
5Solutions to the Exercises

Exercise 1.1: Manipulating Spinor Indices

The sigma-matrix four-vector is defined as .(σ̄ μ)α̇α := (1,−σ )T, where
.σ = (σ̂1, σ̂2, σ̂3) is the list of the Pauli matrices .σ̂i .1 We rewrite .(σμ)αα̇ =
−εα̇β̇ (σ̄ μ)β̇βεβα in matrix notation, as

.σμ = −
(

0 1
−1 0

)
· σ̄ μ ·

(
0 1

−1 0

)
. (5.1)

Substituting the explicit expressions for .σ̄ μ gives .σ 0 = 1 and .σ i = σ̂i , hence .σμ =
(1, σ )T. Multiplying the latter by the metric tensor proves the second identity,

.σμ = ημνσ
ν =

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝
1

σ̂1

σ̂2

σ̂3

⎞
⎟⎟⎠ = (1,−σ )T . (5.2)

To prove the third identity, .Tr (σμσ̄ ν) = 2ημν , we consider it for fixed values
of .μ and .ν. The facts that the Pauli matrices have vanishing trace and obey the
anti-commutation relation .{σ̂i , σ̂j } = 2δij imply that

.
Tr

(
σ 0σ̄ 0

) = Tr (1) = 2 , Tr
(
σ 0σ̄ i

) = −Tr
(
σ̂i

) = 0 ,

Tr
(
σ iσ̄ 0

) = Tr
(
σ̂i

) = 0 , Tr
(
σ iσ̄ j

) = −Tr
(
σ̂i σ̂j

) = −2δij ,
(5.3)

for .i, j = 1, 2, 3. Putting these together gives the third identity.

1 For the sake of clarity, here we use .σ̂i (with .i = 1, 2, 3) for the ith Pauli matrix. This way,
the symbol .σ unambiguously refers to the sigma-matrix four-vectors and their components. This
distinction is necessary, as Eq. (5.2) implies that .σi = −σ̂i .
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The Pauli matrices and the identity matrix form a basis of all .2×2 matrices. Any
.2 × 2 matrix .Mαα̇ can thus be expressed as

.Mαα̇ = mμ(σμ)αα̇ . (5.4)

By contracting both sides by .(σ̄ ν)α̇β and computing the trace using the third
identity, we can express the coefficients of the expansion in terms of M as .mμ =
Tr (Mσ̄μ) /2. Substituting this into the expansion of .Mαα̇ gives

.2Mαα̇ = Mββ̇(σ̄μ)β̇β(σμ)αα̇ . (5.5)

Since this holds for any matrix M , it follows that

.(σμ)αα̇(σ̄μ)β̇β = 2 δβ
αδ

β̇
β . (5.6)

Contracting both sides with suitable Levi-Civita symbols gives the fourth identity.

Exercise 1.2: Massless Dirac Equation andWeyl Spinors

(a) Any Dirac spinor ξ can be decomposed as ξ = ξ+ + ξ−, where ξ± satisfy the
helicity relations

.P ±ξ± = ξ± , P±ξ∓ = 0 , (5.7)

with P± = (1 ± γ 5)/2. Using the Dirac representation of the γ matrices in
Eq. (1.24) we have that

.P± =
(

12 ±12

±12 12

)
. (5.8)

The helicity relations then constrain the form of ξ± to have only two independent
components:

.ξ+ =
(
ξ0, ξ1, ξ0, ξ1

)T
, ξ− =

(
ξ0, ξ1,−ξ0,−ξ1

)T
. (5.9)

Indeed, u+ and v− (u− and u+) have the form of ξ+ (ξ−). We now focus
on ξ+. We change variables from kμ to k± and eiφ , which have the benefit of
implementing k2 = 0. Then we have that

.γ μkμ =

⎛
⎜⎜⎜⎝

k++k−
2 0 k−−k+

2 −e−iφ
√

k+k−
0 k++k−

2 −eiφ
√

k+k− k+−k−
2

k+−k−
2 e−iφ

√
k+k− − k++k−

2 0
eiφ

√
k+k− k−−k+

2 0 − k++k−
2

⎞
⎟⎟⎟⎠ . (5.10)
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Plugging the generic form of ξ+ into the Dirac equation γ μkμξ+ = 0 gives one
equation, which fixes ξ1 in terms of ξ0,

.ξ1 = eiφ
/

k−
k+ ξ0 . (5.11)

Since the equation is homogeneous, the overall normalisation is arbitrary.
Choosing ξ0 = √

k+/
√
2 gives the expressions for ξ+ = u+ = v− given above.

(b) For any Dirac spinor ξ we have

.ξ̄P± = ξ†γ 0P± = ξ†P∓γ 0 =
(
γ 0P±ξ

)†
, (5.12)

where we used that (γ 5)† = γ 5 and {γ 5, γ 0} = 0. From this it follows that

.ū±P± = 0 , ū±P∓ = ū± , v̄±P± = v̄± , v̄±P∓ = 0 . (5.13)

(c) Through matrix multiplication we obtain the explicit expression of U ,

.U = 1√
2

(
12 −12

12 12

)
, (5.14)

which is indeed a unitary matrix. The Dirac matrices in the chiral basis then are

.γ 0
ch = Uγ 0U† =

(
0 12×2

12×2 0

)
, γ i

ch = Uγ iU† =
(

0 σ i

−σ i 0

)
,

(5.15)

with i = 1, 2, 3. Putting these together gives

.γ
μ
ch =

(
0 σμ

σμ 0

)
. (5.16)

Similarly, we obtain the expression of γ 5, which in this basis is diagonal,

.γ 5
ch = Uγ 5U† =

(−12 0
0 12

)
. (5.17)

Finally, the solutions to the Dirac equation in the chiral basis are given by

.Uu+ =
(
0, 0,

√
k+, eiφ

√
k−

)T
, Uu− =

(√
k−e−iφ,−√

k+, 0, 0
)T

,

(5.18)

and similarly for v±.
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(d) The product of four Dirac matrices in the chiral representation (5.16) is given
by

.γ μγ νγ ργ τ =
(

σμσ̄ νσρσ̄ τ 0
0 σ̄ μσ νσ̄ ρσ τ

)
. (5.19)

Multiplying to the right by

.
1

2
(1 − γ5) =

(
1 0
0 0

)
(5.20)

selects the top left entry,

.
1

2
γ μγ νγ ργ τ (1 − γ5) =

(
σμσ̄ νσρσ̄ τ 0

0 0

)
. (5.21)

Taking the trace of both sides of this equation finally gives Eq. (1.29). Note
that this result does not depend on the representation of the Dirac matrices, as
the unitarity matrices relating different representations drop out from the trace.
Using 1 + γ5 instead gives a relation for Tr (σ̄ μσ νσ̄ ρσ τ ).

Exercise 1.3: SU(Nc) Identities

(a) The Jacobi identity for the generators (1.49) can be proven directly by expanding
all commutators. We recall that the commutator is bilinear. The first term on the
left-hand side gives

.

[
T a, [T b, T c]

]
= T aT bT c − T aT cT b − T bT cT a + T cT bT a . (5.22)

Summing both sides of this equation over the cyclic permutations of the indices
({a, b, c}, {b, c, a}, {c, a, b}) gives Eq. (1.49).

(b) We substitute the commutation relations (1.46) into the Jacobi identity for the
generators (1.49). The first term gives

.

[
T a, [T b, T c]

]
= −2f bcef aegT g . (5.23)

By summing over the cyclic permutations of the indices and removing the
overall constant factor we obtain

.

(
f abef ceg + f bcef aeg + f caef beg

)
T g = 0 . (5.24)
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We recall that repeated indices are summed over. Since the generators T g are
linearly independent, their coefficients in Eq. (5.24) have to vanish separately.
This gives the Jacobi identity (1.50).

(c) Any Nc × Nc complex matrix M can be decomposed into the identity 1Nc and
the su(Nc) generators T a (with a = 1, . . . , N2

c − 1),

.M = m0 1Nc + ma T a . (5.25)

As usual, the repeated indices are summed over. The coefficients of the
expansion can be obtained by multiplying both sides by 1N and T a , and taking
the trace. Using the tracelessness of T a and Tr T aT b = δab we obtain that
m0 = Tr(M)/Nc and ma = Tr(MT a). We then rewrite the expansion as

.

[(
T a

) j1
i1

(
T a

) j2
i2

− δ
j2

i1
δ

j1
i2

+ 1

Nc

δ
j1

i1
δ

j2
i2

]
M

i2
j2

= 0 . (5.26)

Since this equation holds for any complex matrix M , it follows that the
coefficient of M

i2
j2

vanishes. This yields the desired relation.

Exercise 1.4: Casimir Operators

(a) The commutator of T aT a with the generators T b is given by

.

[
T aT a, T b

]
= T a

[
T a, T b

]
+

[
T a, T b

]
T a

= i
√
2f abc

(
T aT c + T cT a

)
,

(5.27)

which vanishes because of the anti-symmetry of f abc. In the first line we used
that [AB,C] = A[B,C]+[A,C]B, which can be proven by expanding all com-
mutators, and in the second line we applied the commutation relations (1.46).

(b) The Casimir invariant of the fundamental representation follows directly from
the completeness relation (1.51),

.

(
T a

F

) k

i

(
T a

F

) j

k
= δ

j
i δ k

k − 1

Nc

δ k
i δ

j
k

= N2
c − 1

Nc

(
1Nc

)
ij

,

(5.28)

from which we read off that CF = (N2
c − 1)/Nc. For the adjoint representation,

we use Eq. (1.56) to express the generators in terms of structure constants,

.
(
T a

AT a
A

)bc = 2f bakf cak . (5.29)
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We express one of the structure constants in terms of generators through
Eq. (1.48),

.
(
T a

AT a
A

)bc = −i2
√
2 Tr

(
T b

F T a
F T k

F

)
f cak , (5.30)

where we also used the anti-symmetry of f cak to remove the commutator from
the trace. Next, we move f cak into the trace and rewrite f cakT k

F in terms of a
commutator,

.
(
T a

AT a
A

)bc = 2Tr
(
T b

F T a
F [T a

F , T c
F ]

)
. (5.31)

Applying the completeness relation (1.51) finally gives

.
(
T a

AT a
A

)bc = 2Nc (1)bc , (5.32)

from which we see that CA = 2Nc.
Note that in many QCD contexts it is customary to normalise the generators

so that Tr(T aT b) = δab/2, as opposed to Tr(T aT b) = δab as we do here. This
different normalisation results in CA = Nc and CF = (N2

c − 1)/(2Nc).

Exercise 1.5: Spinor Identities

The identities (a) and (b) follow straightforwardly from the definition of the bra-ket
notation and from the expression of .γ μ in terms of Pauli matrices,

.[i|γ μ|j > = (
0 λ̃i

) ·
(

0 σμ

σ̄μ 0

)
·
(

λj

0

)
= (λ̃i)α̇(σ̄ μ)α̇α(λj )α , . (5.33)

<i|γ μ|j ] = (
λi 0

) ·
(

0 σμ

σ̄μ 0

)
·
(
0
λ̃j

)
= λα

i (σμ)αα̇λ̃α̇
j . (5.34)

Setting .j = i in the previous identities and using that .(σμ)ββ̇ = εβαεβ̇α̇(σ̄ μ)α̇α

gives the relation (c),

.[i|γ μ|i> = εα̇β̇ λ̃
β̇
i (σ̄ μ)α̇αεαβλ

β
i = λ

β
i (σμ)ββ̇ λ̃

β̇
i = <i|γ μ|i] . (5.35)

We obtain the relation (d) by substituting the identities .λ̃α̇
i λα

i = p
μ
i (σ̄μ)α̇α and

.tr (σμσ̄ ν) = 2ημν into (b) with .j = i,

.<i|γ μ|i] = (σμ)αα̇(pi)ν(σ̄
ν)α̇α = 2pμ

i . (5.36)
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In order to prove the Schouten identity, we recall that a spinor .λi is a two-
dimensional object. We can therefore expand .λ3 in a basis constructed from .λ1 and
.λ2,

.λα
3 = c1λ

α
1 + c2λ

α
2 . (5.37)

Contracting both sides of this equation by .λ1 and .λ2 gives a linear system of
equations for the coefficients .c1 and .c2,

.

{
<31> = c2<21>
<32> = c1<12>

. (5.38)

Substituting the solution of this system into Eq. (5.37) and rearranging the terms
gives the Schouten identity. Finally, the identity a) and .(σ̄ μ)α̇β(σ̄μ)β̇α = 2εα̇β̇εβα

give the Fierz rearrangement,

.

[i|γ μ|j >[k|γμ|l> = (λ̃i)α̇(σ̄ μ)α̇β(λj )β(λ̃k)β̇ (σ̄μ)β̇α(λl)α

= 2(λ̃i)α̇εα̇β̇ (λ̃k)β̇ (λj )βεβα(λl)α

= 2[ik]<lj > .

(5.39)

Exercise 1.6: Lorentz Generators in the Spinor-Helicity Formalism

(a) The Lorentz generators in the scalar representation are obtained by setting to
zero the x-independent representation matrices Sμν in Eq. (1.10):

.Mμν = i

(
xμ ∂

∂xν

− xν ∂

∂xμ

)
. (5.40)

We act with Mμν on a generic function f (x), which we express in terms of its
Fourier transform as f (x) = f

d4p eip·xf̃ (p). By integrating by parts and using
xμ = −i ∂

∂pμ
eip·x we obtain

.Mμνf (x) =
f

d4p eip·xM̃μνf̃ (p) , (5.41)

where

.M̃μν = i

(
pμ ∂

∂pν

− pν ∂

∂pμ

)
(5.42)
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is the momentum-space realisation of the Lorentz generators. Indeed, one can
verify that this form of the generators satisfies the commutation relations of the
Poincaré algebra in Eqs. (1.8) and (1.9).

(b) We begin with mαβ . It is instructive to spell out the indices of S
μν
L ,

.
(
S

μν
L

)
αβ

= i

4
εβγ

[(
σμ

)
αα̇

(
σ̄ ν

)α̇γ − (
σν

)
αα̇

(
σ̄ μ

)α̇γ
]

. (5.43)

Contracting it with M̃μν and doing a little spinor algebra gives

.mαβ = 1

2
λβ

(
σμ

)
αα̇

λ̃α̇ ∂

∂pμ
+ 1

2
λαλ̃α̇

(
σ̄ μ

)α̇γ
εγβ

∂

∂pμ
. (5.44)

We now need to express the derivatives with respect to pμ in terms of derivatives
with respect to λα and λ̃α̇ . For this purpose, we use the identity pμ =
λ̃α̇λα (σμ)αα̇ /2 (see Exercise 1.5), which allows us to use the chain rule,

.
∂

∂λα
= ∂pμ

∂λα

∂

∂pμ
= 1

2

(
σμ

)
αα̇

λ̃α̇ ∂

∂pμ
. (5.45)

This takes care of the first term on the RHS of Eq. (5.44). For the second term,
we do the same but with the equivalent identity pμ = λαλ̃α̇ (σ̄ μ)α̇α /2. Using
that ∂λβ

∂λα = εβα we obtain

.
∂

∂λα
= 1

2
λ̃β̇

(
σ̄ μ

)β̇β
εβα

∂

∂pμ
. (5.46)

Substituting Eqs. (5.45) and (5.46) into Eq. (5.44) finally gives the desired
expression of mαβ . The computation of mα̇β̇ is analogous.

(c) The n-particle generators are given by

.

mαβ =
nΣ

k=1

(
λkα

∂

∂λ
β
k

+ λkβ

∂

∂λα
k

)
, mα̇β̇ =

nΣ
k=1

⎛
⎝λ̃kα̇

∂

∂λ̃
β̇
k

+ λ̃kβ̇

∂

∂λ̃α̇
k

⎞
⎠ ,

M̃μν = i
nΣ

k=1

(
p

μ
k

∂

∂pkν

− pν
k

∂

∂pkμ

)
.

(5.47)

We act with mαβ and mα̇β̇ on <ij > = λ
γ

i λj γ and [ij ] = λ̃i γ̇ λ
γ̇

j . <ij > ([ij ])
depends only on the λi (λ̃i) spinors, and is thus trivially annihilated by mα̇β̇
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(mαβ ). With a bit more of spinor algebra we can show that <ij > is annihilated
also by mαβ ,

.

mαβ<ij > =
nΣ

k=1

[
δikδ

γ
βλk αλj γ + δjkεγβλk αλ

γ

i + (α ↔ β)
]

=

= λi αλj β − λi βλj α + (α ↔ β) = 0 .

(5.48)

Similarly we can show that mα̇β̇ [ij ] = 0. The Lorentz generators are first-order
differential operators. As a result, any function of a Lorentz-invariant object is
Lorentz invariant as well. We can thus immediately conclude that sij = <ij >[ji]
is annihilated by mαβ and mα̇β̇ . Alternatively, we can show that

.M̃μνsij = 2i
[
piμpjν + piνpjμ − (μ ↔ ν)

] = 0 . (5.49)

Exercise 1.7: Gluon Polarisations

(a) In order to construct an explicit expression for the polarisation vectors we will
write a general ansatz and apply constraints to fix all free coefficients. The
polarisation vector εα̇α

i is a four-dimensional object which satisfies constraints
involving the corresponding external momentum pα̇α

i = λ̃α̇
i λα

i and reference
vector rα̇α

i = μ̃α̇
i μα . For generic kinematics, i.e. for pi · ri /= 0 (and thus

<λiμi> /= 0 and [λ̃i μ̃i] /= 0), one can show that λ̃α̇
i λα

i , μ̃
α̇
i μα

i , λ̃
α̇
i μα

i and μ̃α̇
i λα

i

are linearly independent, and thus form a basis in which we can expand εα̇α
i .

Our ansatz for εα̇α
i therefore is

.εα̇α
i = c1 λ̃α̇

i λα
i + c2 μ̃α̇

i μα
i + c3 λ̃α̇

i μα
i + c4 μ̃α̇

i λα
i . (5.50)

The transversality and the gauge choice,

.

εα̇α
i (pi)αα̇ = c2<μiλi>[λ̃i μ̃i] = 0 ,

εα̇α
i (ri)αα̇ = c1<λiμi>[μ̃i λ̃i] = 0 ,

(5.51)

imply that c1 = c2 = 0. The light-like condition,

.εα̇α
i (εi)αα̇ = 2c3c4<λiμi>[λ̃i μ̃i] = 0 , (5.52)

has two solutions: c3 = 0 and c4 = 0. We parametrise the two solutions as

.εα̇α
A,i = nAλ̃α̇

i μα
i , εα̇α

B,i = nBμ̃α̇
i λα

i . (5.53)
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Next, we normalise the two solutions such that εA,i · εB,i = −1 and ε∗
A,i = εB,i .

