
3Loop Integrands and Amplitudes 

Abstract 

In this chapter we study the structure of loop-level scattering amplitudes. The 
appearance of integrals over internal loop momenta gives rise to a new set 
of functions that go beyond the rational functions of spinor products seen 
at tree-level. We will use the unitarity of scattering amplitudes to show that 
discontinuities in loop amplitudes can be determined from tree-level information 
as a result of factorisation when loop momentum dependent propagators go 
on-shell. We then show that generalised discontinuities can be used to break 
loop amplitudes further into small tree-level building blocks. We then turn our 
attention to a general method for one-loop dimensionally regulated amplitudes 
in which a basis of functions is determined as well as a technique to determine 
their coefficients from on-shell data. 

3.1 Introduction to Loop Amplitudes 

Perturbative predictions for scattering amplitudes allow us to explore the quantum 
nature of fundamental interactions. Explicit computations within quantum field 
theory, in particular using the method of Feynman diagrams, quickly lead to an 
explosion of both analytic and algebraic complexity. 

Loop-level amplitudes involve integration of internal—virtual—momenta, which 
takes us beyond the simple rational functions we have encountered at tree level. 
In Chap. 2 we have seen that the analysis of the poles of tree-level amplitudes 
led to factorisation when the poles vanish. Equivalently we may say amplitudes 
factorise when the internal momenta go on-shell. This factorisation was observed 
when considering the soft and collinear limits of amplitudes and also, after analytic 
continuation to complex momenta, on the residues in the BCFW construction. As 
we will see, the integrals over the virtual momenta give rise to functions with branch 
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cuts, such as logarithms. These branch cuts lead to discontinuities, which are a new 
feature of loop-level amplitudes. At the level of the integrand, which is a rational 
function of the internal and external momenta, we may associate discontinuities 
with poles dependent on the virtual (or loop) momentum. Analysing the integrand at 
points where these poles vanish will again lead to factorisation into simpler objects. 
Our main aim for this chapter is to turn these words into a concrete computational 
method in which we may re-use on-shell tree-level amplitudes to directly obtain 
information about loop amplitudes. 

There is, however, another major new feature of loop amplitudes. Integrals over 
virtual momenta can lead to divergences, which have to be regulated. Divergences 
at large values of the loop momentum are known as ultraviolet (UV), while 
divergences at small values of the loop momentum are known as infrared (IR). 
In these lecture notes we will follow the procedure of dimensional regularisation, 
which regulates both IR and UV regions using an analytical continuation of the 
space-time dimension to .D = 4 − 2ε, where . ε is a small parameter. We postpone 
a more detailed discussion of the dimensional regularisation until Chap. 4 (see 
Sect. 4.2.2), where we consider the evaluation of the loop integrals. UV and IR 
divergences must cancel for physical predictions. UV divergences are removed 
through the procedure of renormalisation, which is covered in standard field theory 
textbooks (e.g. [1–3]). The cancellation of IR singularities is more complicated 
and in general beyond the scope of these lecture notes. We have seen that IR 
singularities also appear in tree-level amplitudes in soft and collinear limits, and 
it is these divergences that must cancel the IR divergences in the virtual amplitudes. 
This cancellation only happens at the level of cross-sections, where the squared 
amplitude is integrated over an inclusive phase space. The topic is worthy of study 
in its own right, and the interested reader may like to explore the review [4]. 

We begin this discussion with some general observations on the structure of loop 
amplitudes. We will consider loop amplitudes in Yang-Mills theory (YM) in which 
the colour structure has been stripped off as discussed in Sect. 1.11. An amplitude 
with n external legs at L loops may be written in terms of a set of Feynman integrals, 
F , together with rational coefficients c. The amplitude will depend on the external 
momenta of each leg as well as their helicity, and mass (we may consider YM 
coupled to matter). We will write the arguments of the amplitudes as a list of integers 
which represent these properties. The external momenta will be denoted . pi with 
.i = 1, . . . , n. As in the previous chapters, we take them to be all outgoing, and hence 
they satisfy momentum conservation in the form .

Σn
i=1 pi = 0. When analytically 

continuing the dimension we must rescale the coupling to make sure that we are still 
expanding in a dimensionless quantity. This scale is arbitrary and we will represent 
it with the symbol . μR. To write down a general expression for the amplitude we
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must introduce a number of conventions. Let us first write the expression and then 
proceed with the explanation of the normalisations and symbols: 

.

A(L),[D]
n (1, . . . , n) =

(
gYM μ

(4−D)/2
R

)n−2
(
iαYM μ

(4−D)
R

(4π)(D−2)/2

)L

Σ

T

c
[D]
T (1, · · · , n) F

(L),[D]
T (p1, · · · , pn−1) .

(3.1) 

Here the expansion is in the coupling .αYM = g2
YM/(4π). The linear combination 

sums over a set of loop topologies, T , which are defined by the set of propagators 
and loop-momentum dependent numerators. They may also potentially contain 
propagators with higher powers. The coefficients .c[D]

T depend on the momenta, 
helicities and masses of the external legs, and on the masses of the internal particles. 
On the other hand, the integrals .F (L),[D]

T only depend on the .n − 1 independent 
external momenta and on the masses of the internal and external particles (which 
are suppressed in the notation above for conciseness). The factors of . i and . π are 
due to the normalisation of the integrals, which is given below. Example graphs 
of possible loop topologies are shown in Fig. 3.1. The structure of the amplitude 
is not specific to YM theory apart from the couplings. For a useful separation of 
coefficients and integrals, we need to identify a (linearly) independent basis of 
integrals, which defines the sum over topologies T . A precise definition of this 
basis at one loop is one of the main aims of this chapter. In addition, we will show 
how on-shell techniques can be used to directly extract the coefficients of the basis 
integrals. The couplings and dependence on . μR can be easily restored at the end of 
a calculation through dimensional analysis, and so we set .gYM = 1 and .μR = 1 for 
the remainder of this chapter. Furthermore, the factors of . αYMμ

(4−D)
R /(4π)(D−2)/2

Fig. 3.1 Example loop 
topology graphs. (a) Bubble. 
(b) Triangle. (c) Box. (d) 
Two-loop double box 

(a) bubble 

(b) triangle 

(c) box (d) two-loop double box
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will also be suppressed, since they may be restored at the end of the computation as 
well. 

At one loop all topologies take the form of an n-gon with a potential numerator 
function N , 

.F (1),[D]
n [N ] =

f

k

N
||n

a=1

[−(k − qa)2 + m2
a − i0

] , (3.2) 

where .qa = Σa−1
b=1 pb (with .q1 = 0) are the momenta flowing in each propagator, 

which also have a mass . ma . We have also introduced a short hand for the integration 
measure: 

.

f

k

:=
f

dDk

iπD/2
. (3.3) 

Note the different loop integration measure with respect to the .dDk/(2π)D in the 
Feynman rules. This difference is responsible for the factors of . i and . π in Eq. (3.1), 
and will be motivated in Sect. 4.2. The configuration of momenta and propagators 
of Eq. (3.2) is shown graphically in Fig. 3.2. Cases in which the numerator is 
one, .F (1),[D]

n [1], are referred to as scalar integrals. When using an integer n to 
represent the topology we are already indicating that it is a one-loop integral, and 
so the loop-order superscript will be dropped for the remainder of this chapter. 
If no numerator is specified it should considered to be a scalar integral and so 
.F

[D]
n ≡ F

[D]
n [1] ≡ F

(1),[D]
n [1]. A small imaginary part . i0 follows from the Feynman 

prescription for the propagators that was introduced in the Feynman rules. This 
. i0 prescription will mainly play a role only when evaluating the integrals, and so 
we will drop it from the propagator expressions in cases where it is not necessary. 
We will follow the standard convention to refer to the simple one-loop topologies 
according to the polygon that represents the number of propagators, e.g. bubble for 
two propagators, triangle for three propagators, box for four propagators, and so 

Fig. 3.2 The generic 
one-loop integral k 

m1 
k − q2 

m2 

k − q3 
m3 

k − q4 

m4 

p1 

p2 

p3 
pn−1 

pn
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on (see Fig. 3.1 again). An integral with one propagator is referred to as a tadpole 
integral. 

The coefficients of the integrals in Eq. (3.1) can be expanded around the physical 
space-time dimension .D = 4, as  

.c
[D]
T = c

(0)
T + ε c

(1)
T + ε2 c

(2)
T + . . . (3.4) 

The order at which we must expand the coefficients to ensure the correct result for 
the amplitudes as .ε → 0 will depend on the overall divergences present in the loop 
integrals. 

We may also consider the integrand of an amplitude .A(L),[D]
n (1, . . . , n), which 

we denote .I
(L),[D]
n (1, . . . , n), and is a rational function satisfying 

.A(L),[D]
n (1, . . . , n) =

f L||

l=1

dDkl

iπD/2 I (L),[D]
n (k, 1, . . . , n) . (3.5) 

The amplitude integrands are not uniquely defined, as they may differ by terms 
which integrate to zero, thus giving rise to the same amplitude. The simplest choice 
is to use the Feynman-diagram expansion to define the integrand. If we make the 
assumption that a colour-ordered one-loop amplitude has a single ordering of the 
external legs for the topology with n propagators (this is the case for the leading-
colour approximation in Yang-Mills theory), we can be more explicit and write 

.I (1),[D]
n (k, 1, . . . , n) = N(k, 1, . . . , n)

||n
a=1

[−(k − qa)2 + m2
a − i0

] . (3.6) 

In the same way that we can try to find a basis of Feynman integrals for the 
amplitude, we may also ask if there exists a basis of loop-momentum dependent 
numerator functions .{fx} such that the integrand numerator in Eq. (3.6) can be 
written as 

.N(k, 1, . . . , n) =
Σ

x

cx(1, . . . , n) fx(k, p1, . . . , pn−1) , (3.7) 

where the coefficients . cx are rational functions of the external kinematics, and 
. fx are independent scalar products dependent on the loop momentum. Again, the 
sum over x and the definition of “independent” here are not yet defined but we 
can motivate the construction with a simple example. If we consider a one-loop 
integrand .I (1),[D]

n (k, 1, 2, 3) in which .N(k, 1, 2, 3) = k · q2, then we can express



100 3 Loop Integrands and Amplitudes

Fig. 3.3 Sample diagrams contributing to the four-gluon scattering amplitude at one-loop order 

the numerator in terms of the difference of two propagators in order to rewrite 
everything in terms of scalar integral functions: 

. N(k, 1, 2, 3) = 1

2

[(−(k − q2)
2 + m2

2

)− (−k2 + m2
1

)+ q2
2 − m2

2 + m2
1

]

= 1

2

{
1,−1, q2

2 − m2
2 + m2

1

}
·
{
−(k − q2)

2 + m2
2,−k2 + m2

1, 1
}T

.

(3.8) 

So in this case the functions . fx are the inverse propagators and 1. 
Throughout this chapter we will use the example of four-gluon scattering to 

illustrate general methods for loop integrands and amplitudes. Sample diagrams 
for this process are shown in Fig. 3.3. In this case the most complicated topology 
is the box graph which, following the structure of the three-gluon vertex, has a 
maximum of four powers of the loop momentum in the numerator function. Graphs 
containing vertex corrections or those with bubble insertions will contain triangle 
and bubble tensor integrals respectively. As we will see, writing the loop-momentum 
dependence of the numerator in terms of the propagators in each graph will allow 
us to find a basis of scalar Feynman integrals, so that the particular form of Eq. (3.1) 
relevant for four-gluon scattering becomes 

.

A
(1),[D]
4 (1, 2, 3, 4) = i c[D]

box F
[D]
4 [1](p1, p2, p3)

+ i c[D]
tri,1 F

[D]
3 [1](p1, p2) + i c[D]

tri,2 F
[D]
3 [1](p1, p23)

+ i c[D]
tri,3 F

[D]
3 [1](p12, p3) + i c[D]

tri,4 F
[D]
3 [1](p2, p3)

+ i c[D]
bub,1 F

[D]
2 [1](p12) + i c[D]

bub,2 F
[D]
2 [1](p23) .

(3.9) 

where we have used the notation, 

.pi1···in = pi1 + pi2 + · · · + pin, (3.10) 

which will also be used for the invariants, 

.si1···in = p2
i1···in . (3.11)
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The fact that only scalar integrals appear remains to be proven of course. We will 
also set about the task of extracting the coefficients of these scalar integrals and the 
task of generalising to the n-point case. 

The chapter is organised as follows. We start in Sect. 3.2 by demonstrating 
that the unitarity of the S-matrix leads to deep insights into the structure of loop 
amplitudes. This will lead us to consider the discontinuities of loop amplitudes, and 
show that they may be computed from the product of tree-level amplitudes. Using 
the example of four-gluon scattering, we will demonstrate that this results in an 
extremely efficient technique to identify simple integral structure in the amplitude. 
We will then explore generalised discontinuities of loop amplitudes in Sect. 3.3, and 
use the “Cutkosky rules” to make a direct connection with the pole structure of 
the integrand. The factorisation on these poles leads to the generalised unitarity 
method, which allows for the computation of the coefficients of the scalar box 
integrals. Section 3.4 lays the ground work for the general treatment of any loop 
amplitude, as we use tensor reduction and integrand-level analysis of transverse 
spaces to identify relations between Feynman integrals. Section 3.5 is dedicated 
to the derivation of the complete decomposition of a general one-loop amplitude 
into a basis of scalar integrals, and how their coefficients may be extracted from 
products of tree-level amplitudes via generalised unitarity. In Sect. 3.6 we put all 
of this technology to work to complete the computation of the one-loop four-gluon 
scattering amplitude in dimensional regularisation. Finally we give some outlook 
and extensions of the ideas presented here, and consider efficient computations 
using rational parametrisations of the external kinematics in Sect. 3.7 and extensions 
to two-loop integrands in Sect. 3.8. 

Further information on the topics presented in this chapter can be found in a 
number of comprehensive reviews, for example see [5–7]. 

Ultraviolet Power Counting Before we get started with the main topics 
of this chapter it is useful to recall how we can quantify UV divergences. 
The divergences at large values of the loop momentum can be estimated at 
the integrand level by considering the scaling behaviour. For example, using 
general polar coordinates, one-loop scalar integrals become 

.F [D]
n [1] |k|→∞→

f
(−1)n|k|D−1d|k| dΩ

iπD/2

1

k2n
, (3.12) 

from which we see a divergence if .n ≤ D/2. If .n = 2 in .D = 4−2ε, we have  
that 

.F
[4−2ε]
2 [1] |k|→∞→

f
d|k| dΩ
iπ2−ε

1

|k| , (3.13) 

(continued)
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and we see a logarithmic divergence. Infrared divergences, such as the soft and 
collinear configurations discussed in Chap. 2, are more difficult to classify but 
can also be regulated by the analytic continuation of the dimension. We will 
discuss this further in Chap. 4, where we focus on the integration over loop 
momenta. 

3.2 Unitarity and Cut Construction 

The unitarity of the S-matrix provides some of the most fundamental constraints 
on the analytic form of on-shell amplitudes. The initial steps follow the discussion 
of the optical theorem and Cutkosky analysis of the discontinuities of Feynman 
integrals [8] that may be familiar to many readers. 

The scattering amplitudes associated with an S-matrix .S = 1+iT are determined 
through the transition matrix T . Transition matrix elements .<F |T |I > are a measure 
of the probability of a initial state I evolving into a final state F . 

The unitarity condition of the S-matrix 

.S†S = 1 (3.14) 

implies a non-linear constraint on the transition matrix: 

. − i
(
T − T †) = T †T . (3.15) 

The asymptotic states obey the completeness relations 

.

Σ

n

f n||

j=1

d3kj

(2π)3 2Ej

|{k}n><{k}n| = 1 , (3.16) 

where .|{k}n> indicate multi-particle states .|{k}j > := |k1, k2, . . . , kn>, .kμ
i = (Ei,ki ), 

and .Ei = |ki |2 + m2
i , . mi being the mass of the ith particle. Therefore, when we 

contract Eq. (3.15) with the initial and final states and insert a complete set of states 
in the product .T T †, we determine that 

. − i<F |(T − T †)|I > =
Σ

n

f n||

j=1

d3kj

(2π)3 2Ej

<F |T †|{k}n> <{k}n|T |I > . (3.17)
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The scattering amplitude .A(I → F) is extracted from the transition matrix ele-
ment stripped of the overall momentum-conserving delta function. If we represent 
this amplitude by a picture, 

. (3.18) 

we can show the relation (3.17) graphically, as 

. (3.19) 

where the integration measure now includes the on-shell delta function that ensures 
an on-shell final state phase-space integral, 

.dΦn(P, {k}n) = (2π)4δ(4)

(

P −
Σ

n

kn

)
n||

i=1

d3ki

(2π)3 Ei

. (3.20) 

The momentum P above represents the total incoming momentum .P = Σ
i pi . 

The LHS of Eq. (3.19) may be shown to be proportional to the discontinuity of 
the amplitude across the real . P 2 axis. While we will not see any specific examples 
until Chap. 4, Feynman integrals will in general contain branch cuts. The simplest 
function of this type is the logarithm .log(x),1 which has a branch cut across the 
(negative) real x axis. For a generic function .f (x), the discontinuity across the real 
x axis is defined as .Discxf (x) := f (x + i0) − f (x − i0). For the logarithm this 
gives .Discx log(x) = 2π iΘ(−x), where .Θ(−x) is the Heaviside step function 
(for further details see Exercise 4.7). Rational functions, such as the tree-level 
amplitudes we have encountered up until now, do not contain branch cuts. We can 
take the unitarity constraint to imply that scattering amplitudes do contain branch 
cuts. Following this argument, it is possible to show that 

. (3.21) 

where the discontinuity is across the branch cut in the invariant . P 2, 
.DiscP 2 A(· · · , P 2, · · · ) = A(. . . , P 2 + i0, . . .) − A(. . . , P 2 − i0, . . .). This is  
referred to as the discontinuity in the . P 2 channel.

