
2On-Shell Techniques for Tree-Level Amplitudes 

Abstract 

In this chapter we focus on the pole structure of tree-level amplitudes. We argue 
that amplitudes factorise on these poles into lower-point amplitudes. Moreover, 
universal factorisation structures emerge when two momenta become collinear 
as well as in the limit of low energy of a single particle—the soft limit. These 
factorisation properties are the basis of an efficient technique for computing tree-
level scattering amplitudes in gauge theories and gravity recursively—without 
ever referring to Feynman rules or even a Lagrangian. These recursion relations 
use as input lower-point amplitudes, so that the gauge redundancy, which is partly 
responsible for the complexity of conventional Feynman graph calculations, is 
absent in this entirely on-shell based formalism. We then show the invariance 
of scattering amplitudes under Poincaré transformations, and introduce the 
conformal symmetry of gauge-theory tree-level amplitudes. Finally, we highlight 
a surprising double-copy relation between gluon and graviton amplitudes. 

2.1 Factorisation Properties of Tree-Level Amplitudes 

Important insights and constraints on tree-level scattering amplitudes may be gained 
by thinking about them as analytic functions of the external momenta. In this section 
we will restrict ourselves to the case of massless particles. As we already argued 
in Chap. 1 with Fig. 1.2, tree-level amplitudes have simple poles in multi-particle 
channels. This can be seen from the Feynman diagrammatic expansion. Take all 
diagrams which have a propagator .∼ 1/P 2

ij , where .Pij = pi + . . . + pj is a 
sum of external momenta (which will be adjacent for colour-ordered amplitudes, 
or an arbitrary subset in gravity). We call .Pij the region momentum, as it is the  
total momentum associated to the region of momenta .{pi, . . . , pj }. As .Pij goes 
on shell, .P 2

ij → 0, these singular diagrams will collect into a product of two 
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Fig. 2.1 The factorisation of 
a colour-ordered amplitude 
on the multi-particle pole 
. Pij = pi + pi+1 + . . . + pj

when .P 2
ij → 0. Here  h 

denotes the helicity of the 
particles crossing the pole 

+1 

−1  

+2 

+1 

− 

on-shell amplitudes, to the left and right hand sides of the divergent propagator, 
in a mechanism known as factorisation. This process is illustrated in Fig. 2.1. We  
can understand the details of the procedure by studying the Feynman rules for the 
propagator that goes on-shell directly, each of which has the generic form 

.
i N(Pij )

P 2
ij

, (2.1) 

where the numerator .N(Pij ) depends on the type of particle. For example, for the 
specific case of gluons in the axial gauge (.nμAμ = 0) we would have . N(P ) →
N

μν
g (P, n) = −ημν + (P μnν + P νnμ)/(P · n). In the limit .P 2

ij → 0 the numerator 
N can be rewritten in terms of the spin sum over external polarisation vectors or 
wave-functions. Again for the case of gluons, following the results of Exercise 1.7, 
we have that 

.Nμν
g (P, n)

P 2→0→
Σ

h=±
Σ
μ
h (P )Σ∗ν

h (P ) =
Σ

h=±
Σ
μ
h (P )Σν−h(−P) . (2.2) 

The polarisation vectors combine with the Feynman diagram components on either 
side of the divergent propagator to form on-shell amplitudes. A schematic form for 
a general particle type can be written as 

. Atree
n (1, . . . , n)

P 2
ij

→0

−→
Σ

s∈sP

Atree
L

(
i, i+1, . . . , j,−P s̄

ij

) nP

P 2
ij

Atree
R

(
P s

ij , j+1, . . . , i−1
)
,

(2.3) 

where P indicates the particle type of the propagator with momentum . Pij , . sP are 
its possible spin states and . nP is a particle-dependent constant. As we see from the 
discussion above, for gluons .sgluon = ± are the two helicities and .ngluon = i, for  
spin-. 12 fermions one can show that .sfermion = ±1/2 and .nfermion = 1, while spin 0 
has .sscalar = 0 and .nscalar = i. Other particle types are simple to determine following 
the same argument. Factorisation will also occur in the case of massive propagators 
where .P 2

ij → m2
ij where .mij is the mass of propagating particle.
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2.1.1 Collinear Limits 

A special case of factorisation is the two-particle pole also known as collinear 
singularity. Without loss of generality we take the two collinear particles to be 1 
and 2. We then have .(p1 + p2)

2 = 0, which implies .p1 · p2 = 0 or collinearity 
.p1 || p2. We again concentrate on the massless case. In fact, since the factorisation 
now involves a three-particle amplitude, such a pole can only occur for collinear 
external momenta. We already know from the discussion in the previous chapter 
that three-point amplitudes are subtle. In the strict collinear limit .p1 || p2 we may 
parametrise the collinear momenta . p1 and . p2 as 

.p
μ
1 = x P μ , p

μ
2 = (1 − x) P μ , (2.4) 

with the total collinear momentum .P = p1 + p2, and x parametrising the amount 
of P distribution over . p1 and . p2. Tree-level amplitudes have a universal (singular) 
behaviour in the collinear limit governed by the splitting functions, 

.Atree
n

(
1h1 , 2h2 , . . .

) 1||2−→
Σ

h=±
Splittree

h

(
x, 1h1 , 2h2

)
Atree

n−1

(
P −h, . . .

)
, (2.5) 

as a special case of Eq. (2.3). In fact, the splitting functions are related to the three-
particle amplitudes as 

.Splittree
h

(
x, 1h1 , 2h2

) = lim
P 2→0

Atree
3

(
1h1 , 2h2 ,−P h

) i

P 2 . (2.6) 

The splitting functions depend on the helicities of the collinear gluons but are 
independent of the helicities of the other legs .{3, . . . , n} not participating in the 
collinear limit. This is known as the universality of the splitting functions. 

Gluon Splitting Functions 
For collinear gluons the splitting functions are given by 

.

Splittree+ (x, a+, b+) = 0

Splittree− (x, a+, b+) = g√
x(1 − x)<ab>

Splittree+ (x, a+, b−) = − (1 − x)2 g√
x(1 − x)<ab>

Splittree− (x, a+, b−) = − x2 g√
x(1 − x)[ab] .

(2.7) 

(continued)
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The remaining splitting functions may be obtained by parity 

.Splittree
h (x, a−λa , b−λb ) = Splittree−h (x, aλa , bλb )

|||<ab>↔[ba] . (2.8) 

We shall now derive these expressions from our knowledge of the three-point 
MHV amplitude (1.170 and (1.171). As the collinear kinematics is subtle, it is 
advantageous to systematically approach the collinear configuration as 

.

|1> = cos φ |P > − z sin φ |r> , |1] = cos φ |P ] − z sin φ |r] ,

|2> = sin φ |P > + z cos φ |r> , |2] = sin φ |P ] + z cos φ |r]
(2.9) 

in the limit . z → 0. Here .P μ = p
μ
1 +p

μ
2 +O(z2) is the limiting collinear momentum 

vector, and . rμ is a null reference momentum not parallel to . P μ. Moreover, the 
collinear parameter above is .x = cos2 φ. This parametrises the four-momenta of the 
collinear particles as 

.

p1 = cos2 φ P − z cos φ sin φ
(|P >[r| + |r>[P |) + z2 sin2 φ r ,

p2 = sin2 φ P + z cos φ sin φ
(|P >[r| + |r>[P |) + z2 cos2 φ r ,

(2.10) 

implying that .p1 + p2 = P + z2 r , as claimed. One then has 

. <12> =z<Pr> , <1P > = z sin φ <Pr> , <2P > = −z cos φ <Pr> ,

[12] =z[Pr] , [1P ] = z sin φ [Pr] , [2P ] = −z cos φ [Pr] ,

(2.11) 

(p1 + p2)
2 =z2<Pr>[rP ] . 

The splitting functions (2.7) follow immediately from Eq. (2.6) and the two MHV 
three-point amplitudes (1.170) and (1.171) upon using the above identities. The 
vanishing of .Splittree+ (x, 1+, 2+) follows from the vanishing all-plus amplitude. 
Using the .MHV3 amplitude of Eq. (1.170)1 we find 

.Splittree− (x, 1+, 2−) = −ig<2(−P)>3

<21> <1(−P)>
i

(p1 + p2)2 = − cos φ3g

z sin φ[Pr] , (2.12)

1 Recall our convention (1.113) that .| − P > = i|P > and .| − P ] = i|P ]. 
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as well as using the .MHV3 amplitude of Eq. (1.171), 

. 

Splittree− (x, 1+, 2+) = ig[12]3

[1(−P)] [(−P)2]
i

(p1 + p2)2 = g

z cos φ sin φ<Pr> ,

Splittree+ (x, 1+, 2−) = ig[1(−P)]3

[12] [2(−P)]
i

(p1 + p2)2 = − sin φ3g

z cos φ<Pr> ,

which prove the relations (2.7). 

Example: Collinear Limits of the Five-Point MHV Amplitude 

Let us use this result to test our conjectured five-point MHV amplitude (1.192) 
from Chap. 1 for consistency under collinear limits. We set .g = 1 for conve-
nience. We have 

. 

iAtree
5 (1−, 2−, 3+, 4+, 5+) = <12>4

<12><23><34><45><51>
4||5−→ 1√

x(1 − x)<45> × <12>4

<12><23><3P ><P 1>
= Splittree− (x, 4+, 5+) × iAtree

4 (1−, 2−, 3+, P +) ,

(2.13) 

where we parametrised the collinear limit by .|4> = √
x|P > and . |5> =√

1 − x|P >. Indeed we find agreement with the second function in Eq. (2.7). 
Next, we take the collinear limit in a .(−+) channel. We have 

. 

iAtree
5 (1−, 2−, 3+, 4+, 5+)

2||3−→ x2

√
x(1 − x)

1

<23>
<1P >4

<1P ><P 4><45><51>
= Splittree+ (z, 2−, 3+) × iAtree

4 (1−, P −, 4+, 5+) ,

(2.14) 

from which we deduce 

.Splittree+ (x, a−, b+) = x2

√
x(1 − x) <ab> , (2.15) 

in agreement with the third expression in Eq. (2.7) whilst swapping a and b (and 
.x → 1 − x). In order to check the fourth function we consider the collinear limit
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in a .(+−)-channel, 

. Atree
5 (1−, 2−, 3+, 4+, 5+)

5||1−→ (1 − x)2

√
x(1 − x) <51>' '' '

Splittree+ (x,5+,1−)

Atree
4 (P −, 2−, 3+, 4+) ,

(2.16) 

yielding the desired result via parity (2.8). In order to check the vanishing of 
the uniform helicity splitting function in Eq. (2.7) we have study the collinear 
factorisation of the 6-point MHV amplitude with the helicity distributions 
.Atree

6 (1−, 2−, 3+, 4+, 5+, 6+) along the legs 5 and 6. 

