
1Introduction and Foundations 

Abstract 

In this introductory chapter we review the foundations of perturbative, relativistic 
quantum field theory. We focus on space-time and internal symmetries that 
are a highly successful guiding principle in the construction and classification 
of relativistic quantum field theories. We begin with the Poincaré group—the 
fundamental space-time symmetry of nature—that achieves the classification 
of elementary particles in terms of their masses and spins. We review scalars, 
fermions, gauge fields and gravity, and expose their perturbative quantisation 
leading to their Feynman rules. Helicity spinors are introduced that capture 
the polarisation and momentum degrees of freedom of the scattered particles. 
The internal non-Abelian gauge symmetry is reviewed and two methods for 
an efficient management of the colour degrees of freedom are discussed. They 
lead to the central concept of colour-ordered amplitudes. In the final section, we 
employ this colour-ordered formalism to evaluate tree-level three- and four-gluon 
amplitudes, and depict general classes of vanishing tree-amplitudes of gluons and 
gravitons. 

1.1 Poincaré Group and Its Representations 

Quantum field theory unifies quantum mechanics and special relativity, and as such 
is a fundamental cornerstone of theoretical physics.1 The underlying symmetry 
group of special relativity is the Poincaré group, given as the semi-direct product 
of the Lorentz group and the Abelian group of space-time translations. The 

1 See [1–3] for introductory textbooks reviewing in particular symmetry aspects. 
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2 1 Introduction and Foundations

four dimensional Lorentz group .SO(1, 3) is a linear homogeneous coordinate 
transformation that leaves the relativistic length . x2 invariant, 

.x'μ = Λμ
ν xν , with x'2 = x2 = ημν xμ xν , (1.1) 

where .ημν = diag(+,−,−,−) denotes the flat space-time Minkowski metric. The 
Lorentz transformation matrices .Λμ

ν depend on six parameters: three for spatial 
rotations, and three for Lorentz boosts. This can be seen as follows. Demanding 
invariance of the relativistic length implies the following defining condition 

.ημν Λμ
ρ Λν

κ = ηρκ . (1.2) 

Infinitesimally, we write .Λμ
ν = δμ

ν + ωμ
ν + O(ω2) and find from Eq. (1.2) that 

.ωμν = ημρωρ
ν must be antisymmetric, i.e., .ωμν = −ωνμ. Hence .ωμν has six 

degrees of freedom, matching the above counting of rotations and boosts. 
In quantum theory the symmetry generators are represented by unitary operators, 

which we denote by .U(Λ). These furnish a representation of the Lorentz group and 
hence must obey the composition property 

.U(Λ)U(Λ') = U(ΛΛ') . (1.3) 

Infinitesimally close to the identity we have 

.U(1 + ω) = 1 + i

2
ωμν Mμν , (1.4) 

with the Hermitian operators .Mμν = −Mνμ acting on the Hilbert space of the 
quantum theory in question. The .Mμν are known as the generators of the Lorentz 
group. We would now like to derive the Lorentz algebra, i.e. the commutation 
relations of the generators .Mμν . For this, consider 

.U(Λ)−1U(Λ')U(Λ) = U(Λ−1 Λ' Λ) , (1.5) 

in the case of an infinitesimal .Λ' = 1+ ω'. Expanding to linear order in . ω' on both 
sides of the equation for arbitrary anti-symmetric .ω'

μν yields the transformation 
property of the Lorentz generator: 

.U(Λ)−1 MμνU(Λ) = Λμ
ρ Λν

κ Mρκ . (1.6) 

We see that each space-time index of .Mμν transforms with a .Λμ
ν matrix. Therefore 

a space-time vector such as . P μ should transform as 

.U(Λ)−1 P μU(Λ) = Λμ
ν P ν , (1.7)
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which holds in particular for the generator of space-time translations, the momentum 
operator . P μ considered here. We now take the remaining Lorentz transformation . Λ

in Eqs. (1.6) and (1.7) to be infinitesimal as well, .Λ = 1 + ω. Stripping off the 
arbitrary anti-symmetric parameter .ωρκ on both sides of the resulting linearised 
equations yields the Poincaré algebra. 

Poincaré Algebra The central space-time symmetry group of nature is the 
Poincaré algebra. From Eqs. (1.6) and (1.7) we deduce the commutation 
relations 

.[Mμν,Mρκ ] = i ( ηνρ Mμκ + ημκ Mνρ − ηνκ Mμρ − ημρ Mνκ ) , . (1.8) 

[Mμν , P ρ] = −i ημρ P ν + i ηνρ P μ , (1.9) 

where .[A,B] = AB −BA is the commutator of A and B. It is of fundamental 
importance for relativistic quantum field theory. 

In quantum field theory the Lorentz generators act not only on the space-time 
coordinates but also on the fields. A general representation of the Lorentz generators 
of Eq. (1.8) then takes the form 

.(Mμν)ij = i

(
xμ ∂

∂xν

− xν ∂

∂xμ

)
δi

j + (Sμν)ij , (1.10) 

with the .xμ-independent .dR × dR representation matrices .(Sμν)ij obeying the 
commutation relations of Eq. (1.8). 

We now wish to classify the possible representations of the Lorentz group. For 
this we drop for the moment the covariant notation and define the rotation and boost 
generators 

.Ji := 1
2 εijk Mjk , Ki := M0i , (1.11) 

with .i, j, k = 1, 2, 3 running over the spatial indices only. The . Ji obey the . su(2)
Lie algebra relations known from the angular momentum or spin commutation 
relations in quantum mechanics. Introducing the following complex combinations 
of Hermitian generators, 

.Ni := 1
2 (Ji + iKi) , N

†
i

:= 1
2 (Ji − iKi) , (1.12)
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Table 1.1 Lower spin representations of the four-dimensional Lorentz group. For the consider-
ations in this text only the first four will be of importance. We have .α = 1, 2, .α̇ = 1, 2, and  
. μ = 0, 1, 2, 3

Rep. Spin Field Lorentz transformation property 

.(0, 0) 0 Scalar .φ(x) . U(Λ−1) φ(x)U(Λ) = φ(Λ−1x)

.(1/2, 0) .1/2 Left-handed Weyl spinor .χα(x) . U(Λ−1) χα(x)U(Λ) = L(Λ)α
βχβ(Λ−1x)

.(0, 1/2) .1/2 Right-handed Weyl spinor .ξ̄α̇ (x) . U(Λ−1) ξ̄α̇(x)U(Λ) = R(Λ)α̇
β̇ ξ̄β̇ (Λ−1x)

.(1/2, 1/2) 1 Vector .Aμ(x) . U(Λ−1) Aμ(x)U(Λ) = Λμ
νAν(Λ

−1x)

.(1, 0) 1 Self-dual rank 2 tensor . Bμν(x)

.(0, 1) 1 Anti-self-dual rank 2 tensor . B̃μν(x)

.(1, 1/2) .3/2 Graviton . ψ
μ
α (x)

.(1, 1) 2 Graviton . hμν(x)

we see that the .so(1, 3) algebra of Eq. (1.8) may be mapped to two commuting 
copies of .su(2), 

.[Ni,Nj ] = i εijk Nk , [N†
i , N

†
j ] = i εijk N

†
k , [Ni,N

†
j ] = 0 . (1.13) 

Based on our knowledge of the representation theory of .SU(2) from the study of 
angular momentum in quantum mechanics, we conclude that the representations 
of the .SO(1, 3) Lorentz group may be labeled by a doublet of half-integers . (m, n)

related to the eigenvalues .m(m+1) and .n(n+1) of the Casimir operators .Ni Ni and 
.N

†
i N

†
i , respectively. Moreover, since .J3 = N3+N

†
3 , we identify .m+n as the spin of 

the representation .(m, n). We give a classification of the lower spin representations 
of the four-dimensional Lorentz group in Table 1.1. 

1.2 Weyl and Dirac Spinors 

We now wish to construct a Lagrangian for the .(1/2, 0) representation: the left-
handed Weyl spinor of Table 1.1. The relevant .2 × 2 representation matrix . Sμν

L
arising in the corresponding representation of .Mμν in Eq. (1.10) takes the form 

.(S
μν
L )α

β = i
4 (σμ σ̄ ν − σν σ̄μ)α

β , α, β = 1, 2 , (1.14) 

with .(σ̄ μ)α̇α = (1,−σ ) and .(σμ)αα̇ = εαβ εα̇β̇ (σ̄ μ)β̇β = (1, σ ), where . σ is the 

list of Pauli matrices, and . εαβ is the Levi-Civita tensor.2 The free Lagrangian for a 
massive Weyl spinor field reads 

.LW = iχ̃α̇ (σ̄ μ)α̇α ∂μχα − 1
2 m χα χα − 1

2 m∗ χ̃α̇ χ̃ α̇ , (1.15)

2 Our conventions are summarised in Appendix A. 
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where we denote .(χα)† = χ̃α̇ and .∂μ = ∂
∂xμ . It is invariant under Poincaré trans-

formations. Recall that the half-integer spin fields are anti-commuting (Graßmann 
odd) quantities. The equations of motion follow from the action .S = f

d4x LW by 
variation of the action w.r.t. . χ and . χ̃ . We find 

. − δS

δχ̃α̇

= −i(σ̄ μ)α̇α ∂μχα + m∗ χ̃ α̇ = 0 , . (1.16) 

− 
δS 
δχα = −i(σμ )αα̇ ∂μ χ̃ ̇α + m χα = 0 . (1.17) 