1 We saw the logarithm appear in the UV limit of of the one-loop bubble function .F [4−2ε]
2 [1] in 

Eq. (3.13). 
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We may now expanding the relation (3.19) perturbatively, in a coupling g, which 
results in a set of extremely useful equations for on-shell amplitudes. We can 
represent the perturbative expansion of the amplitudes this pictorially by, 

. (3.22) 

where .gLO is the leading-order coupling (e.g. .gLO = gn−2 for a n-gluon amplitude 
in YM theory). By substituting this expansion into the unitarity relation (3.19) we  
find equations order by order in the coupling g. Explicitly, up to third order we find 

. (3.23) 

. (3.24) 

. (3.25) 

The first of these equations confirms that rational tree-level amplitudes do not 
contain branch cuts. At one-loop order we find that the product of two on-shell 
tree-level amplitudes is directly related to the discontinuity in the channel . P 2 of the 
one-loop amplitude. 

Re-using the on-shell tree-level amplitudes we have found in Chaps. 1 and 2 
inside the factorised loop integrand is an extremely efficient way of computing 
the discontinuity of a loop amplitude. It avoids some of the large intermediate 
algebraic steps that would be found following the expansion of the loop amplitude 
into Feynman diagrams. The act of putting an internal propagator on-shell, as we 
have done through the insertion of a complete set of states, is referred to a the cut of 
a loop amplitude. 

However, we must still find a way to upgrade the discontinuity of the amplitude 
to the full amplitude. One method to do this is to perform a dispersion integral. To 
express this concretely, let us specify that the amplitude depends on r invariants 
.s1 = P 2

1 , . . . , sr = P 2
r . Then, we have that 

.A(1)(s'
1, · · · , s'

r ) =
rΣ

i=1

f
ds'

i

s'
i − si

Discsi A(1). (3.26)
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This story has been known for a long time and traces back to the work of 
Cutkosky [8] and the days of the analytic S-matrix [9]. The modern unitarity method 
(Bern et al. [10]) transformed the approach into a powerful computational tool by the 
cut constraints with knowledge of a basis of loop integrals, and the spinor-helicity 
method for the compact representation of on-shell tree amplitudes. Rather than 
computing the dispersion relation, one uses the unitarity cut constraints to project 
out information about the rational integral coefficients from a representation of the 
amplitudes such as the one shown in Eq. (3.1). It is this procedure that we refer to 
as cut construction of a scattering amplitude. 

The on-shell phase space .dΦn contains Dirac . δ functions which ensure the 
intermediate particles are on-shell. We recall in fact that Eq. (3.20) can be rewritten 
in a manifestly Lorentz-invariant form as 

. dΦn(P, {k}n) = (2π)4δ(4)

(

P −
Σ

n

kn

)
n||

i=1

d4ki

(2π)4
(2π)δ(+)

(
k2i − m2

i

)
,

(3.27) 

where 

.δ(+)
(
k2i − m2

i

) := δ
(
k2i − m2

i

)
Θ
(
k0i
)
, (3.28) 

with the Heaviside step function . Θ ensuring the positivity of the energy. 
Since it will become a fundamental part of our amplitude analysis, it is useful 

to introduce some notation for the action of imposing these on-shell constraints on 
internal particles of a loop diagram. The operation of computing the discontinuity 
across a two-particle factorisation or cut will be represented as .CL|R , where the 
indices L and R will be the list of external particles entering the left and right side 
of the cut respectively, 

. Ci1...im|im+1...in

(
A(1),[D]

n

)
:= Discsi1 ...im

(
A(1),[D]

n

)

=
f

dΦ2

Σ

hi=±
iA(0)

m+1

(−l
−h1
1 , i1, . . . , im, l

h2
2

)
iA(0)

n−m+2

(−l
−h2
2 , im+1, . . . , in, l

h1
1

)
,

(3.29) 

where 

.
dΦ2 = d4l1

(2π)4

d4l2
(2π)4

(2π)4δ(4)(l1 − l2 − pi1...im)

× (2π)δ(+)(l21 − m2
1) (2π)δ(+)(l22 − m2

2) .

(3.30) 

The . δ functions ensure momentum conservation, and that the internal momenta . l1
and . l2 are at their on-shell values . m1 and . m2. Notice that two factors of . i appear
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in the factorisation into tree amplitudes. This appears for exactly the same reason 
as it did in BCFW recursion, where each factorised on-shell gluon propagator 
contributed a factor of . i (see below Eq. (2.3)). For fermion propagators this factor 
would change as discussed in Sect. 2.1 and Exercise 3.1. 

We will also use the operation .CL|R to act on the integrand of the amplitude, and 
therefore only represent the product of tree-level amplitudes, 

. 

Ci1...im|im+1...in

(
I (1),[D]
n

)
=

Σ

hi=±
iA(0)

m+2

(−l
−h1
1 , i1, . . . , im, l

h2
2

)
iA(0)

n−m+2

(−l
−h2
2 , im+1, . . . , in, l

h1
1

)
,

(3.31) 

where the on-shell conditions for . l1, . l2 are understood to be imposed. 

Example: The .s12-Channel Cut of the .gg → gg MHV Scattering Amplitude 

Let us consider the leading-colour2 four-gluon MHV amplitude in pure Yang-
Mills theory, .A(1)(1−, 2−, 3+, 4+). We begin with the familiar Parke-Taylor 
formula (1.192) for the tree amplitudes (this time setting the coupling to 1), 

.A(0)(1−, 2−, 3+, 4+) = i<12>3
<23><34><41> . (3.32) 

Note that by using the four-dimensional tree-level amplitudes inside the cut 
we are only resolving the first term in the expansion of the integral coefficient 
expressed in Eq. (3.4). The .s12-channel is associated with the invariant . s12 =
(p1 + p2)

2, and the discontinuity is obtained from the following product of two 
tree amplitudes summed over all possible helicity states, 

. C12|34
(
I

(1)
4 (1−, 2−, 3+, 4+)

)
=

Σ

hi=±
iA(0)(−l

−h1
1 , 1−, 2−, l

h2
2 ) iA(0)

× (−l
−h2
2 , 3+, 4+, l

h1
1 ) , (3.33) 

where, as imposed by the Lorentz invariant phase-space measure .dΦ2, . l2 = l1 −
p12 and .l2i = 0. Since all tree amplitudes with all-like helicities or those with a 
single positive (or negative) helicity vanish, only a single term contributes to the 
cut. In order to keep the notation as compact as possible, we will use .C12|34 to

2 This is the coefficient of the single-trace term in the colour ordered one-loop amplitude given in 
Eq. (1.141), denoted there as .A(1)

n;1. 
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refer to .C12|34
(
I

(1)
4 (1−, 2−, 3+, 4+)

)
for the remainder of this section. Replacing 

the tree-level amplitudes with their spinor-bracket forms leads to 

. C12|34 = iA(0)(−l+1 , 1−, 2−, l+2 ) iA(0)(−l−2 , 3+, 4+, l−1 )

= <12>3
<2l2><l2(−l1)><(−l1)1>

<l1(−l2)>3
<(−l2)3><34><4l1>

= <12>3
<2l2><l2l1><l11>

<l1l2>3
<l23><34><4l1> . (3.34) 

Above we have used the phase convention (1.113) for the spinors of the loop 
momenta, namely .|(−li )> = i|li>. We can now apply some spinor identities to 
recast the integrand into a form that can be identified with one-loop integral 
topologies. For example, 

.<l11> = 2 l1 · p1

[1l1] = − (l1 − p1)
2

[1l1] . (3.35) 

Hence we find 

. C12|34 = <12>3
<34>

<l1l2>2[2l2][l11][l23][4l1]
(l2 + p2)2(l1 − p1)2(l2 − p3)2(l1 + p4)2

= <12>3
<34>

[1|l1l2|2][3|l2l1|4]
(l2 + p2)2(l1 − p1)2(l2 − p3)2(l1 + p4)2

. (3.36) 

The numerator can also be reduced using the on-shell kinematics, 

.[1|l1l2|2] = [1|l1(l1 − p12)|2] = −<1|l1|1][12] = (l1 − p1)
2[12] . (3.37) 

This leads us to the simple result 

. C12|34 = <12>3
<34>

[12][34]
(l1 − p1)2(l1 + p4)2

= − <12>3
<23><34><41>

s12s23

(l1 − p1)2(l1 + p4)2
. (3.38) 

We can now identify the integrand of the double cut of the one-loop scalar box 
integral, 

. F
[D]
4 (p1, p2, p3) ≡ F

[D]
4 (s12, s23) =

f

k

1

k2(k − p1)2(k − p12)2(k + p4)2
.

(3.39)
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The discontinuity of this function in the . s12 channel is given by 

.Discs12F
[D]
4 (s12, s23) =

f

dΦ2
1

(l1 − p1)2(l1 + p4)2
, (3.40) 

where the cut propagators have been replaced by on-shell delta functions. We 
will justify this step in the next section. Our final result for the discontinuity for 
the one-loop amplitude is then 

. Discs12A
(1)(1−, 2−, 3+, 4+) = −s12s23A

(0)

× (1−, 2−, 3+, 4+)Discs12F
[D]
4 (s12, s23) .

(3.41) 

. <

This result deserves a few remarks. The on-shell approach has uncovered some 
dramatic simplifications and the final cut contains only one scalar integral function. 
As we will see, this is not the most general structure we can encounter, and we will 
need to work harder to find a complete function basis. It should also be noted that 
we have only identified the leading term in the . ε expansion (3.4) of the integral 
coefficient, since the tree amplitudes were evaluated in four dimensions. These 
contributions to loop amplitudes are usually referred to as cut-constructible. 

Which Feynman Diagrams Have We Calculated? We can try to put this 
in the context of the Feynman diagram expansion. In an axial gauge without 
ghosts, one can check that there are 39 diagrams contributing to the full colour 
four-gluon one-loop amplitude, of which 17 contribute at leading colour. In 
the .s12-channel cut only 9 of the 17 ordered diagrams contribute. What we 
should take from this is that a direct Feynman diagram computation is not 
at all prohibitive here with only a modest number of diagrams contributing. 
However, one of these diagrams is the most complicated tensor integral we 
can find for massless four-particle kinematics, and will contain four powers 
of loop momentum in the numerator. The number of three- and four-point 
vertices also means each diagram will expand to a large number of terms. The 
use of compact on-shell trees has allowed us to avoid a lot of this complexity. 
As we have highlighted, some contributions have been dropped but we have 
obtained a lot of information about the amplitude. 

We may now try to complete the cut-constructible part of the four-gluon 
scattering amplitude by considering the cut in the other independent invariant.
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Example: The .s23-Channel Cut of .gg → gg MHV Scattering Amplitude 

The .s23-channel cut associated with the invariant .s23 = (p2+p3)
2 of our example 

.A(1)(1−, 2−, 3+, 4+) is slightly more complicated, since the sum over internal 
helicities contains more non-zero elements. The cut integrand can be written as 

. C23|41
(
I (1)(1−, 2−, 3+, 4+)

)
=

Σ

hi=±
iA(0)(−l

−h1
1 , 2−, 3+, l

h2
2

)
iA(0)(−l

−h2
2 , 4+, 1−, l

h1
1

)

= iA(0)(−l+1 , 2−, 3+, l−2 ) iA(0)(−l+2 , 4+, 1−, l−1 )

+ iA(0)(−l−1 , 2−, 3+, l+2 ) iA(0)(−l−2 , 4+, 1−, l+1 )

= <2l2>4
<l12><23><3l2><l2l1>

<1l1>3
<l22><41><l1l2>

+ <l12>3
<23><3l2><l2l1>

<l21>4
<l22><41><1l1><l1l2> . (3.42) 

While not the most complicated expression, it is not as easy to express this in 
terms of a basis of cut scalar integral functions as it was in the case of the .s12-
channel. The aim is to reduce the complexity of the dependency on expressions 
involving the loop momentum, and to identify the integral topologies that we 
expect to find. This means identifying loop-momentum dependent propagators 
of the form .(l + p)2. Performing the spinor algebra would be difficult if there 
was no target to aim for, so we can also remind ourselves of the .s12-channel 
cut result, which identified a simple scalar box integral as defined in Sect. 3.1. 
The .s23-channel cut should also be sensitive to the same function and so we can 
try to expose this term. Let us look at the expression again, putting everything 
over a common denominator (as before we use the short hand .C23|41 to refer to 
.C23|41

(
I (1)(1−, 2−, 3+, 4+)

)
in this section), 

.C23|41 = <l11>4<l22>4 + <l12>4<l21>4
<l1l2>2<l11><l12><l23><l24><23><14> . (3.43) 

The .s12-channel cut contained the spinor bracket .<l1l2> in the numerator and 
so, following the motivation to expose a similar box structure, we can apply a 
Schouten identity, 

.<l11><l22> − <l1l2><12> − <l12><l21> = 0 , (3.44)
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which will produce a term very similar to the .s12-channel integrand. We can then 
write 

.C23|41 = Cbox23|41 + C'
23|41 , (3.45) 

where 

. Cbox23|41 = <l1l2>2<12>4
<l11><l12><l23><l24><23><14>

= −(−iA(0)(1−, 2−, 3+, 4+)
)
s12s23

1

(l1 − p2)2(l1 + p1)2
, (3.46) 

and—after a reasonable amount of spinor manipulation—one finds 

. C'
23|41 = −iA(0)(1−, 2−, 3+, 4+)

−2

s212s
2
23

×
(
tr−(/1/l 2/3/2)

2 + s12s23tr−(/1/l 2/3/2) + 2s212s
2
23

)

×
(

1 + tr−(/1/l 1/4/2)

(l1 + p1)2s12
− tr−(/2/l 1/3/1)

(l1 − p2)2s12

)

, (3.47) 

where we have used the notation . tr−(/a/b/c/d) = tr
(
(1 − γ5)/a/b/c/d

)
/2 =

<a|bcd|a]. The second part, .C'
23|41, contains three different propagator factors. 

After expanding we can identify them as cut bubble and triangle configurations 
with loop-momentum dependence remaining in the numerator. The numerators 
in this case are up to rank three in the loop momentum, where rank refers to the 
power of loop momentum appearing the numerator. Simplification will require 
further reduction techniques, which we will introduce in Sect. 3.4, and will be 
used to identify a basis of integral functions. . <

Exercise 3.1 (The Four-Gluon Amplitude in .N = 4 Super-Symmetric 
Yang-Mills Theory) Supersymmetry is an additional symmetry between 
particles of different spins. This can relate fermions and scalars or fermions 
and gauge bosons, and the precise type of supersymmetry requires us 
to specify how the degrees of freedom (d.o.f.) are connected. Maximally 
supersymmetric Yang-Mills theory or .N = 4 super-symmetric Yang-mills 
(sYM) theory has the maximum number of connections between gluon, 
gluinos (adjoint-representation fermions) and scalars (also in the adjoint 
representation). Connecting all degrees of freedom requires 2 gluon degrees 
of freedom, i.e. positive and negative helicity, 4 gluinos flavours also with 

(continued)
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positive and negative helicity, and 3 complex scalar degrees of freedom (or 
equivalently 6 real scalars). The consequences of this additional symmetry 
are remarkable cancellations and appearance of hidden structures that are still 
an active field of research. For the purposes of this exercise, all that we need 
to know about the theory are its particle content and the tree-level amplitudes 
needed inside the double cuts. 

The particle content of .N = 4 sYM theory is summarised in Table 3.1. In  
addition to the Parke-Taylor MHV formula (1.192) for gluons we also have 

.

A(0)(1−
Λ, 2−, 3+, 4+

Λ) = −i <12>3<24>
<12><23><34><41> ,

A(0)(1−
Λ, 2+, 3−, 4+

Λ) = −i <13>3<34>
<12><23><34><41> ,

A(0)(1+
Λ, 2−, 3+, 4−

Λ) = −i <12><24>3
<12><23><34><41> ,

A(0)(1+
Λ, 2+, 3−, 4−

Λ) = −i <13><34>3
<12><23><34><41> ,

A(0)(1φ, 2−, 3+, 4φ) = i <12>2<24>2
<12><23><34><41> ,

A(0)(1φ, 2+, 3−, 4φ) = i <13>2<34>2
<12><23><34><41> ,

(3.48) 

where we omit the particle subscripts for gluons. All other amplitudes with 
two like-helicity gluons are zero. 

Use these tree-level amplitudes to show that the cut four-gluon one-loop 
integrands .I

(1)
N=4

(1−, 2−, 3+, 4+) in .N = 4 sYM theory are given by 

.C12|34
(
I

(1)
N=4

(1−, 2−, 3+, 4+)
)

= C12|34
(
I (1)(1−, 2−, 3+, 4+)

)
, . 

(3.49) 

C23|41
(
I (1) N=4 

(1−, 2−, 3+, 4+)
)

= Cbox 23|41
(
I (1) (1−, 2−, 3+, 4+)

)
, 
(3.50) 

where on the RHSs are the cut integrands in YM theory computed above. In 
contrast to YM theory, in .N = 4 sYM theory both cuts match the one-loop 
scalar box integral [10]. In other words, the term .C'

23|41 containing different 
propagator factors in Eq. (3.45) is absent from the .s23-channel cut in sYM 

(continued)
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theory. After summing over the two independent cuts we thus find that 

. 
A(1),N=4(1−, 2−, 3+, 4+) = − A(0)(1−, 2−, 3+, 4+) s12s23 F

[D]
4 (s12, s23)

+ terms missed by cuts in 4D .

(3.51) 

Note that we have upgraded the integral into D-dimensions in order to 
regulate divergences. Hint: the gluino’s contribution to the cuts comes with 
a negative sign as a result of the Feynman rule for the closed fermion loops. 
For the solution see Chap. 5. 

We finish this section with a few remarks. 

• The unitarity cuts allowed us to extract information about the rational coefficients 
of one-loop integrals from the product of on-shell tree amplitudes. 

• While in simple cases such as the .s12-channel MHV four-gluon cut or maximally 
super-symmetric theories spinor manipulations were sufficient to identify an 
integral basis, additional work will be required to identify a basis of integrals 
in general. We will return to this point in Sect. 3.4. 

• The double cuts project out information on multiple coefficients and integral 
structures at the same time. If there were an operation that could project out one 
integral coefficient at a time, this would avoid difficult kinematic manipulations. 
This would be particularly important for amplitudes with more external legs, 
where the algebra can quickly get out of hand.We will explore this line of thought 
in the next section. 

