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Abstract. Probabilistic Answer Set Programming under the credal
semantics (PASP) describes an uncertain domain through an answer set
program extended with probabilistic facts. The PASTA language lever-
ages PASP to express statistical statements. A solver with the same name
allows to perform inference in PASTA programs and, in general, in PASP.
In this paper, we investigate inference in PASP, propose a new inference
algorithm called aspcs based on Second Level Algebraic Model Counting
(2AMC), and implement it into the aspmc solver. Then, we compare it
with PASTA on a set of benchmarks: the empirical results show that,
when the program does not contain aggregates, the new algorithm out-
performs PASTA. However, when we consider PASTA statements and
aggregates, we need to replace aggregates with a possibly exponential
number of rules, and aspcs is slower than PASTA.

Keywords: Second Level Algebraic Model Counting · Probabilistic
Answer Set Programming · Inference

1 Introduction

Algebraic Model Counting (AMC) [18] is an umbrella term that comprises sev-
eral well-known tasks, among the other, SAT, #SAT, weighted model counting,
and probabilistic inference. All these tasks require to aggregate the models of a
program according to a certain criterion. For instance, model counting requires
counting the models while probabilistic inference, e.g., in the probabilistic logic
language ProbLog [11], requires summing the probabilities associated with the
different models. Other tasks, such as decision theoretic inference [7], MAP and
MPE inference [4,5,22], and probabilistic inference under the smProbLog lan-
guage [23], require to aggregate the results obtained via inference, so they need
two levels of aggregations. These tasks they were recently identified as Second
Level Algebraic Model Counting (2AMC) tasks [17].

Probabilistic Answer Set Programming under the credal semantics (PASP,
for short) [2,8] is one of the possible formalisms to express uncertainty in Answer
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Set Programming (ASP) [14], since it extends ASP with ProbLog probabilistic
facts [11]. PASP has been recently adopted in the PASTA framework [3] to
encode statistical statements [16], that represent statistical information about a
given domain. During inference, these are converted into choice rules and con-
straints with aggregates [1]. Then, the PASTA solver performs projected answer
set enumeration [13]. As a first contribution, we discuss how to represent infer-
ence in PASP as a 2AMC task. Then, we implement our approach on top of
the state of the art aspmc solver [12], that adopts knowledge compilation [10] to
compactly represent a program, and we call it aspcs. Tests on different bench-
marks show that when programs do not contain aggregates, aspcs is significantly
faster than PASTA. However, aspmc, and so aspcs, currently does not support
aggregates, so to represent PASTA statistical statements we manually convert
constraints with aggregates into a set of ground rules. In this case, aspcs perform
worse than PASTA, probably due to the possibly exponential number of rules
that come from the conversion of the aggregates.

The paper is structured as follows: Sect. 2 introduces the needed background
knowledge. In Sect. 3 we cast inference in PASP as a 2AMC task and in Sect. 4
we test an implementation on top of the aspmc solver against the PASTA solver.
Section 5 concludes the paper.

2 Background

ProbLog probabilistic facts [11] are one of the most used syntactical constructs
to represent uncertainty within a probabilistic logic program [19]: they are of the
form fi::Πi where fi is a logical atom and Πi ∈ [0, 1] is its probability value. Its
meaning is that: fi is true with probability Πi and false with probability 1−Πi.
These are considered independent. A choice of a truth value for every probabilis-
tic fact defines a world w, whose probability is, according to the Distribution
Semantics (DS) [21],

P (w) =
∏

fi∈w

Πi ·
∏

¬fi∈w

(1 − Πi).

Every ProbLog program has 2n worlds, where n is the number of proba-
bilistic facts. The DS requires that every world has exactly one model. A
probabilistic clause is a clause with a probabilistic fact in the head, such as
0.4::f(X) :− b(X,Y ). The meaning is that f(X) is true with probability 0.4 if
the body b(X,Y ), which can also be a conjunction, is true. A probabilistic clause
can be translated to a normal clause by inserting in the body a fresh probabilistic
fact with the same probability and variables X and Y . The previous clause can
be rewritten as f(X) :− b(X,Y ), aux1(X,Y ), where aux1 is a new probabilistic
fact with an associated probability of 0.4.