This implies that

.nAnB = −√
2

<λiμi>
√
2

[λ̃i μ̃i]
, n∗

A = nB . (5.54)

There is now some freedom in fixing nA and nB , which we must use to ensure
that the two solutions have the correct helicity scaling. We may parametrise
nA = n eiϕ and nB = n e−iϕ with real n and ϕ, and fix the phase ϕ by requiring
that the solutions are eigenvectors of the helicity operator. It is however simpler
to follow a heuristic approach. Recalling that <λiμi>∗ = −[λ̃i μ̃i], we notice
that a particularly simple solution to the constraints (5.54) is given by nA =
−√

2/<λiμi> and nB = √
2/[λ̃i μ̃i]. Following this guess, we have two fully

determined vectors which satisfy all constraints of the polarisation vectors:

.εα̇α
A,i = −√

2
λ̃α̇

i μα
i

<λiμi> , εα̇α
B,i = √

2
μ̃α̇

i λα
i

[λ̃i μ̃i]
. (5.55)

Finally, we need to check that εα̇α
A,i and εα̇α

B,i are indeed eigenvectors of the
helicity generator h in Eq. (1.122), which in this case takes the form

.h = 1

2

[
−λα

i

∂

∂λα
i

− μα
i

∂

∂μα
i

+ λ̃α̇
i

∂

∂λ̃α̇
i

+ μ̃α̇
i

∂

∂μ̃α̇
i

]
. (5.56)

The explicit computation yields that

.hεα̇α
A,i = +εα̇α

A,i , hεα̇α
B,i = −εα̇α

B,i . (5.57)

We can therefore identify εα̇α
A,i = εα̇α+,i and εα̇α

B,i = εα̇α−,i , which completes the
derivation.

(b) We rewrite the spinor expressions for the polarisation vectors as Lorentz vectors
using the identities of Exercise 1.5,

.ε
μ
+,i = − 1√

2

μα
i (σμ)αα̇λ̃α̇

i

<λiμi> , ε
μ
−,i = 1√

2

λα
i (σμ)αα̇μ̃α̇

i

[λ̃i μ̃i]
. (5.58)

Plugging these expressions into the polarisation sum gives

.

Σ
h=±

ε
μ
h,iε

∗ν
h,i = −1

2

(σμ)αα̇λ̃α̇
i λ

β
i (σ ν)ββ̇ μ̃

β̇
i μα

i + (μ ↔ ν)

<λiμ>[λ̃i μ̃i]
. (5.59)
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Next, we rewrite the numerator in terms of traces as

.

Σ
h=±

ε
μ
h,iε

∗ν
h,i = −1

2

Tr [σμpiσ
νri] + (μ ↔ ν)

<λiμ>[λ̃i μ̃i]
. (5.60)

We then use the identity (1.29) to rewrite the trace of Pauli matrices in terms of
Dirac matrices. Finally, by using

.

Tr
(
γ μγ νγ ργ τ

) = 4
(
ημνηρτ − ημρηντ + ημτηνρ

)
,

Tr
(
γ μγ νγ ργ τ γ5

) = −4 i εμνρτ ,
(5.61)

we obtain

.

Σ
h=±

ε
μ
h,iε

∗ν
h,i = −ημν + p

μ
i rν

i + pν
i r

μ
i

pi · ri
. (5.62)

Exercise 1.8: Colour-Ordered Feynman Rules

We start from the full Feynman rule four-point vertex (1.66) contracted with dummy
polarisation vectors .εi ,

.V4 = −ig2 f abe f cde [(ε1 · ε3)(ε2 · ε4) − (ε1 · ε2)(ε3 · ε4)] + cyclic , (5.63)

and use .f abe f cde = −Tr([T a, T b] [T c, T d ])/2, which is obtained from
Eqs. (1.48) and (1.51). Note that the .U(1) piece cancels out here. Expanding
out the commutators in the traces and collecting terms of identical colour ordering
gives

.V4 = ig2

2
Tr

(
T aT bT cT d

) [
2(ε1 · ε2)(ε3 · ε4) − (ε1 · ε3)(ε2 · ε4)

− (ε1 · ε4)(ε2 · ε3)
] + cyclic , (5.64)

which is the result quoted in Eq. (1.149).

Exercise 1.9: Independent Gluon Partial Amplitudes

(a) Taking parity and cyclicity into account we have the following independent four-
gluon tree-level amplitudes:

.Atree
4 (1+, 2+, 3+, 4+) , Atree

4 (1−, 2+, 3+, 4+) ,

Atree
4 (1−, 2−, 3+, 4+) , Atree

4 (1−, 2+, 3−, 4+) .
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The last two are related via the U(1) decoupling theorem as

.

Atree
4 (1−, 2+, 3−, 4+) = −Atree

4 (1−, 2+, 4+, 3−) − Atree
4 (1−, 4+, 2+, 3−)

= −Atree
4 (3−, 1−, 2+, 4+) − Atree

4 (3−, 1−, 4+, 2+) .

(5.65)

Hence only the three amplitudes Atree
4 (1+, 2+, 3+, 4+), Atree

4 (1−, 2+, 3+, 4+)

and Atree
4 (1−, 2−, 3+, 4+) are independent. In fact the first two of this list

vanish, so there is only one independent four-gluon amplitude at tree-level to
be computed.

(b) Moving on to the five-gluon case, we have the four cyclic and parity independent
amplitudes

.Atree
5 (1+, 2+, 3+, 4+, 5+) , Atree

5 (1−, 2+, 3+, 4+, 5+) ,

Atree
5 (1−, 2−, 3+, 4+, 5+) , Atree

4 (1−, 2+, 3−, 4+, 5+) .

Looking at the following U(1) decoupling relation we may again relate the last
amplitude in the above list to the third one

.

Atree
5 (2+, 3−, 4+, 5+, 1−) =

= −Atree
5 (3−, 2+, 4+, 5+, 1−) − Atree

5 (3−, 4+, 2+, 5−, 1−)

− Atree
5 (3−, 4+, 5+, 2+, 1−)

= −Atree
5 (1−, 3−, 2+, 4+, 5+) − Atree

5 (1−, 3−, 4+, 2+, 5+)

− Atree
5 (1−, 3−, 4+, 5+, 2+) .

(5.66)

Hence also for the five-gluon case there are only three independent ampli-
tudes: Atree

5 (1+, 2+, 3+, 4+, 5+), Atree
5 (1−, 2+, 3+, 4+, 5+), Atree

5 (1−, 2−, 3+,

4+, 5+). The first two in this list vanish, leaving us with one independent and
non-trivial five-gluon tree-level amplitude, of the MHV type.

Exercise 1.10: TheMHV3 Amplitude

Using the three-point vertex in Eq. (1.149) we obtain

.

Atree
3

(
1+, 2+, 3−) = ig√

2

{
(ε+,1 · ε+,2) (p1 − p2) · ε−,3

+ (ε+,2 · ε−,3) (p2 − p3) · ε+,1 + (ε−,3 · ε+,1) (p3 − p1) · ε+,2
}
.

(5.67)
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Choosing the same reference momentum for all polarisations, .rα̇α = μ̃α̇μα , we
have

.ε+,1 · ε+,2 = 0 , ε+,i · ε−,j = − <μj >[μi]
<iμ>[jμ] , (pi − pj ) · ε+,k = √

2
[ki]<μi>

<kμ> ,

(5.68)

where we used that .pi + pj + pk = 0. Substituting these into Eq. (5.67) yields

.

Atree
3

(
1+, 2+, 3−) = ig

<μ3>
[3μ]<1μ><2μ>

(
[12][μ2]<2μ> − [1μ]

−<μ1>[12]' '' '
<μ3>[32]

)

= ig
<μ3>[12]

[3μ]<1μ><2μ>
( −[μ3]<3μ>' '' '

[μ2]<2μ> + <μ1>[1μ]
)

= −ig
<μ3>2[12]
<1μ><2μ> .

(5.69)

Since the left-handed spinors are collinear, we may set .λ2 = aλ1 and .λ3 = bλ1.
Momentum conservation .λ1(λ̃1 + aλ̃2 + bλ̃3) = 0 then implies that .a = [31]/[23]
and .b = [12]/[23]. Substituting these into Eq. (5.69) finally gives

.Atree
3

(
1+, 2+, 3−) = −ig

[12]3
[23][31] . (5.70)

Exercise 1.11: Four-Point Quark-Gluon Scattering

There are two colour-ordered diagrams contributing to .Atree
q̄qgg(1

−
q̄ , 2+

q , 3−, 4+):

.

(5.71)
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The first graph (I) is proportional to .[2|/ε3,−(/p1 + /p2)/ε4,+|1> , which vanishes for
the reference-vector choice .μ4 μ̃4 = p1. This is so as

./ε4,+ = −
√
2

<4μ4>
(|4]<μ4| + |μ4>[4|

) ⇒ /ε4,+|1> = −
√
2

<4μ4> |4]<μ41> μ4=λ1= 0 .

(5.72)

Evaluating the second graph (II) with the colour-ordered Feynman rules we obtain

.(II) = ig2

2q2
[2|γμ|1>

[
(ε3,− · ε4,+) p

μ
34' '' '

(1)

+ ε
μ
4,+ (p4q · ε3,−)' '' '

(2)

+ ε
μ
3,− (pq3 · ε4,+)' '' '

(3)

]
,

(5.73)

where .q = p1 + p2 and .pij = pi − pj . The term .(2) vanishes for our choice
.μ4 μ̃4 = p1,

.(2) ∝ [2|/ε4,+|1> μ4μ̃4=p1= 0 . (5.74)

For the term .(3), we note that ./ε3,− = √
2 ( |3> [μ3| + |μ3] <3| )/[3μ3] to find

.(3) ∝ [2|/ε−
3 |1> =

√
2

[3μ3] [2μ3] <31> , (5.75)

which is killed by the choice .μ3μ̃3 = p2. Hence, for this choice of reference vectors
only the term .(1) in Eq. (5.73) contributes. One has

.ε3,− · ε+,4 = −<μ43> [μ3 4]
<4μ4> [3μ3]

μ3=λ2,μ4=λ1= −<13> [24]
<41> [32] , (5.76)

and, using momentum conservation,

.[2|(/p3 − /p4)|1> = 2 [23]<31> . (5.77)

Inserting these into the term .(1) of Eq. (5.73) and using .q2 = <12>[21] yields

.Atree
q̄qgg(1

−
q̄ , 2+

q , 3−, 4+) = −ig2 <13>2
<12><41>

−[21]<13>' '' '
[24]<43>
[21]<43> = −ig2 <13>3<23>

<12><23><34><41> ,

(5.78)
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as claimed. The helicity count of our result is straightforward and correct:

.h1[Atree
q̄qgg] = −1

2
(3 − 1 − 1) = − 1

2 , h2[Atree
q̄qgg] = − 1

2 (1 − 1 − 1) = + 1
2 ,

h3[Atree
q̄qgg] = − 1

2 (4 − 1 − 1) = −1 , h4[Atree
q̄qgg] = − 1

2 (0 − 1 − 1) = +1 .

Exercise 2.1: The Vanishing Splitting Function Splittree+ (x, a+, b+)

We parametrise the collinear limit .5+ || 6+ by

.λ5 = √
x λP , λ̃5 = √

x λ̃P , λ6 = √
1 − x λP , λ̃5 = √

1 − x λ̃P ,

(5.79)

with .P = λP λ̃P = p5 + p6. Substituting this into the Parke-Taylor formula (1.192)
for .Atree

6 (1−, 2−, 3+, 4+, 5+, 6+) gives

.Atree
6 (1−, 2−, 3+, 4+, 5+, 6+)

5||6−→ g√
x(1 − x) <56>

ig3<12>4
<12><23><34><4P ><P1> .

(5.80)

Comparing this to the expected collinear behaviour from Eq. (2.5),

.
Atree
6 (1−, 2−, 3+, 4+, 5+, 6+)

5||6−→ Splittree− (x, 5+, 6+) Atree
5 (1−, 2−, 3+, 4+, P +)

+ Splittree+ (x, 5+, 6+) Atree
5 (1−, 2−, 3+, 4+, P −) ,

(5.81)

and using Eq. (1.192) for the 5-gluon amplitudes, we see that the term with
.Splittree+ (x, 5+, 6+) is absent. Since .Atree

5 (1−, 2−, 3+, 4+, P −) /= 0, we deduce that

.Splittree+ (x, 5+, 6+) = 0 , (5.82)

as claimed.

Exercise 2.2: Soft Functions in the Spinor-Helicity Formalism

The leading soft function for a positive-helicity gluon with colour-ordered neigh-
bours a and b is given by Eq. (2.19) with .n = a and .1 = b,

.S[0]
YM

(
a, q+, b

) = g√
2

(
ε+ · pb

pb · q
− ε+ · pa

pa · q

)
. (5.83)
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Using Eq. (1.124) for the polarisation vector with .μ as reference spinor, we have
that

.
ε+ · pi

pi · q
= √

2
<μi>

<qi><μq> . (5.84)

Substituting this with .i = a, b into Eq. (5.83) and using the Schouten identity give

.S[0]
YM

(
a, q+, b

) = g
<ab>

<aq><qb> , (5.85)

as claimed. We can obtain the negative-helicity soft function by acting with
spacetime parity on the positive-helicity one. Parity exchanges .λα and .λ̃α̇ , which
amounts to swapping .<ij > with .[ji].

We now turn to a positive-helicity graviton. The starting point is again Eq. (2.19),

.S[0]
GR

(
q++, 1, . . . , n

) = κ

nΣ
a=1

ε++
μν p

μ
a pν

a

pa · q
. (5.86)

We parametrise the graviton’s polarisation vector by two copies of the gauge-
field one,

.ε
μν
++(q) = ε

μ
+(q, x) εν+(q, y) , (5.87)

where we spelled out the arbitrary reference vectors x and y. Substituting this into
Eq. (5.86) and using Eq. (1.124) for the polarisation vectors gives the desired result:

.S[0]
GR

(
q++, 1, . . . , n

) = κ

nΣ
a=1

<xa><ya>[aq]
<xq><yq><aq> . (5.88)

As above, the negative-helicity result can by obtained through parity conjugation.

Exercise 2.3: A q̄qggg Amplitude from Collinear and Soft Limits

Let us consider the collinear limit .3− || 4+ of the quark-gluon amplitude
.Atree

q̄qggg(1
−
q̄ , 2+

q , 3−, 4+, 5+). We parametrise the limit with

.λ3 → √
x λP , λ4 → √

1 − x λP ,
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where .P = p3 + p4. The collinear factorisation theorem implies that

.

Atree
q̄qggg(1

−
q̄ , 2+

q , 3−, 4+, 5+)
3||4−→Splittree+ (x, 3−, 4+) Atree

q̄qgg(1
−
q̄ , 2+

q , P −, 5+)

+ Splittree− (x, 3−, 4+) Atree
q̄qgg(1

−
q̄ , 2+

q , P +, 5+)

= g x2

√
x(1 − x) <34>

−ig2<1P >3<2P >
<12><2P ><P5><51> ,

(5.89)

where we inserted Eq. (2.7) for the splitting functions, and Eqs. (2.36) and (2.37) for
the amplitudes. The limiting form of Eq. (5.89) suggests that the amplitude before
the limit takes the form

.Atree
q̄qggg(1

−
q̄ , 2+

q , 3−, 4+, 5+) = −ig3 <13>3<23>
<12><23><34><45><51> . (5.90)

The form above leads us to conjecture the following n-particle generalisation:

.Atree
q̄qg...g(1

−
q̄ , 2+

q , 3−, 4+, . . . , n+) = −ign−2 <13>3<23>
<12><23><34> . . . <n1> . (5.91)

By analogy with Eq. (5.89), we see that the conjectured form of the n-particle
amplitude Eq. (5.91) is consistent with the collinear limits .3− || 4+ and .i+ || (i+1)+
for .i = 4, . . . , n − 1. Let us also study two soft limits. First we take .λ3 → 0. Then
we immediately see that

.Atree
q̄qg...g(1

−
q̄ , 2+

q , 3−, 4+, . . . , n+)
3−→0−→ 0 . (5.92)

Since the expected behaviour in the limit is

.Atree
q̄qg...g(1

−
q̄ , 2+

q , 3−, 4+, . . . , n+)
3−→0−→S[0](2, 3−, 4)

Atree
q̄qg...g(1

−
q̄ , 2+

q , 4+, . . . , n+) , (5.93)

and the relevant soft function is not zero, this implies that

.Atree
q̄qg...g(1

−
q̄ , 2+

q , 3+, . . . , n+) = 0 , (5.94)

which is thus the conjectured n-particle generalisation of Eq. (2.36). Taking the soft
limit .4+ → 0 (or any other positive-helicity gluon leg) on the other hand again
allows us to check the self-consistency of Eq. (5.91),

.Atree
q̄qg...g(1

−
q̄ , 2+

q , 3−, 4+, . . . , n+)
4+→0−→ g

<35>
<34><45>' '' '
S[0]

(3,4+,5)

Atree
q̄qg...g(1

−
q̄ , 2+

q , 3−, 5+, . . . , n+) .

(5.95)
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Exercise 2.4: The Six-Gluon Split-Helicity NMHV Amplitude

We want to determine the NMHV six-gluon amplitude .Atree
6 (1+, 2+, 3+, 4−, 5−,

6−). The .[6−1+> shift leads to the BCFW recursion relation

.

Atree
6 (1+, 2+, 3+, 4−, 5−, 6−) =

5Σ
i=3

Σ
h=±

Atree
i

(
1̂+, 2+, . . . , i − 1,−P̂ −h

i (zPi
)
)

i

P 2
i

Atree
8−i

(
P̂ h

i (zPi
), i, . . . , 5−, 6̂−)

.

(5.96)

Since the all-plus/minus and single-plus/minus tree amplitudes vanish, only two
contributions are non-zero. Diagrammatically, they are given by

.

