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{ana.iglesiasm,oscar.corcho}@upm.es

2 Information Sciences Institute, University of Southern California, Marina del Rey,
CA, USA

{ahrabian,ilievski,jpujara}@isi.edu

Abstract. Knowledge graphs have been widely adopted across organi-
zations and research domains, fueling applications that span interactive
browsing to large-scale analysis and data science. One design decision
in knowledge graph deployment is choosing a representation that opti-
mally supports the application’s consumers. Currently, however, there is
no consensus on which representations best support each consumer sce-
nario. In this work, we analyze the fitness of popular knowledge graph
representations for three consumer scenarios: knowledge exploration, sys-
tematic querying, and graph completion. We compare the accessibility
for knowledge exploration through a user study with dedicated brows-
ing interfaces and query endpoints. We assess systematic querying with
SPARQL in terms of time and query complexity on both synthetic and
real-world datasets. We measure the impact of various representations on
the popular graph completion task by training graph embedding models
per representation. We experiment with four representations: Standard
Reification, N-Ary Relationships, Wikidata qualifiers, and RDF-star. We
find that Qualifiers and RDF-star are better suited to support use cases
of knowledge exploration and systematic querying, while Standard Reifi-
cation models perform most consistently for embedding model inference
tasks but may become cumbersome for users. With this study, we aim
to provide novel insights into the relevance of the representation choice
and its impact on common knowledge graph consumption scenarios.

Keywords: Knowledge Graphs · Knowledge Representation · User
Study · Graph Completion

1 Introduction

The growth of the knowledge graph (KG) user base has triggered the emergence
of new representational requirements. While RDF is the traditional and standard
model for KG representation, alternative models such as property graphs [25], the
Wikidata model [34], and RDF-star [12] have also become recently popular. The
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promise of these alternative and complementary representation models is that
they can provide more flexibility to address certain use cases, such as statement
annotation, for which RDF-based representations are not straightforward [17].
While the plurality of knowledge representation (KR) models provides the means
to address a wider range of possibilities in consumer scenarios, there is currently
no consensus nor sufficient empirical evidence on which representations are most
suitable for different KG consumer tasks [16].

Previous studies comparing knowledge representations have focused primar-
ily on query performance [2,6,14,26,28] and graph interoperability [3,4]. For
this scenario, the representations need to ensure efficiency to minimize perfor-
mance time. However, applications relating to exploration by end users and
machine learning over KGs have not been taken into account [16,22]. Knowledge
exploration scenarios, e.g., browsing, are impacted by representational choices,
and therefore the selected representations should reduce the cognitive load and
user expertise needed to explore, access, and acquire knowledge. Similarly, many
embedding models-based tasks such as knowledge graph completion [1,29,37]
require adequate representations to maximize the performance of the models on
downstream predictive tasks.

In this paper, we address the research question: How do different knowl-
edge representation models impact common KG consumer scenarios?
Based on three complementary KG consumer tasks (knowledge exploration, sys-
tematic querying, and knowledge graph completion), we define four concrete
questions: (RQ1) Which representations facilitate faster knowledge exploration
and acquisition? (RQ2) Are certain representations more intuitive for build-
ing accurate queries efficiently? (RQ3) How do representational query patterns
impact query evaluation time? (RQ4) How do different representations affect
the performance of KG embedding models for a KG completion task?

We investigate these research questions by assessing the fitness of four popu-
lar KR approaches: Standard Reification, N-Ary Relationships, Wikidata qual-
ifiers, and RDF-Star, for the needs of the abovementioned scenarios. First, to
understand user preferences in knowledge exploration tasks, we run a user study
where participants interact with a web browser interface and a query endpoint to
determine the representation that improves knowledge acquisition for real-world
questions. Then, to assess the differential performance of the representations, we
test several queries using synthetic and real-world data. Lastly, to estimate the
impact on KG embedding model performance, we train and evaluate a selection
of these models for the KG completion task with different representations.

The rest of the paper is structured as follows: Sect. 2 introduces the four
representation models. Section 3 describes the datasets used in the evaluation.
The experimental setup and evaluation are organized by scenario, for knowl-
edge exploration in Sect. 4, systematic querying in Sect. 5, and knowledge graph
embedding models in Sect. 6. Section 7 reviews related work. The conclusions
and limitations are discussed in Sect. 8.
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2 Knowledge Representation Models

In this section, we describe different representation models that can be used
for statement annotation, i.e., making statements about statements, a chal-
lenge that has motivated the development of several different KG representation
approaches [7,12,24,26,27]. Figure 1 illustrates instances of these models for the
main statement Jodie Foster received the Academy Award for Best Actress anno-
tated with the additional statement for the work The “Silence of the Lambs.”
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Fig. 1. Representation models shown as RDF graphs: (a) Standard Reification, (b)
N-Ary Relationships, (c) Qualifiers (Wikidata model) and (d) RDF-star.