Exercise 2.1 (The Vanishing Splitting Function .Splittree+ (x, a+, b+)) Show 
that .Splittree+ (x, a+, b+) = 0 by studying the factorisation properties 
of the six-gluon MHV tree amplitude .Atree

6 (1−, 2−, 3+, 4+, 5+, 6+) from 
Eq. (1.192) in the collinear limit .5 || 6. For the solution see Chap. 5. 

Absence of Multi-Particle Poles in MHV Amplitudes 
General n-gluon scattering amplitudes have multi-particle poles when region 
momenta go on-shell. However, MHV tree-amplitudes are special, and in 
fact only have two-particle poles or collinear singularities. The reason is the 
following. Consider the general factorisation formula (2.3). In a factorisation 
of an MHV amplitude there are only three negative-helicity legs (correspond-
ing to the two external negative helicities, and one for the internal on-shell 
propagator) that are distributed over two partial amplitudes. However, we saw 
in the previous chapter that .An(1±, 2+, . . . , n+) = 0 (for .n > 3). Therefore, 
either .AL or .AR in Eq. (2.3) is always zero unless one partial amplitude is a 
three-particle amplitude. The latter case corresponds to a two-particle pole or 
collinear singularity, as discussed above. 

2.1.2 Soft Theorems 

We continue our quest in the factorisations of scattering amplitudes with a kine-
matical limit subject to just a single leg: the soft limit. Here one particle involved 
in the scattering process has a very low energy—it is soft. Specifically, it refers to 
the limit where the four-momentum of the particle goes to zero. Again the tree-
amplitude displays a universal factorisation property for photon, gluon and graviton 
amplitudes into a lower-point amplitude and a soft function. In order to take the 
limit, we parametrise the soft momentum of leg s as .p

μ
s = δ qμ and take .δ → 0 (do



2.1 Factorisation Properties of Tree-Level Amplitudes 59

1 
2 

−1  

+1 
0 

1 
2 

−1  

× S [ { }]  

Fig. 2.2 The soft factorisation of a generic .(n + 1)-particle amplitude. The soft function 
.S[δ q, {pi}] only depends on the momenta (not the polarisations) of the hard legs 

not confuse .δ qμ with a variation). The soft theorems state that 

.Atree
n+1(δ q, 1, . . . , n)

δ →0−→ S[δ q, {p1, . . . , pn}] Atree
n (1, . . . , n) , (2.17) 

which is illustrated in Fig. 2.2. The factorised soft function . S[δ q, {p1, . . . , pn}]
depends on the momentum .δ q and helicity of the soft particle, as well as the 
momenta of the remaining hard legs .{pa}. It is however independent of the helicities 
and even particle types of the remaining hard legs, which may be massless or 
massive. The soft function diverges as .1/δ at leading order, and also contains 
universal sub-leading pieces: 

.S[δ q, {pa}] = 1

δ
S[0](q) + S[1](q) + δ S[2](q) + O(δ2) . (2.18) 

It takes a universal form for photons [1], gluons and gravity [2], remarkably not only 
to leading order, but also to sub-leading order .S[1](q) for gauge theories, and even 
to sub-sub-leading order .S[2](q) for gravity [3]. 

Leading Soft Theorems 
The leading soft divergences take the universal form 

. 
1

δ
S[0](δq) =

{
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

δ
S[0]

EM = 1

δ

nΣ

a=1

ea

Σ · pa

pa · q
, photon,

1

δ
S[0]

YM = g

δ
√

2

(
Σ · p1

p1 · q
− Σ · pn

pn · q

)
, colour-ordered gluon,

1

δ
S[0]

GR = κ

δ

nΣ

a=1

Σμν p
μ
a pν

a

pa · q
, graviton.

(2.19) 

(continued)
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Here . Σ denotes the polarisation vector (tensor) of the soft particle, . ea denotes 
the .U(1) (electromagnetic) charge of the hard particle a. 

These results can be made plausible through the following argument based on 
Feynman diagrams. For a tree-level amplitude the soft leg .δ q is attached either 
via a three-point coupling to an outgoing hard leg a, or to the “bulk” of the 
remaining amplitude: 

. (2.20) 

We see that the divergence of the leading order soft function solely arises from the 
three-point coupling of the gauge or graviton field to the hard leg a. In the case of 
an amplitude with n-scalars and a soft photon or graviton these couplings take the 
form 

. (2.21) 

which fixes the soft functions in Eq. (2.19) up to an overall factor. In the case of a 
colour-ordered pure gluon amplitude with one soft gluon leg, .Atree

n (1, . . . , n, δ q), 
the soft leg can couple either to the hard gluon leg 1 or n due to colour ordering. 
A detailed look at the Feynman rules (1.149) then reveals the coupling . ±g pa · Σ

with .a = 1, n at leading order in . δ with a relative sign factor reproducing the form 
of Eq. (2.19). 

It is instructive to study the gauge invariance of the leading soft functions (2.19). 
Gauge invariance requires the full amplitude .An+1(δ q, p1, . . . , pn) to vanish under 
the transformation .Σμ → qμ (in the graviton case we again take .Σμν = ΣμΣν). 
Hence, by consistency, the soft functions in Eq. (2.19) need to vanish:



2.1 Factorisation Properties of Tree-Level Amplitudes 61

.S[0](δ q)

|||
Σ→q

=

{
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nΣ

a=1

ea = 0 , photon,

g√
2
(1 − 1) = 0 , gluon,

κ qμ

nΣ

a=1

pμ
a = 0 , graviton.

(2.22) 

They indeed vanish due to total charge conservation in the electromagnetic or 
total momentum conservation in the gravitational case (provided the gravitational 
coupling is universal to all matter). Hence these soft theorems are intimately 
connected to fundamental symmetries of space-time-matter. 

2.1.3 Spinor-Helicity Formulation of Soft Theorems 

It is instructive to translate the leading soft theorems to spinor-helicity language for 
the colour-ordered gluon and graviton cases. The leading order soft factorisation 
states that 

.Atree
n (. . . , a, δq±, b, . . .)

δ→0−→ S[0](a, q±, b)Atree
n−1(. . . , a, b, . . .) . (2.23) 

The factorised soft function depends on the momenta and helicities of the soft gluon 
and the momenta of the colour-ordered neighbours a and b. It is independent, 
however, of the helicities and particle types of the neighbouring legs. From 
considering the soft limit of an MHV amplitude one easily establishes that 

.S[0]
YM(a, q+, b) = g

<ab>
<aq><qb> . (2.24) 

Via parity, in analogy to Eq. (2.8), we find 

.S[0]
YM(a, q−, b) = −g

[ab]
[aq][qb] . (2.25) 

Both results directly follow from Eq. (2.19) as well. In the graviton case we deduce 

.S[0]
GR(q++, 1, . . . , n) = κ

nΣ

a=1

<xa><ya>[qa]
<xq><yq><aq> , (2.26) 

where x and y are arbitrary reference spinors associated to the polarisation vectors 
of the soft leg.



62 2 On-Shell Techniques for Tree-Level Amplitudes

Exercise 2.2 (Soft Functions in the Spinor-Helicity Formalism) Starting 
from Eq. (2.19), derive the leading soft functions for a colour-ordered gluon 
and a graviton in the spinor-helicity formalism. For the solution see Chap. 5. 

2.1.4 Subleading Soft Theorems 

Remarkably, the universal soft factorisation survives to subleading order (. O
(
δ0
)
) in  

the gauge theory, and even sub-sub-leading order (.O
(
δ
)
) in the gravitational case, 

cf. Eq. (2.18). Here we just state the results. They may again be derived from a 
careful study of gauge invariance and consistency arguments [4, 5]. The novelty is 
that the sub-leading soft functions are (necessarily) no longer true functions but 
rather differential operators in the external kinematical data. These then act on the 
factorised hard scattering-amplitude. Explicitly, one has the following sub-leading 
soft operator for a soft photon . qμ with polarisation . Σμ, 

.S[1]
EM(q) =

nΣ

a=1

ea

Σμqν J
μν
a

pa · q
, (2.27) 

with the local angular momentum operator 

.Jμν
a = 2 p[μ

a

∂

∂pa, ν]
+ 2 Σ[μ

a

∂

∂Σa, ν]
. (2.28) 

In the above .[μν] denotes anti-symmetrisation with unit weight, see Appendix A. 
Similarly, for a colour-ordered soft gluon we have 

.S[1]
YM(n, q, 1) = −i

g√
2

(
Σμqν J

μν
1

p1 · q
− Σμqν J

μν
n

pn · q

)
, (2.29) 

while for a soft gravitons we have a sub-leading and sub-sub-leading soft operators 
of the forms 

. S[1]
GR(q) = −iκ

nΣ

a=1

Σ · pa Σμqν J
μν
a

pa · q
, S[2]

GR(q) = −κ

2

nΣ

a=1

(
Σμqν J

μν
a

)2

pa · q
.