Table 3.1 The particle content of .N = 4 sYM theory and their degrees of freedom (d.o.f.). Here 
. g± represent positive- and negative-helicity gluons, .Λ± represent positive- and negative-helicity 
gluinos, and . φ represent real scalars 

Particle .g+ .Λ+ .φ .Λ− . g−

d.o.f. 1 4 6 4 1
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3.3 Generalised Unitarity 

The name “generalised unitarity” refers to the action of putting more than two 
propagators inside the loop amplitude on-shell. In fact the name is something of 
a misnomer, since the connection with the unitarity of the S-matrix is now lost. 
A better term could be generalised discontinuities, which relates to the work of 
Cutkosky [8]. 

Let us consider a one dimensional integral over the real line, 

.f
(
p2) =

f

dk
1

k2 − p2 , (3.52) 

where p is a real number.3 This function has a discontinuity 

. Discp2

(
f
(
p2)

)
= f

(
p2 + i0

)− f
(
p2 − i0

)

=
f

dk

(
1

k2 − p2 − i0
− 1

k2 − p2 + i0

)

. (3.53) 

The two terms on the RHS of this relation can be expanded into principle values and 
. δ functions, 

.
1

k2 − p2 ± i0
= ∓iπ δ

(
k2 − p2)+ P

(
1

k2 − p2

)

, (3.54) 

of which only the .δ-function contributions remain, 

.Discp2

(
f (p2)

)
=
f

dk 2π i δ(k2 − p2) . (3.55) 

Following this argument one can show that a multiple discontinuity (or multiple cut) 
of an amplitude can be obtained by replacing 

.
1

k2 − m2 + i0
→ −2π i δ(+)

(
k2 − m2

)
, (3.56) 

for a subset of the propagators in the integrand of a loop diagram. The act of 
replacing a propagator by a . δ function as in Eq. (3.56) is referred to as cutting that 
propagator. The integrand will then factorise into on-shell tree amplitudes.

> Multiple Cuts of Scattering Amplitudes By systematically putting loop 
propagators on-shell using the above Eq. (3.56), we can break up

3 Note that this integral diverges over the full range .(−∞,∞), the argument presented still follows 
if a large-k cut-off regulator is introduced. 



114 3 Loop Integrands and Amplitudes

the loop amplitude into manageable pieces each of which isolates a 
particular subset of Feynman integral topologies. A maximal cut of a 
scattering amplitude is the contribution in which the highest number of 
propagators are put on-shell. Our one-loop four-gluon example has at 
most four propagators from the box configuration and so the maximal 
cut is a quadruple cut. We may thus use the factorised product of tree-
level amplitudes to obtain information about the coefficient of the box 
integrals. We may then proceed to release cut constraints and use triple 
cuts which will identify both triangle and box topologies. Since we 
have previously identified the box configurations, the triangle integral 
coefficients can now be uniquely identified. We may then proceed with 
the double cuts that relate to the discontinuity of the one-loop amplitude 
and so on until the complete function is determined. This top-down 
approach can be taken at higher loop order as well. Cuts may be taken in 
four (using four-dimensional tree-level amplitudes in the factorisation) 
or .D = 4 − 2ε dimensions. 

Example: Quadruple Cut of .gg → gg MHV Scattering Amplitude 

The maximal cut of the ordered four gluon amplitude isolates a single Feynman 
diagram by putting four propagators on-shell. 
If we can find a solution to the system of equations which places all four 
propagators on-shell, then the four-dimensional part of the loop integration will 
be completely fixed. As with the double cuts, we will remain in four dimensions 
for the time being, and come back to the issue of dimensional regularisation later. 
Let us denote this quadruple cut operation as .C1|2|3|4, and represent the action on 
the four gluon amplitude using the following graphical notation: 

. (3.57) 

Each cut leads to a factorised product of trees where the sum over polarisation 
states is implicit. The momenta in each of the four propagators, . li , have been put 
on-shell by solving the conditions .l2i = 0. To find an explicit solution we can use 
a basis constructed from the spinors of the external momenta such as 

.l
μ
1 = α1 p

μ
1 + α2 p

μ
2 + α3

1

2
<1|γ μ|2] + α4

1

2
<2|γ μ|1] . (3.58)
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Using momentum conservation, we re-write the four on-shell constraints as 

.

l21 = 0 ,

l22 = (l1 − p2)
2 = 0

l21=0= 2 l1 · p2 = 0 ,

l23 = (l1 − p2 − p3)
2 = 0

l21=0
l2·p2=0⇒ 2 l1 · p3 = s23 ,

l24 = (l1 + p1)
2 = 0

l21=0= 2 l1 · p1 = 0 ,

(3.59) 

which then are easily translated into conditions on the coefficients . αi ,4 

.

α1α2 − α3α4 = 0 ,

α1s12 = 0 ,

α1s13 + α2s23 + α3<1|3|2] + α4<2|3|1] = s23 ,

α2s12 = 0 .

(3.60) 

These must hold for generic external kinematics, i.e., for .s12 /= 0 and . s23 /= 0
(.s13 = −s12 − s23 because of momentum conservation). The second and fourth 
equations in the system (3.60) allow us to simplify the first constraint, which 
becomes .α3α4 = 0, and so we see that there are exactly two solutions to the 
quadruple cut on-shell conditions: 

.α(1) =
{
0, 0, <23>

<13> , 0
}

, . (3.61) 

α(2) =
{
0, 0, 0, [23] [13]

}
, (3.62) 

where we introduced the short-hand notation .α = {α1, α2, α3, α4}. These 
solutions deserve a few remarks. We see that the two solutions are complex, 
and in fact are complex conjugates of each other. In order to extract the value 
of the quadruple cut we will sum and average over the two solutions as well 
as the sum over helicity in the factorised product of trees. For now we simply 
state that this is the correct method to obtain the scalar integral coefficient, 
though we will return to prove this later in Sect. 3.5.2. The fact that the loop 
momenta are complex means we must analytically continue the factorised tree-
level amplitudes for complex momenta as well.5 This step is quite familiar to

4 The identities used perform the spinor-helicity algebra are given Sect. 1.8, in particular the Fierz 
identity in Eq. (1.118). The reader may also refer to Exercise 1.5 where the identity is proven. 
5 The on-shell delta functions in the cut integrals should also be reinterpreted as residue 
computations. 
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us, since we have already encountered analytic continuation of tree amplitudes 
in the context of BCFW recursion. However, we should not underestimate the 
importance of having a well defined analytic continuation. In fact this feature 
was one of the main obstacles in the analytic S-matrix program of the 1960’s. 
Turning back to our example, all that remains to do is to substitute the on-shell 
solutions into the tree-amplitude expressions. Since these tree-level amplitudes 
will be of the form of Parke-Taylor MHV amplitudes, it is first convenient to 
write explicit spinor solutions for the the loop momenta . li . There is a flexibility 
in how to do this because of the little group symmetry, but a simple choice using 
.z = <23>/<13> is 

.

|l(1)1 > = |1> , |l(1)1 ] = z |2] ,

|l(1)2 > = z |1> − |2> , |l(1)2 ] = |2] ,

|l(1)3 > = z |1> − |2> , |l(1)3 ] = s23

z s12

(|1] + z |2]) ,

|l(1)4 > = |1> , |l(1)4 ] = |1] + z|2] ,

(3.63) 

for the first solution, while the second is obtained by complex conjugation 
(i.e. replacing .|> ↔ |] which also means .z ↔ z†). Other choices of spinor 
normalisation will not affect the final answer. 
We are now ready to start substituting the on-shell solutions into the expressions 
for the tree amplitudes. Let us start with the configuration of internal helicities 
shown in Fig. 3.4. Each of the three-point amplitudes is either MHV or .MHV. 
The first amplitude at the top left of the cut evaluated on the first on-shell solution 
is 

.A1 = i
<1l1>3

<l1(−l4)><(−l4)l1> , (3.64) 

A1 A2 

A3A4 

p− 
1 p− 

2 

p+ 
3p+ 

4 

l− 
1 −l+ 

1 

l− 
2 

−l+ 
2 

l− 
3−l+ 

3 

l− 
4 

−l+ 
4 

p− 
1 p− 

2 

p+ 
3p+ 

4 

l− 
1 −l+ 

1 

l− 
2 

−l+ 
2 

l− 
3−l+ 

3 

l− 
4 

−l+ 
4 

Fig. 3.4 An example helicity configuration contributing to the quadruple cut of the four gluon 
MHV amplitude. In the right panel the configuration is shown with MHV-type vertices shaded in 
white and .MHV vertices shaded in black
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from which it is simple to see .A1|l(1)i

= 0, since the spinor solution in Eq. (3.63) 

shows the angle spinor for . l1 is proportional to the angle spinor of . p1. One  may  
worry about the remaining spinor products in the denominator since they can also 
be shown to vanish on the solution . l(1)1 , but the overall dimension of the three-
point amplitude ensures that .A1|l(1)i

is indeed zero. There is a similar story for the 

solution . l(2)1 , where we see that, since .|l(2)1 > ∝ |2>, then .A2|l(2)1
= 0. As a result 

we find no contribution from this helicity configuration. This is a general feature 
of quadruple cuts for massless theories, and we can use the fact that three-point 
amplitudes contain only angle or square brackets to conclude:

> Three-Point Vertex Rule for Unitarity Cuts Unitarity cuts of one-loop 
amplitudes do not support adjacent MHV (or .MHV) three-point 
vertices. 

A popular and convenient graphical notation is to shade the three-point vertices 
to indicate whether they are of either MHV (white) or .MHV (black), as shown 
in the right panel of Fig. 3.4, which demonstrates that this internal helicity 
configuration vanishes since we have highlighted adjacent MHV amplitudes. 
Applying this rule to the full helicity sum leads us to find only two non-vanishing 
contributions, one for each of the two solutions: 

. (3.65) 

. (3.66)
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We can now complete the computation of the quadruple cut: 

. (3.67) 

Substituting Eq. (3.63) for .l1, l2 and . l4 gives 

. 

(3.68) 

The substitution of . l3 would require some spinor manipulation at first sight but 
the spinor products can be combined together to make “sandwiches” of the . l3
momentum, after which where we can evaluate using momentum conservation: 

.
[3l3]3
[l32]

<l31>3
<4l3>

|
|
|
|
l
(1)
i

= <1|l3|3]3
<4|l3|2]

|
|
|
|
l
(1)
i

= <12>3[23]3
<43>[32] = <12>3[23]2

<34> . (3.69) 

Putting everything together, we find the final result is simply6 

. (3.70)

6 As is always the case with spinor algebra there are many paths to reach the same final result. 
Here we have attempted to be very explicit but the reader may prefer alternative derivations. For 
example, by expanding in the spinor basis for . p1 and . p2 we broke some symmetry in the original 
configuration. One can apply some more algebra to show that .|l(1)3 > = |3>, |l(1)3 ] = <14>

<13> |4] for 
example, in which we would get a simple result without first combining into spinor sandwiches. 
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A similar computation for the other non-zero cut configuration leads to 

. (3.71) 

The coefficient of the scalar box integral is the average of the two solutions, and 
so we recover the result observed from the double cuts, that is 

. A(1)(1−, 2−, 3+, 4+) = i c0;1|2|3|4(1−, 2−, 3+, 4+) F
[D]
4 (s12, s23)

+ subtopologies , (3.72) 

where 

. c0;1|2|3|4(1−, 2−, 3+, 4+) = 1

2

2Σ

s=1

C1|2|3|4
(
I (1)(1−, 2−, 3+, 4+)

) |
|
|
l
(s)
i

= −s12s23
(−iA(0)(1−, 2−, 3+, 4+)

)
. (3.73) 

. <

Exercise 3.2 (Quadruple Cuts of Five-Gluon MHV Scattering Ampli-
tudes) 

(a) Follow the method of quadruple cuts for the one-loop five-gluon ampli-
tudes to show that 

. c0;1|2|3|45(1−, 2−, 3+, 4+, 5+) = i

2
s12s23A

(0)(1−, 2−, 3+, 4+, 5+) .

(3.74) 

(b) A more complicated example is required to show that we will not always 
find that box coefficients are proportional to tree-level amplitudes. Using 

(continued)
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the same technique, show that 

. 

c0;1|23|4|5(1+, 2+, 3−, 4+, 5−) = i

2
s45s15 A(0)(1+, 2+, 3−, 4+, 5−)

×
[( <34><15>

<14><35>
)4

+
( <13><45>

<14><35>
)4
]

.

(3.75) 

For the solution see Chap. 5. 

3.4 Reduction Methods 

Through the concepts of unitarity and generalised unitarity cuts we have been able 
to understand better the meaning of Eq. (3.1). While performing two-particle cuts, 
we saw that the cut-constructible part of the four-gluon MHV amplitude could 
be written in terms of a scalar box integral and sub-topologies written in terms 
of triangle and bubble integrals with some non-trivial numerator function. In this 
section will we show how to reduce this loop dependent tensor numerators to basis 
integral functions. We will then see how we can extend these ideas to find a basis of 
integrand level structures. 

3.4.1 Tensor Reduction 

This approach to the computation of one-loop amplitudes due to Passarino and 
Veltman [11] revolutionised the field of precision theoretical predictions for high 
energy experiments. The method is remarkably and elegantly simple. We will 
restrict ourselves to massless propagators as before although the method is equally 
applicable in the general case. Consider a tensor integral such as 

.F [D]
n (p1, . . . , pn−1)[kμ] =

f

k

kμ

||n
a=1[−(k − qa)2] , (3.76) 

where .qa = Σa−1
b=1 pb as before. Feynman’s . i0 prescription is irrelevant for the 

purpose of this section, hence we omit it. After integration the integral can only 
depend on the independent external momenta, and so the vector can be described by 
a linear combination of .n − 1 external momenta, as 

.F [D]
n [kμ] =

n−1Σ

i=1

an,i p
μ
i , (3.77)
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where we have dropped the momentum argument on the LHS for a more compact 
notation. The coefficients . an,i , referred to as form factors, can then be determined 
by constructing a linear system of equations through contractions of Eqs. (3.76) 
and (3.77) with the basis vectors . pi . For illustrative purposes it is useful to take 
a specific example, say .n = 2 with .p2

1 /= 0. We then find one equation, 

.

f

k

k · p1

k2(k − p1)2
= a2,1 p2

1 . (3.78) 

By rewriting the scalar product in the numerator in terms of inverse propagators 
through .2 k · p1 = k2 − (k − p1)

2 + p2
1, we can expand the LHS into three scalar 

integrals, 

.
1

2

f

k

1

(k − p1)2
− 1

2

f

k

1

k2
+ p2

1

2

f

k

1

k2(k − p1)2
= a2,1 p2

1 . (3.79) 

The first two scalar integrals on the LHS have the topology of a tadpole. Since they 
do not depend on any external scale, they are zero in dimensional regularisation,7 

and so we arrive at the well known result 

.a2,1 = 1

2
F

[D]
2 (p1)[1] . (3.80) 

For a general tensor we can decompose into bases of external momenta and the 
metric tensor, for example, 

.F
[D]
2 [kμ1kμ2 ] =

f

k

kμ1kμ2

k2(k − p1)2
= a2,00 ημ1μ2 + a2,11 p

μ1
1 p

μ2
1 , . (3.81) 

F
[D] 
2 [kμ1kμ2kμ3 ] =

f

k 

kμ1kμ2kμ3 

k2(k − p1)2 

= a2,001
(
ημ1μ2p μ3 

1 + ημ2μ3p μ1 
1 + ημ3μ1p μ2 

1

)

+ a2,111 p μ2 
1 p μ2 

1 p μ3 
1 . (3.82) 

Note that the final example is a rank-three two-point function, which would not 
appear in a conventional renormalisable gauge theory, which permits a maximum 
tensor rank of n for a n-point one-loop function. This follows from the restrictions 
on the mass dimension of the operators that represent the interactions leading to a 
general counting of one power of momentum per three-point vertex. This is not the 
case for gravity theories (see Sect. 1.6) or effective field theories. 

Explicit solutions for the form factors are easy to find with an automated 
computer algebra system, although for higher-point integrals can quickly generate

7 We will come back to this non-trivial aspect in Chap. 4. 
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large expressions and complicated denominators from the determinant of the linear 
system of equations. These are known as Gram determinants, since they are related 
to the Gram matrix computed from the independent external momenta, that is, the 
matrix of entries .[Gn]ij = pi · pj with .i, j = 1, . . . , n − 1. 

There are many references in which well organised analytic solutions are 
presented, see [7] and references therein for a summary. Many of these have seen 
extensive use in high energy physics applications. We leave the complete solution 
to the bubble system as an exercise. 

Exercise 3.3 (Tensor Decomposition of the Bubble Integral) 

(a) Prove that the form factors in the decomposition of the rank-two bubble 
integral in Eq. (3.81) are  given by  

.

a2,00 = − p2
1

4(D − 1)
F

[D]
2 (p1)[1] ,

a2,11 = D

4(D − 1)
F

[D]
2 (p1)[1] .

(3.83) 

(b) Prove that the form factors in the decomposition of the rank-three bubble 
integral in Eq. (3.82) are  given by  

.

a2,001 = − p2
1

8(D − 1)
F

[D]
2 (p1)[1] ,

a2,111 = D + 2

8(D − 1)
F

[D]
2 (p1)[1] .

(3.84) 

For the solution see Chap. 5. 