Standard Reification. [24] (Fig. 1a) explicitly declares a resource to denote
an rdf:Statement. This statement has rdf:subject, rdf:predicate, and
rdf:object attached to it and can be further annotated with additional state-
ments. The resource is typically a blank node; we simplify the encoding using a
Wikidata Item identifier (shown as wd:X in the figure for brevity).

N-Ary Relationships. [27] (Fig. 1b) converts a relationship into an instance
that describes the relation, which can have attached both the main object and
additional statements. This representation is widely used in ontology engineering
as an ontology design pattern [10].

The Wikidata Model. [7] (Fig. 1c) is organized around the notion of Items.
An Item is the equivalent of either a Class or an Instance in RDF and is described
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with labels, descriptions, aliases, statements, and site links. Statements repre-
sent triples (comprised of item-property-value) and can be further enriched
with qualifiers and references. Qualifiers are property-value pairs that attach
additional information to the triple. From this point onward, we refer to this
representation as “Qualifiers”.

RDF-Star. [12] (Fig. 1d) extends RDF to introduce triple reification in a
compact manner. It introduces the notion of triple recursiveness with Quoted
Triples, which can be used as subjects and/or objects of other triples. The
RDF-star graph shown in Fig. 1d is represented in RDF as follows: <<wd:Q41351

wd:P166 wd:Q103618>> wdt:P1686 wd:Q133654.

Table 1. Number of triples (×106) for the WD-AMC dataset and the REF benchmark
in the analysed representations.

Qualifiers RDF-star N-Ary Rel. Std. Reif.

WD-AMC 30.917 5.700 35.653 51.266

REF benchmark 268.965 61.033 140.521 175.592

3 Datasets

WD-AMC. (Wikidata - Actors, Movies, and Characters) is a novel subset of
Wikidata introduced in this paper to simulate a real-world scenario of man-
ageable size. To this end, we first extract manually a list of actors, characters,
and movies present in the questions provided by the WebQuestionSP [35] and
GoogleAI benchmarks.1 Then, we sample WD-AMC by taking all properties and
values of the main Wikidata statements for the entities in this list, along with
their qualifier properties and values. The WD-AMC subset and all its variants
are created using the Knowledge Graph Toolkit (KGTK) [21].
For the query evaluation performance scenario, we use the REF bench-
mark [28], which is proposed to compare different reifications providing the
Biomedical Knowledge Repository (BKR) dataset [30] in three representations:
Standard Reification, Singleton Property, and RDF-star. We extend the avail-
able representations in REF to include Qualifiers and N-Ary Relationships
approaches. Table 1 presents the number of triples of both datasets in each
representation. We make all datasets and their corresponding queries available
online [19,20].

1
https://ai.google.com/research/NaturalQuestions/dataset.

https://ai.google.com/research/NaturalQuestions/dataset
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4 Knowledge Exploration Scenario

We define knowledge exploration as the process of interactively discovering and
obtaining information available in knowledge graphs. We distinguish and study
two knowledge exploration scenarios by asking users to (i) interact with a user-
friendly interface, and (ii) build queries to systematically access the KG. We
measure the time and accuracy of the participant responses for both scenarios.

4.1 Experimental Setup

User Study Setup. We conduct a user study composed of two tasks. The
browser interaction task consists of answering 5 natural language questions by
looking for the information in Wikidata via a KGTK browser interface. The
answer should be provided as a Wikidata identifier (QXXXX). The endpoint
interaction task consists of building SPARQL queries for the same natural lan-
guage questions answered in the previous task, providing a machine-executable
query as a response. In this task, participants can build and test the query in
a triplestore provided for them. For both tasks, answers are submitted in free-
text boxes, with no predefined options to choose from. Participants are provided
with representative example responses in order to ensure that they submit the
queries in a useful format for the posterior evaluation. We measure the time
spent solving each query and the accuracy of the responses.

Table 2. Set 1 of questions used in the user study with their corresponding identifier
(ID) and from which QA benchmark they were extracted (Source).