(2.30) 

Again, one may show that these sub-leading soft operators are consistent with gauge 
invariance. While this is trivial for the gauge-theory operators by virtue of the anti-
symmetry of .Jμν , the gauge invariance of the gravitational .S[1]

EM(q) leads us to total
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angular momentum conservation, 

.S[1]
GR(q)

|||
Σ→q

= −iκ Σμqν

nΣ

a=1

Jμν
a = 0 , (2.31) 

nicely teaming up with the total momentum conservation in the leading case. Hence, 
the gravitational soft theorems are directly connected to the Poincaré invariance of 
scattering amplitudes. 

Expressed in spinor-helicity variables the sub-leading soft operators take the 
form 

.

S[1]
YM(n, q+, 1) = g

( [q∂n]
<qn> − [q∂1]

<q1>
)

,

S[1]
GR(q+, 1, . . . , n) = κ

2

nΣ

a=1

[aq]
<aq>

( <ax>
<qx> + <ay>

<qy>
)

[q∂a] ,

(2.32) 

where as before x and y are arbitrary reference spinors. The sub-sub-leading gravity 
operator of Eq. (2.30) in spinor-helicity variables simply reads 

.S[2]
GR(q+, 1, . . . , n) = κ

2

nΣ

a=1

[aq]
<aq> [q∂a]2 , (2.33) 

and was found in [3]. 
An important subtlety for the sub-leading soft theorems lies in balancing the 

total momentum conservation of the .(n + 1)-leg amplitude with the soft leg and 
the factorised n-point hard amplitude. The soft factorisation (2.17) is really a  
distributional identity involving delta-functions: 

.

δ(D)(δ q + P)Atree
n+1(δ q, {pa}) δ→0−→

S[δ q, {pa}] δ(D)(P )Atree
n (1, . . . , n) + O(δj

)
,

(2.34) 

with .P = p1 + . . . + pn and .j = 1 or 2 for gauge theory or gravity, respectively. 
This in fact implies that 

.S[δ q, {pa}] δ(D)(P ) = δ(D)(δ q + P) S[δ q, {pa}] , (2.35) 

from which one may strongly constrain the . δ expansion of the soft function 
.S[δ q, {pa}] using Eq. (2.18). It necessitates the sub-leading terms to be differential 
operators, and even the functional forms of Eq. (2.32) are fixed by the knowledge of 
the leading soft functions [4].
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Exercise 2.3 (A .q̄qggg Amplitude from Collinear and Soft Limits) In 
Chap. 1 we established the following colour-ordered .q̄qgg amplitudes involv-
ing a massless quark and anti-quark using colour-ordered Feynman rules: 

.Atree
q̄qgg(1

−
q̄ , 2+

q , 3+, 4+) = 0 , . (2.36) 

Atree
q̄qgg(1

− 
q̄ , 2+

q , 3−, 4+) = −ig2 <13>3 <23>
<12> <23> <34> <41> . (2.37) 

Use these and the discussed splitting and soft factorisation 
properties for gluonic legs to make a guess for the five-point 
single quark-line tree amplitude .Atree

q̄qggg(1
−
q̄ , 2+

q , 3−, 4+, 5+). 
Check your guess against all known factorisation properties. Can 
you generalise your guess to the n-particle partial amplitudes 
.Atree

q̄qg...g(1
−
q̄ , 2+

q , 3+, . . . , n+) and .Atree
q̄qg...g(1

−
q̄ , 2+

q , 3−, 4+, . . . , n+)? For the  
solution see Chap. 5. 

2.2 BCFW Recursion for Gluon Amplitudes 

The Britto-Cachazo-Feng-Witten (BCFW) recursion relation [6, 7] is an efficient 
way to compute higher-point tree-level amplitudes from lower-point ones. It does 
not make use of Feynman rules but builds upon unitarity by artfully exploiting 
the factorisation property of scattering amplitudes (2.3) when region momenta go 
on-shell. As we will see, our knowledge of the gluon (and graviton) three-point 
amplitudes of Eqs. (1.170) and (1.171) allows for the construction of all higher-point 
tree-level amplitudes in a recursive fashion. To begin with, let us concentrate on the 
colour-ordered case and leave the discussion of gravitons for later. The central idea 
of the recursion is to consider a deformation in a single complex variable z of two 
adjacent momenta in a colour-ordered amplitude that maps the singularities of the 
amplitude into poles in .z ∈ C. For the tree-level n-gluon amplitude . An(p1, . . . pn)

we introduce the following complex shift of the helicity spinors of two arbitrary 
adjacent particles, taken to be 1 and n without loss of generality: 

.

λ1 → λ̂1(z) = λ1 − zλn , λ̃1 → λ̃1 ,

λn → λn , λ̃n → ˆ̃
λn(z) = λ̃n + zλ̃1 .

(2.38)
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We denote the shifted, z-dependent quantities by a hat. This shift is often termed an 
.[n 1> shift. It results in a deformation of the momenta, 

. pα̇α
1 → p̂α̇α

1 (z) = λ̃α̇
1 (λ1 − zλn)

α , pα̇α
n → p̂α̇α

n (z) = (λ̃n + zλ̃1)
α̇ λα

n .

(2.39) 

Importantly, the shift preserves both overall momentum conservation and the on-
shell conditions: 

.p̂1(z) + p̂n(z) = p1 + pn , p̂2
1(z) = 0 , p̂2

n(z) = 0 . (2.40) 

The .[n 1> shift generates a one-parameter family of amplitudes, 

.An(z) := An

(
p̂1(z), p2, . . . , pn−1, p̂n(z)

)
. (2.41) 

Note that . p̂1 and .p̂n in Eq. (2.39) are now complex, as the underlying helicity 
spinors .λ1,n and .λ̃1,n are no-longer complex conjugates of each other. This makes 
the three-point amplitudes involving these states of Eqs. (1.170) and (1.171) non-
vanishing. They will become the seeds of the recursion relation. What are the 
analytic properties of the deformed amplitude .An(z)? Factorisation implies that the 
deformed amplitude .An(z) has precisely .n−3 simple poles in z. Using the region 
momenta .Pi := Σi−1

j=1 pj , these .n−3 poles take the form 

.
i

P̂ 2
i (z)

:= i

P 2
i − z <n|Pi |1] = − 1

<n|Pi |1]
i

z − zPi

, (2.42) 

where .P̂i(z) = p̂1(z) + p2 + · · ·pi−1, and 

.zPi
= P 2

i

<n|Pi |1] , ∀i ∈ {3, . . . , n − 1} . (2.43) 

Note that any region momentum containing both .p̂1(z) and .p̂n(z) is independent of 
z by virtue of Eq. (2.40), and hence cannot contribute to a z-pole. This is why we 
find .n−3 poles. It follows that, as .z → zPi

, the amplitude .An(z) factorises as 

. 

An(z)
z→zPi−→

i

P̂ 2
i (z)

Σ

h

AL

[
1̂(zPi

), 2, . . . , i − 1,−P̂ −h(zPi
)
]
AR

[
P̂ h(zPi

), i, . . . , n−1, n̂(zPi
)
]
,

(2.44)
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Fig. 2.3 Factorisation of the z-deformed amplitude . An(z)

as depicted in Fig. 2.3. The sum on  h runs over all possible helicity states h 
propagating between .AL and . AR , and depends on the field content of the theory 
considered. For gluons it is a sum over .h = {+1,−1}. 

In the end we are only interested in the undeformed amplitude, i.e. .An(z=0), 
and we can use complex analysis to construct it from the knowledge of the residues 
of .An(z): 

.

An(z=0) = 1

2π i

f

C0

dz

z
An(z)

=
n−1Σ

i=2

Σ

h=±
A−h

L (zPi
)

i

P 2
i

Ah
R(zPi

) + Res(z = ∞) .

(2.45) 

Here . C0 is a small circle around .z=0 that only contains the pole around the origin. 
To obtain Eq. (2.45) we have deformed this into a large circle at infinity, now 
encircling all the poles .zPi

in the complex plane but with an opposite orientation. 
See Fig. 2.4. If .An(z) → 0 as .z → ∞ we can drop the boundary term .Res(z = ∞). 
As we shall argue in a moment, this is the case for gauge theories under certain 
conditions. 

BCFW Recursion Relation for Gluon Amplitudes 
With this assumption, we arrive at the BCFW recursion relation [7]: 

.

An(1, . . . , n) =
n−1Σ

i=3

Σ

h=±
Ai

(
1̂(zPi

), 2, . . . ,−P̂ −h
i (zPi

)
)

i

P 2
i

An+2−i

(
P̂ h

i (zPi
), i, . . . , n − 1, n̂(zPi

)
)

,

(2.46) 

(continued)
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zpi 

z 

→ 

Fig. 2.4 Using Cauchy’s theorem to obtain Eq. (2.45) we may pull the initial circle .C0 off to 
infinity thereby encircling the other poles clock-wise 

with .zPi
defined in (2.43), and .Pi = p1 + p2 + . . . + pi−1. This rela-

tion is constructive: the amplitudes appearing on the right-hand side have 
lower multiplicity than the initial . An. Hence, with the seed three-gluon 
amplitudes (1.170) and (1.171) we can bootstrap this relation to construct 
all n-gluon trees without using Feynman diagrams at all! Even more, our 
nuclei—the three-point amplitudes—were obtained from helicity scaling 
arguments alone, as discussed in Sect. 1.11.3. In this derivation we chose 
to shift two neighbouring legs . ̂1 and . ̂n. In fact, one can also shift non-
neighbouring legs or even more than two legs to obtain alternative recursion 
relations, see e.g. [8, 9]. 