Example: Reducing the .gg → gg s23-Channel Cut to Scalar Integrals 

At the end of Sect. 3.2 (Eqs. (3.45)–(3.47)) we reached an expression for the 
.s23-channel double cut of the four-gluon MHV amplitudes written in terms of 
cut Feynman integrals. The box contribution was already in a reduced form, 
while the triangle and bubble sub-topologies had non-trivial dependence in the 
numerator. Since we will use many different generalised cuts, we use the notation 
from Sect. 3.3 for the quadruple cut .C1|2|3|4, also for the double cuts .CI |J , 
triple cuts .CI |J |K , and so on. The .s12-channel cut of a four-particle process is
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therefore represented as .C12|34, and .C23|41 represents the .s23-channel cut. Written 
explicitly in terms of the integral functions .F

[D]
n the result is 

.C23|41
(
A(1)(1−, 2−, 3+, 4+)

)
= Cbox23|41 + C'

23|41 , (3.85) 

where8 

.Cbox23|41 = −A(0)(1−, 2−, 3+, 4+) s12s23 C23|41
(
F

[D]
4 (p2, p3, p4)

)
, . (3.86) 

C'
23|41 = −2A(0) (1−, 2−, 3+, 4+) 

1 

s2 12s
2 
23 

× 

C23|41
(

F
[D] 
2 (p23)[N2] +  

1 

s12 
F

[D] 
3 (p23, p4)[N3,a] 

+ 
1 

s12 
F

[D] 
3 (p2, p3)[N3,b]

)

. (3.87) 

Here the non-trivial numerators are given by 

.N2 = tr−(/1/l 2/3/2)
2 + s12s23 tr−(/1/l 2/3/2) + 2s212s

2
23 , . (3.88) 

N3,a = tr−(/1/l 1/4/2)
(
tr−(/1/l 2/3/2)

2 + s12s23 tr−(/1/l 2/3/2) + 2s2 12s
2 
23

)
, . (3.89) 

N3,b = tr−(/2/l 1/3/1)
(
tr−(/1/l 2/3/2)

2 + s12s23 tr−(/1/l 2/3/2) + 2s2 12s
2 
23

)
, (3.90) 

where .l1 = k and .l2 = k − p23. We can also represent this equation graphically, 
which helps to keep track of the integral topologies. We draw the .s23-channel cut 
of the box integral as 

. (3.91) 

and so the .s23-channel cut can be represented as 

.

8 Note that we have changed the double cut to apply to the amplitude rather than the integrand in 
this section, which affects the factors of . i. 
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. 

(3.92) 

As we can see, there is still a bit of work to do to simplify this expression. Let us 
start with the bubble configuration, which has rank-one and and rank-two tensor 
numerators, 

. 

F
[D]
2 (p23)[N2] =

tr−(/1γμ1
/3/2) tr−(/1γμ2

/3/2) F
[D]
2 (p23)

[
(k − p23)

μ1(k − p23)
μ2
]

+ s12s23 tr−(/1γμ1
/3/2) F

[D]
2 (p23)

[
(k − p23)

μ1
]+ 2 s212s

2
23 F

[D]
2 (p23)[1] .

(3.93) 

We have already reduced the rank-one integral so we may substitute the form-
factor decomposition (3.80), 

.

s12s23 tr−(/1γ μ/3/2)F [D]
2 (p23)

[
(k − p23)

μ
]

= s12s23

(

−1

2
tr−(/1/p23

/3/2)

)

F
[D]
2 (p23)[1]

= −1

2
s212s

2
23 F

[D]
2 (p23)[1] .

(3.94) 

The rank-two integral will involve several steps of algebra but follows exactly 
the same strategy. From Eq. (3.81) with the form factors in Eq. (3.83) we may  
substitute into the rank-two integral above, obtaining 

. tr−(/1γμ1
/3/2) tr−(/1γμ2

/3/2) F
[D]
2 (p23)

[
(k − p23)

μ1(k − p23)
μ2
]

= a2,00 tr−(/1γμ1
/3/2) tr−(/1γ μ1/3/2) + a2,11 tr−(/1/p23

/3/2)2

= a2,11 s212s
2
23

= D

4(D − 1)
F

[D]
2 (p23)[1] . (3.95) 

The triangle tensor integrals look troubling at first sight, since we must use 
reduction for up to rank-three integrals, 

.F
[D]
3 (p1, p2)[kμ1] = a3,1 p

μ1
1 + a3,2 p

μ1
2 , . (3.96) 

F
[D] 
3 (p1, p2)[kμ1kμ2 ] =  a3,00 ημ1μ2
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+ a2,11 p μ1 
1 p μ2 

1 + a3,12
(
p μ1 
1 p μ2 

2 + p μ1 
1 p μ2 

2

)+ a3,22 p μ1 
2 p μ2 

2 , . 

(3.97) 

F
[D] 
3 (p1, p2)[kμ1kμ2kμ3 ] =  

a3,001
(
ημ1μ2p μ3 

1 + ημ2μ3p μ1 
1 + ημ3μ1p μ2 

1

)

+ a3,002
(
ημ1μ2p μ3 

2 + ημ2μ3p μ1 
2 + ημ3μ1p μ2 

2

)

+ a3,111 p μ1 
1 p μ2 

1 p μ3 
1 + a3,222 p μ1 

2 p μ2 
2 p μ3 

2 

+ a3,112
(
p μ1 
1 p μ2 

1 p μ3 
2 + p μ2 

1 p μ3 
1 p μ1 

2 + p μ3 
1 p μ1 

1 p μ2 
2

)

+ a3,122
(
p μ1 
1 p μ2 

2 p μ3 
2 + p μ2 

1 p μ3 
2 p μ1 

2 + p μ3 
1 p μ2 

1 p μ2 
2

)
. (3.98) 

Let us start with the easiest rank-one part of the integral .F [D]
3 (p23, p234), 

. F
[D]
3 (p23, p234)

[
2 tr−(/1/l 1/4/2) s212s

2
23

]

= 2 s212s
2
23

(
a3,1 tr−(/1/p23

/4/2) + a3,2 tr−(/1/p234
/4/2)

)

= 0 . (3.99) 

In fact, if we follow through with all the form-factor substitutions we will see that 
all tensor triangles reduce to zero. So with a little bit of extra work with tensor 
reduction we have found a compact final answer: 

. C'
23|41 = − 2A(0)(1−, 2−, 3+, 4+)

1

s212s
2
23

× C23|41
(
F

[D]
2 (p23)

[
tr−(/1/l2/3/2)

2 + s12s23 tr−(/1/l2/3/2) + 2 s212s
2
23

])

= − 2A(0)(1−, 2−, 3+, 4+)

(
D

4(D − 1)
− 1

2
+ 2

)

C23|41
(
F

[D]
2 (p23)[1]

)

= −A(0)(1−, 2−, 3+, 4+)
7D − 6

2(D − 1)
C23|41

(
F

[D]
2 (p23)[1]

)
.

(3.100) 

. <

3.4.2 Transverse Spaces and Transverse Integration 

The development of integrand-reduction techniques led to many efficient methods 
for the processing of tensor integrals. Here we would like to highlight the advantages 
of decomposing the loop momenta into transverse components. This feature has 
been exploited in a number of situations including—but not exclusively—the
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loop-momentum basis of Van Neerven-Vermaseren [12], Baikov integral represen-
tations [13], and the adaptive integrand-reduction method [14]. 

We start by considering an n-point, L-loop Feynman integral in . D = 4 − 2ε
dimensions which depend on .n − 1 independent momenta, 

.F (L),[4−2ε]
n (p1, · · · , pn−1) =

f

k1

· · ·
f

kL

f ({k}, {p}) . (3.101) 

We continue to assume the external momenta .{p} are in four dimensions. This 
implies that the independent external momenta span a space of dimension . m = n−1
if .n ≤ 4, or  .m = 4 if .n > 4. For a one-loop box integral .m = 3, for a pentagon 
.m = 4, and a hexagon would also have .m = 4. So we may write the loop momenta 
as a decomposition of an m-dimensional and .4 − m − 2ε dimensional space, 

.k
μ
i = k

μ,[m]
i + k

μ,[4−2ε−m]
i , (3.102) 

which are orthogonal, 

.k
μ,[m]
i · k

μ,[4−m−2ε]
j = 0 . (3.103) 

If .m < 4 (i.e., if .n ≤ 4), we may even consider three transverse spaces of dimensions 
m, .4 − m and .−2ε, 

.k
μ
i = k

μ,[m]
i + k

μ,[4−m]
i + k

μ,[−2ε]
i , (3.104) 

all orthogonal to each other. Since the various indices become cumbersome at this 
point it is convenient to introduce some notation: 

. k
μ,[m]
i = k

μ
i,|| spans the physical space of the loop integral,

k
μ,[4−m]
i = k

μ
i,⊥ spans the spurious space of the loop integral,

k
μ,[−2ε]
i spans the extra-dimensional space of the loop integral,

k
μ,[4−m−2ε]
i spans both spurious and extra-dimensional space of the loop integral.

We use the term physical to indicate the space after integration, i.e. the space of 
independent external momenta that we used for tensor reduction in Sect. 3.4. The  
term spurious space is used to indicate terms that are non-zero at the level of 
the integrand but which will vanish after integration. For each of these spaces a 
spanning set of momenta can be found. The construction of such a basis is often 
referred to as the Van Neerven-Vermaseren basis [12]. For the physical space . kμ

i,||
the independent external momenta can be used. For the spurious space .k

μ
i,⊥ we may 

find an orthogonal basis of four-dimensional vectors. Traditionally these are denoted
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. ω
μ
i and depend on the vectors . p

μ
i spanning the physical space. In the Van Neerven-

Vermaseren construction they are orthonormal, i.e. .ωi · ωj = Niδij with .Ni = 1. In  
a given implementation it can be beneficial to let .Ni /= 1 in order to avoid square 
roots in the kinematic invariants. 

Let us give an explicit example to make things clearer. Consider a one-loop 
triangle configuration with massless external momenta .p1, p2 and . p3. This means 
the spurious space has dimension two and the physical space may be spanned by 
.{p1, p2}. General four-dimensional vectors may be written as 

.ω
μ
i (p1, p2) = α1i p

μ
1 +α2i p

μ
2 +α3i

1

2
<1|γ μ2X|1]+α4i

1

2
<2|γ μ1X|2] , (3.105) 

where .i = 1, 2, and we have introduced an arbitrary reference momentum X to 
ensure the coefficients . α are free of any spinor phase. 

The spurious vectors satisfy the conditions .ωi · pj = 0 and .ωi · ωj = δij if 

. α1i = α2i = 0 , α31α42 + α41α32 = 0 , −1

2
s12tr(/1 /X/2 /X)α3iα4i = 1 ,

(3.106) 

for .i = 1, 2, and so we find the explicit representation 

.

ω
μ
1 (p1, p2) =

√
2

/
s12tr(/1 /X/2 /X)

(<1|γ μ2X|1] − <2|γ μ1X|2]) ,

ω
μ
2 (p1, p2) = i

√
2

/
s12tr(/1 /X/2 /X)

(<1|γ μ2X|1] + <2|γ μ1X|2]) .
(3.107) 

In the context of a full amplitude computation, the momentum X could be one 
of the other independent external momenta. It is also clear in this expression that 
the complicated prefactor results from the assertion that the vectors should be 
orthonormal, and can be avoided by releasing the condition without affecting any 
final amplitude level results. Numerators for amplitudes in the transverse space 
(which are Lorentz scalars) may now be expressed in terms of scalar products .k1 ·ωi , 

.k
μ
1,⊥ = (k1 · ω1) ω

μ
1 + (k1 · ω2) ω

μ
2 . (3.108) 

We could try to span the extra-dimensional space with explicit vectors, though 
we would be forced to introduce a fixed embedding dimension larger than four 
to do it. As a result we would lose all the convenient four-dimensional spinor-
helicity methods that have been working well so far. Instead, we simply identify 
the independent scalar products appearing, which depend only on the number of 
loops. At one-loop there would only be a single extra-dimensional scalar product,
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.k
[−2ε]
1 · k

[−2ε]
1 =: −μ11 . (3.109) 

The definition of the extra-dimensional scalar product .μ11 includes a sign so this 
appears as an effective mass term in the propagator, 

.k21 = k21,|| + k21,⊥ − μ11 . (3.110) 

At higher loops more extra-dimensional scales will be introduced, which may be 
labelled .μij := −k

[−2ε]
i · k

[−2ε]
j . At two-loops there would be three such scales and 

.L(L + 1)/2 for the general L-loop case. 
We finish this section by demonstrating a useful application of the decomposition 

into transverse spaces: transverse integration. If the numerator for a given tensor 
integral lives in a transverse space, we may provide a general tensor decomposition 
using only the metric tensor in the transverse space. For example, returning to the 
one-loop triangle, consider: 

. 

f

k

k · ωi

k2(k − p1)2(k − p12)2
= ωi,μ

f

k

kμ

k2(k − p1)2(k − p12)2

= ωi,μ

(
a3,1 p

μ
1 + a3,2 p

μ
2

)

= 0 , (3.111) 

where we have used the Passarino-Veltman reduction from the previous section. 
Following the same logic it should be clear that for any odd power, r , of the  
numerator .(k · ωi)

r , the integral will vanish. Even powers do not vanish, but we 
may expand the tensor integral using the metric tensor .ημν,[m] for .m = 2, which 
satisfies 

.ημ,[m]
μ = m . (3.112) 

The tensor decomposition can be written in terms of a form factor .ã[2]
3,00 which 

multiplies the metric tensor of the two-dimensional spurious space. For instance, 
for .r = 2, we have that 

. 

f

k

(k · ωi)
2

k2(k − p1)2(k − p12)2
= ωi,μ1 ωi,μ2

f

k

k
μ1
⊥ k

μ2
⊥

k2(k − p1)2(k − p12)2

= ωi,μ1 ωi,μ2 ã
[2]
3,00 ημ1μ2,[2]

= ω2
i ã

[2]
3,00 . (3.113)
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Projecting using the tensor .η
[2]
μ1μ2 leads to 

.ã
[2]
3,00 ημ1μ2,[2] η[2]

μ1μ2
= 2 ã

[2]
3,00. (3.114) 

=
f

k 

k2⊥ 
k2(k − p1)2(k − p12)2

. (3.115) 

=
f

k 

k2 − k2|| + μ11 

k2(k − p1)2(k − p12)2 
. (3.116) 

The term . k2|| may be written in terms of the propagators by decomposing . k
μ
|| as 

.k
μ
|| = k|| · p2

p1 · p2
p

μ
1 + k|| · p1

p1 · p2
p

μ
2 . (3.117) 

This in fact implies that 

.k2|| = 2 (k|| · p1)(k|| · p2)

p1 · p2
, (3.118) 

which can be expressed in terms of the propagators using 

.2 k|| · p1 = k2 − (k − p1)
2 , . (3.119) 

2 k|| · p2 = (k − p1)
2 − (k − p12)

2 + s12 . (3.120) 

In this way we write the original rank-two tensor integrals in terms of the usual 
Feynman integrals but including a triangle with .μ11 in the numerator. We will see 
later that there are methods to integrate it directly. We may also observe a very 
similar but alternative derivation of the same integral: 

.

f

k

(k · ωi)
2

k2(k − p1)2(k − p12)2
= ωi,μ1ωi,μ2

f

k

k
μ1
⊥ k

μ2
⊥

k2(k − p1)2(k − p12)2
. (3.121) 

= ωi,μ1ωi,μ2

f

k 

kμ1,[2−2ε]kμ2,[2−2ε] 

k2(k − p1)2(k − p12)2
. (3.122) 

= ωi,μ1ωi,μ2 ã
[2−2ε] 
3,00 ημ1μ2,[2−2ε] . (3.123)
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This time the form factor .ã[2−2ε]
3,00 multiplies the metric tensor of the .(2 − 2ε)-

dimensional spurious and extra-dimensional spaces. Contracting this expression 
with the same metric tensor gives 

.

ã
[2−2ε]
3,00 ημ1μ2,[2−2ε] η[2−2ε]

μ1μ2
= 2(1 − ε) ã

[2−2ε]
3,00

=
f

k

k2 − k2||
k2(k − p1)2(k − p12)2

,

(3.124) 

which does not include the .μ11 integral. We recall that . k2|| can be written in terms of 
propagators as discussed above. Putting everything together we obtain 

.

f

k

(k · ωi)
2

k2(k − p1)2(k − p12)2
= ω2

i

1

2

f

k

k2 − k2|| + μ11

k2(k − p1)2(k − p12)2

= ω2
i

1

2(1 − ε)

f

k

k2 − k2||
k2(k − p1)2(k − p12)2

.

(3.125) 

Comparing both results we find that 

.

f

k

μ11

k2(k − p1)2(k − p12)2
= − ε

1 − ε

f

k

k2 − k2||
k2(k − p1)2(k − p12)2

. (3.126) 

This exercise demonstrates a number of ways to move around the space of loop 
integrals and integrands, and gives us enough technology to describe a complete 
procedure for the computation of one-loop amplitudes. 

Exercise 3.4 (Spurious Loop-Momentum Space for the Box Integral) 
Consider a one-loop box configuration with massless external momenta . p1, 
. p2, . p3, and . p4 (.p2

i = 0, .p1 + p2 + p3 + p4 = 0). 

(a) Determine the dimension of the physical and of the spurious space. 
Construct a basis of the latter using the spinors associated with the 
external momenta. 

(b) Show that the vector spanning the spurious space is proportional to 

.ωμ(p1, p2, p3) = εμνρσ p1μp2ρp3σ . (3.127) 

Note that .ωμ in Eq. (3.127) spans the one-loop box spurious space also 
for massive or off-shell external momenta (.p2

i /= 0). In other words, 
.ω(p1, p2, p3) · pi = 0 for any .i = 1, . . . , 4. For the solution see Chap. 5.



3.5 General Integral and Integrand Bases for One-Loop Amplitudes 131

3.5 General Integral and Integrand Bases for One-Loop 
Amplitudes 

3.5.1 The One-Loop Integral Basis 

At the beginning of this chapter we already introduced the idea that any loop 
amplitude may be decomposed into an analytic part (a Feynman integral) and an 
algebraic (or rational) coefficient. Using our notation for one-loop amplitudes (while 
continuing to suppress couplings, . μR and . 4π prefactors) this reads 

.A(1),[D]
n (1, . . . , n) =

Σ

m,N

i c[D]
m,N(1, · · · , n) F [D]

m (p1, · · · , pn−1)[N ] , (3.128) 

where we must finalise the sum of propagator multiplicity m and numerators N 
which form an integral basis. In the examples of tensor integral reduction we have 
seen how the large numbers of tensor integrals which appear in the amplitude can 
be reduced onto a small number of integrals resulting in large simplifications. If we 
collect the results from Sects. 3.2 and 3.4 we can summarise the information we 
have gathered about the four-gluon MHV amplitude in .D = 4 − 2ε dimensions as 

. A(1),[4−2ε](1−,2−, 3+, 4+) = A(0)(1−, 2−, 3+, 4+)

×
(

− s12s23F
[4−2ε]
4 (p1, p2, p3)[1] − 11

3
F

[4−2ε]
2 (p23)[1]

)

+ terms missed in 4D . (3.129) 

Here we have used the notation from Sect. 3.4, where the integrals are labelled by 
the external momenta flowing in the propagators and the numerator dependence, in 
both cases here just simple scalar integrals. 