ID Questions Source

Q1 Cast of the 2005 version of Pride and Prejudice GoogleAI

Q2 What character did Natalie Portman play in The Phantom Menace? WebQSP

Q3 Who won the academy award for best actor in 2020? GoogleAI

Q4 Who is the Australian actress in Orange Is The New Black? GoogleAI

Q5 How many movies have Woody Harrelson and Bill Murray been in together? GoogleAI

Data. For both tasks, we use the WD-AMC dataset described in Sect. 3. For
the browser interaction task, we adapt the dataset to create three instances (one
per representation) of the KGTK Browser,2 an adaptive user interface similar
to Wikidata. For the endpoint interaction task, we generate the corresponding
RDF graphs and upload them to a triplestore. We do not include RDF-star
explicitly since its visualization in the first task is equivalent to the Qualifier
model representation. All resources are accessible online for the participants.3,4

2
https://github.com/usc-isi-i2/kgtk-browser/.

3
https://kgtk.isi.edu/krhc1/, https://kgtk.isi.edu/krhc2/, https://kgtk.isi.edu/krhc3/.

4
https://setting1.krhc.linkeddata.es/sparql.

https://github.com/usc-isi-i2/kgtk-browser/
https://kgtk.isi.edu/krhc1/
https://kgtk.isi.edu/krhc2/
https://kgtk.isi.edu/krhc3/
https://setting1.krhc.linkeddata.es/sparql
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Queries. We prepare 4 sets of 5 queries, extracting them from the QA bench-
marks WebQuestionsSP [35] and GoogleAI(see footnote 1), which contain real
questions from users. One set of queries is presented in Table 2 in natural lan-
guage. Each of the 4 sets contains variants of the same 5 queries to minimize
participants’ risk of copying, by altering specific elements in the questions, e.g.,
years, movies; while maintaining the structure.5 These 4 versions are applied to
the three representations, resulting in 12 different sets of queries. We map these
query sets to 12 groups of participants. Participants are provided with the same
set of natural language questions for completing both tasks.

Participants. The user study is carried out with 45 students of a Master’s
level course on Knowledge Graphs. All students have similar backgrounds, are
enrolled in a University Computer Science or Data Science program, and have
learned about the KG representations in the course. The students first sign up for
a voluntary assignment and are randomly divided into 12 groups, 4 groups per
representation and each of them with a different query set. Then, they are sent a
Google questionnaire with representation description, instructions, questions for
both tasks, and text boxes for the answers. These groups contain: 16 participants
for Qualifiers, 16 for N-Ary Relationships, and 13 for Standard Reification.

Fig. 2. Measured time that participants spent for retrieving the answers to the ques-
tions proposed in the browser interaction task.

Metrics. We analyze the results using ANOVA and t-test for the response
time measurements to look for significant differences among representation
approaches per query. Both ANOVA and t-test are used under the assump-
tions of (i) normality, (ii) sameness of variance, (iii) data independence, and
(iv) variable continuity. ANOVA is first used for the three variables (Qualifiers,
N-Ary Relationships and Standard Reification). Then, the t-test is used to test
pairs of representations per query. To test the significance of accuracy, we use

5
https://github.com/oeg-upm/kg-scenarios-eval/blob/main/WD-AMC/README.md.

https://github.com/oeg-upm/kg-scenarios-eval/blob/main/WD-AMC/README.md
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the chi-squared test of independence and look into whether the accuracy and
representation variables are independent. It is used under the following assump-
tions: (i) the variables are categorical, (ii) all observations are independent, (iii)
cells in the contingency table are mutually exclusive, and (iv) the expected value
of cells in the contingency table should be 5 or greater in at least 80% of the
cells.

4.2 Results

Browser Interaction Results. Figure 2 shows participants’ time spent finding
the answer in the browser interface for each query. We observe that the results
for the three representations are overall similar, with significant differences in
individual queries. The ANOVA test shows significant differences between the
representation models (p-value< 0.05) for queries Q3-5 (Table 3). Our t-tests for
pairs of representation models confirm the results of ANOVA for Q1-2, showing
no significant differences. For Q3 and Q5, the measured time is significantly
higher for Standard Reification, while for Q4, Qualifiers take significantly less
time compared to the other representations. Thus, we observe that the time spent
answering questions with the Standard Reification is significantly higher for Q3-
5; and the average time in Q1 and Q2 is slightly (but not significantly) higher,
which makes this representation less fit than the other two for this task. To obtain
the accuracy of the responses, we measure the proportion of correct responses
retrieved. Nearly all of the received answers are correct. Only in one query with
N-Ary Relationships and Standard Reification, a wrong answer is submitted. We
run a chi-squared test per query, and the results show no significant differences
among the approaches in terms of accuracy.

