause to appreciate the implications of this result. In the nematic 
phase, we dealt with two NG degrees of freedom, parameterizing via the 
unit vector . n the coset space . S2. In the smectic phase, we extended the 
coset space to .S2 × R. The corresponding new NG variable parameterizes 
the fluctuations of . φ around its VEV (13.52). Given that . φ only enters the 
effective Lagrangian with derivatives, it necessarily couples to a NG mode in 
the spectrum. However, at the same time, the fluctuations of . n received a gap. 
Adding an extra NG field has reduced the number of NG modes from two to 
one! 

To understand what is going on, think of the order parameter (13.52) alone. 
Being a spatial vector, the gradient . ∇φ spontaneously breaks spatial rotations 
in addition to the internal shift symmetry of . φ and translations in the direction 
of . n0. We may then treat .〈n(x)〉 ≡ n0 as a secondary order parameter, since 
it does not break any symmetries that would be left intact by .〈φ(x)〉. This  
makes the . n mode redundant: its presence is not required to reproduce the 
symmetry-breaking pattern of a smectic. Consequently, the fluctuations of . n
are not protected by symmetry from acquiring a gap. 

This is an explicit realization of an issue I alerted the reader to already in 
Chap. 12. The number of true, gapless NG degrees of freedom (one) is fixed 
by the symmetry-breaking pattern. However, the additional, would-be NG modes 
contained in .n(x) are physical and may manifest themselves as low-lying excitations 
of the smectic ground state. The nematic and smectic phases of liquid crystals are 
separated by a continuous (second-order) phase transition. At the transition point,
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the scale k vanishes. Accordingly, near the phase transition, the gap of the .n-type 
fluctuations is very small and they need to be included in the low-energy EFT. 

Further away from the phase transition, we expect the gapped modes to have little 
effect on the low-energy physics. In this regime, it should be possible to construct 
an EFT for smectics in terms of .φ(x) alone. This can be arrived at in two different 
ways. One possibility is to start from a combination of (13.51) and (13.54) and 
integrate out the vector . n. The other possibility is to construct the EFT for . φ(x)

alone from scratch. This is arguably more straightforward but less predictive, since 
the effective couplings of the EFT will be unrelated to those in (13.51) and (13.54). 
For illustration, I will nevertheless choose the latter option as it highlights the 
physics of the NG mode in the smectic phase. 

The task to find an EFT for a scalar field . φ, subject to an internal shift 
symmetry . R, copies closely the construction of Sect. 13.2.2, with two differences. 
The first difference is minor. Namely, unlike in Sect. 13.2.2, we do not impose full 
Poincaré invariance, but merely the Aristotelian symmetry. The resulting effective 
Lagrangian is, in analogy with (13.29), a function of derivatives of .φ(x) where 
spatial indices are contracted in a way preserving invariance under spatial rotations. 
The second difference is absolutely essential: we want our EFT to stabilize the 
anisotropic smectic state (13.52). To that end, let us parameterize the fluctuations 
of .φ(x) by a NG field .π(x) such that .φ(x, t) = kn0 · x + π(x, t). The basic 
rotationally invariant building block for the construction of the Lagrangian is 
.(∇φ)2 = k2 + 2kn0 · ∇π + (∇π)2. Dropping the constant piece, the part of the 
effective Lagrangian with one derivative per field will be a generic function of . ∂0π
and .kn0 · ∇π + (∇π)2/2. The static part of the effective Lagrangian, bilinear in the 
NG field .π(x), is thus contained in 

.Leff ⊃ c1

[
kn0 · ∇π + (∇π)2

2

]
+ c2

[
kn0 · ∇π + (∇π)2

2

]2
+ · · · . (13.56) 

The ellipsis includes operators that are bilinear in .π(x) but contain more than one 
derivative per field. The leading operator of this kind is .c3(∇2φ)2 = c3(∇2π)2. 

Remarkably, the . c1 operator is forbidden. The easiest way to see this is to think 
of the gradient .∇φ as a vector field, .A ≡ ∇φ. The part of the static Lagrangian 
with one derivative per . φ is then a mere function of . A. Should the corresponding 
Hamiltonian density have a minimum for nonzero .〈A〉 = kn0 as implied by (13.52), 
its Hessian matrix at the minimum must have two zero modes. This is just the 
statement of the Goldstone theorem in terms of the eigenvalues of the mass matrix, 
which we proved back in Sect. 3.1. Hence, for the smectic state (13.52) to be stable 
within the EFT, the Lagrangian (13.56) must not contain any terms quadratic in the 
part of the gradient of . π , perpendicular to . n0. It is the stability criterion together 
with the spontaneously broken rotational invariance that forbids the . c1 operator. 

We conclude that the leading contributions to the bilinear Lagrangian consist 
of the operators .(∂0π)2, .(∇‖π)2 and .(∇2⊥π)2, where . ‖ and . ⊥ denote projections 
to directions parallel and transverse to . n0. This suggests an unusual, anisotropic
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power counting. For all these operators to contribute at the same order, the time 
derivative should have the same counting degree as . ∇‖ and . ∇2⊥. The presence of a 
higher power of the transverse gradient has a profound impact on the stability of the 
smectic phase at nonzero temperature. I will relegate a more detailed discussion and 
further generalization of this observation to Chap. 15. 

13.3.3 The Unphysical: Nonrelativistic Superfluids 

The final example in our exploration of the role of vector modes will be nonrela-
tivistic superfluids. Here we do know a priori that it is possible to construct an EFT 
solely in terms of a scalar degree of freedom. All one has to do is to take the EFT 
for a relativistic superfluid, developed in Sect. 13.2.2, and perform a nonrelativistic 
limit. It is however instructive to carry out the construction of the nonrelativistic 
version of the EFT from scratch. 

To get started, recall the basic properties of Galilei symmetry from Sect. 12.4.4. 
The Lie algebra of the Galilei group in d spatial dimensions includes the generators 
. Pr and H of space and time translations and . Jrs of spatial rotations. In addition, 
there is a vector generator . Kr of Galilei boosts. I will add from the outset a central 
charge Q whose eigenvalues measure nonrelativistic mass. This turns the Galilei 
group into the Bargmann group. Altogether, the nontrivial part of the local structure 
of the symmetry group is determined by the commutation relations 

.[H,Kr ] = iPr , [Pr,Ks] = iδrsQ . (13.57) 

The commutators of . Jrs are fixed by rotation invariance and will not be needed. All 
the other commutators not listed here are vanishing. Mathematically, the Bargmann 
group has the structure .G ≃ SO(d) ⋉ {Rd

K ⋉ [RD × U(1)Q]}. All the symmetry 
transformations but translations leave the spacetime origin fixed, hence its isotropy 
group is .H0 ≃ [SO(d) ⋉ Rd

K ] × U(1)Q. The translations themselves will be 
represented by the operator .Tx,t ≡ eitH eix·P . 

In order to describe the superfluid order, we need an order parameter that carries a 
nontrivial action of the internal .U(1)Q subgroup. Similarly to relativistic superfluids, 
the simplest choice is a complex scalar field . ψ . For any .ψ0 /= 0, the corresponding 
isotropy group is then .H(ψ0,0) ≃ SO(d) ⋉ Rd

K . However, as pointed out before, this 
is not satisfactory, since it violates our requirements on the decomposition (13.6) of 
the Lie algebra . g of G. Namely, the operators . Pr and H span a basis of .g/h0 but 
do not carry a representation of .H(ψ0,0). The way out is to add a secondary order 
parameter .Aμ ≡ (A0,A) that transforms as a vector under Galilei boosts. Choosing 
.A

μ
0 = (a, 0) with .a /= 0 can be interpreted as specifying the density of the . U(1)Q

charge in the rest frame of the superfluid. It reduces the isotropy subgroup further 
to .H((ψ0,A0),0) ≃ SO(d). The coset space .H0/H((ψ0,A0),0) ≃ Rd

K × U(1)Q can be 
parameterized by NG variables . π and . ξ r through .U(π, ξ) ≡ eiπQeiξ ·K . In this  
parameterization, a Galilei boost with velocity . v acts on the NG variables and the
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spacetime coordinates as 

.eiv·K(π, ξ , x, t) = (π + v · x + v2t/2, ξ + v, x + vt, t) . (13.58) 

With all the pieces at hand, we can now compute the MC form (13.3), 

. ω(π, ξ , x, t) = Q[dπ − ξ · dx + (1/2)ξ2dt] + K · dξ + Hdt + P · (dx − ξdt) .

(13.59) 

The . ω‖ part of the MC form is trivial. From .ωP = Hdt +P · (dx − ξdt), we extract 
the spacetime coframe, .e∗0 = dt and .e∗r = δr

s (dx
s − ξ sdt). The .δr

s ξ
sdt term in . e∗r

does not affect the spacetime volume form, we can thus use the volume measure 
.ddx dt to turn effective Lagrangians into effective actions. To construct covariant 
derivatives of the NG fields, we will also need the spacetime frame, dual to the 
above coframe, 

.e00 = 1 , er
0 = ξ r , e0r = 0 , es

r = δs
r . (13.60) 

The covariant derivatives of . π and . ξ r are then extracted from the . ω⊥ part of the MC 
form (13.59) with the help of (13.15), 

.
∇0π = ∂0π + ξ · ∇π − ξ2/2 , ∇rπ = δs

r (∂sπ − ξs) ,

∇0ξ
r = (∂0 + ξ · ∇)ξ r , ∇sξ

r = δu
s ∂uξ

r .
(13.61) 

It is an easy exercise to check explicitly that all these covariant derivatives are 
invariant under the Galilei boost (13.58). Thanks to their simple form, it is not 
necessary to distinguish frame and coordinate-basis indices. In the following, I will 
therefore happily use .∇rπ = ∂rπ − ξr and .∇sξ

r = ∂sξ
r . 

In accord with the general machinery of nonlinear realizations, we could also 
add matter fields, organized in linear multiplets of .H((ψ0,A0),0) ≃ SO(d). 
By (13.17), the covariant derivatives of a matter field . χϱ would then be 
.∇0χ

ϱ = (∂0 + ξ · ∇)χϱ and .∇rχ
ϱ = ∂rχ

ϱ. This opens the possibility to 
promote (almost) any nonrelativistic theory with Aristotelian symmetry to 
a theory that is Galilei-invariant. Indeed, recall that in Part III of the book, 
we dealt largely with Aristotelian EFTs where we imposed invariance under 
linearly realized rotations by hand. What prevents us from introducing an 
auxiliary vector field . ξ r and replacing .∂0 → ∇0 ≡ ∂0+ξ ·∇ everywhere? This 
will certainly work for strictly invariant Lagrangians. (The naive replacement 
.∂0 → ∇0 might spoil the quasi-invariance of Lagrangians that shift upon 
a symmetry transformation by a total time derivative.) The only fly in the 

(continued)
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ointment is that we do not have a physical interpretation for the . ξ r field 
in terms of the NG degrees of freedom of the Aristotelian EFT. Rather, . ξ r

should be viewed as the local velocity of a medium carrying the NG modes; 
the combination .∂0 + ξ · ∇ is often referred to as the material derivative. 
The Aristotelian EFTs constructed in Chap. 8 describe the low-energy physics 
in the rest frame of the medium. The same remark applies to relativistic 
systems. There, adding a NG field for Lorentz boosts allows one to promote 
an Aristotelian theory to one invariant under the full Poincaré group. 

With the basic building blocks at hand, we can proceed to the construction of an 
EFT for the superfluid. Following closely the relativistic counterpart in Sect. 13.2.2, 
we first fix a power-counting scheme. We again count both .∂0π and .∇π as degree 
zero. For the covariant derivatives in (13.61) to have a consistent counting degree, 
we have to assign . ξ r degree zero as well. Any other derivative acting on . π or . ξ r

will then have degree one. It follows that at the LO of the derivative expansion, 
we can ignore .∇μξr . The LO Lagrangian will be some function of the rotationally 
invariant operators .∇0π and .δrs∇rπ∇sπ . This underlines the fact that the field . ξ r

is merely auxiliary and does not represent independent degrees of freedom. Indeed, 
it only enters the LO Lagrangian without any derivatives and can be eliminated 
algebraically by imposing its EoM, 

.(∂rπ − ξr )

[
∂L (0)

eff

∂(∇0π)
− 2

∂L (0)
eff

∂(δsu∇sπ∇uπ)

]

= 0 . (13.62) 

The natural solution is .ξ = ∇π , which turns the two building blocks for the LO 
Lagrangian to .∇0π → ∂0π + (∇π)2/2 and .∇rπ → 0. Of course, (13.62) can also 
be satisfied if the expression in square brackets vanishes. This would imply that the 
LO Lagrangian only depends on .∇0π +(1/2)δrs∇rπ∇sπ = ∂0π +(∇π)2/2. Either 
way, we end up with the same LO Lagrangian in terms of . π alone. 

Finally, recall the superfluid ground state can be described by a time-dependent 
VEV of a complex scalar field. This amounts to .〈π(x)〉 = −μt where . μ is the 
chemical potential. The fluctuations around this background can be parameterized 
by a field . π̃ such that .π(x) = π̃(x) − μt . Following again the analogy with 
Sect. 13.2.2, we conclude that the LO effective Lagrangian for Galilei-invariant 
superfluids reads 

.L (0)
eff [π̃] = P

(
μ − ∂0π̃ − (∇π̃)2/2

)
. (13.63)
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The function .P(μ) represents the thermodynamic pressure of the superfluid in 
equilibrium at zero temperature. 

Example 13.6 

As a simple application of our new EFT, expand the Lagrangian (13.63) to second 
order in the NG field . π̃ . Up to a surface term, we find 

.L (0)
eff [π̃] ≃ P(μ) + P ''(μ)

2
(∂0π̃)2 − P '(μ)

2
(∇π̃)2 + · · · . (13.64) 

This gives immediately the phase velocity of the NG boson, 

.v =
√

P '(μ)

P ''(μ)
=
√
dP

dn
, (13.65) 

where .n(μ) ≡ P '(μ) should be interpreted as the mass density of the superfluid. 
This matches the relativistic result .v = √

dP/dU in (13.35), since in the 
nonrelativistic limit, the energy density .U(μ) reduces to the density of the rest mass. 
Note that in spite of the appearance, the EFT (13.63) describes a type-A NG mode 
with a linear dispersion relation. This justifies a posteriori the use of the power-
counting scheme where temporal and spatial derivatives are counted equally. 

Before closing the discussion of nonrelativistic superfluids, I have a debt to pay 
off. Namely, when constructing the EFT, I tacitly assumed the effective Lagrangian 
to be strictly invariant. Could the Lagrangian also include some quasi-invariant 
contributions? The answer to this question is surprisingly rich, but luckily will not 
affect the LO Lagrangian (13.63). 

As pointed out in Sect. 8.1, quasi-invariant Lagrangians for broken internal 
symmetries are classified by relative Lie algebra cohomology. It is not clear 
whether this elegant result survives all the complications of nonlinear realization 
of spacetime symmetries. Let us nevertheless take a leap of faith and see where it 
will lead us. We thus seek .(D + 1)-forms that are closed and .H0-invariant. I will 
first split the MC form (13.59) into components corresponding to the individual 
generators, 

.
ωQ = dπ − ξ · dx + (1/2)ξ2dt , ωr

K = dξ r ,

ωH = dt , ωr
P = dxr − ξ rdt .

(13.66) 

We are now to take the exterior product of .D + 1 of these 1-forms. Invariance 
under the whole isotropy group . H0 is ensured by contracting vector indices in a 
rotationally invariant manner. It is the closedness requirement that poses a challenge. 
To that end, we take note of the MC equations, reflecting the commutation
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relations (13.57) between the generators, 

.dωQ = δrsω
r
P ∧ ωs

K , dωr
K = 0 , dωH = 0 , dωr

P = ωH ∧ ωr
K . (13.67) 

These suggest a set of .d + 1 naturally closed, rotationally invariant .(D + 1)-forms, 

.Ω
(n)
D+1 ≡ 1

d!εr1···rd ωH ∧ ωQ ∧ ω
r1
K ∧ · · · ∧ ω

rn
K ∧ ω

rn+1
P ∧ · · · ∧ ω

rd
P (13.68) 

= 
1 

d!εr1···rddt ∧ (dπ − ξ · dx) ∧ dξ r1 ∧ · · · ∧  dξ rn ∧ dxrn+1 ∧ · · · ∧  dxrd , 

where .n = 0, . . . , d. The corresponding effective Lagrangians are equivalent to 
the D-form potentials of these .(D +1)-forms, that is such .Ω

(n)
D that .dΩ(n)

D = Ω
(n)
D+1. 

These D-form potentials are obviously not unique, since they can be shifted without 
consequences by the exterior derivative of any .(D − 1)-form. A suitable choice is 

.Ω
(n)
D = − 1

d!εr1···rddt ∧
[
πdξ r1 ∧ · · · ∧ dξ rn ∧ dxrn+1 ∧ · · · ∧ dxrd (13.69) 

+ 
n 

2(d − n + 1) 
ξ2dξ r1 ∧ · · · ∧  dξ rn−1 ∧ dxrn ∧ · · · ∧  dxrd

]
. 

A reader wishing to check this may find the following identity useful, 

. 

εr1···rddξ s ∧ dξ r1 ∧ · · · ∧ dξ rn−1 ∧ dxrn ∧ · · · ∧ dxrd

= −d − n + 1

n
εr1···rddxs ∧ dξ r1 ∧ · · · ∧ dξ rn ∧ dxrn+1 ∧ · · · ∧ dxrd .

(13.70) 

Next, we eliminate the auxiliary field . ξ r by imposing the same constraint as above, 
.ξ = ∇π . After some manipulation, the D-form potentials (13.69) then give a set of 
.d + 1 quasi-invariant Lagrangians (with adjusted overall normalization), 

.L (n)
quasi = εr1···rnun+1···ud εs1···sn

un+1···ud
π

n∏

i=1

(∂ri ∂si π) . (13.71) 

The form of the Lagrangians (13.71) should ring a bell. Indeed, except for 
replacing spacetime indices with spatial ones, these are exactly the Galileon 
Lagrangians (10.54). The similarity is not accidental. The generators .Q,Kμ of 
the constant and linear parts of the Galileon symmetry (10.53) and the energy– 
momentum operator . Pμ satisfy the commutation relation .[Pμ,Kν] = igμνQ. This  
is identical to the centrally extended commutator in the Bargmann algebra. We 
have thus killed two birds with one stone, explaining the origin of the Galileon 
Lagrangians as a byproduct of our discussion of Galilei-invariant superfluids. Now
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back to the physical content of (13.71). The  .n = 0 Lagrangian, .L (0)
quasi, is a tadpole 

operator. This must be dropped to keep the EFT stable. The .n = 1 Lagrangian 
is equivalent to .(∇π)2 by partial integration. This is, in spite of appearance, 
already included in the LO effective Lagrangian (13.63). Namely, it is a part of 
.∂0π + (∇π)2/2 where .∂0π itself is a surface term. Finally, all the quasi-invariant 
Lagrangians (13.71) with .n ≥ 2 contain more than one derivative per field. 
Consequently, they will only contribute at higher, subleading orders of the derivative 
expansion of the superfluid EFT. 

13.3.4 Inverse Higgs Constraints 

The analysis of concrete examples has given us enough experience to appreciate the 
broader spectrum of subtleties associated with spontaneous breaking of spacetime 
symmetries. Let us reevaluate what we have learned in particular about the role of 
vector fields. I should warn the reader that this matter is not yet quite settled. Hence, 
the content and organization of the discussion below is necessarily more subjective 
than elsewhere in the book. 

In case of internal symmetries, the situation is clear. There is a one-to-one 
mapping between broken symmetry generators and NG fields in the low-energy 
EFT. The construction of the EFT itself is fairly streamlined. All one needs to know 
is the symmetry-breaking pattern. As shown in Chap. 8, finding the EFT then boils 
down to solving certain linear-algebraic constraints for the tensor couplings in the 
effective Lagrangian. The functional dependence of the Lagrangian on the NG fields 
is completely fixed by symmetry. 

In case of spontaneously broken spacetime symmetry, we would hope to be able 
to do the same. This desire lies behind the agnostic nonlinear realization that I 
already mentioned in Sect. 12.3.2. In this framework, one starts with a separate 
NG field for each spontaneously broken symmetry generator. The actions of all 
the generators in an abstract group space are by construction independent of each 
other. This however leads to the surprising observation that the number of fields 
that ultimately couple to gapless excitations may be lower than that of the broken 
generators.6 I will now outline the various mechanisms how the naively expected 
number of NG fields based on mere counting broken generators may be reduced. 
This will add nuance to the intuitive picture painted in Sect. 6.1 and summarized in 
Fig. 6.1 therein. The different mechanisms are listed in Fig. 13.2. 

Redundancy of Symmetries Two symmetries that are locally equivalent neces-
sarily lead to identical fluctuations of the order parameter. This is the simplest

6 Remember that these independent NG fields may still not be in a one-to-one correspondence with 
NG modes in the spectrum. Some of the fields may be pairwise canonically conjugated, leading to 
type-B NG bosons. The canonical conjugation mechanism is the same for internal and spacetime 
symmetries, and thus requires no further discussion. 
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Fig. 13.2 Various 
mechanisms whereby the 
number of physical NG fields 
coupling to gapless, true NG 
modes can be lower than the 
number of generators 
parameterizing the coset 
space .H0/H(ψ0,0). The  
detailed meaning of the 
keywords involved is 
explained in the main text. 
The physical NG fields are in 
turn in a one-to-one (type-A) 
or two-to-one (type-B) 
correspondence with the NG 
modes in the spectrum 

broken 
generators 

physical 
NG fields 

redundant 
symmetries 

redundant order 
parameter fluctuations 

secondary order 
parameter 

required 
gapped modes 

and most important of all the mechanisms, to which I already devoted the whole 
Chap. 11. Its advantage is that such a redundancy can be checked at the level 
of classical symmetry transformations. No specific choice of an order parameter 
or knowledge of the corresponding symmetry-breaking pattern is needed. See 
Sect. 11.3 for examples. 

Redundancy of Order Parameter Fluctuations Moving down the decision tree, 
the next possibility is that some symmetries are locally distinct, yet lead to 
equivalent fluctuations of the order parameter. An example of this type is the 
helimagnet; see Example 6.5 for details. Here spatial translations and rotations are 
not trivially redundant due to the vector nature of the order parameter. However, 
thanks to the particular spatial modulation of the order parameter, three independent 
broken symmetry generators lead to mere two distinct types of fluctuations. This 
type of redundancy requires detailed knowledge of the order parameter, but can still 
be detected straightforwardly following the approach of Sect. 6.3.1. 

Both of the above types of redundancy are automatically accounted for by the 
standard nonlinear realization of Chap. 12. This ensures a one-to-one parameter-
ization of whatever fields carrying the action of the symmetry one starts with. 
However, it is sometimes advantageous to add auxiliary would-be NG fields, even 
if these are known beforehand not to correspond to separate physical degrees of 
freedom. We saw an example in Sect. 13.3.3. The unphysical nature of the vector 
field . ξ r therein manifested itself in the fact that we could eliminate it algebraically 
using its EoM. Such a procedure, while physically certainly correct, may however 
become exceedingly cumbersome beyond LO of the derivative expansion. There 
is an alternative that allows one to eliminate . ξ r algebraically before one starts 
constructing the effective Lagrangian [7]. Indeed, note that the covariant derivative 
.∇rπ in (13.61) is linear in . ξ r without any derivatives on it. Setting it to zero 
gives .ξ = ∇π , which is an algebraic condition that is covariant under all the 
symmetries of the EFT. This is an example of an IHC. Imposing the IHC brings
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us back to the nonlinear realization of Galilei symmetry solely in terms of the scalar 
. π . Yet, invariance under Galilei boosts is still automatically implemented. Galilei-
invariant Lagrangians can be constructed using the same building blocks (13.61) 
while imposing by hand just invariance under spatial rotations. The latter can be 
ensured using standard tensor methods. 

The auxiliary field . ξ r in nonrelativistic superfluids is associated with Galilei 
boosts. In this concrete case, the corresponding would-be NG modes are 
clearly unphysical. However, it seems to be true generally that there are 
no observed single-particle NG states for which boosts would be the sole 
associated broken symmetry. Curiously, the Goldstone theorem for boosts 
can be saturated by states from a continuum spectrum rather than by stable 
bosonic quasiparticles, as in Fermi liquids [8, 9]. A class of mathematically 
consistent EFTs that feature NG bosons originating in boost symmetry has 
been proposed in [10]. 

Eliminating the auxiliary vector field using its EoM or using an IHC must 
lead to EFTs with the same functional form. The only difference is possibly 
in the identification of the effective couplings, but these are usually determined 
subsequently by matching the predictions of the EFT to selected observables. This 
makes the two approaches entirely equivalent. The advantage of using the classical 
EoM (or generally, at loop level, integrating the auxiliary field out) is that it is 
physically transparent. The IHC, on the other hand, is usually technically simpler. 
The drawback is that there is no universal algorithm how to find a suitable IHC. As 
a rule, one has to follow intuition combined with insight in the concrete problem at 
hand. See [11] for a discussion of some of the traps involved. 

Gapped Modes from Secondary Order Parameter Eliminating the redundancy 
of either type, we are back to the standard nonlinear realization of spacetime 
symmetry, developed in Sect. 12.3. Here all the fields, whether NG fields . πa

or matter fields . χϱ, describe independent, physical degrees of freedom. Barring 
possible NG modes of spontaneously broken translation symmetry, the NG variables 
are classified as coordinates on the coset space .H0/H(ψ0,0). However, there may be 
different choices of the order parameter(s) leading to the same symmetry-breaking 
pattern but different coset spaces .H0/H(ψ0,0), hence different numbers of NG 
variables. This possibility owes its existence to the distinction between the isotropy 
groups . H0, .H(ψ0,0) and the unbroken subgroup . Hϕ in case of spacetime symmetries. 

A phenomenologically relevant example is the smectic liquid crystal, discussed 
in Sect. 13.3.2. (Another, relativistic example of this type can be found in [12].) Let 
us inductively generalize what we observed therein. Suppose there is a secondary 
order parameter that can be removed from the EFT without affecting the symmetry-
breaking pattern. Then the associated NG variables are not required to be present by
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the broken symmetry. By the same token, the corresponding modes in the spectrum 
are not protected by the symmetry from acquiring a gap.7 

Here one has two choices how to go about the construction of the EFT. If it 
is possible to identify the secondary order parameter beforehand, one can drop it 
from the outset. The resulting minimal nonlinear realization of the given symmetry-
breaking pattern then only includes genuine NG fields. Accordingly, all modes 
described by the EFT are gapless, that is true NG bosons. Alternatively, one may 
proceed with the nonlinear realization that includes the secondary order parameter. 
The extra would-be NG fields are then dynamical and couple to gapped modes in 
the spectrum. If desired, these fields can be eliminated either by using their EoM or 
by imposing a suitable IHC. 

Example 13.7 

Let us have a closer look at smectic liquid crystals (Sect. 13.3.2). Here the primary 
order parameter is .〈φ(x, t)〉 = kn0 ·x. This breaks rotations that do not preserve the 
axis of alignment defined by . n0. Moreover, it breaks translations along . n0 together 
with the emergent shift symmetry of .φ(x) down to the “diagonal” subgroup. 
Altogether, there are three spontaneously broken symmetry generators. One of these 
corresponds to the genuine NG mode described by the EFT (13.56). In addition, 
there are two gapped modes that can be viewed as fluctuations of the secondary 
order parameter, .〈n(x)〉 = n0. 

Suppose we start from an EFT including all three degrees of freedom. This might 
even be desirable near the nematic–smectic phase transition at which the modes 
excited by the vector field .n(x) become gapless. However, should we decide to 
eliminate the gapped modes, we need a covariant IHC. To that end, note that the 
covariant derivative .∇rφ in (13.53) splits under the action of the isotropy group 
.H(ψ0,0) ≃ SO(2) into a singlet, .∇αφ, and a doublet, .∇aφ. The condition .∇aφ = 0 is 
covariant under all the symmetries of the smectic and moreover is algebraic in . πa . 
In a somewhat more human notation, it is equivalent to .n × ∇φ = 0. The solution 
to this IHC is, up to overall sign, .n = ∇φ/ |∇φ|. 

In fact, the IHC can do more than to eliminate unwanted degrees of freedom. 
According to (13.20), covariant derivatives of NG fields . πa extracted from the . ω⊥
part of the MC form transform exactly as matter fields with respect to some linear 
representation of .H(ψ0,0). The very fact that the constraint .∇aφ = 0 can be solved 
for . πa means that the Jacobian matrix .∂(∇aφ)/∂πb is nonsingular, at least around 
the reference point .πa = 0. Instead of setting it to zero, we can therefore treat 
.∇aφ ≡ χa as a new field variable that replaces . πa in the EFT. We conclude that the 
gapped degrees of freedom are indistinguishable from ordinary matter fields. This 

7 A similar phenomenon exists even for internal symmetries. As stressed in Sect. 8.3.2, the primary 
order parameter responsible for type-B NG modes in the spectrum is the commutator matrix (8.26). 
The presence of an additional, secondary order parameter may lead to gapped “partners” of the 
type-B NG modes. See [13] for a detailed discussion within Hamiltonian formalism, or Sect. 8.3.1 
for an outline of how these gapped partner states manifest themselves in the effective Lagrangian.
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is the underlying reason why they can be removed from the EFT without spoiling 
the nonlinear realization of the broken symmetry. And for the same reason, it is no 
wonder that the broken symmetry does not force them to remain gapless. 

The same reasoning applies to Galilei-invariant superfluids (Sect. 13.3.3). Even if 
one does not wish to eliminate the auxiliary field . ξ r from the EFT, one can still trade 
it for .χ ≡ ξ − ∇π . This is invariant under Galilei boosts and transforms as a matter 
field in the vector representation of the linearly realized isotropy group .SO(d). The  
observation that whenever a set of would-be NG fields can be eliminated from the 
EFT by imposing some IHCs, they can instead be kept and traded for a set of matter 
fields, is general [14]. The change from the would-be NG fields to the matter fields 
is a field redefinition that is nonsingular. This is guaranteed by the fact that the IHCs 
are algebraically solvable. 

The distinction between the three mechanisms discussed so far crucially relies 
on the type of order parameter breaking the symmetry of the system. Within a 
naive EFT based on the agnostic nonlinear realization, there is therefore no way 
to distinguish these scenarios. One has to accept the possibility that some would-be 
NG degrees of freedom of the EFT couple to gapped states. Within the EFT itself, 
it is not possible to tell whether such states are physical or mere artifacts of the EFT 
setup. This suggests that when it comes to spacetime symmetries, the symmetry-
breaking pattern itself is not restrictive enough. To get more detailed insight, one 
needs additional low-energy data such as the order parameter. See [15,16] for further 
discussion. 

Gapped Modes Required by Order Parameter So far, generators not leading to 
independent NG degrees of freedom could always be identified by inspecting the 
classical symmetry transformations and the order parameter(s). Interestingly, that 
is not the end of the story. There are theories featuring would-be NG fields that 
couple to gapped modes which cannot be discarded by dropping a secondary order 
parameter. See [17] for an example and more details. It is then still possible to 
eliminate such fields using either the EoM or a suitably chosen IHC. One should 
however expect the resulting minimal nonlinear realization of symmetry to involve 
generalized local transformations that depend on derivatives of the NG fields. As 
long as one insists on using solely point symmetries, it is not possible to recover 
the minimal nonlinear realization by reducing the order parameter. In this sense, the 
presence of the gapped modes is required for a description of the symmetry-breaking 
pattern based on a local order parameter. 

In all the scenarios outlined above and summarized in Fig. 13.2, the IHCs play a 
prominent role. It is therefore important to stress that they are just a technical tool. 
We always have the option to work with the full EFT based either on the agnostic 
nonlinear realization or the standard nonlinear realization of Chap. 12. We just have  
to live with the possibility that the EFT may include some gapped modes. These of 
course become irrelevant at sufficiently low energies. The set of genuine NG degrees 
of freedom is fixed unambiguously by the symmetry-breaking pattern.
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How to choose the IHC in practice is a kind of art in its own right. The examples 
I presented above were all mercifully simple. Nonetheless, there is a useful rule of 
thumb rooted in the expression (13.3) for the MC form. Namely, if the commutator 
.[Pμ,Qa] contains . Qb, then the NG field . πa appears linearly and without derivatives 
in the . ωb component of the MC form. It therefore seems possible to eliminate . πa by 
setting . ωb (or the irreducible multiplet of components of the MC form containing 
it) to zero. This naive algorithm however requires further conditions to work [18], 
and moreover depends sensitively on the exact choice of field parameterization [19]. 
It is therefore comforting to know that whether or not one chooses to impose some 
IHCs has no effect on the low-energy physics of the theory. 

13.4 Genuine Breaking of Translation Invariance 

Until now I assumed that whatever the pattern of symmetry breaking, the low-energy 
physics is captured by an EFT that lives on the coset space .H0/H(ψ0,0). As we  
saw, this is appropriate for systems where the value of the order parameter at all 
spacetime points lies on the same orbit of the symmetry group. Any matter fields 
. χϱ that might be present can then be discounted. In this last section of the chapter, 
I will briefly outline the changes that are necessary to account for fluctuations 
of generic coordinate-dependent order parameters. The nonlinear realization of 
spacetime symmetry developed in Chap. 12 remains valid even in this general case. 
This is because the construction does not depend on the order parameter as a 
function on spacetime, merely on the choice of the representative point .ψ0 ∈ M. 
By the same token, everything said in Sect. 13.1 about the MC form and covariant 
derivatives still applies. 

The new complication is that we now have to explicitly include the matter fields 
.χϱ(x) in the game. These may contain NG degrees of freedom that are not detected 
by the .H0/H(ψ0,0) coset space, namely those of spontaneously broken translations. 
The challenge we face is to find a parameterization of the matter fields that makes 
the existence of the translation NG modes manifest. As of writing this book, there 
does not seem to be a general parameterization that would do the job in presence 
of other, possibly spontaneously broken, symmetries. I will thus merely sketch the 
basic idea in the simplest case of spacetime symmetry breaking by an otherwise 
featureless order parameter. 

13.4.1 One-Dimensional Modulation of the Order Parameter 

To further simplify the problem, consider a single real scalar field .φ(x) in a theory 
invariant under a purely spacetime symmetry group G. This may be the Aristotelian 
group or one of its extensions including boosts such as the Galilei or Poincaré group. 
The isotropy group . H0 contains the transformations that act linearly on spacetime 
coordinates, that is rotations and boosts. For any choice of .φ0 ∈ R, the isotropy
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group .H(φ0,0) ≃ H0 makes the coset space .H0/H(φ0,0) trivial. There are no NG 
variables and the sole degree of freedom, namely . φ itself, is of the matter type. 

Suppose now that the VEV .〈φ(x)〉 varies along one particular direction in space. 
In order to maintain Poincaré (or Galilei) covariance if desired, I will characterize 
this preferred direction by a fixed spacelike vector . nμ. Our order parameter for 
spacetime symmetry breaking is then defined by a function . ϕ of a single variable 
such that 

.〈φ(x)〉 ≡ ϕ(n · x) . (13.72) 

We would eventually like to trade .φ(x) for a NG field .π(x) that manifests 
spontaneous breaking of translations in the direction of . nμ. Before we proceed, 
let me stress that the order parameter (13.72) will as a rule also break rotations 
and (if present) Lorentz or Galilei boosts. However, these never enter our setup 
explicitly. For scalar fields, we already know that both spatial rotations and boosts 
are descendant symmetries in the sense of Chap. 11. Their nonlinear realization will 
therefore be automatically taken care of by the same NG field .π(x). 