Note that the second equation follows from complex conjugation of the first and is 
therefore spurious. In general the mass may be taken to be complex .m = |m| eiα . 
However, the phase of a complex mass may be absorbed in a redefinition of the 
spinor fields, so that in the end we may set .m = m∗. These equations of motion may 
be unified into a four-component notation as 

.0 =
(

m δα
β −i(σμ)αβ̇ ∂μ

−i(σ̄ μ)α̇β ∂μ m δα̇
β̇

) (
χβ

χ̃ β̇

)
. (1.18) 

Introducing the .4 × 4 Dirac matrices in the chiral representation3 

.γ μ :=
(

0 (σμ)αβ̇

(σ̄ μ)α̇β 0

)
, (1.19) 

which obey the Clifford algebra .{γ μ, γ ν} = 2 ημν , calls for the introduction of a 
four-component spinor field 

.ψM =
(

χβ

χ̃ β̇

)
, (1.20) 

known as the Majorana field .ψM(x). Using this, the equation of motion may be cast 
in the form of a Dirac equation: 

.(−i γ μ ∂μ + m)ψM = 0 . (1.21) 

Dirac Spinor and Equation Generalising this, we may combine a left-
handed Weyl spinor . χα and an independent right-handed Weyl spinor . ̄ξ α̇ into 

(continued)

3 See Exercise 1.2 for an analysis of the chiral and Dirac representations of the Dirac matrices. 
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a four component Dirac spinor, 

.ψ =
(

χα

ξ̄ α̇

)
. (1.22) 

We can then write down the Dirac equation .(−i γ μ∂μ + m)ψ = 0, and the 
associated Lagrangian—in an index free notation—reads 

.LD = i ψ̄ γ μ ∂μψ − m ψ̄ψ , with ψ̄ := ψ† γ 0 . (1.23) 

This is the reducible field theory of the sum of a .(1/2, 0) left-handed Weyl and 
a .(0, 1/2) right-handed Weyl spinor. 

Exercise 1.1 (Manipulating Spinor Indices) The Levi-Civita symbols are 
used to raise and lower Weyl indices according to .ξ̄α̇ = εα̇β̇ ξ̄ β̇ and . χα =
εαβ χβ . We have  

. ε12 = ε1̇2̇ = ε21 = ε2̇1̇ = 1 , ε21 = ε2̇1̇ = ε12 = ε1̇2̇ = −1 .

The sigma-matrix four-vector is defined by .(σ̄ μ)α̇α = (1,−σ ). Moreover we 
have .(σμ)αα̇ := εαβ εα̇β̇ (σ̄ μ)β̇β . Prove the relations 

. 
(1) (σμ)αα̇ = (1, σ ) , (2) (σμ)αα̇ = (1,−σ ) ,

(3) Tr (σμσ̄ ν) = 2 ημν , (4) (σμ)αα̇ (σμ)ββ̇ = 2 εαβ εα̇β̇ .

For the solution see Chap. 5. 

Exercise 1.2 (Massless Dirac Equation and Weyl Spinors) Consider the 
Dirac representation of the Dirac matrices: 

. γ 0 =
(
12×2 0
0 −12×2

)
, γ i =

(
0 σ i

−σ i 0

)
,

γ 5 = iγ 0γ 1γ 2γ 3 =
(

0 12×2

12×2 0

)
. (1.24) 

(continued)
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(a) Show that the solutions of the massless Dirac equation .γ μkμψ = 0 may 
be chosen as 

. u+(k) = v−(k) = 1√
2

⎛
⎜⎜⎝

√
k+√

k− eiφ(k)√
k+√

k− eiφ(k)

⎞
⎟⎟⎠ ,

u−(k) = v+(k) = 1√
2

⎛
⎜⎜⎝

√
k− e−iφ(k)

−√
k+

−√
k− e−iφ(k)√

k+

⎞
⎟⎟⎠ , (1.25) 

where 

.e±iφ(k) := k1 ± ik2√
k+ k− , k± := k0 ± k3 , (1.26) 

and that the spinors .u±(k) and .v±(k) obey the helicity relations 

. P±u± = u± , P±u∓ = 0 , P±v± = 0 , P±v∓ = v∓ ,

(1.27) 

with 

.P± := 1

2
(1 ± γ 5) . (1.28) 

(b) What helicity relations hold for the conjugate expressions .ū±(k) and 
.v̄±(k), where we define .ψ̄ := ψ†γ 0? 

(c) Now consider the unitary transformation to the chiral representation of 
the Dirac matrices, 

. ψ → U ψ , γ μ → U γ μ U† ,

with .U = (14−iγ 1 γ 2 γ 3)/
√
2. Determine . γ μ, . γ 5, and the spinors . u±(k)

and .v±(k) in this chiral basis. 
(d) Using the chiral representation of the Dirac matrices, prove that 

.Tr
(
σμσ̄ νσρσ̄ τ

) = 1

2
Tr

(
γ μγ νγ ργ τ (1 − γ5)

)
. (1.29) 

For the solution see Chap. 5.
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1.3 Non-Abelian Gauge Theories 

We now discuss the principle of local gauge invariance due to Yang and Mills [4], 
which is central to the theory of the fundamental non-gravitational interactions in 
nature. This will lead us to non-Abelian gauge theories that are constitutional for 
the standard model of elementary particles and beyond. The spin . 1/2 Lagrangians 
for a Weyl spinor .LW of Eq. (1.15) and a Dirac spinor . LD of Eq. (1.23) are invariant 
under global phase transformations: 

.χ → eiα χ , ψ → eiα ψ , (1.30) 

with .α ∈ R, respectively. We now wish to elevate this global symmetry to a local 
symmetry, i.e. to allow for a space-time dependent phase transformation .α(x). 
The kinetic terms in the actions .LW and .LD are then no longer invariant, as the 
space-time derivative . ∂μ may hit the .α(x). This can be cured by introducing a 
gauge field .Aμ(x) to cancel the unwanted terms. For this purpose, the local gauge 
transformations of the Dirac field (we specialise to this case from now on) and of 
the novel gauge field .Aμ(x) are given by 

.ψ → ei e α(x) ψ , Aμ → Aμ + ∂μα(x) , (1.31) 

where e denotes the coupling constant. Moreover, the derivative . ∂μ in the Dirac 
action of Eq. (1.23) is replaced by the covariant derivative .Dμ = ∂μ − ieAμ. 

Quantum Electrodynamics Introducing the covariant derivative in the 
Dirac Lagrangian we are led to consider the theory 

.LQED = i ψ̄ γ μ Dμψ − m ψ̄ψ − 1
4 Fμν Fμν , (1.32) 

where we also added the field-strength tensor term . 14FμνF
μν known from 

Maxwell’s theory of electromagnetism. It generates the kinetic term for the 
gauge field . Aμ. Recall that .Fμν is defined as 

.Fμν = i

e
[Dμ,Dν] = ∂μAν − ∂νAμ . (1.33) 

This is an Abelian gauge theory invariant under the .U(1) transformations (1.31). 
For the case of e and m being the charge and mass of the electron, this is the theory 
of quantum electrodynamics (QED).
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Let us now formalise this construction slightly by associating to the local Abelian 
gauge transformation of Eq. (1.31) an  x-dependent .U(1) group element . U(x) =
eieα(x) obeying .U(x)† U(x) = 1. It generates the transformations 

.ψ → U(x)ψ , Dμ → U(x)Dμ U†(x) , (1.34) 

which leave .ψ̄γ μDμψ and .ψ̄ψ manifestly invariant, as .ψ̄ → ψ̄ U†(x). The  
transformation rule for .Dμ = ∂μ − ieAμ above implies the transformation of the 
gauge field 

.Aμ(x) → U(x)Aμ(x)U†(x) + i

e
U(x) ∂μU†(x) . (1.35) 

One indeed easily verifies the equivalence to Eq. (1.31). 
We now wish to lift this construction to a non-Abelian gauge symmetry, i.e. we 

want to find matrix-valued generalisations of .U(x). To this end, consider a set of . Nc

Dirac spinor fields .ψi,A with spinor index .A = (α, α̇) and an additional index . i =
1, . . . , Nc. The number of components . Nc is referred to as the number of “colours” 
for actually no good reason. The associated Dirac Lagrangian 

.LDN
=

NcΣ
i=1

i ψ̄ i /∂ψi − m ψ̄iψi (1.36) 

is again invariant under the global unitary transformation 

.ψi(x) → Ui
j ψj (x) , (1.37) 

with the .Nc × Nc matrices .Ui
j obeying .U† U = U U† = 1. These matrices . Ui

j

span the Lie group of unitary transformations .U(Nc). We shall further specialise 
to the case of special unitary transformations .SU(Nc) by imposing the additional 
condition .det(U) = 1. 

We will focus here on gauge theories built from .SU(Nc), although all other 
compact semi-simple Lie groups .SO(Nc), .Sp(2Nc), and the five exceptional . G2, 
. F4, . E6, . E7 and . E8 may in principle be also considered. 