If we consider Answer Set Programming [14], the credal semantics [2,8] gives
a meaning to answer set programs extended with probabilistic facts. We use the
acronym PASP to denote both Probabilistic Answer Set Programming under
the credal semantics and a probabilistic answer set program following the credal
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semantics. The intended meaning will be clear from the context. Under this
semantics, every world w is an answer set program, the one obtained by fix-
ing to true the probabilistic facts true in the world w and by removing the
probabilistic facts false in the world w, that has zero or more answer sets (or
stable models [14]). Let us denote with AS(w) the set of answer sets for a
world w. Furthermore, the probability of a query q, i.e., a conjunction of ground
atoms, is characterized by a lower and an upper probability bound. That is,
P (q) = [P (q), P (q)] where:

P (q) =
∑

wi|∀m∈AS(wi), m|=q

P (wi), P (q) =
∑

wi|∃m∈AS(wi), m|=q

P (wi). (1)

A world w contributes to the lower and upper probability bounds if the query
is true in every answer set of w. A world w contributes only to the upper prob-
ability bound if the query is true in some of the sets of w. Example 1 shows an
example of PASP modeling a scenario where some people buy some products.
A crucial point for the credal semantics is that every world must have at least
one stable model. If this does not hold, some probability mass is lost. There are
alternative semantics that handle worlds without answer sets, such as the credal
least undefined semantics [20] or the smProbLog semantics [23], that we do not
consider in this paper.

Example 1. This program models a scenario with three different people, Alice,
Bob, and Carl, that may shop or not (probabilistic facts shops/1), with different
probabilities.

0.3:: shops(alice ).
0.2:: shops(bob).
0.6:: shops(carl).

buy(beans ,alice) ; buy(spaghetti ,alice) :- shops(alice ).
buy(spaghetti ,bob) ; buy(steak ,bob) :- shops(bob).
buy(tomato ,carl) ; buy(garlic ,carl) :- shops(carl).

cs(C):- #count{X : buy(spaghetti ,X)} = C0 ,
#count{X : buy(garlic ,X)} = C1 ,
C = C0 + C1.

ce(C):- #count{X,Y : buy(Y,X)} = C.

:- cs(S), ce(C), 10* S < 3*C.

The three disjuncive rules for buy/2 state that each one of the three people can
buy different products. For instance, the first disjunctive rule stats that if Alice
shops she can buy beans or spaghetti. The cs/1 and ce/1 rules contain aggregates
in the body. The former unifies the number of people that buys spaghetti or garlic
to variable C. These two values are computed via the #count aggregates. For
instance, #count{X : buy(spaghetti,X)} = C0 unifies with C0 the number
of element X such that buy(spaghetti,X) holds. Similarly, ce/1 unifies with C
the number of pairs (X,Y ) such that buy(Y,X) is true. Lastly, a constraint
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Table 1. Worlds, number of answer sets with the query q = buy(spaghetti, alice) true
(#ASq), and total number of answer sets (#AS) for every world of Example 1.

id shops(a) shops(b) shops(c) P (w) #ASq #AS

0 0 0 0 0.224 0 1
1 0 0 1 0.336 0 1
2 0 1 0 0.056 0 1
3 0 1 1 0.084 0 3
4 1 0 0 0.096 1 1
5 1 0 1 0.144 2 3
6 1 1 0 0.024 2 3
7 1 1 1 0.036 4 7

states that at least 30% of the people that buy something buy spaghetti or
garlic. We are interested in computing the probability that Alice buys spaghetti.
The program has 23 = 8 worlds, listed in Table 1. If we consider the query
q = buy(spaghetti, alice), its probability is given by P (q) = [P (w4), P (w4) +
P (w5) +P (w6) +P (w7)] = [0.096, 0.096+ 0.144+ 0.024+ 0.036] = [0.096, 0.3].

2.1 Statistical Statements

The authors of [3] proposed to represent statistical statements of the form “the
fraction of A’s that are also C’s is between lp and up” with lp, up ∈ [0, 1] with
the syntax (C | A)[lp, up] where C is an atom and A a conjunction of literals.
All the variables in C also appear in A. They call this language PASTA. For
example, if we want to state that at least 60% of the birds (bird/1) of a fixed
domain fly (fly/1) we can write (fly(X)|bird(X))[0.6, 1]. To perform inference,
a statistical statement is translated into three answer set rules: a disjunctive rule
and two constraints with aggregates. The just described example becomes:

fly(X);not_fly(X) :− bird(X)
:− #count{X : fly(X), bird(X)} = FB,#count{X : bird(X)} = B,

10 · FB < 6 · B

:− #count{X : fly(X), bird(X)} = FB,#count{X : bird(X)} = B,

10 · FB > 10 · B

(2)

The last rule can be omitted since the value of the variable FB cannot be
greater than B. The lb and ub values are multiplied by 10 since ASP does not
support floating point values. Note that this example can be rewritten with only
one count aggregate instead of two, but we stick with the previous notation for
clarity.