An open issue is the vanishing of the boundary term in (2.45). For this we need 
to have that 

.
1

2π i

f

∞
dz

z
An(z) = 0 , (2.47) 

which in turns requires a large-z falloff of the amplitude as .An(z)∼z−1. In fact, the 
large-z behaviour depends on the helicities of the shifted legs, and one can show 
that 

.A
(
1̂+, n̂−) z→∞∼ 1

z
, A

(
1̂+, n̂+) z→∞∼ 1

z
, A

(
1̂−, n̂−) z→∞∼ 1

z
, (2.48) 

yet .A
(
1̂−, n̂+) z→∞∼ z3, which is then a forbidden .[n1> shift. In the following we 

show the first relation; the other scalings are more technical to derive, and may be 
found in [10].
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2.2.1 Large z Falloff 

In order to estimate the large z behaviour of generic tree-level amplitudes we 
perform an analysis based on Feynman graphs. There are three sources for z 
dependence in a generic colour-ordered amplitude: the propagators, the interaction 
vertices, and the polarisation vectors. Consider a generic graph contributing to 
the tree-level n-gluon amplitude (. ̂1 and . ̂n are assumed to be neighbours). The z 
dependence occurs only along the path from . ̂1 to . ̂n, see Fig. 2.5. Along this path, 
each three-gluon vertex, being linear in the momenta, maximally contributes a factor 
of z, while four-gluon vertices do not contribute, and all propagators along the 
path contribute a factor of . 1/z. We may derive an upper bound for the z-scaling 
by considering the diagrams with maximal powers of z. This happens when the path 
from . ̂1 to . ̂n contains only three-valent vertices. In that case it is easy to see that the 
graph scales as z: 

. (2.49) 

Finally, there is an additional z dependence arising from the polarisation vectors at 
legs 1 and n: 

.Σ+αα̇
1 = −√

2
λ̃α̇

1 μα
1

<λ̂1(z)μ1>
∼ 1

z
, Σ−αα̇

1 = √
2

λ̂α
1 (z)μ̃α̇

1

[λ1μ1] ∼ z , . (2.50)

Σ+αα̇ 
n = −√

2 
ˆ̃
λα̇ 

n(z)μα 
n

<λnμn> ∼ z , Σ−αα̇ 
n = √

2 
λα 

n μ̃
α̇ 
n 

[λ̂n(z)μn] 
∼ 

1 

z 
. (2.51) 

Fig. 2.5 The z scaling of a 
generic graph: along the path 
from . ̂1 to . ̂n the propagators 
scale as . 1/z, the three-point 
vertices as z, while four-point 
vertices do not scale. This 
sample graph scales as 1. 
However, if we would replace 
the four-point vertex by a 
three-point one, it would 
scale as z. On top of that we 
have to consider the z scaling 
of the polarisation vectors 

1 

1 

1 

1 

− 1  
− 2  

3 
2 

1̂ 

ˆ
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Therefore, taking all sources of z dependence into account, we conclude that 
individual graphs scale at worst as 

.

A
(
1̂+, n̂−) z→∞∼ 1

z
, A

(
1̂+, n̂+) z→∞∼ z ,

A
(
1̂−, n̂−) z→∞∼ z , A

(
1̂−, n̂+) z→∞∼ z3 .

(2.52) 

This shows that the .[−+>-shift has the desired falloff properties that allow us to drop 
the boundary term at infinity in the BCFW formula (2.46). By cyclicity, it is always 
possible to find a .{1̂+, n̂−} pair. In fact, the above bound is too conservative. It was 
shown in [10] that the .[++> and .[−−>-shifts also lead to an overall .1/z scaling once 
the sum over all Feynman graphs is performed, as the terms scaling as z or 1 cancel 
out. Only the .[+−>-shift gives a non-vanishing .Res(z = ∞) in general, and may 
not be used as basis for a BCFW recursion. 

2.3 BCFW Recursion for Gravity and Other Theories 

Can we generalise the BCFW recursion to other massless quantum field theories? If 
we analyse its derivation in Sect. 2.2, we see that only two ingredients were needed 
to establish it: 

1. Tree-level amplitudes factorise on simple poles whenever the square of the sum 
of a subset of external momenta vanishes. While for colour-ordered amplitudes 
we only need to consider adjacent channels, this is not essential for the derivation 
of the BCFW recursion: factorisation is a completely general property, and that 
is all that is needed. 

2. The deformed amplitude .An(z) falls off as .1/z at infinity. This depends on the 
theory and is related to its ultraviolet behaviour. 

Therefore, in order to construct tree-level amplitudes recursively without colour 
ordering from their factorisation properties, we need to consider all multi-particle 
channels that may occur. We thus generalise the region momenta to include any 
subset I of the momenta .{p1, . . . , pn}, 

.P
μ
I

:=
Σ

i∈I

p
μ
i . (2.53) 

Whenever .P 2
I = 0 we have a pole, and, if a two-particle BCFW shift is used, the set 

I must contain only one of the shifted momenta so that .P 2
I becomes z-dependent. 

Concretely, the BCFW recursion for a shift of legs 1 and n as in Eq. (2.38) in gravity
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takes the form [11, 12] 

. Mn =
Σ

Q

Σ

h=±±
ML

(
1̂(zPQ

),Q,−P̂ −h
Q (zPQ

)
) i

P 2
Q

MR

(
P̂ h

Q(zPQ
), Q̄, n̂(zPQ

)
)

,

(2.54) 

where the first sum runs over all subsets Q of momenta in .{p2, . . . , pn−1}, . Q̄ is the 
complement of Q, and .PQ = p1 + Σ

i∈Q Pi . Again, the recursion is only valid for 
the .[n1> shifts 

.|1̂> = |1> − z|n> , |n̂] = |n] + z|1] , (2.55) 

of the types .[−+>, .[++>, and .[−−>. For a derivation see [10]. 
Finally, we note that the BCFW recursion can be generalised to massive 

theories [13, 14] to be discussed in Sect. 2.5, to the rational parts of one-loop 
amplitudes in QCD and gravity [15–19] and form factors [20, 21]. In supersym-
metric Yang-Mills theory a supersymmetric version of the BCFW recursion may be 
formulated [22, 23]. In fact this recursion could be solved analytically [24]. 

2.4 MHV Amplitudes from the BCFW Recursion Relation 

2.4.1 Proof of the Parke-Taylor Formula 

As an application of the colour-ordered BCFW recursion (2.46), we now derive 
the Parke-Taylor formula (1.192) for MHV amplitudes. We already know from 
Sect. 1.11 that it is true for .n = 3 and .n = 4 through an explicit computation. 
Therefore we shall prove by induction that the formula is correct. We focus here 
on the case where particles n and 1 have negative helicity, and perform the . [n1>
shifts of Eq. (2.38). The MHV amplitude has no multi-particle factorisation, as was 
discussed in Sect. 2.1.1. Hence, only the two BCFW diagrams of Fig. 2.6 contribute 
to the BCFW recursion of Eq. (2.46). We recall the .[n1> shift, 

. |1̂> = |1> − z|n> , |n̂] = |n] + z|1] , P̂ = P − z |n>[1| , (2.56) 

whereas .|1̂] = |1] and .|n̂> = |n> are left inert. 
In fact, diagram .(II) does not contribute. Here, the right diagram is of . MHV3

type. Its numerator reads .[P̂ |n − 1]3, cf. Eq. (1.171), which vanishes: 

. [n − 1|P̂ ] = [n − 1|P̂ |n>
<P̂ n> = [n − 1|(P − z |1] <n|)|n>

<P̂ n>

= [n − 1|P |n>
<P̂ n>

P=−pn−1−pn= 0 . (2.57)
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1̂− 

2+ 

ˆ− 

( − 1)+ 

3+ 

+ − 
MHV3 MHV −1 

(I)
1̂− 

2+ 

ˆ− 

( − 1)+ 
( − 2)+ 

− + 
MHV3MHV −1 

(II)  

Fig. 2.6 The two BCFW diagrams contributing to the .MHVn amplitude. In fact, diagram .(II) does 
not contribute 

In fact, this vanishing is consistent with the observation that the .MHV3 kinematical 
assumption of collinear left-handed spinors, i.e. .<(n−1)|n̂> = <(n−1)|n> = 0, forces 
the two momenta .pn−1 and . pn to be collinear, .pn−1 || pn. This is an inconsistent 
assumption on the n-particle kinematics. This is not a problem for diagram . (I), 
where the analogue condition reads .<2|1̂> = 0, which does not imply collinearity of 
. p1 and . p2 as .|1̂> /= |1>. 

Therefore only the BCFW diagram . (I) contributes, where .AL is a three-point 
.MHV amplitude, and .AR is an .(n − 1)-point MHV amplitude. From Eq. (2.43), the 
position of the pole is 

.zP = (p1 + p2)
2

<n|P |1] = <12>[21]
<n2>[21] = <12>

<n2> . (2.58) 

The amplitudes .AL and .AR are then given by 

. 

AL = AMHV
3

(
1̂−, 2+,−P̂ +) = ig

[2(−P̂ )]3

[1̂2][(−P̂ )1̂] ,

AR = AMHV
n−1

(
P̂ −, 3+, 4+, . . . (n − 1)+, n̂−) = −ign−3 <n̂P̂ >3

<P̂ 3><34> · · · <(n − 1)n̂> .

(2.59) 

Using (1.113), the fact that . λn and . ̃λ1 are not shifted in our .[n1> shift of Eq. (2.55), 
as well as 

. <n̂P̂ >[P̂ 2] = <n1̂> [12] = <n1> [12] , <3P̂ > [P̂ 1] = <32> [21̂] = <32> [21] ,

(2.60)



72 2 On-Shell Techniques for Tree-Level Amplitudes

we find 

.

AL

i

(p1 + p2)2
AR = ign−2 <n1>3 [12]3

[12][21]<32>[21] <12><34> · · · <(n − 1) n>

= −ign−2 <n1>4

<12> · · · <n1> ,

(2.61) 

in agreement with the conjecture (1.192) for the chosen helicities. This proves the 
Parke-Taylor formula for adjacent negative-helicity states. 