Table 3. P-values of ANOVA and t-test for the time that participants spent for retriev-
ing the answers to the questions proposed in browser interaction task. The significant
values (p-value < 0.05) are highlighted in bold.

Q1 Q2 Q3 Q4 Q5

ANOVA 0.437 0.429 7.87E-06 0.034 0.047

t-test Qualifiers - N-Ary Rel. 0.323 0.964 0.715 0.013 0.817

Qualifiers - Std. Reif. 0.621 0.289 1.42E-04 0.034 0.034

N-Ary Rel. - Std. Reif. 0.216 0.220 1.80E-04 0.735 0.064

Answering RQ1, we conclude that, while participants can find the correct
answers with any of the three representations, answering questions via knowl-
edge exploration takes longer with the Standard Reification representational
model. This finding is intuitive, as Standard Reification divides a triple into
three triples, where only the object is the relevant element. The information
is thus scattered and does not follow the “natural” direction of relationships
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between the elements. For instance, for answering Q3 “Who won the academy
award for best actor in 2020?”, in Qualifiers and N-Ary Relationships the infor-
mation stems from the Academy Award for Best Actor (Q103916) node using the
winner property (P1346); while for Standard Reification, the statement holds
this information in separate relations: <wd:Statement rdf:subject wd:Q103916;

rdf:predicate wdt:P1346>. Thus, the answer can be only accessed by referencing
from the statement node, rather than directly as for the other representations.

Endpoint Interaction Results. Figure 3 shows the distribution of time spent
on building the SPARQL queries and Table 4 shows the accuracy of the results
obtained when running the SPARQL queries submitted by the participants. In
terms of time, we note small variations among the three representations, which
are not significant according to the ANOVA test. In terms of accuracy, the results
for this task show a higher portion of errors compared to the browser interaction
task, and they vary highly among approaches and queries. The largest differences
are observed for the queries Q1 and Q5, where the Qualifiers model performs
the best (accuracy of 1 and 0.71) and the Standard Reification model has an
accuracy of 0.36. In such queries, Standard Reification requires a UNION clause

Fig. 3. Measured time that participants spent for building the SPARQL queries cor-
responding to endpoint interaction task.

Table 4. Proportion of correct responses returned by the SPARQL queries built in the
endpoint interaction task. The highest accuracy per query is highlighted in bold, and
the lowest is underlined. The p-values of the chi-squared test are also shown. Significant
values (p-value <0.05) are marked with *.

Q1 Q2 Q3 Q4 Q5 Average

Qualifiers 1.000 0.786 0.786 0.786 0.714 0.814

N-Ary Rel. 0.938 0.875 0.813 0.938 0.563 0.825

Std. Reif. 0.364 0.818 0.909 0.818 0.364 0.655

Chi-squared test 4.340E-05* 0.874 0.756 0.532 0.133 0.022*



KG Representations for Consumer Scenarios 279

to retrieve the complete set of results, which is not needed for the other repre-
sentations, and thus, increases the relative complexity of the correct query. The
results of the other three queries are relatively close between the three represen-
tation models, with Qualifiers performing the worst on all of them. However, on
average Standard Reification produces the lowest accuracy, while N-Ary Rela-
tionships the highest. To test the significance of the accuracy results, we apply
chi-squared tests Table 4), showing significant values for Q1 and on average.
Thus, the accuracy of results is in general dependent on the representation.

Addressing RQ2, we observe that all three representations perform similarly
in terms of the time it takes to interact with a SPARQL endpoint. However, for
queries with a higher complexity, Standard Reification is more error-prone, as it
requires additional clauses (e.g., UNION) to retrieve the complete set of results.
Curiously, these results are similar to those for the browser interaction task in
RQ1, in the sense that Standard Reification fares the worst among the three
models, while Qualifiers and N-Ary Relationships perform alternatively best
depending on the query. Yet, the granular performance on individual queries
and metrics overlaps only partially: in the browser interaction task, the gap
is observed in terms of time and affects queries Q3–Q5; while in the endpoint
interaction task, it is manifested in terms of accuracy for the queries Q1 and Q5.
These findings provide initial insights into the suitability of different representa-
tion models for knowledge exploration. We leave a more systematic comparison
between queries in terms of their properties for future work.