The global symmetry of .LDN
under Eq. (1.37) may now be turned into a local 

non-Abelian symmetry .Ui
j → Ui

j (x) with arbitrary space-time dependence. We 
introduce the covariant, matrix-valued derivative 

.(Dμ)i
j := δi

j ∂μ − i g (Aμ)i
j (x) , (1.38) 

with the .SU(Nc) gauge field .(Aμ)i
j (x). The coupling constant is now denoted by 

g, generalising the electric charge e of the Abelian case. We then generalise the 
Abelian Eq. (1.34) to a covariant non-Abelian transformation 

.(Dμ)i
j → Ui

k(x) (Dμ)k
l (U†)l

j (x) (1.39)
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that leads to the transformation rule (now in matrix notation) 

.Aμ(x) → U(x)Aμ(x)U†(x) + i

g
U(x) ∂μU†(x) . (1.40) 

.SU(Nc) Gauge Theory With the help of this construction the “gauged” 
Lagrangian (Here and in the following we omit the sum over colour indices): 

.L'
Dn

= i ψ̄ i /Di
jψj − m ψ̄iψi (1.41) 

is invariant under local .SU(Nc) gauge transformations. Next, we need 
to construct the kinetic term for the non-Abelian gauge field .(Aμ)i

j . In  
generalisation of the Abelian construction above, cf. Eq. (1.33), the natural 
quantity to take is (again in matrix notation) 

.Fμν = i

g
[Dμ,Dν] = ∂μAν − ∂νAμ − i g [Aμ,Aν] . (1.42) 

This is the non-Abelian field strength tensor. Note that it is not invariant under 
gauge transformation, but transforms as 

.Fμν → U(x) Fμν U†(x) . (1.43) 

One says it transforms covariantly under gauge transformations. The kinetic 
term for the gauge field then is 

.LYM = − 1
4 Tr(Fμν Fμν) , (1.44) 

which is both gauge invariant, thanks to the colour trace, and Lorentz 
invariant, as all indices are properly contracted. We note that, as opposed to 
the Abelian .U(1) case, the non-Abelian gauge field is self-interacting due to 
the commutator term in Eq. (1.42). The interaction strength is controlled by 
the coupling constant g. The complete Lagrangian of .SU(Nc) gauge theory 
interacting with a Dirac “matter” field is then given by the sum of .L'

Dn
and 

.LYM. 

In order to better understand the structure of this gauge theory it is useful to look 
at gauge transformations infinitesimally close to the identity 

.Ui
j (x) = δi

j − i g θa(x) (T a)i
j , (1.45) 

where we introduced the Lie algebra generators .(T a)i
j of .SU(Nc) with . a =

1, . . . , N2
c − 1 and .i, j = 1, . . . , Nc. In the above, the .θa(x) serve as the local
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transformation parameters generalising the phase .α(x) of the Abelian case (. Nc =
1). As a consequence of the .SU(Nc) group properties, i.e. .U†U = 1, the .(T a)i

j are 
Hermitian traceless .Nc × Nc matrices. They obey the commutation relations 

.[ T a, T b ] = i
√
2 f abc T c , (1.46) 

with the structure constants .f abc. The factor of . 
√
2 is our normalisation convention. 

We can choose a diagonal basis for the generators . T a such that 

.Tr(T a T b) = δab . (1.47) 

Based on this we may  write  

.f abc = − i√
2
Tr( T a [T b, T c] ) , (1.48) 

which renders the structure constants totally anti-symmetric in all indices.4 The 
Jacobi identity for the generators 

.
[
T a, [T b, T c]] + [

T b, [T c, T a]] + [
T c, [T a, T b]] = 0 (1.49) 

then directly translates into the relation 

.f abef ceg + f bcef aeg + f caef beg = 0 , (1.50) 

known as the Jacobi relation for the structure constants. Furthermore we note the 
important .SU(Nc) identity 

.(T a)i1
j1 (T a)i2

j2 = δi1
j2 δi2

j1 − 1

Nc

δi1
j1 δi2

j2 , (1.51) 

which is nothing but a completeness relation for .Nc × Nc Hermitian matrices and 
where the last term ensures the tracelessness of the .(T a)i

j . 

Exercise 1.3 (.SU(Nc) identities) 

(a) Prove the Jacobi identity (1.49) for the generators. Hint: expand all 
commutators. 

(continued)

4 Concrete expressions for the .SU(Nc) generators may be found in Appendix A. 
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(b) Prove the Jacobi identity (1.50) for the structure constants. Hint: use 
Eq. (1.46) to trade commutators for structure constants in the Jacobi 
identity for the generators. 

(c) Prove the .SU(Nc) completeness relation given in Eq. (1.51). Hint: con-
sider an arbitrary .Nc × Nc complex matrix, and expand it in the basis 
given by the identity .1Nc and the .su(Nc) generators . T a . 

For the solution see Chap. 5. 

As we took the gauge fields to be traceless Hermitian matrices we can expand 
them in the basis of .SU(Nc) generators . T a , as  

.(Aμ)i
j (x) = Aa

μ(x) (T a)i
j ⇔ Aa

μ(x) = Tr
(
T a Aμ(x)

)
. (1.52) 

Similarly, the field strength may be decomposed as .Fμν(x) = Fa
μν(x) T a and 

.Fc
μν = ∂μAc

ν − ∂νA
c
μ + √

2 g f abc Aa
μ Ab

ν , (1.53) 

yielding .LYM = − 1
4 Fc

μν F c μν . 

QuantumChromodynamics The most important realisation of non-Abelian 
gauge field theory is Quantum Chomodynamics (QCD), the theory of the 
strong interactions, that describes the interactions of quarks and gluons in 
nature. It is built on the gauge group .SU(3). The field content consists of 8 
gauge fields known as gluons, .Aa

μ(x)(a = 1, . . . , 8), together with 6 flavours 
of quark fields, .ψI,i (.i = 1, 2, 3, and .I = 1, . . . , 6), see Table 1.2. 

The QCD Lagrangian reads 

.LQCD = i ψ̄ i
I

/Di
jψI j − mI ψ̄i

IψI i − 1
4 Fc

μν F c μν , (1.54) 

where the masses . mI span a range from 2MeV for the up-quark to 172GeV 
for the top-quark. 

Given the structure constants .f abc of a non-Abelian gauge group as in Eq. (1.46), 
one can search for representations of the group in terms of .dR × dR dimensional 
matrices .(T a

R)I
J with .I, J = 1, . . . , dR obeying 

.[T a
R, T b

R ] = i
√
2 f abc T c

R , (1.55)
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Table 1.2 The fields of QCD. Note the enormous spread in quark masses: . mt/mu = 7.9 × 105

Quarks: Up Down Charm Strange Top Bottom Gluon 

.MS mass: 2.16MeV 4.67MeV 1.27GeV 93.4MeV 172.7GeV 4.18GeV 0 

Symbol: .Ψ1,i .Ψ2,i .Ψ3,i .Ψ4,i .Ψ5,i .Ψ6,i . Aa
μ

Spin: .1/2 .1/2 .1/2 .1/2 .1/2 .1/2 1 

SU(3) rep.: 3 3 3 3 3 3 8 

with . dR denoting the dimension of the representation. So far we discussed the 
fundamental or defining representation of .SU(Nc) in the form of .Nc ×Nc Hermitian 
matrices. As .f abc is real, we see by complex conjugating Eq. (1.55) that for a 
given representation . T a

R there always exists a complex conjugate representation 
.T a

R̄
:= −T a ∗

R . Another important representation is the .(N2
c −1)-dimensional adjoint 

representation induced by the structure constants .f abc themselves. Its generators 
.(T a

A)bc are defined as 

.(T a
A)bc := −i

√
2 f abc . (1.56) 

These indeed furnish a representation of the algebra due to the Jacobi identity for 
the structure constants (1.50). The matrix indices are raised and lowered freely in 
this representation thanks to the diagonal metric in Eq. (1.47). (We also note that 
.T a

Ā
= T a

A , as  .f abc is real.) The infinitesimal transformation of the gauge fields 
following from Eqs. (1.40) and (1.45) reads 

.

δAa
μ = ∂μΘa + √

2 g f abc Θb Ac
μ

= ∂μΘa + i g Θb(T b
A)ac Ac

μ .
(1.57) 

Quarks, on the other hand, transform in the .Nc-dimensional fundamental represen-
tation 

.δψi = Θa (T a
F )i

j ψj . (1.58) 

Comparing the two, we see that gauge fields transform in the adjoint representation 
in their homogenous part. As a final comment, representations are often denoted by 
their dimensionality in boldfaced letters, e.g. for QCD the quarks are in the 3, the  
anti-quarks in the . ̄3, whereas the gluons are in the 8 of .SU(3). See [5] for further 
reading on group theoretical aspects of gauge theories.
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Exercise 1.4 (Casimir Operators) A Casimir operator is an element of a 
Lie algebra which commutes with all generators. 

(a) Prove that the quadratic operator .T aT a is a Casimir operator of .su(Nc). 
(b) By Schur’s lemma, the Casimir operator of an irreducible representation 

R must be proportional to the identity, 

.T a
RT a

R = CR 1dR
, (1.59) 

where . dR is the dimension of the representation R, and .CR is called 
(quadratic) Casimir invariant. Prove that the Casimir invariants of the 
fundamental and the adjoint representations are given by 

.CF = N2
c − 1

Nc

, CA = 2Nc . (1.60) 

For the solution see Chap. 5. 

1.4 Feynman Rules for Non-Abelian Gauge Theories 

Let us now discuss the Feynman rules for non-Abelian gauge theories. In the pure 
Yang-Mills theory we have the following explicit form of the Lagrangian (1.44): 

.

LYM = − 1
2∂μAa

ν∂
μAa ν + 1

2∂μAa
ν∂

νAμa

− gf abcAa μAb ν∂μAc
ν − 1

4 g2f abef cdeAa μAb νAc
μAd

ν .
(1.61) 

In principle, the first line of Eq. (1.61) yields the kinetic terms of the theory. 
However, due to the local gauge symmetry, we need to first fix a gauge in the 
path integral quantisation in order to not “overcount” physically-equivalent field 
configurations. A popular covariant gauge fixing function is .Ga = ∂μAa

μ. In the  
Fadeev-Popov procedure this is implemented by adding a gauge-fixing and a ghost 
term, 

.