At one loop the tensor-reduction method is sufficient to completely classify the 
basis of all one-loop integrals for an arbitrary number of external momenta with 
arbitrary kinematics. In order for it to be clear where we are going as we derive this 
basis, let us begin by quoting the final result.

> A General Formula for One-Loop Amplitudes A one-loop amplitude in 
dimensional regularisation with four-dimensional external states can be 
written as 

.A(1),[4−2ε]
n (1, . . . , n) =

Σ

1≤i1<i2<i3<i4≤n

i c0;i1|i2|i3|i4 F
[4−2ε]
4 (pi1,i2−1, pi2,i3−1, pi3,i4−1)[1]

+
Σ

1≤i1<i2<i3≤n

i c0;i1|i2|i3 F
[4−2ε]
3 (pi1,i2−1, pi2,i3−1)[1]
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+
Σ

1≤i1<i2≤n 
i c0;i1|i2 F

[4−2ε] 
2 (pi1,i2−1)[1] 

+
Σ

1≤i1≤n 
i c0;i1F

[4−2ε] 
1 (pi1)[1] 

+ R(1, . . . , n) + O(ε) , (3.130) 

where R is a rational function of the external kinematics. There is quite 
a lot going on here so let us unpack it. Firstly we see that result is 
quoted in .4 − 2ε dimensions and given only up to terms of .O(ε0). 
No integral functions with more than four propagators are required 
and only scalar numerators appear. The rational coefficients, c, do not 
depend on . ε and may be obtained using four-dimensional unitarity cuts. 
The only term missed by the four-dimensional cuts is a rational term. 
We will need to work a little harder before we can justify that the 
remaining contribution is simply a rational function, and for now we 
leave it as statement without proof. Let us also clarify that the term 
rational function of the external kinematics is used to indicate a rational 
function of spinor products and so is a tree-like function. We note that, 
for massless theories, bubbles on external legs and tadpoles vanish in 
dimensional regularisation, so the basis simplifies. 

The fact that no scalar integrals with more than four propagators are required 
in .D = 4 − 2ε dimensions can be seen by considering the linear dependence of 
the internal and external momenta. The argument relies on our assumption that the 
external momenta live in four dimensions. As a result, in a .D = 4 dimensional loop-
momentum space, there can only ever be four independent propagators and therefore 
the pentagon integral can be written entirely in terms of box integrals. Following 
the exercise below we can see that the linear dependence of the momenta can be 
related to the vanishing of the associated Gram matrix. If the internal momentum 
is in .D = 4 − 2ε dimensions there is one additional degree of freedom that means 
the pentagon integral is also independent, but all integrals with a higher number of 
propagators will be completely reducible. Using the basis choice in Eq. (3.130) the  
contribution of the pentagon-type integral has been moved to the terms of .O(ε), in  
order to make the property that the pentagon vanishes in four dimensions manifest. 
We will see later exactly how this can be achieved. This fact was also demonstrated 
implicitly in Exercise 3.2, where the four-dimensional quadruple cuts of the five-
gluon amplitude identified only the box coefficients and did not detect any pentagon 
integral function. 

The origin of rational terms, R, comes from terms in the integral coefficients 
of higher order in . ε multiplied by potential divergences in the integrals resulting 
in terms like . ε

ε
in the expansion. Through an integrand-level analysis using the 

transverse decomposition one can find an explicit representation of these terms, as 
we will show later.
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Exercise 3.5 (Reducibility of the Pentagon in Four Dimensions) 

(a) Prove that the massless scalar triangle integral .F [D]
3 defined by Eq. (3.2) 

with .n = 3, .ma = 0, and .N = 1 is reducible in .D = 2 dimensions. For 
simplicity assume that .p2

2 = 0 = p2
3. Hint: introduce a two-dimensional 

parametrisation of the loop momentum, and use it to derive a relation 
among the inverse propagators. 

(b) The Gram matrix G of a set of momenta .q1, . . . , qn is the matrix of entries 

. [G(q1, q2, . . . , qn)]ij = qi · qj , (3.131) 

for .i, j = 1, . . . , n. If the momenta are linearly dependent, their 
Gram matrix has vanishing determinant. Prove that the relation among 
the inverse propagators found at the previous step is equivalent to the 
vanishing of a Gram determinant. 

(c) Use a Gram-determinant condition to prove that the massless pentagon 
integral .F [D]

5 defined by Eq. (3.2) with .n = 5, .ma = 0, and .N = 1 is 
reducible in .D = 4 dimensions. Parametrise the kinematics in terms of 
independent invariants assuming that .p2

i = 0 for all .i = 1, . . . , 5. 

For the solution see Chap. 5 and the Mathematica notebook 
Ex3.5_Reducibility.wl [15]. 

3.5.2 A One-Loop Integrand Basis in Four Dimensions 

The integrand-reduction method is often referred to simply as the OPP method, fol-
lowing the initials of the authors who introduced the method: Ossola, Papadopoulos 
and Pittau [16]. We have already made the first steps necessary to follow this method 
in Sect. 3.4.2, where we discussed how to provide general parametrisations for the 
loop momenta at the integrand level using transverse spaces. The easiest place to 
start is with terms with the maximal number of propagators, often referred to as the 
maximal cut. At one loop this means the box configurations. 

Throughout our general discussion on the one-loop integrands we do not have a 
particular multiplicity of external legs in mind. As a result we will use the notation 
.1|2|3|4 for a general box configuration in which the momenta at the four vertices 
.p1, p2, p3, p4 are considered to be combinations of external legs. A similar notation 
also applies for triangle and bubble configurations.
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Fig. 3.5 A general box 
configuration labelled 
according to the conventions 
of Sect. 3.5.2.1. The arrows 
denote the direction of the 
momenta 
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3.5.2.1 The Box Integrand in Four Dimensions 
The box configuration has three independent external momenta, and so the loop 
momentum has a spurious space of dimension one. Let us consider a general 
configuration .1|2|3|4 with four masses and arbitrary momenta entering each vertex. 
The inverse propagators are labelled as .Di = (k−qi)

2−m2
i . In terms of the external 

momenta . pi they are given by 

.

D1 = k2 − m2
1 , D3 = (k − p12)

2 − m2
3 ,

D2 = (k − p1)
2 − m2

2 , D4 = (k + p4)
2 − m2

4 .
(3.132) 

This configuration is shown graphically in Fig. 3.5. Discarding the extra-
dimensional terms in the loop momenta, and denoting the spanning vectors for 
the physical space as .vμ = {pμ

1 , p
μ
2 , p

μ
3 }, we may write 

.kμ = k
μ
|| + (k · ω)ωμ, . (3.133) 

k μ|| = α · vμ , (3.134) 

where .α = {α1, α2, α3} and .ω · pi = 0.9 As we showed in the triangle example in 
Sect. 3.4.2, the coefficients . α may be written in terms of external invariants . qi · qj

and Lorentz-scalar products .k · qi , where as before .qi = Σi−1
l=1 pl . The latter can be 

written as the difference of two inverse propagators, e.g. . k · p1 = (D1 − D2 + p2
1 +

m2
1 − m2

2)/2. This tells us that the loop-momentum dependence of . α can be written 
completely in terms of the four inverse propagators.

9 We use the inner product symbol . · for all spaces, so that .p · q = pμqμ and .α · vμ = αiv
μ
i with 

summation over repeated indices implicit. 
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Our aim is to define an irreducible numerator, .Δ1|2|3|4, that parametrises all 
possible loop-momentum dependence in the numerator of the box topology. In 
other words, we are interested in taking the quadruple cut of the numerator 
function. Working at the integrand level, we re-use the notation .C1|2|3|4 used for 
the amplitudes in Sect. 3.3 to indicate the inverse propagators are being set to zero: 
.C1|2|3|4(f ) := f |Di→0 for all .i = 1, . . . , 4. As we have just ascertained that 
the loop-momentum dependence of . α is entirely in terms of inverse propagators, 
the relevant part of the loop-momentum parametrisation in Eq. (3.133) depends on 
only one loop-momentum dependent scalar product, .k · ω, which we refer to as the 
irreducible scalar product (ISP). All terms in . α proportional to inverse propagators 
fall into sub-topologies which will be dealt with later. For a renormalisable gauge 
theory10 the dependence of the numerator must then have the form 

.Δ1|2|3|4(k · ω) =
4Σ

i=0

ci;1|2|3|4 (k · ω)i . (3.135) 

There is however one more constraint on the loop-momentum dependence of the 
numerator that comes from the condition .D1 = 0: 

.C1|2|3|4
(
k2 − m2

1

)
= C1|2|3|4

(
k2||
)

+ (k · ω)2 ω2 − m2
1 = 0 . (3.136) 

Since .C1|2|3|4
(
k2||
)
is a function of the external invariants only—the inverse propaga-

tors are set to zero—it is a constant as far as the loop-momentum dependence goes. 
The condition (3.136) therefore states that monomials with more than one power of 
.k · ω are reducible. We may thus write the numerator of this box configuration as 

.Δ1|2|3|4(k · ω) = c0;1|2|3|4 + c1;1|2|3|4 (k · ω) , (3.137) 

where the rational coefficients . c0 and . c1 can be determined for an arbitrary process 
from the cuts of Feynman diagrams or, as we have described earlier in this chapter, 
from the product of tree-level amplitudes. To put this more concretely, we can use 
the explicit loop-momentum solutions to Eq. (3.136), 

.k±,μ = C1|2|3|4
(
k
μ
||
)

±
/

m2
1 − C1|2|3|4

(
k2||
)

ω2
ωμ , (3.138)

10 For other theories, effective theories or gravity the only change would be to increase the upper 
limit on the sum. 
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to write down an expression for the quadruple cut of an arbitrary one-loop 
amplitude: 

. C1|2|3|4
(
A(1),[4−2ε]

n

)
=
f

k

Δ1|2|3|4(k · ω)

(
4||

i=1

(−2π i) δ(+)(Di)

)

=
f

k

(

I (1)
4||

i=1

Di

) (
4||

i=1

(−2π i) δ(+)(Di)

)

, (3.139) 

where .I (1) represents the integrand of the one-loop amplitude as introduced 
previously. Identifying the integrands subject to the delta function constraints leads 
us to the algebraic relation 

.Δ1|2|3|4(k · ω)

|
|
|
|
Di=0

=
(

I (1)
4||

i=1

Di

)|
|
|
|
Di=0

. (3.140) 

If we had explicitly performed the integration over the delta functions in Eq. (3.139) 
we would also obtain a Jacobian factor but it would cancel on both sides of the 
relation. The integrand .I (1) could be obtained by simply taking the subset of 
Feynman diagrams which have the same four propagators and substituting the on-
shell values of the loop momenta . k±. In a physical gauge,11 it is easy to see that 
this subset of diagrams may also be written as the product of tree-level amplitudes 
summed over the internal helicity configurations: 

. 

(

I (1)
4||

i=1

Di

)|
|
|
|
k±

=
Σ

hi=±

[

iA(0)
(
(−k±)−h1, p1, (k

± − p1)
h2
)
iA(0)

×
(
(−k± + p1)

−h2 , p2, (k
± − p12)

h3
)

iA(0)
(
(−k± + p12)

−h3 , p3, (k
± + p4)

h4
)
iA(0)

×
(
(−k± − p4)

−h4 , p4, (k
±)h1

)]

= Δ1|2|3|4(k± · ω) . (3.141)

11 In Exercise 1.7 we showed in the light-like axial gauge that the numerator of the propagator can 
be written as the product of polarisation vectors in the on-shell limit times a factor of . i. Incidentally, 
this is the origin of the factors of . i which accompany the tree-level amplitudes in the factorisation 
on the cuts, see e.g. Eq. (3.141). 
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Using the on-shell values for the ISP, 

.k± · ω = ±
/

m2
1 − C1|2|3|4

(
k2||
)

ω2 , (3.142) 

we can invert Eq. (3.141) to find solutions for the rational coefficients .ci;1|2|3|4 of 
the parametrisation of .Δ1|2|3|4 in Eq. (3.137). We obtain 

.c0;1|2|3|4 = 1

2

(
I

(1)
(k+) + I

(1)
(k−)

)
, . (3.143) 

c1;1|2|3|4 = 
1 

2

/
ω2 

m2 
1 − C1|2|3|4

(
k2||
)
(
I (1) (k+) − I (1) (k−)

)
, (3.144) 

where we introduced the short-hand notation 

.I
(1)

(k±) :=
(

I (1)
4||

i=1

Di

)|
|
|
|
k±

. (3.145) 

This proves the averaging prescription that we already applied during generalised 
unitarity cut computations in Sect. 3.3. Having determined both coefficients from 
the on-shell cut, we see that the contribution to the amplitude is simply 

.

f

k

Δ1|2|3|4(k)

(−D1)(−D2)(−D3)(−D4)
= c0;1|2|3|4 F

[4−2ε]
4 (p1, p2, p3)[1] , (3.146) 

as the second, spurious, element integrates to zero following the arguments pre-
sented earlier in Sect. 3.4.2 regarding transverse integration. Notice that the minus 
signs on the inverse propagators have been put in to match the conventions for the 
Feynamn integrals in Eq. (3.2). 

We have now demonstrated two important facts: a general basis for the (four-
dimensional) box part of any one-loop amplitude is simply the scalar box integral, 
and its coefficient may be extracted by a purely algebraic procedure using gener-
alised unitarity cuts. 

3.5.2.2 The Triangle Integrand in Four Dimensions 
The procedure for determining the remaining parts of the amplitude and establishing 
a complete integral basis is to reduce the number of cut propagators to the triangle 
(then bubble, then tadpole) contributions. 

We begin in exactly the same fashion as the box configuration by defining the 
inverse propagators according to 

. D1 = k2 − m2
1 , D2 = (k − p1)

2 − m2
2 , D3 = (k − p12)

2 − m2
3 ,

(3.147)
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and parametrise the loop momenta using two orthogonal spurious vectors . ωi , 

.

kμ = k
μ
|| + (k · ω1) ω

μ
1 + (k · ω2) ω

μ
2 ,

k
μ
|| = α · vμ ,

(3.148) 

where .vμ = {pμ
1 , p

μ
2 } with .ωμ

i pj μ = 0 for .i, j = 1, 2, and .α = {α1, α2}. We have  
seen the explicit construction of the physical and spurious spaces in Sect. 3.4.2 so 
it is clear that . α only depends on the inverse propagators, and hence on the triple 
cut have no loop-momentum dependence. We therefore have two ISPs with which 
to parametrise our triangle integrand: .k · ω1 and .k · ω2. For a renormalisable gauge 
theory the maximum tensor rank is three and so a general parametrisation is 

.Δ1|2|3(k · ω1, k · ω2) =
Σ

i,j

cij (k · ω1)
i (k · ω2)

j , (3.149) 

with .i + j ≤ 3. This parametrisation is subject to the constraint 

.C1|2|3
(
k2 − m2

1

)
= C1|2|3

(
k2||
)

−m2
1 + (k ·ω1)

2ω2
1 + (k ·ω2)

2ω2
2 = 0 . (3.150) 

It is slightly more difficult to apply this constraint to find a general parametrisation 
since we now have multivariate polynomials. One could attempt to deploy the 
mathematical technology to deal with such problems, introducing a polynomial 
ordering and performing polynomial division with respect to a Gröbner basis,12 but 
it is easier to analyse this case by hand and we will find an extremely convenient 
choice. Firstly we expand Eq. (3.149) explicitly, 

. Δ1|2|3(k · ω1, k · ω2) = c00 + c10(k · ω1) + c01(k · ω2)

+ c20(k · ω1)
2 + c11(k · ω1)(k · ω2) + c02(k · ω2)

2

+ c30(k · ω1)
3 + c21(k · ω1)

2(k · ω2) + c12(k · ω1)(k · ω2)
2 + c03(k · ω2)

3 .

(3.151) 

Removing all monomials with even powers of .k · ω2 would be a valid choice 
and eliminate the implicit dependence on three of the monomials. The resulting 
integrand parametrisation would still contain an integral quadratic in .k·ω1, which we 
have seen does not vanish after integration. In the example of transverse integration 
from Eq. (3.113) we saw that the integral of .(k · ω1)

2 is the same as .(k · ω2)
2 up

12 Many computer algebra systems now come equipped with decent implementations of polyno-
mial division algorithms, so this can be a practical method. 
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to a normalisation. Therefore, in order to obtain a simple result after (transverse) 
integration, we choose 

.

Δ1|2|3(k · ω1, k · ω2) = c0;1|2|3 + c1;1|2|3(k · ω1) + c2;1|2|3(k · ω2)

+ c3;1|2|3

(

(k · ω1)
2 − ω2

1

ω2
2

(k · ω2)
2

)

+ c4;1|2|3(k · ω1)(k · ω2)

+ c5;1|2|3(k · ω1)
3 + c6;1|2|3(k · ω1)

2(k · ω2) ,

(3.152) 

where we constructed a spurious integral from the linear combination of .(k·ω1)
2 and 

.(k ·ω2)
2. As a result, after integration, all terms except the scalar integral coefficient 

vanish: 

.

f

k

Δ1|2|3(k · ω1, k · ω2)

(−D1)(−D2)(−D3)
= c0;1|2|3 F

[4−2ε]
3 (p1, p2)[1] . (3.153) 

The extraction of the rational coefficients can be performed algebraically by using 
the information computed using the quadruple cuts as input. Following the box 
example as a reference we write 

. C1|2|3
(
A(1),[4−2ε]

n

)

=
f

k

(

−Δ1|2|3(k · ω1, k · ω2) +
Σ

X

Δ1|2|3|X(k · ω)

DX

)(
3||

i=1

(−2π i) δ(+)(Di)

)

=
f

k

I (1)(k)

(
3||

i=1

Di (−2π i) δ(+)(Di)

)

, (3.154) 

which implies that 

. − Δ1|2|3(k · ω1, k · ω2)

|
|
|
|
Di=0

=
(

I (1)(k)

3||

i=1

Di −
Σ

X

Δ1|2|3|X(k · ω)

DX

) |
|
|
|
Di=0

.