For a conditional (C | A)[lp, up], if at least one of the literals in A is proba-
bilistic, the program is interpreted as a PASP. Thus, we can compute the prob-
ability of a query with Eq. 1, leveraging the PASTA solver [3]. The inference
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process of the PASTA solver is the following: first, probabilistic facts are con-
verted into choice rules. For a query q, PASTA introduces two additional rules,
qr :− q and nqr :− not q. Then, it enumerates the projected answer sets [13]
on the (converted) probabilistic facts and qr/0 and nqr/0 atoms and extracts
the probability for every world w where the query is true and the contribution
of w to the probability bounds.

2.2 Second Level Algebraic Model Counting

Weighted Model Counting (WMC) consists in summing the weights associated
with the models of a given propositional formula (program). Algebraic Model
Counting (AMC) [18] generalizes WMC by providing a generic definition based
on semirings [15], that can be applied to many different tasks (see [18] for a com-
prehensive list), such as probabilistic inference. AMC can be solved via knowl-
edge compilation [10], that involves representing the problem in a compact form
where the solutions can be efficiently computed. As discussed in [17], some tasks
such as decision theory and MAP inference require two levels of AMC, since
they need two semirings for two different groups of variables. Thus, they belong
to the class of Second Level Algebraic Model Counting (2AMC) [17] problems
that can still be solved via knowledge compilation.

Let us introduce 2AMC more formally by following [17]. Given a tuple
A = (Π,Xin,Xout, win, wout,Rin,Rout, f), where Xin and Xout are a partition
of the variables in the propositional theory Π, Rin = (Ri,⊕i,⊗i, ei

⊕, ei
⊗) and

Rout = (Ro,⊕o,⊗o, eo
⊕, eo

⊗) are two commutative semirings, win and wout are
two weight functions associating each atom of the program with a weight, and
f is a transformation function from the values of Rin to Rout, 2AMC requires
solving:

2AMC(A) =
⊕o

Iout∈σ(Xout)

⊗o

a∈Iout

wout(a)⊗o

f(
⊕i

Iin∈δ(Π|Iout)

⊗i

b∈Iin
win(b))

(3)

where σ(Xout) are the set of possible assignments to Xout and δ(Π | Iout) are
the set of possible assignments to Π that satisfy Iout. AMC is a special case
of 2AMC, where the set Xout is empty and the transformation function is the
identity function. At a high level, the 2AMC task requires solving an AMC task
on the variables Xin (inner semiring) for every possible set of assignments of Xout

(outer semiring). The result of the inner AMC task is converted into an element
of the outer semiring (with the function f) and another AMC task is solved, now
on Xout. 2AMC has been adopted to perform inference in smProbLog [23], an
extension of the ProbLog language that allows programs where worlds may have
zero or more answer sets. A probability is assigned to every answer set in this
way: the probability of a world is equally distributed among its answer sets. The
probability of a query is then the sum of the probabilities of the answer sets where
the query is true. If we consider a smProbLog program Π = L∪F with Herbrand
base H and query q, where F is the set of probabilistic facts and L is the logical
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part of the theory, Xout = F , Xin = H \F , Rin = (N2,+, ·, (0, 0), (1, 1)), Rout =
([0, 1],+, ·, 0, 1) (i.e., the probability semiring), win associates all the literals to
(1, 1) except for not q, that is mapped to (0, 1), wout associates p and 1 − p to
respectively g and not g for every probabilistic fact p::g and 1 to all the remaining
literals, and the transformation function is f(n1, n2) = n1/n2 where n2 is the
number of models and n1 the number of models where the query is true. In other
words, the inner semiring counts both the number of models (n2) and the number
of models where the query is true (n1), the transformation function computes
the ratio n1/n2, and the outer semiring performs probabilistic inference. In the
next section we show how we adapted this formulation to perform inference in
PASP.