MHV3 MHV5

1̂+

2+
3+

4−

5−

6̂−

− +

←−
P12

MHV5 MHV3

1̂

(I) (II)

+

2+

3+

4−
5−

6̂−

− +

←−−P56

where we used the short-hand notation .Pij = pi +pj . The first diagram is given by

.(I) = −ig [1̂2]3
[2(−P̂12)] [(−P̂12)1̂]

× i

<12>[21] × −ig3[P̂123]3
[34] [45] [56̂] [6̂P̂12]

. (5.97)

The corresponding z-pole is at .zI = P 2
12/<6|P12|1] = <12>/<62>. Hence we have

.|1̂> = <16>
<62> |2> , |1̂] = |1] , |6̂> = |6> , |6̂] = |6] + <12>

<62> |1] , (5.98)

where we used the Schouten identity to simplify .|1̂>, and, for .P̂12 = p̂1 + p2,

.|P̂12> = |2> , |P̂12] = |2] + <61>
<62> |1] . (5.99)
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By combining the above we obtain

.

[2P̂12] = <61>
<62> [21] , [P̂121̂] = [21] , [56̂] = [5|P16|2>

<62> ,

[P̂123] = <6|P12|3]
<62> , [6̂P̂12] = −P 2

26 + P 2
12 + P 2

16

<62> .

(5.100)

The expression for .[6̂ P̂12] can be further simplified by noting that .P 2
26 + P 2

12 +
P 2
16 = (p6 + p1 + p2)

2. Substituting all these into Eq. (5.97), with the sign
convention (1.113), gives our final expression for diagram (I):

.(I) = ig4 <6|P12|3]3
<61><12>[34][45][5|P16|2>

1

(p6 + p1 + p2)2
. (5.101)

For the second diagram we start with

.(II) = ig3 <4P̂56>3
<P̂561̂><1̂2><23><34>

× i

<56>[65] × ig <56̂>3
<6(−P̂56)><(−P̂56)5>

. (5.102)

Now the shift parameter takes the value .zII = [65]/[51], which implies

.|1̂> = |1> + [56]
[51] |6> , |6̂> = |6> , |P̂56> = |5> + [16]

[15] |6> , (5.103)

and hence

.

<4P̂56> = <4|P56|1]
[51] , <P̂561̂> = (p1 + p5 + p6)

2

[15] , <56̂> = <56> ,

<6P̂56> = <65> , <P̂565> = [16]
[15] <65> , <1̂2> = [5|P16|2>

[51] .

(5.104)

Plugging these into Eq. (5.102) yields

.(II) = ig4 <4|P56|1]3
<23><34>[16][65][5|P16|2>

1

(p1 + p5 + p6)2
. (5.105)

Finally, by combining the two diagrams we obtain

.

Atree
6 (1+, 2+, 3+, 4−, 5−, 6−) = ig4

( <6|P12|3]3
<61><12>[34][45][5|P16|2>

1

(p6 + p1 + p2)2

+ <4|P56|1]3
<23><34>[16][65][5|P16|2>

1

(p1 + p5 + p6)2

)
.

(5.106)
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Exercise 2.5: Soft Limit of the Six-Gluon Split-Helicity Amplitude

In the soft limit .p5 → 0 we have the reduced momentum-conservation condition
.p1 + p2 + p3 + p4 + p6 = 0, which implies that .(p6 + p1 + p2)

2 = <34>[43] and
.(p1 +p5 +p6)

2 = <16>[61]. Using these in Eq. (2.67) and pulling out the pole term
.([45][56])−1 gives

.

Atree
6 (1+, 2+, 3+, 4−, 5−, 6−)

5−→0−→
ig4

[5|P16|2> [45][56]
( <6|P12|3]3[56]

<61><12>[34]2<43> + <4|P56|1]3[54]
<23><34>[16]2<61>

)
.

(5.107)

We use the reduced momentum conservation and the Dirac equation to simplify

.<6|P12|3] = −<6|(p3 + p4 + p6)|3]
= −<64>[43] , (5.108)

and the soft limit for .<4|P56|1] = <46>[61], obtaining

.

Atree
6 (1+, 2+, 3+, 4−, 5−, 6−)

5−→0−→
ig4

[5|P16|2> [45][56]
<46>3

<12><23><34><61>
([34][56]<23> + [16][45]<12>) .

(5.109)

The two terms in the parentheses may be simplified using a Schouten identity as

.

−[45][36]−[53][46]' '' '
[34][56]<23> + [16][45]<12> = [54][6|

−p4''''
P13 |2> + [35][46]<23>

= [46][5|P34|2>
= −[46][5|P16|2> . (5.110)

By plugging this into the above we find

.Atree
6 (1+, 2+, 3+, 4−, 5−, 6−)

5−→0−→ −g
[46]

[45][56] × ig3 <46>3
<12><23><34><61> ,

(5.111)

which indeed matches the expected factorisation,

.Atree
6 (1+, 2+, 3+, 4−, 5−, 6−)

5−→0−→ S[0]
YM(4, 5−, 6) × Atree

5 (1+, 2+, 3+, 4−, 6−) ,

(5.112)

with the soft function given in Eq. (2.25).
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Exercise 2.6: Mixed-Helicity Four-Point Scalar-Gluon Amplitude

The .[4−1+> shift leads to the BCFW recursion

. (5.113)

where we used Eqs. (2.78) and (2.79) for the three-point scalar-gluon amplitudes
(with .g = 1), .P = p1 + p2, and .r1 (.r4) denotes the reference momentum of the
gluon leg 1 (4). With the gauge choice .r1 = p̂4 and .r4 = p̂1 along with the identities
.|4̂> = |4> and .|1̂] = |1] for the .[4−1+> shift one has
.<r11̂> = <41> , [4̂ r4] = [41] , <r1|P̂ |1̂] = −<4|p3|1] , <4̂|p3|r4] = <4|p3|1] .

(5.114)

Plugging these into the above yields the final compact result

.A4(1
+, 2φ, 3φ̄ , 4−) = i

<4|p3|1]2
(p1 + p4)2 [(p1 + p2)2 − m2] . (5.115)

Exercise 2.7: Conformal Algebra

The commutation relations with the dilatation operator d,

.

[
d, pαα̇

]
= pαα̇ , [d, kαα̇] = −kαα̇ ,

[
d,mαβ

] = 0 =
[
d,mα̇β̇

]
, (5.116)

are manifest from dimensional analysis. We recall in fact that d measures the mass
dimension, i.e. .[d, f ] = [f ]f where .[f ] denotes the dimension of f in units of
mass, and that the helicity spinors .λi and .λ̃i have mass dimension .1/2. It remains
for us to compute the commutator .[kαα̇, pββ̇ ], which is given by

.

[
kαα̇, pββ̇

]
=

[
∂α, λβλ̃β̇

]
∂α̇ + ∂α

[
∂α̇, λβλ̃β̇

]
= δβ

α λ̃β̇ ∂α̇ + δ
β̇
α̇ λβ∂α + δβ

α δ
β̇
α̇ .

(5.117)
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By using Eq. (2.102) for a single particle with raised index,

.λβ ∂α = εβρ λ(ρ∂α) + 1

2
εβρ ερα' '' '

= δ
β
α

λγ ∂γ , (5.118)

and the analogous equation with dotted indices, we obtain

.

[
kαα̇, pββ̇

]
= δβ

α εβ̇ρ̇ λ̃(ρ̇∂α̇)' '' '
=mρ̇α̇

+ δ
β̇
α̇ εβρ λ(ρ∂α)' '' '

=mρα

+ δβ
αδ

β̇
α̇

( 1

2
λγ ∂γ + 1

2
λ̃γ̇ ∂γ̇ + 1' '' '

= d

)
,

(5.119)

which concludes the proof of Eq. (2.107).

Exercise 2.8: Inversion and Special Conformal Transformations

(a) Using the inversion transformation I xμ = xμ/x2 and the translation transfor-
mation P μ x = xμ − aμ we have

.I P μ I xμ = I P μ xμ

x2 = I
xμ − aμ

(x − a)2
=

xμ

x2
− aμ

(
x
x2

− a
)2 = xμ − aμx2

1 − 2 a · x + a2 x2 ,

(5.120)

which equals the finite special conformal transformation in Eq. (2.111).
(b) We begin by computing the Jacobian factor |∂x'/∂x|, i.e. the absolute value of

the determinant of the matrix with entries ∂x'μ/∂xν for μ, ν = 0, 1, 2, 3. It is
convenient to decompose the special conformal transformation x → x' as in
point a):

.xμ I−→ yμ := xμ

x2
P μ−→ zμ := yμ − aμ I−→ x'μ := zμ

z2
.

(5.121)

The Jacobian factor for x → x' then factorises into the product of the Jacobian
factors for the three separate transformations:

.

||||∂x'

∂x

|||| =
||||∂x'

∂z

||||
|||| ∂z

∂y

||||
|||| ∂y∂x

|||| . (5.122)

For the first inversion, xμ → yμ, we have that

.
∂yμ

∂xν
= 1

x2

(
ημ

ν − 2
xμxν

x2

)
, (5.123)
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so that the Jacobian factor takes the form

.

|||| ∂y∂x

|||| = (
x2)−4

||||det
(

ημ
ν − 2

xμxν

x2

)|||| . (5.124)

We use the representation of the determinant in terms of Levi-Civita symbols:

.

|||| ∂y∂x

|||| =
(
x2

)−4

4!
||||εμ1μ2μ3μ4ε

ν1ν2ν3ν4

(
ημ1

ν1 − 2
xμ1xν1

x2

)

. . .

(
ημ4

ν4 − 2
xμ4xν4

x2

)|||| . (5.125)

The contractions involving two, one, or no factors of ημi
νi
vanish because of the

anti-symmetry of the Levi-Civita symbol. The contractions with three factors of
ημi

νi
are equal. This leads us to

.

|||| ∂y∂x

|||| =
(
x2

)−4

4!
||||εμνρσ εμνρσ + 4 εμνρσ1ε

μνρσ2

(
−2

xσ1xσ2

x2

)|||| . (5.126)

Using the identities εμνρσ εμνρσ = −4! and εμνρσ1ε
μνρσ2 = −3! ησ2

σ1
2 gives

.

|||| ∂y∂x

|||| = (
x2)−4

. (5.127)

Similarly, for the second inversion, z → x', we have

.

||||∂x'

∂z

|||| = (
z2
)−4

=
(
1 − 2 a · x + a2x2

x2

)−4

.

(5.128)

The Jacobian factor of the translation yμ → zμ = yμ − aμ is simply 1, as
the translation parameter aμ does not depend on yμ. Putting the above together
gives

.

||||∂x'

∂x

|||| =
(
1 − 2 a · x + a2x2

)−4
. (5.129)

2 We can derive this identity by tensor decomposition (see Sect. 3.4.1). We write εμνρσ1ε
μνρσ2 =

c ησ2
σ1 , and fix c = −3! by contracting both sides by ησ1

σ2 and solving for c.
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We now consider the transformation rule for the scalar field Φ in Eq. (2.112),

.Φ '(x') =
(
1 − 2 a · x + a2x2

)Δ

Φ(x) , (5.130)

and expand both sides in a Taylor series around aμ = 0. For the LHS we obtain

.

Φ ' (x') = Φ '(x) + aμ

(
∂x' ν

∂aμ

) ||||
a=0

∂νΦ
'(x) + O(a2)

= Φ '(x) + aμ
(
−ημ

νx2 + 2 xμ xν
)

∂νΦ
'(x) + O(a2) .

(5.131)

Since Φ '(x) − Φ(x) = O(a), we can replace ∂νΦ
'(x) by ∂νΦ(x) in the above.

Plugging this into Eq. (5.130) and expanding also the RHS gives

.Φ '(x) + aμ
(
−ημ

νx2 + 2 xμ xν
)

∂νΦ
'(x) = Φ(x) − 2Δ(a · x)Φ(x) + O(a2) .

(5.132)

By comparing this to the defining equation of the generators (2.113),

.Φ ' (x) =
[
1 − i aμ Kμ + O(a2)] Φ(x) , (5.133)

we can read off the explicit form of the generator,

.Kμ = ı
[
x2 ∂μ − 2 xμ

(
xν∂ν + Δ

)]
, (5.134)

as claimed.

Exercise 2.9: Kinematical Jacobi Identity

We start from the expression of .ns given in Eq. (2.119). We choose the reference
momenta .ri for the polarisation vectors .εi so as to kill as many terms as possible.
We recall that .εi · ri = 0. Choosing .r1 = p2, .r2 = p1, .r3 = p4, and .r4 = p3 yields

.

ns = (p1 · p2) [(ε1 · ε2)(ε3 · ε4) − (ε1 · ε3)(ε2 · ε4) + (ε2 · ε3)(ε1 · ε4)]

+ 2 (p2 · p3)(ε1 · ε2)(ε3 · ε4) .

(5.135)

The other factors are obtained from .ns by replacing the particles’ labels as

.nt = ns

||
1→2,2→3,3→1 , nu = ns

||
1→3,2→1,3→2 . (5.136)
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Adding the three factors gives

.

ns + nt + nu = [
(ε1 · ε4)(ε2 · ε3) + (ε1 · ε3)(ε2 · ε4) + (ε1 · ε2)(ε3 · ε4)

]
× (p1 · p2 + p2 · p3 + p3 · p1) ,

(5.137)

which vanishes because of momentum conservation.

Exercise 2.10: Five-Point KLT Relation

The squaring relation (2.139) in the five-point case reads

.M tree
5 (1, 2, 3, 4, 5) =

Σ
σ,ρ∈S2

Atree
5 (1, σ, 4, 5) S[σ |ρ] Atree

5 (1, ρ, 5, 4) , (5.138)

where .S2 is the set of permutations of .{2, 3}, namely .S2 = {{2, 3}, {3, 2}}. We recall
that the KLT kernels .S[σ |ρ] are given by Eq. (2.140) with .n = 5,

.S[σ |ρ] =
3||

i=2

[
2p1 · pσi

+
iΣ

j=2

2pσi
· pσj

θ(σj , σi)ρ

]
, (5.139)

where .θ(σj , σi)ρ = 1 if .σj is before .σi in the permutation .ρ, and zero otherwise.
We then have

. S [(2, 3)|(2, 3)] = 2p1 · p2
[
2p1 · p3 + 2p3 · p2

= 1' '' '
θ(2, 3)(2,3)

]
= s12(s13 + s23) ,

(5.140)

where .sij = 2pi · pj , and similarly

.

S [(3, 2)|(2, 3)] = s12 s13 = S [(2, 3)|(3, 2)] ,

S [(3, 2)|(3, 2)] = s13(s12 + s23) .
(5.141)

Plugging the above into the squaring relation (5.138) gives

.

M tree
5 (1, 2, 3, 4, 5) =
s12A

tree
5 (1, 2, 3, 4, 5)

[
s13A

tree
5 (1, 3, 2, 5, 4) + (s13 + s23)A

tree
5 (1, 2, 3, 5, 4)

]
+ s13A

tree
5 (1, 3, 2, 4, 5)

[
s12A

tree
5 (1, 2, 3, 5, 4) + (s12 + s23)A

tree
5 (1, 3, 2, 5, 4)

]
.

(5.142)
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The terms in the square brackets can be simplified using the BCJ relations (2.133).
For instance, for the first term we use

.

p3 · p1 Atree
5 (1, 3, 2, 5, 4) + p3 · (p1 + p2) Atree

5 (1, 2, 3, 5, 4)

+ p3 · (p1 + p2 + p5) Atree
5 (1, 2, 5, 3, 4) = 0 ,

(5.143)

which is obtained by replacing .1 → 3, .2 → 1, .3 → 2, .4 → 5 and .5 → 4 in
Eq. (2.133) with .n = 5. Substituting

.

s13 Atree
5 (1, 3, 2, 5, 4) + (s13 + s23) Atree

5 (1, 2, 3, 5, 4) = s34 Atree
5 (1, 2, 5, 3, 4) ,

s12 Atree
5 (1, 2, 3, 5, 4) + (s12 + s23) Atree

5 (1, 3, 2, 5, 4) = s24 Atree
5 (1, 3, 5, 2, 4) ,

(5.144)

into Eq. (5.142) finally gives

.

M tree
5 (1, 2, 3, 4, 5) = s12 s34 Atree

5 (1, 2, 3, 4, 5) Atree
5 (1, 2, 5, 3, 4)

+ s13 s24 Atree
5 (1, 3, 2, 4, 5) Atree

5 (1, 3, 5, 2, 4) ,
(5.145)

as claimed.

Exercise 3.1: The Four-Gluon Amplitude inN = 4
Super-Symmetric Yang-Mills Theory

We begin with the .s12 channel. The cut integrand is given by the following product
of tree amplitudes:

.CN=4
12|34 := C12|34

(
I

(1)
N=4

(1−, 2−, 3+, 4+)
)

=
Σ
h1,h2

iA(0)
(
(−l1)

−h1, 1−, 2−, (l2)
h2
)
iA(0)

(
(−l2)

−h2, 3+, 4+, (l1)
h1
)

−4
Σ
h1,h2

A(0)
(
(−l1)

−h1
Λ , 1−, 2−, (l2)

h2
Λ

)
A(0)

(
(−l2)

−h2
Λ , 3+, 4+, (l1)

h1
Λ

)

+ 6 iA(0) ((−l1)φ, 1−, 2−, (l2)φ
)
iA(0) ((−l2)φ, 3+, 4+, (l1)φ

)
.

(5.146)

The constant factors multiplying the amplitudes deserve a few remarks. First, we
have a factor counting each field’s multiplicity in the .N = 4 super-multiplet: 1
gluon (g), 4 gluinos (.Λ), and 6 scalars (.φ). Next, the factors of imaginary unit
“.i” follow from the factorisation properties of tree-level amplitudes as discussed
below Eq. (2.3). In particular, note that the factorisation of the fermion line does
not require any factors of “.i”, as opposed to gluons and scalars. Finally, the gluino’s
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contribution comes with a further factor of .−1 coming from the Feynman rule for the
closed fermion loop. The only non-vanishing contribution comes from the product
of purely gluonic amplitudes with .h1 = − and .h2 = +,

.CN=4
12|34 = iA(0) ((−l1)

+, 1−, 2−, (l2)
+)

iA(0) ((−l2)
−, 3+, 4+, (l1)

−)
.

(5.147)

This is the same as in the non-supersymmetric YM theory computed in Sect. 3.2
(see Eq. 3.34), hence we can immediately see that

.C12|34
(
I

(1)
N=4

(1−, 2−, 3+, 4+)
)

= C12|34
(
I (1)(1−, 2−, 3+, 4+)

)
, (5.148)

as claimed.
In contrast to the .s12 channel, all fields contribute to the .s23-channel cut:

.