(3.155) 

The sum over X for the box numerators indicates that we must include all boxes 
that share the three propagators .{D1,D2,D3}, with .DX being the fourth propagator 
which completes the box. Denoting the box configurations in the subtraction as 
.1|2|3|X is a slight abuse of notation, and we give an explicit example below to 
clarify.
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The integrand factorises into tree amplitudes as before, 

. 

(

I (1)(k)

3||

i=1

Di

) |
|
|
|
Di=0

=
Σ

hi=±

[

iA(0)
(
(−k)−h1, p1, (k − p1)

h2
)

iA(0)
(
(−k + p1)

−h2 , p2, (k − p12)
h3
)

iA(0)
(
(−k + p12)

−h3, p3, (k)h1
)]||
|
|
Di=0

,

(3.156) 

but on this occasion solving the on-shell constraints will lead to a family of loop 
momenta parametrised by a single variable. The choice of this parametrisation is not 
an immediate issue since it is more important to realise that the triple cut condition 
in Eq. (3.155) must be valid for any value of the free variable, which is sufficient to 
find the conditions necessary to fix the rational coefficients .ci;1|2|3. 

Example: Subtraction Terms for a Six-Point Amplitude 

Since the sum over X and the cut notation .1|2|3|X in Eq. (3.155) are schematic, 
it is helpful to see an explicit example. Consider the application to an amplitude 
with six external legs where we are computing the triple cut .12|34|56. The  sum  
over X for the box subtraction terms would then indicate the following set: 

.
{
1|2|34|56 , 12|3|4|56 , 12|34|5|6} . (3.157) 

. <

3.5.2.3 The Bubble Integrand in Four Dimensions 
At this point the integrand reduction strategy of Ossola, Papadopoulos and Pittau 
should be clear: continue to reduce the on-shell constraints on the propagators until 
all the integral basis coefficients have been determined. 

The equation for the irreducible numerator in the case of bubble configurations, 
.Δ1|2, is constructed from three irreducible scalar products: .k · ω1, .k · ω2 and .k · ω3. 
Note that . ω1 and . ω2 are not the same spurious vectors for the triangle configuration. 
We will consider a configuration with inverse propagators 

.D1 = k2 − m2
1 , D2 = (k − p1)

2 − m2
2 , (3.158) 

and parametrise the loop momenta using the three orthogonal spurious vectors . ωi as 

.kμ = k
μ
|| + (k · ω1) ω

μ
1 + (k · ω2) ω

μ
2 + (k · ω3) ω

μ
3 , . (3.159) 

k μ|| = α · vμ , (3.160)
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where .vμ = {pμ
1 } and .α = {α1}. The remainder of the derivation we leave as an 

exercise, although perhaps the result is already clear by analogy to the triple cut 
case. 

Exercise 3.6 (Parametrising the Bubble Integrand) 

(a) Show that the irreducible numerator of a general bubble configuration can 
be written as 

. 

Δ1|2(k · ω1, k · ω2, k · ω3) = c0;1|2
+ c1;1|2(k · ω1) + c2;1|2(k · ω2) + c3;1|2(k · ω3)

+ c4;1|2(k · ω1)(k · ω2) + c5;1|2(k · ω1)(k · ω3) + c6;1|2(k · ω2)(k · ω3)

+ c7;1|2

(

(k · ω1)
2 − ω2

1

ω2
3

(k · ω3)
2

)

+ c8;1|2

(

(k · ω2)
2 − ω2

2

ω2
3

(k · ω3)
2

)

,

(3.161) 

which results in 

.

f

k

Δ1|2(k · ω1, k · ω2, k · ω3)

(−D1)(−D2)
= c0;1|2 F

[4−2ε]
2 (p1)[1] . (3.162) 

(b) Show that the irreducible numerator can be determined on the double cut 
from 

. 

Δ1|2(k · ω1, k · ω2, k · ω3)

|
|
|
|
Di=0

=
(

I (1)(k)

2||

i=1

Di

+
Σ

X

Δ1|2|X(k · ωX
1 , k · ωX

2 )

DX

−
Σ

Y,Z

Δ1|2|Y |Z(k · ωYZ)

DY DZ

)|
|
|
|
Di=0

,

(3.163) 

where the sum on X indicates all triangle configurations, and the sum on 
.Y,Z indicates all box configurations. Again the sign on the triangle irre-
ducible numerator .Δ1|2|X matches our sign conventions on the Feynman 
integrals. 

For the solution see Chap. 5.
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For massless theories such as Yang-Mills theory we have now completed an alge-
braic approach for the determination of the four-dimensional, or cut constructible, 
part of the one-loop integrand. In massive theories there are still contributions 
for integrals which only depend on the mass: tadpoles and bubbles on external 
massive legs. One can continue to apply the integrand reduction procedure to these 
cases and a full analysis can, for example, be found in reference [7]. There is a 
subtlety in the method though since the unrenormalised amplitude diverges when 
applying bubble cuts on external lines and so we cannot factorise into the product 
of tree amplitudes without additional regulators. The issue is connected with wave-
function renormalisation and the interested reader can find further information in 
the literature [17–19]. 

3.5.3 D-Dimensional Integrands and Rational Terms 

The results of Sect. 3.5.2 gave us confidence in the proposed general one-loop 
formula in Eq. (3.130). The fact that we found only scalar integrals after removing 
the spurious terms was consistent with the tensor integral reduction method 
introduced in Sect. 3.4, so we can consider this result as a confirmation of the latter. 
The integrand-level matching of cut diagrams to irreducible numerators enabled 
the algebraic determination of the integral coefficients, leaving the remaining 
integration of the basis integrals as a separate problem. That problem is not to be 
underestimated of course and is the subject of the next chapter. 

The aim for the rest of this section is to extend our analysis to . D = 4 − 2ε
dimensional integrands and amplitudes. This means that we can no longer avoid the 
contribution of the pentagon which now becomes the starting point for the top down 
integrand reduction approach of Ossola, Papdopoulos and Pittau. 

3.5.3.1 The Pentagon Integrand 
Since there are four independent external momenta in the pentagon configuration 
there is no spurious space. In Exercise 3.5 we showed that the pentagon configu-
ration was completely reducible in four dimensions. In .D = 4 − 2ε, we need to 
clarify this point and to extend our four dimensional analysis of the integrand. The 
decomposition of the transverse space gives us the starting point. For concreteness 
we can specify the propagators, 

. 
D1 = k2 − m2

1 , D2 = (k − p1)
2 − m2

2 , D3 = (k − p12)
2 − m2

3 ,

D4 = (k − p123)
2 − m2

4 , D5 = (k + p5)
2 − m2

5 ,

(3.164) 

the spanning set of external momenta (which are four dimensional), 

.vμ = {pμ
1 , p

μ
2 , p

μ
3 , p

μ
4 } , (3.165)
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and the parametrisation of the loop momentum, 

.kμ = α · vμ + kμ,[−2ε] . (3.166) 

Note that in this case there is no spurious space, as the external momenta . vμ are 
sufficient to span the entire four-dimensional space. As before, the coefficients . α of 
the spanning vectors of the physical space are functions of the propagators and the 
external invariants. The on-shell condition .D1 = 0 gives the key constraint for the 
determination of the integrand basis, 

.k2 − m2
1 = α · G · αT − μ11 − m2

1 = 0 , (3.167) 

where we have explicitly used the Gram matrix .Gij = vμ
i vj μ. After applying the 

four on-shell conditions .{D2,D3,D4,D5} = 0, the only ISP in this equation is 
. μ11, and we see that on the quintuple cut this ISP will be a constant expression 
written in terms of external invariants. We may therefore parametrise the irreducible 
numerator as 

.Δ1|2|3|4|5(μ11) =
2Σ

i=0

ci;1|2|3|4|5 μi
11 , (3.168) 

subject to the constraint in Eq. (3.167). A minimal solution to this would seem 
to take just the scalar pentagon as a basis integrand, however this would not be 
consistent with the complete reduction of the pentagon in four dimensions. The 
next-to-minimal choice is a single power of . μ11, 

.Δ1|2|3|4|5(μ11) = c1;1|2|3|4|5 μ11 , (3.169) 

which vanishes explicitly in the .D → 4 limit as we had previously argued. We will 
not explicitly perform the integration but simply state that it is possible to show the 
integral vanishes up to .O(ε): 

.

f

k

Δ1|2|3|4|5(μ11)

D1D2D3D4D5
= O(ε) . (3.170) 

3.5.3.2 Extending the Box, Triangle and Bubble Integrand Basis to 
D = 4 − 2ε Dimensions 

The integrand reduction procedure is now rather easy to extend into D-dimensions, 
since all we have to do is track the additional dependence on the extra-dimensional 
ISP . μ11. The box irreducible numerator then becomes a polynomial in two ISPs, 

.Δ1|2|3|4(k · ω,μ11) =
Σ

i,j

ci (k · ω)iμ
j

11 , (3.171)
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where .i + 2j < 4, and 

.C1|2|3|4
(
k2 − m2

1

)
= C1|2|3|4

(
k2||
)

− m2
1 + (k · ω)2ω2 − μ11 = 0 . (3.172) 

The simplest solution is to eliminate .μ11 from the parametrisation completely, 
leaving five monomials in the ISP .k · ω. Two of these monomials would not vanish 
after integration however and again, as in the pentagon case, the .D → 4 limit would 
not match our four-dimensional analysis. Instead we choose the two terms from the 
four-dimensional parametrisation and three more monomials proportional to . μ11, 

. Δ1|2|3|4(k · ω,μ11) = c0;1|2|3|4 + c1;1|2|3|4 (k · ω) + c2;1|2|3|4 μ11

+ c3;1|2|3|4 (k · ω)μ11 + c4;1|2|3|4 μ2
11 . (3.173) 

The result integrating this expression turns out to be incredibly simple but, as 
before with the pentagon, requires some additional integration technology. In . 4−2ε
dimensions it turns out that the integral with .μ11 in the denominator vanishes up to 
.O(ε) while the .μ2

11 integral gives rise to a finite, and rational, contribution, 

. 

f

k

Δ1|2|3|4(k · ω,μ11)

(−D1)(−D2)(−D3)(−D4)

= c0;1|2|3|4 F
[4−2ε]
4 (p1, p2, p3)[1] + c2;1|2|3|4 F

[4−2ε]
4 (p1, p2, p3)[μ11]

+ c4;1|2|3|4 F
[4−2ε]
4 (p1, p2, p3)[μ2

11]

= c0;1|2|3|4 F
[4−2ε]
4 (p1, p2, p3)[1] − 1

6
c4;1|2|3|4 + O(ε) . (3.174) 

The final steps are to repeat the analysis for the triangle and bubble, and so we can 
quote the results for the triangle irreducible numerator, 

. Δ1|2|3(k · ω1, k · ω2, μ11) = c0;1|2|3 + c1;1|2|3 (k · ω1) + c2;1|2|3 (k · ω2)

+ c3;1|2|3

(

(k · ω1)
2 − ω2

1

ω2
2

(k · ω2)
2

)

+ c4;1|2|3 (k · ω1)(k · ω2)

+ c5;1|2|3 (k · ω1)
3 + c6;1|2|3 (k · ω1)

2(k · ω2)

+ c7;1|2|3 μ11 + c8;1|2|3 (k · ω1) μ11 + c9;1|2|3 (k · ω2) μ11 , (3.175)
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and its integrated form, 

. 

f

k

Δ1|2|3(k · ω1, k · ω2, μ11)

(−D1)(−D2)(−D3)

= c0;1|2|3 F
[4−2ε]
3 (p1, p2)[1] + c7;1|2|3 F

[4−2ε]
3 (p1, p2)[μ11]

= c0;1|2|3 F
[4−2ε]
3 (p1, p2)[1] − 1

2
c7;1|2|3 + O(ε) , (3.176) 

and also the bubble irreducible numerator 

. Δ1|2(k · ω1, k · ω2, k · ω3, μ11) = c0;1|2 + c1;1|2 (k · ω1) + c2;1|2 (k · ω2)

+ c3;1|2 (k · ω3) + c4;1|2

(

(k · ω1)
2 − ω2

1

ω2
3

(k · ω3)
2

)

+ c5;1|2

(

(k · ω2)
2 − ω2

2

ω2
3

(k · ω3)
2

)

+ c6;1|2 (k · ω1)(k · ω2) + c7;1|2 (k · ω1)(k · ω3)

+ c8;1|2 (k · ω2)(k · ω3) + c9;1|2 μ11 , (3.177) 

and its integrated form, 

. 

f

k

Δ1|2(k · ω1, k · ω2, k · ω3, μ11)

(−D1)(−D2)

= c0;1|2 F
[4−2ε]
2 (p1)[1] + c9;1|2 F

[4−2ε]
2 (p1)[μ11]

= c0;1|2 F
[4−2ε]
2 (p1)[1] − p2

1 − m2
1 − m2

2

6
c9;1|2 + O(ε) . (3.178) 

When integrating the irreducible numerators we have used the following results for 
integrals in .D = 4 − 2ε dimensions: 

.F
[4−2ε]
5 (p1, p2, p3, p4)[μ11] = O(ε) , . (3.179) 

F
[4−2ε] 
4 (p1, p2, p3)[μ11] = O(ε) , . (3.180) 

F
[4−2ε] 
4 (p1, p2, p3)[μ2 

11] = −1 

6 
+ O(ε) , . (3.181) 

F
[4−2ε] 
3 (p1, p2)[μ11] = −1 

2 
+ O(ε) , . (3.182) 

F
[4−2ε] 
2 (p1)[μ11] = −p2 

1 − m2 
1 − m2 

2 

6
+ O(ε) . (3.183)
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Explicitly proving these results requires technology for loop integration that we have 
not yet introduced. One interesting observation [20] is that the .μ11 numerators give 
rise to dimension-shifted integrals: 

. F [4−2ε]
n (p1, . . . , pn−1)[μr

11] =
(

r−1||

s=0

(s − ε)

)

F [4+2r−2ε]
n (p1, . . . , pn−1)[1] .

(3.184) 

The fact that the relation is proportional to . ε shows that we are only interested in 
the poles of the dimension-shifted integrals. Shifting the dimension up improves the 
infrared behaviour and so all the possible poles in the dimension-shifted integrals 
are of UV origin. The vanishing of the pentagon and box integrals with the 
.μ11 numerator can then be understood since the integrand-level power-counting 
argument shows that the .(6 − 2ε)-dimensional scalar integrals are UV finite. 

Exercise 3.7 (Dimension-Shifting Relation at One Loop) Prove the 
dimension-shifting relation (3.184) [20]. Assume that the external momenta 
. pi are four dimensional, and decompose the loop momentum into a four-
and an extra-dimensional parts (see Sect. 3.4.2). The key of the proof is 
that the integrand of the integral on the LHS of Eq. (3.184) depends on the 
loop momentum only through its four-dimensional part and . μ11. Switch to 
radial and angular coordinates in the extra-dimensional subspace, carry out 
the angular integration, and absorb the factor of .μr

11 in the numerator into 
the radial part of a .(2r − 2ε)-dimensional loop-integration measure. Use 
the following Gamma-function identity to simplify the ratio of the angular 
integrals, 

.
Γ (r − ε)

Γ (−ε)
=

r−1||

s=0

(s − ε) . (3.185) 

We will prove the above in the solution of Exercise 4.5. Finally, putting 
together the .(2r −2ε)-dimensional and the four-dimensional loop-integration 
measures gives the RHS of Eq. (3.184). For the solution see Chap. 5. 

3.5.4 Final Expressions for One-Loop Amplitudes in D-Dimensions 

We have now completed the analysis at one loop. We have used a general integrand 
parametrisation to prove the basis used in Eq. (3.130) but have now identified the 
connection between the rational terms and the extra-dimensional terms missed by
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the 4D cuts. We can therefore give an explicit formula for the rational term R: 

. A(1),[4−2ε]
n (1, . . . , n) =

Σ

1≤i1<i2<i3<i4≤n

i c0;i1|i2|i3|i4 F
[4−2ε]
4 (pi1,i2−1, pi2,i3−1, pi3,i4−1)[1]

+
Σ

1≤i1<i2<i3≤n

i c0;i1|i2|i3 F
[4−2ε]
3 (pi1,i2−1, pi3,i3−1)[1]

+
Σ

1≤i1<i2≤n

i c0;i1|i2 F
[4−2ε]
2 (pi1,i2−1)[1]

+
Σ

1≤i1≤n

i c0;i1 F
[4−2ε]
1 (pi1)[1]

+ R(1, . . . , n) + O(ε) , . (3.186) 

R(1, . . . ,n)  = −1 

6

Σ

1≤i1<i2<i3<i4≤n 
i c4;i1|i2|i3|i4 

− 
1 

2

Σ

1≤i1<i2<i3≤n 
i c7;i1|i2|i3 

− 
1 

6

Σ

1≤i1<i2≤n

(
p2 

i1,i2−1 − m2 
i1 

− m2 
i2

)
i c9;i1|i2 . (3.187) 

We have also demonstrated that the coefficients of the integral basis can be 
extracted from products of tree-level amplitudes via generalised unitarity cuts using 
a completely algebraic method.

> Automated Approaches to One-Loop Amplitude Computations The 
coefficients of the integral basis presented above may now be 
extracted by solving the quadruple, triple and bubble cut conditions 
in Eqs. (3.140), (3.155) and  (3.163) and/or their D-dimensional 
equivalents. The coefficients of the scalar loop integrals are completely 
determined from factorised products of on-shell tree amplitudes in 
four dimensions. These coefficients can be determined numerically by 
inverting the cut conditions, a technique that allows large intermediate 
expressions to be sidestepped. The method is relatively easy to 
automate for high-multiplicity processes and has been used for precise 
phenomenological studies at high energy colliders with around five 
final-state particles [21–28]. 