Let us now start with a purely mathematical problem on functions of a single 
variable. I will call the latter z to distinguish it from the spacetime or spatial 
coordinates, .xμ and . xr . Suppose we are given a function .ϕ(z) that “breaks 
translation invariance,” that is, it is strictly monotonic, .ϕ'(z) /= 0. We would 
like to parameterize the “fluctuations” of .ϕ(z) in a way that makes the breaking 
of translation invariance manifest. We do so by locally shifting the graph of the 
function by .π(z) along the z-axis. This defines uniquely a new function .φ(z) via 
.φ(z) ≡ ϕ(z − π(z)), see Fig. 13.3. Thanks to the assumed strict monotonicity of 
.ϕ(z), the mapping between .π(z) and .φ(z) for fixed .ϕ(z) is one-to-one. 

This little trick can be promoted to an arbitrary number D of spacetime 
dimensions, provided . ϕ as assumed only varies in one particular direction. The 
coordinates corresponding to all the other directions in spacetime play a role of fixed 
parameters in the mapping between . φ and . π . Thus, I assume that .ϕ(n · x) in (13.72) 

Fig. 13.3 Two 
parameterizations of the 
fluctuations of a strictly 
monotonic function .ϕ(z). The  
first amounts to a local shift 
.π(z) of the graph of .ϕ(z) in 
the horizontal direction. The 
second is given by the 
function .φ(z) corresponding 
to the shifted graph. 
Mathematically, the two 
parameterizations are related 
by .φ(z) = ϕ(z − π(z))



13.4 Genuine Breaking of Translation Invariance 319

is a strictly monotonic function of its argument. This is necessary for translations 
along . nμ to be spontaneously broken at each spacetime point. The scalar field . φ(x)

can then be traded for .π(x), defined implicitly by 

.φ(x) ≡ ϕ(n · x − π(x)) . (13.73) 

The function . ϕ as defined by (13.72) obviously depends on the choice of 
coordinates. For instance, .ϕ(n · x) and .ϕ(n · x + c) with any .c ∈ R describe 
the same order parameter, differing only by a coordinate shift along . nμ. This is  
a hallmark of translation symmetry breaking. The introduction of the NG field . π(x)

makes it possible to map a fixed function . ϕ to a scalar field . φ. This requires that 
under a spacetime transformation, be it a translation, rotation or boost, the NG field 
transforms as 

.π '(x') = π(x) + n' · x' − n · x . (13.74) 

In the special case of spatial translations, .x → x + ∈, this boils down to . π '(x +
∈, t) = π(x, t) − n · ∈, where . n is the spatial part of . nμ. Shifting the NG field by 
a constant is typical for spontaneously broken Abelian symmetries. We are on the 
right track. 

Now that we have settled the parameterization, we would like to construct the 
most general effective action consistent with all the symmetries present. Since there 
were no NG variables to start with, the MC form (13.3) reduces to .P ·dx. This gives 
a trivial spacetime coframe, .e∗μ = δμ

ν dx
ν . Also, by (13.17), the covariant derivative 

of the matter field . φ is trivial, .∇μφ = δν
μ∂νφ. Therefore, an invariant action can be 

built by taking any Lagrangian density that does not depend explicitly on spacetime 
coordinates. It can contain .φ(x) with an arbitrary number of derivatives (including 
zero). The indices on the derivatives are to be contracted in a way that preserves the 
linearly realized group . H0. In case of a relativistic, that is Poincaré-invariant theory, 
any Lorentz-invariant Lagrangian density .Leff[φ] will do. 

It looks like we have not made much progress. In particular, we have not learned 
anything so far about the possible dependence of the effective Lagrangian on the NG 
field .π(x). However, there are still two requirements we have not addressed yet. The 
first of these is that the order parameter (13.72) is at least a local minimum of the 
energy functional of the EFT. This will constrain what the effective Lagrangian may 
look like. The second requirement is to have a consistent power-counting scheme 
that would allow us to decide which operators in the Lagrangian are most important. 
In order to understand what is at stake, it is best to work out an illustrative example.
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13.4.2 Case Study: Fluctuations of a Domain Wall 

Following Chap. 5 of [20], consider the class of relativistic scalar field theory 
models 

.Leff = 1

2
(∂μφ)2 − V (φ) , (13.75) 

where .V (φ) is a potential function, required for stability to be bounded from below. 
We can assume without loss of generality that .minV (φ) = 0. The classical EoM of 
the model reads 

.□φ + dV (φ)

dφ
= 0 . (13.76) 

Suppose the potential has (at least) two degenerate minima. Then the EoM has 
domain wall (or kink) solutions . ϕ that interpolate between the minima. Such 
solutions depend on a single spatial coordinate, which I will denote as z, and 
converge to the respective minima of the potential for .z → ±∞. Upon reduction to 
the single variable z, the  EoM  (13.76) has the first integral .(1/2)(dφ/dz)2 − V (φ). 
For the domain wall solutions, this first integral evaluates to zero since for .z → ±∞, 
.ϕ(z) converges to a constant such that . lim

z→±∞ V (ϕ(z)) = 0. This reduces the EoM 
to the following first-order differential equation for .ϕ(z), 

.ϕ'(z) = ±√2V (ϕ(z)) . (13.77) 

The prime on . ϕ indicates a derivative with respect to its argument. 

Example 13.8 

One of the most common scalar potentials is the double-well potential, 

.V (φ) ≡ λ

2
(φ2 − v2)2 , (13.78) 

where . λ and v are positive parameters. A simple calculation gives the corresponding 
domain wall solution, interpolating between the minima at .φ = ±v, 

.ϕ(z) = ±v tanh[√λv(z − z0)] . (13.79) 

Here . z0 is an integration constant that determines the center of the domain wall 
where .ϕ(z0) = 0. The width of the domain wall is given by .1/(

√
λv). 

Another example of a phenomenologically important potential is 

.V (φ) ≡ m2v2
(
1 − cos

φ

v

)
, (13.80)
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where m and v are positive parameters. This appears for instance in the low-energy 
effective theory (9.21) of quantum chromodynamics, when restricted to neutral 
pions. In this realization, m corresponds to the pion mass .mπ and v to the pion 
decay constant, . fπ . The potential .V (φ) is now periodic with minima at . φ = 2nπv

for any .n ∈ Z. The domain wall solution, connecting two neighboring minima, is 

.ϕ(z) = 4v arctan exp[±m(z − z0)] . (13.81) 

In this case, the width of the domain wall is fixed by the mass parameter to be .1/m. 

Both concrete domain wall solutions in Example 13.8 satisfy our criteria for 
the translation-breaking order parameter modulated in one dimension. We would 
eventually like to derive a low-energy EFT for the fluctuations of the domain wall. 
The first step towards this goal is to use the general parameterization (13.73) with 
.n · x = z. The potential term in (13.75) can then be eliminated by means of (13.77), 
upon which the Lagrangian becomes 

.Leff = [ϕ'(z − π)]2
[
1

2
(∂μπ)2 − (1 − ∂zπ)

]
. (13.82) 

The contribution of the .1−∂zπ piece to action is a mere boundary term independent 
of local variations of .π(x). Namely, . 

∫
dz [ϕ'(z − π)]2(1 − ∂zπ) = ∫ z̃+

z̃− dz̃ [ϕ'(z̃)]2
where .z̃ ≡ z −π(x) and .z̃± ≡ lim

z→±∞ z̃. Dropping this contribution, we are left with 
the following effective action [16], 

.Seff{π} = 1

2

∫
dDx [ϕ'(z − π(x))]2[∂μπ(x)]2 . (13.83) 

The EFT (13.83) apparently describes a derivatively coupled NG field .π(x) as 
we wanted. However, it is still not quite satisfactory due to the explicit appearance 
of the domain wall background .ϕ(z). It is not even clear what the quasiparticle 
spectrum of the EFT is. To that end, we utilize the EoM, linearized in the NG field, 

.□π(x) − 2ϕ''(z)
ϕ'(z)

∂zπ(x) ≈ 0 , (13.84) 

where the . ≈ symbol indicates the linear approximation. It is convenient to switch to 
the linear fluctuation of the order parameter, .χ(x) ≡ φ(x) − ϕ(z).8 The linearized

8 While .π(z) is defined as the horizontal distance of the graphs of .φ(z) and .ϕ(z) in Fig. 13.3 (the 
other spacetime coordinates being fixed), .χ(z) can be viewed as their vertical distance. 
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EoM (13.84) is thus transformed to 

.□χ(x) + ϕ'''(z)
ϕ'(z)

χ(x) ≈ 0 , χ(x) ≈ −ϕ'(z)π(x) . (13.85) 

As a simple check, note that the domain wall solution satisfies . ϕ'''/ϕ' =
d2V (ϕ)/dϕ2. Equation (13.85) then descends directly from the Lagrangian (13.75) 
by expanding the latter to second order in .χ(x). The form of (13.85) allows 
us to Fourier-transform in time and the transverse spatial coordinates (denoted 
collectively as . x⊥). Parameterizing plane-wave solutions by energy E and 
transverse momentum . p⊥, 

.χ(x⊥, z, t) = χ̂ (z) exp(−iEt + ip⊥ · x⊥) , (13.86) 

the profile function .χ̂ (z) solves the one-dimensional eigenvalue problem 

.

[
−∂2z + ϕ'''(z)

ϕ'(z)

]
χ̂(z) = (E2 − p2⊥)χ̂(z) . (13.87) 

In order to appreciate the content of this equation for single-particle states, let us 
return to the two concrete choices of potential introduced in Example 13.8. In both 
cases, I will for simplicity consider only the solution .ϕ(z) centered at .z0 = 0. 

Example 13.9 

For the double-well potential with the corresponding domain wall solution (13.79), 
.ϕ'''(z)/ϕ'(z) = 2λv2[2 − 3 sech2(

√
λvz)]. Introducing a dimensionless coordinate 

.Z ≡ √
λvz turns (13.87) into 

.

(
−∂2Z − 6

cosh2 Z

)
χ̂(Z) =

(
E2 − p2⊥

λv2
− 4

)

χ̂ (Z) . (13.88) 

The operator on the left-hand side is a special case of the Pöschl–Teller Hamiltonian, 
.Hn ≡ −∂2Z − n(n + 1)/ cosh2 Z with positive .n ∈ Z. The spectrum of this 
Hamiltonian is well-known; see e.g. Chap. 11 of [21]. There are n bound states 
with eigenvalues .−n2,−(n − 1)2, . . . ,−1. The continuous part of the spectrum 
covers the open interval .(0,∞). In the .n = 2 case of interest to us, the ground state 
with eigenvalue . −4 gives .E = |p⊥|. The corresponding profile function is . χ̂(Z) ∝
1/ cosh2 Z. This solution is localized in the z-direction to the vicinity of the domain 
wall. It propagates as a plane wave in the transverse directions with a massless 
relativistic dispersion relation. The upper bound state of . H2 with eigenvalue . −1
gives .E2 = p2⊥ + 3λv2. Its profile function is .χ̂(Z) ∝ sinhZ/ cosh2 Z. This  
solution is also localized to the domain wall and propagates only in the transverse 
directions, but it has a nonzero mass of .

√
3λv. Finally, the continuum part of the 

spectrum of the Pöschl–Teller Hamiltonian can be parameterized by the momentum
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variable . pz so that for .z → ±∞, .χ̂ (z) ∝ exp(ipzz). The corresponding energy is 
.E2 = p2⊥ + p2

z + 4λv2. This describes delocalized fluctuations of the domain wall 
that propagate in the entire space. They have a relativistic dispersion relation with 
mass .2

√
λv. 

In case of the cosine potential with its domain wall solution (13.81), 
.ϕ'''(z)/ϕ'(z) = m2[1 − 2 sech2(mz)]. With the dimensionless coordinate .Z ≡ mz, 
the eigenvalue problem (13.87) becomes 

.

(
−∂2Z − 2

cosh2 Z

)
χ̂(Z) =

(
E2 − p2⊥

m2
− 1

)

χ̂ (Z) . (13.89) 

The left-hand side is again one of the Pöschl–Teller Hamiltonians, . H1. Its sole 
bound state has the profile function .χ̂(Z) ∝ 1/ coshZ. This is a state localized 
to the domain wall that propagates in the transverse directions with the massless 
relativistic dispersion, .E = |p⊥|. The continuum part of the spectrum of this 
Pöschl–Teller Hamiltonian again amounts to delocalized fluctuations of the domain 
wall. Their dispersion relation is .E2 = p2⊥ + p2

z + m2. Far away from the domain 
wall, they describe particles of mass m propagating in the bulk. 

We are now ready to draw some general conclusions. Starting with any potential 
.V (φ) with degenerate minima, the domain wall solution will be localized in 
the z-direction. The linearized EoM (13.84) always admits plane-wave solutions, 
propagating in the transverse directions with the massless dispersion relation, 
.E = |p⊥|, and with a constant longitudinal profile, .π̂(z) ∝ 1. By  (13.85), this  
corresponds to .χ̂(z) ∝ ϕ'(z). The existence of this solution is guaranteed by the 
spontaneously broken translation invariance. Indeed, the fact that .π̂(z) is constant 
indicates that this is the NG boson we are after. It does not propagate in the z-
direction since translations in the z-direction are completely broken, hence there 
is no physical momentum . pz to label one-particle states with. The NG mode 
propagates solely along the directions in which translations remain unbroken. 

The second observation is that there is a continuum of plane-wave-like solutions 
that propagate in the bulk. Far away from the domain wall where .ϕ(z) goes to one of 
the minima of .V (φ), . ϕ0, these are simple plane waves, .χ̂(z) ∝ exp(ipzz). They have  
a relativistic dispersion relation with squared mass .V ''(ϕ0). In fact, we could have 
guessed this much by expanding the Lagrangian (13.75) around the uniform solution 
.〈φ(x)〉 = ϕ0. In addition to the NG mode and the bulk plane-wave continuum, 
there may be further solutions to (13.85) that are localized on the domain wall 
and propagate only in the transverse directions. These correspond to excited bound 
states of the one-dimensional Hamiltonian on the left-hand side of (13.87). The  
presence of such massive excitations propagating along the domain wall depends on 
the concrete choice of the potential .V (φ). 

It is not a priori obvious why the NG mode with .π̂(z) ∝ 1 is necessarily 
the lowest-lying excitation, that is, why the domain wall solution is stable. To
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understand this, let us assume without loss of generality that .φ(x) is monotonic 
in z and estimate its energy from below by completing the square, 

. 

∫
dd−1x⊥ dz

[
1

2
(∂0φ)2 + 1

2
(∇⊥φ)2 + 1

2
(∂zφ)2 + V (φ)

]

=
∫

dd−1x⊥ dz

{
1

2
(∂0φ)2 + 1

2
(∇⊥φ)2 + 1

2

[
φ' ∓√

2V (φ)
]2 ± φ'√2V (φ)

}

≥
∫

dd−1x⊥
∣
∣
∣
∣

∫ φ+

φ−
dφ

√
2V (φ)

∣
∣
∣
∣ , (13.90) 

where .φ± ≡ lim
z→±∞ φ(x). This estimate, known as the Bogomolny bound, shows that 

static solutions satisfying (13.77) minimize the energy per unit transverse volume 
on the class of field configurations with a fixed boundary condition at .z → ±∞. 

We have discovered that our EFT (13.83) inevitably describes both the transla-
tion NG boson and specific gapped excitations. This is hardly surprising given 
that (13.83) is equivalent via a field redefinition to the original model (13.75). 
One might naively expect that an EFT for the NG mode alone could be 
extracted by integrating over z. After all, we found that the NG solution for 
.π(x) does not depend on z at all. However, inserting a z-independent . π(x⊥, t)

makes it possible to shift the z-coordinate in .ϕ'(z − π), thus reducing (13.83) 
to 

.Seff{π} = 1

2

∫
dz [ϕ'(z)]2

∫
dd−1x⊥ dt

[
(∂0π)2 − (∇⊥π)2] . (13.91) 

This is a noninteracting theory, describing free surface waves on the domain 
wall. We conclude that all interactions among the NG modes in the 
EFT (13.83) are mediated by the gapped modes. 

The problem of disentangling the NGmode from the gapped excitations is related 
to our ability to organize contributions to the EFT by a derivative expansion. Also, 
we have so far been forced to work with specific domain wall solutions .ϕ(z), 
descending from the chosen model potential .V (φ). We would rather have a model-
independent EFT where the stability of the ground state and the existence of a power 
counting serve merely as constraints. I will now address these issues jointly in a 
framework inspired by the background gauge invariance approach of Sect. 8.2.
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13.4.3 Effective Action from Background Gauge Invariance 

The idea to use background gauging to derive an EFT for spontaneously broken 
translations has been utilized in multiple contexts, including inflationary cosmol-
ogy [22] and superconductivity [23]. Here I will loosely follow the exposition 
in [16]. We are looking for an effective action .Seff{π} for the NG mode of 
spontaneously broken translations in the z-direction. In the spirit of Sect. 8.2, we  
first promote the physical symmetry to a local invariance by adding a set of 
background gauge fields. Localizing spacetime translations leads to the group of 
spacetime diffeomorphisms. The precise choice of the corresponding background 
field is constrained by the physical symmetry and field content. In case of relativistic 
theories of scalar fields, one can use a spacetime metric, .gμν(x), to make the gauged 
action .Seff{π, g} diffeomorphism-invariant. 

The transformation of the metric under a diffeomorphism of the spacetime 
manifold, .xμ → x'μ(x) ≡ xμ + ∈μ(x), is given by the push-forward by the 
inverse of the diffeomorphism; see Appendix A.3.1. This must be augmented with 
a transformation rule for the NG field .π(x). In order to maintain the relation 
.φ(x) = ϕ(z − π(x)) between a scalar field .φ(x) and a fixed function .ϕ(z), . π(x)

should transform as 

.π '(x') = π(x) + ∈z(x) . (13.92) 

The NG field can now be eliminated by choosing the diffeomorphism as . ∈μ(x) =
−δ

μ
z π(x). With a slight abuse of notation, I will denote this operation as .T−π . This  

reduces the action to .Seff{π, g} = Seff{0,T−πg}. The dependence of the action 
on the composite gauge field .(T−πg)μν is constrained by invariance under the 
residual group of diffeomorphisms that fix the point .π = 0. These are (possibly 
z-dependent) .(D −1)-dimensional diffeomorphisms with .∈z(x) = 0. Once the most 
general admissible action .Seff{0,T−πg} has been found, the EFT in flat Minkowski 
spacetime can be recovered by setting .gμν(x) to the Minkowski metric. 

To constrain the form of .Seff{0,T−πg}, it is convenient to separate the z-
coordinate from the other spacetime coordinates. I will indicate those using 
lowercase Fraktur indices .m, n, . . . . It will also be more practical to work with the 
inverse of the metric, .gμν(x), rather than .gμν(x) itself. The transformation of the 
metric under diffeomorphisms then splits as 

. g'mn = gab(δma + ∂a∈
m)(δnb + ∂b∈

n) + gaz(δma + ∂a∈
m)∂z∈

n

+ gzb∂z∈
m(δnb + ∂b∈

n) + gzz∂z∈
m∂z∈

n ,

g'mz = gab(δma + ∂a∈
m)∂b∈

z + gaz(δma + ∂a∈
m)(1 + ∂z∈

z) + gzb∂z∈
m∂b∈

z

+ gzz∂z∈
m(1 + ∂z∈

z) , (13.93) 

g'zz = gab ∂a∈z ∂b∈
z + gaz ∂a∈

z (1 + ∂z∈
z ) + gzb (1 + ∂z∈

z )∂b∈
z + gzz (1 + ∂z∈

z )2.
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For the sake of brevity, I suppressed the arguments x of .gμν(x) and . x' of .g'μν(x'). 
The transformation rule for .gzm is analogous to that for . gmz. 

Under the restricted .(D − 1)-dimensional diffeomorphisms with .∈z(x) = 0, 
.gzz(x) behaves as a scalar, .g'zz(x') = gzz(x). On the other hand, . g'mz = gαz(δmα +
∂α∈m) depends on both .gmz and . gzz. Finally, . g'mn = gαβ(δmα + ∂α∈m)(δnβ + ∂β∈n)

depends on all . gmn, . gmz, .gzn and . gzz. This suggests that our main ingredient for 
constructing diffeomorphism-invariant actions will be 

.

(T−πg)zz = gab∂aπ∂bπ − 2gaz∂aπ(1 − ∂zπ) + gzz(1 − ∂zπ)2

= gzz − 2gzα∂απ + gαβ∂απ∂βπ ,
(13.94) 

where the argument of .(T−πg)zz is .x̃μ ≡ xμ − δ
μ
z π(x). The  z-component of . x̃μ, 

that is .z̃ ≡ z − π(x), is itself invariant under spacetime diffeomorphisms and can 
thus appear in the effective action without restrictions. Finally, the effective action 
may also contain .(T−πg)mz and .(T−πg)mn. These, not being scalars, can however 
only enter through higher-derivative tensors such as the Riemann curvature tensor. 
See Appendix A of [22] for a discussion of geometric structures allowed by the 
restricted .(D − 1)-dimensional diffeomorphism invariance. For our purposes, the 
main conclusion is that the part of the effective action dominant at low energies will 
be included in 

.

Seff{π, g} =
∫

dDx̃ vol(T−πg)(x̃) f
(
z̃, (T−πg)zz(x̃)

)

=
∫

dDx vol(g)(x) f
(
z − π(x), (T−πg)zz(x̃)

)
.

(13.95) 

Here f is a generic smooth function of two variables. The volume measure 
.vol(g) for a metric of (timelike) Lorentzian signature equals .

√
(−1)d det g; 

cf. Appendix A.7.2. 

Example 13.10 

Using the specific choice .f (u, v) ≡ (1/2)[ϕ'(u)]2(v − 1) and subsequently going 
back to the flat Minkowski spacetime gives 

.Seff{π} = 1

2

∫
dDx [ϕ'(z − π)]2[(∂μπ)2 − 2(1 − ∂zπ)] . (13.96) 

This reproduces our previous model result (13.82).
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A systematic expansion in derivatives of the NG field is easier if one uses the 
combination .(T−πg)zz + 1, which goes to .2∂zπ + (∂μπ)2 in the flat-spacetime 
limit. This suggests expanding the function .f (u, v) in (13.95) in powers of .v + 1. 
Up to second order in .v + 1 and thus in derivatives, we have . f (u, v) = c0(u) +
c1(u)(v + 1) + c2(u)(v + 1)2 + · · · , which translates to the Minkowski-spacetime 
action 

.

Seff{π} =
∫

dDx
{
c0(z − π) + c1(z − π)[2∂zπ + (∂μπ)2]

+ c2(z − π)[2∂zπ + (∂μπ)2]2}+ · · · .

(13.97) 

This is the low-energy EFT we have been looking for. It remains to elucidate the 
consistency constraints on the functions .ci(z − π). To that end, we expand the 
Lagrangian in (13.97) to second order in the NG field, 

.Leff[π ] = c0(z) + [−c'
0(z) + 2c1(z)∂z]π (13.98) 

+ 
1 

2
[c''

0(z) − 2c'
1(z)∂z]π2 + c1(z)(∂μπ)2 + 4c2(z)(∂zπ)2 + · · ·  . 

Bulk stability requires absence of any terms linear in . π . This leads to the constraint 

.c'
0(z) + 2c'

1(z) = 0 . (13.99) 

In fact, one can demand even .c0(z) + 2c1(z) = 0, since any constant offset of . c0(z)

can be dropped from (13.97). This sharper relation is indeed satisfied by the choice 
of .f (u, v) in Example 13.10, where .c0(u) = −[ϕ'(u)]2 and .c1(u) = (1/2)[ϕ'(u)]2. 
With the constraint (13.99), the first term on the second line of (13.98) automatically 
drops, and the Lagrangian boils down to .c1(z)(∂μπ)2+4c2(z)(∂zπ)2 up to a surface 
term. A necessary (though not inevitably sufficient) condition for the corresponding 
energy functional to be bounded from below is therefore 

.c1(z) ≥ 0 and c1(z) ≥ 4c2(z) for any z ∈ R . (13.100) 

So far, I have not assumed any specific choice or properties of the profile 
functions .ci(z). The effective action (13.97) defines a generic EFT for the NG mode 
of spontaneously broken translations in the z-direction in a relativistic system. In 
particular, the functions .ci(z) in (13.97) do not have to arise from a topologically 
nontrivial background such as a domain wall. However, if that happens to be the 
case, we expect them to be localized to a finite range in z. The NG mode will then 
correspond to a surface wave and propagate solely in the transverse directions. I 
would now like to use the general EFT (13.95) to shed some light on the physics 
of these surface waves beyond the noninteracting approximation (13.91). To that 
end, it is convenient to switch to the . x̃μ coordinates. Namely, .π(x) measures 
the local fluctuation-induced displacement of the domain wall in the z-direction.
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Geometrically, the dynamical state of the domain wall can thus be viewed as a 
hypersurface in . RD defined by a constant value of . ̃z. 

With the shorthand notation .g̃ ≡ T−πg, the determinant of this D-dimensional 
metric can be decomposed as .det g̃ = (g̃zz)−1 det g̃. Here  .g̃mn is a projection of 
.g̃μν to the .(D − 1)-dimensional space of . xm, which is nothing but the metric on the 
domain wall induced by the bulk Lorentzian metric in . RD . The factorization of . det g̃
follows from the mathematical properties of block matrices [24]. Augmenting this 
observation with the constraint .c0(z) + 2c1(z) = 0 turns the first line of (13.95) to 

. 

Seff{π, g} =
∫

dDx̃ vol(g̃)(x̃)

×
{
c0(z̃) +

[
c0(z̃)

8
+ c2(z̃)

]
[g̃zz(x̃) + 1]2 + · · ·

}
.

(13.101) 

So far this is an exact rewriting of (13.95) except for the truncation of the power 
expansion in .g̃zz + 1. Now we take the limit of flat spacetime. Simultaneously, we 
restrict to fields independent of the . ̃z coordinate, as appropriate for the NG mode. 
This makes it possible to do the integral over . ̃z independently of the NG field. We 
thus arrive at an effective .(D − 1)-dimensional theory for the surface waves on the 
domain wall which, up to higher-order corrections, takes the form 

.Seff =
∫

dz c0(z)

∫
dd−1x⊥ dt vol(g̃)(x⊥, t) + · · · . (13.102) 

In this approximation, the EFT for the domain wall fluctuations is completely 
geometric and fixed by the induced metric, 

.g̃mn = gmn − ∂mπ∂nπ , vol(g̃) = √
1 − gmn∂mπ∂nπ . (13.103) 

The expression for .vol(g̃) follows from the so-called Weinstein–Aronszajn identity 
for matrix determinants. The reader may recognize this as the Dirac–Born–Infeld 
(DBI) theory that we met previously in Sect. 10.3.1. All that is left of the profile of 
the domain wall is the overall prefactor in (13.102). 

Example 13.11 

The prefactor .
∫
dz c0(z) measures, up to overall sign, the energy of the domain 

wall per unit transverse volume, that is its surface tension. For the class of 
models (13.75), it equals .− ∫

dz [ϕ'(z)]2; see also (13.90). In case of the double-well 
potential with the domain wall solution (13.79), this gives .−(4/3)

√
λv3. For  the  

cosine potential with the corresponding domain wall (13.81), one finds analogously 
.−8mv2.
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The .(D − 1)-dimensional theory (13.102) obviously describes only the NG 
mode as we wanted; the gapped modes we found in Sect. 13.4.2 are gone. The 
price to pay is that the D-dimensional Lorentz symmetry is now realized in a 
nontrivial fashion beyond our spacetime symmetry paradigm; cf. (10.50). 

The fact that all the modes propagating in the D-dimensional bulk are 
gapped is essential for the validity of the EFT (13.102). There are physical 
systems where the bulk modes are naturally gapless, for instance when two 
immiscible superfluids are separated by an interface. In this case, integrating 
the bulk modes out makes the EFT for the surface waves on the interface 
nonlocal. This leads to a fractional-power dispersion relation of the surface 
modes, .E(p) ∝ |p|3/2. See [25] for a detailed discussion from an EFT 
perspective. 

13.4.4 Further Possible Applications 

In discussing spontaneous breaking of spatial translations, I have deliberately 
merely outlined the general approach and then focused on a specific type of system 
to illustrate it. There are however several natural, physically motivated modifications 
or generalizations of the setup. I will now at least briefly mention some of the 
possible avenues one might wish to follow. 

Periodic Modulation of Order Parameter Mathematically the simplest modifi-
cation is one with a single, otherwise featureless real order parameter where the 
profile .ϕ(z), or .c0(z), is not spatially localized. The most interesting situation arises 
when .ϕ(z) is a periodic function of z. In this case the physics changes qualitatively. 
The eigenvalue problem (13.87) for linear fluctuations will have no bound states. 
Instead, its continuous spectrum will have a band structure. There should still be a 
NG mode of the spontaneously broken translations, but this will assume the form 
of a sound wave (phonon) on the crystalline background .ϕ(z). In the limit where 
.ϕ(z) consists of widely separated localized kinks, the propagation of sound in the 
z-direction arises from tunneling between states localized on the individual kinks. 

The detailed structure of the dispersion relation of the low-lying phonon excita-
tions will be no less interesting. Namely, it turns out that the spontaneously broken 
symmetry under spatial rotations forbids the . c1 term in (13.97). As a consequence, 
the derivative expansion of the effective Lagrangian starts at second order in 
longitudinal derivatives . ∂z but fourth order in the transverse gradient .∇⊥ [16]. We 
already saw the same behavior in smectic liquid crystals (Sect. 13.3.2), and I will 
return to its physical implications in Chap. 15. 

Other Spacetime Symmetries Another natural possibility is to consider systems 
with a real order parameter modulated in one spatial dimension, but with a
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different spacetime symmetry than Poincaré. This is relevant in particular for any 
condensed-matter system. As long as one has a concrete microscopic model, the 
analysis proceeds along the same steps as in Sect. 13.4.2. One can however also 
adopt the model-independent approach of Sect. 13.4.3 based on background gauge 
invariance. This requires coupling the theory to an appropriate spacetime geometry. 
A basic discussion can be found in Appendix A of [16]. For a more complete, 
if mathematically also more advanced, overview of non-Lorentzian geometry, 
see [26]. 

Additional Degrees of Freedom One might also want to study spontaneous break-
ing of translation invariance alongside other, possibly internal, broken symmetries. 
The field parameterization required then follows the general standard nonlinear 
realization of Sect. 12.3 combined with the identification of the translation NG 
field à la Sect. 13.4.1. The background gauge invariance approach may again prove 
helpful. Its application however relies on our ability to simultaneously gauge all 
the relevant symmetries by adding suitable background gauge fields. This is not 
guaranteed a priori without further qualifications. Finally, there are also physical 
systems where spacetime translations are spontaneously broken in more than one 
direction. In this case, the idea behind Sect. 13.4.1 might still be possible to apply 
provided one has at hand a sufficient number of fields to parameterize the order 
fluctuations uniquely. 
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14Broken Spacetime Symmetry 
in Classical Matter 

The first example of a Nambu–Goldstone (NG) boson I mentioned in the intro-
duction (Chap. 1) was hydrodynamic sound. However, our subsequent exploration 
of spontaneous symmetry breaking (SSB) took us very far away from this initial 
target. Indeed, I focused almost exclusively on the quantum world. This had a good 
reason: many conceptual subtleties of SSB are rooted in the description of quantum 
symmetries in terms of operators on the Hilbert space of states. We then did much 
work to establish the methods of nonlinear realization of symmetry and effective 
field theory (EFT) for NG bosons. Eventually, we discovered that the leading order 
(LO) of the derivative expansion of the EFT for quantum systems with SSB is a 
classical field theory. In this chapter, we shall close the circle and see how the 
techniques we have developed can be applied to purely classical systems. 

To build the necessary intuition, I will start in Sect. 14.1 with a primitive toy 
model for elastic solids. While physically inadequate in the details, this is good 
enough to show that a classical medium may possess an emergent symmetry, 
reflecting its internal structure. A proper identification of such emergent symmetries 
is key for distinguishing thermodynamic phases of matter with otherwise identical 
microscopic dynamics, such as solids and fluids. The subsequent analysis is straight-
forward and follows the standard workflow from nonlinear realization to effective 
actions. The nonlinear realization of a purely spacetime symmetry augmented with 
the emergent symmetry of classical matter is detailed in Sect. 14.2. In the following 
Sect. 14.3, I then work out explicit examples of EFTs for different phases of matter. 

14.1 Emergent Symmetry of Classical Matter 

Classical matter is characterized by the possibility to uniquely label its elements and 
individually track their evolution. While doing so, one has to carefully distinguish 
two different types of coordinates. The first type are the genuine spacetime 
coordinates, independent of whatever matter is present in the spacetime. The 
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Fig. 14.1 One-dimensional chain of point masses, connected by linear springs. The springs are 
only allowed to vibrate in the horizontal direction. The masses and spring constants may vary along 
the chain as indicated 

second type are the coordinates that label the individual elements of the medium. 
These are known in classical mechanics as body coordinates (see e.g. Sect. 8.1 
of [1]) or material coordinates (Chap. 4 of [2]). They capture internal variations 
of the material properties of the medium. The difference between the two types of 
coordinates is best elucidated by an example. 