CN=4
23|41 := C23|41

(
I

(1)
N=4

(1−, 2−, 3+, 4+)
)

= iA(0) ((−l1)
+, 2−, 3+, (l2)

−)
iA(0) ((−l2)

+, 4+, 1−, (l1)
−)

+ iA(0) ((−l1)
−, 2−, 3+, (l2)

+)
iA(0) ((−l2)

−, 4+, 1−, (l1)
+)

− 4A(0) ((−l1)
−
Λ, 2−, 3+, (l2)

+
Λ

)
A(0) ((−l2)

−
Λ, 4+, 1−, (l1)

+
Λ

)
− 4A(0) ((−l1)

+
Λ, 2−, 3+, (l2)

−
Λ

)
A(0) ((−l2)

+
Λ, 4+, 1−, (l1)

−
Λ

)
+ 6 iA(0) ((−l1)φ, 2−, 3+, (l2)φ

)
iA(0) ((−l2)φ, 4+, 1−, (l1)φ

)
.

(5.149)

The second and fourth terms can be obtained by swapping .1 ↔ 2 and .3 ↔ 4 in the
first and the third ones, respectively. We put all terms over a common denominator:

.D = <1l1><l1l2><l24><41><l12><23><3l2><l2l1> . (5.150)

Factoring it out we have

.

DCN=4
23|41 = <1l1>4<2l2>4 + <2l1>4<1l2>4 − 4 <l11><l12>3<l22><l21>3

− 4 <l12><l11>3<l21><l22>3 + 6 <l11>2<l21>2<l12>2<l22>2 .

(5.151)

Here the “magic” of .N = 4 super Yang-Mills theory comes into play: the five terms
above conspire together to form the fourth power of a binomial,

.CN=4
23|41 =

(<1l2><2l1> − <1l1><2l2>
)4

D
, (5.152)
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which can be further simplified using a Schouten identity, obtaining

.CN=4
23|41 = <l1l2>4<12>4

D

= <l1l2>2<12>4
<l11><l12><l23><l24><23><14> . (5.153)

This matches .Cbox23|41 (see Eq. (3.46)), and we can thus conclude that

.C23|41
(
I

(1)
N=4

(1−, 2−, 3+, 4+)
)

= Cbox23|41
(
I (1)(1−, 2−, 3+, 4+)

)
. (5.154)

Exercise 3.2: Quadruple Cuts of Five-GluonMHV Scattering
Amplitudes

(a) We parametrise the loop momentum l1 using the spinors of the external
momenta as in Eq. (3.58). We then rewrite the quadruple cut equations,

.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

l21 = 0 ,

l22 = (l1 − p2)
2 = 0 ,

l23 = (l1 − p2 − p3)
2 = 0 ,

l24 = (l1 + p1)
2 = 0 ,

(5.155)

in terms of the parameters αi , as

.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α1s12 = 0 ,

α2s12 = 0 ,

(α1α2 − α3α4)s12 = 0 ,

α1s13 + α2s23 + α3<13>[32] + α4<23>[31] = s23 .

(5.156)

For generic kinematics this system has two solutions:

.

(
l
(1)
1

)μ = <23>
<13>

1

2
<1|γ μ|2] ,

(
l
(2)
1

)μ = [23]
[13]

1

2
<2|γ μ|1] . (5.157)
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The spinors of the on-shell loop momenta on the first solution can be chosen as

.

|l(1)1 > = <23>
<13> |1> , |l(1)1 ] = |2] ,

|l(1)2 > = <21>
<13> |3> , |l(1)2 ] = |2] ,

|l(1)3 > = |3> , |l(1)3 ] = <21>
<13> |2] − |3] ,

|l(1)4 > = |1> , |l(1)4 ] = |1] + <23>
<13> |2] .

(5.158)

The spinors for the second solution, l
(2)
1 , are obtained by swapping <> ↔ [] in

the first one. For each solution l
(s)
1 , the quadruple cut is obtained by summing

over all internal helicity configurations h = (h1, h2, h3, h4) (with hi = ±) the
product of four tree-level amplitudes,

.

(5.159)

Consider A4. The only non-vanishing four-gluon tree-level amplitude with two
positive-helicity gluons is the MHV one, namely h4 = −h3 = −.A3 is thus
MHV, and h2 = +. Since MHV/MHV three-point vertices cannot be adjacent,
A2 must be MHV, and A1MHV. This fixes the remaining helicity, h1 = +. The
quadruple cuts therefore receive contribution from one helicity configuration
only, which we represent using the black/white notation as

. (5.160)
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Recall that the trivalent vertices impose constraints on the momenta. The MHV
vertex attached to p1 and the MHV vertex attached to p2 imply that |l1> ∝ |1>
and |l1] ∝ |2], or equivalently that l

μ
1 ∝ <1|γ μ|2]. Only the solution l

(1)
1

is compatible with this constraint. Indeed, we can show explicitly that the
contribution from the second solution vanishes, for instance

. (5.161)

where we used |l(2)1 ] = ([23]/[13])|1] and |l(2)4 ] = |1]. We assign spinors to −p

according to the convention (1.113), namely | − p> = i|p> and | − p] = i|p].
We thus have that

.C1|2|3|45
(
I (1)(1−, 2−, 3+, 4+, 5+)

) ||||
l
(2)
1

= 0 . (5.162)

On the first solution, the quadruple cut is given by

.C1|2|3|45
||
l
(1)
1

= [l1l4]3
[1l1][l41]

<l12>3
<2l2><l2l1>

[3l3]3
[l3l2][l23]

<l4l3>3
<l34><45><5l4>

||||
l
(1)
1

, (5.163)

where we omitted the argument of C for the sake of compactness. Plugging in
the spinors from Eq. (5.169) and simplifying gives

.C1|2|3|45
(
I (1)(1−, 2−, 3+, 4+, 5+)

) ||||
l
(1)
1

= i s12s34

(
i <12>3

<23><34><45><51>
)

,

(5.164)

where in the parentheses we recognise the tree-level amplitude. Averaging over
the two cut solutions (as in Eq. (3.73) for the four-gluon case) gives the four-
dimensional coefficient of the scalar box integral,

.c0;1|2|3|45(1−, 2−, 3+, 4+, 5+)= 1

2

2Σ
s=1

C1|2|3|45
(
I (1)(1−, 2−, 3+, 4+, 5+)

) ||||
l
(s)
1

= i

2
s12s34A

(0)(1−, 2−, 3+, 4+, 5+) ,

(5.165)

as claimed.
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(b) The solution of the quadruple cut can be obtained as in part (a) of this exercise.
Alternatively, we can take a more direct route by exploiting the black/white
formalism for the trivalent vertices. On each of the two solutions l

(s)
1 the

quadruple cut is given by

.

(5.166)

The only non-vanishing tree-level four-point amplitude is the MHV (or equiv-
alently MHV) one, so we have either h1 = h2 = − or h1 = h2 = +.
Specifying h1 and h2 and excluding adjacent black/white vertices fixes all the
other helicities, so that the quadruple cut receives contribution from two helicity
configurations:

.

(5.167)

In both cases the trivalent vertices constrain |l4> ∝ |1> and |l4] ∝ |5]. The two
configurations are thus non-vanishing only on one solution of the quadruple cut,
say l

(1)
1 , which we parametrise starting from l4 as

.

(
l
(1)
4

)μ = a
1

2
<1|γ μ|5] . (5.168)
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The value of a is fixed by requiring that l
(1)
2 = l

(1)
4 + p4 + p5 is on shell (i.e.(

l
(1)
2

)2 = 0), which gives a = <45>/<14>. The spinors for the internal momenta
on this solution can then be chosen as

.

|l(1)1 > = |1> , |l(1)1 ] = <45>
<14> |5] − |1] ,

|l(1)2 > = |4> , |l(1)2 ] = |4] + <15>
<14> |5] ,

|l(1)3 > = |4> , |l(1)3 ] = <15>
<14> |5] ,

|l(1)4 > = |1> , |l(1)4 ] = <45>
<14> |5] .

(5.169)

The first contribution to the quadruple cut is given by

.

C(a)
1|23|4|5

|||
l
(1)
1

= [l41]3
[1l1][l1l4]

<3l2>3
<l2l1><l12><23>

[l24]3
[4l3][l3l2]

<5l4>3
<l4l3><l35>

||||
l
(1)
1

= i s45s15

( <34><15>
<14><35>

)4 ( i <35>4
<12><23><34><45><51>

)
,

(5.170)

where in the right-most parentheses of the second line we recognise the tree-
level amplitude A(0)(1+, 2+, 3−, 4+, 5−). The computation of the second term
is analogous. Summing up the two contributions finally gives

.C1|23|4|5
|||
l
(1)
1

= i s45s15 A(0)

[( <34><15>
<14><35>

)4

+
( <13><45>

<14><35>
)4

]
, (5.171)

where we omitted the argument of C1|23|4|5 and A(0) for compactness. The

second solution, l
(2)
1 , is the complex conjugate of the first one. The quadruple

cut vanishes on it by the argument above,

.C1|23|4|5
(
I (1)(1+, 2+, 3−, 4+, 5−)

) |||
l
(2)
1

= 0 . (5.172)

Finally, we obtain the coefficient of the scalar box function at order ε0 by
averaging over the two solutions:

.c0;1|23|4|5(1+, 2+, 3−, 4+, 5−)

= i

2
s45s15 A(0)

[( <34><15>
<14><35>

)4

+
( <13><45>

<14><35>
)4

]
. (5.173)
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Exercise 3.3: Tensor Decomposition of the Bubble Integral

(a) We contract both sides of the form-factor decomposition in Eq. (3.81) by the
basis tensors ημ1μ2 and p

μ1
1 p

μ2
1 , obtaining

.

{
F

[D]
2

[
k2

] = a2,00 D + a2,11 p2
1 ,

F
[D]
2

[
(k · p1)

2
] = a2,00 p2

1 + a2,11 (p2
1)

2 .
(5.174)

For the sake of simplicity we omit the dependence of the bubble integrals on p1,
and we introduce the short-hand notations D1 = k2 and D2 = (k − p1)

2 for the
inverse propagators. Solving the linear system (5.174) for the form factors gives

.

a2,00 = 1

D − 1

(
F

[D]
2

[
k2

]
− 1

p2
1

F
[D]
2

[
(k · p1)

2
] )

,

a2,11 = 1

p2
1(D − 1)

( D

p2
1

F
[D]
2

[
(k · p1)

2
]

− F
[D]
2

[
k2

] )
.

(5.175)

The contraction of the rank-2 bubble with ημ1μ2 is given by a scaleless integral
and thus vanishes in dimensional regularisation,

.F
[D]
2

[
k2

]
=

f
k

1

(k − p1)2
= 0 . (5.176)

The contraction with p
μ1
1 p

μ2
1 is instead given by

.F
[D]
2

[
(k · p1)

2
]

= 1

4

f
k

(
(p2

1)
2

D1D2
+ D1

D2
+ D2

D1
− 2 + 2

p2
1

D2
− 2

p2
1

D1

)
,

(5.177)

where we used that 2 k · p1 = D1 − D2 + p2
1. All terms but the first one

vanish in dimensional regularisation. To see this explicitly, consider for instance
the second term. By shifting the loop momentum by p1 we can rewrite it as a
combination of manifestly scaleless integrals,

.

f
k

k2

(k − p1)2
=

f
k

1 + p2
1

f
k

1

k2
+ 2pμ

1

f
k

kμ

k2
, (5.178)

which vanish in dimensional regularisation (see Sect. 4.2.1 in Chap. 4). Equa-
tion (5.177) thus reduces to

.F
[D]
2

[
(k · p1)

2
]

= (p2
1)

2

4
F

[D]
2 [1] . (5.179)
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Substituting Eqs. (5.176) and (5.179) into Eq. (5.175) finally gives

.

a2,00 = − p2
1

4(D − 1)
F

[D]
2 [1] ,

a2,11 = D

4(D − 1)
F

[D]
2 [1] .

(5.180)

(b) We proceed as we did in part (a). For compactness, we define

.

T
μ1μ2μ3
1 = ημ1μ2p

μ3
1 + ημ2μ3p

μ1
1 + ημ3μ1p

μ2
1 ,

T
μ1μ2μ3
2 = p

μ1
1 p

μ2
1 p

μ3
1 .

(5.181)

Note that F
[D]
2 [kμ1kμ2kμ3 ] is symmetric under permutations of the Lorentz

indices. While T2 enjoys this symmetry, the three separate terms of T1 do not.
That is why they appear together in T1 rather than with distinct form factors.
The symmetry property would in fact constrain the latter to be equal. We then
contract both sides of the tensor decomposition (3.82) with the basis tensors, and
solve the ensuing 2 × 2 linear system for the form factors, Using the following
contractions,

.

F
[D]
2

[
kμ1kμ2kμ3

]
(T1)μ1μ2μ3

= 0 ,

F
[D]
2

[
kμ1kμ2kμ3

]
(T2)μ1μ2μ3

= (p2
1)

3

8
F

[D]
2 [1] ,

T
μ1μ2μ3
1 (T1)μ1μ2μ3

= 3p2
1(D + 2) ,

T
μ1μ2μ3
1 (T2)μ1μ2μ3

= 3(p2
1)

2 ,

T
μ1μ2μ3
2 (T2)μ1μ2μ3

= (p2
1)

3 ,

(5.182)

we obtain

.

a2,001 = − p2
1

8(D − 1)
F

[D]
2 [1] ,

a2,111 = D + 2

8(D − 1)
F

[D]
2 [1] .

(5.183)

Exercise 3.4: Spurious Loop-Momentum Space for the Box
Integral

(a) The physical space is 3-dimensional, and may be spanned by {p1, p2, p3}. The
spurious space is 1-dimensional. In order to construct a vector ω spanning the
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spurious space, we start from a generic ansatz made from the spinors associated
with p1 and p2,

.ωμ = α1p
μ
1 + α2p

μ
2 + α3

1

2
<1|γ μ|2] + α4

1

2
<2|γ μ|1] , (5.184)

and constrain it by imposing the orthogonality to the external momenta and the
normalisation (ω2 = 1). While ω · p1 = 0 and ω · p2 = 0 fix α1 = α2 = 0, the
orthogonality to p3 and the normalisation imply

.α3<13>[32] + α4<23>[31] = 0 , α3α4 s12 = −1 , (5.185)

where sij = (pi + pj )
2. The solution is given by

.ωμ = 1

2
√

s12s23s13

[<1|γ μ|2]<23>[31] − <2|γ μ|1]<13>[32]] . (5.186)

(b) We rewrite the spinor chains in Eq. (5.186) in terms of traces of Pauli matrices,

.ωμ = 1

2
√

s12s23s13

[
Tr

(
σμσ̄ ρσ τ σ̄ ν

) − Tr
(
σμσ̄ νσ τ σ̄ ρ

) ]
p1νp2ρp3τ .

(5.187)

We trade the Pauli matrices for Dirac matrices through Eq. (1.29). The terms
free of γ5 cancel out thanks to the cyclicity of the trace and the identity
Tr (γ μγ νγ ργ τ ) = Tr (γ τ γ ργ νγ μ). We rewrite the traces with γ5 in terms of
the Levi-Civita symbol using Tr (γ μγ νγ ργ τ γ5) = −4iεμνρτ , obtaining

.ωμ = 2i√
s12s23s13

εμνρτp1νp2ρp3τ . (5.188)

Exercise 3.5: Reducibility of the Pentagon in Four Dimensions

(a) We rewrite the triangle integral as

.F
[D]
3 (p1, p2) =

f
k

1

(−D1) (−D2) (−D3)
, (5.189)

with inverse propagators

.D1 = k2 , D2 = (k − p1)
2 , D3 = (k − p1 − p2)

2 . (5.190)

The i0 is irrelevant here, and we thus omit it. We introduce a two-dimensional
parametrisation of the loop momentum kμ by expanding it in a basis formed by
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two independent external momenta, say p
μ
1 and p

μ
2 , as

.kμ = a1 p
μ
1 + a2 p

μ
2 . (5.191)

Since there are only two degrees of freedom, parametrised by a1 and a2,
the three inverse propagators of the triangle integral cannot be algebraically
independent (over the field of the rational functions of s). In order to find the
relation among them, we express them in terms of a1 and a2,

.

D1 = s a1(a1 − a2) ,

D2 = s (1 − a1)(1 + a2 − a1) ,

D3 = s (1 − a1)(a2 − a1) ,

(5.192)

with s = p2
1. We then solve two of these equations to express a1 and a2 in terms

of inverse propagators. Choosing D1 and D3 we obtain

.a1 = D1

D1 − D3
, a2 = (D1 − D3)

2 − s D1

s (D3 − D1)
. (5.193)

Plugging these into the expression of D2 in Eq. (5.192) gives a relation among
the three inverse propagators,

.1 = 1

s

(
D1 + D2 − D3 − D1D2

D3

)
. (5.194)

Inserting this into the numerator of the triangle integral, expanding, and
removing the scaleless integrals which integrate to zero finally gives

.

F
[2−2ε]
3 (p1, p2) = 1

s

f
k

1

k2(k − p1)2
+ terms missed in 2D

= 1

s
F

[2−2ε]
2 (p1) + terms missed in 2D .

(5.195)

Up to terms which are missed by the two-dimensional analysis, the triangle
integral inD = 2−2ε dimensions can be expressed in terms of a bubble integral,
and is thus reducible.

(b) In D = 2 dimensions, any three momenta are linearly dependent. The Gram
matrix G(k, p1, p2) therefore has vanishing determinant,

. − 1

4
s2k2 − s (k · p1)(k · p2) − s (k · p2)

2 = 0 , (5.196)

which can be verified using a two-dimensional parametrisation of kμ such as
Eq. (5.191). In order to convert it into a relation among the inverse propagators,
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we express the scalar products of the loop momentum in terms of inverse
propagators,

.k2 = D1 , k · p1 = D1 − D2 + s

2
, k · p2 = D2 − D3 − s

2
.

(5.197)

Expressing the determinant of G(k, p1, p2) in terms of inverse propagators
gives the relation (5.194).

(c) The steps are the same as for the previous point, but the algebraic manipula-
tions are cumbersome. We implement them in the Mathematica notebook
Ex3.5_Reducibility.wl [1]. In D = 4 dimensions the following Gram
determinant vanishes:

.detG(k, p1, p2, p3, p4) = 0 . (5.198)

We aim to rewrite this in terms of the inverse propagators of the pentagon:

.

D1 = k2 , D4 = (k − p1 − p2 − p3)
2 ,

D2 = (k − p1)
2 , D5 = (k − p1 − p2 − p3 − p4)

2 .