There are still a couple of loose ends however. Aside from the fact that we did 
not prove the results of integration that led to the rational terms, we have also not
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explicitly demonstrated how the D-dimensional basis coefficients can be extracted 
from tree-level amplitudes. Whichever approach is taken, some information from 
tree-amplitudes in dimensions other than four must be used. Numerically, this infor-
mation can be efficiently extracted using recursion relations for fixed integer values 
of the “spin dimension” .ds = η

μ
μ for the numerator algebra [29]. Alternatively 

one can use explicit spinor-helicity constructions in higher dimensions [30]. Both 
approaches are completely general but the dramatic simplicity of amplitudes in 
four dimensions uncovered by the spinor-helicity formalism is lost. At one loop an 
alternative approach is also available in which we may exploit the fact that the extra-
dimensional dependence of the loop integrand is equivalent to a shift in the mass of 
the propagating particles. In Sect. 3.6 we will describe the steps required to directly 
compute the rational terms of the four-gluon amplitude using tree amplitudes in four 
dimensions but with massive internal scalar particles. 

3.5.5 The Direct Extraction Method 

Let us return to the triple cut equation that we used to determine the triangle 
integrand coefficients, Eq. (3.155). We did not give an explicit solution to the system 
of equations but instead remarked that it could be sampled numerically and inverted 
to find the coefficients .ci;1|2|3. In this section we consider an analytic solution which 
is able to extract only the information that remains after integration. The application 
to the four-dimensional cut-constructible terms was presented by Forde [31] and 
later extended to include the rational terms [32]. 

Solving the on-shell conditions .D2
i = 0 requires a solution to the ISP constraint 

given in Eq. (3.150). The aim here is to find a particular parametrisation for the 
on-shell solution which allows us to extract unknown coefficients in the irreducible 
numerator .Δ1|2|3. Let us start by introducing a short hand for the on-shell value for 
the square of the physical loop momentum, 

.C1|2|3
(
k2||
) = α · G · αT||

Di=0 . (3.188) 

The condition .C1|2|3(D1) = 0 leads to a family of solutions: 

.0 = C1|2|3(D1) = C1|2|3
(
k2|| + (k · ω1)

2ω2
1 + (k · ω2)

2ω2
2 − m2

1

)
. (3.189) 

This family of solutions can be parametrised by a single variable, . θ , as  

.C1|2|3(k · ω1) = √
γ cos θ , C1|2|3(k · ω2) = i

√
γ sin θ . (3.190) 

Introducing a light-like complex vector . χμ to write .ω1 = χ + χ† and . ω2 = χ − χ†

(. † indicates complex conjugation), we find 

.γ = m2
1 − C1|2|3

(
k2||
)

2χ · χ† . (3.191)
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Efficient numerical solutions for the coefficients of .Δ1|2|3 can be obtained by using 
values of . θ distributed equally on a circle, which is related to the method of discrete 
Fourier projections [21, 33]. 

Exercise 3.8 (Projecting out the Triangle Coefficients) Expand the sine 
and cosine in Eq. (3.190) into exponentials to write 

.Δ1|2|3(θ) =
3Σ

k=−3

dk;1|2|3 eikθ , (3.192) 

where .d0;1|2|3 = c0;1|2|3. Using seven discrete values for . θ , 

.θk = 2πk

7
, k = −3, . . . , 3 , (3.193) 

show that 

.dk;1|2|3 = 1

7

3Σ

l=−3

e−ikθl Δ1|2|3(θl) . (3.194) 

This discrete Fourier projection is easy to generalise to higher-rank numera-
tors, try it for a maximum tensor rank of four. For the solution see Chap. 5. 

An analytic solution for .c0;1|2|3 is complicated by the appearance of the box 
terms on the RHS of Eq. (3.155). It would be useful if the values of . θ used for 
the extraction of the scalar triangle coefficient from the product of trees made 
the box subtraction terms as simple as possible. With this in mind, we choose to 
reparametrise our solution again in terms of a single, complex, parameter t , 

.t = √
γ eiθ . (3.195) 

Using this parametrisation we can re-write the box subtraction term indicated in 
Eq. (3.155) with an additional propagator, 

.DX = (k − pX)2 − m2
X , (3.196) 

where have used a symbol . pX to represent the momentum flowing in the propagator. 
The spurious direction for this box can also be neatly written using the vector . χ , 

.ω = χ (χ† · pX) − χ† (χ · pX) . (3.197)
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The box subtraction term then can be written as 

.
Δ1|2|3|X(k · ω)

DX

|
|
|
|
Di=0

= C1|2|3
(
Δ1|2|3|X(k · ω)

)

C1|2|3(DX)
, (3.198) 

with 

.

C1|2|3
(
Δ1|2|3|X(k · ω)

) = c0;1|2|3|X
+ c1;1|2|3|X

[
C1|2|3(k · ω1)(ω1 · ω) + C1|2|3(k · ω2)(ω2 · ω)

]
,

C1|2|3(DX) = P 2
X + m2

1 − m2
X − 2C1|2|3(k|| · pX)

+ C1|2|3(k · ω1)(ω1 · pX) + C1|2|3(k · ω2)(ω2 · pX) ,

(3.199) 

where we used the triangle parametrisation of the loop momentum in Eq. (3.148). 
Recalling that .ω1 = χ+χ† and .ω2 = χ−χ† we can write . ω1·ω = −(χ ·χ†)(ω2·pX)

and .ω2 · ω = −(χ · χ†)(ω1 · pX), hence 

. 
C1|2|3

(
Δ1|2|3|X(k · ω)

) = c0;1|2|3|X

− (χ · χ†) c1;1|2|3|X
[
C1|2|3(k · ω1)(ω2 · pX) + C1|2|3(k · ω2)(ω1 · pX)

]
.

(3.200) 

We now substitute .k · ωi using the parametrisation in t , 

.C1|2|3(k · ω1) = 1

2

(
t + γ

t

)
, C1|2|3(k · ω2) = 1

2

(
t − γ

t

)
, (3.201) 

and observe that 

.

Δ1|2|3|X(k · ω)

DX

|
|
|
|
Di=0

t→∞→ −(χ · χ†) c1;1|2|3|X ,

Δ1|2|3|X(k · ω)

DX

|
|
|
|
Di=0

t→0→ +(χ · χ†) c1;1|2|3|X .

(3.202) 

Therefore, the sum of the box subtraction terms cancel between the two extreme 
values of the loop momenta. The triangle’s irreducible numerator becomes a simple 
polynomial in t in the same limits: 

.Δ1|2|3
t→∞→ c0;1|2|3 + t c1;1|2|3 + · · · , . (3.203) 

Δ1|2|3 
t→0→ c0;1|2|3 + 

1 

t 
c2;1|2|3 + · · ·  . (3.204) 

In keeping with the literature, we define an operation to extract the components of 
the Laurent polynomial at infinity, . Inf. The . Inf operation keeps all terms in a rational
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function, say .f (x), that do not vanish in the .x → ∞ limit, 

.Infx[f (x)] =
mΣ

i=0

ci xi , (3.205) 

where . ci are some numerical values. Since we are considering the integrands 
of scattering amplitudes the maximum exponent m will always be finite. The 
coefficient of the . ith term in the series is denoted .Infx[f (x)]xi . We may therefore 
write 

.Inft
[
Δ1|2|3

]
t0

= Inf1/t

[
Δ1|2|3

]
t0

= c0;1|2|3 . (3.206) 

From Eq. (3.202) it follows that the box subtraction terms cancel in the sum, 

.Inft

[
Δ1|2|3|X(k · ω)

DX

|
|
|
|
Di=0

]

t0

+ Inf1/t

[
Δ1|2|3|X(k · ω)

DX

|
|
|
|
Di=0

]

t0

= 0 . (3.207) 

As a result, the coefficient of the scalar triangle can be extracted directly from the 
product of on-shell trees, as 

. c0;1|2|3 = −1

2

{

Inft

[(

I (1)
3||

i=1

Di

) |
|
|
|
Di=0

]

t0

+ Inf1/t

[(

I (1)
3||

i=1

Di

) |
|
|
|
Di=0

]

t0

}

.

(3.208) 

There is an obvious route from here, as we can apply the same method for the 
extraction bubble coefficients from the double cut. The analysis is unfortunately not 
so smooth since, while the box subtraction terms cancel out as described above, 
some of the triangle subtraction terms remain. 

There are a number of steps to complete: (1) we must find a suitable basis for the 
on-shell loop momentum, (2) we must find a suitable basis for the spurious vectors, 
and (3) we must substitute and expand the on-shell loop momentum into both sides 
of the double cut equation, Eq. (3.163). 

We consider a bubble configuration with a momentum P . We switch the notation 
slightly to avoid too many subscripts and focus on one generic triangle subtraction 
term which we label with momenta P , Q and R where .P = −Q − R. The double 
cut notation is therefore .CP |QR . Since the physical space has only one dimension 
we are missing an additional direction with which we can span the loop momentum 
space. This forces us to introduce an arbitrary light-like direction . nμ such that 

.P b,μ = P − S

2P · n
nμ , (3.209)
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with .P 2 = S, is a second massless direction with which we may construct a 
spanning basis for the loop momentum, 

.kμ = α1 P b,μ + α2 nμ + α3
1

2
<P b|γ μ|n] Φbub + α4

1

2
<n|γ μ|P b] Φ−1

bub . (3.210) 

Here .Φbub is an arbitrary factor which ensures that the coefficients . αi are free of 
spinor phases. We may give an explicit expression using one of the other linearly 
independent momenta, say X, as  .Φbub = <n|X|P b], as we did in Eq. (3.105). The 
arbitrary factor .Φbub will however cancel out of the results, and we will thus leave it 
symbolic. The on-shell constraints .k2 = m2

1 and .2 k · P = S + m2
1 − m2

2 = Ŝ have a 
two-parameter family of solutions. We parametrise it in terms of parameters, t and 
y, as  

.

α1 = y , α2 = Ŝ − S y

2 n · P
,

α3 = t , α4 = y (Ŝ − S y) − m2
1

2 t (n · P)
.

(3.211) 

We can represent the spurious vectors in the same basis, 

.ω
μ
1,bub = 1

2
<P b|γ μ|n] Φbub + 1

2
<n|γ μ|P b] Φ−1

bub , . (3.212) 

ω μ 
2,bub = 

1 

2
<P b|γ μ|n] Φbub − 

1 

2
<n|γ μ|P b] Φ−1 

bub , . (3.213) 

ω μ 
3,bub = P b,μ − S 

2 P · n 
nμ , (3.214) 

where, again, the phase factor .Φbub ensures that all summands are free of spinor 
phases. Now we evaluate the spurious ISPs, 

.CP |QR(k · ω1,bub) = −P · n

(

t + y (Ŝ − S y) − m2
1

2 t (P · n)

)

, . (3.215) 

CP |QR(k · ω2,bub) = −P · n
(

−t + 
y (Ŝ − S y) − m2 

1 

2 t (P  · n)

)

, . (3.216) 

CP |QR(k · ω3,bub) = 
1 

2

(
Ŝ − 2 S y

)
, (3.217)
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and substitute them into the LHS of Eq. (3.163), which becomes a Laurent polyno-
mial in y and t . Note that the arbitrary phase factor .Φbub cancels out in the ISPs. 
One can then show that the direct extraction of the scalar bubble coefficient can be 
obtained using 

. c0;P |QR = ΔP |QR

|
|
t0,y0

+ Ŝ

2 S
ΔP |QR

|
|
t0,y1

+1

3

(
Ŝ2

S2
− m2

1

S

)

ΔP |QR

|
|
t0,y2

.

(3.218) 

To complete the bubble-extraction formula we must evaluate the RHS of Eq. (3.163) 
at the same on-shell solution, and so we need to find a representation of the spurious 
vectors in the box and triangle coefficients. Each triangle subtraction term will 
depend on one additional momentum, say Q, while we have two momenta Q 
and R for each box. For the case where both momenta Q and R are massive 
(.Q2 = T ,R2 = U ), we need to construct more light-like projections in order to span 
the spurious space. A convenient way to do this is to consider linear combinations 
of . P μ and . Qμ, 

.P̌ μ = γ (γ P μ − S Qμ)

γ 2 − S T
, Q̌μ = γ (γ Qμ − T P μ)

γ 2 − S T
. (3.219) 

Requiring that .P̌ μ and .Q̌μ are light-like gives two possible projections: . γ± =
P · Q ± /

(P · Q)2 − S T . The argument of the square root is (minus) the Gram 
determinant .detG(P,Q) (see Eq. (3.131)). The spurious vectors are then simple to 
write down: 

.ω
μ
1,tri = 1

2
<P̌ |γ μ|Q̌] Φtri + 1

2
<Q̌|γ μ|P̌ ] Φ−1

tri , . (3.220) 

ω μ 
2,tri = 

1 

2
<P̌ |γ μ| Q̌] Φtri − 

1 

2
<Q̌|γ μ| P̌ ] Φ−1 

tri , . (3.221) 

ω μ 
box = 

1 

2
<P̌ |γ μ| Q̌]<Q̌|R| P̌ ] −  

1 

2
<Q̌|γ μ| P̌ ]<P̌ |R| Q̌] . (3.222) 

As above, .Φtri is an arbitrary factor which makes the triangle spurious vectors free 
of spinor phases. For instance, one may write .Φtri = <Q̌|X|P̌ ], where X is an 
arbitrary momentum linearly independent of Q and P . In  .ωμ

box, on the other hand, 
the phase factor is explicit, and is chosen so as to make .ωμ

box orthogonal to . Rμ. 
As we have seen for the triangle coefficient, the idea is to consider the behaviour 
of the integrand at large values for the loop momenta where the additional uncut 
propagators suppress as many contributions as possible. In order to write down the
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procedure concisely we introduce an operation . P which, acting on a function of y 
and t , gives  

.P
(
f (y, t)

) = f
|
|
t0,y0

+ Ŝ

2 S
f
|
|
t0,y1

+1

3

(
Ŝ2

S2 − m2
1

S

)

f
|
|
t0,y2

, (3.223) 

and combine it with the limit of .y, t → ∞. From Eq. (3.218) we see that 
.P
(
Δ1|2(y, t)

) = c0;1|2. The first term from the RHS of Eq. (3.163) can be extracted 
from the product of two tree-level amplitudes, 

.PInfyInft
[

I (1)(k(y, t)
) 2||

i=1

Di

|
|
|
D1=D2=0

]

. (3.224) 

Using the definitions above for the on-shell loop momenta and the box spurious 
vector, one can show that the box subtraction terms vanish in the limit .y, t → ∞. 
The triangle subtraction term does not vanish but it is simple to obtain an explicitly 
solution in terms of the spurious triangle coefficients .ci|1|2|Q. While the procedure 
to extract the relevant contributions is simple, the result is not particularly compact, 
especially for the higher tensor rank coefficients. Therefore, we present the result 
here up to the rank-one coefficients: 

.

PInfyInft
[
ΔP |Q|R(k · ω1,tri, k · ω2,tri)

−(k − P − Q)2 + m2
3

|
|
|
|
D1=D2=0

]

= (c1;P |Q|R + c2;P |Q|R)
<P bP̌ >[Q̌n] Φtri

2 <P b|Q|n]

+ (c1;P |Q|R − c2;P |Q|R)
<P bQ̌>[P̌ n] Φ−1

tri

2 <P b|Q|n] + . . .

(3.225) 

The combination of both double cut and triangle subtraction terms gives the general 
formula for the bubble coefficient, where we must remember to average over the 
two projections for the triangle subtractions: 

.

c0;P |QR = PInfyInft
[

I (1)(k(y, t)
) 2||

i=1

Di

]

− 1

2

Σ

Q

Σ

γ=γ±
PInfyInft

[
Δ1|2|Q(k · ω1,tri, k · ω2,tri)

−(k − P − Q)2 + m2
3

]

.

(3.226) 

Practical applications of this formula require a bit of practice, as many spinor 
identities are required to simplify the various projected momenta.
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Exercise 3.9 (Rank-One Triangle Reduction with Direct Extraction) To 
verify the analysis it is useful to consider a simple example, 

. F
[D]
3 (P,Q)[k · Z]

=
f

k

k · Z
[−k2 + m2

1

][−(k − P)2 + m2
2

][−(k − P − Q)2 + m2
3

] ,

(3.227) 

where . Zμ is an arbitrary momentum, .P 2 = S and .Q2 = T . We denote the 
third momentum .R = −P − Q. 

(a) Use the Passarino-Veltman method to show that the bubble coefficient of 
the P channel, i.e., the coefficient of .F

[D]
2 (P )[1], is given by 

.c0;P |QR = (P · Q)(P · Z) − S (Q · Z)

2
(
(P · Q)2 − S T

) . (3.228) 

(b) To obtain the same result with the direct extraction method it is recom-
mended to use a computer algebra system. We provide the intermediate 
steps to guide you through the process. First, compute the triple-cut 
coefficients: 

.c1;P |Q|R = −Z · ω1,tri

2 P̌ · Q̌
, c2;P |Q|R = Z · ω2,tri

2 P̌ · Q̌
. (3.229) 

The higher-rank coefficients vanish, and .c0;P |Q|R is irrelevant for our 
purposes. Then compute the double-cut part of the bubble, 

. PInfyInft

[

CP |Q

(
k · Z

−(k − P − Q)2 + m2
3

)]

= 1

2

<P b|Z|n]
<P b|Q|n] ,

(3.230) 

and finally put together the triangle subtraction term, 

. PInfyInft

[

CP |Q

(
ΔP |Q|R(k · ω1,tri, k · ω2,tri)

−(k − P − Q)2 + m2
3

)]

= −<P b|P̌ZQ̌|n] + (P̌ ↔ Q̌)

4 (P̌ · Q̌) <P b|Q|n] , (3.231) 

(continued)
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which after summation over the two projections gives 

. 