14.1.1 Introduction: Spring Model of Elasticity 

One of the most basic mechanical models, illustrating a transition between mechan-
ics of particles and continuous field theory, is the linear spring chain, shown in 
Fig. 14.1. For the sake of discussion, I will assume that the particles connected 
by the springs have generally unequal masses. Likewise, the springs themselves 
may have different spring constants, although I will for simplicity assume equal rest 
(unloaded) length a. Denoting the position of the i-th particle as . xi , the Lagrangian 
of the system is 

.L =
∑

i

[
1

2
miẋ

2
i − 1

2
ki(xi+1 − xi − a)2

]
. (14.1) 

The ground state of this system corresponds to a chain of point masses at rest, 
placed equidistantly at distance a between the nearest neighbors. One can choose 
the origin of coordinates so that in the ground state, .〈xi〉 = ia. We would now  like  
to perform the continuum limit, assuming that a is very small. This requires that 
the displacement .xi − ia from the equilibrium position only varies appreciably over 
distances much longer than a. I will replace the discrete index i with a continuous 
body coordinate X through .i → X/a. The individual masses . mi are replaced 
with the linear mass density .ϱ(X) via .mi → aϱ(X), and the spring constants 
. ki with the local elastic (Young) modulus .E(X) via .ki → E(X)/a. Treating the 
Lagrangian (14.1) as a Riemann sum then leads to the continuous approximation 

.L →
∫

dX

{
1

2
ϱ(X)[∂0x(X, t)]2 − 1

2
E(X)[∂Xx(X, t) − 1]2

}
. (14.2) 

This is a field theory in one spatial dimension with the dynamical degree of 
freedom .x(X, t). Provided both .ϱ(X) and .E(X) are positive for any .X ∈ R,
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which follows from their origin in the parameters . mi and . ki , the ground state 
is .〈x(X, t)〉 = X up to an additive constant. This residual freedom stems from 
spontaneous breakdown of spatial translations. Parameterizing the displacement of 
the medium from equilibrium by the field .φ(X, t) ≡ x(X, t) − X, the fluctuations 
around the ground state are governed by the equation of motion (EoM), 

.ϱ(X)∂20φ(X, t) = ∂X[E(X)∂Xφ(X, t)] . (14.3) 

In the limit of equal masses . mi and spring constants . ki , the functions . ϱ(X)

and .E(X) become constant. The EoM (14.3) then describes compression waves, 
propagating along the chain with phase velocity .v = √

E/ϱ. In this limit, the action 
for .φ(X, t) features a set of emergent continuous symmetries that were not present 
in the original discrete model (14.1). The most obvious of these is the invariance 
under the “translation” .X

∈−→ X + ∈. A straightforward application of Noether’s 
theorem shows that the corresponding integral charge is, up to overall normalization, 

.Ppseudo = −
∫

dX ϱ∂0φ(X, t)∂Xφ(X, t) . (14.4) 

Despite the suggestive analogy with translation invariance, this is not the momentum 
carried by the oscillating masses of the original discrete chain. The latter rather 
equals 

.P =
∑

i

mi ẋi →
∫

dX ϱ(X)∂0φ(X, t) . (14.5) 

The resolution of this puzzle is that in presence of a uniform classical medium, 
we have two different coordinates and consequently two different translation sym-
metries. The position of the mass . mi with respect to the laboratory inertial reference 
frame is given by the coordinate . xi . Accordingly, a genuine spatial translation 
amounts to the shift .x

∈−→ x + ∈. In the formulation (14.2) of our field theory, 
this acts like an “internal symmetry.” That is, it transforms the dependent variable 
.x(X, t) while leaving the independent variable X intact. Applying Noether’s 
theorem recovers the integral momentum (14.5). This remains conserved for any 
choice of functions .ϱ(X) and .E(X). That is because momentum conservation 
reflects the uniformity of the underlying space itself; it does not care about the 
properties of the medium. The corresponding local conservation law is equivalent 
to (14.3), which is the continuous limit of the Newtonian EoM for the point masses 
. mi . 

The other integral charge, (14.4), is usually called pseudomomentum. This  
arises, as already stressed, from invariance under .X

∈−→ X + ∈. Given that X was 
introduced as a material coordinate, conservation of .Ppseudo should reflect the 
uniformity of the medium. Sure enough, it was essential for derivation of (14.4) 
to assume that .ϱ(X) and .E(X) are constant. The distinction between momentum 
and pseudomomentum has historically led to much confusion in the research on the
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continuum mechanics of fluids. See [3] for a pedagogical account of some of the 
related subtleties. 

The comparison of momentum and pseudomomentum illustrates best the 
striking contrast between the fundamental spacetime symmetries and the 
emergent symmetries of matter. However, the field theory (14.2) also features 
other emergent symmetries than translations. Namely, for constant . ϱ(X)

and .E(X) its action is invariant under the whole Poincaré group . ISO(1, 1)
of transformations acting on . X, t . These include the “translations” of X, 
giving rise to conservation of pseudomomentum, and the usual time trans-
lations, leading to conservation of energy. In addition, the theory has an 
emergent .SO(1, 1) Lorentz invariance under “boosts” that mix X and t . 
It is straightforward to work out the corresponding conservation law but 
I will not do so since we will not need it. Finally, the dynamics of our 
nonrelativistic spring chain should be invariant under Galilei boosts. Under 
the corresponding transformations, .x

v−→ x + vt with v being the velocity of 
the boost, the Lagrangian (14.2) shifts by a total time derivative. Similarly to 
spatial translations, this is a genuine spacetime symmetry that is present for 
any choice of .ϱ(X) and .E(X). 

Before closing the discussion of our toy model, let us briefly look at its 
generalization to a higher number of spatial dimensions d. For illustration, it is 
sufficient to take .d = 2 and consider a rectangular network of springs as in Fig. 14.2. 
The position of the particle .mi,j is now given by a two-component vector . xi,j . 
Assuming otherwise the same dynamics as before, whereby the potential energy of 

Fig. 14.2 Rectangular 
network of springs as a toy 
model of a two-dimensional 
elastic solid. All the point 
masses .mi,j are allowed to 
differ, as are the spring 
constants . k1i,j and . k2i,j . The  
rest (unloaded) length of all 
the springs is assumed to be 
the same and equal to a
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each spring is a quadratic function of its extension, the Lagrangian becomes 

.

L =
∑

i,j

[
1

2
mi,j ẋ

2
i,j − 1

2
k1i,j

( |xi+1,j − xi,j | − a
)2

− 1

2
k2i,j

( |xi,j+1 − xi,j | − a
)2

]
.

(14.6) 

The ground state of this model corresponds to a rectangular network of equidistantly 
placed particles at rest. One can choose Cartesian coordinates in the plane so that 
.〈xi,j 〉 = (ia, ja). To perform the continuum limit, we make the replacement 
.(i, j) → X/a and .mi,j → a2ϱ(X), where . X is a two-component vector of body 
coordinates and .ϱ(X) the local mass density. We also need two elastic moduli, 
.k1i,j → E1(X) and .k2i,j → E2(X). In terms of the displacement vector . φr(X, t) ≡
xr(X, t) − Xr ,1 the Lagrangian of the resulting continuous two-dimensional theory 
reads 

.

L →
∫

d2X

{
1

2
ϱ(X)[∂0φ(X, t)]2 − 1

2
E1(X)[∂1φ1(X, t)]2

− 1

2
E2(X)[∂2φ2(X, t)]2

}
+ · · · .

(14.7) 

The ellipsis stands for terms of higher order in . φr ; in  .d ≥ 2 dimensions, the 
dynamics of the spring network does not resolve into a superposition of one-
dimensional harmonic motions. Moreover, the model (14.7) does not correctly 
capture the physics of elastic solids even in the harmonic approximation. Namely, 
for purely transverse oscillations such that .∂φr/∂Xr = 0 for each fixed r , there is no 
linear restoring force and the motion is strongly anharmonic. In spite of these flaws, 
the model (14.7) is sufficient to shed light on the fate of the emergent symmetries. 

We always find exact invariance under genuine spacetime translations, spatial 
rotations and Galilei boosts regardless of the choice of the functions .ϱ(X) and 
.E1,2(X). This much is obvious from the discrete version (14.6) of the model. 
These symmetries reflect the properties of spacetime itself and are insensitive to 
the material structure of the medium. Should the medium be uniform, with constant 
.ϱ(X) and .E1,2(X), we will in addition have invariance under continuous “internal 
translations” of . X. This symmetry ensures conservation of pseudomomentum, and 
we can expect it to arise in the long-distance description of real crystalline materials. 
However, we cannot in general expect invariance under continuous “internal

1 I previously introduced the symbol .Xμ[ψ, x] to indicate the shift of the spacetime coordinate . xμ

under an infinitesimal symmetry transformation. In this chapter, I will not use this notation in order 
to avoid confusion with the conventional symbol . Xr for body coordinates. The same applies to the 
symbol .F i [ψ, x], previously introduced to denote an infinitesimal transformation of a field . ψi . In  
this chapter, I will reserve the letter F for the function defining the LO effective Lagrangian. 
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rotations” of . X, unless we demand .E1 = E2 and restrict the Lagrangian (14.7) to 
the lowest order in the power expansion in . φr . This suggests that the macroscopic 
properties of real crystals tend to be homogeneous but anisotropic even in the 
continuum limit .a → 0, which agrees with empirical observations. The dependence 
of the Lagrangian on . Xr is then constrained by the continuous internal translation 
invariance and the discrete group of point symmetries of the crystal lattice. 

14.1.2 Emergent Symmetries of Solids and Fluids 

We shall now synthesize the above observations into a general setup for describing 
classical matter. Much of the discussion in this subsection is inspired by Chap. 4 
of [2]. The basic assumption is that we are dealing with a thermodynamic state 
where quantum correlations are limited to short distances, typically due to thermal 
fluctuations. It is then possible to identify elements of the medium that are mutually 
distinguishable and can be assigned unique labels. This requirement limits the 
validity of the EFTs developed below to distances much longer than the scales 
characterizing quantum correlations and the discrete structure of matter. 

The labels . Xi on the medium elements take values from a target space . M, which 
is typically some domain in the real space, . Rd . The domain would be finite for an 
isolated material object of a finite size. However, here we will mostly be concerned 
with properties of matter filling the entire space, where it is natural to take .M ≃ Rd . 
In both cases, the labels . Xi represent comoving body coordinates, attached to a fixed 
medium element. The trajectory of the element is defined by giving its position as 
a function of time, .x(X, t). This is the standard Lagrangian picture of continuum 
mechanics, which I used to formulate the toy models (14.2) and (14.7). In order 
to highlight the genuine spacetime symmetries, it is however more convenient to 
invert the relation between . xr and . Xi . The time evolution of the medium is then 
specified by a map from the spacetime M to . M that assigns to every point . xμ ∈ M

the material coordinates .Xi(x, t) ≡ Xi(x) of the element occupying this point. The 
uniqueness of the labeling of the medium elements is ensured by requiring that for 
any fixed time t , the  map  .xr → Xi(x, t) is a diffeomorphism between space and 
. M. The advantage of this picture is that the labels . Xi take the same values in any 
reference frame. In other words, the functions .Xi(x) are scalar fields with respect to 
any spacetime symmetry. On the other hand, emergent symmetries acting solely on 
. Xi can then be treated as internal symmetries, that is point transformations on . M. 

The explicit realization of the fields .Xi(x) depends on a choice of coordinates. 
Importantly, the coordinates . xμ in the spacetime and the material coordinates 
. Xi can be fixed independently of each other. See Fig. 14.3 for a visualization 
of this freedom. In the following, I will deal exclusively with matter in flat 

(continued)
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Fig. 14.3 The time evolution 
of the classical medium as a 
map from the spacetime M to 
the target space . M of body 
coordinates. The spacetime 
coordinates . xμ in M and the 
body coordinates . Xi in . M
can be chosen arbitrarily and 
independently of each other 

xμ 
rd 

MM 

X 

Xi(x) 
rD 

spacetimes. Accordingly, I will use standard Minkowski coordinates . xμ for 
relativistic systems, and Cartesian coordinates . xr augmented with Newtonian 
time t for nonrelativistic systems. This still leaves us with the freedom to 
choose the body coordinates . Xi at will, which should be distinguished from 
any internal symmetry acting on . M. In Sect. 14.1.1, I fixed this freedom 
tacitly by the definition of . Xr in terms of the discrete labels . i, j . In order 
to avoid misunderstanding and to highlight the scalar nature of the body 
coordinates, I have now changed the notation from . Xr to . Xi . 

The scalar fields .Xi(x, t) are the generalized coordinates of our continuum field-
theoretic description of classical matter. The corresponding generalized velocity is 
.∂0X

i(x, t). How is this related to the actual local (Eulerian) velocity of the medium 
with respect to the laboratory frame? Recall that . Xi are comoving labels that cannot 
change along the trajectory of the medium element. Parameterizing the trajectory 
as .x(t), the condition .dXi(x(t), t)/dt = 0 leads to .∂0Xi = −ẋr ∂rX

i , where . ̇x ≡
dx/dt is the desired local velocity. The matrix .Mi

r(x, t) ≡ ∂rX
i(x, t) is invertible 

thanks to the assumption that the map .xr → Xi(x, t) is a diffeomorphism. It follows 
that 

.ẋr = −(M−1)ri∂0X
i . (14.8) 

There is also another, more elegant albeit slightly more mathematically advanced, 
way to express the local medium velocity in terms of derivatives of .Xi(x). First pick 
any function .f (X) on . M and define the current 

.J
μ
f ≡ f (X)

d! εμν1···νd εi1···id ∂ν1X
i1 · · · ∂νd

Xid . (14.9)
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By the antisymmetry of the Levi-Civita (LC) symbol, .Jμ
f ∂μXi = 0 for any i. Expan-

ding this as .J 0
f ∂0X

i + J r
f Mi

r = 0 gives .J r
f = −J 0

f (M−1)ri∂0X
i . Using  (14.8), we  

can thus rewrite the current as 

.J
μ
f = (J 0

f , J 0
f ẋ) . (14.10) 

It also follows from the antisymmetry of the LC symbol that the current (14.9) 
is conserved, .∂μJ

μ
f = 0, for any choice of the function .f (X). It is therefore natural 

to identify .J 0
f = f (X) detM with the density of a conserved charge as observed in 

the laboratory frame. The spatial part of the current, .J r
f = J 0

f ẋr , then represents 
the flow of this charge. Finally, .f (X) itself is the density of the same charge 
in the comoving material coordinates, since .detM is just the Jacobian of the 
transformation between the spacetime and material coordinate systems. 

The origin of the currents . J
μ
f can be traced back to the fact that the individual 

elements of our classical medium are distinguishable. Indeed, we could in 
principle attach to each element a dedicated “charge.” All such charges would 
be conserved by construction. The freedom to choose the function . f (X)

in (14.9) at will is just a continuous version of this observation. Operationally, 
the existence of infinitely many conservation laws, one for each .f (X), is not a 
problem. Namely, . Jμ

f are not Noether currents in that their conservation does 
not require the EoM. The presence of such identically conserved currents does 
not constrain the local classical dynamics of the medium. 

The above said does not mean that the currents . Jμ
f are inevitably artifacts 

of the Lagrangian picture of continuum mechanics that are not macroscopi-
cally observable. Suppose our medium carries a conserved charge. This could 
count for instance the number of particles or, in the nonrelativistic limit, 
their mass. By choosing .f (X) as the density of the charge in the material 
coordinates, we get a current . Jμ

f that describes macroscopic flow of this 
charge. 

Mathematically, the currents (14.9) descend from the d-forms . f (X)dX1 ∧ · · · ∧
dXd on . M. Being top-dimensional, any such d-form is automatically closed. The 
closedness is preserved when the d-form is pulled back to the spacetime by the map 
.xμ → Xi(x). Taking the Hodge dual of the ensuing closed spacetime d-form then 
gives the current . Jμ

f with vanishing divergence. 
Having established the basic setup, we are now finally in a position to discuss 

the emergent symmetries of various types of classical matter. I will focus on the 
two most common classical phases of matter: crystalline solids and fluids. Since 
this will to a certain extent merely collect and organize some observations I have 
already made previously, I can afford to be brief.
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Solids We will be interested in the quasiequilibrium dynamics of crystalline 
solids at distances much longer than the lattice spacing of the microscopic crystal 
structure. In this regime, one can expect the solid to be internally uniform, and 
thus be symmetric under the group . Rd of continuous internal translations. These 
translations take a particularly simple form in “Cartesian coordinates” on . M, 
namely .Xi ∈−→ Xi + ∈i . Barring possible quasi-invariant contributions, the effective 
Lagrangian can then only depend on .Xi(x) through their derivatives. In addition, 
the dependence on .Xi(x) is constrained by the point symmetry of the crystal lattice. 
This can be imposed order by order in powers of .Xi(x) using tensor methods. I 
will not go into detail here, and rather refer the reader to Sect. 10 of [4] for further 
discussion. For the sake of illustration, I will only deal with the special case of 
isotropic solids, which feature a full .SO(d) symmetry under continuous rotations 
of .Xi(x). Exact, full isotropy cannot really be achieved for any crystalline material. 
However, some polycrystalline materials are effectively isotropic at distances much 
longer than the typical size of a grain, thanks to the random orientation of the grains. 

Fluids The key difference between solids and fluids is that in the latter, there are no 
restoring elastic forces that would counteract shear strain. This enables macroscopic 
flow, whose physics is largely affected by dissipation. Unfortunately, dissipative 
effects are notoriously difficult to include in Lagrangian field theory. In order that the 
EFT for fluids we construct be meaningful, we thus need to make some simplifying 
assumptions. Namely, we shall restrict ourselves to physical processes that do not 
involve entropy production. Also, we will only consider states of the fluid that are 
perturbations of a uniform equilibrium where the entropy density in the material 
coordinates is constant. Such fluids are called barotropic; their thermodynamic state 
can be described by a single variable such as pressure or density. Thus, our EFT 
will be able to capture processes such as sound propagation, but not, for instance, 
convective heat transfer due to an initial temperature gradient. 

By definition, the local density of energy and entropy, and thus also of any other 
extensive property, of a barotropic fluid corresponds to a constant function f on 
. M. At the same time, the macrostate of the fluid is completely specified by its 
local Eulerian velocity and density . J 0

f observed in the laboratory frame. The same 
should be true for the Lagrangian, which is directly connected to observables such 
as energy density and pressure. The field-theoretic description of fluids in terms of 
the scalar fields .Xi(x) should therefore be invariant under any point transformation 
on . M that preserves the currents (14.9). This is not mere freedom of choice of 
coordinates on . M. It corresponds to an actual physical reshuffling of the elements 
of the fluid that does not affect its macroscopic properties. Now . J 0

f = f detM
requires that the point transformation on . M preserves .detM , and so must have a 
unit Jacobian. We conclude that the dynamics of a barotropic fluid possesses an 
emergent symmetry under the group of volume-preserving diffeomorphisms (VPDs) 
on . M, .SDiff(M). This is an infinite-dimensional symmetry group that includes the 
internal translations and rotations of solids as a subgroup. See [5] for a detailed 
account of the role of the diffeomorphism group in hydrodynamics, and [6, 7] for  
two somewhat complementary overviews of the variational approach to fluids.



342 14 Broken Spacetime Symmetry in Classical Matter

14.2 Nonlinear Realization of Emergent Symmetry 

We have done a serious amount of work to carefully identify the emergent 
symmetries of classical matter. Our effort will now pay dividends in that the 
next steps will be fairly straightforward. In the absence of degrees of freedom 
sensitive to other symmetries, the symmetry group of a classical medium is . G ≃
Gs.t. × Gint. Here  .Gs.t. is whatever spacetime symmetry is appropriate for the 
system at hand, such as Aristotelian, Galilei or Poincaré. The group .Gint collects 
all the emergent symmetries that act on the scalar fields .Xi(x) as internal. For the 
reader’s convenience, the choices of .Gint in case of uniform solids and barotropic 
fluids are summarized in the first two columns of Table 14.1. The product structure, 
.G ≃ Gs.t. ×Gint, of the symmetry group already appeared in Sect. 13.2, and we will 
be able to largely follow the path paved therein. 

14.2.1 Field Variables and Unbroken Symmetry 

To start with, the isotropy group of the spacetime origin is .H0 ≃ Hs.t. ×Gint, where 
.Hs.t. collects all transformations from .Gs.t. that fix the origin (typically rotations 
and boosts). I will always assume that .Gint includes a set of mutually commuting 
translations that act transitively on .M ≃ Rd . The isotropy subgroup .H(X0,0) is then 
the same, up to conjugation by an element of . Gint, for any choice of the reference 
point . Xi

0. It is convenient to set .X
i
0 = 0 so that .H(X0,0) ≃ Hs.t. × Hint where . Hint

consists of all emergent symmetries that fix the origin in . M. The concrete isotropy 
subgroups for solids and fluids are listed in the third column of Table 14.1. Note  
that in case of fluids, both .Gint ≃ SDiff(Rd) and .Hint ≃ SDiff0(Rd) are infinite-
dimensional. However, the coset space .Gint/Hint is equivalent to . Rd for any choice 
of .Gint thanks to the assumed transitive action of .Gint on . M. This reconfirms that 
the dynamical degrees of freedom of the EFT for classical matter will always be 
the d NG fields .Xi(x). That is in contrast to the agnostic nonlinear realization 

Table 14.1 Overview of the emergent symmetries and related subgroups in different phases of 
classical matter. The .Gcryst symbol denotes the crystallographic point group of a crystal lattice. 
Also, .SDiff0(Rd ) is the group of VPDs in . Rd that fix the origin. The coset space .Gint/Hint is 
equivalent to . Rd in all cases. The unbroken subgroup . Hϕ indicates the symmetry of a uniform, 
static equilibrium state. The subscript “diag” denotes diagonal symmetries whose actions on the 
spatial and body coordinates are locked to each other. The values shown in the last column 
assume that the subgroup of time-independent transformations in .Gs.t., acting only on the spatial 
coordinates, is the Euclidean group .ISO(d). The factor of . R in . Hϕ corresponds to time translations 

Material Emergent symmetry .Gint Isotropy group .Hint Unbroken subgroup . Hϕ

Solid .Gcryst ⋉ Rd .Gcryst . (Gcryst ⋉ Rd )diag × R

Isotropic solid .ISO(d) .SO(d) . [ISO(d)]diag × R

Fluid .SDiff(Rd ) .SDiff0(Rd ) .[ISO(d)]diag × R
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(cf. Sects. 12.3.2 and 13.3.4), whose application to fluids would suggest an EFT 
with an infinite number of would-be NG fields; see [8] for details. 

Before we proceed to the construction of effective actions, let us check which of 
the symmetries in G actually are spontaneously broken. Suppose we are interested 
in the physics of fluctuations around a static equilibrium state, characterized by the 
time-independent vacuum expectation values (VEVs)2 

.〈Xi(x, t)〉 ≡ ϕi(x) . (14.11) 

Due to the product structure of G, an element .(gs.t., gint) ∈ G transforms 
the spacetime and body coordinates as . Tg : (Xi, xμ) → (X'i , x'μ) ≡
(Fi (X, gint),Xμ(x, gs.t.)). Here the .xμ-independent functions . Fi realize the action 
of .Gint on . M, whereas the .Xi-independent functions .Xμ realize the action of 
.Gs.t. on the spacetime. The unbroken subgroup .Hϕ consists of transformations 
preserving (14.11), 

.Fi (ϕ(x), hint) = ϕi(X(x, hs.t.)) , (hs.t., hint) ∈ Hϕ . (14.12) 

This condition has the geometric meaning of equivariance of . ϕi as a map . M →M
under the action of . Hϕ , that is .F ◦ ϕ = ϕ ◦ X. Since .ϕi(x) is a diffeomorphism 
between the coordinate space and . M, (14.12) defines a one-to-one correspondence 
between the maps . Fi and . Xr . In this sense, . Hϕ is the “diagonal subgroup” of . Gs.t. ×
Gint. It also includes those transformations from .Gs.t. that act on . xr trivially, that 
is time translations. An overview of the unbroken subgroups in solids and fluids is 
given in the last column of Table 14.1. 

14.2.2 Building Blocks for Construction of Effective Actions 

In the absence of other degrees of freedom, we are dealing with the d scalar fields 
.Xi(x).3 All of these are of the NG type, realizing nonlinearly the emergent internal 
translations on .M ≃ Rd . Let us denote the generators of the translations as . Πi . I will 
now finally fix the freedom to choose coordinates on .M ≃ Gint/Hint ≃ Rd at will 
by parameterizing it as .U(X) ≡ exp(iXiΠi). This gives a precise definition of the 
previously mentioned “Cartesian coordinates” on . M, in which the translations from 
.Gint act on . Xi by trivial shifts, .Xi ∈−→ Xi + ∈i . According to (13.24), the  Maurer–

2 A different choice of the reference state of our classical medium might require a modification of 
the discussion below. The change would however not affect the general nonlinear realization setup, 
which only depends on the groups .Gs.t., .Hs.t., .Gint and . Hint. 
3 For relativistic systems, there is an alternative formulation of the EFT where the . Xi are completed 
to a Lorentz vector of dynamical variables. See Sect. 6 of [9] for an introduction and references. 
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Cartan (MC) form is then given by 

.ω(X, x) = ΠidX
i + P · dx , (14.13) 

where . Pμ generates spacetime translations. The spacetime coframe is trivial, that is, 
.e∗μ = δμ

ν dx
ν . Accordingly, it is not necessary to use different notations for frame 

and coordinate-basis indices. The covariant derivatives of the NG fields are simply 
.∇μXi = ∂μXi . This makes it possible to use the same power counting as for 
superfluids (Sect. 13.2.2), whereby an n-th partial derivative of . Xi is assigned the 
counting degree .n − 1. The LO of the EFT is thus defined by a Lagrangian density 
where every field . Xi carries exactly one derivative. 

Invariance of the effective action is ensured as follows. First, invariance under 
the whole internal symmetry .Gint is guaranteed by using the MC form as a building 
block and imposing solely the linearly realized isotropy group . Hint. Similarly, one 
has to impose explicitly invariance under the linearly realized spacetime isotropy 
group, .Hs.t.. Finally, invariance under spacetime translations requires that the 
Lagrangian density does not depend explicitly on the spacetime coordinates. 

In case of fluids, the coset space .Gint/Hint ≃ SDiff(Rd)/SDiff0(Rd) is 
not reductive, hence the line of reasoning using the transformation proper-
ties (13.10) of the MC form does not necessarily apply. In such a situation, we 
may have to impose by hand invariance under the entire emergent symmetry 
group . Gint. Luckily, we know a priori how VPDs act on the coordinates . Xi

and thus also on the 1-forms .dXi on . M. This will make it possible for us to 
construct an EFT for fluids in Sect. 14.3.4. 

14.3 Effective Field Theory of Classical Matter 

I will now carry out the above-outlined program for several types of physical 
systems of interest. I will start with what in many ways is the simplest case: an 
isotropic relativistic solid. Having warmed up, we shall then have a look at the 
phenomenologically more relevant nonrelativistic solids. At the very end, we will 
return to the most nontrivial case of fluids with their infinite-dimensional symmetry 
group. 

14.3.1 Relativistic Solids 

Consider a system with relativistic microscopic dynamics that settles to a thermody-
namic equilibrium state with the symmetries of an isotropic solid. The full symmetry 
is .Gs.t.×Gint ≃ ISO(d, 1)×ISO(d), where the first factor is the spacetime Poincaré
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group and the second one is the emergent internal symmetry. With one derivative per 
field, the only way to obey the linearly realized Lorentz symmetry, .Hs.t. ≃ SO(d, 1), 
is to pairwise contract indices on .∂μXi . It follows that the LO effective Lagrangian 
is some function of the Lorentz-invariant matrix operator 

.𝚵ij ≡ ∂μXi∂μXj . (14.14) 

It remains to impose invariance under .Hint ≃ SO(d). Since .𝚵ij is a symmetric 
tensor, any .Hint-invariant function of . 𝚵ij can only depend on its d real eigenvalues. 
These can be encoded in any set of d algebraically independent invariants con-
structed out of . 𝚵ij , for instance the traces of the first d powers of . 𝚵ij . The  LO  
effective action for relativistic isotropic solids then reads 

.Seff{X} =
∫

dDx F
(
tr𝚵(x), tr𝚵(x)2, . . . , tr𝚵(x)d

) + · · · , (14.15) 

where F is a function of the displayed arguments and the ellipsis indicates 
corrections of higher order in the derivative expansion. These include operators 
with on average more than one derivative per . Xi , and Lorentz and internal indices 
contracted in a way respecting the .Hs.t. × Hint ≃ SO(d, 1) × SO(d) symmetry. 

With all the background we had built up, the path to (14.15) was very short. 
There are however a couple of potential loopholes to close. First, I tacitly assumed 
the effective Lagrangian to be strictly invariant under all the symmetries. Can there 
be any quasi-invariant contributions to the Lagrangian? Here I refer the reader 
to [10], which showed that the symmetries of a relativistic isotropic solid do not 
allow any genuinely quasi-invariant Lagrangians in .d = 2 or 3 spatial dimensions. 
It is plausible to assume that the same conclusion holds for any .d ≥ 2. 

Second, we still need to check whether the tentative equilibrium (14.11) is a 
stable state of the EFT (14.15). To start with, note that the LO EoM of the EFT is 

.∂μ

(
∂F

∂𝚵ij
∂μXj

)
= 0 . (14.16) 

In a uniform equilibrium, the VEV of the invariants (14.14), .〈𝚵ij 〉 = −∇ϕi · ∇ϕj , 
should be coordinate-independent. The EoM then implies that the functions . ϕi(x)

must be harmonic, .∇2ϕi = 0. Acting with the Laplace operator on .〈𝚵ij 〉, we  
get in turn that .(∂r∇ϕi) · (∂r∇ϕj ) = 0. Setting .i = j herein shows that all 
partial derivatives of .∇ϕi vanish. Hence, .ϕi(x) is a linear function of coordinates, 
.ϕi(x) = Mi

rx
r +ci with a constant invertible matrix .Mi

r and constant . c
i . The  set of  

constants . ci can be removed by shifting the origin of coordinates. Finally, suppose 
that the generators . Πi of internal translations were chosen as a basis of the standard 
vector representation of .Hint ≃ SO(d). By using the singular value decomposition 
augmented with appropriate orthogonal rotations of the fields . Xi and coordinates 
. xr , the matrix .Mi

r can be made diagonal and positive-semidefinite. Invariance 
under the unbroken diagonal .SO(d) rotations of spatial and body coordinates then
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requires that .Mi
r ∝ δi

r . Finally, the proportionality factor can be absorbed into 
a simultaneous rescaling of the body coordinates . Xi and the generators . Πi . We  
therefore conclude that, without loss of generality, the uniform equilibrium of the 
solid can be described by 

.〈Xi(x, t)〉 = δi
rx

r . (14.17) 

Below, I will implicitly assume the same ground state for both nonrelativistic solids 
and (relativistic or nonrelativistic) fluids. 

Further constraints on the parameters of the effective Lagrangian arise from 
requiring that the state (14.17) is (meta)stable with respect to small fluctuations. 
To that end, we parameterize the fluctuations of . Xi by a set of NG fields, . πi(x) ≡
Xi(x) − δi

rx
r . In terms of these fields, we have 

.𝚵ij = −δij − (δir∂rπ
j + δjr∂rπ

i) + ∂μπi∂μπj . (14.18) 

It is now a matter of straightforward algebra to expand the action (14.15) to second 
order in . πi and compute the excitation spectrum. The reader is most welcome to do 
this exercise, or check [11] where the special case of .d = 3 spatial dimensions is 
analyzed. I will not work out the details here, since I will address the same problem 
in the arguably more realistic setting of nonrelativistic solids below. 

14.3.2 Nonrelativistic Supersolids 

Most naturally occurring solid materials lie safely within the nonrelativistic domain. 
It therefore appears more appropriate to demonstrate the utility of our EFT 
formalism in a setting that connects more directly to classical theory of elasticity [4]. 
However, in order that the discussion below is not a mere rehash of Sect. 14.3.1 
using nonrelativistic notation, I will add a new physical ingredient. Namely, 
some materials are known to enter at low temperatures a quantum phase called 
suggestively supersolid. In this phase, matter exhibits a combination of crystalline 
solid order and superflow. The latter stems from the presence of an internal, 
spontaneously broken .U(1) symmetry. Once we have found an effective action for 
supersolids, we will be able to recover an EFT for ordinary solids by decoupling the 
superfluid NG boson. The content of this subsection is heavily influenced by [12]. 

The mathematical setup closely follows the discussion of nonrelativistic superflu-
ids in Sect. 13.3.3, to which I refer the reader for details. In order to avoid excessive 
cross-references, I will however spell out the main features of the setup explicitly. 
The full symmetry of the nonrelativistic supersolid is given by the Bargmann group 
augmented with the emergent .ISO(d) symmetry of a classical isotropic solid, that is 

.G ≃ SO(d) ⋉ {Rd
K ⋉ [RD × U(1)Q]} × ISO(d) . (14.19)
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Here the .SO(d) factor represents spatial rotations, . Rd
K Galilei boosts, . RD spacetime 

translations, and .U(1)Q the internal symmetry counting the number of particles. The 
symmetry group does not have the simple direct product structure .Gs.t. × Gint. This  
is due to the dual nature of .U(1)Q, which is an internal symmetry but simultaneously 
centrally extends the spacetime Galilei group.We will however still be able to follow 
the philosophy of Sect. 14.2 with minor modifications. In particular the spacetime 
isotropy group . H0 is in this case .H0 ≃ [SO(d) ⋉ Rd

K ] × U(1)Q × ISO(d). 
In order to be able to apply our basic EFT framework for spacetime symmetry, we 

need to realize the Galilei boosts nonlinearly. To that end, we need a Galilei vector 
order parameter .Aμ = (A0,A), choosing a timelike reference point, . Aμ

0 = (a, 0)
with .a /= 0. This is accompanied by two other order parameters, a complex 
scalar . ψ charged under .U(1)Q, and the body coordinates . Xi . Taking any . ψ0 /= 0
and .Xi

0 = 0 leads to .H((ψ0,A0,X0),0) ≃ SO(d) × SO(d), where the two factors act 
respectively on the spatial and body coordinates. The coset space relevant for the 
nonlinear realization of the symmetry is .H0/H((ψ0,A0,X0),0) ≃ Rd

K × U(1)Q × Rd . 
The last factor of . Rd is new compared to Sect. 13.3.3 and carries the solid degrees 
of freedom. The whole coset space is parameterized by the NG variables . π , . ξ r and 
. Xi through 

.U(π, ξ , X) ≡ eiπQeiξ ·K exp(iXiΠi) , (14.20) 

where Q is the generator of .U(1)Q and . Kr that of Galilei boosts. The MC form is 
calculated using the commutation relations of the Bargmann group, 

.
ω(π, ξ , X, x, t) = Q[dπ − ξ · dx + (1/2)ξ2t] + K · dξ + ΠidX

i

+ Hdt + P · (dx − ξdt) .
(14.21) 

The second line herein defines the spacetime coframe, .e∗0 = dt and . e∗r = δr
s (dx

s −
ξ sdt). This allows one to extract the covariant derivatives of all the NG fields from 
the . ω⊥ part of the MC form, 

.

∇0π = ∂0π + ξ · ∇π − ξ2/2 , ∇rπ = ∂rπ − ξr ,

∇0ξ
r = (∂0 + ξ · ∇)ξ r , ∇sξ

r = ∂sξ
r ,

∇0X
i = (∂0 + ξ · ∇)Xi , ∇rX

i = ∂rX
i .

(14.22) 

For simplicity of notation, I have already dropped the underscores distinguishing 
spacetime and frame indices. 

The would-be NG field .ξ r(x) is unphysical and can be eliminated by imposing 
the inverse Higgs constraint (IHC) .∇rπ = 0, or  .ξ(x) = ∇π(x). This assigns . ξ r

the counting degree zero. As a consequence, .∇μξr has degree one, whereas both 
.∇μπ and .∇μXi are of degree zero. The building blocks we have to construct the LO
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effective Lagrangian are therefore 

. ∇0π → ∂0π + (∇π)2/2 , ∇0X
i → (∂0 + ∇π · ∇)Xi , ∇rX

i → ∂rX
i .

(14.23) 

These take automatically care of the nonlinearly realized symmetries under Galilei 
boosts, .U(1)Q transformations and internal translations of . Xi . To ensure invariance 
under spatial rotations, note that both .∇0π and .∇0X

i are scalars, whereas .∇rX
i is a 

vector under spatial .SO(d). All spatial indices thus have to be contracted into 

.�̃�ij ≡ δrs∇rX
i∇sX

j = ∇Xi · ∇Xj . (14.24) 

This symmetric tensor is related to the previously defined matrix . Mi
r(x) ≡ ∂rX

i(x)

by .�̃� = MMT . Note that there is no additional, algebraically independent rotation-
ally invariant operator where the spatial indices on .∇rX

i would be contracted with 
the LC symbol, since .εr1···rd ∇r1X

i1 · · · ∇rd X
id = εi1···id detM = εi1···id

√
det �̃�. 