D3 = (k − p1 − p2)
2 ,

(5.199)

The first step is to parametrise the kinematics in terms of independent
invariants sij = (pi + pj )

2. It is instructive to count the latter for a generic
number of particles n. There are n(n + 1)/2 distinct scalar products pi · pj

with i, j = 1, . . . , n. Momentum conservation gives n constraints, as we
may contract

Σn
i=1 p

μ
i = 0 by p

μ
j for any j = 1, . . . , n. Moreover, we

have n on-shell constraints: p2
i = 0 for i = 1, . . . , n. We are thus left with

n(n+1)
2 − 2n = n(n − 3)/2 independent invariants. For n = 4 that gives 2

independent invariants—the familiar s and t Mandelstam invariants—while for
n = 5 we have 5. It is convenient to choose them as s := {s12, s23, s34, s45, s51}.
We now need to express all scalar products pi ·pj in terms of s. We may do so by
solving the linear system of equations obtained from momentum conservation
as discussed above:

.

5Σ
i=1

pi · pj = 0 ,∀ j = 1, . . . , 5 . (5.200)

We rewrite the latter in terms of sij ’s and solve. We do this in the
Mathematica notebook, obtaining—for example—that p1 · p4 = (s23 −
s45 − s51)/2.

We now turn our attention to the scalar products involving the loop momen-
tum: k2, and k · pi for i = 1, . . . , 4 (k · p5 is related to the others by momentum
conservation). Having parametrised the kinematics in terms of independent
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invariants s, we may solve the system (5.199) to express them in terms of inverse
propagators and s. For example, we obtain that k ·p3 = (D3−D4+s45−s12)/2.
Using this result, we can rewrite the Gram-determinant condition (5.198) as

.1 =
5Σ

i=1

AiDi +
5Σ

i≤j=1

BijDiDj , (5.201)

where Ai and Bij are rational functions of the invariants s. Plugging this into
the numerator of the pentagon integral and expanding finally gives the reduction
into integrals with fewer propagators, up to terms missed in D = 4.

Exercise 3.6: Parametrising the Bubble Integrand

(a) We parametrise the loop momentum as in Eq. (3.159). We recall that p1 ·ωi = 0
and ωi ·ωj = δij ω2

i . The coefficient α1 can be expressed in terms of propagators
and external invariants by noticing that α1 = k · p1/p

2
1, and rewriting k · p1 in

terms of inverse propagators (3.158). This gives

.α1 = D1 − D2 + p2
1 + m2

1 − m2
2

2p2
1

. (5.202)

We thus see that α1 does not depend on the loop momentum on the bubble
cut D1 = D2 = 0. As a result, the loop-momentum parametrisation of the
bubble numerator Δ1|2 depends only on three ISPs: k · ωi for i = 1, 2, 3. The
maximum tensor rank for a renormalisable gauge theory is two, hence a general
parametrisation is

.

Δ1|2(k · ω1, k · ω2, k · ω3) = c000

+ c100(k · ω1) + c010(k · ω2) + c001(k · ω3)

+ c110(k · ω1)(k · ω2) + c101(k · ω1)(k · ω3) + c011(k · ω2)(k · ω3)

+ c200(k · ω1)
2 + c020(k · ω2)

2 + c002(k · ω3)
2 .

(5.203)

The cut condition D1 = 0 implies one more constraint on the loop-momentum
dependence:

.C1|2
(
k2||

)
+

3Σ
i=1

(k · ωi)
2ω2

i − m2
1 = 0 . (5.204)
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Since C1|2
(
k2||

) = (m2
1 − m2

2 + p2
1)

2/(4p2
1) does not depend on the loop

momentum on the cut, we may use Eq. (5.204) to eliminate, say, (k · ω3)
2

from the numerator (5.203). It is however more convenient to implement the
constraint (5.204) so as to maximise the number of terms which integrate to zero.
The terms in the second and third line on the RHS of Eq. (5.203) contain odd
powers of k · ωi , and thus vanish upon integration. Using transverse integration
one can show that

.

f
k

(k · ωi)
2

D1D2
= ω2

i

ω2
j

f
k

(k · ωj )
2

D1D2
. (5.205)

We can then use the constraint (5.204) to group (k · ω1)
2, (k · ω2)

2 and (k · ω3)
2

into two terms which vanish upon integration. This can be achieved for instance
as

.

Δ1|2(k · ω1, k · ω2, k · ω3) = c0;1|2
+ c1;1|2(k · ω1) + c2;1|2(k · ω2) + c3;1|2(k · ω3)

+ c4;1|2(k · ω1)(k · ω2) + c5;1|2(k · ω1)(k · ω3) + c6;1|2(k · ω2)(k · ω3)

+ c7;1|2

[
(k · ω1)

2 − ω2
1

ω2
3

(k · ω3)
2

]
+ c8;1|2

[
(k · ω2)

2 − ω2
2

ω2
3

(k · ω3)
2

]
,

(5.206)

such that only the term with coefficient c0;1|2 survives upon integration, as
claimed.

(b) The bubble cut of the one-loop amplitude A
(1),[4−2ε]
n is by definition given by

.C1|2
(
A(1),[4−2ε]

n

)
=

f
k

[
I (1)(k)

2||
i=1

(
Di (−2π i) δ(+) (Di)

)]
, (5.207)

where I (1)(k) denotes the integrand of A
(1),[4−2ε]
n . We parametrise the latter in

terms of boxes, triangles, and bubbles. The terms which survive on the bubble
cut 1|2 are

.C1|2
(
A(1),[4−2ε]

n

)
=

f
k

[
Δ1|2 (k · ω1, k · ω2, k · ω3)

(−D1)(−D2)

+
Σ
X

Δ1|2|X
(
k · ωX

1 , k · ωX
2

)
(−D1)(−D2)(−DX)

+
Σ
Y,Z

Δ1|2|Y |Z
(
k · ωYZ

)
(−D1)(−D2)(−DY )(−DZ)

+ . . .

] 2||
i=1

(
Di (−2π i)δ(+)(Di)

)
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=
f

k

[
Δ1|2 (k · ω1, k · ω2, k · ω3) +

Σ
X

Δ1|2|X
(
k · ωX

1 , k · ωX
2

)
−DX

+
Σ
Y,Z

Δ1|2|Y |Z
(
k · ωYZ

)
DY DZ

] 2||
i=1

(
(−2π i)δ(+)(Di)

)
.

(5.208)

Here, the ellipsis denotes terms which vanish on the cut. The sum over X

runs over all triangle configurations which share the propagators 1/(−D1) and
1/(−D2), ωX

1 and ωX
2 are the vectors spanning the corresponding spurious loop-

momentum space, and 1/(−DX) is the propagator which completes the triangle.
Similarly, the sum over Y,Z runs over all box configurations sharing the
propagators 1/(−D1) and 1/(−D2), ωYZ spans their spurious-loop momentum
space, and 1/(−DY ) and 1/(−DZ) are the inverse propagators which complete
the box. Equating Eqs. (5.207) and (5.208) and solving for Δ1|2 gives

.

Δ1|2 (k · ω1, k · ω2, k · ω3)

||||
Di=0

=
(

I (1)(k)

2||
i=1

Di

+
Σ
X

Δ1|2|X
(
k · ωX

1 , k · ωX
2

)
DX

−
Σ
Y,Z

Δ1|2|Y |Z
(
k · ωYZ

)
DY DZ

)||||
Di=0

,

(5.209)

as claimed.

Exercise 3.7: Dimension-Shifting Relation at One Loop

We decompose the loop momentum into a four- and a .(−2ε)-dimensional parts as

.k
μ
1 = k

[4], μ
1 + k

[−2ε], μ
1 , (5.210)

with .k
[−2ε]
1 · k

[4]
1 = 0 = k

[−2ε]
1 · pi and .k

[−2ε]
1 · k

[−2ε]
1 = −μ11. Note that .μ11 > 0.

The loop-integration measure factorises as .dDk1 = d4k[4]
1 d−2εk

[−2ε]
1 . We rewrite

the integral on the LHS of Eq. (3.184) as

.F [4−2ε]
n (p1, . . . , pn−1)[μr

11] =
f

dDk1

iπD/2 μr
11 Fn

(
k
[4]
1 , μ11

)
. (5.211)

The integrand .Fn depends on the loop momentum only through its four-dimensional
components .k

[4], μ
1 and .μ11. In other words, the integrand does not depend on the

angular coordinates of the .(−2ε)-dimensional subspace. We thus introduce angular
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and radial coordinates as

.d−2εk
[−2ε]
1 = 1

2
dΩ−2ε μ−1−ε

11 dμ11 , (5.212)

and carry out the .(−2ε)-dimensional angular integration in Eq. (5.211). We recall
that the surface area of a unit-radius sphere in m-dimensions is given by

.Ωm :=
f

dΩm = 2πm/2

Γ
(

m
2

) . (5.213)

We obtain

.F [4−2ε]
n (p1, . . . , pn−1)[μr

11] = Ω−2ε

2

f
d4k[4]

1

iπ2−ε

f ∞

0
dμ11 μr−1−ε

11 Fn

(
k
[4]
1 , μ11

)
.

(5.214)

We view the remaining .μ11 integration as the radial integration in a .(2r − 2ε)-
dimensional subspace. The loop-integration measure in the latter is in fact given by

.d2r−2εk
[2r−2ε]
1 = 1

2
dΩ2r−2ε μr−1−ε

11 dμ11 . (5.215)

Exploiting again the independence of the integrand on the angular coordinates, we
rewrite Eq. (5.214) as

.F [4−2ε]
n (p1, . . . , pn−1)[μr

11] = πrΩ−2ε

Ω2r−2ε

f
d4k[4]

1 d2r−2εk
[2r−2ε]
1

iπ2+r−ε
Fn

(
k
[4]
1 , μ11

)
.

(5.216)

Using Eq. (5.213) for the prefactor gives

.
πrΩ−2ε

Ω2r−2ε
= Γ (r − ε)

Γ (−ε)
, (5.217)

which we simplify using Eq. (3.185). The loop integration on the RHS of Eq. (5.216)
matches the scalar one-loop integral (i.e., with numerator 1) with loop momentum
in .D = 4 + 2r − 2ε dimensions and four-dimensional external momenta, namely

.F [4−2ε]
n (p1, . . . , pn−1)[μr

11] =
(

r−1||
s=0

(s − ε)

)
F [4+2r−2ε]

n (p1, . . . , pn−1)[1] ,

(5.218)

as claimed.
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Exercise 3.8: Projecting Out the Triangle Coefficients

The solution follows from the theory of discrete Fourier transform. Let N be a
positive integer. The functions

.

{
e
2π i
N

kl , l = 0, . . . , N − 1
}

, (5.219)

with .k ∈ Z, form an orthogonal basis of the space of complex-valued functions on
the set of the .N th roots of unity, .{e2π il/N , l = 0, . . . , N − 1}. In other words, they
satisfy the orthogonality condition

.

N−1Σ
l=0

e
2π i
N

(n−k)l = δn,k N . (5.220)

This is straightforward for .n = k. For .n /= k, Eq. (5.220) follows from the identity

.

N−1Σ
l=0

zl = 1 − zN

1 − z
(5.221)

with .z = e2π i(n−k)/N , and hence .zN = 1.
We can then use the orthogonality condition to project out the triangle coeffi-

cients .dk;1|2|3. Using Eqs. (3.192) and (3.193) we have that

.

3Σ
l=−3

e−ikθlΔ1|2|3(θl) =
3Σ

n=−3

dn;1|2|3 e−3(n−k) 2π i7

6Σ
l=0

e
2π i
7 (n−k)l . (5.222)

Substituting Eq. (5.220) with .N = 7, and solving for .dk;1|2|3 gives

.dk;1|2|3 = 1

7

3Σ
l=−3

e−ikθlΔ1|2|3(θl) , (5.223)

as claimed.
We now consider a rank-4 four-dimensional triangle numerator .Δ

(4)
1|2|3(k · ω1, k ·

ω2). We parametrise the family of solutions to the triple cut by the angle .θ as in
Eq. (3.190). Expanding sine and cosine into exponentials gives

.Δ
(4)
1|2|3(θ) =

4Σ
k=−4

d
(4)
k;1|2|3 e

ikθ . (5.224)
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The coefficients .d
(4)
k;1|2|3 can then be projected out using the .9th roots of unity .eiθ

'
l ,

with .θ '
l = 2π l/9, for .l = −4, . . . , 4. By using the orthogonality condition (5.220)

with .N = 9 we obtain

.d
(4)
k;1|2|3 = 1

9

4Σ
l=−4

e−ikθ '
l Δ

(4)
1|2|3

(
θ '
l

)
. (5.225)

Exercise 3.9: Rank-One Triangle Reduction with Direct Extraction

(a) After integration, the tensor integral F
[D]
3 (P,Q)[kμ] can only be a function of

P μ and Qμ. We thus expand it as

.F
[D]
3 (P,Q)[kμ] = c1 P μ + c2 Qμ . (5.226)

Contracting both sides by P μ and Qμ, and solving for the coefficients gives

.

c1 = 1

(P · Q)2 − S T

[
(P · Q)F

[D]
3 (P,Q)[k · Q] − T F

[D]
3 (P,Q)[k · P ]

]
,

c2 = 1

(P · Q)2 − S T

[
(P · Q)F

[D]
3 (P,Q)[k · P ] − S F

[D]
3 (P,Q)[k · Q]

]
.

(5.227)

Next, we need to rewrite the integrals above in terms of scalar integrals. To this
end, we express the scalar products k ·P and k ·Q in terms of inverse propagators
Di , as

.k · P = 1

2

(
D1 − D2 + Ŝ

)
, k · Q = 1

2

(
D2 − D3 + T̂

)
, (5.228)

where

.D1 = k2 − m2
1 , D2 = (k − P)2 − m2

2 , D3 = (k − P − Q)2 − m2
3 ,

(5.229)

and

.Ŝ := S + m2
1 − m2

2 , T̂ := T + m2
2 − m2

3 + 2 (Q · P) . (5.230)
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We thus have that

.F
[D]
3 (P,Q)[k · Q] = 1

2

[f
k

1

D1 D2
−

f
k

1

D1 D3
−

f
k

T̂

D1 D2 D3

]

= 1

2

[
F

[D]
2 (P ) − F

[D]
2 (P + Q) + T̂ F

[D]
3 (P,Q)

]
,

(5.231)

while F
[D]
3 (P,Q)[k · P ] contains no P -channel bubble. We recall that

F
[D]
n (· · · ) ≡ F

[D]
n (· · · )[1]. Putting the above together gives

.F
[D]
3 (P,Q)[k · Z] = c1 (P · Z) + c2 (Q · Z)

= 1

2

(P · Q)(P · Z) − (Q · Z) S

(P · Q)2 − S T
F

[D]
2 (P ) + . . . ,

(5.232)

where the ellipsis denotes terms which do not involve P -channel bubbles.
Finally, we can read off that the coefficient of the P -channel scalar bubble
integral is given by

.c0;P |QR = (P · Q)(P · Z) − (Q · Z) S

2
(
(P · Q)2 − S T

) , (5.233)

as claimed.
(b) We outline here the main steps of the solution, while the computations are per-

formed in the Mathematica notebook Ex3.9_DirectExtraction.wl
[1]. Since we are considering a triangle integral, all quadruple cuts vanish. The
coefficients of the box numerator are thus zero. We parametrise the triangle
numerator ΔP |Q|R as in Eq. (3.151),

.

ΔP |Q|R(k · ω1,tri, k · ω2,tri) = c0;P |Q|R + c1;P |Q|R (k · ω1,tri)

+ c2;P |Q|R (k · ω2,tri)

+ c3;P |Q|R

(
(k · ω1,tri)

2 − ω2
1,tri

ω2
2,tri

(k · ω2,tri)
2

)

+ c4;P |Q|R (k · ω1,tri)(k · ω2,tri)

+ c5;P |Q|R (k · ω1,tri)
3 + c6;P |Q|R (k · ω1,tri)

2(k · ω2,tri) ,

(5.234)
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with the spurious vectors as in Eq. (3.220),

.ω
μ
1,tri = 1

2
<P̌ |γ μ|Q̌] Φtri + 1

2
<Q̌|γ μ|P̌ ] Φ−1

tri , . (5.235)

ω
μ
2,tri = 1

2
<P̌ |γ μ|Q̌] Φtri − 1

2
<Q̌|γ μ|P̌ ] Φ−1

tri . (5.236)

Here, Φtri is an arbitrary factor which makes the summands phase-free. E.g. we
may choose Φtri = <Q̌|Z|P̌ ], but its expression is irrelevant as it cancels out
from the result. Moreover, we have the light-like projections

.P̌ μ = γ (γP μ − S Qμ)

γ 2 − S T
, Q̌μ = γ (γQμ − T P μ)

γ 2 − S T
, (5.237)

with two projections γ± = (P · Q) ± √
(P · Q)2 − S T . We parametrise the

loop momentum on the triple cut P |Q|R (D1 = D2 = D3 = 0) in terms of t as
discussed in Sect. 3.5:

.CP |Q|R
(
kμ

) = β1 P μ + β2 Qμ + 1

2

(
t + γtri

t

)
ω

μ
1,tri +

1

2

(
t − γtri

t

)
ω

μ
2,tri ,

(5.238)

with

.β1 = Ŝ T − T̂ (P · Q)

2
(
S T − (P · Q)2

) , β2 = S T̂ − Ŝ (P · Q)

2
(
S T − (P · Q)2

) . (5.239)

We use γtri in Eq. (5.238) to distinguish it from the γ used in Eq. (5.237). Its
value is fixed by the constraint D1 = 0, and we omit it here for conciseness. We
now determine the triangle coefficients ci;P |Q|R by solving

.CP |Q|R
(
ΔP |Q|R(k · ω1,tri, k · ω2,tri)

) = CP |Q|R (k · Z) . (5.240)

We recall that the box subtraction terms are zero in this case. In Sect. 3.5 we have
seen how to extract directly c0;P |Q|R using the operation “Inf” (see Eq. (3.208)).
Here however we need all triangle coefficients. The two sides of Eq. (5.240) are
Laurent polynomials in t , with the loop-momentum parametrisation (5.238). As
the equation holds for any value of t , we may solve it separately order by order
in t . This gives enough constraints to fix all triangle coefficients. We find

.c1;P |Q|R = −Z · ω1,tri

2 P̌ · Q̌
, c2;P |Q|R = Z · ω2,tri

2 P̌ · Q̌
. (5.241)

The coefficient of the scalar triangle integral, c0;P |Q|R , will not contribute to
the bubble coefficient, and we thus omit it here. The higher-rank coefficients,
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ci;P |Q|R with i = 3, . . . , 6 all vanish, as we could have guessed from start by
noticing that the example integral we are studying has a rank-one numerator.

