Skip to main content

Graphical Representation of Sequences and Its Application

  • Chapter
  • First Online:
Mathematical Principles in Bioinformatics

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 58))

  • 196 Accesses

Abstract

Mathematical analysis of large-volume genomic DNA sequence data is one of the challenges for biologists. Graphical representation of DNA or protein sequences provides a simple way of viewing, sorting, and comparing sequence similarity. In this chapter, we introduce two directions to construct graphical representation for biological sequences. The first direction is by curves without degeneracy and the second one is by Chaos Game Representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.S.-T. Yau, J. Wang, A. Niknejad, C. Lu, N. Jin, Y. Ho, DNA sequence representation without degeneracy, Nucleic Acids Research, 31: 3078–3080, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. T. Hoang, C. Yin, S.S.-T. Yau, Numerical encoding of DNA sequences by chaos game representation with application in similarity comparison, Genomics, 108: 134–142, 2016.

    Article  CAS  PubMed  Google Scholar 

  3. F. Sievers, D.G. Higgins, Clustal Omega for making accurate alignments of many protein sequences, Protein Sci, 27: 135–145, 2018.

    Article  CAS  PubMed  Google Scholar 

  4. E. Hamori, J. Ruskin, H curves, a novel method of representation of nucleotide series especially suited for long DNA sequences, Journal of Biological Chemistry, 258: 1318–1327, 1983.

    Article  CAS  PubMed  Google Scholar 

  5. M.A. Gates, Simpler DNA sequence representations, Nature, 316: 219, 1985.

    Article  CAS  PubMed  Google Scholar 

  6. L. Liu, Y. Ho, S.S.-T. Yau, Clustering DNA sequences by feature vectors, Molecular Phylogenetics and Evolution, 41: 64–69, 2006.

    Article  CAS  PubMed  Google Scholar 

  7. C. Yu, Q. Liang, C. Yin, R. He, S.S.-T. Yau, A novel construction of genome space with biological geometry, DNA Research, 17: 155–168, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. C. Yu, M. Deng, S.S.-T. Yau, DNA sequence comparison by a novel probabilistic method, Information Sciences, 181: 1484–1492, 2011.

    Article  Google Scholar 

  9. C.M. Cover, J.A. Thomas, Elements of information theory, John Wiley and Sons, NY, 1991.

    Google Scholar 

  10. R.R. Sokal and C.D. Michener, A statistical method for evaluating systematic relationships, University of Kansas science bulletin, 38: 1409–1438, 1958.

    Google Scholar 

  11. S.S.-T. Yau, C. Yu, R. He, A protein map and its application, DNA and Cell Biology, 27: 241–250, 2008.

    Article  CAS  PubMed  Google Scholar 

  12. J. Fauchere, V. Pliska, Hydrophobic parameters of amino-acid side-chains from the partitioning of N-acetyl-amino acid amides, European Journal of Medicinal Chemistry, 18: 369–375, 1983.

    CAS  Google Scholar 

  13. C. Yu, S.Y. Cheng, R. He, S.S.-T. Yau, Protein map: An alignment-free sequence comparison method based on various properties of amino acids, Gene, 486: 110–118, 2011.

    Article  CAS  PubMed  Google Scholar 

  14. X. Xia, W.H. Li, What amino acid properties affect protein evolution? Journal of Molecular Evolution, 47: 557–564, 1998.

    Article  CAS  PubMed  Google Scholar 

  15. P.H.A. Sneath, Relations between chemical structure and biological activity, Journal of Theoretical Biology, 12: 157–195, 1966.

    Article  CAS  PubMed  Google Scholar 

  16. K. Tian, X. Yang, Q. Kong, C. Yin, R. He, S.S.-T. Yau, Two dimensional Yau-Hausdorff distance with applications on comparison of DNA and protein sequences, PLoS ONE, 10: e0136577, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  17. D.P. Huttenlocher, G.A. Klanderman, W.J. Rucklidge, Comparing images using the Hausdorff distance, IEEE Transactions on Pattern Analysis and Machine Intelligence, 15: 850–863, 1993.

    Article  Google Scholar 

  18. D.P. Huttenlocher, K. Kedem, J.M. Kleinberg, On dynamic Voronoi diagrams and the minimum Hausdorff distance for point sets under Euclidean motion in the plane, Proceedings of the eighth annual symposium on Computational geometry, 110–119, 1992.

    Google Scholar 

  19. L.P. Chew, M.T. Goodrich, D.P. Huttenlocher, K. Kedem, J.M. Kleinberg, D. Kravets, Geometric pattern matching under Euclidean motion, Computational Geometry, 7: 113–124, 1997.

    Article  Google Scholar 

  20. G. Rote, Computing the minimum Hausdorff distance between two point sets on a line under translation, Information Processing Letters, 38: 123–127, 1991.

    Article  Google Scholar 

  21. B. Li, Y. Shen, B. Li, A new algorithm for computing the minimum Hausdorff distance between two point sets on a line under translation, Information Processing Letters, 106: 52–58, 2008.

    Article  Google Scholar 

  22. P.D. Hebert, A. Cywinska, S.L. Ball, J.R. deWaard, Biological identifications through DNA barcodes, Proc. Biol. Sci., 270: 313–321, 2003.

    Google Scholar 

  23. Jeffrey, H. Joel, Chaos game representation of gene structure, Nucleic Acids Research, 18: 2163–2170, 1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. T. Hoang, C. Yin, S.S.-T. Yau, Splice sites detection using chaos game representation and neural network, Genomics, 112: 1847–1852, 2020.

    Google Scholar 

  25. A. Fiser, G. E. Tusnády, I. Simon, Chaos game representation of protein structures, Journal of Molecular Graphics, 12: 302–304, 1994.

    Article  CAS  PubMed  Google Scholar 

  26. Z. Yu, V. Anh, K. Lau, Chaos game representation of protein sequences based on the detailed HP model and their multifractal and correlation analyses, Journal of Theoretical Biology, 226: 341–348, 2004.

    Article  CAS  PubMed  Google Scholar 

  27. Z. Sun, S. Pei, R. He, S.S.-T. Yau, A novel numerical representation for proteins: Three-dimensional Chaos Game Representation and its Extended Natural Vector, Computational and Structural Biotechnology Journal, 18: 1904–1913, 2020.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yau, S.ST., Zhao, X., Tian, K., Yu, H. (2023). Graphical Representation of Sequences and Its Application. In: Mathematical Principles in Bioinformatics. Interdisciplinary Applied Mathematics, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-031-48295-3_5

Download citation

Publish with us

Policies and ethics