2.4.2 The Four-Graviton MHV Amplitude 

As a second example using the BCFW recursion for non-colour-ordered ampli-
tudes (2.54) we compute the four-graviton amplitude .M4(1−−, 2−−, 3++, 4++). 
For this we perform a .[2−−1−−> shift, 

. |1̂> = |1> − z|2> , |2̂] = |2] + z|1] . (2.62) 

As .Mn(−−,++, . . . ,++) = 0 for .n > 3, we again only find two channels in 
the BCFW recursion, as shown in Fig. 2.6 with the hatted leg . ̂n now replaced by . ̂2, 
while the positive-helicity legs are summed over. Still, the same argument for the 
vanishing of the type-.(II) diagrams applies. For the special case of the four-point 
graviton amplitude we therefore have 

. (2.63) 

with .P = −p1 − p3. Inserting the three-graviton amplitudes (1.178) this becomes 
(setting .κ = 1) 

.

M4(1
−−, 2−−, 3++, 4++) =

(
[P̂ 3]3

[31][1P̂ ]

)2
i

(p1 + p3)2

(
<P̂ 2>3

<24><4P̂ >

)2

+ (3 ↔ 4)

= i

s13

<2|P̂ |3]6

<24>2[31]2<4|P̂ |1]2
+ (3 ↔ 4) .
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We now use .P̂ = p2 + p4 + z|2>[1| to find .<2|P̂ |3] = <24>[43] and . <4|P̂ |1] =
<42>[21]. Hence, the z dependance drops out! Inserting these two relations one finds 

.M4(1
−−, 2−−, 3++, 4++) = i

[34]6

[12]2

( <24>2

<13>[31]3 + <23>2

<14>[41]3

)
, (2.64) 

where .sij = (pi + pj )
2. While this is the final result, one may write it using the 

Mandelstam variables 

.s = (p1 + p2)
2 , t = (p2 + p3)

2 , u = (p1 + p3)
2 . (2.65) 

Doing this one finally arrives at the compact result (reinstating the coupling) 

.M4(1
−−, 2−−, 3++, 4++) = iκ2 <12>4[34]4

stu
, (2.66) 

with a peculiar pole structure. The correct helicity scaling is easily checked. 
Similarly to the gluon case, a closed expression for the MHV n-graviton tree-level 
amplitude may also be conjectured and proven via BCFW recursion. Yet, it is more 
involved and may be found in [25]. 

Exercise 2.4 (The Six-Gluon Split-Helicity NMHV Amplitude) Deter-
mine the first non-trivial next-to-maximally-helicity-violating (NMHV) 
amplitude 

. Atree
6 (1+, 2+, 3+, 4−, 5−, 6−)

from a BCFW recursion relation and our knowledge of the MHV amplitudes. 
Consider a shift of the two helicity states . 1+ and . 6−, and show that 

. 

Atree
6 (1+, 2+, 3+, 4−,5−, 6−) = ig4

( <6|P12|3]3

<61><12>[34][45][5|P16|2>
1

(p6 + p1 + p2)2 + <4|P56|1]3

<23><34>[16][65][5|P16|2>
1

(p5 + p6 + p1)2

)
,

(2.67) 

where .Pij = pi + pj . For the solution see Chap. 5.
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Exercise 2.5 (Soft Limit of the Six-Gluon Split-Helicity Amplitude) 
Check the consistency of the six-gluon split-helicity amplitude of Eq. (2.67) 
with the soft limit of leg 5. For the solution see Chap. 5. 

2.5 BCFW Recursion with Massive Particles 

So far we restricted our attention to amplitudes involving massless particles, 
i.e. gluons, gravitons, and massless fermions and scalars. Yet, scattering amplitudes 
involving massive particles are of great relevance in physics, and consequently 
on-shell recursions have been devised for this case as well. Let us focus here on 
colour-ordered gauge-theory amplitudes involving also massive coloured matter 
fields (for the colour-ordered amplitudes the representation of the matter field is 
irrelevant). Concretely, we consider amplitudes involving at least two massless 
gluons, which we take to be neighbours for simplicity of the discussion, say at 
positions 1 and n, together with .n − 2 massive states: 

.An(p1, p2, . . . , pn) , p2
1 = 0 = p2

n , p2
i = m2

i . (2.68) 

Let us now see how the BCFW on-shell recursion derived in Sect. 2.2 may be 
generalised to gauge theory amplitudes with massive particles. We closely follow 
reference [13] in our exposition. 

As before in Eq. (2.38), we consider a complex shift of the null gluon momenta 
at positions 1 and n by a parameter .z ∈ C, 

.p̂1(z) = p1 − z|n>[1| , p̂n(z) = pn + z|n>[1| . (2.69) 

This entails a z-shift of the region momentum .Pi := p1 + . . . pi−1, 

.P̂i(z) = Pi − z|n>[1| , i ∈ {3, . . . , n − 1} , (2.70) 

which also featured in the BCFW recursion relation of Eq. (2.42). Importantly, the 
on-shellness of the deformed legs . ̂1 and . ̂n as well as total momentum conservation is 
preserved under the shift. As the arguments leading to the BCFW recursion relation 
are purely based on factorisation, they are applicable to a generic quantum field 
theory involving massive particles as well. The BCFW recursion was obtained by 
thinking about the deformed amplitude .An(z) as an analytic function in z. Its poles 
arise whenever an internal propagator associated to the z-shifted region momentum 
.P̂i(z) goes on-shell. This reasoning does not change in the massive case, i.e. we will 
have a pole whenever a z-shifted region momentum goes on-shell, i.e. .P̂ 2

i (z) = m2
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with .i ∈ {3, . . . , n − 1} . The pole then reads in generalisation of Eq. (2.42) as  

. 
1

P̂i(z)2 − m2
Pi

= 1

(p̂1(z) + p2 + . . . pi−1)2 − m2
Pi

= 1

P 2
i − m2

Pi
− z<n|Pi |1] , (2.71) 

where .mPi
is the mass of the associated intermediate particle going on-shell. 

Generalising Eq. (2.43), the location of the pole is shifted to 

.zPi
= P 2

i − m2
Pi

<n|Pi |1] , ∀i ∈ {3, . . . , n − 1} . (2.72) 

BCFW Recursion Relation with Massive Particles 
Using again the complex analysis arguments of Fig. 2.4, one immediately 
arrives at the on-shell recursion relation for amplitudes including massive 
particles: 

. 

An(1, . . . , n) =
n−1Σ

i=3

Σ

s∈sP

AL

(
1̂(zPi

), 2, . . . , i − 1,−P̂ s̄ (zPi
)
) i nP

P 2
i − m2

Pi

×AR

(
P̂ s(zPi

), i, . . . , n−1, n̂(zPi
)
)+Res(z = ∞) ,

(2.73) 

where the sum now is over the spins . sP of the intermediate particle . P and . nP
is the particle-dependent constant appearing in the factorisation as described 
below Eq. (2.3). We recall that the legs 1 and n are assumed to be massless. 

Again, this formula is only of use if the residue at infinity, .Res(z = ∞), vanishes. 
This turns out to be the case if the gluon helicities of the shifted legs are not of the 
.[n+1−> type, just as in Eq. (2.52). Hence, the statement is 

.Res(z = ∞) = 0 iff (h1, hn) = (+,−) , (+,+) , (−,−) . (2.74) 

See [13] for a derivation. This renders the massive BCFW recursion relation (2.73) 
very useful.
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2.5.1 Four-Point Amplitudes with Gluons and Massive Scalars 

Let us construct an explicit example. We consider a theory of a massive complex 
scalar field coupled to gauge theory. Concretely, we want to evaluate the four-point 
amplitude involving two neighbouring gluons of positive helicity and two scalars, 

.A4(1
+, 2φ, 3φ̄ , 4+) . (2.75) 

The scalars have mass . m2. This amplitude vanishes in the massless limit .m = 0, 
similarly to the vanishing of the above amplitude when the scalars are replaced by 
massless fermions, as was shown in Eq. (1.164). In fact, amplitudes of the above 
type are of interest even in massless theories at the one-loop level. There, the need 
to regulate divergences leads one to consider internal particles propagating in . D =
4 − 2Σ dimensions which may be modelled using masses, as we shall discuss in 
detail in the next chapter. 

Returning to our concrete example we employ the massive on-shell recursion of 
Eq. (2.73). Only the scalar channel contributes, 

.A4(1
+, 2φ, 3φ̄ , 4+) = A3

(
1̂+, 2φ,−P̂φ̄

) i

P 2 − m2 A3
(
P̂φ, 3φ̄ , 4̂+) , (2.76) 

as an amplitude with a single scalar vanishes, .A3(1̂+, 2φ, 3±) = 0. All that is needed 
are the .(φgφ̄)-amplitudes. These follow from the colour-ordered Feynman vertices 
of two charged scalars and a gluon of Eq. (1.151), 

. (2.77) 

where 1 (2) denotes a . φ̄ (. φ) leg, respectively. Contracting this with the positive-
helicity gluon polarisation of Eq. (1.124) one obtains the on-shell three-point 
amplitudes (setting .g = 1) 

.A3(l1 φ̄ , p+, l2 φ) = −i
<r|l1|p]

<rp> = A3(l1 φ, p+, l2 φ̄) , (2.78) 

where the last relation follows by reflection. Note that here r is the arbitrary null 
reference momentum of the gluon leg related to the local gauge invariance of the 
theory. By similar arguments one establishes the three-point amplitudes involving a 
negative helicity gluon: 

.A3(l1 φ̄ , p−, l2 φ) = −i
<p|l1|r]
[pr] = A3(l1 φ, p−, l2 φ̄) . (2.79)
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Before moving on with the recursion, let us address a seemingly dramatic problem: 
the amplitudes of Eqs. (2.78) and (2.79) apparently depend on the reference 
momentum r—how can that be? It turns out that, despite their representation, the 
amplitudes in Eqs. (2.78) and (2.79) are actually independent of the choice of r . 
Taking the initial reference spinor .|r> and .|p> as a basis in Weyl spinor space, 
we may parametrise an arbitrary reference spinor different from .|r> as . |r '> =
α|r> + β|p>. Clearly, Eq. (2.78) is invariant under rescaling of the reference spinor 
.|r> → Λ |r>, thus without loss of generality we may parameterise .|r '> = |r>+γ |p>, 
or infinitesimally write .δr |r> ∝ |p>. This entails that the amplitude Eq. (2.78) 
changes under a variation of the reference spinor . |r> as 

.δrA3(l
+
1 , p+, l−2 ) ∝ <p|l1|p]

<rp> = 0 , (2.80) 

where the vanishing follows from .<p|l1|p] = 2p · l1 = 0, which is a consequence 
of the three-point kinematics: 

.(l1 + p)2 = l2
2 → l1 · p = 0 as l2

1 = l2
2 = m2 , p2 = 0 . (2.81) 

A similar argument applies to Eq. (2.79). Again we see the subtleties in three-point 
amplitudes: the expressions in Eqs. (2.78) and (2.79) are actually independent of r . 