We can now move on to the bubble coefficients. We parametrise the bubble
numerator as in Eq. (3.161),

.

ΔP |QR(k · ω1,bub, k · ω2,bub, k · ω3,bub) = c0;P |QR

+ c1;P |QR(k · ω1,bub) + c2;P |QR(k · ω2,bub) + c3;P |QR(k · ω3,bub)

+ c4;P |QR(k · ω1,bub)(k · ω2,bub) + c5;P |QR(k · ω1,bub)(k · ω3,bub)

+ c6;P |QR(k · ω2,bub)(k · ω3,bub)

+ c7;P |QR

(
(k · ω1,bub)

2 − ω2
1,bub

ω2
3,bub

(k · ω3,bub)
2

)

+ c8;P |QR

(
(k · ω2,bub)

2 − ω2
2,bub

ω2
3,bub

(k · ω3,bub)
2

)
,

(5.242)

with the spurious vectors as in Eq. (3.212),

.ω
μ
1,bub = 1

2
<P b|γ μ|n] Φbub + 1

2
<n|γ μ|P b] Φ−1

bub , . (5.243)

ω
μ
2,bub = 1

2
<P b|γ μ|n] Φbub − 1

2
<n|γ μ|P b] Φ−1

bub , . (5.244)

ω
μ
3,bub = P b,μ − S

2P · n
nμ , (5.245)

where nμ is an arbitrary light-like momentum, and

.P b,μ = P μ − S

2P · n
nμ . (5.246)

We may choose the phase factor e.g. as Φbub = <n|Z|P b] but—just like Φtri—this
will not appear in the result. We parametrise the loop momentum on the double cut
P |QR (D1 = D2 = 0) in terms of t and y as in Eq. (3.210):

.CP |QR

(
kμ

) = α1 P b,μ + α2 nμ + α3
1

2
<P b|γ μ|n] Φbub + α4

1

2
<n|γ μ|P b] Φ−1

bub ,

(5.247)

with

.α1 = y , α2 = Ŝ − S y

2 n · P
, α3 = t , α4 = y (Ŝ − S y) − m2

1

2 t (n · P)
.

(5.248)
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The bubble coefficients ci;P |QR are fixed through Eq. (3.163) with the box subtrac-
tion term set to zero:

.CP |QR

(
ΔP |QR({k · ωi,bub})

) = CP |QR

(
−k · Z

D3
+ ΔP |Q|R({k · ωi,tri})

D3

)
.

(5.249)

We can extract the coefficient c0;P |Q directly using Eq. (3.226), as

.c0;P |QR =PInfyInft
⎡
⎣CP |QR

(
−k · Z

D3

)
− 1

2

Σ
γ=γ±

CP |QR

(
ΔP |Q|R({k · ωi,tri})

−D3

)⎤⎦ ,

(5.250)

with the operator P defined in Eq. (3.223),

.P
(
f (y, t)

) = f
||
t0,y0

+ Ŝ

2 S
f
||
t0,y1

+ 1

3

(
Ŝ2

S2
− m2

1

S

)
f
||
t0,y2

, (5.251)

while Infx expands a rational function around x = ∞ and keeps only the terms that
do not vanish in the limit (see Eq. (3.205)). We obtain

.PInfyInft
[
CP |QR

(
−k · Z

D3

)]
= 1

2

<P b|Z|n]
<P b|Q|n] , (5.252)

and

.PInfyInft
[
CP |QR

(
ΔP |Q|R({k · ωi,tri})

−D3

)]
= −<P b|P̌ZQ̌|n] + <P b|Q̌ZP̌ |n]

4 (P̌ · Q̌) <P b|Q|n] .

(5.253)

We may simplify the RHS of Eq. (5.253) by rewriting

.<P b|P̌ZQ̌|n] = <Q̌|Z|P̌ ] <P̌ P b>[nQ̌]
= Tr

(
σμσ̄ νσρσ̄ τ

)
ZμP̌νVρQ̌τ , (5.254)

where we introduced the short-hand V μ = <P b|γ μ|n]/2. Using the identity (1.29)
we can trade the σ -matrix trace for a γ -matrix trace, obtaining

.<P b|P̌ZQ̌|n] = 1

2
Tr

(
/Z /̌P /V /̌Q(1 − γ5)

)
. (5.255)

The trace with γ5 is fully anti-symmetric in the four momenta, and thus cancels out
between <P b|P̌ZQ̌|n] and <P b|Q̌ZP̌ |n]. The remaining traces can be expressed
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in terms of scalar products using the familiar rule for the Dirac matrices (see
Eq. (5.61)). We then obtain

.

PInfyInft
[
CP |QR

(
ΔP |Q|R({k · ωi,tri})

−D3

)]

= 1

2

(S T + γ 2)(P · Z) − 2 γ S (Q · Z)

2 γ S T − (S T + γ 2)(P · Q)
+ 1

2

<P b|Z|n]
<P b|Q|n] .

(5.256)

Averaging over the two projections γ± then gives

.

1

2

Σ
γ=γ±

PInfyInft
[
CP |QR

(
ΔP |Q|R({k · ωi,tri})

−D3

)]

= − (P · Q)(P · Z) − S (Q · Z)

2
(
(P · Q)2 − S T

) + 1

2

<P b|Z|n]
<P b|Q|n] .

(5.257)

Substituting this and Eq. (5.252) into Eq. (5.250) finally gives

.c0;P |QR = (P · Q)(P · Z) − S (Q · Z)

2
(
(P · Q)2 − S T

) , (5.258)

in agreement with the result of the Passarino-Veltman reduction given in Eq. (5.233).

Exercise 3.10: Momentum-Twistor Parametrisations

The matrix Z in Eq. (3.258) has the form

.Z = (Z1 Z2 Z3 Z4) , with Zi =
(

λiα

μα̇
i

)
. (5.259)

We can thus read off .λiα and compute all .<ij > through .<ij > = −λiαεαβλjβ . Our
conventions for .εαβ are given in Exercise 5. For instance, we have that

.<12> = −(1 0) ·
(
0 −1
1 0

)
·
(
0
1

)
= 1 . (5.260)

Repeating this for all .<ij > we get

.<12> = <13> = <14> = 1 , <23> = −1

y
, <24> = y , <34> = 1 + y2

y
.

(5.261)
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From these we can see explicitly that the helicity information is obscured, as some
.<ij > are set to constants. Next, we compute the .λ̃i through Eq. (3.257). E.g. we have

.λ̃α̇
1 = <12>μα̇

4 + <24>μα̇
1 + <41>μα̇

2

<41><12> . (5.262)

From Eq. (3.258) we read off .μα̇
1 = μα̇

2 = (0, 0)T and .μα̇
4 = (0, x)T. Substituting

this and Eq. (5.261) into Eq. (5.262) gives .λ̃α̇
1 = −μα̇

4 . The other .λ̃i are obtained
similarly:

.λ̃α̇
1 =

(
0

−x

)
, λ̃α̇

2 =
(

x

0

)
, λ̃α̇

3 = x y

1 + y2

(−y

1

)
, λ̃α̇

4 = −x

1 + y2

(
1
y

)
.

(5.263)

These allow us to determine all .[ij ] through .[ij ] = −λ̃α̇
i εα̇β̇ λ̃α̇

j ,

.

[12] = −x2 , [13] = x2y2

1 + y2 , [14] = x2

1 + y2 ,

[23] = − x2y

1 + y2
, [24] = x2y

1 + y2
, [34] = − x2y

1 + y2
.

(5.264)

We calculate .sij from .<ij > and .[ij ] through .sij = <ij >[ji]. Thanks to momentum
conservation, only two are independent. We choose

.s12 = x2 , s23 = − x2

1 + y2 . (5.265)

The others are determined from these as .s13 = s24 = −s12 − s23, .s14 = s23,
and .s34 = s12. We obtain the momenta .p

μ
i from .λiα and .λ̃α̇

i through .p
μ
i =

−λiαεαβ(σμ)ββ̇ λ̃
β̇
i . See Exercise 5 for our conventions on .σμ. We obtain

.p
μ
1 = x

2

⎛
⎜⎜⎝

−1
0
0

−1

⎞
⎟⎟⎠ , p

μ
2 = x

2

⎛
⎜⎜⎝

−1
0
0
1

⎞
⎟⎟⎠ , p

μ
3 = x

2

⎛
⎜⎜⎜⎜⎝

1
2y

1+y2

0
1−y2

1+y2

⎞
⎟⎟⎟⎟⎠ , (5.266)

and .p4 = −p1 − p2 − p3. This parametrisation describes two incoming particles
with momenta .−p1 and .−p2 traveling along the z axis with energy .E = x/2 in
their center-of-mass frame. The outgoing particles, with momenta .p3 and .p4, lie on
the xz-plane. The angle .θ between the three-momentum .p3 and the z axis is related
to y through .y = tan(θ/2).
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Let us consider the tree-level four-gluon amplitude .A
(0)
4 (1−, 2+, 3−, 4+). Using

the Parke-Taylor formulae (1.192) and (1.193) (with .g = 1) it may be written
either as

.A
(0)
4,MHV(1−, 2+, 3−, 4+) = i

<13>4
<12><23><34><41> , (5.267)

or as

.A
(0)
4,MHV

(1−, 2+, 3−, 4+) = i
[24]4

[12][23][34][41] . (5.268)

Using the momentum-twistor parametrisation in Eqs. (5.261) and (5.264) it is
straightforward to see that both expressions evaluate to

.A
(0)
4 (1−, 2+, 3−, 4+) = i

y2

1 + y2 . (5.269)

Showing this with the spinor-helicity formalism alone requires some gymnastics
with momentum conservation. For instance, we may proceed as

.

A
(0)
4,MHV

(1−, 2+, 3−, 4+)

A
(0)
4,MHV(1−, 2+, 3−, 4+)

= [24]4<12><23><34><41>
<13>4[12][23][34][41]

=
−<13>[34]' '' '
<12>[24]

−<31>[14]' '' '
<32>[24]

−<31>[12]' '' '
<34>[42]

−[23]<31>' '' '
[24]<41>

<13>4[12][23][34][41]
= 1 . (5.270)

The proof for the adjacent MHV configuration .A
(0)
4 (1−, 2−, 3+, 4+) is analogous.

Exercise 4.1: TheMassless Bubble Integral

(a) Applying the Feynman trick (4.12) to the bubble integral (4.15) gives

.F2 = Γ (a1 + a2)

Γ (a1)Γ (a2)

f
dα1dα2

GL(1)

f
dDk

iπ
D
2

α
a1−1
1 α

a2−1
2 (α1 + α2)

−a1−a2[−M2 − i0
]a1+a2

,

(5.271)

where

.M2 = k2 − 2α2

α1 + α2
p · k + α2

α1 + α2
p2 . (5.272)
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We complete the square in M2,

.M2 =
(

k − α2

α1 + α2
p

)2

+ p2 α1α2

(α1 + α2)2
, (5.273)

and shift the loop momentum as k → k − α2/(α1 + α2)p. This gives

.F2 = Γ (a1 + a2)

Γ (a1)Γ (a2)

f
dα1dα2

GL(1)

f
dDk

iπ
D
2

α
a1−1
1 α

a2−1
2 (α1 + α2)

−a1−a2[
−k2 − α1α2

(α1+α2)
2 p

2 − i0
]a1+a2

.

(5.274)

We can now carry out the integration in k using the formula (4.6), obtaining

.F2 = Γ
(
a1 + a2 − D

2

)
Γ (a1)Γ (a2)

f
dα1dα2

GL(1)
α

a1−1
1 α

a2−1
2

(α1 + α2)
a1+a2−D

(−α1α2p2 − i0
)a1+a2− D

2

.

(5.275)

This formula is the Feynman parameterisation for the massless bubble integral.
It matches the one-loop master formula (4.14), with U = α1 + α2 and V =
−α1α2p

2.
(b) We use the GL(1) invariance to fix α1+α2 = 1, namely we insert δ(α1+α2−1)

under the integral sign in Eq. (5.275), and we absorb the i0 prescription into a
small positive imaginary part of p2. We can carry out the remaining integration
in terms of Gamma functions, obtaining

.F2=( − p2 − i0
)D

2 −a1−a2 Γ
(
a1 + a2 − D

2

)
Γ (a1)Γ (a2)

f 1

0
dα1 α

D
2 −a2−1
1 (1 − α1)

D
2 −a1−1

= ( − p2 − i0
)D

2 −a1−a2 Γ
(
a1 + a2 − D

2

)
Γ

(
D
2 − a1

)
Γ

(
D
2 − a2

)
Γ (a1)Γ (a2)Γ (D − a1 − a2)

,

(5.276)

as claimed.

Exercise 4.2: Feynman Parametrisation

We draw the diagram of the triangle Feynman integral .F3 (4.18) in Fig. 5.1, with
both momentum-space and dual-space labelling. We assign the dual coordinate .x0
to the region inside the loop, and relate the other dual coordinates to the external
momenta according to Eq. (4.10):

.p1 = x2 − x1 , p2 = x3 − x2 , p3 = x1 − x3 . (5.277)
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Fig. 5.1 Diagram of the
triangle Feynman integral .F3
defined in Eq. (4.18). We
write next to each internal
edge the corresponding
momentum. The arrows
denote the directions of the
momenta. The edges of the
graph divide the space into
four regions, which we label
by the dual coordinates .xi

x0

k−
p
2

x3

k
x2

k + p1x
1

p3

p1

p2

Note that momentum conservation (.p1 + p2 + p3 = 0) is automatically satisfied in
terms of the dual coordinates. The loop momenta are then given by

.k = x0 − x2 , k + p1 = x0 − x1 , k − p2 = x0 − x3 , (5.278)

so that the integral takes the form of Eq. (4.11),

.F3 =
f

dDx0

iπD/2

3||
j=1

1

−x2
0j − i0

. (5.279)

The relation between the loop momentum k and the dual variables in Eq. (5.278)
differs from that given in Eq. (4.10), .k = x1 − x0. We emphasise that this is just
a convention, as we are free to redefine the loop integration variables. The dual
regions, on the other hand, are invariant. This means that once we assign coordinates
.xi to the dual regions, the integral takes the form of Eq. (5.279) (in agreement with
the general formula (4.11)), regardless of the loop-momentum labelling we started
from.

The kinematic constraints .p2
1 = p2

2 = 0 and .p2
3 = s imply that

.x2
12 = p2

1 = 0 , x2
23 = p2

2 = 0 , x2
13 = p2

3 = s , (5.280)

as claimed. The Symanzik polynomials are given by

.U = α1 + α2 + α3 , V = −s α1α3 . (5.281)

Substituting the above into Eq. (5.279) with .D = 4 − 2ε gives the following
Feynman parameterisation:

.F3 = Γ (1 + ε)

f ∞

0

dα1dα2dα3

GL(1)

1

(α1 + α2 + α3)1−2ε(−s α1α3 − i0)1+ε
.

(5.282)
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Exercise 4.3: Taylor Series of the Log-Gamma Function

(a) The recurrence relation of the digamma function follows from that of the Γ

function (4.23). Differentiating the latter, and dividing both sides by xΓ (x)

gives

.
Γ '(x + 1)

Γ (x + 1)
= 1

x
+ Γ '(x)

Γ (x)
, (5.283)

where we have used xΓ (x) = Γ (x + 1). Comparing to the definition of the
digamma function in Eq. (4.29), we can rewrite this as

.ψ(x + 1) = 1

x
+ ψ(x) . (5.284)

We apply Eq. (5.284) recursively starting from ψ(x + n) with n ∈ N,

.

ψ(x + n) = 1

x + n − 1
+ ψ(x + n − 1)

= 1

x + n − 1
+ 1

x + n − 2
+ ψ(x + n − 2)

=
nΣ

s=1

1

x + n − s
+ ψ(x) .

(5.285)

Changing the summation index to k = n − s in the last line gives Eq. (4.30).
(b) Consider the difference ψ(x + n) − ψ(1 + n). Using Eq. (4.30) we can rewrite

it as

.ψ(x + n) − ψ(1 + n) =
n−1Σ
k=0

(
1

x + k
− 1

1 + k

)
+ ψ(x) + γE , (5.286)

where we recall that ψ(1) = −γE. In order to study the limit n → ∞ we use
Stirling’s formula (4.32), which implies the following approximation for ψ(x),

.ψ(1 + x) = 1

2x
+ log(x) + O

(
1

x2

)
. (5.287)

It follows that

. lim
n→∞ [ψ(x + n) − ψ(1 + n)] = 0 . (5.288)

Taking the limit n → ∞ of both sides of Eq. (5.286) gives Eq. (4.31).
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(c) The series representation (4.31) of the digamma function allows us the compute
the higher-order derivatives in the Taylor expansion (4.28),

.

dn

dxn
logΓ (1 + x)

||||
x=0

= dn−1

dxn−1ψ(1 + x)

||||
x=0

= (−1)n (n − 1)!
∞Σ

k=0

1

(1 + k)n
,

(5.289)

for n ≥ 2. By changing the summation index to k' = k + 1, we recognise in
the last line the definition of the Riemann zeta constant ζn given in Eq. (4.26).
Substituting Eq. (5.289) into Eq. (4.28) and simplifying finally give Eq. (4.24).

Exercise 4.4: Finite Two-Dimensional Bubble Integral

We start from the Feynman parameterisation in Eq. (4.34). We set .D = 2, fix the
.GL(1) freedom such that .α1 + α2 = 1, and absorb the .i0 prescription in a small
positive imaginary part of s. We obtain

.F2
(
s,m2;D = 2

) =
f 1

0

dα1

−s α1(1 − α1) + m2 . (5.290)

In order to carry out the integration, we factor the denominator and decompose the
integrand into partial fractions w.r.t. .α1:

.F2
(
s,m2;D = 2

) = 1

s (α+
1 − α−

1 )

f 1

0
dα1

(
1

α1 − α+
1

− 1

α1 − α−
1

)
, (5.291)

where

.α±
1 = 1

2

(
1 ± √

Δ
)

, Δ = 1 − 4
m2

s
. (5.292)

For .s < 0 and .m2 > 0, we have that .α+
1 > 1 and .α−

1 < 0. The integration then
yields

.F2
(
s,m2;D = 2

) = 1

s
√

Δ
log

[
α−
1 (α+

1 − 1)

α+
1 (α−

1 − 1)

]
. (5.293)

We may simplify the expression by changing variables to s and x through

.m2 = −s
x

(1 − x)2
, (5.294)
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with .0 < x < 1. The discriminant .Δ in fact becomes a perfect square, and .
√

Δ a
rational function. The choice of the branch of the square root is arbitrary. We choose

.
√

Δ = 1 + x

1 − x
, (5.295)

which is positive for .0 < x < 1. Equation (5.293) then simplifies to

.F2
(
s,m2;D = 2

) = 2

s

1 − x

1 + x
log(x) . (5.296)

Equation (5.296) is very simple, but hides a symmetry property. We said above
that the choice of the branch of .