LGF = − 1

2ξ
GaGa = − 1

2ξ
(∂μAa

μ)2 ,

LGhost = −c̄a δGa

δθb
cb = −c̄a(∂μDμc)a .

(1.62) 

where the anti-commuting field .ca(x) is referred to as the ghost and .c̄a(x) as 
the anti-ghost field. The ghost term arises from the gauge transformation of the
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gauge-fixing function: .δAa
μ = (Dμθ)a and . δG

a

δθb = ∂μδAa
μ

δθb = δa
b∂μDμ. Adding the 

gauge-fixing term .LGF to the kinetic terms of Eq. (1.61) yields an invertible kinetic 
operator. The full Langrangian then takes the form 

. Lfull QCD = i ψ̄ i
I

/Di
jψI j − mI ψ̄i

IψI i − c̄a(∂μDμc)a

− 1
2∂μAa

ν∂
μAa ν + ξ−1

2ξ (∂μAa
μ)2 (1.63) 

− gf abc Aa μ  Ab ν  ∂μAc 
ν − 1 4 g

2f abe f cde Aa μ  Ab ν  Ac 
μAd 

ν . 

QCD Feynman Rules In momentum space we therefore find the propagator 
for the gluon field 

. (1.64) 

which simplifies for the convenient choice of the gauge fixing parameter . ξ =
1 (Feynman gauge). The . i0 factor provides the Feynman prescription for the 
propagator. 

The interaction parts of the Lagrangian give rise to the three-gluon vertex 

. (1.65) 

Here all momenta are taken to be outgoing, as indicated by the arrows. 

For the four-gluon vertex we have 

. (1.66) 

(continued)
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The ghost Vertex takes the form 

. (1.67) 

Including matter in the form of Dirac fermions as in Eq. (1.54) we augment 
these rules with the fermion propagator 

. (1.68) 

and the interaction vertex 

. (1.69) 

1.5 Scalar QCD 

One may also couple massive scalar fields to gauge theory, a model known as scalar 
QCD. If we take the complex scalar .φi(x) in the representation R we have the matter 
action 

.LsQCD = [Dμφ(x)]†i [Dμφ(x)]i − m2φ
†
i φi , (1.70) 

where .[Dμφ(x)]i = ∂μφi(x) − igAa
μ(x) (T a

R)i
jφj (x). The associated Feynman 

rules are for the scalar propagator 

. (1.71) 

while we have two interaction vertices: a three-point interaction, 

. (1.72)
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with all momenta outgoing, and a four-point interaction originating from the term 
quartic in the fields in (1.70), 

. (1.73) 

Note that in the case of an adjoint scalar field (.R = A) one replaces . (T a
A)b

c =
−i

√
2 f abc in the above expressions. 

1.6 Perturbative Quantum Gravity 

The second fundamental theory of nature is Einstein’s theory of gravity. Here we 
want to discuss its perturbative quantisation. It is famously known to be a non-
renormalisable theory, which excludes it as a fundamental quantum field theory of 
nature in its present form. Yet, the modern viewpoint on the non-renormalisability 
of Einstein’s gravity is to understand it as an effective quantum field theory valid for 
energy scales below the Planck mass, see e.g. [6]. In this setting graviton scattering 
amplitudes can be computed, one needs to include counter terms order by order in 
the loop expansion. Doing so physical quantities may be extracted. In this fashion 
systematic quantum corrections to Newton’s potential, studies in a perturbative 
weak gravity (post-Newtonian or post-Minkowskian) approach to the gravitational 
two body problem for bound and scattering scenarios, or cosmological scenarios 
have been addressed. Moreover, the study of graviton scattering amplitudes has led 
to the discovery of many surprising connections to scattering amplitudes in non-
Abelian gauge theory, which we will address later in this chapter. 

Let us now discuss the perturbative quantisation of Einstein’s theory. We assume 
the reader to be familiar with classical general relativity. The gravitational field is 
given by the metric .gμν(x). The minimal coupling of gravity to matter emerges by 
replacing the flat-space Minkowski metric .ημν by .gμν(x) in the Lagrangians. This 
works fine for bosonic fields, while fermions need a special treatment.

> Einstein-Hilbert Lagrangian The dynamics of gravity is dictated by the 
Einstein-Hilbert Lagrangian 

.LEH = 2

κ2

√−g R , (1.74) 

where .g = det(gμν) and .R = gμνRμν is the Ricci scalar built from 
the Ricci tensor .Rμν that describes the curvature of space-time. The 
gravitational coupling constant . κ has inverse mass dimension one in 
four dimensions (in general D we have .[κ] = (D − 2)/2). It is related 
to Newton’s gravitational constant G via .κ2 = 32πG.
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The Ricci tensor is defined by 

.

Rμν = ∂μΓ ρ
ρν − ∂ρΓ ρ

μν + Γ ρ
μλΓ

λ
ρν − Γ ρ

ρλΓ
λ
μν ,

Γ ρ
μν = 1

2g
ρκ

(
∂μgνκ + ∂νgμκ − ∂κgμν

)
,

(1.75) 

with the affine connection .Γ ρ
μν . In perturbative quantum gravity we assume a weak 

gravitational field: the metric is flat on which small fluctuations propagate. These are 
given by the graviton field .hμν(x). Therefore, we write the metric as 

.gμν(x) = ημν + κ hμν(x) . (1.76) 

In the classical theory the graviton field .hμν represents gravitational waves.5 We 
now insert this expression for the metric into the Einstein-Hilbert action, and 
perform a power series expansion in powers of . κ and the graviton field. This is a 
weak field expansion. Let us gather the various building blocks in this expansion. 
For the inverse metric one has 

.gμν(x) = ημν − κ hμν + κ2hμαhα
ν + O(

κ3) . (1.77) 

From now on we raise and lower indices with the flat Minkowski metric . ημν . The  
further quantities entering .LEH take the following forms up to cubic order in . κ: 

. 

√−g = 1 + κ

2
h + κ2

8
(h2 − 2hαβhαβ) + O(

κ3) ,

Γ ρ
μν = κ

2
(∂μhρ

ν + ∂νh
ρ

μ − ∂ρhμν) − κ2

2
hρσ (∂μhνσ + ∂νhμσ − ∂σ hμν)

+ O(
κ3) ,

R = κ(∂2h − ∂α∂βhαβ) − κ2

2

[
hαβ(∂2hαβ + ∂α∂βh − 2∂ρ∂αhρ

β) + ∂αh∂βhαβ

− (∂αh)2 + 1
2∂γ hαβ ∂γ hαβ − ∂αhγβ ∂βhγα + total derivatives

]
+ O(

κ3) ,

(1.78) 

where .h := hα
α . Inserting these expansions into the Einstein-Hilbert 

Lagrangian (1.74) yields to leading order in . κ the expression 

.

LEH = ∂αh ∂βhαβ − ∂αhβγ ∂βhαγ − 1
2 (∂αh)2 + 1

2 (∂γ hαβ)2

+ total derivatives + O(
κ, h3

)
.

(1.79)

5 In fact the quantum field theory methods to be discussed may also be applied to this case in their 
classical limit. This has proven to be a very efficient approach, see e.g. [7–9]. 
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These quadratic terms in .hμν give rise to the kinetic term for the graviton. 
The omitted infinite series of higher powers in . κ gives rise to the graviton self 
interactions. They take the schematic form 

.LEH,int =
∞Σ

n=1

κn
[
∂2hn+2

]
, (1.80) 

where the term in brackets simply denotes the order in derivatives and fields 
encountered in this expansion. In general one finds all possible tensor structures. 
Hence, the Feynman rules for perturbative quantum gravity have vertices of all 
multiplicities. Yet, in a computation to a given order in . κ only a finite number of 
vertices enter, as the power of . κ of a vertex grows with its multiplicity. 

Gravity is invariant under general coordinate transformations, which take the 
infinitesimal form 

.xμ → xμ + ξμ(x) (1.81) 

with an arbitrary space-time dependent vector .ξμ(x). Under these coordinate 
transformations the graviton field transforms as6 

.δhμν = 2hσ(μ∂ν)ξ
σ + ξσ ∂σ hμν + 2

κ
∂(μξν) . (1.82) 

Just as in Yang-Mills theory, this local invariance necessitates a gauge fixing in 
order not to “overcount” in the path-integral over .hμν through the Fadeev-Popov 
procedure. As our transformation freedom lies in an arbitrary space-time vector 
.ξμ(x), we need to gauge fix four components of . hμν . A popular and convenient 
choice is the de Donder gauge: 

.Gμ = ∂νhμν − 1
2∂μh = 0 , (1.83) 

that we shall also employ. Note that this is the linearised version (in . κ) of the  
harmonic coordinate choice .gμνΓ ρ

μν = 0, frequently used in general relativity. 
The gauge fixing term to be added to the Lagrangian takes the form7 

.LGF = GμGμ = ∂νhμν ∂ρhμ
ρ + 1

4 (∂μh)2 − ∂νhμν ∂μh . (1.84)

6 Recall that we symmetrise with unit weight .a(μbν) := (aμbν + aνbμ)/2. 
7 In analogy to the gauge theory discussion around Eq. (1.62), with suitable choice of gauge-fixing 
parameter .ξ = −1/2. 
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Adding this to .LEH then cancels the first two terms in Eq. (1.79) and yields a nice, 
invertible quadratic term: 

.