Table 5. Characteristics of the WD-AMC queries in terms of the number of triple
patterns and SPARQL clauses used per query. The RDF-star queries with quoted
triples are marked with “*”, while “SR” only applies to Std. Reif. The number of
checkmarcks (�) indicates the number of times the clause appears.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

#TP Qualifiers 1 3 3 3 2 3 3 3 2 6

RDF-Star 1 1* 1* 3 2 1* 3 3 2 2*

N-Ary Rel. 2 3 3 6 4 3 3 4 4 6

Std. Reif. 3 3 4 5 8 4 4 2 2 8

Clauses FILTER – – � – – – – �� – –

FUNCTION – – � – – – – �� – –

UNION – – – – �SR – – – – –

OPTIONAL – – – – – – � – – –
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Table 6. Characteristics of queries of the REF benchmark regarding the number of
triple patterns and SPARQL clauses used per query. The number of checkmarcks (�)
indicates the number of times the clause appears. GT stands for the greater than
operator.

A-Q1 A-Q2 A-Q3 A-Q4 B-Q1 B-Q2 B-Q3 F-Q1 F-Q2 F-Q3 F-Q4 F-Q5

#TP Qualifiers 3 2 4 4 3 6 9 3 4 6 9 6

RDF-Star 1 1 2 2 1 2 3 1 2 2 3 2

N-Ary Rel. 4 4 5 5 4 8 12 4 5 7 12 8

Std. Reif. 4 5 5 6 4 10 15 5 6 10 15 10

Clauses COUNT – – � � – – – – – – – –

GROUP BY – – � – – – – – – – – –

FILTER – – – � – – – � � � � ��
FUNCTION – – – � – – – � � – – –

Operator (GT) – – – – – – – – – � � ��

5 Systematic Querying Scenario

The systematic querying scenario refers to the assessment of information retrieval
efficiency with diverse query loads and structures. We analyze the differential
behaviour of diverse series of queries over realistic and synthetic data for each
representation, measuring its performance time.

5.1 Experimental Setup

Data. We use both datasets presented in Sect. 3. The WD-AMC dataset is
used for analysing the behaviour with real-world queries in real-world data. We
reuse the REF benchmark to validate our results with their previously reported
analysis [28], and extend the resources to test and analyse two additional repre-
sentations, Qualifiers and N-Ary Relationships.

Fig. 4. Measured query evaluation time for the SPARQL WD-AMC dataset.
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Queries. For WD-AMC, we use 10 series of queries. Each series is comprised
of 20 variants of one query extracted from the QA benchmarks WebQuestion-
sSP [35] and GoogleAI3, which contain real questions from users made over
Google. We use the first queries shown in Table 2, and we introduce five addi-
tional queries, extracted from the same QA benchmarks, to study a wider variety
of query structures. The query variants are created by altering specific elements
in the query (e.g., years, actors, movies, characters) while maintaining the triple
patterns intact. Their characteristics are shown in Table 5. They are selected
to apply to the patterns that differentiate the representations variants of WD-
AMC. We note that, being extracted from real questions and not designed by us,
not all queries require the use of the reification solution in all representations.
This is especially remarkable for RDF-star, which is highlighted in the table, and
directly affects the results described below. Still, all queries are different across
the four representations.

The REF benchmark contains 12 queries divided into three series per app-
roach (A, B, and F). These series contain queries with variable length, complex-
ity, and computationally expensive clauses such as COUNT or FILTER, or operators
such as greater than (Table 6). For more details on the queries, we refer to [30]
for series A, [26] for series B, and [28] for series F.

Implementation. Previous studies [14] show no significant differences between
the proposed representations across different triplestores. For that reason, we
only use Jena Fuseki, which is an open-source implementation that can process
all four representations. Both datasets were uploaded to a Jena Fuseki v4.6.1
triplestore running on a single-node VM with a 4-cores CPU and 16GB of main
memory. To measure the efficiency of each representation, we measure the eval-
uation time while assessing the query complexity. Each set of queries for both
datasets is run in warm mode three times, and the average is shown as a result.

5.2 Results

Results on WD-AMC. Figure 4 shows the average query evaluation time on
the WD-AMC benchmark. As all queries are naturally asked by users, they are
typically not computationally expensive, returning results in less than 100 ms.
Q8 is the only exception, requiring more time as it contains additional clauses
(2 functions and 2 FILTER; cf. Table 5). In this case, N-Ary Relationships take
longer (around 1 min) as it contains more triple patterns than the other rep-
resentations. Most of the remaining queries show similar times, with Qualifiers
providing the quickest response on average7. In some queries, Standard Reifica-
tion needs a higher number of triple patterns compared to the other representa-
tions, resulting in higher response times. For Q5, in addition, this representation
requires the UNION clause to provide the complete set of results, a clause that is
not needed in the other representations. RDF-star performs the best for nearly
all queries, which may be due to having the smallest size and lowest number
of triple patterns per query. The queries for which this representation shows a
significantly increased response time involve expensive clauses or joins.