√
Δ is arbitrary. In other words, .F2 must be invariant

under .
√

Δ → −√
Δ. Let us work out how x changes under this transformation.

Solving Eq. (5.294) for x gives two solutions. We choose the one such that .0 < x <

1 for .s < 0 and .m2 > 0, which is compatible with Eq. (5.295):

.x = 1 − 1

2

s

m2

(
1 − √

Δ
)

. (5.297)

One may then verify that .1/x = x
||√

Δ→−√
Δ
. Therefore, when changing the sign of

.
√

Δ, both the logarithm in Eq. (5.296) and its coefficient gain a factor of .−1, so that
.F2 is indeed invariant. This property is very common in Feynman integrals involving
square roots. A particularly convenient way to make it manifest is to rewrite the
argument of the logarithm in the form

. log

(√
Δ − a√
Δ + a

)
, (5.298)

for some rational function a. In the triangle case, dimensional analysis tells us that
a must be a constant. Indeed, one may verify with .a = 1 we recover .log(x). Our
final expression for the two-dimensional bubble integral therefore is

.F2
(
s,m2;D = 2

) = 2

s
√

Δ
log

(√
Δ − 1√
Δ + 1

)
. (5.299)

Exercise 4.5: Laurent Expansion of the Gamma Function

(a) Since Γ (z) has a simple pole at z = 0, Γ (z + 1) = zΓ (z) admits a Taylor
expansion around z = 0,

.Γ (z + 1) = 1 − z γE + z2

2
Γ ''(1) + O(z3) . (5.300)



280 5 Solutions to the Exercises

In order to evaluate the second derivative of Γ (z), we relate it to the digamma
function through Eq. (4.29). Then we have that

.Γ ''(1) = ψ '(1) + γE
2 . (5.301)

Finally, we can evaluate ψ '(1) using the series representation of the digamma
function (4.31), obtaining

.ψ '(1) =
∞Σ

k=0

1

(k + 1)2
= ζ2 . (5.302)

Substituting Eqs. (5.302) and (5.301) into Eq. (5.300), and dividing by z both
sides of the equation gives the desired Laurent expansion (4.40).

(b) In order to exploit the Laurent expansion around z = 0 computed in the previous
part, we apply the recurrence relation (4.23) iteratively until we get

.Γ (z) = Γ (z + n)

z(z + 1) . . . (z + n − 1)
. (5.303)

The Laurent expansion of Γ (z + n) around z = −n is then obtained from
Eq. (4.40) by replacing zwith z+n. The remaining factors are regular at z = −n,
and their Taylor expansion is given in terms of harmonic numbers (4.42) by

.

n−1||
k=0

1

z + k
= (−1)n

n!
[
1+(z + n)Hn+ (z + n)2

2

(
Hn,2+H 2

n

)
+O

(
(z + n)3

)]
.

(5.304)

Substituting Eq. (4.40) with z → z + n and Eq. (5.304) into Eq. (5.303), and
expanding up to order (z + n) gives Eq. (4.41).

Exercise 4.6: Massless One-Loop Box withMellin-Barnes
Parametrisation

We begin by rewriting the function B in Eq. (4.50) as

.B = −2 ε

t2
B(1) + O(ε2) , (5.305)

where

.B(1) =
f
Re(z)=c'

dz

2π i
x−z Γ (−z)3

Γ (1 + z)3

1 + z
. (5.306)
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Fig. 5.2 Pole structure of the
.Γ functions in Eq. (5.307),
and integration contour
(dashed line)

Re(z)

Im(z)

0 1 2−1−2

Γ(−z)
Γ(1 + z)

We applied the recurrence relation (4.23) twice—with .n = −1− z and .n = 1+ z—
to simplify the expression w.r.t. Eq. (4.50). The pole structure of .B(1) is depicted in
Fig. 5.2. From the latter we see that .−1 < c' < 0. E.g., we may set .c' = −1/2.
In order to carry out the integration we close the contour at infinity. Assuming that
.x > 1, we close the contour to the right, as shown in Fig. 5.2. The contribution from
the semi-circle at infinity vanishes, and the integral is given by

.B(1) = −
∞Σ

n=0

Res

[
x−z Γ (−z)3

Γ (1 + z)3

1 + z
, z = n

]
. (5.307)

The minus sign comes from the clockwise direction of the loop. To compute the
residues, we make use of the Laurent expansions computed in Exercise 4.5. The
factor of .Γ (−z)3 entails a triple pole at .z = n (with .n = 0, 1, . . .), so that we need
the expansion of all functions involved around .z = n up to the third order. We obtain
the Laurent expansion of .Γ (−z) around .z = n by replacing .z → −z in Eq. (4.41),

.Γ (−z) = (−1)n

n!
{ −1

z − n
+ Hn − γE − z − n

2

[
(Hn − γE)2 + ζ2 + Hn,2

]}
+ . . . .

(5.308)

In order to compute the Taylor expansion of .Γ (1 + z) we leverage what we learnt
about the digamma function in Exercise 4.3. The first derivative is given by

.
d

dz
Γ (1 + z)

||||
z=n

= Γ (1 + n)ψ(1 + n) = n! (Hn − γE) , (5.309)

where we used the recurrence relation (4.30). We recall the definition of the
harmonic numbers in Eq. (4.42). For the second derivative we use again Eq. (4.30)
to write .ψ '(1 + n) = ψ '(1) − Hn,2, and Eq. (4.31) to evaluate .ψ '(1) = ζ2. We thus
obtain

.
d2

dz2
Γ (1 + z)

||||
z=n

=n! [ψ(1 + n)2 + ψ '(1 + n)
]

=n! [(Hn − γE)2 + ζ2 − Hn,2
]
. (5.310)
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Putting the above together gives the Taylor expansion of .Γ (1 + z) around .z = n:

.Γ (1 + z)=n!
{
1+(z − n)

(
Hn − γE

)+ (z − n)2

2

[
(Hn−γE)2+ζ2 − Hn,2

] + . . .

}
.

(5.311)

Attentive readers may notice that the expansion of .Γ (1+z)Γ (−z) is much simpler:

.Γ (−z) Γ (1 + z) = −(−1)n
[

1

z − n
+ ζ2 (z − n)

]
+ O((z − n)2

)
. (5.312)

We could have arrived directly at this result through Euler’s reflection formula,

.Γ (−z) Γ (1 + z) = − π

sin(πz)
. (5.313)

The Taylor expansions of the other functions in Eq. (5.306) are straightforward.
Substituting them into Eq. (5.307) and taking the residue gives

.B(1) =
∞Σ

n=0

(−x)−n

(1 + n)3
+ log(x)

∞Σ
n=0

(−x)−n

(1 + n)2
+ 1

2

(
π2 + log2(x)

) ∞Σ
n=0

(−x)−n

1 + n
.

(5.314)

The series can be summed in terms of polylogarithms through their definition (4.56):

.

∞Σ
n=0

(−x)−n

(1 + n)k
= −x Lik

(
−1

x

)
, (5.315)

for .k = 1, 2, . . . and .x > 1. Plugging this into Eq. (5.314), and the latter into
Eq. (5.305) gives our final expression for B:

.B = 2 ε

s t

[
Li3

(
−1

x

)
+ log(x)Li2

(
−1

x

)
− 1

2

(
π2 + log2(x)

)
log

(
1 + 1

x

)]

+ O(ε2) . (5.316)

The expression of the massless one-loop box .F4 in Eq. (4.55) is obtained by
subtracting from B in Eq. (5.316) the Laurent expansion of the residue A in
Eq. (4.49).
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Exercise 4.7: Discontinuities

(a) The logarithm of a complex variable z = |z|ei arg(z) is defined as

. log(z) = log |z| + i arg(z) , (5.317)

where |z| is the absolute value of z, and the argument of z (arg(z)) is the
counterclockwise angle from the positive real axis to the line connecting z

with the origin. log |z| is a continuous function of z, hence the discontinuity
of log(z) originates from arg(z). As z approaches the negative real axis from
above (below), arg(z) approaches π (−π ). In other words, we have that

. lim
η→0+ arg(x ± iη) = ±π Θ(−x) , (5.318)

for x ∈ R. The discontinuity of the logarithm across the real axis is thus given
by

.

Discx

[
log(x)

] = lim
η→0+ i

[
arg(x + iη) − arg(x − iη)

]

= 2iπ Θ(−x) .

(5.319)

(b) We rewrite the identity (4.67) here for convenience:

.Li2(x) = −Li2(1 − x) − log(1 − x) log(x) + ζ2 . (5.320)

This equation is well defined for 0 < x < 1. Focusing on the RHS, however,
we see that all functions are well defined for x > 0 except for log(1 − x). We
can thus make use of Eq. (5.320) to reduce the analytic continuation of Li2(x)

to x > 1 to that of log(1 − x). For x > 1 we have that

.Li2(x+iη) − Li2(x − iη)= log(x)
[
log(1 − x + iη)−log(1 − x − iη)

]+O(η) .

(5.321)

Hence, the discontinuity of the dilogarithm follows from that of the logarithm,
as

.Discx [Li2(x)] = log(x)Discx

[
log(1 − x)

]
= 2π i log(x)Θ(x − 1) . (5.322)
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Exercise 4.8: The Symbol of a Transcendental Function

We make use of the recursive definition of the symbol (4.98). The differential of
.log(x) log(1 − x) is given by

.d
[
log(x) log(1 − x)

] = log(1 − x) d log(x) + log(x) d log(1 − x) . (5.323)

Through Eq. (4.98) we then have that

.S
(
log(x) log(1 − x)

) = [S(log(1 − x)), x] + [S(log(x)), 1 − x] . (5.324)

Since we already know that .S(log a) = [a] (Eq. (4.99)), the final result is

.S
(
log(x) log(1 − x)

) = [x, 1 − x] + [1 − x, x] . (5.325)

Alternatively, one may replace each function in the product by its symbol,

.S
(
log(x) log(1 − x)

) = [x] × [1 − x] . (5.326)

By comparing Eqs. (5.325) and (5.326) we see that

.[x] × [1 − x] = [x, 1 − x] + [1 − x, x] . (5.327)

This is a very important property of the symbol called shuffle product. It allows us
to express the product of two symbols of weights .n1 and .n2 as a linear combination
of symbols of weight .n1 + n2. For example, at weight three we have

.[a] × [b, c] = [a, b, c] + [b, a, c] + [b, c, a] . (5.328)

We refer the interested readers to ref. [2].

Exercise 4.9: Symbol Basis andWeight-Two Identities

(a) The symbol method turns finding relations among special functions into a linear
algebra problem. The first step is to put the symbols of Eq. (4.106) and the
functions of Eq. (4.107) in two vectors:

.b = ([x, x], [x, 1 − x], [1 − x, x], [1 − x, 1 − x])T , . (5.329)

g = (
log2(x), log2(1 − x), log(x) log(1 − x),Li2(1 − x)

)T
. (5.330)
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The elements of b are a basis of all weight-two symbols in the alphabet {x, 1 −
x}. We can thus express the symbol of g in the basis b, as

.S(g) =

⎛
⎜⎜⎝

2 [x, x]
2 [1 − x, 1 − x]

[x, 1 − x] + [1 − x, x]
−[x, 1 − x]

⎞
⎟⎟⎠ = M · b , with M =

⎛
⎜⎜⎝
2 0 0 0
0 0 0 2
0 1 1 0
0 −1 0 0

⎞
⎟⎟⎠ .

(5.331)

Since the matrix M has non-zero determinant, we can invert it to express the
weight-two symbol basis b in terms of the symbols of the functions in g,

.b = M−1 · S(g) , with M−1 =

⎛
⎜⎜⎝

1
2 0 0 0
0 0 0 −1
0 0 1 1
0 1

2 0 0

⎞
⎟⎟⎠ . (5.332)

Therefore, g is a basis of the weight-two symbols in the alphabet {x, 1 − x} as
well.

(b) Let us start from Li2 (x/(x − 1)). Using Eq. (4.96), its symbol is given by

.S
[
Li2

(
x

x − 1

)]
= −

[
1 − x

x − 1
,

x

x − 1

]
. (5.333)

The properties (4.100) allow us to express the latter in terms of the letters {x, 1−
x}:

.S
[
Li2

(
x

x − 1

)]
= [1 − x, x] − [1 − x, 1 − x] . (5.334)

We can then express the symbol of Li2(x/(x − 1)) in the basis b, as

.S
[
Li2

(
x

x − 1

)]
= (0, 0, 1,−1) · b . (5.335)

In this sense, Li2(x/(x − 1)) ‘lives’ in the space spanned by Eq. (4.106). We do
the same for the other dilogarithms in Eq. (4.108):

.S
[
Li2(x)

] = −[1 − x, x] = (0, 0,−1, 0) · b , . (5.336)

S
[
Li2

(
1

x

)]
= [1 − x, x] − [x, x] = (−1, 0, 1, 0) · b , . (5.337)
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S
[
Li2

(
1

1 − x

)]
= −[1 − x, 1 − x] + [x, 1 − x] = (0, 1, 0,−1) · b , .

(5.338)

S
[
Li2

(
x − 1

x

)]
= [x, 1 − x] − [x, x] = (−1, 1, 0, 0) · b . (5.339)

(c) Having expanded the symbols of the dilogarithms in Eq. (4.108) in the basis b,
we can change basis from b to S(g) as in Eq. (5.332). For example, we have

.

S
[
Li2

(
x

x − 1

)]
= (0, 0, 1,−1) · M−1 · S(g)

=S
[

− 1

2
log2(1 − x) + log(x) log(1 − x) + Li2(1 − x)

]
.

(5.340)

Doing the same for the other dilogarithms in Eq. (4.108) gives the following
identities:

.S
[
Li2(x) + Li2(1 − x) + log(x) log(1 − x)

]
= 0 , . (5.341)

S
[
Li2

(
1

x

)
− Li2(1 − x) − log(x) log(1 − x) + 1

2
log2(x)

]
= 0 , .

(5.342)

S
[
Li2

(
1

1 − x

)
+ Li2(1 − x) + 1

2
log2(1 − x)

]
= 0 , . (5.343)

S
[
Li2

(
x − 1

x

)
+ Li2(1 − x) + 1

2
log2(x)

]
= 0 . (5.344)

The terms which are missed by the symbol may be fixed as done for Eq. (4.92).

Exercise 4.10: Simplifying Functions Using the Symbol

We compute the symbol of .f1(u, v) in Eq. (4.109). The general strategy is the
following: we use the rule in Eq. (4.96) for the dilogarithms; next, we put all
letters over a common denominator and factor them; finally, we use the symbol
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properties (4.100) to expand the symbol until all letters are irreducible factors. This
gives

.S
[
Li2

(
1 − v

u

)]
= [u + v − 1, u] − [u + v − 1, 1 − v] + [u, 1 − v] − [u, u] , .

(5.345)

S
[
Li2

(
(1 − u)(1 − v)

uv

)]
= ([u + v − 1, u] − [u + v − 1, 1 − u] + [u, 1 − u]

+ [u, 1 − v] − [u, u] − [u, v]) + (
u ↔ v

)
.

(5.346)

.Li2((1− u)/v) is obtained from .Li2((1− v)/u) by exchanging .u ↔ v, and so is its
symbol. The symbol of .π2/6 vanishes. Putting the above together gives

.S
[
f1(u, v)

] = [u, 1 − u] + [v, 1 − v] − [u, v] − [v, u] , (5.347)

as claimed. Note that the letter .u + v − 1 drops out in the sum. In other words,
.u + v = 1 is a branch point for the separate terms in the expression of .f1(u, v)

given in Eq. (4.109), but not for .f1(u, v).
On the RHS of Eq. (5.347) we recognise in .[u, 1 − u] (.[v, 1 − v]) the symbol of

.−Li2(u) (.−Li2(v)), and in .[u, v]+[v, u] the symbol of .log u log v (see Exercise 4.8).
An alternative and simpler expression for .f1(u, v) is thus given by

.S
[
f1(u, v)

] = S[ − Li2(u) − Li2(v) − log u log v
]
, (5.348)

which matches—at symbol level—the expression of .f2(u, v) in Eq. (4.112).

Exercise 4.11: TheMassless Two-Loop Kite Integral

We define the integral family as

.Gkite
a1,a2,a3,a4,a5

:=
f

dDk1

iπD/2

dDk2

iπD/2

1

D
a1
1 D

a2
2 D

a3
3 D

a4
4 D

a5
5

, (5.349)

where the inverse propagators .Di are given by3

.
D1 = −k21 , D2 = −(k1 − p)2 , D3 = −k22 ,

D4 = −(k2 + p)2 , D5 = −(k1 + k2)
2 .

(5.350)

3 In Chap. 4 we write the inverse propagators as .Da = −(k − qa)
2 + m2

a − i0, which is natural for
the loop integration (see Sect. 4.2.1), as opposed to .Da = +(k −qa)

2 −m2
a + i0. We used the latter

in Chap. 3 as it is more convenient for the unitarity methods.
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Feynman’s .i0 prescription is dropped, as it plays no part here. The desired integral
is

.Fkite
(
s;D

) = Gkite
1,1,1,1,1 . (5.351)

The IBP relations for the triangle sub-integral with loop momentum .k2 are given by

.

f
dDk1

iπD/2

dDk2

iπD/2

∂

∂k
μ
2

qμ

D1D2D3D4D5
= 0 , (5.352)

for any momentum q. Upon differentiating we rewrite the scalar products in terms
of inverse propagators—and thus of integrals of the family (5.349)—by inverting
the system of equations (5.350) (e.g. .k1 · p = (D2 − D1 + s)/2). There are three
independent choices for q: .k1, .k2, and p. We need to find a linear combination
of these such that the resulting IBP relation contains only .Fkite and bubble-type
integrals. Using .q = k1 + k2 gives

.(D − 4)Gkite
1,1,1,1,1 − Gkite

1,1,1,2,0 − Gkite
1,1,2,1,0 + Gkite

0,1,2,1,1 + Gkite
1,0,1,2,1 = 0 .