LEH|h2 +LGF = − 1
2hαβ ∂2hαβ + 1

4 h ∂2h

= − 1
2hαβ

[
ηα(γ ηδ)β − 1

2η
αβηγ δ

]
' '' '

= Iαβ,γ δ

∂2hγ δ . (1.85) 

1.7 Feynman Rules for Perturbative Quantum Gravity 

Going to momentum space and inverting the differential operator .Iαβγ δ∂2 of 
Eq. (1.85) leads us to the graviton propagator 

. (1.86) 

One indeed verifies that .Iαβ,γ δ Pγ δ,ρκ = δα
(ρδ

β

κ). The graviton self-interaction 
vertices take an involved structure due to a proliferation of indices. For example, 
we exhibit the three-graviton vertex [10] 

. 

(1.87) 

where “. sym” means symmetrisation in the index pairs .(μα), .(νβ) and .(ργ ). 
The symbol . Pn denotes the symmetrisation in the momentum-index combinations 
.(k1μα, k2νβ, k3ργ ) associated with the three legs and results in n distinct terms. 
For example the first term above evaluates to 

. sym1
2P3(k1 · k2ημνηαβηργ ) = 1

2 (k1 · k2ημ(νηβ)αηργ + k2 · k3ην(ρηγ )βημα

+ k3 · k1ηρ(μηα)γ ηνβ) . (1.88) 

The higher-point vertices take the schematic structure 

. (1.89)
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and grow considerably in size. E.g. the four-graviton vertex consists of 60 distinct 
terms, see [10] for its explicit form. Through the Fadeev-Popov procedure one also 
picks up a ghost sector. The local symmetry transformations are now the general 
coordinate transformations given in Eq. (1.81). Hence, the gravity ghosts carry a 
vector index: .bν(x) and .b̄μ(x). The ghost contribution to the Lagrangian takes the 
form 

.LGH = −b̄μ

(
κ

δGμ

δξν

)
bν . (1.90) 

From the de Donder gauge-fixing function of Eq. (1.83) one deduces the differential 
operator in the ghost sector 

. κ
δGμ

δξν
= ημν∂

2 + κ
[
∂ρhμν∂ρ + ∂ρhνρ∂μ + ∂ρ(∂νhμρ) − ∂μhνρ∂ρ − 1

2∂μ(∂νh)
]
,

(1.91) 

where the first term gives rise to the kinetic term of the ghost fields, yielding the 
propagator 

. (1.92) 

The remaining terms yield a graviton-ghost-anti-ghost interaction vertex, 

. (1.93) 

However, ghosts will play no role in the modern approaches to scattering 
amplitudes developed in these lecture notes. Therefore we do not need to spell out 
this involved vertex here. 

1.8 Spinor-Helicity Formalism for Massless Particles 

In this section we will introduce a formalism that efficiently captures the kinematical 
data of the scattering states in the S-matrix: the momenta and polarisations of 
the scattered particles. The spinor-helicity variables allow one to express this data 
(momenta and helicities) for a massless particle in a uniform object thereby guaran-
teeing the on-shell conditions. In fact, the scattering amplitudes involving massless 
scalars, fermions, gluons, photons and gravitons expressed in these variables take 
very compact forms.
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The starting point is to rewrite the four-momentum . pμ as a bi-spinor .pα̇α that we 
may represent as a .2 × 2 matrix 

.pμ → pα̇α = σ̄ α̇α
μ pμ =

(
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)
, (1.94) 

where .σ̄ α̇α
μ = (1,+σ ), cf. Exercise 1.1. The determinant of this matrix is given by 

.det
(
pα̇α

) = (
p0)2 − p2 = p2 , (1.95) 

where .p = (p1, p2, p3) is the spatial momentum vector. If we put the momentum 
. pμ on the mass shell, i.e. .p2 = m2, we see that the determinant equals . m2. Hence, 
there is a distinction between the massive and massless case. In the massive case the 
hermitian .2× 2 matrix .pα̇α has rank 2 and may be decomposed into the sum of two 
outer products of commuting Weyl spinors, 

.pα̇α = λ̃α̇λα + μ̃α̇μα , (1.96) 

with complex conjugates .λ̃ = ±λ∗ and .μ̃ = ±μ∗. In the massless case—which 
we are mostly interested in—the determinant of .pα̇α vanishes, and hence the matrix 
.pα̇α has rank one. 

Helicity Spinors In the massless case we may then write the light-like 
momentum as a direct product of two conjugate spinors: 

.pα̇α = λ̃α̇λα . (1.97) 

These are the helicity spinors associated to the light-like momentum . pμ. They  
are commuting (Graßmann even) Weyl spinors in the .(1/2, 0) and . (0, 1/2)
representations, respectively. The reality of . pμ implies the hermiticity of . pα̇α , 
which in turn implies the conjugation property .(λα)∗ = ±λ̃α̇ . In fact, the sign 
may be related to the sign of the energy . p0. An explicit realisation of the 
helicity spinors associated to the real momentum . pμ is given by 

. λα = 1/
p0 + p3

(
p0 + p3

p1 + ip2

)
, λ̃α̇ = 1/

p0 + p3

(
p0 + p3

p1 − ip2

)
.

(1.98) 

Note that indeed .
/

p0 + p3 is real (imaginary) for positive (negative) . p0 as 
claimed above due to the constraint .|p0| ≥ |p3|, which follows from the on-
shell condition.
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The spinor indices are raised and lowered with the antisymmetric Levi-Cevita 
tensors . εαβ and . εα̇β̇ : 

.λα := εαβλβ , λ̃α̇ := εα̇β̇ λ̃β̇ . (1.99) 

In a scattering amplitude involving n massless particles we have n momenta . pμ
i

(.i = 1, . . . , n), and hence n pairs of helicity spinors .{λα
i , λ̃α̇

i }. Out of these we may 
assemble Lorentz invariant quantities: 

.

<λi, λj > := λα
i λj α = εαβλα

i λ
β
j = −<λj , λi> = <ij > ,

[λ̃i , λ̃j ] := λ̃i α̇ λ̃α̇
j = −εα̇β̇ λ̃α̇

i λ̃
β̇
j = −[λ̃j , λ̃i] = [ij ] .

(1.100) 

Note the opposite index contraction convention between the un-dotted (NW-SE) 
and dotted (SW-NE) spinors. The Mandelstam invariants .sij = 2pi · pj may then 
be written as 

. <ij >[ji] = pα̇α
i pj αα̇ = εα̇β̇εαβpα̇α

i p
β̇β
j = εα̇β̇εαβ σ̄ α̇α

μ σ̄ β̇β
ν' '' '

2ημν

p
μ
i pν

j = 2pi · pj = sij ,

(1.101) 

where we used that .Tr (σμσ̄ ν) = 2 ημν (see Exercise 1.1). 
The representation theory of the Poincaré group teaches us that massless particles 

with spin carry a Lorentz-invariant quantity, the helicity h, which is the projection 
of the particle’s spin onto their direction of motion. It takes values .h = ±s for a 
particle of spin s. The Dirac equation for positive energy .u(p) and negative energy 
.v(p) solutions 

.(/p − m)u(p) = 0 , (/p + m)v(p) , (1.102) 

degenerates in the massless limit to ./pu(p) = 0 = /pv(p), in which .u(p) and . v(p)

may be identified. Projecting onto definite helicity states 

.u± = 1
2 (1 ± γ5)u(p) , v∓ = 1

2 (1 ± γ5)v(p) , (1.103) 

allows for the identification .u±(p) = v∓(p). On-shell massless spin-. 1/2 states may 
then be labeled as .|λi, λ̃i ,±1/2>, reflecting both momentum and helicity. Using the 
helicity spinors and the chiral representation of the Dirac matrices,8 the massless

8 Note that .(σμ)αβ̇ = εαβεβ̇α̇(σ̄ μ)α̇β . 
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Dirac operator in momentum space reads 

. /p = pμγ μ = pμ

(
0 (σμ)αβ̇

(σ̄ μ)α̇β 0

)
=

(
0 pαβ̇

pα̇β 0

)
=

(
0 λαλ̃β̇

λ̃α̇λβ 0

)
.

(1.104) 

The helicity spinors may then be identified with the solutions to the massless Dirac 
equation as 

. u+(p) = v−(p) =
(

λα

0

)
=: |λ> u−(p) = v+(p) =

(
0
λ̃α̇

)
=: |λ̃] ,

(1.105) 

which obey ./pu±(p) = 0 as .λβλβ = 0 = λ̃β̇ λ̃β̇ . The conjugate spinors . ̄u = u†γ 0

then take the form 

.

ū+(p) = v̄−(p) = (
λ∗

α 0
) (

0 1

1 0

)
= (

0 λ̃α̇

) =: [λ̃| ,

ū−(p) = v̄+(p) = (
0 λ̃α̇ ∗) (

0 1

1 0

)
= (

λα 0
) =: <λ| .

(1.106) 

In the above we introduced a crafty bra-ket notation that we shall use frequently 
from now on. In this way we may rewrite Eq. (1.104) in an index-free notation as 

./p = |λ>[λ̃| + |λ̃]<λ| , (1.107) 

for an on-shell light-like momentum . pμ. This makes the relations ./p|λ> = 0 and 
./p|λ̃] = 0 manifest, i.e. the helicity spinors . λα and . ̃λα̇ solve the massless Dirac 
equation. 