Altogether, the LO effective action for nonrelativistic supersolids is given by [12] 

.Seff{π,X} =
∫

dDx F
(∇0π(x),∇0X(x), �̃�(x)

) + · · · . (14.25) 

The indices on .∇0X
i and .�̃�ij are to be contracted in a way that respects invariance 

under the internal .SO(d) rotations. 
Again, I have not explicitly considered the possibility of quasi-invariant contri-

butions to the Lagrangian. There are .d + 1 such terms, constructed solely out of 
the superfluid mode . π ; cf. Sect. 13.3.3. However, these are only relevant beyond the 
LO of the derivative expansion. An additional quasi-invariant Lagrangian existing 
in .d = 2 dimensions and including the solid variable . Xi was found in [10]. This 
likewise contributes only at higher orders of the derivative expansion. 

14.3.3 Nonrelativistic Solids 

Let us now see whether we can recover the physics of classical (isotropic) solids 
from the supersolid EFT (14.25). It appears we should be able to simply erase 
the NG field .π(x). This certainly does not interfere with the nonlinear realization 
of the symmetries of solids on . Xi , since that is entirely independent of . π . The  
building blocks (14.23) then boil down to .∂0Xi and .∂rX

i . Invariance under spatial 
rotations again requires that .∂rX

i only enters the LO EFT through the combination 
. �̃�ij . However, the time derivative, .∂0Xi , is potentially problematic since unlike 
.∇0X

i , it is not invariant under Galilei boosts. This actually makes sense: recall 
that the nonrelativistic kinetic term in (14.2) or (14.7) is only quasi-invariant under 
Galilei boosts. Guided by the analogy, the kinetic term for the solid should be 
.(1/2)ϱ(x, t)[ẋ(X, t)]2. Here  .x(X, t) is the Lagrangian variable we worked with in 
Sect. 14.1 and .ϱ(x, t) is the local mass density of the solid in the laboratory frame.



14.3 Effective Field Theory of Classical Matter 349

Now .ϱ(x) = ϱ0 detM(x) = ϱ0

√
det �̃�(x), where . ϱ0 is the mass density of the solid 

in the body coordinates, which is constant thanks to the assumed uniformity of the 
solid. Using finally (14.8), the LO effective action for the classical nonrelativistic 
isotropic solid can be written as 

.

Seff{X} =
∫

dDx
{ϱ0

2

√
det �̃�(x)[�̃�(x)−1]ij ∂0Xi(x)∂0X

j(x)

− F (�̃�(x))
}

+ · · · .

(14.26) 

The function .F (�̃�) defines the free energy of static elastic deformations of the 
solid. Our derivation of the kinetic term in (14.26) was based on an educated 
guess. It can however also be recovered by starting from an exactly Galilei-invariant 
operator in the EFT (14.25) for supersolids and adding a surface term, proportional 
to the gradient of .π(x). This explains why setting .π → 0 does not destroy Galilei 
invariance altogether but renders (14.26) quasi-invariant. See [12] for details. 

I will now review the basic elastic properties of isotropic solids, following 
closely [4]. As in Sect. 14.1.1, the displacement of the solid element carrying label 
. Xi from its equilibrium position is given by .φi(X, t) ≡ δi

rx
r (X, t) − Xi . This  

parameterization is however not suitable for an EFT where the scalar fields . Xi(x)

are the dynamical variables. We need to invert the relation between . xr and . φi , which 
is not possible in a closed form. Luckily, we will only need the deviation of . Xi from 
its VEV to first order in . φi , 

.Xi(x) = δi
rx

r − φi(x) + O(φ2) . (14.27) 

To the same order, the matrix variable .�̃�ij reads 

.�̃�ij (x) = δij − [δir∂rφ
j (x) + δjr∂rφ

i(x)] + O(φ2) . (14.28) 

With the shorthand notation .φr(x) ≡ δriφ
i(x), small deformations of the solid are 

therefore encoded in the strain tensor 

.ers(x) ≡ 1

2
[∂rφs(x) + ∂sφr(x)] . (14.29) 

By its definition, .φi(x) transforms as a vector under the unbroken diagonal . SO(d)

subgroup. The strain tensor therefore behaves as a rank-2 symmetric tensor. 
The energy cost of a small static elastic deformation of the solid is governed 

by the expansion of .F (�̃�) in powers of .�̃�ij − δij , or directly the strain tensor. 
The expansion cannot contain a linear term, as that would immediately imply 
an instability of the equilibrium state where .〈φi(x)〉 = 0. The physics of small 
elastic deformations is therefore dominated by the part of .F (�̃�) quadratic in the 
strain tensor. Invariance under unbroken diagonal rotations admits two independent
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quadratic operators at the lowest order in derivatives, 

.F = μ tr e2 + λ

2
(tr e)2 + · · · . (14.30) 

Here .λ,μ are known as the Lamé coefficients, and the ellipsis denotes contributions 
of higher order in . φi or derivatives. It is convenient to rewrite (14.30) as 

.F = μ tr

(
e − tr e

d
1

)2

+ K

2
(tr e)2 + · · · , (14.31) 

where .K ≡ λ+ (2μ/d). Importantly, there are configurations of the solid for which 
either of the two terms in (14.31) vanishes whereas the other is nonzero. The .μ-
term is zero if and only if . ers is proportional to . δrs , that is for uniform dilatations or 
contractions of the solid. Such overall volume change is detected by .tr e = ∇ · φ, 
which measures the deviation of the Jacobian .detM from unity. For this reason, the 
parameter K is usually called bulk modulus. On the other hand, for deformations of 
shape that do not affect the volume of the solid, the K-term in (14.31) vanishes. The 
energy of such deformations is measured by the shear modulus . μ. Since the two 
terms in (14.31) can be set to zero independently of each other, bulk stability of the 
solid requires that 

.K > 0 , μ > 0 . (14.32) 

Example 14.1 

The constraints (14.32) may look trivial, but they have very observable conse-
quences for small oscillations of the solid. To see this, it is sufficient to consider 
the part of (14.26), bilinear in the fields .φi(x), 

.Leff = ϱ0

2
δrs∂0φr∂0φs −

[
μ tr e2 + λ

2
(tr e)2

]
+ · · · . (14.33) 

The corresponding EoM reads 

.ϱ0∂
2
0φr ≈ μ∇2φr + (λ + μ)∂r∇ · φ , (14.34) 

where the symbol . ≈ indicates a linear approximation. This has plane-wave solutions 
of the type 

.φr(x, t) = φ̂re
−iEteip·x , (14.35)
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where . φ̂r is an amplitude. Solutions for which .φ̂ ‖ p and .φ̂ ⊥ p represent respecti-
vely longitudinal and transverse sound. The corresponding phase velocities are 

.vL =
√

λ + 2μ

ϱ0
=

√
K + 2μ(1 − 1/d)

ϱ0
, vT =

√
μ

ϱ0
. (14.36) 

The stability condition .K > 0 implies a specific hierarchy between the velocities of 
longitudinal and transverse sound, 

.
vL

vT
>

√

2

(
1 − 1

d

)
. (14.37) 

This relation would have been completely invisible, had we focused solely on the 
spectrum of sound waves itself. When looking for the constraints on parameters of 
an EFT imposed by the stability requirement, it is therefore all-important to consider 
the whole configuration space of the EFT. 

14.3.4 Perfect Fluids 

As the last stop of our exploration of classical matter, we now return to fluids. I 
will restore full Poincaré invariance, partially because relativistic fluids are common 
in astrophysics and particle physics, and partially because it makes the analysis 
simpler. 

As argued in Sect. 14.3.1, the NG fields .Xi(x) necessarily enter the effective 
Lagrangian through the combination .𝚵ij ≡ ∂μXi∂μXj . However, not all actions 
of the solid type (14.15) are consistent with the required invariance of the fluid 
action under .Gint ≃ SDiff(Rd). The transition from solids to fluids can be viewed 
as a “fine-tuning” of the effective couplings of the former. There is only one 
algebraically independent function of .𝚵ij that fits the bill, namely .det𝚵 ≡ |𝚵|. 
Thus, the LO effective Lagrangian of a relativistic perfect (barotropic) fluid reads 

.Seff{X} =
∫

dDx F(|𝚵(x)|) + · · · . (14.38) 

With the help of the identity .∂|𝚵|/∂𝚵ij = |𝚵| (𝚵−1)ji , we readily extract the 
corresponding LO EoM, 

.∂μ

[
F '(|𝚵|) |𝚵| (𝚵−1)ij ∂

μXj
] = 0 , (14.39) 

where the prime indicates a derivative of .F(|𝚵|) with respect to its argument . |𝚵|. 
We could in principle stop here, for we have accomplished our goal to construct 

an EFT for perfect fluids. However, to shed light on the physical content of (14.38)
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and (14.39) requires additional work. The first step is to derive the energy– 
momentum (EM) tensor of the EFT. This is a standard problem (see for instance 
Example 4.3),4 the result being 

.T μν = 2F '(|𝚵|) |𝚵| (𝚵−1)ij ∂
μXi∂νXj − gμνF (|𝚵|) . (14.40) 

This already tells us, upon some manipulation, that the EoM (14.39) is equivalent 
to the local conservation laws for energy and momentum. The next step is to trade 
the explicit dependence on the derivatives .∂μXi for the local Eulerian velocity of 
the fluid. To that end, consider the current (14.9) with .f (X) = 1, 

.Jμ ≡ J
μ
1 = 1

d!ε
μν1···νd εi1···id ∂ν1X

i1 · · · ∂νd
Xid . (14.41) 

It is a matter of straightforward algebra to verify that .JμJμ = (−1)d |𝚵|. The  extra  
sign compensates for our set of conventions, in which .〈𝚵ij 〉 = −δij but .〈Jμ〉 = δμ0. 
The spacetime vector 

.uμ ≡ Jμ

√
(−1)d |𝚵| (14.42) 

is then normalized to unity, .u2 = 1. Moreover, according to (14.10), its spatial part 
is proportional to the local Eulerian velocity . ̇x of the fluid. It follows that . uμ is the 
velocity spacetime vector as observed in the laboratory frame. 

Consider now the symmetric tensor .Gμν ≡ (𝚵−1)ij ∂μXi∂νX
j + uμuν . Since 

.∂μXi as a spacetime vector is orthogonal to . Jμ and thus . uμ, it follows that . Gμνu
ν =

uμ. At the same time, it is easy to see that .Gμν∂
νXi = ∂μXi . Together, . ∂μXi

for .i = 1, . . . , d and . uμ constitute a basis of D linearly independent vectors on 
the spacetime, hence .GμνA

ν = Aμ = gμνA
ν for any spacetime vector . Aμ. This  

implies the useful identity 

.(𝚵−1)ij ∂μXi∂νX
j = gμν − uμuν , (14.43) 

which allows us to rewrite the EM tensor (14.40) as 

.T μν = 2F '(|𝚵|) |𝚵| (gμν − uμuν) − gμνF (|𝚵|) . (14.44) 

In an inertial reference frame locally comoving with the fluid (local rest frame), the 
EM tensor should be diagonal and isotropic, .T μν = diag(U, P, . . . , P ). Here  U is 
the local energy density and P the pressure of the fluid. This can be written in a 
covariant form as .T μν = (U + P)uμuν − Pgμν . The  scalar functions U and P

4 I use an opposite overall sign of the EM tensor as compared to Example 4.3 to ensure that the 
.T 00 component coincides with the canonical Hamiltonian of the EFT. 
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can be projected out of the EM tensor using .T μνuμuν = U and .T
μ
μ = U − dP . It  

follows that the as yet unknown function .F(|𝚵|) is related to the energy and pressure 
by 

.U(|𝚵|) = −F(|𝚵|) , P (|𝚵|) = F(|𝚵|) − 2F '(|𝚵|) |𝚵| . (14.45) 

Example 14.2 

To check that we have got the basic physics right, let us use our EFT to calculate the 
speed of sound in the fluid. For that, we need to find the bilinear part of the effective 
Lagrangian in the fluctuations .πi(x) ≡ Xi(x) − δi

rx
r . I will outline the main steps 

but skip straightforward details. First, the fluctuation of . 𝚵ij itself is given by (14.18), 

.𝚵ij = −δij +δ𝚵ij , δ𝚵ij ≡ −(δir∂rπ
j + δjrδrπ

i)+∂μπi∂μπj . (14.46) 

Using the identity .det𝚵 = exp tr log𝚵, we next obtain the expansion 

.(−1)d |𝚵| = 1 − tr δ𝚵 + 1

2

[
(tr δ𝚵)2 − tr(δ𝚵2)

] + O(δ𝚵3) . (14.47) 

What remains to be done is just a Taylor expansion of the Lagrangian, . Leff =
F(|𝚵|), in . πi . Dropping a constant and a surface term, we find 

.Leff ≃ −(−1)dF '
0(∂0π)2 + [(−1)dF '

0 + 2F ''
0 ](∇ · π)2 + · · · , (14.48) 

where . F '
0 and . F ''

0 are derivatives of .F(|𝚵|) taken in the equilibrium, .〈|𝚵|〉 = (−1)d . 
Note that (14.48) does not contain any transverse gradients of .πi(x). This is  
expected, saying merely that transverse fluctuations do not propagate via harmonic 
oscillations due to the absence of shear elastic forces in a fluid. Fluids support only 
longitudinal sound waves, whose phase velocity follows as 

.vL =
√

1 + 2(−1)d
F ''
0

F '
0

. (14.49) 

It is easy to see with the help of (14.45) that this equals . 
√

P '(|𝚵|)/U '(|𝚵|) =
.
√
dP/dU , as expected for thermodynamic sound. 

Example 14.3 

Another informative check of our EFT is to take the nonrelativistic limit. To that 
end, we use the relation (14.45) between the function .F(|𝚵|) and the energy density
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.U(|𝚵|) to decompose the former as 

.F(|𝚵|) = −ϱ0

√
(−1)d |𝚵| − F

(
(−1)d |𝚵|) . (14.50) 

The constant . ϱ0 is the mass density of the fluid in the body coordinates. In the 

local rest frame, .ϱ0
√

(−1)d |𝚵| → ϱ0

√∣∣∣�̃�
∣∣∣ where .�̃�ij is defined by (14.24), is the  

density of the rest mass of the fluid. This is expected to dominate the energy in 
the nonrelativistic limit. On the other hand, .F

(
(−1)d |𝚵|) → F (|�̃�|) becomes 

the elastic free energy of the fluid. Its contribution to .F(|𝚵|) is assumed to be 
suppressed relatively to the leading term in (14.50) by two inverse powers of the 
speed of light. 

In the laboratory frame, we write .𝚵ij = ∂0X
i∂0X

j − �̃�ij and again use the 
identity .det𝚵 = exp tr log𝚵. This gives 

.(−1)d |𝚵| = |�̃�| [1 − (�̃�−1)ij ∂0X
i∂0X

j + · · · ] , (14.51) 

where the ellipsis stands for higher-order corrections, negligible in the nonrelativis-
tic limit. In turn, (14.45) becomes 

.

U = ϱ0
√|�̃�| − ϱ0

2

√|�̃�|(�̃�−1)ij ∂0X
i∂0X

j + F (|�̃�|) + · · · ,

P = −F (|�̃�|) + 2F '(|�̃�|) |�̃�| + · · · .

(14.52) 

This has a simple interpretation. The three contributions to U correspond, up to 
a sign, to the relativistic rest energy, the nonrelativistic kinetic energy and the 
thermodynamic (internal) energy, while P is the nonrelativistic pressure. The same 
expansion converts the action (14.38) to 

. Seff{X} =
∫

dDx
{

− ϱ0
√|�̃�(x)| + ϱ0

2

√|�̃�(x)|[�̃�(x)−1]ij ∂0Xi(x)∂0X
j(x)

− F (|�̃�(x)|)
}

+ · · · . (14.53) 

This copies the EFT (14.26) for nonrelativistic solids that we previously obtained 
by an educated guess. The only difference is that the gradient free energy . F is 

now allowed to depend only on . |�̃�|. (The .ϱ0

√∣∣∣�̃�(x)

∣∣∣ term gives upon integration a 

constant and can be dropped.) The EFT (14.53) for nonrelativistic fluids inherits the 
symmetry under VPDs of the target space . M from its relativistic ancestor (14.38). 
The spacetime part of its symmetry is however different, and includes spacetime 
translations, spatial rotations, and Galilei boosts.
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The symmetry of fluids under VPDs, .Gint ≃ SDiff(Rd), implies the existence 
of infinitely many conserved currents. Indeed, the action of an infinitesimal VPD 
can be expressed as .δXi = ∈V i(X), where . ∈ is a parameter and .V i(X) any 
smooth vector field on .M ≃ Rd with vanishing divergence, .∂V i(X)/∂Xi = 0. 
A straightforward application of Noether’s theorem gives the current 

.J
μ
V = F '(|𝚵|) |𝚵| (𝚵−1)ij ∂

μXiV j (X) . (14.54) 

Its on-shell conservation is also seen as a direct consequence of the EoM (14.39). 
The conservation of the corresponding integral charges generalizes the so-called 
Kelvin circulation theorem to relativistic fluids; see [13] for further details. 

14.4 Coupling Nambu–Goldstone Bosons to Classical Matter 

Before we wrap up the discussion of EFTs for classical matter, let us step 
back to see how it connects to the rest of the book. We started the analysis of 
spontaneously broken spacetime symmetries with a fairly general construction of 
nonlinear realization thereof in Chap. 12. However, in its subsequent applications, 
we gradually increased the assumptions on the symmetry and the order parameter. 
In the present chapter, we ended up discarding altogether the possible presence of 
NG modes associated with long-range order in the quantum ground state. Here 
it is possible to tie up some loose ends with little effort. An attentive reader 
might have noticed two related observations I made in quite different contexts. In 
Sect. 13.3.3, I pointed out that it might be possible to make an EFT with Aristotelian 
symmetry invariant under boosts, whether Galilei or Lorentz. All one needs is 
an auxiliary variable representing the velocity of the medium in which the EFT 
lives. On the other hand, we learned in Sect. 14.1.2 that this velocity is naturally 
encoded in the identically conserved current (14.9). Following this link, I will now 
sketch concretely how an Aristotelian EFT for broken internal symmetry can be 
made boost-invariant by coupling the EFT to a classical medium. A general EFT 
framework for such hybrid systems does not seem to exist as yet. For the sake of 
illustration, I will restrict the discussion to systems where the classical medium is a 
fluid. The construction is loosely inspired by Pavaskar et al. [14]. 

Instead of lengthy reminders, I refer the reader to Chap. 8 for the details 
of construction of EFTs for broken internal symmetries. (See Sect. 8.1.4 for an 
executive summary.) All these EFTs were built assuming Aristotelian symmetry, 
that is symmetry under spacetime translations and spatial rotations. There are two 
details we have to attend to if we want to augment this spacetime symmetry with 
boosts. First, the temporal and spatial derivatives, which appear independently in 
the general Aristotelian effective Lagrangian (8.33), have to be combined in a 
way that respects boost invariance. Second, any operator invariant under all the 
spacetime and internal symmetries can be multiplied with an arbitrary function of
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. |𝚵| (for relativistic fluids) or . |�̃�| (for nonrelativistic fluids). From this point on, it is 
convenient to split the discussion of the two cases. 

Suppose we want to make the Aristotelian EFT invariant under Galilei boosts. We 
need not do anything about spatial derivatives, which are already Galilei-invariant on 
their own. Temporal derivatives can be fixed by contraction with the current (14.41). 
In terms of the body coordinates . Xi and the velocity . ̇x of the medium, this amounts 
to replacing the time derivative of the NG field . πa of the broken internal symmetry 
with .Jμ∂μπa = detM(∂0π

a+ẋ ·∇πa) ≡ detM(∇0π
a). The minimal modification 

of the two-derivative part of the effective Lagrangian (8.33) then reads 

. L (2,0)
eff = − 1

2
κcd(|�̃�|)ωc

a(π)ωd
b (π)∇πa · ∇πb

− 1

2
λcd(|�̃�|)ωc

a(π)ωd
b (π)εrs∂rπ

a∂sπ
b , (14.55) 

L (0,2) eff = 
1 

2
κ̄cd(|�̃�|)ωc 

a(π)ωd 
b (π)∇0π

a∇0π
b . 

The two factors of .detM coming from the replacement .∂0πa → Jμ∂μπa are 
without loss of generality absorbed into .κ̄ab(|�̃�|). To preserve the internal symmetry 
acting on . πa , the coupling functions .κab(|�̃�|), .κ̄ab(|�̃�|) and .λab(|�̃�|) must satisfy 
the constraints (8.34) and (8.35) for all values of .Xi(x). The precise dependence of 
the coupling functions on . |�̃�| can be fixed by measuring the effective couplings . κab, 
. ̄κab and . λab as a function of the density of the underlying medium. 

The only nontrivial bit of the “Galileanization” of the EFT (8.33) lies in the part 
of the Lagrangian with a single time derivative, .L (0,1)

eff . In case this is also strictly 
invariant under the internal symmetry, it can be promoted to 

.L (0,1)
eff = −σb(|�̃�|)ωb

a(π)∇0π
a , (14.56) 

where .σb(|�̃�|) is subject to the condition .f b
αaσb(|�̃�|) = 0; cf.  (8.39). However, in 

case .L (0,1)
eff is merely quasi-invariant, we cannot multiply it by an arbitrary function 

of . |�̃�|. The only way out then seems to be to set 

.L (0,1)
eff = ca(π)Jμ∂μπa , (14.57) 

where the 1-form .c(π) ≡ ca(π)dπa is constrained by the required strict invariance 
of its exterior derivative, .dc(π). This makes invariance under Galilei boosts mani-
fest, while quasi-invariance under the internal symmetry acting on . πa is preserved 
thanks to the identical conservation of . Jμ. Note that in this special case, imposing 
Galilei invariance produces a unique coupling between the NG fields . πa and the 
matter variables . Xi , without any new a priori unknown parameters. Mathematically, 
the Lagrangian (14.57) descends from the .(d + 1)-form .c(π) ∧ dX1 ∧ · · · ∧ dXd on 
the coset space of broken internal symmetry.
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Example 14.4 

Our main example of a system with a .L (0,1)
eff Lagrangian have been ferromagnets 

(see Sect. 9.2). While most natural ferromagnets are metals, there are also ferromag-
netic materials that are crystalline insulators. The low-energy EFT of such materials 
brings together ferromagnetic magnons and the phonons of the crystal lattice. In 
this case, the dependence of the two-derivative Lagrangian on the tensor .�̃�ij is 
more complicated than in (14.55). The reason for this is the reduced emergent 
symmetry of crystals as compared to fluids; see [14] for further details. However, the 
one-derivative part of the Lagrangian is still (14.57), generating a unique coupling 
between magnons and phonons. 

Let us finally see how the above argument needs to be modified, should 
we replace the requirement of Galilei invariance with the relativistic Poincaré 
invariance. In this case, the two-derivative Lagrangian may only feature properly 
contracted Lorentz indices. Embedding the antisymmetric .λab-term into a Lorentz-
invariant operator is possible by replacing .εrs∂rπ

a∂sπ
b → ελμνJλ∂μπa∂νπ

a . 
Analogously, the spatial gradient operator .∇πa · ∇πb should be embedded in 
.−gμν∂μπa∂νπ

b. In order to maintain the form of the two-derivative Lagrangian in 
the local rest frame of the underlying medium, it is then convenient to write it as 

. L (2,0)
eff = 1

2
κcd(|𝚵|)ωc

a(π)ωd
b (π)∂μπa∂μπb

− 1

2
λcd(|𝚵|)ωc

a(π)ωd
b (π)ελμνJλ∂μπa∂νπ

b , (14.58) 

L (0,2) eff = 
1 

2
[κ̄cd(|𝚵|) − κcd(|𝚵|)]ωc 

a(π)ωd 
b (π)(Jμ ∂μπa )(J ν ∂νπ

b ) .  

This naturally incorporates the possibility for type-A NG bosons to propagate with 
a velocity unrelated to the speed of light while maintaining full Poincaré invariance. 
The coupling functions .κab(|𝚵|), .κ̄ab(|𝚵|) and .λab(|𝚵|) are still subject to the 
constraints (8.34) and (8.35) for all values of .Xi(x). The one-derivative Lagrangian 
.L (0,1)

eff , should it be strictly invariant, can be coupled to the medium by a slight 
modification of (14.56), 

.L (0,1)
eff = −σb(|𝚵|)ωb

a(π)Jμ∂μπa . (14.59) 

When .L (0,1)
eff is merely quasi-invariant, it can still be coupled to the classical 

medium via (14.57). Namely, (14.57) in fact respects the infinite-dimensional group 
of transformations preserving the spacetime volume form thanks to its origin in the 
.(d +1)-form .c(π)∧dX1 ∧· · ·∧dXd . This group includes both Galilei and Lorentz 
boosts.
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Part V 

Epilogue



15Topics Not Covered in This Book 

The story of spontaneous symmetry breaking (SSB) and its effective field theory 
(EFT) description does not end here. There are several further facets of SSB that 
would have deserved place in the table of contents of the book. However, giving 
them proper credit would either increase the volume of the book beyond reasonable 
limits, or require a substantial amount of additional background. In this chapter, I 
will give a brief primer on some of these exciting advanced aspects of SSB. I will 
be able to go to detail where it is feasible based on the material covered elsewhere 
in the book. For topics that depart substantially from the main text, I will resort to a 
few basic comments augmented with references for further reading. 

15.1 Effects of Nonzero Temperature 

The great majority of Parts III and IV the book is restricted to the leading order 
of the derivative expansion of the EFT for Nambu–Goldstone (NG) bosons. This is  
just the classical approximation to the EFT, based on the leading-order effective 
Lagrangian and using only tree-level Feynman diagrams. At a few exceptional 
spots, such as the proof of the Goldstone theorem in Sect. 6.2 or of the Adler 
zero property in Sect. 10.1, the presented argument is clearly valid beyond the 
classical approximation. However, I have not discussed explicitly perturbative 
loop corrections except for an outline of their role in the derivative expansion; 
cf. Sects. 9.1.1 and 9.2.1. 

The effects of nonzero temperature have thus fallen through the cracks together 
with other loop corrections. Namely, in the so-called imaginary time formalism, 
the temperature of a system in thermodynamic equilibrium enters through discrete 
sums over Matsubara frequencies in loop diagrams. This is a standard part of 
field theory and I will therefore not dwell on details. A reader interested in the 
application of thermal perturbation theory to EFT for NG bosons will find more 
information for instance in [1] (chiral perturbation theory of mesons) or [2] (EFT for  
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ferromagnetic magnons). One generic aspect of SSB worth mentioning explicitly is 
that the order parameter tends to be reduced by thermal fluctuations. As a rule, the 
phase where a symmetry is spontaneously broken will persist only up to certain 
critical temperature, above which the symmetry is “restored.” This is of course 
mere jargon. The symmetry of a system constrains its dynamics at all temperatures. 
However, above the critical temperature, the order parameter for SSB vanishes and 
excitations in the spectrum are organized in multiplets of the full symmetry group. 
See Chap. 7 of [3] for a discussion of symmetry restoration within thermal field 
theory. 

What are the thermal effects on the spectrum of NG bosons? First of all, the 
Goldstone theorem remains valid at nonzero temperature as long as the symmetry 
is spontaneously broken. See Chap. 26 of [4] for a proof of the existence of a 
stable gapless quasiparticle, the NG boson, at nonzero temperature. Likewise, the 
distinction between type-A and type-B NG bosons survives at nonzero temperature. 
A detailed investigation of the thermal spectrum of NG bosons was carried out 
in [5]. At nonzero temperature, quasiparticles manifest themselves by poles in the 
propagator in the lower half-plane of complex energy. The two types of NG modes 
differ in the way their thermal width scales with momentum in the long-wavelength 
limit. As a rule, the complex energy of a type-A NG boson is thus schematically 
.E(p) ∝ |p| − ip2, whereas that of a type-B NG boson is .E(p) ∝ p2 − ip4. In both 
cases, the ratio of thermal width and the real part of the energy tends to zero in the 
limit .p → 0. This ensures the stability of the NG modes. 

The imaginary time formalism is only suitable for describing matter in thermo-
dynamic equilibrium. In the past couple of decades, much progress has been made 
in the development of quantum-field-theoretic methods for thermodynamic systems 
out of equilibrium. The extension of these techniques to EFTs based on nonlinear 
realization of symmetry is fairly recent. The reader will find further details in [6–8]. 

15.2 No-Go Theorems for Spontaneous Symmetry Breaking 

The entire book is based on the assumption that the symmetry of a given system is 
spontaneously broken. It is however equally interesting to try to understand under 
what circumstances SSB may in fact occur. The most striking results in this regard 
form a collection of “no-go” theorems, forbidding SSB in a specific class of theories. 
What follows below is, to the best of my knowledge, a representative list. The results 
included differ somewhat in the level of rigor at which they have been proven, and 
in the mathematical techniques required to establish them. Having just discussed the 
effect of loop corrections, it is natural to start with several related statements where 
the fluctuations of the order parameter play a key role. 

Coleman Theorem In Lorentz-invariant systems, NG bosons necessarily have a 
relativistic dispersion relation, .E(p) = |p|. It is easy to see that the corresponding
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Table 15.1 Subdivision of NG bosons into classes based on the noninteracting part of the effective 
Lagrangian. The latter determines the form of the (inverse) propagator, which in turn gives 
the dispersion relation of the NG mode. The last two columns of the table indicate spacetime 
dimensions, allowed by the condition that the coordinate-space propagator does not diverge at long 
distances 

Type Inverse propagator Dispersion relation Dimension (.T = 0) Dimension (.T > 0) 

.An .E2 − p2n .E(p) ∝ |p|n .D ≥ n + 2 . D ≥ 2n + 2

.B2n .E − p2n .E(p) ∝ |p|2n any .D ≥ 2 . D ≥ 2n + 2

free propagator in coordinate space, 

.

∫
dDp

(2π)D

e−ip·x

p2
, (15.1) 

is infrared-divergent for .D = 2 spacetime dimensions. This translates into a 
divergence of the two-point correlation function of the order parameter at long 
distances. In other words, the fluctuations arising from the NG boson destroy 
the assumed order parameter. This is the essence of Coleman’s theorem [9], 
which forbids spontaneous breaking of a continuous symmetry in two-dimensional 
relativistic systems. 

This argument lends itself to a broad generalization. Consider a generic effective 
Lagrangian whose bilinear part starts at order 2n in spatial derivatives. While the 
.n = 1 option is most natural, we also saw in Sect. 13.3.2 an example of a system 
where .n = 2, at least in some spatial directions. More generally, the lack of 
low-derivative contributions to the spatial part of the kinetic term can be naturally 
explained by the presence of a coordinate-dependent symmetry [10, 11]. As to the 
part of the effective Lagrangian carrying time derivatives, we expect either one 
or two derivatives respectively for type-A and type-B NG bosons. This leads to 
a refined classification of NG bosons as type-. An or type-. B2n. See the first three 
columns of Table 15.1 for an overview of the schematic forms of the corresponding 
free-particle propagators and dispersion relations. A simple modification of the 
argument leading to Coleman’s theorem now shows that at zero temperature, type-
. An NG bosons are forbidden in .D ≤ n + 1 spacetime dimensions. Intriguingly, no 
such a constraint exists for type-.B2n NG bosons. In order to have any spectrum of 
quasiparticles, at least one spatial dimension must of course be present. However, 
for any .D ≥ 2, the propagator of a type-.B2n boson at zero temperature is infrared-
finite. See the fourth column of Table 15.1 for a summary. 

Hohenberg–Mermin–Wagner Theorem At nonzero temperature, the situation 
changes dramatically. Here the Minkowski-spacetime integral (15.1) is replaced 
with an imaginary-time sum-integral of the schematic type 

.T

+∞∑
k=−∞

∫
ddp

(2π)d

exp(−iωkt + ip · x)

(iωk or ω2
k) + p2n

, (15.2)
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where .ωk ≡ 2kπT is a bosonic Matsubara frequency and T the temperature. 
The type-. An and type-.B2n cases correspond respectively to .iωk and . ω2

k in the 
denominator. Due to the discrete nature of the Matsubara sum, the contributions of 
all terms with .k /= 0 are infrared-finite. An infrared divergence can only arise from 
the zero Matsubara mode, and will be absent provided .d ≥ 2n+1 or .D ≥ 2n+2 [12] 
(the last column of Table 15.1). While the critical dimension is the same for type-. An

and type-.B2n NG bosons, note that n here counts the number of spatial derivatives in 
the Lagrangian. For fixed power of momentum in the dispersion relation, the critical 
dimension for type-.A2n NG bosons is higher than that for type-.B2n ones. 

The original results on the absence of SSB at nonzero temperature are due to 
Hohenberg [13] (for superfluids) and Mermin and Wagner [14] (for isotropic  
lattice models of ferro- and antiferromagnets). These covered implicitly the 
cases of type-. A1 and type-. B2 NG bosons. However, their approach was 
different from the above intuitive argument and did not rely on the propagator 
of the would-be NG mode. Rather, they used the so-called Bogoliubov 
inequality to place an upper bound on the order parameter. This bound shows 
that the order parameter goes to zero in the limit of infinite volume and 
vanishing symmetry-breaking perturbation. See [15] for a review and further 
references. 

Landau–Peierls Instability There is another related result that applies to systems 
where the order parameter is spatially modulated in one direction, thus sponta-
neously breaking translations. This is the case for instance for liquid crystals in 
the smectic-A phase, as we saw in Sect. 13.3.2. Let us briefly recall the line of 
reasoning therein to stress its generality. Suppose that the order parameter is given 
by a scalar field . φ that develops a nonzero gradient in the ground state. We can treat 
.〈∇φ〉 as a secondary, vector order parameter. The assumption that translations are 
spontaneously broken only in one dimension amounts to the condition that . 〈∇φ〉
points in the same direction everywhere in space. Next, we expand . φ around its 
expectation value as .φ ≡ 〈φ〉 + π and focus on the part of the effective Lagrangian 
bilinear in the fluctuation . π . The assumed (and also spontaneously broken) rotation 
invariance dictates that there cannot be any term in the Lagrangian, bilinear in 
the part of . ∇π , perpendicular to .〈∇φ〉. The gradient expansion of the Lagrangian 
starts with terms proportional to .(∇‖π)2 and .(∇2⊥π)2, where . ‖ and . ⊥ denote 
projections to subspaces parallel and perpendicular to .〈∇φ〉. The denominator of 
the large fraction in (15.2) should then be replaced with .(iωk or ω2

k) + p2‖ + p4⊥. 
Integrating the .k = 0 term over . p‖ shows that the order parameter is washed out 
by thermal fluctuations at any nonzero temperature whenever .d ≤ 3. This is known 
as the Landau–Peierls instability; see Sect. 1.6 of [16] and [17] for a more detailed 
discussion within the condensed-matter and nuclear physics context, respectively.
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Absence of Time Crystals Speaking of spontaneously breaking translations in 
a single direction, it is mandatory to consider the possibility that this direction 
corresponds to time. The idea that time translations could be spontaneously broken 
was proposed in [18, 19]. Such systems have since been known as time crystals. 
The reason why this possibility had not been noticed until the twenty-first century 
is that time crystals are not easy to realize. It was shown soon after the original 
proposal that their existence is forbidden in thermodynamic equilibrium of any 
Hamiltonian with sufficiently short-range interactions [20, 21]. There is however 
a nonequilibrium route towards quantum time crystals; see [22] for a recent review 
of the subject. 