Coming back to the recursive construction of the amplitude .A4(1+, 2φ, 3φ̄ , 4+), 
we have (cf. Fig. 2.7) 

.

A4(1
+, 2φ, 3φ̄ , 4+) = A3

( − P̂φ̄, 1̂+, 2φ

) i

P 2 − m2 A3
(
3φ̄ , 4̂+, P̂φ

)

=
(

i
<r1|P̂ |1̂]
<r11̂>

)
i

P 2 − m2

(
−i

<r4|p3|4̂]
<r44̂>

)
,

(2.82) 

with .P = p1 + p2. Here .r1/4 denote the reference momenta of the gluon legs 1 and 
4. Things are simplified considerably with the gauge choice 

.r1 = p̂4 , r4 = p̂1 . (2.83) 

Fig. 2.7 On-shell recursion 
for the massive 
. A4(1+, 2φ, 3φ̄ , 4+)

amplitude. All external 
momenta are outgoing, P 
runs from right to left 

1̂+ 

2 

4̂+ 

3 ¯ 

3 3
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Noting that .|1̂] = |1] and .|4̂> = |4>, we then have 

. 

<r1|P̂ |1̂] = <4|P̂ |1] = <4|P |1] = −<4|p3|1] , <r11̂> = <41̂> = <41> ,

<r4|p3|4̂] = <1̂|p3|4̂] , <r44̂> = <1̂4> = <14> .

(2.84) 

Plugging these into the above we find 

.A4 = i
<4|p3|1] <1̂|p3|4̂]

<14>2 [(p1 + p2)2 − m2] . (2.85) 

The numerator may be simplified with a trace identity (see Eq. (1.29)) to

<4|p3|1] <1̂|p3|4̂] =  
1 

2 
Tr
(
/̂p4 /p3 /̂p1 /p3

)

= 2
(

2(p3 · p̂4) (p3 · p̂1) − p2 
3 ( p̂1 · p̂4)

)
. (2.86) 

In fact .p3 · p̂4 = 0, which follows from momentum conservation: 

.P̂ 2 = (p3 + p̂4)
2 ⇒ m2 = 2p3 · p̂4 + p2

3 ⇒ p3 · p̂4 = 0 . (2.87) 

Moreover, we find .2p̂1 · p̂4 = <1̂4>[4̂1] = <14>[41]. Putting everything together we 
arrive at the compact expression for the four-point amplitude 

.A4(1
+, 2φ, 3φ̄ , 4+) = i

[14] m2

<14> [(p1 + p2)2 − m2] , (2.88) 

which indeed vanishes in the massless limit, as claimed. 

Exercise 2.6 (Mixed-Helicity Four-Point Scalar-Gluon Amplitude) Com-
pute the four-point massive-scalar-gluon amplitude with one positive and one 
negative gluon, 

.A4(1
+, 2φ, 3φ̄ , 4−) = i

<4|p3|1]2

(p1 + p4)2 [(p1 + p2)2 − m2] , (2.89) 

using the above recursive techniques. For the solution see Chap. 5.
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2.6 Symmetries of Scattering Amplitudes 

We now turn to a more conceptual yet very important subject: the question of how 
the space-time symmetries of the Poincaré group (and beyond) that we discussed in 
Sect. 1.1 manifest themselves at the level of scattering amplitudes. This has proven 
to be a very rich subject in particular at tree level. The space-time symmetries of 
scattering amplitudes may be grouped into obvious and less obvious symmetries. 

The obvious symmetries are the Poincaré transformations of Sect. 1.1, under 
which scattering amplitudes should be invariant. Sticking to massless amplitudes, 
working in the spinor-helicity formulation of momentum space is highly advan-
tageous. Here the momentum generator .pαα̇ is represented by a multiplicative 
operator, 

.pαα̇ =
nΣ

i=1

λα
i λ̃α̇

i , (2.90) 

and any amplitude .An must obey 

.pαα̇An({λi, λ̃i}) = 0 . (2.91) 

This is in fact true in the distributional sense of the relation .p δ(p) = 0 , thanks to 
the total momentum conserving delta-function present in each amplitude (that we 
often drop): 

.An(λi, λ̃i) = δ(4)

(Σ

i

pi

)
An

(
λi, λ̃i

)
. (2.92) 

In our notation we distinguish the full amplitude .An and the delta-function 
“stripped” amplitude . An. 

The Lorentz generators in the helicity spinor basis come in two pairs of symmet-
ric rank-two tensors .mαβ and .mα̇β̇ , originating from the projections . Mμν (σμν)αβ =
mαβ and .Mμν (σ̄μν)α̇β̇ = mα̇β̇ . They are first-order differential operators in helicity 
spinor space, 

.mαβ =
nΣ

i=1

λi (α ∂i β) , mα̇β̇ =
nΣ

i=1

λ̃i (α̇ ∂i β̇) , (2.93) 

where .∂iα := ∂
∂λα

i
, .∂iα̇ := ∂

∂λ̃α̇
i

and .r(αβ) := (rαβ + rβα)/2 denotes symmetrisation 

with unit weight, cf. Exercise 1.6. The invariance of .An(λi, λ̃i) under Lorentz-
transformations, 

.mαβ An(λi, λ̃i) = 0 = mα̇β̇ An(λi, λ̃i) , (2.94)
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is manifest, as it is an immediate consequence of the proper contraction of all Weyl 
indices within . An, i.e. the fact that the spinor brackets .<ij > and .[ij ] are invariant 
under .mαβ and .mα̇β̇ . See the solution of Exercise 1.6 for an explicit calculation. 

Let us now discuss a set of less obvious symmetries of .An(λi, λ̃i) in the case 
of pure colour-ordered gluon amplitudes. Classical Yang-Mills theory is in fact 
invariant under a larger symmetry group than Poincaré: due to the absence of 
dimensionful parameters in the theory (the coupling g is dimensionless) pure Yang-
Mills theory (as well as massless QCD or scalar QCD) is invariant under a scale 
transformation, 

.xμ → Λ−1 xμ , respectively pμ → Λpμ . (2.95) 

The scale transformations of the momenta are generated by the dilatation operator 
d, whose representation in spinor-helicity variables acting on amplitudes is 

.d =
nΣ

i=1

(
1

2
λα

i ∂i α + 1

2
λ̃α̇

i ∂i α̇ + d0

)
, d0 ∈ R , (2.96) 

reflecting the mass dimension . 1/2 of the . λi and . ̃λi helicity spinors, i.e. . [d, λi] = λi/2
and .[d, λ̃i] = λ̃i/2. The constant . d0 is undetermined at this point. It may be fixed 
by requiring invariance of the MHV gluon amplitudes, 

.AMHV
n = δ(4)(p)

<st>4

<12> . . . <n1> , (2.97) 

where .p = Σn
i=1 pi . The dilatation operator d of Eq. (2.96) simply measures the 

weight in units of mass of the amplitude it acts on adding a factor of .n d0, namely 

.dAn = ([An] + n d0
)
An , (2.98) 

where .[O] indicates the weight of . O in dimensions of mass. We note the weights 
.[δ(4)(p)] = −4, .[<st>4] = 4 and .[<12> . . . <n1>] = n, hence 

.dAMHV
n = (−4 + 4 − n + n d0)AMHV

n , (2.99) 

which vanishes for the choice .d0 = 1. One easily checks the invariance under 
dilatations of the .qq̄gg-amplitude of Eq. (1.194) and of the .MHVn amplitudes 
as well. 

The scaling symmetry comes with a further less obvious symmetry of vectorial 
nature known as special conformal transformations. Their generators, denoted by 
. kαα̇ , are realised in terms of a second-order differential operator in the spinor
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variables, 

.kαα̇ =
nΣ

i=1

∂i α ∂i α̇ . (2.100) 

Together with the Poincaré and dilatation generators, the set . {pαα̇, kαα̇, mαβ,mα̇β̇ ,

d} generates the conformal group in four dimensions, .SO(2, 4). 
Let us now prove the invariance of the MHV gluon amplitudes under special 

conformal transformations. As the only dependence of .AMHV
n on the conjugate 

spinors . ̃λi resides in the momentum conserving delta-function, we have 

. kαα̇AMHV
n =

nΣ

i=1

∂

∂λα
i

∂

∂λ̃α̇
i

(
δ(4)(p)AMHV

n

)

=
nΣ

i=1

∂

∂λα
i

[
∂pββ̇

∂λ̃α̇
i

(
∂

∂pββ̇
δ(4)(p)

)
AMHV

n

]

=
[(

n
∂

∂pαα̇
+ pββ̇ ∂

∂pβα̇

∂

∂pαβ̇

)
δ(4)(p)

]
AMHV

n

+
(

∂ δ(4)(p)

∂pβα̇

) nΣ

i=1

λ
β
i

∂

∂λα
i

AMHV
n . (2.101) 

The last term may be rewritten as follows. First, we note the relation 

.

nΣ

i=1

λi α ∂i β =
nΣ

i=1

λi (α ∂i β) + 1

2
Σαβ

Σ

i

λ
γ

i ∂i γ , (2.102) 

which follows from decomposing the left-hand side in a symmetric and anti-
symmetric piece. The first term on the right-hand side is the Lorentz generator .mαβ , 
which we already know annihilates .AMHV

n . The remaining term yields 

.

nΣ

i=1

λ
β
i

∂

∂λα
i

AMHV
n = 1

2
δβ
α

Σ

i

λδ
i ∂i δ AMHV

n = (4 − n)AMHV
n . (2.103) 

Hence Eq. (2.101) turns into 

.kαα̇AMHV
n =

[(
4

∂

∂pαα̇
+ pββ̇ ∂

∂pβα̇

∂

∂pαβ̇

)
δ(4)(p)

]
AMHV

n . (2.104)
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Indeed in a distributional sense we have 

.pββ̇ ∂

∂pβα̇

∂

∂pαβ̇
δ(4)(p) = −4

∂

∂pαα̇
δ(4)(p) , (2.105) 

which one may see by integrating the second derivative expression against a test 
function .F(p): 

.

f
d4p F(p) pββ̇ ∂

∂pβα̇

∂

∂pαβ̇
δ(4)(p) =

=
f

d4p

[(
∂

∂pβα̇
F (p)

)
2 δβ

α +
(

∂

∂pαβ̇
F (p)

)
2 δ

β̇
α̇

]

= 4
f

d4p

(
∂

∂pαα̇
F (p)

)
δ(4)(p) .