Were we to consider a massive or off-shell momentum—represented by two 
helicity spinors as done in Eq. (1.96)—we could write 

./p = |λ>[λ̃| + |λ̃]<λ| + |μ>[μ̃| + |μ̃]<μ| . (1.108) 

Notation wise, in the context of scattering amplitudes we often just write the particle 
number label in the brackets and drop the . λ’s, e.g. for the ith particle 

.|λi> = |i> , |λi] = |i] , (1.109) 

or use the on-shell momentum itself as the label, e.g. 

./p = |p>[p| + |p]<p| . (1.110)
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Note that the quantities .<i|j ] and .[i|j > vanish. We then deduce the relations 

.<i|/p|j > = 0 = [i|/p|j ] but [i|/p|j > = <j |/p|i] , (1.111) 

that also hold true for an off-shell . pμ using Eq. (1.108). Stripping off the . pμ in the 
second relation allows us to define a four-vector object .<i|γ μ|j ] = [j |γ μ|i>. Using  
the notation of Eq. (1.110) we have  

.<p|γ μ|p] = 2pμ = [p|γ μ|p> . (1.112) 

For redirecting momenta we define 

.| − p> = i|p> , | − p] = i|p] , (1.113) 

which is also consistent with Eq. (1.98). 
We note that the four-vector . pμ in Eq. (1.97) does not completely fix the spinor-

helicity variables . λα and . ̃λα̇ , as the rescaling 

.λα → e−iϕλα , λ̃α̇ → e+iϕλ̃α̇ , (1.114) 

leaves .pα̇α = λ̃α̇λα and therefore also . pμ invariant. This rescaling freedom is 
known as the little group: a rotation that leaves the momentum invariant. 

There exist a number of important identities for a set of helicity spinors . {λi, λ̃i}
(.i = 1, . . . , n) parametrising an n-point scattering amplitude that we would like to 
collect: 

1. Mandelstam invariants: 

.2pi · pj = [ij ]<ji> . (1.115) 

2. Schouten identity: 

.<λ1λ2>λα
3 + <λ2λ3>λα

1 + <λ3λ1>λα
2 = 0 , (1.116) 

and similarly for the . ̃λi’s. This identity simply reflects the fact that one cannot 
have a completely anti-symmetric three-tensor in two-dimensions. 

3. Total momentum conservation 

.

nΣ
i=1

<ai>[ib] = 0 , (1.117) 

for any . a, b. This holds if the n helicity spinors parameterise the external states 
of a scattering amplitude with total momentum conservation .

Σn
i=1 p

μ
i = 0. Note
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that in our convention we take the momenta of all legs in a scattering amplitude 
to be outgoing. 

4. Fierz rearrangement: 

.[i|γ μ|j > [k|γμ|l> = 2 [ik] <lj > . (1.118) 

5. Complex conjugation: due to the definition in Eq. (1.100) we have  

.<ij >∗ = [ji] , [ij ]∗ = <ji> . (1.119) 

Exercise 1.5 (Spinor Identities) Prove the following identities: 

(a) .[i|γ μ|j > = (λ̃i)α̇(σ̄ μ)α̇α(λj )α , 
(b) .<i|γ μ|j ] = λα

i (σμ)αα̇λ̃α̇
j , 

(c) .[i|γ μ|i> = <i|γ μ|i], 

(d) .<i|γ μ|i] = 2pμ
i , 

(e) the Schouten identity (1.116), 
(f) the Fierz rearrangement (1.118). 

For the solution see Chap. 5. 

Exercise 1.6 (Lorentz Generators in the Spinor-Helicity Formalism) 

(a) Prove that the Lorentz generators in the scalar representation take the 
following form in momentum space, 

.M̃μν = i

(
pμ ∂

∂pν

− pν ∂

∂pμ

)
. (1.120) 

(b) The Lorentz generators in the helicity-spinor formalism come in two 
pairs of symmetric tensors .mαβ and .mα̇β̇ originating from the projections 

.mαβ = (
S

μν
L

)
αβ

M̃μν and .mα̇β̇ = (
S

μν
R

)
α̇β̇

M̃μν , where .S
μν
L and 

.S
μν
R are the .2 × 2 representation matrices for the .(1/2, 0) and . (0, 1/2)

representations, respectively. .Sμν
L is given by Eq. (1.14), and . Sμν

R =
i (σ̄ μσ ν − σ̄ νσμ) /4. Show that 

.mαβ = λα

∂

∂λβ
+ λβ

∂

∂λα
, mα̇β̇ = λ̃α̇

∂

∂λ̃β̇
+ λ̃β̇

∂

∂λ̃α̇
, (1.121) 

where .pα̇α = λ̃α̇λα . 

(continued)



1.9 Polarisations of Massless Particles of Spin 1
2 , 1 and 2 27

(c) The representation of the Lorentz generators on a function of n momenta 
. pi (.pα̇α

i = λ̃α̇
i λα

i ) is obtained by summing over all single-momentum 
generators. Use the appropriate Lorentz generators to show that the 
following quantities are Lorentz invariant: . <ij >, . [ij ], . sij . 

For the solution see Chap. 5. 

1.9 Polarisations of Massless Particles of Spin 1 2 , 1 and 2  

External states in scattering amplitudes are parameterised by their momenta and 
polarisations. We now analyse the polarisations of massless particles of spin . 12 , 1  
and 2, and how they may be expressed via the helicity spinors. We recall that scalar 
states do not have polarisations.

> Spin . 12 The polarisations for massive fermions and anti-fermions are 
captured by the positive .u(p) and negative .v(p) energy Dirac-spinors, 
which we saw coincide in the massless case. Spin-. 12 states of definite 
helicities .± 1

2 are obtained by the projections . u± of Eq. (1.103), which 
coincide with . |λ> and . |λ̃] as we saw in Eq. (1.105). In our convention all 
momenta are outgoing, therefore . |λ> and . <λ| represent . − 1

2 helicity states 
(or outgoing anti-fermions) whereas . |λ̃] and . [λ̃| represent .+ 1

2 helicity 
states (or outgoing fermions). This observation allows us to introduce 
the helicity generator: 

.h = 1

2

nΣ
i=1

[
−λα

i

∂

∂λα
i

+ λ̃α̇
i

∂

∂λ̃α̇
i

]
. (1.122) 

In fact .h λα
i = − 1

2λ
α
i and .h λ̃α̇

i = 1
2 λ̃

α̇
i , so  h measures the helicity. This 

is the reason why we call . λ and . ̃λ helicity spinors. They capture both 
the momentum and polarisation of an external scattering state thereby 
guaranteeing the on-shell conditions.

> Spin .s = 1 Gauge fields may have the helicities .h = ±1. Their  
polarisation vectors are denoted by .ε

μ
±(p) and obey the relations 

.

ε
μ
±(p)∗ = ε

μ
∓(p) , p · ε±(p) = 0 ,

ε+(p) · ε−(p) = −1 , ε+(p)2 = ε−(p)2 = 0 .
(1.123)
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The polarisation vectors may be expressed as bi-spinors using the 
spinor-helicity variables associated with the momentum p (. pαα̇ =
λαλ̃α̇) as  

.εαα̇+,i = −√
2

λ̃α̇
i μα

i

<λiμi> , εαα̇−,i = √
2

μ̃α̇
i λα

i

[λ̃i μ̃i]
. (1.124) 

One directly checks the properties of Eq. (1.124) in this representation. 
We also find .h εαα̇±,i = ±εαα̇±,i , hence the helicity assignments check. 
The spinor pair . μi , . μ̃i appearing in the above are arbitrary reference 
spinors needed to define the polarisations. They parameterise a light-
like reference momentum .ri = μiμ̃i associated to every leg . i =
1, . . . , n in a scattering amplitude. The only condition on the reference 
spinors is that they are nor parallel to . λi an . ̃λi : 

.μi /= cλi , μ̃i /= c∗λ̃i . (1.125) 

Moreover, we see from Eq. (1.124) that .ε±,i · ri = 0. 

Exercise 1.7 (Gluon Polarisations) 

(a) Show that the properties in Eq. (1.123), together with the gauge choice 
.ε±,i · ri = 0 (with .r2i = 0), lead to the representation of Eq. (1.124). Hint: 
expand the polarisation vector in a basis constructed from the spinors 
associated with .pα̇α

i and . ri . 
(b) Verify that the representation Eq. (1.124) fulfils the polarisation sum rule 

.

Σ
h=±

ε
μ
h,iε

∗ν
h,i = −ημν + p

μ
i rν

i + pν
i r

μ
i

pi · ri
. (1.126) 

For the solution see Chap. 5. 

The appearance of the reference spinors . μi and . μ̃i with associated reference 
momentum .rαα̇

i
:= μα

i μ̃α̇
i in the polarisation vectors corresponds to the freedom of 

performing local gauge transformations of the gauge field. To see this let us compute 
the infinitesimal change of the polarisation .εαα̇+ induced by an infinitesimal shift of
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the reference spinor .μ → μ + δμ: 

. δεαα̇+ = −√
2

(
λ̃α̇ δμα

<λμ> − λ̃α̇ μα <λ δμ>
<λ μ>2

)

= −√
2

λ̃α̇

<λ μ>2 (δμα <λ μ> − μα̇ <λ δμ>)' '' '
=λα <μδμ>

= pαα̇

(√
2

<δμμ>
<λ μ>2

)
= pαα̇ ξ(p, μ, δμ) , (1.127) 

where we used Schouten’s identity (1.116) in step two. We see that the induced 
change of the polarisation vector . εμ

+ is a gauge transformation .δεμ = pμξ . By  
transversality of the amplitude this implies the invariance under the shift . μ → μ +
δμ. Therefore the amplitude depends only on .{λi, λ̃i , hi = ±1}, and we may freely 
choose the reference spinors . μi and . μ̃i for every leg at our convenience—reflecting 
the local gauge invariance of the theory.