1

2

Σ

γ=γ±
PInfyInft

[

CP |Q

(
ΔP |Q|R(k · ω1,tri, k · ω2,tri)

−(k − P − Q)2 + m2
3

)]

= − (P · Q)(P · Z) − S (Q · Z)

2
(
(P · Q)2 − S T

) + 1

2

<P b|Z|n]
<P b|Q|n] .

(3.232) 

It is now easy to verify that by putting together the double cut and the 
triangle subtraction as in Eq. (3.226) we recover the Passarino-Veltman 
result. 

For the solution see Chap. 5 and the Mathematica notebook 
Ex3.9_DirectExtraction.wl [15]. 

The extension of this method to the D-dimensional cuts and the rational terms is 
straightforward, since we may use it to first perform the four-dimensional analysis 
including an mass shift in the propagators .m2

i → m2
i − μ11, and then consider the 

.μ11 → ∞ limit to directly probe the rational terms. An explicit demonstration of 
this technique is the final task for this chapter. 

3.6 Project: Rational Terms of the Four-Gluon Amplitude 

We would like to complete the computation of the four-gluon adjacent helicity MHV 
amplitude that we have done in part throughout this chapter. This requires us to fix 
the rational term, and the complete computation we will follow requires a substantial 
amount of algebra to perform the direct extraction of the D-dimensional monomials 
in the integrand. Alternative methods can also work nicely in this case, for example 
fixing the ambiguity through requiring universal factorisation in collinear limits or 
simply automating a Feynman-diagram computation, since the four-point massless 
kinematics are relatively simple. In this section we will outline the necessary steps, 
and leave the algebra as an extended exercise or computer algebra project for the 
interested reader. 

The first observation we make is to see that the extra-dimensional components of 
the internal gluon lines are identical to those obtained by using a massive internal 
scalar with the mass .μ2 = μ11. The tree-level helicity amplitudes we need in the cut 
can easily be derived using the methods described in Chap. 2. One slight subtlety is 
that the three-point amplitude for two scalar fields (S) and one gluon depends on 
an arbitrary reference direction, which we will call . ξ in this section. The results 
we need are given in Eqs. (2.78) and (2.79), which we repeat here for convenience
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(setting the coupling to 1): 

.A
(0)
3 (1S, 2+

g , 3S; ξ) = i
<ξ |3|2]
<ξ2> , . (3.233) 

A (0) 3 (1S, 2−
g , 3S; ξ)  = i

<2|3|ξ ] 
[2ξ ] . (3.234) 

When using a product of these amplitudes inside a cut one can make convenient 
choices of the reference vector to simplify the spinor algebra. The two independent 
four-point amplitudes were obtained through BCFW recursion given in Eq. (2.88) 
and Exercise 2.6: 

.A
(0)
4 (1S, 2+

g , 3+
g , 4S) = i

μ2[23]
<23><2|1|2] , . (3.235) 

A (0) 4 (1S, 2−
g , 3

+
g , 4S) = i

<2|1|3]2 
s23<2|1|2] . (3.236) 

Before performing the full computation for the MHV amplitude, the simplest 
case is the all-plus helicity amplitude, which vanishes at tree level. Due to additional 
symmetries this helicity sector turns out to be even simpler than the other vanishing 
tree-level amplitudes with a single minus helicity. As a warm-up exercise we can 
perform the quadruple cut .1|2|3|4. Choosing a spinorial basis with momenta . p1 and 
. p4, 

.kμ = α · vμ , . (3.237) 

vμ =
{
p μ 
1 , p  μ 

4 , 
1 
2 <1|γ μ|4], 1 2 <4|γ μ|1]

}
, (3.238) 

with .α = {α1, α2, α3, α4}, leads to two on-shell solutions . k
μ
±, with 

.α± =
{

0, 0,
[12]
[42]X±,

<12>
<42>X∓

}

, . (3.239) 

X± = 
1 

2 

⎛ 

⎝1 ±
/

1 − 
4 μ2 s13 

s12 s23 

⎞ 

⎠ . (3.240) 

The product of tree-level amplitudes can now be evaluated as follows: 

.2 iA(0)
3

(
(−k)S, 1+

g , (k − p1)S;p2

)
iA(0)

3

(
(−k + p1)S, 2+

g , (k − p12)S;p1

)

× iA(0)
3

(
(−k + p12)S, 3+

g , (k + p4)S;p4

)
iA(0)

3
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×
(
(−k − p4)S, 4+

g , kS;p3

)|
|
|
k=k± 

= 2
<2|k|1]
<21>

<1|k|2]
<12>

<4|k|3]
<43>

<3|k|4]
<34>

|
|
|
|
k=k± 

= 2α2 
3α

2 
4 

[12][34]s2 23
<12><34>

|
|
|
|
α=α± 

= 2 
μ4s12s34

<12>2<34>2 

= −2 
μ4s12s23

<12><23><34><41> . (3.241) 

The overall factor of 2 must be included to match the complex scalar degrees of 
freedom with the extra-dimensional components of the gluon polarisation sum. In 
general we should average over the two on-shell solutions but in this case it turns 
out both give the same simple result, which only contains one of the five possible 
irreducible numerator monomials in .Δ1|2|3|4. From here we can read directly the 
coefficient of . μ4 which contributes to the rational term, 

.c4;1|2|3|4(1+, 2+, 3+, 4+) = −2
s12s23

<12><23><34><41> . (3.242) 

The quadruple cuts for the other helicity configurations are simple to compute 
with the same on-shell loop momentum solution. Explicitly for the adjacent MHV 
configuration one can find, 

.c4;1|2|3|4(1−, 2−, 3+, 4+) = −2
(−iA(0)

4 (1−, 2−, 3+, 4+)
) s23

s12
, (3.243) 

Note that for higher-multiplicity amplitudes additional uncut propagators would 
appear with non-trivial . μ2 dependence in the denominator. An additional limit of 
.μ → ∞ is then necessary before extracting the . μ4 term. 

The symmetry of the all-plus configuration leads to some dramatic and unex-
pected cancellations so that the quadruple cut contribution actually fixes the full 
amplitude. The other amplitudes require a bit more work. There are four indepen-
dent triangle contributions: .1|2|34, 1|23|4, 12|3|4 and .2|3|41. Each has one possible
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contribution to the rational term which, in the case of the .1|2|34 configuration, is 
given by 

.

c7;1|2|3(1, 2, 3, 4) = Infμ2 Inft

[

− 2 iA(0)
3

(
(−k)S, 1g, (k − p1)S;p2

)

× iA(0)
3

(
(−k + p1)S, 2g, (k − p12)S;p1

)
iA(0)

4

×
(
(−k + p12)S, 3g, 4g, kS

)]

t0,μ2
,

(3.244) 

with similar formulae for the other permutations. The final results for the adjacent 
MHV amplitude are 

.c7;1|2|34(1−, 2−, 3+, 4+) = 0 , . (3.245) 

c7;1|23|4(1−, 2−, 3+, 4+) = 0 , . (3.246) 

c7;12|3|4(1−, 2−, 3+, 4+) = 0 , . (3.247) 

c7;2|3|41(1−, 2−, 3+, 4+) = 0 . (3.248) 

Finally we turn to the bubble contributions, of which there are two configurations: 
.12|34 and .23|41. The relevant coefficient for the rational term is 

. 

c9;12|34(1, 2, 3, 4) = PInfμ2 InfyInft

[

− Δ1|2|34
−(k − p1)2 + μ2

− Δ12|3|4
−(k + p4)2 + μ2

+ 2 iA(0)
4

(
(−k)S, 1g, 2g, (k − p12)S

)
iA(0)

4

(
(−k + p12)S, 3g, 4g, kS

)
]

,

(3.249) 

and similarly for .23|41. The reference vector . nμ used to form the double-cut loop-
momentum basis can be chosen to simplify the algebra. If we choose it to be . pμ

2
for the .12|34 cut then the . 1st triangle subtraction will give zero. Furthermore, since 
the triangle contribution .12|3|4 has massless external legs 3 and 4, there is only 
one value for . γ in the light-like projection. The final results for the adjacent MHV 
amplitude are nice and compact: 

.c9;12|34(1−, 2−, 3+, 4+) = 0 , . (3.250) 

c9;23|41(1−, 2−, 3+, 4+) = −2
(−iA (0) 4 (1−, 2−, 3+, 4+)

)2 s12 − 3 s23 
3 s12s23 

. 

(3.251)
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We are now finally ready to assemble the full amplitude. Together with the values 
for the integrals evaluated up to .O

(
ε0
)
, we have  

. R(1−, 2−, 3+, 4+) = −1

6
i c4;1|2|3|4(1−, 2−, 3+, 4+)

− s23

6
i c9;23|41(1−, 2−, 3+, 4+)

= 2

9
A

(0)
4 (1−, 2−, 3+, 4+) . (3.252) 

Combined with the cut-constructible terms from Eq. (3.129), the only task remain-
ing is to evaluate the basis integrals, which brings us neatly to the subject of the next 
chapter. Our final result, reinstating the correct prefactors, is 

. 

A
(1),[4−2ε]
4 (1−, 2−, 3+, 4+) = αYM μ2ε

R

(4π)2−ε
A(0)(1−, 2−, 3+, 4+)

×
[

− s12s23F
[4−2ε]
4 (p1, p2, p3)[1] − 11

3
F

[4−2ε]
2 (p23)[1] + 2

9

]

+ O(ε) .

(3.253) 

This result, along with the other independent helicity configurations and partonic 
channels, can be found in the following references [34, 35]. 

3.7 Outlook: Rational Representations of the External 
Kinematics 

Having completed the exercises in this section it becomes clear that analytic 
computations using the spinor-helicity formalism have limitations, especially when 
working with pen and paper. Computer algebra systems have always been essential 
for research in this area, and we can think of designing new systems tuned to 
alleviate bottlenecks in the current state-of-the-art calculations. The major flaw 
of the spinor-helicity formalism that we have encountered is the redundancy of 
representations, which stems from the lack of manifest momentum conservation 
and Schouten identities. This quickly becomes an annoyance as one performs 
many spinor-helicity manipulations. A recent idea, perhaps introduced with other 
motivations about manifest amplitude symmetries in mind, is that of momentum 
twistors. Introduced by Hodges [36], these differ from Penrose’s twistor formalism 
by addressing dual conformal invariance rather than the usual conformal invariance. 
We will not attempt a full review of the formalism here but try to explain the entry-
level concepts that can lead to very practical methods for amplitude calculations. 
One important recent development has been the combination of rational kinematic 
parametrisations with modular arithmetic over finite (prime) fields. This technique 
enables multiple numerical evaluations modulo a (large) prime number to be used to
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obtain fully analytic expressions for the coefficients in an integral or integrand basis. 
A full description of this method is beyond the scope of these lecture notes but we 
encourage the readers to follow some recent literature and implementations [37,38]. 

The spinor-helicity formalism makes the on-shell condition for any massless 
momenta manifest. A convenient way to make the momentum conservation for an 
n-particle system manifest is to introduce dual momentum variables . yi as 

.p
μ
i =: y

μ
i+1 − y

μ
i , (3.254) 

with .yn+1 = y1. It is easy to verify that, with this parametrisation, .
Σn

i=1 pi = 0. 
The dual momenta can then be used to form an positive-helicity spinor . μi , 

.|μi] := /yi |i> . (3.255) 

Since we may span any positive-helicity spinor . |i] in a basis of two independent 
positive-helicity spinors, say .|μi] and .|μi+1], we may write, 

.|i] = αi |μi] + βi |μi+1] . (3.256) 

By projecting out the coefficients and using the properties of the dual momenta one 
can show that 

.|i] = <ii + 1> |μi−1] + <i + 1i − 1> |μi] + <i − 1i> |μi+1]
<i − 1i><ii + 1> . (3.257) 

The power of this formalism can then be appreciated by observing that, for any 
random parametrisation of the .4 × n components in . |i> and . |μi], both momentum 
conservation and on-shellness will be manifest. The object .Zi = (|i>, |μi])T is 
called a momentum twistor, and the system of n momentum twistors has Poincaré 
symmetry, meaning that only .3n−10 components are independent. We refer to [39] 
for further reading on this topic. 

Exercise 3.10 (Momentum-Twistor Parametrisations) Consider the kine-
matics of a massless  .2 → 2 scattering process. In the momentum-twistor 
formalism, it is described by a .4×4 matrix .Z = (

Z1 Z2 Z3 Z4
)
of momentum 

twistors .Zi = (|i>, |μi])T. Thanks to Poincaré symmetry, only . 3×4−10 = 2
entries of Z are independent. In order to obtain a parametrisation of Z in 
terms of the minimal number of independent variables, one needs to make use 
of the full Poincaré group. In particular, one uses the little group invariance 
.(λi, λ̃i) ≡ (eiϕi λi, e−iϕi λ̃i) to fix some of the components by choosing 
explicit phases . ϕi . As a result, the helicity scaling of the expressions is 
obscured. This is not a problem, as we can always divide all quantities by 

(continued)
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an arbitrary phase factor, and use the momentum-twistor parametrisation for 
the phase-free ratios. For the four-point case, a minimal parametrisation in 
terms of two independent variables x and y may be chosen as 

.Z =

⎛

⎜
⎜
⎜
⎝

1 0 1
y

−y

0 1 1 1
0 0 − x

y
0

0 0 0 x

⎞

⎟
⎟
⎟
⎠

. (3.258) 

Using this parametrisation, calculate 

(a) the positive helicity spinors . ̃λi , 
(b) the components of the four-momenta . p

μ
i , 

(c) the invariants . sij and spinor products . <ij >, . [ij ], 

in terms of the free parameters x and y. For what value of x and y do 
we recover a standard .2 → 2 phase-space parametrisation in terms of 
energies and angles? In the four-particle case the MHV and .MHV helicity 
configurations coincide. Use both the spinor-helicity formalism and the 
momentum-twistor parametrisation above to show that the MHV and . MHV
Parke-Taylor formulae in Eqs. (1.192) and (1.193) are equivalent for .n = 4. 
For the solution see Chap. 5. 

3.8 Outlook: Multi-Loop Amplitude Methods 

The purely algebraic method outlined in this chapter is extremely powerful and has 
led to the development of fully automated numerical programs [21–28]. There are 
however an increasingly large number of observables that require more accurate 
perturbative predictions. 

Many of the techniques presented here generalise in a straightforward way 
to higher-loop cases. There is however a new feature that presents a substantial 
additional challenge in identifying a suitable basis of integral functions. The 
integrand-reduction procedure has been extended to the multi-loop case with some 
explicit results obtained for amplitudes, or parts of amplitudes, at two and three 
loops. Owing to the larger number of irreducible scalar products, additional technol-
ogy is required to reduce the amplitude to a basis of loop integrals. Nevertheless the 
integrand can in principle be constructed from the products of tree-level amplitudes 
by following the one-loop methodology. 

We can run through a simple example to get a sense of the new features. Consider 
a two-loop double box with seven massless propagators and massless external legs 
as shown in Fig. 3.6. The propagators can be written in terms of scalar products
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Fig. 3.6 A two-loop double 
box configuration k1k2 

p3 

p4 p1 

p2 

which are linear in the loop momenta .ki · pj , and three scalar products quadratic in 
the loop momenta: . k21, . k

2
2 and .k1 ·k2. The linear scalar products can be written as the 

difference of two inverse propagators. The list of all possible scalar products .ki · vj , 
where . vμ is a spanning set of momenta such as .vμ = {pμ

1 , p
μ
2 , p

μ
4 , ωμ}, can then be 

separated into the groups of (1) reducible scalar products, that can be written as the 
difference of propagators (plus functions of the external kinematic invariants), and 
(2) a set of four irreducible scalar products (ISPs), for example .k1 ·p4, .k2 ·p1, .k1 ·ω, 
and .k2 · ω. Being more explicit, we decompose the loop momenta into transverse 
spaces, 

.k
μ
i = k

μ
i,|| + (ki · ω)ωμ . (3.259) 

The constraints on the scalar products .ki · pj fix . kμ
i,||, which becomes a function of 

the two ISPs .k1 · p4 and .k2 · p1. The remaining on-shell constraints for .k21 = 0, 
.k22 = 0 and .k1 · k2 = 0 can now be recast into conditions on all four ISPs, 

.f11(k1 · p4, k2 · p1) + (k1 · ω)2 = 0 , . (3.260) 

f22(k1 · p4, k2 · p1) + (k2 · ω)2 = 0 , . (3.261) 

f12(k1 · p4, k2 · p1) + (k1 · ω)(k2 · ω) = 0 , (3.262) 

where .fij = Cdouble−box(k1,|| · k2,||)/ω2 with .Cdouble−box indicating the hepta-
cut. The irreducible numerator .Δdouble−box(k1 · p4, k2 · p1, k1 · ω, k2 · ω) may 
then be constructed by forming a general polynomial of rank four13 in the 
four ISPs and then removing the (multi-variate) constraints through polynomial 
division. This operation involves the computation of a Gröbner basis, which can

13 For QCD the maximum rank appearing in Feynman diagrams in the Feynman gauge is four, in 
different theories a higher degree polynomial maybe necessary. 
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be computationally expensive but for the construction of a general basis is unlikely 
to present a bottleneck. In this case a suitable basis can be found to be [40] 

. Δdouble−box(k1 · p4, k2 · p1, k1 · ω, k2 · ω) = c0

+ c1(k1 · p4) + c2(k2 · p1) + c3(k1 · p4)
2 + c4(k2 · p1)

2 + c5(k1 · p4)(k2 · p1)

+ c6(k1 · p4)
3 + c7(k1 · p4)(k2 · p1)

2 + c8(k1 · p4)(k2 · p1)
2 + c9(k2 · p1)

3

+ c10(k1 · p4)
4 + c11(k1 · p4)

3(k2 · p1) + c12(k1 · p4)(k2 · p1)
3 + c13(k2 · p1)

4

+ spurious terms . (3.263) 

The additional tensor integrals can be reduced to a smaller basis of integrals by 
the use of integration-by-parts identities, which will be a main topic in the next 
chapter. In this case it turns out that only two of these integrals can actually be 
considered independent. While the determination of the integrand basis can be 
useful, for current state-of-the art problems the integration-by-parts system presents 
a considerable computational bottleneck. 
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