(2.106) 

This proves the vanishing of .kαα̇AMHV
n , as claimed. 

Summarising, we have constructed a representation of the conformal group 
whose generators are represented by differential operators of degree one (.mαβ , 
.mα̇β̇ , d), of degree two (. kαα̇), and as a multiplicative operator (. pαα̇) in an  n-
particle helicity spinor space. This representation is natural, as amplitudes are 
functions in this space. All these generators annihilate the scattering amplitudes. 
We have verified this explicitly for the MHV amplitudes. The representation obeys 
the commutation relations of the conformal algebra .so(2, 4), 

.

[d, pαα̇] = pαα̇ , [d, kαα̇] = −kαα̇ , [d,mαβ ] = 0 = [d,mα̇β̇ ] ,

[kαα̇, pββ̇ ] = δα
β δα̇

β̇ d + mα
β δα̇

β̇ + mα̇
β̇ δα

β ,

(2.107) 

plus the Poincaré commutators discussed in Sect. 1.1. 
The origin of this helicity spinor space representation becomes clear if one looks 

at the more familiar representation of the conformal group in configuration space 
. xμ. For scalar fields, it reads 

. 

Mμν = i
(
xμ ∂ν − xν ∂μ

)
, Pμ = −i ∂μ ,

D = −i (xμ ∂μ + Δ) , Kμ = i
[
x2 ∂μ − 2 xμ (xν∂ν + Δ)

]
,

(2.108) 

where . Δ is the scaling dimension and .∂μ := ∂/∂xμ. In quantum field theory the con-
formal symmetry is distinguished by the Haag-Lopuszanski-Sohnius theorem [26] 
as the maximal bosonic extension of the space-time symmetry of the S-matrix— 
generalising the Poincaré algebra.
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A Fourier transform .
f

d4x eip·xO(x, ∂x) brings this representation into momen-
tum space. From this point of view, it is clear why .pαα̇ becomes a multiplication 
operator and .kαα̇ a second-order derivative operator in momentum space as seen 
above. The momentum-space representation of the conformal symmetry as it applies 
to scattering amplitudes then takes the form 

.

mμν = pμ ∂ν
p − pν ∂μ

p , pμ = pμ ,

d = pμ ∂μ
p + Δ̄ , kμ = pμ∂2

p − 2
(
pν∂

ν
p + Δ̄

)
∂μ
p ,

(2.109) 

where .Δ̄ = 4 − Δ. This representation may be mapped to the helicity-spinor one 
discussed above.

> The Conformal Generators in Spinor Helicity Space Here we collect the 
generators of the conformal algebra in their single-particle action (with 
.Δ̄ = 1, which is relevant for gauge bosons and scalar fields): 

.

pαα̇ = λαλ̃α̇ , kαα̇ = ∂α∂α̇ ,

mαβ = λ(α∂β) , mα̇β̇ = λ̃(α̇∂β̇) ,

d = 1
2λα∂α + 1

2 λ̃α̇∂α̇ + 1 ,

(2.110) 

where .r(αβ) := (rαβ + rβα)/2 denotes symmetrisation of the indices. 
The helicity generator is given by .h = − 1

2λα∂α + 1
2 λ̃α̇∂α̇ . It commutes 

with all generators of the conformal algebra. 

Scaleless quantum field theories—such as pure Yang-Mills or massless QCD— 
enjoy conformal symmetry at the tree-level. Yet, this symmetry is usually broken 
at the loop level, as the need to regularise divergencies introduces a scale into the 
quantum theory. It is manifested by a non-vanishing .β-function of the coupling 
g. In fact, understanding the implications of broken conformal symmetry for 
loop amplitudes is an area of ongoing research. In the maximally supersymmetric 
generalisations of Yang-Mills theory, .N = 4 super Yang-Mills theory, this property 
is prominently absent. It is a quantum conformal field theory, with far-reaching 
consequences, including a hidden infinite dimensional symmetry known as the 
Yangian symmetry. In fact, tree-level amplitudes are invariant under this extension 
of the super-conformal group [27] and the hidden integrability of the leading colour 
limit of the theory allows for exact non-perturbative results, see [28] for a review.
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Exercise 2.7 (Conformal Algebra) Show that the representation con-
structed in the above Eq. (2.110) indeed obeys the commutation relations of 
the conformal algebra given in Eq. (2.107). For the solution see Chap. 5. 

Exercise 2.8 (Inversion and Special Conformal Transformations) The 
generator .Kμ of Eq. (2.108) generates infinitesimal special conformal trans-
formations. A finite special conformal transformation is given by 

. xμ → x'μ = xμ − aμ x2

1 − 2 a · x + a2 x2
, (2.111) 

where . aμ is the transformation parameter. 

(a) An intuition on the character of these transformations may be found by 
noting that the action of .Kμ may be also written as .Kμ = I P μ I , i.e. as 
the composition of an inversion .I xμ = xμ/x2, followed by a translation 
.P μx = xμ − aμ, followed by another inversion. Show that . Kμ = I P μ I

is equivalent to Eq. (2.111). 
(b) A scalar field .Φ(x) transforms under special conformal transformations 

.x → x' as 

.Φ(x) −→ Φ '(x') =
||||
∂x'

∂x

||||
−Δ/4

Φ(x) , (2.112) 

where .|∂x'/∂x| is the Jacobian of the transformation, and . Δ is the scaling 
dimension. Show that the generator .Kμ of Eq. (2.108) indeed generates 
the transformation of Eq. (2.111) for a scalar field. In other words, prove 
that 

.Φ ' (x) =
[
1 − i aμ Kμ + O(a2)] Φ(x) . (2.113) 

Hint: in order to compute the Jacobian factor, treat the finite special 
conformal transformation as the composition of inversion, translation and 
inversion. 

For the solution see Chap. 5.
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2.7 Double-Copy Relations for Gluon and Graviton 
Amplitudes 

So far we have discussed gauge theories and gravity rather in parallel. While 
their Lagrangians and Feynman rules look very different, there exist intriguing 
relationships between gluon amplitudes and graviton amplitudes that suggest a 
deeper relationship of these two theories—at least in their perturbative domain. In 
a nutshell, they express gravity as the square of Yang-Mills theory, a property we 
already saw at the level of the polarisations and of the three-point amplitudes. 

2.7.1 Lower-Point Examples 

The squaring relation between gravity and gluon amplitudes is manifest at the level 
of three-point amplitudes: 

.

M tree
3 (1−−, 2−−, 3++) = <12>6

<23>2<31>2
= [

Atree
3 (1−, 2−, 3+)

]2
,

M tree
3 (1−−, 2++, 3++) = [23]6

[12]2[31]2
= [

Atree
3 (1−, 2+, 3+)

]2
.

(2.114) 

For simplicity we set all couplings to unity here and absorbed a factor of . i in the 
amplitudes. Hence, for any choice of polarisations we find 

.M tree
3 (1, 2, 3) = Atree

3 (1, 2, 3)2 . (2.115) 

Turning to the four-point case, we need to compare the MHV. 4 gluon amplitude and 
the MHV. 4 four-graviton amplitude of Eq. (2.66). We first expose the s, t , u poles 
in the MHV colour-ordered gluon amplitude explicitly. For .A4(1−, 2−, 3+, 4+) we 
have 

. 
<12>3

<23><34><41> = − 1

s12

<12>3[34]
<23><41> = − 1

s12s23

<12>2

<14>[43]' '' '
<12>[32][34]
<41> = −<12>2[34]2

s12s23
.

This gets close to the four-graviton amplitude (2.66) but is not just a simple square. 
Looking at .A4(1−, 2−, 4+, 3+), that is obtained by swapping .3 ↔ 4 in the above, 
we arrive at 

. M tree
4 (1−−, 2−−, 3++, 4++) = s12 Atree

4 (1−, 2−, 3+, 4+) Atree
4 (1−, 2−, 4+, 3+) .

(2.116) 

Again resulting in a squaring relation between the two. In fact, such squaring 
relations turn out to be generally true for all multiplicities.
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2.7.2 Colour-Kinematics Duality: A Four-Point Example 

The relations (2.115) and (2.116) suggest a general squaring relation of the structure 
.Mn ∼ A2

n. This can be made precise in the context of the colour-kinematic duality, 
which we now want to discuss in a four-point example. 