> Spin .s = 2 The polarisation of a graviton has the helicities .h = ±2 and 
is captured by a symmetric rank-two tensor .ε

μν
++/−−(p). It is transverse 

.pμε
μν
++/−−(p) = 0 , (1.128) 

and may be chosen to be traceless .ημνε
μν
++/−−(p) = 0. A very conve-

nient parametrisation is given by doubling the gauge field polarisations: 

.ε
μν
++(p) = ε

μ
+(p) εν+(p) , ε

μν
−−(p) = ε

μ
−(p) εν−(p) . (1.129) 

In this way the above properties of transversality and tracelessness are 
consequences of the properties of the vector polarisations .εμ

±(p) in 
Eq. (1.123). 

It is then straightforward to translate this into helicity spinor vari-
ables. We now have the spin-tensors 

.ε
αβα̇β̇
++ = εαα̇+ ε

ββ̇
+ , ε

αβα̇β̇
−− = εαα̇− ε

ββ̇
− , (1.130) 

using the polarisation bi-spinors of the gauge fields Eq. (1.124). 

Again we have reference spinors . μi and . μ̃i for each leg. The amplitude does not 
depend on this choice, and one may show that under a shift .μ → μ + δμ the 
graviton polarisation transforms as 

.εμν → ε'
μν = εμν + 2p(μξν) , (1.131)
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by virtue of the same argument as in Eq. (1.127). This change of course leaves the 
amplitude invariant. 

1.10 Colour Decompositions for Gluon Amplitudes 

Let us now focus on non-Abelian gauge field theories and the management of colour. 
The tools to be developed will allow us to disentangle the colour degrees of freedom 
from the kinematic ones. There are two such formalisms for an efficient colour 
management which we shall discuss: the trace based, and the structure constant 
based formalism. Focussing on .SU(Nc) gauge theories coupled to matter, one 
mostly encounters two representations of the gauge group: 

• Adjoint representation: gluons . Aa
μ carry adjoint indices .a − 1, . . . , N2

c − 1; 
• Fundamental & anti-fundamental representation: fermions and scalars carry 

fundamental indices .i = 1, . . . , Nc and .ī = 1, . . . , Nc. 

As discussed above, the generators of the .SU(Nc) algebra in the fundamental 
representation are .Nc×Nc hermitian, traceless matrices .(T a)i

j . We recall Eq. (1.48) 

.f abc = − i√
2
Tr

(
T a[T b, T c]) , (1.132) 

or .[T a, T b]=i
√
2f abcT c, with .Tr(T aT b)=δab. Moreover, we have the . SU(Nc)

identity of Eq. (1.51), 

.(T a)i1
j1 (T a)i2

j2 = δi1
j2 δi2

j1 − 1

Nc

δi1
j1 δi2

j2 , (1.133) 

which will be important for the trace based decomposition. It can be understood 
as a completeness relation for a basis of Hermitian matrices spanned by .{1, T a}. 
Introducing a graphical representation for the structure constants and generators via 

. (1.134) 

one may illustrate these two relations as in Fig. 1.1. 
Moreover, we recall the Jacobi identity for the structure constants of Eq. (1.50), 

.f abef ceg + f bcef aeg + f caef beg = 0 , (1.135) 

which we shall put to use in the structure constant based formalism.
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Fig. 1.1 Graphical representation of Eqs. (1.132) and  (1.133) using (1.134) for the generators 

1.10.1 Trace Basis 

A look at the QCD Feynman rules of Sect. 1.4 tells us that the colour dependence 
of a given Feynman graph arises from its vertices. The three-gluon vertex in 
Eq. (1.65) carries one structure constant .f abc, whereas the four-gluon vertex in 
Eq. (1.66) contains two .f abc’s. Coupling to matter, the quark-anti-quark-gluon 
vertex Eq. (1.69) comes with a generator .(T a)i

j . In order to work out the colour 
dependence of a given Feynman diagram in the trace basis, we replace all 
structure constants appearing in it by the trace formula (1.132). This transforms the 
expression to products of generators .(T a)i

j with contracted and open indices. Open 
fundamental indices .(i, j) correspond to external quark lines in the diagram, open 
adjoint indices . (a) to the external gluon states. Contracted adjoint indices can be 
used to merge traces and products of generators by repeatedly applying the . SU(Nc)

identity (1.133): 

.(A T aB)i
j (C T aD)k

l = (AD)i
l (C B)k

j − 1

Nc

(AB)i
j (C D)k

l , (1.136) 

where .A,B,C and D are arbitrary .Nc×Nc matrices made of products of generators. 
By iterating this procedure we arrive at a final expression of traces and strings of 
generators . T a’s with only open adjoint and fundamental indices corresponding to 
the external states. They take the generic form 

. Tr(T a1 · · · T an) . . .Tr(T b1 · · · T bm) (T c1 · · · T cp )i1
j1 . . . (T d1 · · · T dp)is

js .

(1.137) 

For pure gluon amplitudes there is a further simplification: in pure Yang-Mills 
theory the interaction vertices of the .SU(Nc) and .U(Nc) gauge groups are identical, 
as .f 0bc =0 due to Eq. (1.132) where .T 0 = 1/

√
Nc is the .U(1) generator. Hence, the 

.1/Nc part in the relation (1.136), responsible for tearing apart traces, is not active 
here. In conclusion, tree-level gluon amplitudes reduce to a single-trace structure,
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Fig. 1.2 Some of the possible poles in a colour-ordered Feynman diagram 

and can be brought into the colour-decomposed form 

. Atree
n ({ai, hi, pi}) =

Σ
σ∈Sn/Zn

Tr(T aσ1 T aσ2 · · · T aσn ) Atree
n (σ1, σ2, . . . , σn) .

(1.138) 

Here . hi denote the helicities and . ai the adjoint colour indices of the external 
states, and we use the compact notation .σ = {pσ , hσ } in the argument of the 
.Atree

n . The latter are called partial or colour-ordered amplitudes and carry all 
kinematic information. Moreover, .Sn/Zn is the set of all non-cyclic permutations 
of n elements, which is equivalent to .Sn−1. Therefore for an n-particle amplitude 
we have .(n − 1)! distinct colour-ordered amplitudes in the trace basis. For example 
in the four-point case we find 

. 

Atree
4 = Tr(T a1T a2T a3T a4)Atree

4 (1, 2, 3, 4) + Tr(T a1T a3T a4T a2) Atree
4 (1, 3, 4, 2)

+ Tr(T a1T a4T a2T a3)Atree
4 (1, 4, 2, 3)+Tr(T a1T a2T a4T a3)Atree

4 (1, 2, 4, 3)

+ Tr(T a1T a4T a3T a2)Atree
4 (1, 4, 3, 2)+Tr(T a1T a3T a2T a4)Atree

4 (1, 3, 2, 4).
(1.139) 

This is the promised separation of colour and kinematical degrees of freedom. The 
colour ordered amplitudes . An are simpler than the full amplitudes . An, as they are  
individually gauge invariant. This is due to the fact that any shift of a polarisation 
.εi → pi in (1.138) will lead to a vanishing left-hand side for . An. On the right-hand 
side the colour factors form a linearly independent basis, hence the individual factors 
of . An need to vanish individually. In addition, they exhibit poles only whenever 
cyclically adjacent momenta go on-shell, .(pi + pi+1 + · · · + pi+s)

2 → 0, see  
Fig. 1.2. This property will be exploited in Chap. 2.
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For tree-level gluon-quark-anti-quark amplitudes with a single quark line one has 

. 

Atree
n,qq̄

(
{ai, hi, pi}|

{
i, q

hq1
1 , j, q̄

hq2
2

})
=

Σ
σ∈Sn−2

(T aσ1 · · · T aσn−2 )i
j

× Atree
n,qq̄

(
σ1, . . . , σn−2|qhq1

1 , q̄
hq2
2

)
.

(1.140) 

Increasing the number of quark lines to .m > 1 yields a more involved structure, 
as more strings and factors of .1/Nc appear. Here the m quark lines will yield m 
products of strings in T -matrices, .(T a1 T a2 · · · T ar )is

js , where the adjoint indices 
are either contracted with an outer gluon leg or connect to another quark line. Using 
the .SU(Nc) identity (1.136) for these internal contractions leads to a final basis 
of m products of open T -matrix strings with only external adjoint indices. The 
general construction of this colour-decomposition is rather involved and we shall 
not discuss it here. We refer to [11–14] for a detailed analysis. In this case, some 
of the colour factors also include explicit factors of .1/Nc stemming from the last 
term in Eq. (1.136). Nevertheless, all of the kinematical dependencies can still be 
constructed from suitable linear combinations of the partial amplitudes for external 
quarks, anti-quarks and external gluons generated by the colour-ordered Feynman 
diagrams. Hence, the partial amplitudes are the atoms of gauge-theory scattering 
amplitudes. 

At loop level, pure gluon amplitudes contain also multi-trace contributions 
arising from the merging performed using Eq. (1.133). For example, at one loop 
one has 

. 