Vafa–Witten Theorem Finally, the list of no-go theorems would not be complete 
without the Vafa–Witten theorem [23]. This is of quite a different nature than all 
the other results above, and applies to Lorentz-invariant gauge theories coupled to 
fermionic matter in a vector-like manner. An important example of such a theory 
is the quantum chromodynamics (QCD). Suppose the theory possesses a vector-like 
symmetry, that is one that acts in the same way on left- and right-handed fermions. In 
QCD, this could be for instance the .U(1)B baryon number symmetry or, in the limit 
of equal quark masses, the .SU(2)V isospin symmetry. The theorem states that such 
vector-like symmetries cannot be spontaneously broken in the ground state. The 
proof is technical. See also [24] for a review of the relevant mathematical methods 
and their applications to QCD and hadron physics. 

15.3 Topological Aspects of Spontaneous Symmetry Breaking 

We already encountered various topological aspects of EFTs for NG bosons 
on several occasions. Below, I will generalize some of the observations made 
previously, and add new interesting physics. 

Topological Defects and Solitons The classification of topological defects was 
the first major application of topology to physics; see [25] for an introduction to 
the relevant mathematics. Recall that the coset space .G/H can be viewed as the 
vacuum manifold of a theory with SSB, whose points indicate possible values of 
the order parameter in the ground state. A defect is a nonuniform configuration of 
the .G/H -valued order parameter that is singular on some subdimensional domain 
in space. See Fig. 15.1 for the simple examples of a point and line defect. The 
presence of a defect can be established from the properties of the order parameter 
away from the singularity. Thus, a p-dimensional defect in . Rd can be enclosed by 
a .(d − p − 1)-dimensional hypersurface .Σd−p−1 that is topologically a sphere, 
.Sd−p−1. Equivalence classes of defects can then be determined by studying maps 
.Sd−p−1 → G/H , which are classified by the homotopy group .πd−p−1(G/H). This  
assigns the defect a unique label: its topological charge. An exception are domain 
walls, which are of codimension one in space, dividing it into two halves. A domain
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Fig. 15.1 Examples of 
topological defects in . d = 3
spatial dimensions together 
with the surfaces defining 
their topological charge. The 
left panel shows a point 
defect (monopole), the right 
panel a line defect (vortex) Σ2 

Σ1 

Table 15.2 Classification of 
basic topological defects by 
their codimension in space 
. Rd

Defect Dimension p Classifying group 

Domain wall .d − 1 . π0(G/H) × π0(G/H)

Vortex .d − 2 . π1(G/H)

Monopole .d − 3 . π2(G/H)

wall is thus characterized by the values of the order parameter on both sides. See 
Table 15.2 for an overview of basic types of topological defects. 

Example 15.1 

We saw examples of domain walls in Sect. 13.4. The double-well potential (13.78) 
has a discrete .G ≃ Z2 symmetry under .φ → −φ. This is broken in its minima 
to .H ≃ {e}, hence .G/H ≃ Z2 and likewise .π0(G/H) ≃ Z2. The cosine 
potential (13.80), on the other hand, has the symmetry group .G ≃ Z2 ⋉ Z. The  
. Z2 factor is generated by the inversion .φ → −φ whereas the . Z factor by the shift 
.φ → φ + 2πv. In any of the minima of the potential, the symmetry is broken 
to a subgroup isomorphic to .H ≃ Z2. Therefore, in this case .G/H ≃ Z and 
accordingly .π0(G/H) ≃ Z. The elements of .π0(G/H) × π0(G/H) shown in 
Table 15.2 correspond to domain wall solutions interpolating between different pairs 
of minima. 

The focus on singular field configurations may be surprising; the physics should 
not change if we “smooth down” the order parameter. This is however only 
possible at the cost of embedding the coset space .G/H in a larger order parameter 
manifold . M. 

Example 15.2 

Consider a superfluid in .d = 2 dimensions. Here the order parameter .〈ψ〉 takes 
values from . C, while the vacuum manifold is .G/H ≃ U(1)/{e} ≃ S1 for any . 〈ψ〉 /=
0. A point defect (vortex) in the superfluid is described by a smooth complex field 
.ψ(x). The corresponding topological charge is the winding number, defining an 
element of .π1(G/H) ≃ π1(S

1) ≃ Z; see also Example 12.4. Importantly, nonzero 
winding number implies by the argument principle (Chap. 7 of [26]) the existence
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of a point .x ∈ R2 where .ψ(x) = 0: the core of the vortex. This is our “singularity” 
where the order parameter cannot lie on the vacuum manifold .G/H ≃ S1. 

For another example, consider a spin system in .d = 3 dimensions with . G/H ≃
S2. Suppose that on the sphere . Σ2 as shown in Fig. 15.1, the order parameter 
represented by a unit vector .n ∈ S2 points radially outwards everywhere. This 
spin configuration is sometimes called hedgehog. If we now try to continue the 
field to the inside of the sphere, we will inevitably encounter a point singularity: a 
monopole. Possible values of its topological charge are classified by . π2(G/H) ≃
π2(S

2) ≃ Z. The singularity can be avoided only at the cost of deforming the spin 
configuration out of the coset space .G/H . The natural way to do so is by embedding 
.G/H ≃ S2 in . R3 and allowing . n to vary its magnitude. One can then extend the 
hedgehog field on . Σ2 to the inside by scaling down its magnitude so that it vanishes 
at the location of the monopole. 

In contrast to defects are topological solitons (Sect. IX of [25]). These are 
fields in . Rd that are smooth and take values from .G/H everywhere. Nontrivial 
topology arises from imposing a specific boundary condition at spatial infinity. 
Thus, the field configuration of a p-dimensional soliton is required to converge to 
a constant far from a fixed p-dimensional hypersurface . Cp in . Rd . Now consider 
an open hypersurface .Σd−p that is “transverse” to . Cp. The boundary condition 
effectively compactifies this hypersurface to a sphere, .Sd−p. Equivalence classes 
of p-dimensional solitons in . Rd are therefore classified by the homotopy group 
.πd−p(G/H). 

Example 15.3 

The simplest type of a topological soliton is that with .p = 0. Such solitons can be 
viewed as quasiparticles localized in all directions in space, and typically carry a 
finite amount of energy. The transverse hypersurface . Σd is in this case the entire 
space . Rd . We already met two examples of such solitons in Chap. 9: skyrmions in 
QCD, corresponding to .d = 3 and .π3(G/H) ≃ π3(S

3) ≃ Z, and baby skyrmions in 
two-dimensional ferromagnets, for which .π2(G/H) ≃ π2(S

2) ≃ Z. The latter are 
easily generalized to higher dimensions, simply by making the fields independent 
of whatever extra coordinates are present. Thus a skyrmion in a three-dimensional 
ferromagnet is localized to a line, . C1. Its topological charge is determined by the 
properties of a unit vector field on a two-dimensional surface . Σ2, transverse to . C1. 

Topological Terms in the Action We saw in Sect. 8.1 that the part of the effective 
Lagrangian for NG bosons with a single time derivative may be topologically 
nontrivial. Similarly, it turned out in Sect. 9.1 that the part of the low-energy EFT 
of QCD, taking into account the chiral anomaly, is topological in nature. We shall
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now generalize these observations, thus uncovering a broad class of contributions to 
EFTs for NG bosons, arising from the topology of the coset space .G/H . 

Suppose that .G/H is compact and consider a closed p-form .ω(p) that belongs to 
a nontrivial cohomology class in the p-th de Rham cohomology group, .Hp(G/H).1 

Upon pulling .ω(p) back to a spacetime M of dimension D by the map . M → G/H

defining the NG fields, it becomes a likewise closed p-form on M . There are now 
three different possibilities depending on the relation between p and D. If  .p = D, 
the spacetime p-form can be directly integrated and added to the action of the EFT. 
This is called a .θ -term. Due to its origin in a closed D-form, it is a mere surface 
term in the Lagrangian and thus does not affect the perturbative dynamics of the 
EFT. This is the reason why .θ -terms have not featured in the book at all. If present, 
they contribute a phase factor to the generating functional though, which may affect 
the nonperturbative physics of the theory. 

Another relevant possibility is .p = D + 1. In this case, there is a locally well-
defined D-form .ω(D) on .G/H such that .dω(D) = ω(p). Upon pulling back to 
the spacetime, .ω(D) gives a contribution to the Lagrangian that is quasi-invariant 
under the action of G. This is a  Wess–Zumino (WZ) term. The anomalous contri-
bution to the low-energy effective Lagrangian of QCD is obviously of this kind; 
cf. Sect. 9.1.4. However, the single-time-derivative part of the effective Lagrangian, 
.L (0,1)

eff , constructed in Sect. 8.1.3, belongs to the same category. Here only the 
variation of the NG fields in time matters and thus effectively .D = 1, which makes 
.H 2(G/H) the relevant de Rham cohomology group. Following the line of reasoning 
of Sect. 9.2.4, we see moreover that such WZ terms generally give rise to a Berry 
phase when the ground state is driven by an external field [27]. See Table 15.3 for 
a summary. Further technical details on the construction of topological WZ and .θ -
terms in the action can be found in the recent study [28]. For a somewhat more 
condensed-matter oriented perspective on topological terms, see Chap. 9 of [29]. 

Table 15.3 Physical interpretation of generators of the de Rham cohomology group .Hp(G/H), 
depending on the dimension D of spacetime they are pulled back to. For .p < D, the pull-back 
leads to a closed p-form on the spacetime, Hodge-dual to an identically conserved tensor current 
of rank .D − p. In the table, the rank of currents .Jμν··· is indicated by the number of indices 

Dimension .p = 1 .p = 2 .p = 3 .p = 4 . p = 5

.D = 1 .θ -term WZ term – – – 

.D = 2 .Jμ .θ -term WZ term – – 

.D = 3 .Jμν .Jμ .θ -term WZ term – 

.D = 4 .Jμνλ .Jμν .Jμ .θ -term WZ term

1 I follow the convention common in high-energy physics and indicate the degree of a differential 
form with a superscript in parentheses. 
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15.4 Generalized Symmetries 

It remains to clarify the content of the lower left corner of Table 15.3. For  .p < D, 
the spacetime p-form arising from pulling back .ω(p) can be expressed as the Hodge 
dual of a .(D − p)-form, .⋆ J (D−p). The form .J (D−p) has a vanishing codifferential; 
cf. Appendix A.6.5. In a flat spacetime, this can be expressed component-wise as 

.∂μJμν··· = 0 , (15.3) 

where .Jμν··· is fully antisymmetric in all its indices. Equation (15.3) is nothing 
but a local conservation law with a tensor current of rank .D − p. It encodes, on 
the classical level, a generalized symmetry. This (and other) kind of generalization 
of conservation laws has attracted much attention in the last decade. An interested 
reader will find a comprehensive introduction for instance in [30–32]. 

In the context of EFT for NG bosons, the identically conserved currents . Jμν···
give us a tool for calculation of topological charges of defects and solitons, classified 
in Sect. 15.3. Mathematically, this is based on the correspondence between the 
homotopy and de Rham cohomology groups of .G/H via the Hurewicz theorem (see 
Appendix A.8.2). Physically, the conservation law (15.3) suggests the existence of 
a conserved charge, obtained by integrating the temporal component, .J 0rs···, over 
a spatial hypersurface. For a static defect or soliton, it is easiest to pull .ω(p) back 
directly to the space . Rd and express it therein as .⋆J(d−p). The .(d −p)-form . J(d−p)

is the density of our topological charge. The topological charge itself is obtained by 
integration over an effectively closed p-dimensional surface . Σp in . Rd , 

.Q(Σp) ≡
∫

Σp

⋆J(d−p) . (15.4) 

The fact that . Σp is closed guarantees that the value of .Q(Σp) does not change under 
smooth deformations of the surface. Depending on circumstances, (15.4) represents 
the topological charge of a .(d − p − 1)-dimensional defect enclosed by . Σp, or that 
of a .(d − p)-dimensional soliton intersecting . Σp. 

Example 15.4 

The coset space .G/H ≃ U(1) ≃ S1 of superfluids has nontrivial first de Rham 
cohomology group, .H 1(G/H) ≃ R. Pulling its generator back to space and 
integrating over a closed loop .Σ1 defines the winding number of a .(d − 2)-
dimensional defect: the vortex. The coset space .G/H ≃ SU(2)/U(1) ≃ S2 of 
ferro- and antiferromagnets has nontrivial second de Rham cohomology group, 
.H 2(G/H) ≃ R. Pulling its generator back to . R2 and integrating over the entire 
plane, .Σ2 = R2, defines the charge of a 0-dimensional soliton: the baby skyrmion.
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All the conservation laws of the type (15.3) discussed until now were emergent. 
Namely, their existence follows from the topology of the coset space .G/H , which 
itself parameterizes the breaking of the symmetry we started with. There are 
however also other, important examples of generalized conservation laws. For 
instance, the Maxwell equations in absence of matter take the form of a rank-two 
conservation law, .∂μFμν = 0. In this case, the charge (15.4) obtained by integration 
over a closed spatial surface is nothing but the electric flux through that surface. 
The “defect” is a localized electric charge enclosed by the surface. Intriguingly, 
the spontaneous breakdown of the generalized symmetry of electrodynamics is the 
ultimate reason why the photon is massless. This brings us back to the beginning of 
the book: we are constantly surrounded by a sea of NG bosons, namely sound and 
light. A reader wondering whether the classification of NG bosons into type-A and 
type-B also applies to generalized symmetries will be glad to hear that this is indeed 
the case. See [33] for a discussion of the classification and counting of NG bosons 
of generalized symmetries, and [34] for a nontrivial example of a system where the 
photon coupled to a particular type of matter behaves as a type-B NG mode. 
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16Some Open Questions 

I will close the book by highlighting some technical issues that I could not have 
addressed properly. I label them as “open questions,” at the risk of revealing 
my own ignorance rather than a gap in the existing knowledge. Since the book 
revolves around developing a formalism for spontaneously broken symmetry, some 
of the items are purely mathematical. The first commandment of effective field 
theory (EFT) dictates that the effective Lagrangian must contain all operators that 
respect the symmetry of the system. Accordingly, an important ingredient of the 
EFT formalism is the classification of all possible Lagrangians consistent with the 
symmetry. This requirement lies behind most of the issues listed below. 

Universality of the Standard Nonlinear Realization The classification of group 
actions on a manifold in Chap. 7 relies heavily on the assumption that the 
isotropy subgroup H of the symmetry group G is compact. Any progress towards 
classification of group actions such that H is noncompact would be most welcome. 
This applies in particular to coset spaces .G/H that are not reductive, for which 
many of the nice features of our standard nonlinear realization are lost. 

Global Existence of the Group Action The standard nonlinear realization of 
symmetry developed in Chap. 7 is restricted to a single local coordinate patch. 
Accordingly, the explicitly constructed action of the group G is limited to its 
elements near unity. Yet, the global existence of the group action on the whole 
manifold . M, or coset space .G/H , has been implicitly assumed throughout the book. 
A better understanding of possible topological obstructions to extending the group 
action from a local coordinate patch to the entire manifold would be desirable. 
This issue is particularly pressing for Lie groups consisting of several connected 
components. As far as I know, the first attempt to systematically deal with such cases 
was made in [1]. However, more work is needed to establish a general, practically 
useful formalism. 
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374 16 Some Open Questions

Group Action via Generalized Local Transformations Most of the book focuses 
on symmetries realized by point transformations on a target space . M or its Cartesian 
product with the spacetime M . This allows one to use the mathematical language 
of group actions on a finite-dimensional manifold. However, we have also seen 
some physically relevant examples of generalized local symmetries, where the 
transformation of fields is allowed to depend on their derivatives. This suggests 
working directly in the infinite-dimensional space of fields as maps .M → M. 
With the knowledge of the symmetry group and the symmetry-breaking pattern, 
one may then still apply the agnostic nonlinear realization, mentioned in Chaps. 12 
and 13. To what extent this exhausts all possible actions of the symmetry remains 
unclear. Yet, a setup that makes the implementation of generalized local symmetries 
systematic has long been in use in the theory of differential equations [2]. First 
attempts to apply this setup to EFT appeared very recently [3, 4]. Hopefully, they 
will help to place the treatment of generalized local symmetries on the same footing 
as that of point symmetries. 

Interplay of Nonlinear Realization and Inverse Higgs Constraints As stressed 
in Chap. 13, the operational way of eliminating would-be Nambu–Goldstone (NG) 
fields that excite gapped modes using an inverse Higgs constraint (IHC) is optional. 
The EFT for solely genuine NG degrees of freedom, obtained by applying an IHC, 
may carry a realization of the symmetry by generalized local transformations. On 
the other hand, the EFT before the IHC is imposed is ambiguous in that its field 
content may depend on the choice of order parameter. Either way, the universality 
of the nonlinear realization of the symmetry may be compromised. Here, too, more 
work is needed to establish that the existing formalism(s) for spontaneously broken 
spacetime symmetry give(s) the most general effective Lagrangian. 

Nonlinear Realization of Translation Symmetry Possibly the largest gap in the 
narrative of the book is the treatment of spontaneously broken translation symmetry. 
The main challenge is to establish a unique local parameterization of given fields 
in terms of NG variables, one for each broken translation generator. Thus, the 
discussion in Chap. 13 is limited to order parameters spatially modulated just in one 
direction. A generalization of the formalism to ordered states of matter, modulated 
in several dimensions, is pending. The same obstacle hinders the application of the 
background gauge approach, which proved extremely efficient in case of internal 
symmetries (Chap. 8). Some concrete applications of this approach beyond the 
single example worked out in Chap. 13 can be found in [5]. However, a fully general 
background gauge formalism for construction of EFTs for spontaneously broken 
spacetime symmetry is not available as yet.
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AElements of Differential Geometry 

Most of the book relies on mathematical background familiar to any graduate stu-
dent of theoretical physics, that is mostly advanced calculus and basic group theory. 
However, some topics are greatly illuminated by taking a more geometric viewpoint. 
For instance, differential calculus on manifolds and Riemannian geometry provide 
useful insight into the nature of coset spaces on which effective field theories for 
spontaneously broken symmetry are defined. This is discussed in Chap. 7. Likewise, 
the classification of effective theories for broken internal symmetries worked out 
in Chap. 8 is greatly simplified by using differential calculus on manifolds and 
elements of de Rham cohomology. Las but not least, Riemannian geometry provides 
a practically convenient language for the analysis of scattering of Nambu–Goldstone 
bosons in Chap. 10. 

The purpose of this appendix is to give the reader the background needed to 
follow such more advanced parts of the book. I try to keep the discussion elementary, 
focusing on qualitative understanding rather than on mathematical rigor. Wherever 
possible, I justify the need for new concepts and motivate their formal definition. 
This necessarily makes the exposition biased. My approach might be natural for 
someone familiar with quantum field theory who seeks to develop advanced calculus 
methods to deal with fields that live on a manifold. The appendix can however be 
studied independently without any reference to the main text of the book. A more 
complete introduction to differential geometry at a similar level as here can be found 
in [1]. A reader looking for a more thorough treatment of the subject at a level still 
accessible to a graduate student of theoretical physics is advised to consult [2–4]. 

A.1 Smooth Manifolds 

The basic concept of differential geometry is that of a manifold. This is an  
abstraction that arose historically from the study of non-Euclidean geometry and of 
the geometry of surfaces. Formally, a manifold . M of dimension n is a set equipped 
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with the notion of closeness (topology) that can be locally mapped to . Rn in a one-
to-one manner. More precisely, one assumes the existence of a collection of pairs, 
.{(Ui, ϕi)}, where . Ui is an open subset of . M and .ϕi : Ui → Rn is a homeomorphism. 
(The latter is defined as a continuous map that is invertible and whose inverse is also 
continuous.) Borrowing terminology from cartography, each pair .(Ui, ϕi) is called 
a chart, and the collection of all charts is an atlas. It is required that each point 
.x ∈ M belongs to at least one of the sets . Ui . The point .ϕi(x) ∈ Rn corresponds 
to an n-tuple of real numbers . xa , .a = 1, . . . , n, called the coordinates of x. It is  
common if a bit sloppy to identify the point .x ∈M with its image .ϕi(x) or even the 
coordinates . xa , and I will often follow this convention. 

Mapping a point .x ∈ M to its coordinates is both a blessing and a curse. On 
the one hand, the coordinates allow us to import to the manifold mathematical 
structures we are familiar with from ordinary calculus. On the other hand, it may 
not be possible to cover the whole manifold with a single set . Ui . The coordinates 
are in general only defined locally in some neighborhood of x. We must therefore 
be able to switch from one set of coordinates to another. The first commandment 
of differential geometry is that whatever structure we build on the manifold, it must 
have an intrinsic meaning regardless of a particular choice of local coordinates. 

Example A.1 

The .M = Rn is itself an n-dimensional manifold. It can be covered with a single 
coordinate chart, .(U, ϕ) = (Rn, id), corresponding to usual Cartesian coordinates. 
The coordinates can however also be chosen differently, in which case a single chart 
may not be sufficient to cover the whole . Rn. For example, let us consider . R2 and use 
the polar coordinates .ϱ, θ instead of the Cartesian coordinates . x, y. The  map  

.(x, y) → (ϱ, θ) ≡
(√

x2 + y2, sgn y arccos
x√

x2 + y2

)
(A.1) 

is continuous and invertible on .U = R2 \ {(x, 0) | x ≤ 0}, making U homeomorphic 
to the domain .(0,+∞) × (−π,+π) ⊂ R2. To cover the whole plane .M = R2, we  
would need to add at least one more chart. 

The first thing we can do with the local coordinates is to introduce a differential 
structure on . M. Let us choose a chart .(Ui, ϕi). We then define a smooth real function 
on . Ui as a map .f : Ui → R such that .f ◦ ϕ−1

i is an infinitely differentiable 
function on .ϕi(Ui) ⊂ Rn. We would of course like the concept of smoothness to 
be independent of the choice of chart. This is ensured by requiring that for any 
two overlapping open sets .Ui,Uj , the  map  .ϕi ◦ ϕ−1

j that switches between the two 
coordinate systems is itself infinitely differentiable. A function defined on the whole 
manifold, .f :M→ R, is now called smooth if it is smooth when restricted to any 
single coordinate chart.



A Elements of Differential Geometry 379

Fig. A.1 Stereographic 
projection of the n-sphere . Sn

to . Rn, here for .n = 1. First, 
. Sn is naturally embedded in 
.Rn+1 as a unit sphere 
centered at the origin. A point 
P on . Sn is then projected to 
the point Q in . Rn using a 
straight line starting at the 
north pole N of the sphere. 
An alternative projection 
from the south pole S would 
map P to . Q'

N 

Q 

P 

z 

x 

S 

Q' 

Example A.2 

One way to define local coordinates on the n-sphere . Sn is through stereographic 
projection, see Fig. A.1. We imagine that . Sn is realized (embedded) in .Rn+1 as a 
unit sphere centered at the origin. The embedding is defined implicitly by . (x1)2 +
· · · + (xn)2 + z2 = 1, where .(x1, . . . , xn, z) are Cartesian coordinates in .Rn+1. A  
given point .P ∈ Sn is then projected from the north pole N to the hyperplane . Rn

defined by .z = 0. The image of P is the point 

.Q ≡ (y1, . . . , yn) =
(

x1

1 − z
, . . . ,

xn

1 − z

)
. (A.2) 

The set .(y1, . . . , yn) constitutes the desired local coordinates on . Sn. These coor-
dinates are well-defined on the whole sphere except for the north pole N itself. 
To cover the entire sphere, we need another coordinate patch. This can be defined 
through a similar projection from the south pole S. The latter maps P to 

.Q' ≡ (y'1, . . . , y'n) =
(

x1

1 + z
, . . . ,

xn

1 + z

)
. (A.3) 

Noting that 

. |y| = |x|
1 − z

=
√
1 + z

1 − z
,

∣∣y'∣∣ = |x|
1 + z

=
√
1 − z

1 + z
, (A.4)
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we find that the two sets of local coordinates are related by inversion, .y'a = ya/ |y|2. 
This ensures smooth transition between the two coordinate systems wherever they 
are both well-defined, that is on . Sn with both poles removed. 

A.2 Linear Structures on Manifolds 

We have now learned what a smooth function on a manifold is. Since our primary 
goal is to develop calculus on manifolds, we would eventually like to differentiate 
and integrate such functions. In order to be able to do so independently of the choice 
of local coordinates, we will however need additional structure on the manifold. 

A.2.1 Tangent Vectors and Vector Fields 

The first step towards setting up calculus on manifolds is to define a derivative of a 
function. In . Rn with its Cartesian coordinates, this naturally leads to the notion of a 
partial derivative. On a general manifold . M, there is however no such a preferred set 
of coordinates. The way out is to generalize the concept of a directional derivative 
in . Rn. Thus, for a fixed point .x ∈ Ui ⊂M and a set of coefficients .v1, . . . , vn, we  
define a linear operator . v acting on smooth functions f on . Ui through 

.v = va ∂

∂xa
: f → v[f ] ≡ va ∂(f ◦ ϕ−1

i )

∂xa

∣∣∣∣∣
x

. (A.5) 

Such a linear operator is usually called a tangent vector to . M at x. Accordingly, the 
set of all tangent vectors at x is called the tangent space of . M at x and denoted as 
.TxM. Let me stress that the adjective “tangent” here is just a convention. There is 
no way to give it a literal geometric meaning unless we imagine . M as a hypersurface 
embedded in a higher-dimensional Euclidean space. 

The definition (A.5) relies on the components . va in a fixed  coordinate basis of the 
tangent space, .∂a ≡ ∂/∂xa . However, the concept of a tangent vector has a meaning 
independent of a specific choice of local coordinates. We just have to remember 
to recalculate the components of the vector if the local coordinates change, as the 
following example illustrates. 

Example A.3 

Suppose that we trade the Cartesian coordinates .x, y in . R2 for the polar coordinates 
.ϱ, θ through the usual prescription .(x, y) = (ϱ cos θ, ϱ sin θ). The coordinate basis 
of the tangent space is then converted by using the chain rule for partial derivatives, 

.∂ϱ = (cos θ)∂x + (sin θ)∂y , ∂θ = −(ϱ sin θ)∂x + (ϱ cos θ)∂y . (A.6)
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In order for a vector . v to be well-defined independently of the choice of local 
coordinates, its components .(vx, vy) and .(vϱ, vθ ) in the two coordinate systems 
must be related by 

.vϱ = vx cos θ + vy sin θ , vθ = −vx

ϱ
sin θ + vy

ϱ
cos θ . (A.7) 

These results agree with what elementary planar geometry would tell us if we treated 
. ∂ϱ and .(1/ϱ)∂θ as unit vectors in the radial and azimuthal direction, respectively. 

In general, if we change the local coordinates . xa smoothly to .x̃a(x), the  
coordinate bases and vector components in the new and old coordinate systems are 
related by 

.∂̃a = ∂xb

∂x̃a
∂b , ṽa = ∂x̃a

∂xb
vb . (A.8) 

The first of these is just the chain rule, whereas the latter follows from the 
requirement that the vector .v = va∂a = ṽa ∂̃a is independent of the choice of 
coordinates. Note that .∂x̃a/∂xb is just a shorthand notation. If . xa and . x̃a correspond 
to coordinate maps .ϕi, ϕj , this notation represents the partial derivatives of .ϕj ◦ϕ−1

i , 
evaluated at .ϕi(x) ∈ Rn. In the following, I will occasionally use such intuitive 
notation without further warnings. 

For most applications in physics, a vector field is of greater interest than a 
(tangent) vector defined at a single point .x ∈ M. Just like for real functions on 
. M, it is natural to require that a vector field varies smoothly as a function of x. 
This is most easily ensured by demanding that, within a local coordinate patch, the 
components . va are themselves smooth functions of x. It is also possible to define a 
vector field without referring to specific coordinates. One thus treats it as a collection 
of vectors .v(x) ∈ TxM such that .v(x)[f ] is a smooth function of x for any smooth 
“test function” f on . M. 

With the notion of a vector field at hand, let us briefly return to the choice of 
basis of the tangent space. With local coordinates . xa defined on an open set . Ui , 
we get a set of coordinate basis fields . ∂a that are likewise well-defined only on . Ui . 
It is however often advantageous to have a basis that is not limited to a particular 
coordinate patch, or not related to a specific set of coordinates at all. One thus defines 
a (local) frame as a set of vector fields . eA, .A = 1, . . . , n, defined on some open set 
.U ⊂M, such that the set of vectors .{eA(x)}nA=1 is a basis of .TxM at any .x ∈ U .1 

Any vector field can then be expressed in terms of its components with respect to the

1 Within this appendix, I will carefully distinguish coordinate indices .a, b, . . . from frame indices 
.A,B, . . . . In practice (including the main text of this book), the two notations are often blended. 
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frame, .v(x) = vA(x)eA(x). I will sometimes use a local frame instead of coordinate 
basis fields; the latter can always be viewed as a special case of the former. 

Restricting the definition of a local frame to an open subset of . M is not 
as innocuous as it might appear. The existence of a frame well-defined on 
the whole of . M depends on the global topology of . M. Even on a manifold 
as simple as the 2-sphere . S2, there is no smooth vector field that would be 
nonzero everywhere! This is the “hairy ball theorem” of algebraic topology; 
see Sect. 13.7 of [1] for an elementary discussion. 

A second remark of caution is that a local frame is not merely a coordinate 
basis in disguise. By the definition of a basis, one can always relate a frame 
. eA to any coordinate basis . ∂a by .eA = ca

A∂a , where . ca
A is a matrix of 

coefficients with nonzero determinant. In general, there is however no set of 
local coordinates . yA, .A = 1, . . . , n such that .eA = ∂/∂yA. As I will show 
later, this is only possible if the condition .eA[ca

B ] = eB [ca
A] is satisfied for all 

.A,B and a. 

A.2.2 Tensors and Tensor Fields 

Once we know how to construct tangent vectors and vector fields on a manifold, 
we can quickly build tensors and tensor fields of an arbitrary rank. While the 
motivation for doing so may not be as immediate as for tangent vectors, several 
types of tensors are of central importance to differential geometry. To start with, the 
cotangent space of . M at x, .T∗

xM, is defined as the dual of .TxM. Its elements, called 
cotangent vectors or covectors, are linear maps from .TxM to . R. The counterpart of 
a coordinate basis . ∂a on .TxM is the dual coordinate basis on .T∗

xM, usually denoted 
as . dxa . Hence .dxa(∂b) = δa

b . The action of any covector on any vector then follows 
from linearity and can be expressed component-wise, 

. ω = ωadx
a , v = va∂a ⇒ ω(v) = ωav

a , ω ∈ T∗
xM , v ∈ TxM .

(A.9) 

The choice of notation for the dual coordinate basis is not accidental. Any smooth 
function f defined in a neighborhood of x gives rise to a covector . df through 

.df (v) ≡ v[f ] = va ∂f

∂xa
, v ∈ TxM . (A.10) 

I have simplified the notation by treating f as a function of the local coordinates 
. xa ; cf.  (A.5). By the definition of the dual basis, we have .va = dxa(v). Hence 
.df = (∂f/∂xa)dxa , generalizing the differential of a function known from ordinary
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calculus. It follows that upon switching the local coordinates from . xa to .x̃a(x), the  
dual coordinate basis and components of covectors transform to 

.dx̃a = ∂x̃a

∂xb
dxb , ω̃a = ∂xb

∂x̃a
ωb . (A.11) 

Higher-rank tensors can now be built using tensor products of .TxM and .T∗
xM. 

Generally, a tensor of type .(q, p) at .x ∈M is an element of .(TxM)⊗q ⊗ (T∗
xM)⊗p. 

A class of tensors of special importance to both differential and integral calculus on 
manifolds is obtained by taking the p-fold antisymmetric tensor product of .T∗

xM, 
where p is a positive integer. The elements of this space, .Ωp

xM, are called p-forms 
and define antisymmetric multilinear functions on .TxM. Note that .Ω1

xM coincides 
with .T∗

xM; covectors are indeed often referred to as 1-forms. An antisymmetric 
tensor product of p covectors .ω1, . . . , ωp is represented compactly by the notation 

.ω1 ∧ · · · ∧ ωp ≡
∑
π

sgnπ ωπ(1) ⊗ · · · ⊗ ωπ(p) , (A.12) 

where the sum is over all permutations . π of the indices .1, . . . , p. Using this 
notation, we can write a general element .ω ∈ Ω

p
xM in the dual coordinate basis 

as 

.ω = 1

p!ωa1···apdx
a1 ∧ · · · ∧ dxap , ωa1···ap = ω(∂a1, . . . , ∂ap ) . (A.13) 

The expression for the components of the p-form is a direct generalization of the 
relation .ωa = ω(∂a) for 1-forms. 

Equation (A.12) is more than just a useful shorthand notation. It can be extended 
to an operation on forms of arbitrary degree that is linear and associative: the 
exterior product. With the dual coordinate basis expansion (A.13) at hand, linearity 
and associativity require that any two forms .ω ∈ Ω

p
xM and .σ ∈ Ω

q
xM are mapped 

to the .(p + q)-form 

.ω ∧ σ = 1

p!q!ωa1···apσb1···bqdx
a1 ∧ · · · ∧ dxap ∧ dxb1 ∧ · · · ∧ dxbq . (A.14) 

The same result can be alternatively expressed in a coordinate-independent manner 
by the action on a set of test vectors .v1, . . . , vp+q from .TxM, 

.

(ω ∧ σ)(v1, . . . , vp+q)

= 1

p!q!
∑
π

sgnπ ω(vπ(1), . . . , vπ(p))σ (vπ(p+1), . . . , vπ(p+q)) ,
(A.15)
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where . π now runs over permutations of .1, . . . , p + q. The antisymmetry of forms 
as multilinear maps implies that the exterior product is graded-anticommutative, 

.ω ∧ σ = (−1)pqσ ∧ ω , ω ∈ Ω
p
xM , σ ∈ Ω

q
xM . (A.16) 

The direct sum .
⊕n

p=0 Ω
p
xM equipped with the exterior product possesses the 

structure of an associative algebra: the exterior (Grassmann) algebra. Here  . Ω0
xM

is identified with . R and the direct sum terminates at .p = n; by the antisymmetry 
property there are no p-forms with .p > n on an n-dimensional manifold. 

Another operation on forms that will prove useful is the interior product. This  
assigns to any vector .v ∈ TxM a linear map .ιv : Ω

p+1
x M→ Ω

p
xM defined by 

.ιvω(v1, . . . , vp) ≡ ω(v, v1, . . . , vp) , v1, . . . , vp ∈ TxM (A.17) 

for any .ω ∈ Ω
p+1
x M. While this definition is coordinate-independent, the interior 

product takes a particularly simple form in the component notation where it amounts 
to contracting the vector . v with the .(p + 1)-form . ω, .(ιvω)a1···ap = vbωba1···ap . 
Thanks to the antisymmetry of forms, the interior product is anticommutative that 
is .ιu ◦ ιv = −ιv ◦ ιu for any two tangent vectors . u, v. Moreover, . ιv with any fixed . v

is an antiderivation of the Grassmann algebra: for any p-form . ω and q-form . σ one 
has 

.ιv(ω ∧ σ) = (ιvω) ∧ σ + (−1)pω ∧ (ιvσ) . (A.18) 

In fact, the properties of the interior product are already completely fixed by 
requiring that it is an antiderivation that reduces to .ιvω = ω(v) on 1-forms . ω. 