3 Inference in PASP as 2AMC

Recall from Sect. 2 that the probability of a query in a probabilistic answer set
program is given by a range. The worlds in which the query is true in all the
answer sets contribute to both the lower and upper bound while the worlds in
which the query is true in some of the answer sets only contribute to the upper
bound. If all the worlds have exactly one answer set, the task reduces to AMC
since we just need to sum the probabilities of the worlds where the query is
true. In the general case, the inference task is similar to the one of smProbLog
described in the previous section: in smProbLog, the probability of a query is
a sharp probability value, and every answer set is weighted by the probability
of the world divided by the number of its answer sets. In PASP, we have a
probability range, so we need to modify both the transformation function and
the outer semiring. We consider a transformation function f(n1, n2) that returns
a pair of values flp and fup where

flp =

{
1 if n1 = n2

0 otherwise
fup =

{
1 if n1 > 0
0 otherwise

where n2 is the number of models and n1 the number of models where the
query is true. flp is adopted for the computation of the lower probability
while fup for the upper probability. We propose as outer semiring Rout =
([0, 1]2,+, ·, (0, 0), (1, 1)), which is the probability semiring extended to two
dimensions, where the operations + and · are applied component-wise. Now,
wout associates (p, p) and (1 − p, 1 − p) to respectively g and not g for every
probabilistic fact p::g and (1, 1) to all the remaining literals. In other words, the
inner semiring counts the models and computes two values, n1 and n2. These
are combined according to the above f(n1, n2) function that also returns a pair
of values. Then, the outer semiring performs the actual probability computation
by considering these two values simultaneously and returns the lower and upper
probability bounds for the query.

Inference in smProbLog is implemented in the aspmc solver [12] by means
of tree decompositions and knowledge compilation with sd-DNNF [9] as target
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Fig. 1. Results for the qrnqr1 and qrnqr2 datasets.

language. At a high level, the goal of tree decomposition is to represent a graph
as a tree, where each vertex of the tree is a bag, i.e., a subset of the nodes of the
graph. Every graph has one or more tree decompositions. The width of a tree
decomposition is the size of its largest possible bag minus one. The treewidth
of a graph is the minimum width of all its tree decompositions and represents
how close a graph is to being a tree, and it is usually a good indicator of the
hardness of a task [6]. We modify aspmc for smProbLog inference by introducing
the novel transformation function and semiring. The knowledge compilation is
still performed once even if the transformation function returns two values, since
both are computed on the same semiring, and so the sd-DNNF is traversed only
once. We call this algorithm aspcs. A limitation is that aspmc currently does
not support aggregates, which are needed to represent PASTA programs. To
overcome this, in the experiments of the following section we manually translate
aggregates into ground rules. This, however, results in an exponential number of
generated rules.

4 Experiments

In this section, we compare the PASTA solver1 with the previously introduced
technique based on 2AMC (aspcs) implemented on top of the aspmc solver [12] on
6 different datasets. For all the datasets, except for the cases where we explicitly
describe the instance, the number of probabilistic facts defines the size of the
instance. All the considered datasets have at least one answer set for each world,
i.e., admit the credal semantics. We use the c2d compiler [9] already available in
aspmc. We ran the experiments on a computer with Intel R© Xeon R© E5-2630v3
running at 2.40GHz with 8 Gb of RAM and a time limit of 8 h. Execution times
are computed with the bash command time and reported values are from the
real field.

The first dataset, qrnqr1, consists of programs with an increasing number n
of probabilistic facts a(i), where i ∈ [0, n − 1], all associated to a probability

1 Available at: https://github.com/damianoazzolini/pasta.

https://github.com/damianoazzolini/pasta
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Fig. 2. Results for the coloring and smoke datasets.

Fig. 3. Results for the bird and viralmarketing datasets.

of 0.4. This is an arbitrary value, since the probability of a probabilistic fact
does not influence the execution time of the algorithm. For each index i, we
include a rule qr :− a(i) if i is even and two rules qr :− a(1), not nqr and
nqr :− a(1), not qr (these are equivalent to the disjunctive rule qr;nqr :− a(i))
if i is odd. The query is qr. For example, the instance of size 4 is:

0.4::a(0). 0.4::a(1). 0.4::a(2). 0.4::a(3).
qr:- a(0).
qr :- a(1), not nqr. nqr :- a(1), not qr.
qr:- a(2).
qr :- a(3), not nqr. nqr :- a(3), not qr.