282 A. Iglesias-Molina et al.

Fig. 5. Measured query evaluation time for the REF benchmark.

Results on the REF Benchmark. Figure 5 depicts the results obtained for
the evaluation using the REF benchmark. RDF-star and Standard Reification
show similar results to those reported by Orlandi et al. [28]. We observe that for
Qualifiers, N-Ary Relationships, and Standard Reification, the measured times
follow a similar pattern in query evaluation time for all queries in contrast to
RDF-star. Qualifiers obtain the best results for almost all queries, presenting
a total execution time reduced by half compared to the other representations.6

The measured response times for RDF-star show a completely different behavior.
Most of the queries for which this representation presents an increased time
response involve joins. Meanwhile, RDF-star is not affected as much as the other
representations by the use of operators such as greater than (Table 6).

Addressing RQ3, query performance on both datasets is sensitive to the
choice of representation. The Qualifiers representation shows the quickest results
for demanding queries on average. Together with N-Ary Relationships and Stan-
dard Reification, these representations are usually less differentially affected by
a particular clause or pattern compared to RDF-star, as these three show sim-
ilar behaviour per query. RDF-star stands out for good performance for simple
queries (i.e., with one quoted triple) and logical operators such as greater than,
but it becomes highly inefficient when joins and clauses like FILTER or COUNT
are involved. RDF-star introduces quoted triples, a new element in the syntax
that implies different processing by triplestores compared to the other represen-
tations, and makes it the most susceptible to change between queries.

6 Knowledge Graph Embedding Scenario

Machine learning applications over graphs have relied on the idea of knowledge
graph embedding (KGE). KGE provides a mechanism to map the nodes and
edges in a KG into a high-dimensional vector space. The resulting vector repre-
sentations are then used for a variety of tasks, including link prediction, node
6

https://github.com/oeg-upm/kg-scenarios-eval/blob/main/REF-Benchmark/README.md.

https://github.com/oeg-upm/kg-scenarios-eval/blob/main/REF-Benchmark/README.md
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classification, graph classification, and entity resolution. In this section, we eval-
uate popular KGE methods on the task of knowledge graph completion (KGC),
which addresses the sparsity of a KG by predicting an object node given a sub-
ject node and a relation. We study the impact of the different KG representations
on KGC performance in terms of mean reciprocal rank (MRR) and hits@K.

6.1 Experimental Setup

Data. We use the WD-AMC dataset described in Sect. 3. RDF-star is not
used in this evaluation because the models that use this representation as
their input are not fir for large-scale data. To create the evaluation data, we
first extract all the triples containing a statement node and an object node
from each representation. In the example shown in Fig. 1, this would yield the
triples <wd:X, rdf:object, wd:Q103618>, <wd:Y, wdt:P166, wd:Q103618>, and
<wds:Z, ps:P166, wd:Q10361>. Next, for each representation, we randomly sam-
ple 10% of the respective triples into a test and validation set, and combine the
rest with the remaining triples of each representation to create the training sets.
After this procedure, we end up with the following number of triples for our
experiments: 1) validation set: 189,839, 2) test set: 189,839, 3) qualifiers train
set: 5,128,864, 4) n-ary train set: 3,610,155, and 5) standard reification train set:
5,440,482.

Methodology. KGE models learn a mathematical relationship between entities
and relationships that allow them to produce a likelihood score for an arbitrary
triple. The most common architecture for these models is the encoder-decoder
framework [11]. Traditionally, the encoder consists of learnable shallow embed-
dings (E ,R) that map each entity or relation to a high-dimensional vector, and
the decoder is a function that takes in the high-dimensional representations
and produces the likelihood score. Formally, these models could be defined as
L(s, r, o) = ψ(E(s),R(r), E(o)), where (s, r, o) is the given arbitrary triple, E is
the shallow embedding for entities, R is the shallow embedding for relations, ψ
is the decoder function, and L is the produced likelihood score. For our exper-
iments, we use three of the most common KGE models with publicly accessi-
ble large-scale implementations [23,36], namely RotatE [31], ComplEx [32], and
TransE [5]. We exclude graph neural network models from this study as none
had any publicly accessible implementation that could operate on the scale of
our dataset in a reasonable time [18].