So far I have limited the discussion in this subsection to tensors defined at a 
single point .x ∈ M. However, we can build tensor fields of arbitrary type . (q, p)

in complete analogy with the construction of vector fields out of tangent vectors at 
different points. 

Example A.4 

A metric g is a symmetric tensor field of type .(0, 2) such that . g(x) ∈ T∗
xM⊙T∗

xM
is a positive-definite bilinear form for any .x ∈M. For example, . Rn as a Euclidean 
space is equipped with the metric .g = δabdxa ⊗ dxb where . xa are the Cartesian 
coordinates. The metric can of course be converted to any other coordinates by 
using (A.11). For instance, in . R3 we may want to switch to the spherical coordinates 
.(r, θ, ϕ), defined by .(x, y, z) = (r sin θ cosϕ, r sin θ sinϕ, r cos θ). The metric then 
assumes the form 

.g = dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θ dϕ ⊗ dϕ . (A.19) 

An interested reader will find more about the metric tensor in Sect. A.6.
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Promoting a p-form to a tensor field leads to the concept of differential p-form.2 

Just like for vector fields, we have the freedom to choose other bases for differential 
p-forms than those induced by local coordinates on . M. Thus, a  (local) coframe is a 
set of differential 1-forms .e∗A defined on some open set .U ∈M such that the set of 
1-forms .{e∗A(x)}nA=1 spans a basis of .Ω1

xM at any .x ∈ U . Any frame . eA induces 
a unique dual coframe .e∗A (and vice versa) by requiring that .e∗A(eB) = δA

B . All  
the properties of p-forms reviewed above can be immediately promoted to frame 
components of differential p-forms by the replacements .∂a → eA, .dxa → e∗A and 
.ωa1···ap → ωA1···Ap wherever necessary. The same remark applies to tensor fields of 
an arbitrary type .(q, p). 

Example A.5 

Let us use the spherical coordinates .(θ, ϕ) to parameterize the 2-sphere . S2. 
Following Example A.4, this allows us to define a metric on . S2 by restricting (A.19) 
to fixed radial variable, .r = 1, 

.g = dθ ⊗ dθ + sin2 θ dϕ ⊗ dϕ . (A.20) 

The vector fields 

.eθ ≡ ∂θ , eϕ ≡ 1

sin θ
∂ϕ (A.21) 

then constitute an orthonormal frame, .g(eA, eB) = δAB , wherever well-defined. 
The corresponding dual coframe is .e∗θ = dθ and .e∗ϕ = sin θ dϕ. Out of these two 
1-forms, we can naturally build a 2-form through 

.ω = e∗θ ∧ e∗ϕ = sin θ dθ ∧ dϕ . (A.22) 

One might be tempted to think of the frame .(eθ , eϕ) as defining an area element on 
the sphere that can be subsequently used for integration. However, as I will explain 
in Sect. A.7, integration on manifolds is done using differential forms. For the 2-
sphere, it is exactly the differential 2-form (A.22) that does the job of defining the 
proper area element. 

A.3 Maps Between and on Manifolds 

In Sect. A.1 we saw how to define a smooth function on a manifold . M as a map 
from . M to . R. This concept of smoothness is easily generalized to maps between two

2 For the sake of brevity, I will mostly drop the adjective “differential” where it is clear from the 
context that I speak of a tensor field rather than a tensor defined at a single point. 
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Fig. A.2 A smooth map f 
between manifolds . M and . N, 
defined locally in the 
neighborhood of the point 
.x ∈M. Composing a test 
function g, defined locally 
around the image .f (x) ∈ N, 
with f allows one to lift the 
map f to the push-forward 
. f∗ : TxM→ Tf (x)N

x 

r 

M 

N 

g 

f 

f(x ) 

manifolds . M and . N. For a map .f :M→ N that is continuous, it is always possible 
to choose a chart .(U, ϕ) on . M and a chart .(V , χ) on . N such that .f (U) ⊂ V . The  
map is then called smooth if .χ ◦ f ◦ ϕ−1 is infinitely differentiable. A smooth map 
.f :M→ N that is a homeomorphism is called a diffeomorphism. 

A.3.1 Push-Forward and Pull-Back 

Smooth maps between manifolds naturally induce linear maps between the corre-
sponding (co)tangent spaces. Since tangent vectors are differential operators acting 
on locally defined test functions, we first have to inspect how the map . f :M→ N
affects the latter. It is clear from Fig. A.2 that by “connecting the arrows,” any test 
function .g : N → R can be converted into the function .g ◦ f : M → R. This is  
enough to connect tangent vectors on the two manifolds. Formally, one starts with a 
tangent vector .v ∈ TxM and maps it to a tangent vector .f∗v ∈ Tf (x)N such that 

.f∗v[g] ≡ v[g ◦ f ] (A.23) 

for any test function g defined in a neighborhood of .f (x) on . N. The image .f∗v is 
referred to as the push-forward of . v by f . Suppose that we have a set of coordinates 
. xa in a neighborhood of x on . M and a set of coordinates . yb in a neighborhood of 
.f (x) on . N. It then follows from the chain rule that the coordinate basis vectors at x 
are mapped to 

.f∗
∂

∂xa
= ∂f b

∂xa

∂

∂yb
, (A.24) 

where . f b is a shorthand notation for the b-th coordinate of .f (x). This looks almost 
like a change of variables. It is therefore worth stressing that the manifolds . M and 
. N need not have the same dimension, hence the map f need not be invertible.
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Example A.6 

Consider again the 2-sphere with its spherical coordinates .(θ, ϕ) and define the map 
.f : S2 → R3 as the natural embedding that takes the point .(θ, ϕ) ∈ S2 to . (x, y, z) =
(sin θ cosϕ, sin θ sinϕ, cos θ) ∈ R3. Then (A.24) gives us 

.

f∗∂θ = (cos θ cosϕ)∂x + (cos θ sinϕ)∂y − (sin θ)∂z ,

f∗∂ϕ = −(sin θ sinϕ)∂x + (sin θ cosϕ)∂y .
(A.25) 

This “realizes” tangent vectors to the sphere as vectors in . R3. The same strategy can 
be used to give a literal geometric interpretation to tangent vectors on any smooth 
manifold by embedding the latter in a higher-dimensional Euclidean space. 

Once we know how to relate tangent vectors to . M and . N, we can do the same 
for covectors by using the dual nature of the cotangent space. The “connecting the 
arrows” strategy hints that the map between the cotangent spaces acts in the opposite 
direction than . f∗. Thus, we assign to .ω ∈ T ∗

f (x)N a covector .f ∗ω ∈ T ∗
xM so that 

.f ∗ω(v) ≡ ω(f∗v) for any v ∈ TxM . (A.26) 

For obvious reasons, the image .f ∗ω is referred to as the pull-back of . ω by f . The  
chain rule tells us that covectors from the dual coordinate basis are mapped to 

.f ∗dyb = ∂f b

∂xa
dxa , (A.27) 

which again looks like a mere change of variables but is really much more than that. 

By following the same line of reasoning, one can define the push-forward . f∗
for any tensor of type .(q, 0) and the pull-back . f ∗ for any tensor of type .(0, p). 
In general, it is however not possible to define either of the two for tensors of 
the mixed type .(q, p). In a similar vein, it is generally not possible to promote 
the point-wise map .f∗ : TxM → Tf (x)N to a push-forward of vector (or 
tensor) fields. A problem arises when two points .x1, x2 ∈ M have the same 
image under f . Our prescription (A.23) would then naively try to assign to a 
single point .f (x1) = f (x2) two different tangent vectors. No such a problem 
arises for the pull-back, which can be extended from tensors of type .(0, p) to 
tensor fields for any smooth map f . 

Both of the above problems disappear when f is a diffeomorphism. 
In that case, we have a locally well-defined one-to-one mapping between 

(continued)
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. M and . N. The push-forward . f∗ is an isomorphism between the respec-
tive tangent spaces, and the pull-back .f ∗ is an isomorphism between 
the respective cotangent spaces. By combining .f∗ : TxM→ Tf (x)N with 
.(f −1)∗ : T∗

xM→ T∗
f (x)N, we can map any tensor (field) on . M to a tensor 

(field) on . N. 

Example A.7 

In Example A.4, I introduced the Euclidean metric on . Rn, .g = δabdxa ⊗dxb, where 
. xa are the Cartesian coordinates. This metric can be pulled back to any manifold 
. M that can be embedded as a hypersurface in . Rn by a smooth map f . The induced 
metric on . M in chosen local coordinates . ya on . M follows from (A.27), 

.f ∗g = δab

∂f a

∂yc

∂f b

∂yd
dyc ⊗ dyd . (A.28) 

The justifies the previously used expression (A.20) for the metric on the 2-sphere. 
In the same manner, one can pull back any differential form defined on . Rn to the 

embedded manifold . M. For instance, the area 2-form (A.22) on the 2-sphere has an 
elegant representation in terms of the natural embedding of . S2 in . R3. It is left to the  
reader as an exercise to check that (A.22) is recovered by pulling back the 2-form 

.
1

2
r · (∂ar × ∂br)dxa ∧ dxb (A.29) 

in . R3, where .r = (x, y, z) and the dot and cross denote respectively the conventional 
dot and cross products of 3-vectors. It is common to abuse the notation and represent 
the area 2-form on . S2 by simply replacing the 3-vector . r above with a unit 3-vector 
. n that defines the embedding of . S2 in . R3. One can then write the area 2-form on . S2

simply as .(1/2)n · (dn × dn). 

A.3.2 Flow of Vector Fields 

In Sect. A.2.1, I emphasized that the concept of a tangent vector does not have 
a literal geometric interpretation unless we embed the manifold . M in a higher-
dimensional Euclidean space. It is however possible to visualize a vector field . v
through the flow it induces on . M. Imagine that the manifold is filled with a liquid, 
and think of .v(x) as the velocity of the liquid at .x ∈ M. We can then extract 
information about the vector field from the trajectories of individual particles of the 
liquid.
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Let us now formalize this concept. We need a real parameter .t ∈ R to measure 
the “time” for the liquid motion. Next, we think of a single particle trajectory as a 
curve .γ : R →M satisfying the first-order differential equation 

.
df (γ (t))

dt
= v[f ]

∣∣∣
γ (t)

(A.30) 

for any test function .f : M → R. This is just a coordinate-independent version of 
the relation between the particle’s trajectory and its velocity, .dγ a/dt = va(γ (t)). 
By choosing the initial condition as .γ (0) = x and varying .x ∈M, we get a family 
of trajectories that define a map .φv,t : M → M. In terms of the liquid analogy, 
.φv,t (x) is the position at time t of a particle that was at x at time .t = 0. For smooth 
vector fields . v, the flow equation (A.30) is guaranteed to have a (locally) unique 
solution. Hence the map .φv,t with fixed . v and t is a diffeomorphism on . M. We can 
thus use it to push forward tensors from one point of . M to another. This is called 
Lie transport. 

Example A.8 

Consider the vector field .v = −y∂x + x∂y in . R2. The flow equation (A.30) is easily 
solved and gives 

.x(t) = x0 cos t − y0 sin t , y(t) = x0 sin t + y0 cos t , (A.31) 

where .P0 = (x0, y0) is the starting point of the flow, see Fig. A.3. From the  
definition (A.23) of push-forward, or directly from (A.24), we then see that the 

Fig. A.3 Illustration of Lie 
transport of tangent vectors in 
. R2. The Lie transport is 
generated by the vector field 
.v = −y∂x + x∂y , one of 
whose flow lines is indicated 
by the dashed circle. As the  
point . P0 is transported to P , 
the attached basis of tangent 
space at . P0 (displayed as 
solid arrows) is pushed 
forward to a basis of tangent 
space at P 

x 

y 

t 

P 

P0
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coordinate basis .(∂x, ∂y) at . P0 is transported to 

.φv,t∗∂x = (cos t)∂x + (sin t)∂y , φv,t∗∂y = −(sin t)∂x + (cos t)∂y (A.32) 

at .P = (x(t), y(t)). The flow generated by . v corresponds to a rotation of . R2 around 
the origin by angle t . Indeed, switching to polar coordinates .(ϱ, θ) through . (x, y) =
(ϱ cos θ, ϱ sin θ) shows that .v = ∂θ . Upon changing the basis of the tangent space, 
(A.32) is then recognized as a trivial map between the coordinate bases at . P0 and P , 
that is .φv,t∗∂ϱ|P0 = ∂ϱ|P and .φv,t∗∂θ |P0 = ∂θ |P . This is a special case of a general 
rule that when . v is one of the coordinate basis fields, all the coordinate basis vectors 
at x are transported to the corresponding coordinate basis vectors at .φv,t (x). 

As another example, we may choose .v = x∂x + y∂y . In this case, we find 

.x(t) = x0e
t , y(t) = y0e

t , (A.33) 

and accordingly 

.φv,t∗∂x = et ∂x , φv,t∗∂y = et ∂y . (A.34) 

This is another illustration of Lie transport generated by a coordinate basis field. 
We just have to notice that in polar coordinates, .v = ϱ∂ϱ = ∂log ϱ. Choosing local 
coordinates as .(log ϱ, θ) reproduces (A.34) as a trivial transport of .(∂log ϱ, ∂θ ) at . P0
to .(∂log ϱ, ∂θ ) at P . 

Lie transport plays a critical role for the implementation of symmetries on 
manifolds. Indeed, the map .φv,t for fixed . v and varying t constitutes a one-
parameter group of transformations on . M. The group structure amounts to the 
obvious properties 

.φv,t ◦ φv,s = φv,t+s , φv,0 = id , φ−1
v,t = φv,−t . (A.35) 

We can think of this as a “representation” of . R by an additive group of trans-
formations on . M. It is straightforward to generalize this concept to other (finite 
or Lie) groups. Formally, the action of a group G on . M is defined as a set of 
diffeomorphisms . Tg on . M that respect the group structure of G,3 

. Tg1 ◦ Tg2 = Tg1g2 , Te = id , (Tg)
−1 = Tg−1 , g, g1, g2 ∈ G .

(A.36) 

For any Lie group G, we can restrict to a specific one-parameter subgroup. This is 
mapped by (A.30) to a vector field that represents the corresponding generator of G

3 The concept of group action is introduced in a more pedestrian manner and used in Chap. 7. 
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on . M. Combined with (A.35), we deduce that there is a one-to-one correspondence 
between vector fields and one-parameter groups of transformations on . M. 

A.3.3 Lie Derivative 

The practical utility of Lie transport is limited due to the necessity to solve the 
set of coupled first-order differential equations (A.30) for the flow. It is usually 
more convenient to consider the variation of tensor fields on . M under infinitesimal 
transformations generated by . v. This variation is formally encoded in the Lie 
derivative, defined for a given tensor field . T as 

.LvT ≡ − d(φv,t∗T)
dt

∣∣∣∣
t=0

= lim
∈→0

T − φv,∈∗T
∈

. (A.37) 

The overall minus sign is a convention arising from the fact that . (φv,∈∗T)(x)

corresponds to the value of . T at .φv,−∈(x), pushed forward to x by the map . φv,∈ . 
Let us see how this works for vector fields. For the moment, it is practical to 

resort, even if only implicitly, to local coordinates. The vector field . v then becomes 
a linear differential operator. The flow equation (A.30) in turn has a formal solution 
for .φv,t in terms of the (path-ordered) exponential of . v, given implicitly by 

.f (φv,t (x)) = evt f (x) . (A.38) 

The definition (A.23) of push-forward now tells us that for any test function f and 
any vector field . u, .φv,t∗u[f ] = u[f ◦ φv,t ] = u[evt f ]. If we start with .u(x), this  
will give us the value of .φv,t∗u at .φv,t (x). To find the value of .φv,t∗u at x, we  
invert (A.38) to .f (x) = e−vt f (φv,t (x)). This leads to 

.φv,t∗u = e−vtuevt hence Lvu = [v,u] , (A.39) 

where I introduced the commutator of . v and . u as differential operators, also 
called the Lie bracket. Such a commutator is only meaningful when expressed in 
local coordinates. However, the Lie derivative as defined by (A.37) is coordinate-
independent. Hence also the Lie bracket is well-defined independently of the choice 
of coordinates. 

Let us pause to ponder on the significance of the Lie bracket. First, as a formal 
commutator, this defines a Lie algebra structure on the space of vector fields on . M. 
The Jacobi identity for this Lie algebra is equivalent to the Leibniz (product) rule 
for the Lie derivative, 

.Lu[v,w] = [Luv,w] + [v,Luw] . (A.40) 

What if we take a special set of vector fields that are the generators of the action of 
a Lie group G on . M? We find, not surprisingly, that the Lie brackets of these fields
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reproduce the Lie algebra . g of G. Instead of a formal proof of this statement, let me 
show a simple illustrative example. 

Example A.9 

In Example A.8, I introduced a vector field that generates rotations in . R2 around 
the origin. This is easily promoted to . R3 where we have three independent rotations 
around the Cartesian coordinate axes, generated by 

.vx = y∂z − z∂y , vy = z∂x − x∂z , vz = x∂y − y∂x . (A.41) 

The Lie brackets of these, 

.[vx, vy] = −vz , [vy, vz] = −vx , [vz, vx] = −vy , (A.42) 

reproduce the Lie algebra of infinitesimal rotations in . R3, .so(3). Further general-
ization to . Rn is straightforward and amounts to considering the set of vector fields 
.vab ≡ xa∂b − xb∂a with .a, b = 1, . . . , n. 

Second, having at hand a coordinate basis, it is easy to give a general expression 
for the Lie derivative of a vector field in terms of its components, 

.(Lvu)a = vb∂bu
a − ub∂bv

a = v[ua] − u[va] . (A.43) 

The latter expression clarifies the comment on the relation between coordinate 
basis fields and (local) frames that I made at the end of Sect. A.2.1. Namely, the 
set of coordinate basis fields .{∂a}na=1 always has vanishing Lie brackets. Thus the 
necessary condition for the existence of local coordinates . yA such that a frame 
.{eA}nA=1 can be represented by .eA = ∂/∂yA is .[eA, eB ] = 0 for all .A,B. It turns 
out that this condition is also sufficient; see Chap. 9 of [5] for a proof. 

Let us now return to the general discussion of the Lie derivative. This can be 
evaluated on other tensor fields by making use of what we already know for vector 
fields. For example, let us take a 1-form . ω and a test vector field . u. Using  the  
definition (A.26) of pull-back together with the inverse of (A.38), we get 

.(φv,t∗ω)(φv,t∗u) = (φ∗
v,−tω)(φv,t∗u) = e−vtω(u) . (A.44) 

Combining the general definition (A.37) of the Lie derivative with the Leibniz rule 
then leads immediately to 

.(Lvω)(u) = v[ω(u)] − ω([v,u]) . (A.45)
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In fact, the same reasoning can be applied without change to any differential p-form. 
For a set of test vector fields .u1, . . . ,up, we find 

.

(Lvω)(u1, . . . ,up) = v[ω(u1, . . . ,up)]

−
p∑

i=1

ω(u1, . . . ,ui−1, [v,ui],ui+1, . . . ,up) .
(A.46) 

For tensors of the general type .(q, p), it is more straightforward to work with 
components with respect to a coordinate basis. One can think of a tensor . T as a 
multilinear map acting on a set of test vector fields and 1-forms. Combining the 
Leibniz rule with (A.39) and (A.45) then leads, after some manipulation, to 

.

(LvT)
ab···
mn··· = vl∂lT

ab···
mn··· + Tab···

ln··· ∂mvl + Tab···
ml···∂nv

l + · · ·
− Tlb···

mn···∂lv
a − Tal···

mn···∂lv
b − · · · .

(A.47) 

It is common to extend this identity to the special case of .(q, p) = (0, 0), 
corresponding to functions on . M. In this case, the Lie derivative coincides with 
the previously defined directional derivative, .Lvf = v[f ]. 

Before closing the section, let me mention a useful identity, connecting the Lie 
derivative of differential forms with the interior product, defined by (A.17). For  two  
vector fields . u, v, one finds that 

.Lu ◦ ιv − ιv ◦Lu = ι[u,v] . (A.48) 

This is another variation on the Leibniz rule, as one can easily see be rewriting it as 
.Lu(ιvω) = ι[u,v]ω+ ιv(Luω) for an arbitrary test p-form . ω. The proof proceeds by 
combining the definition (A.17) of interior product with (A.46). 

A.4 Exterior Derivative 

Until now, I have tried to treat on more or less equal footing tensor fields of arbitrary 
type .(q, p). However, as Sect. A.2.2 already hinted, the (differential) p-forms have 
a special standing among all the tensors. In this section, I will introduce a new 
differential structure on the Grassmann algebra of differential forms. The central 
concept thereof is the exterior derivative, which is a derivative-like operation that 
converts a p-form into a .(p + 1)-form. This is a tool of great importance for much 
of both differential and integral calculus on manifolds. There are several ways of 
introducing the exterior derivative with different balance of abstraction, elegance 
and technical simplicity. While there does not seem to be a unique, intuitively simple 
definition, I will at least try to make a brief comparison of the different approaches.
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Consider a differential p-form . ω and a set of .p + 1 test vector fields, . vi . We can 
define the exterior derivative of . ω as the unique .(p + 1)-form . dω such that 

. 

dω(v1, . . . , vp+1) =
p+1∑
i=1

(−1)i+1vi[ω(v1, . . . , v̂i , . . . , vp+1)]

+
∑
i<j

(−1)i+jω([vi , vj ], v1, . . . , v̂i , . . . , v̂j , . . . , vp+1)

(A.49) 

for any choice of test fields, where a hat denotes an argument that is to be omitted. 
This definition is manifestly independent of the choice of local coordinates, but not 
exactly intuitive. Let us therefore try to unfold its content in some simple cases. 
First, for 0-forms, that is functions on . M, (A.49) gives simply .df (v) = v[f ]. This  
agrees with our previous definition (A.10) of the differential of a function. Second, 
for a 1-form . ω and a 2-form . Ω we get respectively 

.

dω(u, v) = u[ω(v)] − v[ω(u)] − ω([u, v]) ,

dΩ(u, v,w) = u[Ω(v,w)] + v[Ω(w,u)] + w[Ω(u, v)]
− Ω([u, v],w) − Ω([v,w],u) − Ω([w,u], v) ,

(A.50) 

for arbitrary test vector fields .u, v,w. It is becoming clear that for any p-form . ω, 
. dω only contains two types of contributions; the summation in (A.49) is needed to 
ensure that . dω maintains full antisymmetry as a multilinear map on vector fields. 
It is possible to show (see Chap. 36 of [6]) that (A.49) generalizes the concept of 
a directional derivative from functions to p-forms. This accounts for the first line 
of (A.49). The second line thereof makes . dω local so that .dω(v1, . . . , vp+1)

∣∣
x
only 

depends on the values of the test vector fields at the point x, not on their derivatives. 
By picking the test vector fields . vi from a coordinate basis and using the 

component expansion of p-forms (A.13), we find 

.dω = 1

p! (∂bωa1···ap )dxb ∧ dxa1 ∧ · · · ∧ dxap . (A.51) 

This is in practice the easiest way to calculate the exterior derivative of a differential 
form. It makes manifest the fundamental property of the exterior derivative that 

.d2ω ≡ d(dω) = 0 (A.52) 

for any p-form . ω. Moreover, it can be used as an alternative definition to (A.49) that 
is technically simple and quite intuitive. The downside of this approach is that it is
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not obvious that an object defined by (A.51) actually exists, independently of the 
choice of local coordinates. To prove this requires some extra effort. 

Example A.10 

In case . ω is a 0-form, that is a function on . M, the components of . dω are . (dω)a =
∂aω. This generalizes the gradient of functions in . Rn known from ordinary vector 
calculus. If, on the other hand, . ω is a 1-form, it follows at once from (A.51) that the 
components of . dω are 

.(dω)ab = ∂aωb − ∂bωa . (A.53) 

This appears to generalize the concept of a curl of a vector field in . R3. The problem 
with this interpretation is that neither . ω nor . dω is a vector field. We will see in 
Sect. A.6.5 how to circumvent this issue. 

Antisymmetric derivatives such as (A.53) are common in physics. If . A = Aadxa

represents the potential of an electromagnetic field, then (A.53) are the components 
of the corresponding field-strength tensor, .F = dA. In this case, the fundamental 
property (A.52) of exterior derivative encodes the familiar Bianchi identity for the 
electromagnetic field, 

.∂cFab + ∂aFbc + ∂bFca = 0 . (A.54) 

The exterior derivative interconnects nicely with other operations on differential 
forms that we have met. It is for example easy to prove using the coordinate 
definition (A.51) that the exterior derivative is an antiderivation of the Grassmann 
algebra of differential forms. Thus, for any p-form . ω and any q-form . σ , 

.d(ω ∧ σ) = dω ∧ σ + (−1)pω ∧ dσ . (A.55) 

The coordinate-free definition (A.49), on the other hand, makes it easier to show that 
the exterior derivative “commutes” with pull-back and hence with Lie derivative. 
This means that for any smooth map .f : M → N, differential form . ω on . N and 
vector field . v on . N we have 

.d(f ∗ω) = f ∗(dω) , d(Lvω) = Lv(dω) . (A.56) 

The interior product, Lie derivative and exterior derivative constitute three 
derivative-like operations on differential forms. The first decreases the form degree 
by one, the second leaves it unchanged and the last increases it by one. There is a 
simple identity that brings them all together which, perhaps for its intrinsic beauty,
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is usually referred to as “Cartan’s magic formula,” 

.Lv = ιv ◦ d + d ◦ ιv or Lvω = ιv(dω) + d(ιvω) , (A.57) 

for any p-form . ω and vector field . v. The proof is a straightforward combination of 
the coordinate-free definition (A.49), the Lie derivative of differential forms (A.46) 
and the definition (A.17) of interior product. Note how the Cartan magic formula 
together with .d ◦ d = 0 immediately implies the second of the identities in (A.56). 

Example A.11 

Here is a somewhat more advanced example, closely related to the subject of this 
book. Take a Lie group G and introduce the following object, called the Maurer– 
Cartan (MC) form, 

.ω ≡ −ig−1dg ≡ ωAQA , g ∈ G , (A.58) 

where .QA are the generators of the Lie algebra . g of G. In order to give a meaning 
to this definition, one should think of .g ∈ G in terms of a set of functions on 
G, returning the matrix elements of g in some faithful representation of G. The  
identities (7.30) and (7.31) of the main text of this book guarantee that . ω takes 
values in the Lie algebra . g. Hence the components .ωA constitute a set of well-
defined 1-forms on G. 

Given that the dimension of G as a manifold equals that of its Lie algebra, the 
1-forms . ωA furnish a globally well-defined coframe on G. The exterior derivative 
.dωA should therefore be a linear combination of .ωB∧ωC . Indeed, a short calculation 
shows that the expression of .dωA in terms of .ωB ∧ωC reflects the algebraic structure 
of G as a Lie group, 

.

dω = −idg−1 ∧ dg = ig−1dg ∧ g−1dg = −iω ∧ ω ,

dωA = 1

2
f A

BCωB ∧ ωC ,
(A.59) 

where .f A
BC are the structure constants of G. This is known as the MC equation. 

Before closing the quick overview of exterior calculus, let me mention in passing 
another way to define the exterior derivative. This might please a reader who prefers 
a more axiomatic approach. Namely, the exterior derivative turns out to be a unique 
antiderivation of the Grassmann algebra that reduces to the ordinary differential on 
0-forms and satisfies the fundamental property (A.52). For a reader that might prefer 
a more geometric definition of exterior derivative, there is yet another possibility. 
This is intimately related to integration on manifolds and I will return to it in 
Sect. A.7.
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A.5 Affine Connection 

In order to develop a full-fledged differential calculus on manifolds, we have to be 
able to differentiate not only functions, but also vector and tensor fields. In spite of 
the terminology, none of the two previously introduced “derivatives” is suitable for 
the purpose. First, the Lie derivative . Lv actually does not have the properties we 
would expect from a derivative in that it is not local in . v. The  value of  .LvT for a 
given tensor field . T at .x ∈M depends not only on .v(x) but also on its derivatives, as 
is clear from (A.47). Second, the exterior derivative is only defined for differential 
forms and not for other tensors. To have a well-defined notion of derivative for tensor 
fields of arbitrary type, we need additional structure on the manifold. 

In order to see what the required structure might be, let us consider the simplest 
case of a test vector field . u. We might think of first finding its components . uA in a 
chosen local frame . eA and then taking their directional derivative .v[uA] with respect 
to a fixed vector field . v. That is however problematic. The choice of frame . eA is 
arbitrary and can be changed locally. This is a smoking gun of what in field theory 
is called “gauge freedom.” The directional derivative of . u must be a well-defined 
vector field independent of such a “choice of gauge.” This is not the case of .v[uA]eA, 
so .v[uA] cannot be the components of a well-defined vector field. Following the 
analogy with physics, the problem can be fixed by introducing a gauge field. 

A.5.1 Covariant Derivative 

Let us now formalize the above observation. The basis .eA(x) of .TxM can be 
changed by any nonsingular linear transformation that varies (smoothly) with x. 
Upon such a transformation, the basis vectors and components of a tangent vector 
. u change to 

.ẽA = eB(P −1)BA , ũA = P A
BuB , P ∈ GL(n) . (A.60) 

The group .GL(n) is our gauge group; in differential geometry, the term structure 
group is common. Any geometrically well-defined object on the manifold . M must 
be invariant under gauge transformations of the type (A.60). It is known from field 
theory that in order to have a well-defined notion of derivative of fields, one needs a 
gauge field, or gauge connection. In differential geometry, this object is called affine 
connection. In a given frame, it constitutes a collection of 1-forms .ΩA

B . Treating 
these as the matrix elements of a matrix-valued 1-form . Ω, the action of the basis 
transformation (A.60) on the affine connection can be defined compactly as 

.Ω̃ = PΩP −1 + PdP −1 , P ∈ GL(n) . (A.61) 

This is analogous to a (non-Abelian) gauge transformation familiar from field 
theory.



398 A Elements of Differential Geometry

The collection of 1-forms .ΩA
B carries one vector and one covector frame 

index. In spite of the suggestive notation, the object .eA ⊗ e∗B ⊗ ΩA
B is not 

a well-defined tensor field of type .(1, 2) on . M. This is a consequence of the 
second term in (A.61). The affine connection is therefore inseparably tied to 
the chosen local frame. 

Following the analogy with field theory, we now define a directional covariant 
derivative .∇vu of the vector field . u along . v component-wise as 

.(∇vu)A ≡ v[uA] + ΩA
B(v)uB . (A.62) 

It is easy to check that the components .(∇vu)A transform under the local change 
of basis (A.60) just like . uA. Hence the directional covariant derivative . ∇vu ≡
(∇vu)AeA is a well-defined vector field on . M independent of the choice of frame. 
Moreover, .∇vu is manifestly linear and local in . v. We can therefore separate . v out 
and only keep a tensor object that encodes the variation of . u with respect to the local 
frame. This is done by setting .(∇vu)A = vB(∇eB

u)A ≡ vB(∇Bu)A, where 

.(∇Bu)A = eB [uA] + 𝚪A
BCuC , 𝚪A

BC ≡ ΩA
C(eB) = (∇BeC)A , (A.63) 

and .𝚪A
BC are the Christoffel symbols. These are independent of . u and characterize 

the geometry of the manifold and of the local frame. 
The field theory analogy allows us to write down at once the covariant derivative 

of a tensor field of any type .(q, p). Different types of tensors transform under 
different representations of the structure group, induced by the fundamental rep-
resentation (A.60) acting on vectors. We can thus reuse (A.62) by inserting the 
appropriate representation of the affine connection. For instance, tensor fields of 
type .(0, 0), that is functions on . M, are blind to the change of local frame. This 
corresponds to the trivial representation of .GL(n). The covariant derivative then 
reduces to .∇vf = v[f ]. For a generic tensor . T of type .(q, p) we find 

.

(∇vT)
AB···
KL··· = v[TAB···

KL···] + ΩA
I (v)TIB···

KL··· + ΩB
I (v)TAI ···

KL··· + · · ·
− TAB···

IL··· ΩI
K(v) − TAB···

KI ···ΩI
L(v) − · · · .

(A.64) 

This can also be rewritten in a manner independent of the vector field . v, following 
the example of (A.63), 

.

(∇CT)
AB···
KL··· = eC[TAB···

KL···] + 𝚪A
CIT

IB···
KL··· + 𝚪B

CIT
AI ···
KL··· + · · ·

− TAB···
IL··· 𝚪I

CK − TAB···
KI ···𝚪I

CL − · · · .
(A.65)
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Example A.12 

The natural choice of . eA in . Rn is the coordinate basis in the Cartesian coordinates. 
In this basis, we can set .Ω = 0 so that .∇vu = v[uA]eA. This expresses the 
fact known from elementary vector calculus that . eA is a globally well-defined, 
constant basis of vectors. Switching to another local frame . ̃eA via (A.60) induces a 
nontrivial connection, .Ω̃ = PdP −1. This characterizes the “variation” of the new 
frame throughout . Rn. A short manipulation leads to an expression for the Christoffel 
symbols in terms of the derivatives of P , 

.

�̃�A
BC = −(dPP −1)AC(ẽB) = −(P −1)EC ẽB [P A

E]
= −(P −1)DB(P −1)ECeD[P A

E] = −(P −1)DB(P −1)EC∂DP A
E .

(A.66) 

Equations (A.63) and (A.65) then allow us to calculate derivatives of vectors and 
tensors in . Rn in terms of their components in arbitrary curvilinear coordinates. 

A.5.2 Curvature and Torsion 

We can pursue the analogy with field theory even further. Therein, one uses the 
gauge connection to construct the corresponding field strength which encodes 
information about the gauge field in a gauge-covariant fashion. In the geometric 
language, this leads to the curvature 2-form on the manifold . M, 

.RA
B ≡ dΩA

B + ΩA
C ∧ ΩC

B . (A.67) 

The matrix elements .RA
B can be put together into a single object, . R ≡ eA ⊗ e∗B ⊗

RA
B . Unlike the matrix-valued connection 1-form . Ω, this is a well-defined tensor 

field on . M, of type .(1, 3), independent of the choice of local frame. It therefore 
carries information about the intrinsic geometry of the manifold. The curvature 2-
form is related to the commutator of directional covariant derivatives via 

.
(∇u∇vw − ∇v∇uw − ∇[u,v]w

)A = RA
B(u, v)wB , (A.68) 

where . u, . v and . w are vector fields. This identity follows directly from the defini-
tion (A.62) of covariant derivative upon using the first line of (A.50). Using (A.64), it  
can moreover be immediately generalized to the commutator of covariant derivatives 
of an arbitrary tensor field . T, 

.
([∇u,∇v]T − ∇[u,v]T

)AB···
KL··· = RA

I (u, v)TIB···
KL··· + RB

I (u, v)TAI ···
KL··· + · · · (A.69) 

− TAB···
IL··· RI 

K(u, v) − TAB···
KI ···RI 

L(u, v) − · · ·  .
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The affine connection also gives rise to another well-defined tensor field that 
characterizes the geometry of the manifold. Namely, the elements of the dual 
coframe .e∗A transform under (A.60) identically to the components of a vector. We 
can then define a covariant exterior derivative of the coframe in parallel with (A.62), 

.T A ≡ de∗A + ΩA
B ∧ e∗B . (A.70) 

This is dubbed the torsion 2-form. It is a collection of 2-forms whose components 
transform under the structure group as a vector. Hence .T ≡ eA ⊗ T A is a 
well-defined tensor of type .(1, 2). The torsion 2-form satisfies an identity similar 
to (A.68), 

.
(∇uv − ∇vu − [u, v])A = T A(u, v) . (A.71) 

Owing to the fact that .d ◦ d = 0, one may expect to find constraints on the 
curvature and torsion 2-forms by taking another (covariant) exterior derivative. 
Indeed, a short manipulation based on the definitions (A.67) and (A.70) leads to 
the so-called Bianchi identities, 

.

dRA
B + ΩA

C ∧ RC
B − RA

C ∧ ΩC
B = 0 ,

dT A + ΩA
B ∧ T B = RA

B ∧ e∗B .
(A.72) 

Example A.13 

Using the MC form introduced in Example A.11, we can get insight into the 
geometry of Lie groups. The simplest way to introduce an affine connection on 
a Lie group G is to set .ΩA

B = 0 in the coframe .ωA defined by (A.58). The  
definition (A.67) then tells us that the curvature 2-form vanishes. The torsion 2-
form does not, though. From the definition (A.70) and the MC equation (A.59), we  
get that .T A = (1/2)f A

BCωB ∧ ωC , where .f A
BC are the structure constants of G. 