For this, let us look at the coloured tree-level four-gluon amplitude in D 
dimensions using the polarisation . Σμ

i and momentum . pμ
i vectors with . i = 1, . . . , 4

to describe the kinematics. It may be written as 

.Atree
4 = −ig2

(nscs

s
+ ntct

t
+ nucs

u

)
, (2.117) 

split into the s, t and u channels, with 

.cs = −2f a1a2e f ea3a4 , . (2.118) 

ns = −1 

2

{[
(Σ1 · Σ2) p  μ 

1 + 2(Σ1 · p2) Σ
μ 
2 − (1 ↔ 2)

]

× [
(Σ3 · Σ4) p3, μ  + 2(Σ3 · p4) Σ4, μ  − (3 ↔ 4)

]

+ s
[
(Σ1 · Σ3)(Σ2 · Σ4) − (Σ1 · Σ4)(Σ2 · Σ3)

]}
, 

(2.119) 

and 

.ct nt = cs ns

|||
1→2→3→1

, cu nu = cs ns

|||
1→3→2→1

. (2.120) 

In writing the amplitude in this fashion we have split up contact terms emerging 
from the four-gluon vertex (1.66) into the s, t and u channels by multiplying the 
corresponding colour factors . ns by . s

s
, and so on. These are the terms proportional to 

s in the last line of Eq. (2.119). It is instructive to study the gauge invariance of leg 
4. Replacing .Σ4 → p4 yields 

.ns

|||
Σ4→p4

= s

2

[
(Σ1 · Σ2)(Σ3 · p12) + cyclic(1, 2, 3)

]
=: s α({Σi, pi}) , (2.121) 

where .p12 = p1 − p2. Crucially, the function . α is cyclically invariant. Therefore 
the gauge transformations of the other kinematical numerators read 

.nt

|||
Σ4→p4

= t α({Σi, pi}) , nu

|||
Σ4→p4

= uα({Σi, pi}) . (2.122) 

Hence, the numerators are not gauge invariant individually. This is to be expected, 
as only the full amplitude and not individual graphs (or parts thereof) are gauge
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invariant. How does .Atree
4 then become gauge invariant? We have 

.Atree
4

|||
Σ4→p4

= (cs + ct + cu) α({Σi, pi}) , (2.123) 

which is zero by virtue of Jacobi’s identity (1.135), 

.cs +ct +cu = −2
(
f a1a2e f ea3a4 +f a2a3e f ea1a4 +f a3a1e f ea2a4

) = 0 . (2.124) 

Remarkably, one also sees that the kinematical numerators . ni obey a Jacobi-like 
identity, 

.ns + nt + nu = 0 , (2.125) 

upon using the on-shell identities. This is known as the kinematical Jacobi identity. 
This property allows us to construct a gauge invariant object that has all the 
required properties to be the four-graviton amplitude: we simply replace the colour 
numerators . ci by the kinematical ones . ni in Eq. (2.117), obtaining 

.M tree
4 = Atree

4

|||| ci → ni
g → κ/2

= −i
(κ

2

)2
(

n2
s

s
+ n2

t

t
+ n2

u

u

)
. (2.126) 

Clearly, it is bi-linear in the polarisation vectors . Σμ
i and displays a consistent pole 

structure, which are necessary ingredients for it to be a graviton amplitude. Also the 
gauge invariance may be tested straightforwardly using Eqs. (2.121) and (2.122), 

.M tree
4

|||
Σ4→p4

= 2 (ns + nt + nu) α({Σi, pi}) , (2.127) 

which now vanishes by virtue of the kinematical Jacobi identity (2.125). We shall 
show momentarily that the result (2.126) is equivalent to Eq. (2.116). In order to do 
so, let us express the gluon amplitude (2.117) in a minimal colour and kinematical 
basis. Going to the DDM basis of Sect. 1.10 amounts to eliminating . ct via . ct =
−cs − cu as 

. (2.128)
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The amplitude then takes the form 

.

i

g2
Atree

4 = cs

(ns

s
− nt

t

)
− cu

(nt

t
− nu

u

)

= cs Atree
4 (1, 2, 3, 4) − cu Atree

4 (1, 3, 2, 4) ,

(2.129) 

hence the two colour-ordered amplitudes are to be identified as 

.Atree
4 (1, 2, 3, 4) = ns

s
− nt

t
, Atree

4 (1, 3, 2, 4) = nt

t
− nu

u
. (2.130) 

Their gauge invariance follows from Eqs. (2.121) and (2.122), e.g. 

. Atree
4 (1, 2, 3, 4)

|||
Σ4→p4

=
(

s

s
− t

t

)
α = 0 .

This must be the case, as we argued before for the gauge invariance of the colour-
ordered amplitudes. Due to the kinematical Jacobi identity, the above representation 
of the amplitude is not yet minimal. By eliminating (in analogy to . ct ) now . nt as well 
via .nt = −ns − nu in Eq. (2.129) we find the relation 

.

(
Atree

4 (1, 2, 3, 4)

Atree
4 (1, 3, 2, 4)

)
=
(

s−1 + t−1 t−1

−t−1 −u−1 − t−1

) (
ns

nu

)
. (2.131) 

From this expression we learn that the two colour-ordered amplitudes 
.Atree

4 (1, 2, 3, 4) and .Atree
4 (1, 3, 2, 4) cannot be independent of each other: while 

they are gauge invariant, the kinematical numerators . ns and . nu are not, and hence 
the .2 × 2 matrix relating them is not invertible. The linear dependance reads 

.s Atree
4 (1, 2, 3, 4) = uAtree

4 (1, 3, 2, 4) . (2.132) 

This is the Bern-Carrasco-Johannson (BCJ) relation for a four-point amplitude. The 
general relation reads, cf. (1.158), 

.

n−1Σ

i=2

p1 · (p2 + . . . + pi)Atree
n (2, . . . , i, 1, i + 1, . . . , n) = 0 , (2.133) 

which for .n = 4 reduces to Eq. (2.132). As a matter of fact, using this kinematical 
.2 × 2 matrix the coloured amplitude may be written as 

.Atree
4 = −ig2 (

cs −cu

) (s−1 + t−1 t−1

−t−1 −u−1 − t−1

) (
ns

nu

)
. (2.134)



2.7 Double-Copy Relations for Gluon and Graviton Amplitudes 89

Returning to the conjectured form of the four-graviton amplitude (2.126), we can 
use there the relations .nt = −nu −ns and .nu = tAtree

4 (1, 2, 3, 4)+nsu/s. One finds 

.M tree
4 (1, 2, 3, 4) = −i

st

u

[
Atree

4 (1, 2, 3, 4)
]2

. (2.135) 

This very compact result may be transformed into the one we derived in Eq. (2.116) 
upon using the BCJ relation (2.132). Cyclically permute . 1 → 2 → 3 → 4 → 1
in (2.132) (under which .s ↔ t but u is inert) to reach 

.t Atree
4 (2, 3, 4, 1) = uAtree

4 (2, 4, 3, 1) . (2.136) 

With the cyclicity of the colour-ordered amplitudes, one has . Atree
4 (1, 2, 4, 3) =

t
u
Atree

4 (1, 2, 3, 4), which inserted in Eq. (2.116) yields Eq. (2.135). 

Exercise 2.9 (Kinematical Jacobi Identity) Prove the kinematical Jacobi 
identity (2.125) for the coloured tree-level four-gluon amplitude in D dimen-
sions given in Eq. (2.117). For the solution see Chap. 5. 

2.7.3 The Double-Copy Relation 

The general statement of the duality between colour and kinematics is as follows. A 
general coloured n-gluon amplitude may be written as 

.Atree
n = −ign−2

Σ

i

ci ni||
αi

Dαi

, (2.137) 

where the sum is over all n-point diagrams with a trivalent vertex structure. Here 
. ci denote the colour factors (made up of the structure constants and possibly of 
generators), . ni the numerators (made up of the momenta and polarisation vectors), 
and the .Dαi

= p2
αi

− m2
αi

are the inverse propagators. We note that any graph 
may be made tri-valent upon inserting the identity .1 = Dαi

/Dαi
in order to lift 

the four-gluon vertices to a sum of three s-t-u channel diagrams as dictated by 
the colour structure. Due to the Jacobi identity, the colour factors obey algebraic 
relations of the form .ci − cj = ck . Colour-kinematic duality now asserts that it 
is always possible to find a representation of the amplitude (2.137) in which also 
the kinematical numerators obey an analogous identity .ni − nj = nk . This may be 
reached by possibly adding overall zeros to the amplitude.
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The n-graviton scattering amplitude is then obtained upon replacing colour by 
kinematics .ci → ni , 

.M tree
n = −i

(
k

2

)n−2 Σ

i

n2
i||

αi
Dαi

. (2.138) 

In general it is non-trivial to find numerators which satisfy the colour-kinematics 
duality. A possible route is to start out from an ansatz, which one then constrains 
to match the amplitude and to obey the duality. At tree level the duality has 
been proven [29–31], while at the Lagrangian level a full understanding is still 
lacking [30, 32, 33]. A comprehensive review of the double-copy relation is given 
in [34]. 

The n-point generalisation of the squaring relation (2.135) is known as the 
Kawai-Lewellen-Tye (KLT) relation and takes the form [35] 

.M tree
n =

Σ

σ,ρ∈Sn−3

Atree
n (1, σ, n − 1, n) S[σ |ρ] Atree

n (1, ρ, n, n − 1) . (2.139) 

Here . σ and . ρ range over the .(n − 3)! permutations of the elements .{2, . . . , n − 2}. 
The KLT kernel .S[σ |ρ] are the entries of an .(n − 3)! × (n − 3)! matrix of kinematic 
polynomials. A closed form expression reads [29, 36] 

.S[σ |ρ] =
n−2||

i=2

[
2 p1 · pσi

+
iΣ

j=2

2 pσi
· pσj

θ(σj , σi)ρ

]
, (2.140) 

where .θ(σj , σi)ρ = 1 when . σj is before . σi in the permutation . ρ, and zero otherwise. 
For .n = 4 the matrix degenerates to a scalar and reproduces Eq. (2.116). 

Exercise 2.10 (Five-Point KLT Relation) Prove the five-point KLT relation 

. M tree
5 (1, 2, 3, 4, 5) = s12 s34 Atree

5 (1, 2, 3, 4, 5) Atree
5 (1, 2, 5, 3, 4) + (2 ↔ 3) .

(2.141) 

For the solution see Chap. 5. 
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