Implementation. In the evaluation phase, we compare each positive sam-
ple with 4,096 negative samples and report the object prediction results on
the test set. Moreover, to mitigate the effect of random negative sampling
in the evaluation phase, we run each experiment five times and report the
best result. To make a fair comparison, we fix the following hyperparameters:
training steps = 300 k and batch size = 1024. As for the rest of the hyper-
parameters, they were tuned on the following ranges: embedding dimension
∈ {50, 100, 200} learning rate ∈ {0.003, 0.01, 0.03, 0.1}, regularization coefficient
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Table 7. KGC results for three KGE models. We bold the best result for a model.

RotatE ComplEx TransE

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Qualifiers 0.716 0.678 0.744 0.778 0.426 0.364 0.453 0.546 0.599 0.518 0.658 0.739

N-Ary Rel. 0.714 0.683 0.736 0.765 0.261 0.232 0.277 0.310 0.721 0.678 0.752 0.793

Std. Reif. 0.697 0.653 0.726 0.773 0.518 0.468 0.542 0.613 0.622 0.567 0.655 0.725

∈ {1e−4, 1e−5, 1e−6, 1e−7, 1e−8, 1e−9}, negative samples size ∈ {512, 1024},
adversarial temperature ∈ {0.5, 1.0}, and gamma ∈ {18, 12, 9, 6, 3, 2, 1}.

6.2 Results

Table 7 presents the experimental results of the models above on the KGC
task. We observe that each model has a specific best-performing representa-
tion with significant performance differences compared to the other representa-
tions. However, the performance gap decreases as the expressive power of the
model increases, indicating that the sheer expressive power of the models could
potentially overcome representational disadvantages. From the perspective of
representations, we observe that although two of the top three best-performing
models use N-Ary Relationships, Standard Reification is the best representation
on average. This phenomenon showcases the potential downfall of randomly mix-
and-matching models with representations.

Regarding RQ4, our experimental results showcase the importance of asso-
ciating models with a suitable representation. Failing to do so may lead to
degraded performance, as evident from the results obtained on N-Ary Rela-
tionships with ComplEx. Throughout our experiments, no single representation
consistently achieves the highest performance; however, we observe that a model
with superior expressive power, i.e., RotatE, can overcome potential representa-
tional shortcomings and perform consistently well over all representations.

7 Related Work

Multiple studies have assessed the efficiency of different representations in terms
of data management efficiency with computationally expensive queries, measur-
ing metrics such as execution time, storage size, or number of triples. The Sin-
gleton Properties [26] model is compared in its inception with Standard Reifica-
tion [24] using two series of queries of increasing complexity. Hernández et al. [14]
test Wikidata represented in N-Ary Relationships, Standard Reification, Single-
ton Properties and Named Graphs over multiple triplestores. They remark the
processing difficulties for Singleton Properties due to the high number of created
properties. In a follow-up work, Hernández et al. [15] investigate how Wikidata
in the same representations as their previous study performed on two SPARQL
triplestores (Virtuoso and Blazegraph), a relational database (PostgreSQL), and
a graph database (Neo4J), reporting that Virtuoso performed best among the
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data stores. Frey et al. [9] extends this work’s evaluation to the DBpedia dataset
and its representations to include their proposal Companion Property and Blaze-
graph’s Reification Done Right,7 which is currently known as RDF-star) This
work employs several data stores, highlighting which representation performs
best in each store. More recently, the REF-benchmark [28] is proposed to evalu-
ate different reification approaches with the inclusion of RDF-star, providing a
version of the Biomedical Knowledge Repository (BKR) dataset [30] and three
series of queries for each representation that can be applied to different triple-
stores. Additionally, there are studies that compare Property Graphs and RDF
with regards to query performance [2,6] and model interoperability [3,4], high-
lighting the advances of Property Graphs.

Hence, studies so far focus on the behavior of multiple representations over
triplestores, and occasionally relational databases or other graph databases. To
the best of our knowledge, there is no comprehensive evaluation of KG repre-
sentations across consumer scenarios beyond triplestores and studies of query
efficiency, a gap filled in by the extensive evaluation of different representations
and scenarios in this paper. Yet, we include the systematic querying scenario
in our work to (i) validate our experimental setup with the REF benchmark,
obtaining similar results to ones previously reported, (ii) enrich it with two new
representations (N-Ary Relationships and Wikidata qualifiers), and (iii) mimic
a real-world scenario with real data and queries.