Making . Ω trivial is however not the only choice of connection we can make. 
Given the structure that we have available on the Lie group G, we can try for 
instance 

.
λΩA

B ≡ λf A
BCωC , (A.73) 

where .λ ∈ R is a parameter. This class of connections includes the previous trivial 
case as .λ = 0. Using the MC equation (A.59), one now finds that 

.

λRA
B =

(
λ

2
f A

BEf E
CD + λ2f A

ECf E
BD

)
ωC ∧ ωD ,

λT A =
(
1

2
− λ

)
f A

BCωB ∧ ωC .

(A.74)
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If we do not impose any constraints on the structure constants .f A
BC , we can generally 

make the curvature 2-form vanish only by returning to the special case .λ = 0. On  
the other hand, we can make the torsion 2-form vanish by setting .λ = 1/2. We can 
however not make both 2-forms vanish simultaneously. A generic non-Abelian Lie 
group therefore possesses nontrivial geometry as a manifold. 

Our original motivation for introducing the affine connection was to take account 
of the freedom to choose a local frame at will. This is largely responsible for the 
fact that I have phrased this section entirely in a coordinate-free language so far. 
It is however possible to reformulate the definitions and properties of covariant 
derivative, curvature and torsion in terms of local coordinates. This leads to minor 
simplification of some of the equations in this section. Thus, the action of the basis 
vector . eC in (A.65) becomes a mere partial derivative and (A.65) turns into 

.

(∇cT)
ab···
kl··· = ∂cT

ab···
kl··· + 𝚪a

ciT
ib···
kl··· + 𝚪b

ciT
ai···
kl··· + · · ·

− Tab···
il··· 𝚪i

ck − Tab···
ki··· 𝚪i

cl − · · · .
(A.75) 

The Christoffel symbol herein is defined by a coordinate-basis equivalent of (A.63), 

.𝚪a
bc = (∇b∂c)

a or ∇b∂c = 𝚪a
bc∂a . (A.76) 

Together with (A.70), this shows that the torsion tensor corresponds to the antisym-
metric part of the Christoffel symbol in a coordinate basis, 

.𝚪a
bc − 𝚪a

cb = (∇b∂c − ∇c∂b)
a = T a(∂b, ∂c) ≡ T a

bc . (A.77) 

Finally, the left-hand side of the identity (A.68) for the curvature tensor reduces to 
a mere commutator of covariant derivatives, hence 

.(∇b∇cu − ∇c∇bu)a = Ra
d(∂b, ∂c)u

d ≡ Ra
dbcu

d . (A.78) 

Likewise, (A.69) gives the commutator of covariant derivatives of an arbitrary tensor 
field in the coordinate basis, 

.

(∇c∇dT − ∇d∇cT)
ab···
kl··· = Ra

icdT
ib···
kl··· + Rb

icdT
ai···
kl··· + · · ·

− Tab···
il··· Ri

kcd − Tab···
ki··· R

i
lcd − · · · .

(A.79)
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A.6 Riemannian Geometry 

My exposition of differential geometry has so far been largely ahistorical. I made a 
conscious effort to only introduce the structure that was strictly necessary in order to 
develop the elementary concepts of calculus on manifolds. Thus, it only requires the 
basic differential structure on a manifold to define tensor fields, their Lie derivative, 
and the exterior calculus of differential forms. The first time that a new, additional 
structure was needed was in the previous section. There, we saw how the concept of 
affine connection naturally arises from the need to compute (covariant) derivatives 
of tensor fields. 

However, as the Greek origin of the word “geometry” suggests, much of the 
early progress in the subject was driven by the practical problem of measuring 
distance. The concept of distance is very natural when the manifold in question 
represents space or spacetime in physics. Yet, even more abstract realizations of 
manifolds often possess a quantitative notion of closeness that is more refined than 
mere topology. The purpose of this section is to introduce the structure needed to 
measure distance on a manifold. Despite being anchored in geometry, we shall see 
that this will also give us further useful tools for our quest to develop calculus on 
manifolds. 

A.6.1 Riemannian Metric 

Since I have already mentioned the concept of metric before, let me start right away 
with the formal definition. A Riemannian metric g on a manifold . M is a tensor 
field of type .(0, 2) such that for any .x ∈ M, .g(x) is a symmetric, positive-definite 
bilinear form on .TxM. See Examples A.4 and A.5. A manifold endowed with a 
Riemannian metric is called a Riemannian manifold. It is common to represent the 
metric by its components in a given coframe or dual coordinate basis, 

.g = gABe∗A ⊗ e∗B = gabdx
a ⊗ dxb , (A.80) 

where .gAB = g(eA, eB) and .gab = g(∂a, ∂b). A Riemannian metric gives by 
construction rise to an inner product, both locally of tangent vectors and of vector 
fields. It is practically convenient to have a shorthand notation for this inner product, 

.〈u, v〉 ≡ g(u, v) = gABuAvB , (A.81) 

where .u, v are arbitrary vector fields. 
For some applications, the axioms for Riemannian metric are too restrictive. 

By removing the requirement of positive-definiteness and insisting merely that g 
as a bilinear form is nondegenerate, one obtains a generalization called pseudo-
Riemannian metric. Likewise, manifolds endowed with a pseudo-Riemannian 
metric are known as pseudo-Riemannian manifolds. This broader concept finds
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an important application in the general theory of relativity, which assumes the 
physical spacetime to be a Lorentzian manifold. The latter possesses by definition 
a metric with signature .(−,+,+, . . . ) or .(+,−,−, . . . ), depending on the con-
vention adopted. Most of the contents of this section apply, with occasional minor 
adjustments, to Riemannian and pseudo-Riemannian manifolds alike. However, 
within the context of the book, pseudo-Riemannian manifolds play a little role. I will 
therefore content myself with this remark of caution and focus solely on Riemannian 
manifolds in the following. 

Before illustrating the utility of the metric, it is worthwhile to contemplate its 
very definition. How is this actually related to the distance of two different points 
on the manifold? First, the metric by definition acts point-wise on tangent vectors. 
Second, the tangent vectors themselves were defined as differential operators on 
local test functions. To connect the abstract formalism to the down-to-earth problem 
of measuring distance, it helps to recall the concept of flow generated by the vector 
field . v, introduced in Sect. A.3.2. One can interpret .〈v, v〉 as the squared length 
of the vector tangent to the curve (trajectory) .γ (t) defined by (A.30). In the liquid 
analogy of the flow generated by . v, .

√〈v, v〉 becomes the speed of the liquid particle. 
The distance of points .x1,2 = γ (t1,2)measured along the curve .γ (t) is then naturally 
defined by integration, 

.dγ (x1, x2) ≡
∫ t2

t1

√〈v, v〉
∣∣∣
γ (t)

dt . (A.82) 

This distance is independent of the choice of parameterization of the trajectory, that 
is of the speed at which the trajectory is traversed by the liquid particle. It is therefore 
an intrinsic property of the curve . γ as a set of points on . M. 

Now that we know how to measure the length of a curve on . M, we define the 
distance of points .x1, x2 ∈M as the minimum possible value of .dγ (x1, x2). This is  
a problem in variational calculus that leads to a second-order differential equation 
for .γ (t) (see Sect. 11.5.1 of [1]), 

.
d2γ a

dt2
+ �̂�a

bc

dγ b

dt

dγ c

dt
= 0 . (A.83) 

Here the set of coefficients .�̂�a
bc is determined by the Riemannian metric, 

.�̂�a
bc ≡ 1

2
gad(∂bgdc + ∂cgbd − ∂dgbc) , (A.84) 

where . gab are the matrix elements of the inverse of . gab. Equation (A.83) is known as 
the geodesic equation. The resemblance between its left-hand side and the covariant 
derivative .∇vv with .va = dγ a/dt is not accidental. The coefficients (A.84) are 
the Christoffel symbols of a special connection on the Riemannian manifold . M, 
called the Levi-Civita (LC) connection. The fact that .�̂�a

bc is symmetric in its lower 
indices implies by means of (A.77) that the LC connection has vanishing torsion. A
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given Riemannian manifold can support many different affine connections. The LC 
connection is however unique in that it is torsion-free and makes the metric of the 
manifold covariantly constant (see Sect. 7.4 of [2]), 

.(∇̂cg)ab = ∂cgab − gdb�̂�
d
ca − gad�̂�d

cb = 0 . (A.85) 

Example A.14 

The origin of the LC connection can be understood in elementary terms. Imagine 
that the manifold . M is smoothly embedded in . Rn for some .n > dimM. We can 
then rely on the geometric intuition whereby tangent vectors to . M are “realized” as 
vectors in . Rn by the embedding .f : M → Rn, as in Example A.6. I will take the 
liberty to identify tangent vectors to . M with their images under the push-forward 
. f∗. 

Suppose we want to define the derivative of a vector field . u on . M along the vector 
field . v. To do so, we need to compare .u(x) at a given point .x ∈M with .u(x + ∈v), 
where the shorthand notation .x + ∈v indicates the point on . M with coordinates 
.xa + ∈va(x). We cannot do this directly since the tangent spaces to . M at x and 
.x + ∈v are different. What we will do instead is take the vector .u(x), transport it as 
a constant vector in . Rn to .x + ∈v and then project it back to the hypersurface . M. 
See Fig. A.4 for an illustration of the procedure. 

It is easiest to use a frame . eA on . M that is orthonormal with respect to the 
Euclidean metric in . Rn. The projection to . M is then accomplished by taking the 
inner product of .u(x) and .eA(x + ∈v). This leads to a definition of covariant 
derivative on . M as 

.(∇vu)A(x) = lim
∈→0

uA(x + ∈v) − 〈eA(x + ∈v),u(x)〉
∈

. (A.86) 

Comparing this to (A.63) allows us to identify the corresponding Christoffel 
symbols, 

.𝚪A
BC = −〈∂BeA, eC〉 = 〈eA, ∂BeC〉 , (A.87) 

where .∂BeA(x) is defined as .lim∈→0[eA(x+∈eB)−eA(x)]/∈. We have thus managed 
to define an induced affine connection on . M in a way that encodes the variation of 
the orthonormal frame . eA as a set of vectors in . Rn. It is an easy exercise to check 
using (A.71) that this affine connection is torsion-free. Moreover, with the induced 
metric on . M given by .gAB = 〈eA, eB〉 = δAB , one readily checks using (A.65) that 
the connection (A.87) makes the metric covariantly constant. Using the embedding 
in . Rn, we have therefore found the (unique) LC connection on . M. 

As a side remark, recall that the comparison of tangent vectors at different points 
on . M was made possible by “transporting” them as constant vectors in . Rn. This  
intuition lies behind an often-used geometric picture of affine connection in terms of
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M 

P 

r2 

P' 
u P 

u P⇒P'  

Fig. A.4 Comparison of tangent vectors to . M at different points P and . P ' is possible if the 
manifold is embedded in . Rn; here shown for simplicity for one-dimensional . M embedded in . R2. 
A tangent vector at .P ∈ M, . uP , is transported to . P ' as a constant vector in . R2. Subsequently, 
it is projected to the tangent space to . M at . P ', resulting in the vector .uP⇒P ' . This can now be 
compared to any other tangent vector at . P '. The distance of points P and . P ' is exaggerated for 
clarity; for the definition of covariant derivative, it should actually be infinitesimal 

parallel transport. In general, a tensor field . T is said to be parallel-transported along 
the vector field . v if .∇vT = 0. The geodesic equation (A.83) then describes curves 
whose tangent vector is parallel-transported along the curve. The solutions of (A.83) 
thus have the dual interpretation as the shortest (or more precisely extremal) or the 
“straightest” paths on . M. See for example Sect. 7.2 of [2] for more details. 

The metric obviously provides us with a crucial piece of information about the 
intrinsic geometry of a Riemannian manifold. It is nevertheless also invaluable for 
the calculus on manifolds, as it allows us to relate tensors of different types. It is 
known from elementary linear algebra that a vector space such as .TxM for fixed 
.x ∈M and its dual, .T∗

xM, have the same dimension. As such, they are necessarily 
isomorphic. There is, however, no natural way to set up the isomorphism without 
first fixing a basis in the two spaces. Here the metric comes to rescue. It allows 
us to define two mutually inverse musical isomorphisms, .� : TxM → T∗

xM and 
.# : T∗

xM → TxM, and by extension isomorphisms between vector fields and 1-
forms. Thus, any vector field . v is mapped to its flat . v�, which is a 1-form such that 

.v�(u) ≡ 〈v,u〉 for any vector field u . (A.88)
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Vice versa, any differential 1-form . ω is mapped to its sharp . ω#, which is a vector 
field such that 

.〈ω#, v〉 ≡ ω(v) for any vector field v . (A.89) 

Most theoretical physicists are familiar with these maps in their component forms, 

.v
�
A = gABvB , ω#A = gABωB . (A.90) 

These correspond to the usual lowering and raising of indices by the metric and 
its inverse. The generalization of these operations to tensors of other types is 
straightforward and I will not dwell on details. 

It is common in the physics literature to denote a tensor and its image under 
. � or . # by the same symbols, and only distinguish them by the positions of 
their indices. In a restricted sense, it can even be meaningful to identify a 
vector with its image under . � or a 1-form with its image under . #. Suppose 
that we choose an orthonormal frame on . M, that is a frame . eA such that 
.〈eA, eB〉 = δAB . Then it follows from (A.88) that . � maps this basis to the 
corresponding dual basis, .e�

A = e∗A. The same correspondence applies to 
the inverse isomorphism, .(e∗A)# = eA. By linearity, the components of any 
vector then remain unaffected by . �, and the components of any 1-form remain 
unaffected by . #. 

A.6.2 Isometries of Riemannian Metric 

The whole book is devoted to symmetries and their consequences in quantum field 
theory. But what do we mean by a symmetry in case of a manifold? I already 
pointed out in Sect. A.3.2 that a group G can act on a manifold . M via a set of 
transformations (diffeomorphisms) on . M. However, not every transformation on . M
is a symmetry. For that, the transformation should in some sense respect the structure 
of the manifold. The most common type of symmetry one meets in differential 
geometry is one that preserves the Riemannian metric of the manifold. 

Formally, a diffeomorphism .f : M → M is called an isometry if it leaves the 
Riemannian metric g on . M invariant, .f ∗g = g. Equivalently, one may require that
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the inner product of test vector fields .u, v is unaffected by push-forward by f ,4 

.〈f∗u, f∗v〉∣∣
f (x)

= 〈u, v〉∣∣
x

for any x ∈M . (A.91) 

The set of isometries of a Riemannian manifold forms a group G under map 
composition. This group may be both discrete, or even trivial, and continuous. It is 
however generally not easy to determine the isometry group G of a given manifold 
. M directly, unless one has some additional insight into the structure of . M. 

The task is much easier when G is a Lie group. We can then focus on symmetries 
of the metric under infinitesimal transformations. In line with the discussion in 
Sect. A.3.3, this amounts to solving the condition .Lξg = 0, where . ξ is a vector field 
representing a generator of the isometry group on . M. This is known as the Killing 
vector field, or more briefly Killing vector. The condition on . ξ is equivalent to a set 
of homogeneous linear partial differential equations for the components of . ξ . These 
are usually much easier to solve than (A.91). In practice, it is often convenient to use 
an alternative formulation of the invariance condition, based on the LC connection 
instead of the Lie derivative, 

.Lξg = 0 ⇔ (∇̂aξ
�)b + (∇̂bξ

�)a = 0 . (A.92) 

One then first solves for the 1-form . ξ � and subsequently recovers the Killing vector 
field . ξ by acting on . ξ � with . #. 

Example A.15 

For illustration, let us find the continuous isometries of the Euclidean metric, . g =
δabdxa⊗dxb, in . Rn. Dropping for simplicity the superscript . � on . ξ , and using the fact 
that the LC connection of the Euclidean metric is trivial in Cartesian coordinates, 
(A.92) becomes 

.∂aξb + ∂bξa = 0 . (A.93) 

Hence .∂aξb must be antisymmetric in its two indices. Using this repeatedly together 
with the symmetry of second partial derivatives, we infer 

.∂a∂bξc = −∂a∂cξb = ∂b∂cξa = −∂b∂aξc = −∂a∂bξc . (A.94) 

It follows that all second partial derivatives of . ξa must vanish. This conclusion has a 
neat generalization to an arbitrary Riemannian manifold. Following essentially the 

4 This definition can at once be generalized to a local isometry, which is a smooth but not 
necessarily invertible map between two different manifolds, .f : M → N, satisfying  (A.91). 
(The inner products on the two sides of the equation are then defined with the respective metrics 
on . M and . N.) In this case, it is of course not appropriate to speak of a symmetry of either . M or . N.
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same reasoning, one finds that 

.∇̂a∇̂bξc = ξdRd
abc or ∇̂a∇̂bξ

c = Rc
badξd , (A.95) 

where .Rd
abc is the curvature tensor of the LC connection. The outer covariant 

derivative in (A.95) is defined by treating .∇̂bξc as a rank-2 tensor. 
Together with (A.93), the vanishing of second partial derivatives of . ξa implies 

the most general solution of the Killing equation (A.92) for the Euclidean metric, 

.ξa(x) = αa + βabx
b . (A.96) 

Here . αa is a set of constants and .βab a constant antisymmetric matrix. This 
corresponds to a combination of infinitesimal translations and rotations, which 
together generate the Euclidean group .ISO(n). 

The Killing equation only gives us information about the Lie algebra of the 
isometry group G. The reconstruction of the whole group thus suffers from the usual 
ambiguities of the correspondence between Lie groups and Lie algebras. In addition, 
(A.92) is based on local information about the metric structure of the manifold . M. 
The global topology of . M may select only a subalgebra of solutions to (A.92). The  
following example, adapted from Sect. 4.6 of [3], illustrates this subtlety. 

Example A.16 

The set .𝚪 ≡ {(c1, . . . , cn) | ca ∈ Z} defines a lattice of points in . Rn with 
integer coordinates. The quotient set .Rn/𝚪 is the n-dimensional torus, . T n. In local 
Cartesian coordinates, the Euclidean metric on . T n takes the same form as in . Rn, 
.g = δabdxa ⊗ dxb. The Killing equation (A.92) therefore produces the same Lie 
algebra of local solutions as in Example A.15. However, not all the solutions (A.96) 
are well-defined 1-forms on . T n. In fact, the matrix .βab has to vanish; the torus 
does not have continuous rotation symmetries. Moreover, the continuous translation 
symmetry of . T n differs from that of . Rn. It is  .U(1)×n for the torus but . Rn for the 
Euclidean space. In addition, the torus has a discrete group of rotation isometries, 
which corresponds to the point group of the lattice . 𝚪. Such discrete isometries are 
of course not captured by the Killing equation (A.92) at all. 

A.6.3 Symmetries of Curvature Tensor 

Before developing further the basics of Riemannian geometry, I will digress to put 
together some useful properties of the curvature tensor .RA

BCD . This is defined 
in any local frame by .RA

B(u, v) = RA
BCDuCvD , where .u, v are arbitrary vector 

fields. The first property that follows immediately from the definition of .RA
B as a
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2-form is the antisymmetry, 

.RA
B(u, v) = −RA

B(v,u) or RA
BCD = −RA

BDC . (A.97) 

This is valid for the curvature tensor based on any connection on the manifold. 
Next comes a pair of relations that require the connection to be torsion-free. 

However, it does not have to be metric-compatible, nor does the manifold have to be 
endowed with a metric to start with. For vanishing torsion, the second of the Bianchi 
identities (A.72) reduces to .RA

B ∧ e∗B = 0. This translates to 

.

RA
B(u, v)wB + RA

B(v,w)uB + RA
B(w,u)vB = 0 ,

RA
BCD + RA

CDB + RA
DBC = 0 ,

(A.98) 

which is incidentally also known as the (first or algebraic) Bianchi identity. 
Likewise, the first line of (A.72) leads to 

.

(∇uR)AB(v,w) + (∇vR)AB(w,u) + (∇wR)AB(u, v) = 0 ,

(∇ER)ABCD + (∇CR)ABDE + (∇DR)ABEC = 0 ,
(A.99) 

known as the second or differential Bianchi identity. To prove this in a coordinate-
free fashion requires certain amount of manipulation combining (A.72) with (A.50) 
and the identity .∇uv − ∇vu = [u, v], which follows from (A.71) for vanishing 
torsion. 

In presence of a Riemannian metric, the curvature tensor of the LC connection 
(the Riemann curvature tensor) has further properties that make it particularly 
symmetric. The starting point for uncovering these properties is the relation 

.u[〈v,w〉] = ∇̂u〈v,w〉 = 〈∇̂uv,w〉 + 〈v, ∇̂uw〉 . (A.100) 

This follows at once from the Leibniz rule for the covariant derivative and the fact 
that the LC connection is metric-compatible. By a repeated application of (A.100), 
it is straightforward to show using (A.68) that 

.〈z, R(u, v)w〉 = −〈w, R(u, v)z〉 . (A.101) 

Here .u, v,w, z are arbitrary vector fields and .R(u, v)w is a shorthand notation for 
.eARA

B(u, v)wB . Upon lowering the first index of the curvature tensor with the 
metric, (A.101) acquires a particularly simple component form, 

.RABCD = −RBACD . (A.102)
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Finally, combining (A.102) with the algebraic Bianchi identity (A.98) shows that 
the type-.(0, 4) tensor .RABCD is symmetric under swapping its two pairs of indices, 

.〈z, R(u, v)w〉 = 〈v, R(w, z)u〉 or RABCD = RCDAB . (A.103) 

A.6.4 Geodesic Normal Coordinates 

While the general language of differential geometry is largely coordinate-free, it is 
often convenient to resort to specific coordinates tailored to the problem at hand. For 
instance, in Euclidean space, the global Cartesian coordinates play a privileged role. 
On a general Riemannian manifold, one can similarly introduce coordinates . xa that 
are “locally Cartesian” (see Chap. 5 of [7] for details). These are defined around an 
arbitrarily chosen point .x0 ∈ M and have the following properties. First, the point 
. x0 itself is mapped to the origin, that is .xa

0 = 0. Second, the Riemannian metric 
at . x0 reduces to the standard Euclidean metric, .gab(x0) = δab. (Any other choice 
amounts to a mere change of basis of .T∗

x0
M.) Third, all the first derivatives .∂cgab of 

the metric, and thus also the Christoffel symbols .�̂�a
bc of the LC connection, vanish 

at . x0. Finally, geodesics, that is solutions to (A.83), passing through . x0 are straight 
lines .γ a(t) = vat with some fixed vector .v ∈ Tx0M. 

Such normal coordinates can be constructed explicitly, if somewhat formally, 
in a neighborhood of . x0 using the last of the properties listed above. One chooses 
arbitrarily a basis . ea of the tangent space .Tx0M. For any vector .v ≡ vaea ∈ Tx0M, 
one then denotes as . γv the geodesic satisfying the initial conditions .γ a(0) = 0 and 
.dγ a(0)/dt = va . The normal coordinates of the point .γv(t) are defined as .xa = vat . 

The normal coordinates make it easy to check some differential-geometric 
identities involving covariant derivatives with respect to the LC connection. For 
instance, (A.47) is immediately seen to be equivalent to 

.

(LvT)
ab···
mn··· = vl(∇̂lT)

ab···
mn··· + Tab···

ln··· (∇̂mv)l + Tab···
ml···(∇̂nv)l + · · ·

− Tlb···
mn···(∇̂lv)a − Tal···

mn···(∇̂lv)b − · · · .
(A.104) 

Indeed, at any chosen point . x0, the normal coordinates make the Christoffel 
symbols vanish so that (A.104) agrees with (A.47). Since both sides of (A.104) 
are well-defined tensors on . M, the identity must then hold for any choice of local 
coordinates. 

Example A.17 

For an illustration, consider the Lie derivative of a Riemannian metric, 

.(Lvg)ab = gcb(∇̂av)c + gac(∇̂bv)c . (A.105)
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Here the first term in (A.104) drops owing to the fact that the metric is covariantly 
constant. This immediately recovers the equivalence of the two formulations of the 
Killing equation in (A.92). 

Perhaps even more importantly, normal coordinates allow us to systematically 
compute .gab(x) as a power series in . xa and the Riemann curvature tensor and its 
covariant derivatives at . x0. Up to fourth order in the coordinates, the series reads 

.gab(x) = gab(0) − 1

3
xcxdRacbd(0) − 1

6
xcxdxe(∇̂eR)acbd(0) (A.106) 

− 
1 

20 
xc xd xe xf (∇̂e ∇̂f R)acbd(0) + 

2 

45 
xc xd xe xf Racgd(0)R g 

ebf (0) + · · ·  , 

where I lowered the first index of .Ra
bcd using the metric. The derivation of (A.106) 

is technical and I will therefore skip details. An interested reader will find a 
justification and a compilation of further results in an accessible form in [8]. 

A locally symmetric space is a special type of a Riemannian manifold for which 
the first covariant derivative of the Riemann curvature tensor (hence also all higher 
covariant derivatives) vanishes. See Chap. 10, in particular Theorem 10.19, of [7]. 
For such manifolds, .gab(x) can be expressed in a closed form in terms of the 
curvature tensor at . x0. Again skipping details, the final result reads 

. gab(x) = gac(0)

⎡
⎣ sin2

√
R̂(x)

R̂(x)

⎤
⎦

c

b

= gac(0)
∞∑

k=0

(−1)k22k+1

(2k + 2)! [R̂(x)k]cb ,

(A.107) 

where .R̂a
b(x) ≡ Ra

cbd(0)xcxd . 

A.6.5 Hodge Star 

Using the . # isomorphism, the inner product induced by the metric can be extended 
from vector fields to 1-forms. Thus, for any two 1-forms . ω and . σ , we set  

.〈ω, σ 〉 ≡ 〈ω#, σ #〉 = gABω#Aσ #B = gABωAσB . (A.108) 

This in turn extends to two differential forms .ω, σ of an arbitrary (equal) degree p, 

.〈ω, σ 〉 ≡ 1

p!g
A1B1 · · · gApBpωA1···ApσB1···Bp . (A.109) 

To see what this inner product of differential forms might be good for, we first 
pick an orthonormal frame . eA. Then we define a new top-dimensional form (n-form)
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in terms of the corresponding dual coframe, 

. vol ≡ e∗1 ∧ · · · ∧ e∗n . (A.110) 

For any other local frame, .ẽA = eB(P −1)BA with .P ∈ GL(n), we get 
.vol(ẽ1, . . . , ẽn) = detP −1. This corresponds to the (oriented) volume of the 
parallelepiped defined by the vectors . ̃eA. The  n-form (A.110) is known as the 
volume form, hence the notation “. vol.” Provided that the two local frames have the 
same orientation, that is .detP is positive, the volume form can be expressed in the 
new dual coframe .ẽ∗A as 

. vol = detP −1ẽ∗1 ∧ · · · ∧ ẽ∗n = √
g̃ ẽ∗1 ∧ · · · ∧ ẽ∗n . (A.111) 

Here . g̃ is the determinant of the matrix representation of the metric in the new 
coframe, .g̃AB = (P −1T P −1)AB . 

The frame . eA is in general defined only locally. We thus need to apply the 
definition (A.110) to an atlas of open sets that covers the manifold . M. In  
order that the volume form is well-defined and nonvanishing on the whole of 
. M, we have to make sure that local frames on mutually overlapping charts 
have the same orientation. The existence of such an atlas and a set of equally 
oriented local frames is the defining property of an orientable manifold. 

I now get to the main idea of this subsection. At any point .x ∈ M, the spaces 
.Ω

p
xM and .Ωn−p

x M of p-forms and .(n − p)-forms have the same dimension, . 
(
n
p

)
, 

and thus are isomorphic. In order to define a natural isomorphism between these 
spaces, and by extension between differential p-forms and .(n − p)-forms, we need 
both the inner product (A.109) and the volume form (A.110). A given  p-form . ω is 
then mapped to the unique .(n − p)-form . ⋆ω such that 

.σ ∧ (⋆ ω) = 〈σ, ω〉 vol (A.112) 

for any test p-form . σ . The inner product is needed to make (A.112) linear in both . ω

and . σ . Likewise, the volume form serves as a reference n-form to compare . σ ∧(⋆ ω)

to. The linear operator . ⋆ is known as the Hodge star, and . ⋆ω is referred to as the 
Hodge dual of . ω. In the special case of .p = 0, (A.112) gives a simple coordinate-
free definition of the volume form, .vol = ⋆ 1. 

The definition (A.112) is coordinate-free and elegant, but also not very transpar-
ent. For practical purposes, it is almost always more convenient to use instead the 
component expression for the Hodge dual, 

.⋆ ω =
√

g

p!(n − p)!g
A1B1 · · · gApBpωA1···ApεB1···Bne

∗Bp+1 ∧· · ·∧e∗Bn . (A.113)
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Here .εA1···An is the fully antisymmetric LC symbol, equal to . +1 when . A1, . . . , An

is an even permutation of .1, . . . , n, to  . −1 when .A1, . . . , An is an odd permutation 
of .1, . . . , n, and to 0 otherwise. It is not to be confused with the Levi-Civita tensor, 
.
√

g εA1···An , which by (A.111) gives the components of the volume form. 
It is clear that by applying the Hodge star . ⋆ twice, we map a p-form . ω to another 

p-form, .⋆ ⋆ ω. What is less clear but easy to check is that the two forms are equal 
up to a sign,5 

. ⋆ ⋆ω = (−1)p(n−p)ω , or equivalently ⋆−1 ω = (−1)p(n−p) ⋆ ω . (A.114) 

Being an isomorphism on the Grassmann algebra of differential forms, the Hodge 
star can be used to conjugate other linear maps defined on forms. The most important 
example of such a conjugate operator is the codifferential . δ. This is defined on p-
forms by conjugating . d with an extra conventional minus sign, 

.δω ≡ (−1)p ⋆−1 d ⋆ ω = (−1)np+n+1 ⋆ d ⋆ ω . (A.115) 

It follows from the conjugation and from (A.52) that .δ ◦ δ = 0. However, unlike . d
itself, the codifferential is not an antiderivation of the Grassmann algebra. 

It is possible to conjugate in the same way the interior product (A.17). This  
does not lead to a new interesting operator though. Indeed, combining (A.17) 
with (A.113), it is straightforward to check that for any p-form . ω and vector field . v, 

.(−1)p ⋆−1 ιv ⋆ ω = v� ∧ ω . (A.116) 

Finally, one can similarly conjugate the Lie derivative . Lv . Thanks to the Cartan 
magic formula (A.57), the result is fixed by the conjugation of . d and . ιv . It is however 
not particularly illuminating and I will therefore not show further details. 

Let us now get back to the codifferential. This together with . d furnishes a 
powerful toolkit that generalizes much of the differential structure familiar from 
ordinary vector calculus. The exterior derivative itself generalizes the notion of 
a gradient of scalar fields in . Rn and curl of vector fields in . R3, as noted in 
Example A.10. This leads to a far-reaching generalization of integral theorems in 
vector calculus that I will address in Sect. A.7. In  . Rn we also have the divergence 
operator that turns a vector field into a scalar. We can construct such a map on any 
orientable manifold . M by combining the flat . � and the codifferential. Thus, for any 
vector field . v, 

. div v ≡ −δv� = 1√
g

∂a(
√

g va) = (∇̂av)a , (A.117)

5 Here and occasionally in the following, I drop the . ◦ symbol indicating composition of operators 
to prevent the equations from becoming awkward. 



414 A Elements of Differential Geometry

where g now stands for the determinant of the matrix representation of the 
metric in the dual coordinate basis . dxa . In the last expression in (A.117), the  LC  
connection (A.84) is implicitly assumed. The next-to-last expression in (A.117) is a 
special case of the component form of the codifferential of a p-form, 

.(δω)a2···ap = − 1√
g

∂b1

[√
g(ω#)b1···bp

]
ga2b2 · · · gapbp . (A.118) 

This follows directly from (A.113) and (A.115) upon some manipulation. Last but 
not least, there is another, rather elegant way of computing the divergence of a 
vector field through .(div v) vol = Lv vol. This is an infinitesimal version of the 
familiar fact from multivariate calculus that upon a transformation of coordinates, 
the volume measure in an integral changes by the Jacobian of the transformation. 

Example A.18 

The component expression (A.118) makes it easy to see why the codifferential is not 
an antiderivation of the Grassmann algebra. Should . δ satisfy an identity analogous 
to (A.55), we would have, for instance, for any 0-form f and p-form . ω that 

.δ(f ∧ ω) = δf ∧ ω + f ∧ δω = f ∧ δω . (A.119) 

Here I used the fact that .δf = 0 for any 0-form f , which is a consequence of the 
fact that . d vanishes on any n-form. But (A.119) cannot be correct, since (A.118) 
makes it clear that .δ(f ∧ ω) must depend on both f and its derivatives. 

Example A.19 

The Noether current of a continuous symmetry of a physical system is a divergence-
free vector field . J , that is .δJ � = 0. The latter condition is naturally generalized 
to .δJ = 0 for any “p-form current” J . Such a generalized conservation law is 
via Noether’s theorem associated with a so-called .(p − 1)-form symmetry [9]. 
Additional insight follows from writing the conservation condition . δJ = 0
equivalently as .d ⋆ J = 0. Namely, if J is a conserved p-form current and K a 
conserved q-form current, then the exterior derivative of the .(2n − p − q)-form 
.⋆ J ∧ ⋆K vanishes thanks to (A.55). Hence .⋆(⋆ J ∧ ⋆K) is a .(p + q − n)-form 
current that is also conserved. In this way, we can use already known generalized 
conservation laws to construct new ones as long as .p + q > n [10]. 