The qrnqr2 dataset is similar to qrnqr1. Given an instance of size n, we have
3 rules: the first rule has qr in the head and all the probabilistic facts a(i) with
i ∈ [0, n − 1] and i even in the body. The second rule has qr in the head and all
the probabilistic facts a(i) with i ∈ [0, n− 1] and i odd and not nqr in the body.
The last rule has nqr in the head, all the probabilistic facts a(i) with i ∈ [0, n−1]
and i odd, and not qr in the body. The query is qr. For example, the instance
of size 4 is:

0.4::a(0). 0.4::a(1). 0.4::a(2). 0.4::a(3).
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Fig. 4. Number of bags (#bags), treewdth, and number of vertices (# vertices) for the
qrnqr1 and qrnqr2 datasets.

Fig. 5. Number of bags (#bags), treewdth, and number of vertices (# vertices) for the
coloring and smoke datasets.

qr:- a(0), a(2). qr :- a(1), a(3), not nqr.
nqr :- a(1), a(3), not qr.

The coloring dataset encodes a graph coloring task, where edges in the graph
are associated with a random probability. Some nodes have a fixed color. The
program of size 7 is:

0.6:: edge (1 ,2). 0.1:: edge (1,3).
0.4:: edge (2 ,5). 0.3:: edge (2,6).
0.3:: edge (3 ,4). 0.8:: edge (4,5).
0.2:: edge (5,6).
node (1..6).
red(X) :- node(X), not green(X), not blue(X).
green(X) :- node(X), not red(X), not blue(X).
blue(X) :- node(X), not red(X), not green(X).
e(X,Y) :- edge(X,Y). e(Y,X) :- edge(Y,X).
:- e(X,Y), red(X), red(Y).
:- e(X,Y), green(X), green(Y).
:- e(X,Y), blue(X), blue(Y).
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Fig. 6. Number of bags (#bags), treewdth, and number of vertices (# vertices) for the
bird and viralmarketing datasets.

red (1). green (4). green (6).
qr:- blue (3).

The query is qr. We generate increasing instances of this dataset by adding
random probabilistic edges.

The dataset smokers is from [23]: it encodes a network of people, indexed
with increasing integers starting from 1, where some have asthma (probabilistic
rule asthma/1), some are stressed (probabilistic rule stress/1), and some smoke
due to stress (probabilistic rule smokes/1), with probability 0.1, 0.3, and 0.4,
respectively. If a person Y smokes and influences (probabilistic fact influences/2)
a person X, then X will also smoke. Smokers have probability of 0.4 to have
asthma. Finally, an asthmatic cannot smoke. The base instance, i1, is:

0.1:: asthma(X) :- person(X).
0.3:: stress(X) :- person(X).
0.4:: smokes(X) :- stress(X).
smokes(X) :- influences(Y,X), smokes(Y).
0.4:: asthma(X) :- smokes(X).
:- smokes(X), asthma(X).
person (1). person (2).
0.3:: influences (1,2). 0.6:: influences (2,1).

We are interested in the probability of smokes(1). Increasing instances are: i2 =
i1 ∪ {person(3).}, i3 = i2 ∪ {person(4).}, i4 = i3 ∪ {0.2::influences(2, 3).},
i5 = i4 ∪ {0.7::influences(3, 4).}, i6 = i5 ∪ {0.9::influences(4, 1).}. PASTA
does not support probabilistic rules, so we manually ground the rules, remove
the probability in the head and add a probabilistic fact in the body, a different
one for every grounding.

We tested the two algorithms also on statistical statements. Since aspmc, and
so aspcs, currently does not support aggregates, we manually translate them into
ground rules. In the worst case, we get 2n rules (

∑
k

(
n
k

)
= 2n), where n is the size

of the instance. The bird dataset contains an increasing number of probabilistic
facts 0.4::bird(i), i ∈ [0, n − 1], and a conditional of the form:
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(fly(X) | bird(X))[0.6 ,1].

which is equivalent to

fly(X) :- bird(X), not not_fly(X).
not_fly(X) :- bird(X), not fly(X).
:- #count{X:fly(X),bird(X)} = FB,

#count{X:bird(X)} = B, 10*FB <6*B.