8 Discussion and Conclusions

8.1 Summary of Results

In this paper, we assessed the fitness of different knowledge graph represen-
tations in three consumer scenarios: knowledge exploration, systematic query-
ing, and KG embedding. While no single representation model was optimal for
all scenarios, we found significant differences for particular consumer scenar-
ios, summarized in Table 8. We can extract the following conclusions from our
study: (i) Standard Reification is the least suitable for users. Its anti-intuitive
structure results time-consuming to navigate with, and it introduces additional
complexity to retrieve correct and complete information. (ii) RDF-star still needs
improved support in all studies scenarios, as it is underway of becoming part of
the RDF 1.2 specification [13]. At the moment, it is risky to use it in high-
demanding scenarios. (iii) Qualifiers obtain steadily better results for retrieving
results in high-demanding querying scenarios. Despite being restricted to Wiki-
data at the moment, its representation could be considered to be adopted in more
knowledge graphs. (iv) Analysing and understanding how each embedding model
works is key to select a representation for graph completion (and hence, addi-
tional embedding-based tasks). While for the other scenarios all representations
showed acceptable behaviour, here the decision is critical. (v) Promoting the use
of interfaces such as browsers highly improves the user experience in knowledge

7
https://github.com/blazegraph/database/wiki/Reification Done Right.

https://github.com/blazegraph/database/wiki/Reification_Done_Right
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Table 8. Summary of the fitness for each representation evaluated in the studied
scenarios, where � means suitable, � is acceptable, X is avoidable and * indicates that
the value is not tested but equivalent to Qualifiers.

User interaction Simple graphs and queries Large graphs and demanding queries Graph completion

Qualifiers � � � � (RotatE)

RDF-star �* � � –

N-Ary Rel. � � � � (TransE)

Std. Reif. X � � � (ComplEx)

exploration. These interfaces help mask the representation complexity and differ-
ences, which directly influences the adoption and usability of semantic resources,
an aspect usually overlooked. (vi) Despite the lack of a good-for-all solution,
promoting interoperability among representations when knowledge graphs are
consumed for very different purposes is potentially useful.

8.2 Limitations

Knowledge graphs are built for reuse across different applications, and their
fitness for these applications depends on representational choices. Our paper
provided insights into the fitness of four representations for three diverse con-
sumption scenarios. We reflect on three key design decisions and point to future
extensions of this study that can increase the significance of its findings.

1. Representational choices - Our study considered a subset of represen-
tations, prioritized for their popularity in prior work. Namely, we selected
two RDF-based representations (the Standard Reification proposed in the first
RDF Recommendation and the widely used N-Ary Relationships); the Wikidata
model, and RDF-star. Other RDF-based representations (e.g. Singleton Proper-
ties) and property graphs were out of scope of this paper, but their inclusion in
follow-up work is valuable. The choice of representations directly influences the
selection of particular techniques and tools, as a representation may be limited
to a single technology and cannot be processed by others. This prevents evaluat-
ing all existing representations under the exact same conditions. To ensure fair
evaluation conditions, property graphs were not included in this work. Hence,
further work is needed to include additional relevant representations while ensur-
ing that differences in performance are due to the representation and not the
underlying implementation.

2. Task choices - The tasks studied in this paper were derived by surveying
popular KG tasks from recent research and associating them with three consumer
scenarios. For knowledge exploration, we selected two representative tasks, yet, it
remains to be seen whether our findings will generalize to other exploratory tasks,
e.g., graph navigation visualization. For systematic querying, we extend previous
studies to address a real-world scenario. The generality of this scenario can be
increased with a complete real-world dataset instead of a subset with increas-
ingly complex queries and with additional query languages (e.g., Cypher [8] or
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Linked Data Fragments [33]). For KG embedding, a vibrant research community
has explored a vast space of learning methods, applications, and benchmarks.
We limit the task to KG completion and investigate simpler, widely used models
to focus on a common real-world scenario. We believe these choices balance the
likely trade-offs in many deployed settings, where institutional knowledge and
dataset size preclude the adoption of more advanced techniques. Alternatives
in the task space (e.g., node classification or entity resolution) and the model
space, where graph neural network-based architectures can more directly repre-
sent complex graph structures, are promising extensions we hope to investigate
in future work.

3. Participant sample - The remaining limitation refers to the sample of par-
ticipants in the knowledge exploration user study. For this first study, we chose
Master students because of their short and comparable experience with knowl-
edge graph representations and tasks. We considered them a better sample than
colleague practitioners, who may be already biased toward the representations
and technologies they use. As a next step of this work, we plan to include a more
varied sample of participants, i.e., to include industry experts, junior students,
academics, and software developers.

Supplemental Material Statement: Datasets are available from Zenodo [19],
queries and supplementary resources from GitHub [20].
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