Finally, by combining . d and . δ, we can construct a “second-order differential 
operator” which maps p-forms to p-forms. While it would in principle be possible
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to consider separately .d ◦ δ and .δ ◦ d, it is their sum that is of special interest, 

.Δ ≡ (d + δ)2 = d ◦ δ + δ ◦ d . (A.120) 

It follows at once from (A.117) that on 0-forms this reduces to 

.Δf = − 1√
g

∂a

(√
g gab∂bf

) = −gab∇̂a∇̂bf , (A.121) 

where the second expression again requires the LC connection. Thus, . Δ is a gen-
eralization of the Laplace operator to differential forms on orientable Riemannian 
manifolds. It is known as the Laplace–de Rham operator, or alternatively as the 
Hodge Laplacian. 

A.7 Integration on Manifolds 

So far I have discussed solely the differential structure on manifolds and related 
concepts. It is finally time to address the other essential ingredient of calculus: 
integration. Following the analogy with multivariate calculus in . Rn, one might want 
to integrate functions on a given manifold . M. Without the privilege of having 
globally well-defined Cartesian coordinates, it however turns out more natural to 
integrate forms. I will show how to do this in the next subsection. The abstract 
notion of integration of forms can nevertheless be bypassed in case the manifold 
possesses a metric structure. It is then possible to sweep the differential form nature 
of integration under the rug. This results into a definition of integration in terms of 
a volume measure determined by the metric, which is the subject of Sect. A.7.2. 

A.7.1 Orientable Manifolds 

A well-defined concept of integration on a manifold must have a geometric meaning 
independent of the choice of coordinates. It makes no sense to just pick random 
coordinates . xa and define an integral of a function .f :M→ R via something like 

.

∫
M

f ≡
∫

ϕ(M)

(f ◦ ϕ−1)(x) dnx (wrong) , (A.122) 

where .ϕ : M → Rn is the (possibly only locally defined) coordinate map. This 
naive attempt cannot be fixed even by adding an integration measure that would 
correctly account for changes of coordinates. The problem is that without further 
structure on the manifold, there is no unique measure we could use for the purpose.
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It turns out that differential forms have all the ingredients we need. Let us 
consider an n-form . ω on an n-dimensional manifold . M. In chosen local coordinates, 
it is given by (A.13), 

.ω = 1

n!ωa1···andx
a1 ∧ · · · ∧ dxan = ω1···ndx1 ∧ · · · ∧ dxn . (A.123) 

Under the change of coordinates from . xa to .x̃a(x), the single independent com-
ponent .ω1···n(x) transforms by the inverse of the Jacobian of the coordinate 
transformation, .ω̃1···n(x̃) = |∂x̃/∂x|−1ω1···n(x). It therefore appears that all we have 
to do is to strip off the factor .dx1 ∧ · · · ∧ dxn in (A.123) and integrate .ω1···n(x) as 
a function on . Rn. Upon a change of coordinates, the transformation of .ω1···n will 
exactly cancel the Jacobian generated by the Euclidean volume measure . dnx. 

There are two flies in the ointment though. First, a closer look reveals that 
while .ω1···n indeed changes by the inverse of the Jacobian of the coordinate 
transformation, the Euclidean measure .dnx changes by its absolute value. Another 
manifestation of the same problem is that .dnx is invariant under any permutation of 
the coordinates, whereas .dx1 ∧ · · · ∧ dxn and thus .ω1···n changes sign under odd 
permutations. Yet in other words, .(dx1∧· · ·∧dxn)(v1, . . . , vn) returns the oriented 
volume of the parallelepiped defined by the test vectors .v1, . . . , vn in . Rn. The  
second, related problem is that we rarely have a set of globally defined coordinates 
on the manifold. It is mandatory to ensure that we can consistently sew together 
integrals of . ω over individual coordinate patches. This requires that the coordinate 
systems in overlapping patches have equal orientation. For that to be possible at all, 
the manifold . M must be orientable. Even on orientable manifolds, we still have the 
freedom to choose global orientation. Fixing the orientation requires that we restrict 
coordinate transformations to those with a positive Jacobian. At the end of the day, 
the integral of an n-form will be defined up to a sign, depending on the choice of 
global orientation. 

The problem of how to sew together integrals of . ω over individual coordinate 
patches requires more careful consideration. The idea is to “triangulate” the 
manifold in a way that each cell of the triangulation lies in a single coordinate 
patch. To implement this strategy, we start by defining what such an elementary 
cell corresponds to in . Rn. A  p-simplex .(P0, . . . , Pp), where .0 ≤ p ≤ n, is the  
convex envelope of (that is the smallest convex set containing) the set of points 
.P0, . . . , Pp ∈ Rn. For the triangulation approach to integration to be successful, 
we next need to be able to put together two or more simplexes. This is done by 
defining a set, . Cp, whose elements, called p-chains, are formal linear combinations 
of different p-simplexes. 

The introduction of p-simplexes was motivated by the desire to triangulate a 
given manifold . M. It would therefore appear most natural to only consider 

(continued)
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linear combinations of simplexes with coefficients . ±1. It will however turn 
out convenient to allow for arbitrary real coefficients, thus making . Cp a real 
vector space. The advantage of doing so will become apparent in Sect. A.8 
where I introduce the dual structure to p-chains in terms of differential forms. 

For integration of differential forms, we need to define an orientation of the p-
simplex. We can do this by identifying .(Pπ(0), . . . , Pπ(p))with . (sgnπ)(P0, . . . , Pp)

for any permutation . π on the indices .0, . . . , p. With this convention, we can now 
also define an oriented boundary of a p-simplex. This is formalized by the boundary 
operator, which is a linear map .∂p : Cp → Cp−1 such that 

.∂p(P0, . . . , Pp) ≡
p∑

i=0

(−1)i(P0, . . . , Pi−1, Pi+1, . . . , Pp) . (A.124) 

The fundamental property of the boundary operator is that when applied twice in 
succession, it gives zero, .∂p−1 ◦ ∂p = 0. 

Eventually, we would like to construct a triangulation of a manifold . M by lifting 
simplexes from . Rn to . M. To that end, it is sufficient to consider just one, standard 
p-simplex . sp in . Rn. This is defined to have . P0 at the origin and all the other vertices 
on the positive Cartesian semiaxes at unit distance from the origin. The Cartesian 
coordinates of the vertex . Pi are thus .P a

i = δa
i . Now we can take any smooth map 

.f : sp → M. Its image, .σp ≡ f (sp), is called a singular p-simplex on . M. By  
extension, a singular p-chain c on . M is a formal linear combination, 

.c =
∑

i

ciσ
i
p =

∑
i

cif
i(sp) where ci ∈ R , (A.125) 

and . σ i
p are singular p-simplexes. Finally, the boundary of a singular p-simplex is 

defined by lifting the boundary of . sp with the same map f , .∂pσp ≡ f (∂psp).6 

After the rather long series of formal steps, we are finally ready to define integra-
tion on the manifold . M. In fact, we can do even more than we originally anticipated, 
namely integrate p-forms on any singular p-chain on . M such as (A.125), with 
any .0 ≤ p ≤ n. The task is first reduced to individual singular p-simplexes by 
linearity. Then, the integral is pulled back to . Rp using the map defining the singular

6 Here I am tacitly extending the action of f from the standard p-simplex to linear combinations 
of p-simplexes in . Rn by linearity. 
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p-simplex. At the end of the day, one sets for any p-form . ω and singular p-chain c 

.

∫
c

ω ≡ ci

∫
σ i

p

ω ,

∫
σ i

p

ω ≡
∫

sp

f i∗ω ≡
∫

sp

(f i∗ω)1···p(x) dpx . (A.126) 

To achieve the original goal to define integration of forms on manifolds, it remains 
to clarify how to represent an n-dimensional manifold . M as a singular n-chain. 
There is obviously considerable freedom in doing so, but to identify . M with an n-
chain .c = ∑

i ciσ
i
n, the latter must satisfy several conditions. First, the simplexes . σ i

n

must cover the whole of . M without overlaps. Second, each . σ i
n should lie in a single 

coordinate patch. Third, if the local coordinate system . xa in which . σ i
n is mapped to 

the standard n-simplex . sn is compatible with the global orientation of the manifold 
. M, we should set .ci = 1. If the orientation is opposite, we have to set .ci = −1. In  
practice, all this is easier than it might look, as the following example shows. 

Example A.20 

The spherical coordinates .(θ, ϕ) on . S2 take values from the open rectangle . (0, π)×
(0, 2π) in . R2 and cover the whole of . S2 except for one selected meridian. The 
integral of the 2-form .ω = sin θ dθ ∧ dϕ (A.22) then equals 

.

∫
S2

ω =
∫ 2π

0
dϕ

∫ π

0
sin θ dθ = 4π , (A.127) 

which is the area of a unit sphere. This example shows that it is not strictly necessary 
to actually triangulate the integration domain. It is sufficient to dissect it into open 
sets, each of which is mapped by a single coordinate chart to a polytope in . Rn. The  
subsequent triangulation of the polytopes is a formal step that need not be carried 
out explicitly. The example also demonstrates that we can get away with a single 
coordinate chart even if it does not cover the whole manifold. It is sufficient to 
cover it up to a subset of lower dimension. 

With all the necessary definitions out of the way, let me proceed directly to the 
most important result of integral calculus on manifolds: the Stokes theorem. Let  c 
be a singular .(p + 1)-chain on an orientable manifold . M, and let . ω be a p-form. 
Then 

.

∫
c

dω =
∫

∂p+1c

ω . (A.128) 

For a proof, see for instance Sect. 6.1 of [2]. The Stokes theorem puts under the same 
umbrella, and further generalizes, a number of well-known results from ordinary 
calculus and vector calculus. These include the fundamental theorem of calculus in 
. R, the gradient theorem for line integrals in . Rn, the Green theorem for area integrals
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in . R2, the eponymous Stokes theorem for surface integrals in . R3, and the Gauss 
theorem for volume integrals in . Rn. 

There is an intriguing connection between the Stokes theorem and a geometric 
definition of the exterior derivative that I alluded to at the end of Sect. A.4. Namely, 
the exterior derivative of a p-form . ω can be defined in a coordinate-free manner 
through integration of . ω over an “infinitesimal” p-chain that is the boundary of some 
.(p+1)-chain. This generalizes the usual definition of the divergence of a vector field 
in . R3 using its flux through the surface of an infinitesimal volume element. The key 
problem is then to assert the consistency of such a definition; see Sect. 36 of [11] 
for details. In this sense, the exterior derivative can be defined exactly so that the 
Stokes theorem (A.128) holds. Rather than a nontrivial result of integral calculus, 
the theorem may then be viewed as arising from remarkable ingenuity in defining 
the right differential structure on the manifold. 

Example A.21 

In (A.126), the integral of a p-form . ω is obtained by pulling . ω back to . Rp using the 
map .f : sp →M defining the singular p-simplex . σp. This idea can be generalized 
to maps between any two manifolds (see Sect. 7.8 of [3]). Consider two manifolds 
. M and . N and a smooth map .f : M → N. Then, for any p-form . ω on . N and a 
singular p-chain c on . M, we have  

.

∫
f (c)

ω =
∫

c

f ∗ω . (A.129) 

Such integration of differential forms via pull-back is common in field theory. In 
this context, f can be thought of as a field defined on the domain . M and taking 
values in the target manifold . N. 

Suppose now that . M is an n-dimensional manifold without boundary and . ω is 
an n-form on . N such that .dω = 0. Then .

∫
M f ∗ω is a topological invariant, that is, 

it does not change value under a smooth deformation of f . To see why, think of the 
deformation .f → f̃ as a family of functions . ft where .t ∈ [0, 1] is a deformation 
parameter and .f0 = f, f1 = f̃ . Formally, . ft defines a smooth map from . M̃ ≡
[0, 1] ×M to . N. Since . M itself does not have boundary, we can view . M̃ as a 
cylinder whose “bases” at .t = 0 and .t = 1 are diffeomorphic to . M. Using  the  
Stokes theorem, we then find 

.

∫
M

f̃ ∗ω −
∫
M

f ∗ω =
∫
M

f ∗
1 ω −

∫
M

f ∗
0 ω

=
∫

∂n+1M̃
f ∗

t ω =
∫
M̃

d(f ∗
t ω) = 0 .

(A.130) 

In the last step, I used the fact that exterior derivative commutes with pull-
back (A.56) and the assumption that .dω = 0. The invariance of .

∫
M f ∗ω under
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smooth deformations of f can also be understood from the left-hand side of (A.129). 
Here the integrand . ω is fixed, but the integration domain .f (M) is deformed. Upon 
tuning the parameter t from 0 to 1, .ft (M) sweeps a singular .(n+1)-chain in . N with 
boundaries .f0(M) and .f1(M). Invoking the Stokes theorem and the assumption 
.dω = 0 then again asserts the invariance of .

∫
f (M)

ω under smooth deformations of 
f . 

A.7.2 Riemannian Manifolds 

On a first encounter, the differential form approach to integration on manifolds may 
seem a bit abstract. There is however a conceptually simpler alternative in case the 
manifold . M is endowed with a Riemannian metric. As explained in Sect. A.6.5, 
the metric induces a natural volume form (A.110) on the manifold. For any smooth 
function .f :M→ R, .f vol is then a well-defined n-form on . M, which can be used 
to define the integral of f over . M, 

.

∫
M

f ≡
∫
M

f vol =
∫
M

f (x)
√

g(x) dnx . (A.131) 

The last, coordinate expression follows from (A.111) and is often used in physics to 
perform integration in curved space(time)s. The path leading to this expression can 
also be viewed as a natural consequence of Hodge duality, which maps the 0-form 
f to the n-form .⋆ f = f ⋆ 1 = f vol. 

In mathematics, it is common to define a volume form on an n-dimensional 
manifold . M as any n-form that is nonvanishing everywhere on . M. One then 
proves that the existence of a volume form is equivalent to the requirement 
that . M be orientable (see Sect. 6.3 of [3]). The definition of a volume form I 
gave in Sect. A.6.5 is more restrictive in that it is tied to the metric structure 
on . M. Such volume form is normalized to unity in an orthonormal frame. It 
can thus be thought of as defining on . M locally a generalization of the usual 
volume measure in . Rn. 

Let me append two remarks of caution for more rigorously-minded readers. First, 
the coordinates may be defined only locally. In such a case, one has to partition 
the manifold and apply (A.131) separately to each coordinate patch. Second, the 
expression (A.131) may appear less general than (A.126), which is well-defined for 
a p-form and a singular p-chain of any degree .0 ≤ p ≤ n. It is however easy to 
generalize (A.131) to integration of functions on any submanifold . N of . M. All one
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has to do is pull the metric g on . M back to . N using the embedding of . N in . M. The  
integral over . N is then defined as in (A.131) using the induced metric on . N. 

Example A.22 

I will illustrate the use of (A.131) by calculating the length of a curve on a manifold. 
The curve is defined by a smooth map .γ : R → M and we are interested in the 
length of the segment .𝚪 ≡ {γ (t) | t ∈ [t1, t2]}. Treating t as a coordinate on the 
curve, we pull the metric g on . M back to . 𝚪 via 

.γ ∗g = gab

dγ a

dt

dγ b

dt
dt ⊗ dt . (A.132) 

The length of the segment of interest then follows as 

.

∫
𝚪

1 =
∫ t2

t1

√
gab

dγ a

dt

dγ b

dt
dt . (A.133) 

This agrees with the distance along the curve (A.82), previously postulated ad hoc. 

A.8 Homology and Cohomology 

Most of our discussion of differential geometry so far was restricted to local 
properties of manifolds. However, we have already seen how the global topology 
of the manifold . M may place restrictions on otherwise locally defined structures. 
For instance, there may be no globally well-defined frame on . M. Also, the global 
topology of . M may forbid some solutions of the Killing equation and thus reduce 
the isometry group of . M; see Example A.16. 

Topology is a vast area of mathematics and I have no intention to cover even its 
very basics in a self-contained manner. Instead, I will conclude the appendix with a 
brief introduction to some aspects of topology, pertinent to the subject of this book. 
As stressed in Sect. 15.3, spontaneous symmetry breaking is intimately related to 
the presence of defects in the ordered medium. The classification of defects was 
historically the first major application of topology to physics. The classic paper 
by Mermin [12] gives a physicist-friendly introduction to the relevant branch of 
topology, called homotopy theory. See also Chap. 4 of [2] for a somewhat more 
mathematical exposition. In the present book, homotopy theory plays a marginal 
role. A reader that is altogether unfamiliar with the subject will get away with the 
basic definition of homotopy groups, found early on in the above references. What 
I will cover here are elements of de Rham cohomology. This neatly connects the 
global topology of the manifold . M to the analytic properties of differential forms 
on . M. Cohomology theory plays an important role in the construction of actions
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for systems with spontaneously broken symmetry. It is therefore highly relevant for 
Parts III and IV of the book. 

A.8.1 Singular Homology 

Let me start somewhat indirectly by recalling the concept of a singular chain, 
introduced in Sect. A.7.1. The real vector spaces of singular p-chains on . M, denoted 
from now on more precisely as .Cp(M,R), form a sequence under the action of the 
boundary operator (A.124), 

. · · · ∂p+2−−→ Cp+1(M,R)
∂p+1−−→ Cp(M,R)

∂p−→ Cp−1(M,R)
∂p−1−−→ · · · . (A.134) 

The spaces .Cp(M,R) are infinite-dimensional. It is however possible to identify 
certain finite-dimensional spaces descending from .Cp(M,R) that carry information 
about the topology of . M. To that end, we first introduce the subspace of p-cycles, 
.Zp(M,R) ≡ ker ∂p, that is those p-chains that have no boundary. Likewise, the 
subspace of p-boundaries, .Bp(M,R) ≡ im ∂p+1, consists of those p-chains that are 
boundaries of some .(p+1)-chains. Due to the fundamental property .∂p ◦∂p+1 = 0, 
any p-boundary is a p-cycle. In other words, .Bp(M,R) is a subspace of .Zp(M,R). 
The quotient space, 

.Hp(M,R) ≡ Zp(M,R)/Bp(M,R) , 0 ≤ p ≤ n , (A.135) 

is called the p-th homology group of . M. Miraculously, this space has a finite dimen-
sion although both .Zp(M,R) and .Bp(M,R) are infinite-dimensional. Roughly 
speaking, .Hp(M,R) is a formal vector space spanned on mutually inequivalent 
p-dimensional submanifolds of . M that have no boundary and are themselves not 
the boundary of any .(p + 1)-dimensional submanifold of . M. 

Example A.23 

To see how the homology groups relate to the topology of . M, it is good to have a 
look at some very simple examples. First, the homology groups of the 2-sphere are 

.H0(S
2,R) ≃ R , H1(S

2,R) ≃ 0 , H2(S
2,R) ≃ R . (A.136) 

The .H0(S
2,R) group reflects the fact that . S2 is connected. Namely, 0-chains on . S2

are points on . S2 and their formal linear combinations. For any two points . P1, P2 ∈
S2, the formal difference .P1 − P2 is the boundary of a 1-chain (curve) connecting 
the points. Hence any 0-chain equals, up to adding a 0-boundary, a multiple of a 
single point on . S2. At the same time, any 0-chain is trivially a 0-cycle. It follows 
that .H0(S

2,R) is one-dimensional. An obvious extension of the argument shows 
that in general, .H0(M,R) ≃ Rk , where k is the number of connected components 
of . M.
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The triviality of .H1(S
2,R) reflects the fact that there is no 1-cycle (closed curve) 

on . S2 that would not be the boundary of some 2-chain (area) on . S2. Finally, as to 
.H2(S

2,R), there is obviously one 2-cycle on . S2 that is not a 2-boundary, namely 
the sphere itself. The fact that .H2(S

2,R) ≃ R formalizes the observation that any 
2-cycle on . S2 can be deformed to . S2 or its multiple. I will add without proof that 
the above results for the homology groups of the 2-sphere readily generalize to the 
n-sphere with any positive n, 

. H0(S
n,R) ≃ Hn(S

n,R) ≃ R , Hp(Sn,R) ≃ 0 for any 0 < p < n .

(A.137) 

Let us look at another simple example, the two-dimensional torus . T 2, for  which  

.H0(T
2,R) ≃ R , H1(T

2,R) ≃ R2 , H2(T
2,R) ≃ R . (A.138) 

The reasoning behind the zeroth and second homology groups is the same as for 
the 2-sphere. The two independent generators of .H1(T

2,R) arise from the two 
possibilities to wind a circle around the torus so that its “inside” does not lie on 
the torus. Just like for the sphere, (A.138) is but a special case of a more general 
statement valid (without proof) for any n-torus with positive n, 

.Hp(T n,R) ≃ R(n
p) for any 0 ≤ p ≤ n . (A.139) 

As a side remark, the dimensions of the homology groups can be combined into a 
single quantity characterizing the topology of the manifold: the Euler characteristic, 

.χ(M) ≡
n∑

p=0

(−1)p dimHp(M,R) . (A.140) 

For the n-sphere and the n-torus, we have .χ(Sn) = 1 + (−1)n and .χ(T n) = 0. 

The above example provides basic geometric intuition behind the concept of 
singular homology. By no means does it explain how to actually find the homology 
groups for a manifold that is less trivial to visualize than a sphere. The problem how 
to compute homology groups belongs to algebraic topology. In physics-oriented 
literature, one usually encounters the older concept of simplicial homology. This  
makes it possible, although not straightforward, to find the homology groups by 
a “triangulation” of the manifold. An interested reader will find more details in 
Chap. 3 of [2]. I will instead proceed directly to the connection of homology to the 
Grassmann algebra of differential forms on . M.
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A.8.2 De Rham Cohomology 

How can the topological notion of homology be connected to differential forms? 
The basic idea is that any p-form . ω on . M can be thought of as a linear function on 
singular p-chains on . M, 

.ω : c → (c, ω) ≡
∫

c

ω , c ∈ Cp(M,R) . (A.141) 

Thus, . ω can be identified with an element of the dual space .C∗
p(M,R) of .Cp(M,R). 

Moreover, we can set up a structure on differential forms that is “dual” to (A.134), 

. · · · d←− Ωp+1M d←− ΩpM d←− Ωp−1M d←− · · · , (A.142) 

where .ΩpM denotes the space of differential p-forms on . M. Following the analogy 
with (A.134), we then define the space of p-cocycles, .Zp(M) ≡ ker d|ΩpM, as  
consisting of p-forms with vanishing exterior derivative. Such forms are usually 
called closed. Likewise, the space of p-coboundaries, .Bp(M) ≡ im d|Ωp−1M, 
consists of those p-forms that equal the exterior derivative of some .(p − 1)-form. 
Such forms are called exact. Due to the fundamental property (A.52), every exact 
form is automatically closed, hence .Bp(M) is a subspace of .Zp(M). The quotient 
space, 

.Hp(M) ≡ Zp(M)/Bp(M) , 0 ≤ p ≤ n , (A.143) 

is known as the p-th de Rham cohomology group of . M. According to the Poincaré 
lemma, every closed p-form . ω can be locally written as the exterior derivative of a 
.(p−1)-form . σ , .ω = dσ ; see Chap. 9 of [3] for a proof and numerous examples. The 
de Rham cohomology classifies obstructions to the global validity of the Poincaré 
lemma. It therefore gives us access to global topological information about the 
manifold . M. 

To see the connection between de Rham cohomology and (singular) homology, 
consider a p-cycle c and a closed p-form . ω. The Stokes theorem (A.128) guarantees 
that the integral of . ω over c does not change if we shift . ω by an exact p-form, or c 
by a p-boundary. In other words, for any .(p − 1)-form . σ and any .(p + 1)-chain d, 

.

∫
c+∂d

(ω + dσ) =
∫

c

ω +
∫

c

dσ +
∫

∂d

ω +
∫

∂d

dσ

=
∫

c

ω +
∫

∂c

σ +
∫

d

dω +
∫

d

d(dσ) =
∫

c

ω ,

(A.144) 

where I for simplicity dropped the subscript on the boundary operator. What this 
says is that the integral .

∫
c
ω only depends on the equivalence class of c as an 

element of .Hp(M,R), and on the equivalence class of . ω as an element of .Hp(M).



A Elements of Differential Geometry 425

The pairing .(c, ω), defined by (A.141), therefore represents a bilinear function on 
.Hp(M,R) × Hp(M). The  de Rham theorem asserts that when the manifold . M is 
compact, this bilinear map is nondegenerate. This means that .(c, ω) vanishes for all 
closed p-forms . ω if and only if c is a p-boundary, and for all p-cycles c if and only if 
. ω is exact. It follows at once that the spaces .Hp(M,R) and .Hp(M) are isomorphic. 
The bilinear map .(c, ω) establishes a duality between (singular) homology and (de 
Rham) cohomology. 

The statement of duality is highly nontrivial. It only applies to the quotient 
spaces .Hp(M,R) and .Hp(M) and not separately to the spaces of p-cycles 
and p-cocycles (closed p-forms), or p-boundaries and p-coboundaries (exact 
p-forms). Luckily, out of all the different classes of p-chains, it is the 
homology group .Hp(M,R) that is of greatest interest. The de Rham theorem 
then allows us to compute the homology groups of the manifold by means of 
the exterior calculus of differential forms. 

Example A.24 

There are no .(−1)-forms on any manifold, and hence no exact 0-forms. Thus, 
.H 0(M) consists of all closed 0-forms. The condition .df = 0 for .f ∈ Ω0M that 
should be closed is satisfied if and only if f is a piecewise-constant function, that is a 
constant function on every connected component of . M. As a consequence, . H 0(M)

counts the connected components of . M. This is in accord with our previous result 
for .H0(M,R) and the de Rham theorem. 

For an illustration of the cohomology groups of higher degree, let us consider the 
2-sphere . S2. We know from Example A.23 and the de Rham theorem that . H 2(S2) ≃
H2(S

2,R) ≃ R, which guarantees the existence of one linearly independent 2-form 
that has a nonzero integral over . S2. This can be naturally chosen as the volume 
form (A.22). On the other hand, the first de Rham cohomology group of . S2 is trivial 
since .H1(S

2,R) is. We conclude that on the 2-sphere, the Poincaré lemma holds 
globally for 1-forms; any closed 1-form is necessarily exact. 

Somewhat more interesting than the 2-sphere is the 2-torus . T 2. Here we deduce 
from Example A.23 that .H 1(T 2) ≃ H1(T

2,R) ≃ R2. It is easy to guess what 
the two independent nontrivial closed 1-forms might be. Just think of . T 2 as the 
Cartesian product .S1 × S1. This gives natural angular coordinates on . T 2, . θ1,2 ∈
(0, 2π). The forms .dθ1, dθ2 are closed but not exact since the angular coordinates 
are not globally well-defined. A different way to view this is to think of the basis of 
.H1(T

2,R), . ca , as two independent circles that wind around the torus. Then . ωa ≡
dθa/(2π) is the corresponding dual basis of .H 1(T 2) in the sense that .(ca, ω

b) = δb
a . 

As to .H 2(T 2) ≃ H2(T
2,R) ≃ R, it is likewise easy to guess that its single generator 

can be taken as .dθ1 ∧ dθ2, that is the volume form on the torus.
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It is straightforward to generalize the above observation to the n-torus with any 
positive n. All we need to do is think of . T n as .(S1)×n and introduce a set of n angular 
variables . θa , .a = 1, . . . , n. We then expect that the p-th de Rham cohomology 
group of . T n is generated by the set of p-forms of the type .dθa1 ∧ · · · ∧ dθap , where 

.a1, . . . , ap is a set of different indices. This indicates that .Hp(T n) ≃ R(n
p), which 

allows us to understand the corresponding result (A.139) for homology. 

Example A.25 

Example A.21 shows that closed forms can be used to construct topological 
invariants. One considers a smooth map .f :M→ N defined on the n-dimensional 
manifold . M and taking values from the target manifold . N. If  . M has no boundary 
and . ω is a closed n-form on . N, then the integral .

∫
M f ∗ω does not change under 

smooth deformations of f . But  if . ω is exact, then so is .f ∗ω and its integral over . M
necessarily vanishes by the Stokes theorem. Nontrivial topological invariants can 
therefore only arise from nontrivial cohomology equivalence classes on . N. 

A simple example of a topological invariant is provided by the volume 
form (A.22) on . S2. Let us consider a function defined on . R2 and taking values 
on . S2. Following the notation of Example A.7, I will denote the function using a 
unit vector, .n : R2 → S2. In physics,  . n may represent for instance a configuration 
of a two-dimensional (anti)ferromagnet. Suppose now that our function tends to a 
constant at infinity. We can then treat the infinity as a single point, which effectively 
turns . R2 into a compact manifold without boundary. (It is common to say that we 
have topologically compactified . R2 to . S2.) Using the expression for the volume 
form on . S2 in terms of . n and pulling it back to . R2, we get the topological invariant 

.w[n] = 1

4π

∫
R2

n · (∂xn × ∂yn) dx dy , (A.145) 

where .x, y are the Cartesian coordinates in . R2. The normalization factor .1/(4π) is 
conventional and ensures that .w[n] only takes integer values. This is the Brouwer 
degree of . n, treated as a map .S2 → S2. 

Let me conclude the appendix with a lightning summary of some further 
interesting properties of de Rham cohomology. A curious reader will find more 
details in Sect. 6.4 of [2]. For an n-dimensional compact manifold . M, let us define 
a pairing of a p-form . ω and an .(n − p)-form . σ as the bilinear map 

.(ω, σ ) →
∫
M

ω ∧ σ . (A.146)
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It is easy to see that if . M has no boundary and both .ω, σ are closed, then the result 
of the integration depends only on the respective equivalence classes of .ω, σ as 
elements of .Hp(M) and .Hn−p(M). Moreover, (A.146) as a bilinear map . Hp(M)×
Hn−p(M) → R turns out to be nondegenerate. It follows that the spaces . Hp(M)

and .Hn−p(M) are isomorphic. This fact is known as the Poincaré duality. 

Example A.26 

We already saw the isomorphism .Hp(M) ≃ Hn−p(M) at work in Example A.24. 
The Poincaré duality however also allows us to draw some generally valid conclu-
sions. For instance, for any compact connected manifold . M without boundary, it 
tells us that .Hn(M) ≃ H 0(M) ≃ R. Let us unpack the meaning of this statement 
in the special case that the manifold . M is Riemannian. Then any n-form . ω is 
represented as .ω = ⋆ f in terms of some function f on . M. The representative 
of the single nontrivial equivalence class of n-cycles can be taken as . M itself. By 
the de Rham theorem, . ω is therefore exact if and only if .

∫
M f = 0. The exactness 

implies that .ω = ⋆ f = dσ for some .(n − 1)-form . σ . This leads to 

.f = ⋆ dσ = (−1)nδ ⋆ σ = (−1)n−1 div(⋆ σ )# , (A.147) 

where I used (A.114) plus the definitions of codifferential and divergence. In plain 
terms, the function f is a divergence of some vector field if and only if the integral 
of f over . M vanishes. This generalizes a statement frequently used in physics. 

Sometimes, the manifold in question has the structure of a Cartesian product, 
.M × N. Any differential form . ω on . M can be lifted to .M × N. Formally, this is 
done using the projection .πM :M×N→M which maps a point . (x, y) ∈M×N
to .x ∈ M. Then, for any .ω ∈ ΩqM, .π∗

Mω is a q-form on .M × N. Analogously, 
forms on . N are lifted to .M ×N using the projection .πN :M ×N→ N. Now  for  
any closed q-form . ω on . M and any closed r-form . σ on . N, .π∗

Mω ∧ π∗
Nσ is a closed 

.(q+r)-form on .M×N. Moreover, the cohomology equivalence class of . π∗
Mω∧π∗

Nσ

depends only on those of . ω and . σ . We can thus obtain some information about de 
Rham cohomology groups of .M × N if we know those of . M and . N. What is less 
trivial is that all cohomology generators on .M×N can in fact be recovered in this 
way. This is expressed by the Künneth formula 

.Hp(M×N) ≃
⊕

q+r=p

[
Hq(M) ⊗ Hr(N)

]
, (A.148) 

where the . ⊗ symbol denotes tensor product of vector spaces.
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Example A.27 

The de Rham cohomology groups of the circle, . S1, are  .H 0(S1) ≃ H 1(S1) ≃ R. 
The former follows from the fact that . S1 is connected, and the latter most easily 
from Poincaré duality. Using the Künneth formula (A.148), we can now recursively 
construct all de Rham cohomology groups of the n-torus. Let us see how this works 
for the 2-torus, .T 2 ≃ S1 × S1. The zeroth cohomology group is of course . R since 
the torus is connected. The first cohomology group is 

. H 1(S1 × S1) ≃ [H 0(S1) ⊗ H 1(S1)] ⊕ [H 1(S1) ⊗ H 0(S1)] ≃ R ⊕ R ≃ R2 .

(A.149) 

The second cohomology group is similarly 

.H 2(S1 × S1) ≃ H 1(S1) ⊗ H 1(S1) ≃ R ⊗ R ≃ R . (A.150) 

With the same reasoning, one then proves by induction that the de Rham coho-
mology groups of the n-torus are .Hp(T n) ≃ Hp((S1)×n) ≃ R(n

p), as guessed in 
Example A.24. 

There is a simple relation between de Rham cohomology groups and homotopy 
groups that can be utilized to deduce the former from the latter. The precise 
statement is provided by the Hurewicz theorem (see Sect. 22.3 of [4]). Let . M be a 
compact manifold and let .πp(M), .p > 1 be the first nonvanishing homotopy group. 
Then .Hp(M) is the first nonvanishing de Rham cohomology group (with nonzero 
degree) and .Hp(M) ≃ πp(M), if the latter is treated as a real vector space.7 With 
the additional assumption that .π1(M) is Abelian, the same statement holds also for 
.p = 1. Let me illustrate the use of this theorem on an example of great relevance 
for the classification of effective actions in Chap. 8. 

Example A.28 

With a bit of homotopy theory, we can find the second de Rham cohomology 
group of the homogeneous space .G/H , where G and H are Lie groups. What we 
need from homotopy theory is the exact sequence of homotopy groups (see Sect. 9 
of [12]), 

. · · · → πk(G) → πk(G/H) → πk−1(H) → πk−1(G) → · · · . (A.151)

7 This is a slight abuse of terminology. The Hurewicz theorem as presented in [4] really connects 
.πp(M) as an additive Abelian group to the homology group .Hp(M,Z) with integer coefficients. 
When translating .Hp(M,Z) to .Hp(M,R), which is by the de Rham theorem in turn isomorphic 
to .Hp(M), any finite part of .Hp(M,Z) is lost. 
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This implies that if both .πk(G) and .πk−1(G) are trivial, then .πk(G/H) ≃ πk−1(H). 
Let us assume that G is compact and simply connected and H is connected. Then 
.π1(G) ≃ π0(G) ≃ {e}, and hence .π1(G/H) ≃ π0(H) ≃ {e}. The homogeneous 
space is itself simply connected. 

Next, we use the fact that .π2(G) is trivial for any compact connected Lie 
group (Appendix B of [13]). Hence .π2(G/H) ≃ π1(H). But we have already 
established that .G/H is simply connected. The Hurewicz theorem then tells us that 
.H 1(G/H) ≃ 0 and .H 2(G/H) ≃ π2(G/H) ≃ π1(H). To summarize, let G be 
a compact and simply connected Lie group, and let H be its connected subgroup. 
Then the second de Rham cohomology group of the homogeneous space .G/H is 
isomorphic to .π1(H) as a real vector space. Since H is by assumption compact, this 
means that the generators of the second de Rham cohomology group of .G/H are in 
a one-to-one correspondence with .U(1) factors of H [14]. 
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