The query is fly(1). The instance of size 3 with the constraint with aggregates
converted into ground rules is:

b1:- bird (1). b1:- bird (2). b1:- bird (3).
:- b1, not fb1.
b2:- bird(1),bird (2). b2:- bird(1),bird (3).
b2:- bird(2),bird (3).
:- b2, not fb2.
b3:- bird(1),bird(2),bird (3).
:- b3, not fb2.
fb1:- fly (1). fb1:- fly (2). fb1:- fly (3).
fb2:- fly(1),fly (2). fb2:- fly(1),fly (3).
fb2:- fly(2),fly (3).

Predicate bk/0, k ∈ {1, 2, 3}, indicates that at least k probabilistic facts bird(i)
are true. Predicate fbk/0, k ∈ {1, 2} indicates that at least k facts fly(i) are
true. Note that the last constraint is :− b3, not fb2 because given the lower
bound 0.6, we have :− 10 · FB < 6 · 3, so :− FB < 2. If the lower bound had
been, for example, 0.7, the constraint would have been :− b3, not fb3 with an
additional rule fb3 :− fly(1),fly(2),fly(3). This translation of the conditionals
yields 1420 rules for the instance of size 10, 3048 for size 11, 5694 for size 12,
12301 for size 13, and 22874 rules for size 14.

The viralmarketing dataset models a viral marketing scenario, where there
is uncertainty on the people (probabilistic facts person/1) present in a network.
These people advertise (predicate advertise/2) a product to other people. A per-
son is reached by the advertisement if it is either directly advertised or advertised
by a friend. If advertised, a person can buy or not the product. Finally, a con-
straint states that at least 70% of the people reached by an advertisement buy
an item. The program of size 5 is the following:

0.1:: person (1). 0.2:: person (2).
0.3:: person (3). 0.4:: person (4). 0.5:: person (5).
advertise (1,2):- person (1), person (2).
advertise (2,3):- person (2), person (3).
advertise (2,4):- person (2), person (4).
advertise (3,5):- person (3), person (5).
advertise (4,5):- person (4), person (5).
reach(A,B):- advertise(A,B).
reach(A,B):- advertise(A,C), reach(C,B).
reached(X):- person(X), reach(_,X).
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reached(X):- person(X), advertise(X,_).
{buy(X)} :- reached(X).
:- #count{X:reached(X),buy(X)} = RB ,

#count{X:reached(X)} = R, 10*RB < 7*R.

As before, for aspcs, we replace the constraint with aggregates with a set of
ground rules. This yields 2016 rules for the instance of size 10, 4055 for size 11,
8141 for size 12, 16322 for size 13, and 32330 for size 14. An instance of size
n adds a new individual (person/1 probabilistic fact) and a random connection
between two individuals (that are not already connected) to the instance of size
n − 1. In addition to the execution times (Fig. 1, 2, and 3), we also plotted
(Fig. 4, 5, and 6) some statistics of the tree decomposition adopted in aspmc (so
aspcs), namely, number of bags, treewidth, and number of vertices.

Overall, when the program does not contain aggregates, aspcs outperforms
PASTA in all the datasets. This is due to knowledge compilation adopted in
aspmc and so on aspcs. This is particularly evident in Fig. 1b, where the exe-
cution time of aspcs seems to be almost constant, possibly because the number
of bags, one of the main parameters that drives the construction of the com-
pact form obtained by knowledge compilation, of all the instances is low (77 for
the instance of size 50, see Fig. 4). A similar behavior is also present in Fig. 2b.
In all the instances, PASTA reaches the time limit. In Fig. 1a, aspcs stops due
to the memory limit. When aggregates are present (Fig. 3), aspcs stops due to
the memory limit. This can be explained by the statistics of the tree decompo-
sition, where the numbers of bags and vertices increase exponentially (Fig. 6).
The biggest instance solved by aspcs for both datasets is 15. For these two
datasets, PASTA is faster than aspcs, possibly because enumerating the answer
sets is faster than encoding them into a propositional formula and compiling it
with knowledge compilation. However, note again that the instance of size 14
of the viralmarketing dataset has 32330 rules, so aspcs can handle programs of
significant size.

5 Conclusions

In this paper, we proposed aspcs, an algorithm based on aspmc to perform
inference in probabilistic answer set programs following the credal semantics via
Second Level Algebraic Model Counting. We tested our implementation against
the PASTA solver on 6 different datasets. The first four have no aggregates, and
aspcs is significantly faster than PASTA. The last two datasets contain statistical
statements, and therefore aggregates, which must be manually translated into
ground rules, since aspcs does not support them. This translation introduces
many more rules, possibly an exponential number, making aspcs slower than
PASTA.
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