(5.353)

The graph symmetries imply that

.Gkite
1,1,1,2,0 = Gkite

1,1,2,1,0 , Gkite
1,0,1,2,1 = Gkite

0,1,2,1,1 . (5.354)

.Gkite
1,1,2,1,0 is a product of bubble integrals. Using Eq. (4.16) for the latter gives

.Gkite
1,1,2,1,0 = B(1, 1) B(1, 2) (−s)D−5 . (5.355)

.Gkite
0,1,2,1,1 instead has a bubble sub-integral. By using Eq. (4.16) iteratively we obtain

. (5.356)
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where the numbers next to the propagators in the graphs are their exponents. Putting
the above together gives

.Gkite
1,1,1,1,1 = 2

D − 4
B(1, 1)

[
B(1, 2) − B

(
3 − D

2
, 2

)]
(−s)D−5 , (5.357)

which can be expressed in terms of gamma functions through Eq. (4.17). Setting
.D = 4− 2ε and expanding the .Γ functions around .ε = 0 through Eq. (4.24) finally
gives Eq. (4.130).

Exercise 4.13: “d log” Form of theMassive Bubble Integrand with
D = 2

We start from the integrand .ω1,1 in the first line of Eq. (4.169). We use the
parameterisation .k = β1p1 + β2p2, with .p = p1 + p2, .p2

1 = p2
2 = 0 and

.2p1 ·p2 = s. We change integration variables from k to .β1 and .β2. The propagators
are given by

.

− k2 + m2 = −s
(
β1β2 − x

)
,

− (k + p)2 + m2 = −s
[
(1 + β1)(1 + β2) − x

]
,

(5.358)

where we introduced the short-hand notation .x = m2/s. The Jacobian factor is a
function of s, and dimensional analysis tells us that .J ∝ s. The constant prefactor
is irrelevant here.4 The integrand then reads

.ω1,1 ∝ 1

s

dβ1dβ2

(β1β2 − x)
[
(1 + β1)(1 + β2) − x

] . (5.359)

Our goal is to rewrite .ω1,1 in a “.d log” form. First, we decompose .ω1,1 into partial
fractions w.r.t. .β2:

.s ω1,1 ∝ dβ1

β2
1 + β1 + x

dβ2

β2 − x/β1
− dβ1

β2
1 + β1 + x

dβ2

β2 + 1 − x/(1 + β1)
.

(5.360)

We then push all .β2-dependent factors into .d log factors, obtaining

.

s ω1,1 ∝ dβ1

β2
1 + β1 + x

d log

(
β2 − x

β1

)
− dβ1

β2
1 + β1 + x

d log

(
1 + β2 − x

1 + β1

)

∝ dβ1

β2
1 + β1 + x

d log

(
β1β2 − x

(1 + β1)(1 + β2) − x

)
.

(5.361)

4 For an example of how to compute the Jacobian factor, see the solution to Exercise 4.14.
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In order to do the same w.r.t. .β1, we need to factor the polynomial in the
denominator:

.β2
1 + β1 + x = (

β1 − β+
1

)(
β1 − β−

1

)
, β±

1 = 1

2

(
− 1 ± √

1 − 4x
)

.

(5.362)

Partial fractioning w.r.t. .β1 and rewriting all .β1-dependent factors into .d log’s yields

.ω1,1 ∝ 1

s
√
1 − 4x

d log

(
β1 − β+

1

β1 − β−
1

)
d log

(
β1β2 − x

(1 + β1)(1 + β2) − x

)
. (5.363)

Note that there is a lot of freedom in the expression of the .d log form. For instance,
we might have started with a partial fraction decomposition w.r.t. .β1, and we would
have obtained a different—yet equivalent—expression. While the expression of the
.d log form may vary, all singularities are always manifestly of the type .dx/x, and
the leading singularities stay the same (up to the irrelevant sign).

We now consider the momentum-space .d log form in Eq. (4.169), namely

.ω1,1 ∝ 1

s
√
1 − 4x

d log(τ1) d log(τ2) , (5.364)

where

.τ1 = −k2 + m2

(k − k±)2
, τ2 = −(k + p)2 + m2

(k − k±)2
. (5.365)

We rewrite the latter in terms of .β1 and .β2, and show that it matches Eq. (5.359).
We recall that .d = dβ1 ∂β1 + dβ2 ∂β2 and .dβ2 dβ1 = −dβ1 dβ2, which imply that

.d log(τ1) d log(τ2) =
(

∂τ1

∂β1

∂τ2

∂β2
− ∂τ1

∂β2

∂τ2

∂β1

)
dβ1 dβ2

τ1 τ2
. (5.366)

In Eq. (5.365), .k± denotes either of the two solutions to the cut equations. We choose
.k+ = β+

1 p1 + β+
2 p2, where .β+

1 is given by Eq. (5.362) and .β+
2 = x/β+

1 . We then
have

.(k − k+)2 = s

2

[
2x + β1 + β2 + 2β1β2 + (β1 − β2)

√
1 − 4x

]
. (5.367)

We substitute Eqs. (5.367) and (5.358) into Eq. (5.365), and the latter into
Eq. (5.366). Simplifying the result—possibly with a computer-algebra system—
gives

.
1

s
√
1 − 4x

d log(τ1) d log(τ2) = 1

s

dβ1 dβ2

(β1β2 − x)
[
(1 + β1)(1 + β2) − x

] ,

(5.368)

which matches the expression of .ω1,1 in Eq. (5.359), as claimed.
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Exercise 4.14: An Integrand with Double Poles: The Two-Loop
Kite inD = 4

We complement .p1 and .p2 with two momenta constructed from their spinors,

.p
μ
3 = 1

2
<1|γ μ|2] , p

μ
4 = 1

2
<2|γ μ|1] , (5.369)

to construct a four-dimensional basis. We have that .p1 ·p2 = −p3 ·p4 = s/2, while
all other scalar products .pi · pj vanish. We expand the loop momenta as

.k
μ
1 =

4Σ
i=1

ai p
μ
i , k

μ
2 =

4Σ
i=1

bi p
μ
i , (5.370)

and change integration variables from .k
μ
1 and .k

μ
2 to .ai and .bi . The inverse

propagators defined in Eq. (5.350) are given by

.

D1 = (a3a4 − a1a2) s , D2 = (a3a4 − a1a2 + a1 + a2 − 1) s ,

D3 = (b3b4 − b1b2) s , D4 = (b3b4 − b1b2 − b1 − b2 − 1) s ,

D5 = (a3a4 − a1a2 + b3b4 − b1b2 + a3b4 + a4b3 − a1b2 − a2b1) s .

(5.371)

The Jacobian .|J1| of the change of variables .{kμ
1 } → {ai} is the determinant of the

.4 × 4 matrix with entries

. (J1)
μ
i = ∂k

μ
1

∂ai

, μ = 0, . . . , 3 , i = 1, . . . , 4 . (5.372)

Dimensional analysis tells us that .|J1| ∝ s2. It is instructive to compute it explicitly
as well. To do so, it is convenient to first consider

. (J1)
μ
i ημν (J1)

ν
j = pi · pj . (5.373)

Taking the determinant on both sides gives

.|J1|2 = − s4

16
, (5.374)

where the minus sign comes from the determinant of the metric tensor. The Jacobian
for .{kμ

2 } → {bi} is similar. The maximal cut is then given by

.Fmax cut
kite ∝ s4

f
da1da2da3da4db1db2db3db4

5||
i=1

δ (Di) , (5.375)
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where the inverse propagators are expressed in terms of .ai and .bi through
Eq. (5.371), and the overall constant is neglected. We use the delta functions of .D1
and .D3 to fix .a1 = a3a4/a2 and .b1 = b3b4/b2,

.

Fmax cut
kite ∝ 1

s

f
da2da3da4db2db3db4

a2b2

δ

(
1 − a2 − a3a4

a2

)
δ

(
1 + b2 + b3b4

b2

)
δ

(
(a2b3 − b2a3)(a2b4 − b2a4)

a2b2

)
.

(5.376)

We then use the first two delta functions to fix .a3 = a2(1 − a2)/a4 and .b3 =
−b2(1 + b2)/b4, and the remaining one to fix .b2 = a2b4/a4. We obtain

.Fmax cut
kite ∝ 1

s

f
da2da4db4
a4(a4 + b4)

. (5.377)

New simple poles have appeared, and the integrand has a double pole at .a2 → ∞.
We can make this manifest by the change of variable .a2 → 1/ã2, which maps the
hidden double pole at .a2 → ∞ into a manifest double pole at .ã2 = 0,

.Fmax cut
kite ∝ 1

s

f
dã2da4db4

ã22a4(a4 + b4)
. (5.378)

Exercise 4.16: The Box Integrals with the Differential Equations
Method

(a) We define and analyse the box integral family using LITERED [3]. There are
3 master integrals. LITERED’s algorithm selects them as the t- and s-channel
bubbles, and the box (see Fig. 5.3). We denote them by g,

.g(s, t; ε) =
⎛
⎜⎝

I box0,1,0,1
I box1,0,1,0
I box1,1,1,1

⎞
⎟⎠ . (5.379)

(b) We differentiate g w.r.t. s and t , and IBP-reduce the result. We obtain

.

{
∂sg(s, t; ε) = As(s, t; ε) · g(s, t; ε) ,

∂tg(s, t; ε) = At(s, t; ε) · g(s, t; ε) ,
(5.380)
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p2

p3 p4

p1
box

0,1,0,1

p1

p2 p3

p4
box

1,0,1,0 p1

p2 p3

p4
box

1,1,1,1

Fig. 5.3 Master integrals of the box integral family in Eq. (5.379)

where

.As =
⎛
⎜⎝

0 0 0
0 − ε

s
0

2(2ε−1)
st (s+t)

2(1−2ε)
s2(s+t)

− s+t+εt
s(s+t)

⎞
⎟⎠ , At =

⎛
⎜⎝

− ε
t

0 0
0 0 0

2(1−2ε)
t2(s+t)

2(2ε−1)
st (s+t)

− s+t+εs
t (s+t)

⎞
⎟⎠ .

(5.381)

We verify the integrability conditions,

.As · At − At · As + ∂tAs − ∂sAt = 0 , (5.382)

and the scaling relation,

.s As + t At = diag(−ε,−ε,−2 − ε) . (5.383)

The diagonal entries on the RHS of the scaling relation match the power
counting of the integrals in g in units of s.

(c) We express f in terms of g as f = T −1 · g by IBP-reducing the integrals in
Eq. (4.175).5 We obtain

.T −1 = c(ε)

⎛
⎝ 0 0 st

0 2ε−1
ε

0
2ε−1

ε
0 0

⎞
⎠ . (5.384)

The new basis f satisfies a system of DEs in canonical form,

.

{
∂sf(s, t; ε) = ε Bs(s, t) · f(s, t; ε) ,

∂t f(s, t; ε) = ε Bt (s, t) · f(s, t; ε) ,
(5.385)

5 We use the inverse of T to match the convention of Sect. 4.4.3 for the gauge transformation.
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where

.Bs =
⎛
⎝

1
s+t

− 1
s

2
s+t

− 2
s

2
s+t

0 − 1
s

0
0 0 0

⎞
⎠ , Bt =

⎛
⎝

1
s+t

− 1
t

2
s+t

2
s+t

− 2
t

0 0 0
0 0 − 1

t

⎞
⎠ .

(5.386)

We compute Bs and Bt as in point b, or through the gauge transformation

.ε Bs = T −1 · As · T − T −1 · ∂sT , (5.387)

and similarly for t . From Eq. (5.386) we see that the symbol alphabet of this
family is {s, t, s+t}. Thanks to the factorisation of ε on the RHS of the canonical
DEs (5.385), the integrability conditions split into

.Bs · Bt − Bt · Bs = 0 , ∂sBt − ∂tBs = 0 . (5.388)

The scaling relation is given by

.s Bs + t Bt = −13 . (5.389)

(d) Viewed as a function of s and x = t/s, f satisfies the canonical DEs

.

{
∂sf(s, x; ε) = ε Cs(s, x) · f(s, x; ε) ,

∂xf(s, x; ε) = ε Cx(s, x) · f(s, x; ε) ,
(5.390)

where Cs and Cx are related to Bs and Bt in (5.386) through the chain rule,

.Cx = s Bt

|||
t=xs

, Cs = Bs + t

s
Bt

|||
t=xs

. (5.391)

We observe that Cx is a function of x only, and Cs of s. Thanks to this separation
of variables, we can straightforwardly rewrite the canonical DEs in differential
form,

.d f(s, x; ε) = ε
[
d C̃(s, x)

] · f(s, x; ε) . (5.392)

The connection matrix C̃ is given by a linear combination of logarithms of the
alphabet letters α1 = s, α2 = x and α3 = 1 + x,

.C̃(s, x) =
3Σ

k=1

Ck logαk(s, x) , (5.393)
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with constant matrix coefficients,

.C1 = −13 , C2 =
⎛
⎝−1 0 −2

0 0 0
0 0 −1

⎞
⎠ , C3 =

⎛
⎝1 2 2
0 0 0
0 0 0

⎞
⎠ . (5.394)

(e) We expand the pure integrals f as a Taylor series around ε = 0,6

.f(s, x; ε) =
Σ
w≥0

εw f(w)(s, x) , (5.395)

and define the weight-w boundary values at s = −1 and x = 1 as b(w) =
f(w)(−1, 1). Using Eq. (4.16) for the bubble-type integrals we obtain

.

f2(s, x; ε) = −1 + ε log(−s) − ε2

12

(
6 log2(−s) − π2

)

+ ε3

12

(
2 log3(−s) − π2 log(−s) + 28 ζ3

)
+ O(ε4) .

(5.396)

The expression for f3(s, x; ε) is obtained by trading s for t = sx in f2(s, x; ε).
We leave b

(w)
1 as free parameters. The weight-0 boundary values are thus given

by b(0) = (b
(0)
1 ,−1,−1)T. We can now solve the canonical DEs in terms of

symbols. In order to do so, we note that the canonical DEs (5.392) imply the
following DEs for the coefficients of the ε expansion,

.d f
(w)
i (s, x) =

3Σ
k=1

⎡
⎣ 3Σ

j=1

(Ck)ij f
(w−1)
j (s, x)

⎤
⎦ d logαk(s, x) . (5.397)

The iteration starts from f(0) = b(0). We spelled out all indices in Eq. (5.397) to
facilitate the comparison against the recursive definition of the symbol given by
Eqs. (4.97) and (4.98). From this, we find the following recursive formula for
the symbol of the solution to the canonical DEs:

.S
(
f

(w)
i

)
=

3Σ
k=1

3Σ
j=1

(Ck)ij

[
S
(
f

(w−1)
j

)
, αk

]
, (5.398)

6 The factor c(ε) in the definition of the pure integrals (4.175) is chosen such that they are finite at
ε = 0.
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starting at weight w = 0 with S
(
f

(0)
i

) = b
(0)
i [] (we recall that [] denotes the

empty symbol). With a slight abuse of notation, we may rewrite this in a more
compact form as

.S
(
f(w)

) =
3Σ

k=1

Ck ·
[
S
(
f(w−1)), αk

]
. (5.399)

At transcendental weight 1 we thus have that

.S
(
f(1)

) = C1 · b(0) [s] + C2 · b(0) [x] + C3 · b(0) [1 + x] . (5.400)

Since [1 + x] is the symbol of log(1 + x), f(1)(x) would diverge at x = −1
unless the coefficients of [1 + x] vanish. The finiteness at x = −1 thus implies

.C3 · b(0) = 0 , (5.401)

which fixes b
(0)
1 = 4. We now have everything we need to write down the

symbol of the solution up to any order in ε. For f1, for instance, we obtain

.

S (f1) = 4 [] − 2 ε
(
2 [s] + [x]) + 2 ε2

(
2 [s, s] + [s, x] + [x, s])

− 2ε3
(
2 [s, s, s] + [s, s, x] + [s, x, s] + [x, s, s] − [x, x, x] + [x, x, 1 + x]

)

+ O(ε4) .

(5.402)

(f) The dependence on s is given by an overall factor of (−s)−ε ,7 which is fixed by
dimensional analysis. We thus define

.f(s, x; ε) = (−s)−ε h(x; ε) , (5.403)

where h(x; ε) does not depend on s. We expand h(x; ε) around ε = 0 as
in (5.395). The coefficients of the expansion h(w)(x) satisfy the recursive DEs

.∂x h(w)(x) =
[
C2

x
+ C3

1 + x

]
· h(w−1)(x) . (5.404)

7 The minus sign in front of s ensures the positivity in the Euclidean region, where s < 0.
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Equation (5.396) implies that

.

h2(x; ε) = −1 + ε2
π2

12
+ ε3

7

3
ζ3 + O(ε4) ,

h3(x; ε) = −1 + ε log(x) + ε2

12

[
π2 − 6 log2(x)

]

+ ε3

12

[
2 log3(x) − π2 log(x) + 28 ζ3

]
+ O(ε4) ,

(5.405)

which give us the boundary values e(w) = h(w)(1) for the second and third
integral. We have determined above that e

(0)
1 = 4, and we leave the remaining

e
(w)
1 ’s as free parameters. Integrating both sides of Eq. (5.404) gives

.h(w)(x) =
f x

1

dx'

x' C2 · h(w−1)(x') +
f x

1

dx'

1 + x' C3 · h(w−1)(x') + e(w) ,

(5.406)

starting from h(0) = e(0). For arbitrary values of the undetermined e
(w)
1 ’s, the

second integral on the RHS of Eq. (5.406) diverges at x = −1. We can thus fix
the remaining boundary values by requiring that

. lim
x→−1

C3 · h(w)(x) = 0 , (5.407)

order by order in ε. For instance, at weight one we have that

.C3 · h(1)(x) =
(
e
(1)
1 , 0, 0

)T
. (5.408)

The finiteness at x = −1 thus fixes e
(1)
1 = 0. Iterating this up to weight 3 yields

.

h1(x; ε) = 4 + ε
[ − 2 log(x)

] + ε2
[

− 4π2

3

]

+ ε3
[
2Li3(−x) − 2 log(x)Li2(−x)

+ 1

3
log3(x) − log(x)2 log(1 + x) + 7π2

6
log(x) − π2 log(1 + x) − 34

3
ζ3

]

+ O(ε4) .

(5.409)
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(g) Equation (4.55) is related to Eq. (5.409) through h1 = ε2steεγE(−s)εF4. Up
to transcendental weight two the equality is manifest. At weight three we find
agreement after applying the identities

.

Li2

(
−1

x

)
= −Li2(−x) − 1

2
log2(x) − ζ2 ,

Li3

(
−1

x

)
= Li3(−x) + 1

3! log
3(x) + ζ2 log(x) ,

(5.410)

for x > 0, which we may prove by the symbol method, as discussed in
Chap. 4.4.4.
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