A1-loop
n ({ai, hi, pi}) = Nc

Σ
σ∈Sn/Zn

Tr(T aσ1 T aσ2 · · · T aσn ) A
(1)
n;1(σ1, . . . , σn)

+
[n/2]+1Σ

i=2

Σ
σ∈Sn/Zn

Tr(T aσ1 · · · T aσi−1 ) Tr(T aσi · · · T aσn ) A
(1)
n;i (σ1, . . . , σn) ,

(1.141) 

where the .A
(1)
n;1 are called the primitive (colour-ordered) amplitudes, and the . A

(1)
n;c>1

are the higher primitive amplitudes, . [n] is the lower integer part of n. The latter 
can be expressed as linear combinations of the primitive ones [15]. In the large-. Nc

limit the single-trace contributions are enhanced: one speaks of the leading-colour 
contributions. In colour-summed cross sections, which are of interest for computing 
collider physics observables, the contribution of the higher primitive amplitudes is 
suppressed by a factor of .1/N2

c .
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Fig. 1.3 Typical colour tree 
in a structure constant based 
expansion 
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1.10.2 Structure Constant Basis 

An alternative basis for the colour decomposition of pure-gluon amplitudes employs 
the structure constants .f abc and is due to Del Duca, Dixon and Maltoni (DDM) [16]. 
To begin with, we consider the colour dependence of an n-gluon tree amplitude. This 
may be represented as a sum over only tri-valent graphs with vertices linear in .f abc. 
In order to reach this tri-valent representation we artificially “blow” up a four-valent 
gluon vertex to sums of products of tri-valent vertices. This is done by multiplying 
it by .1 = q2/q2 where .i/q2 is the “blown up” propagator. Concretely, if we go back 
to the Feynman rule of Eq. (1.66) for the four-gluon vertex, we rewrite 

.f abef cde = f abe δef (pa + pb)
2

(pa + pb)2
f cdf , (1.142) 

where . pa(. pb) is the momentum flowing into leg a (b), and analogously for the other 
two ff -terms. The resulting structure will then be a trivalent tree as in Fig. 1.3. 

Now we use the Jacobi identity (1.50) for the structure constants, 

. (1.143) 

in order to successively shrink branched trees to branchless ones, resulting in a final 
“half-ladder” expression. The shrinking of a branched tree is thereby performed via 
the operation 

. (1.144)
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Fig. 1.4 Half-ladder form 

In summary, one may colour-reduce any diagram, e.g. as depicted in Fig. 1.3, to the  
“half-ladder” structure shown in Fig. 1.4. In this way we can completely reduce an 
amplitude to a sum of colour-ordered amplitudes in the half-ladder basis in colour 
space: 

. 

Atree
n ({ai, hi, pi})=Σ

σ∈Sn−2

f a1aσ2e1 f e1aσ3e2 f e2aσ4e3 · · · f en−3aσn−1anAtree
n (1, σ2, . . . , σn−1, n) ,

(1.145) 

where we now sum over the permutations . σ of the .n−2 elements .{2, 3, . . . , n − 1}. 
The half-ladder colour basis fixes two (arbitrary) legs, here 1 and n, see Fig. 1.4. 

In consequence, the DDM basis consists of .(n − 2)! independent partial ampli-
tudes. This is to be contrasted with the .(n − 1)! partial amplitudes that we found in 
the trace basis. Hence, there must exist non-trivial identities between colour-ordered 
amplitudes allowing one to reduce the basis accordingly. These are known as Kleiss-
Kuijf relations [17], and take the form 

.Atree
n (1, {α}, n, {β}) = (−1)nβ

Σ
σ∈αuuβT

Atree
n (1, σ, n) , (1.146) 

where . nβ denotes the number of elements in the set . β, and . βT is the set . β with 
reversed ordering. The shuffle or ordered permutation .αuuβT of the two sets merges 
. α and .βT while preserving the individual orderings of . α and . βT. An example 
illustrates this: 

. {12}uu{34}T = {1243} + {1423} + {1432} + {4123} + {4312} + {4132} .

In fact, one can prove the Kleiss-Kuijf relations (1.146) by rewriting the DDM basis 
in terms of the trace basis discussed above. 

It turns out that there exists a further non-trivial identity between colour-ordered 
amplitudes, allowing one to further reduce the basis of colour-ordered (or partial)
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amplitudes to .(n − 3)! independent elements. This is due to the Bern-Carrasco-
Johansson relation [18,19], to be discussed in Chap. 2.7. It takes the schematic form 

.Atree
n (σ1, . . . , σn) =

Σ
ρ∈Sn−3

K(σ)
ρ Atree

n (1, 2, ρ3, . . . , ρn−1, n) , (1.147) 

with coefficients .K(σ)
ρ depending on the external momenta. Finally, we note that 

there is also a useful generalisation of the DDM basis to include fundamental matter 
that we will not discuss here, see [20, 21]. 

Colour-Ordered Feynman Rules One may write down colour-ordered 
Feynman rules that generate the colour-ordered (partial) amplitudes upon 
stripping off the colour factors from the usual Feynman rules. This is trivial 
for the gluon and quark propagators (working in Feynman gauge): 

. (1.148) 

To obtain the colour-ordered vertex rules one inserts into the standard 
Feynman rules of Sects. 1.4 and 1.5 the trace expression (1.132) for .f abc, and 
together with the identity (1.133) reduces everything to a string of generators. 
Extracting only a single ordering of the . T a’s then yields the colour-ordered 
vertices: 

. 

(1.149)
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Similarly, in the scalar QCD sector we have the propagator 

. (1.150) 

and the vertices 

. (1.151) 

Exercise 1.8 (Colour-Ordered Feynman Rules) Derive the form of the 
colour-ordered four-gluon vertex in Eq. 1.149 from the Feynman rules of 
Eq. (1.66). For the solution see Chap. 5.

> General Properties of Colour-Ordered Amplitudes Due to the 
factorisation of the colour degrees of freedom, the partial or colour-
ordered amplitudes are individually gauge invariant. Next to the 
Kleiss-Kruif (1.146) and Bern-Carrasco-Johansson (1.147) relations, 
they obey further general properties which reduce considerably the 
number of independent structures. We list them below, denoting by 
.A(1, 2, . . . , n) the colour-ordered amplitudes, where the argument i 
refers to a colour-ordered gluon, while a quark (anti-quark) leg is 
denoted by . iq (. iq̄ ). 

1. Cyclicity: 

.A(1, 2, . . . , n) = A(2, . . . , n, 1) , (1.152) 

which follows from the cyclicity of the trace and the definition of 
Eq. (1.138). 

2. Parity: 

.A(1̄, 2̄, . . . , n̄) = A(1, 2, . . . , n)

|||<ij>→[ji],[ij ]→<ji> . (1.153) 

Here the bar over the particle number denotes the inversion of the 
particle’s helicity. Note the flip in the helicity spinor brackets under 
parity. 

3. Charge conjugation: 

.A(1q, 2q̄ , 3, . . . , n) = −A(1q̄ , 2q, 3, . . . , n) , (1.154)
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that is, flipping the helicity of a quark line changes the sign of the 
amplitude. This descends from the colour-ordered gluon-quark-anti-
quark vertex above. 

4. Reflection: 

.A(1, 2, . . . , n) = (−1)n A(n, n − 1, . . . , 1) . (1.155) 

This relation follows from the anti-symmetry of the colour-ordered 
gluon vertices under reflection of all legs. It also holds in the presence 
of quark lines but only at tree level. 

5. Photon or .U(1) decoupling identity: 

.

Σ
σ∈Zn−1

A(σ1, . . . , σn−1, n) = 0 , (1.156) 

where .σ = {σ1, . . . , σn−1} are cyclic permutations of . {1, 2, . . . , n −
1}. This powerful identity follows from Eq. (1.138) and the fact that 
a gluon amplitude with a single photon vanishes since .f 0bc=0. Here  
0 is the colour index of the .U(1) generator .T 0 = 1/

√
Nc. 

6. We restate the Kleiss-Kuijf relations [17] of Eq. (1.146), 

.Atree
n (1, {α}, n, {β}) = (−1)nβ

Σ
σ∈αuuβT

Atree
n (1, σ, n) , (1.157) 

which may be derived by the transition from the DDM basis to the 
trace basis. 

7. Finally, there is a final set of relations emerging from the double 
copy or Bern-Carrasco-Johansson [18] duality between graviton and 
gluon amplitudes: 

. 

n−1Σ
i=2

p1 · (p2 + . . . + pi)Atree
n (2, . . . , i, 1, i + 1, . . . , n) = 0 .

(1.158) 

This we will discuss in the later Sect. 2.7 but quote already for 
completeness. 

In summary there are .(n − 1)! independent colour-ordered gluon 
amplitudes of multiplicity n.
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Exercise 1.9 (Independent Gluon Partial Amplitudes) Use the above rela-
tions amongst the colour-ordered amplitudes to determine the independent 
set of colour-ordered amplitudes for four- and five-gluon scattering. For the 
solution see Chap. 5. 

1.11 Colour-Ordered Amplitudes 

Let us now begin with the actual evaluation of the first pure gluon tree-amplitudes 
using the colour-ordered Feynman rules and the spinor-helicity formalism. In fact, 
we will see that large classes of gluon helicity amplitudes vanish! 

1.11.1 Vanishing Tree Amplitudes 

Let us restrict to tree-level amplitudes with multiplicities .n > 3 here, as there are 
subtleties for the three-point gluon amplitudes to be discussed later. Our freedom to 
choose an arbitrary light-like reference momentum .rα̇α

i = μα
i μ̃α̇

i in the definition of 
the gluon polarisation vectors .ε±,i in Eq. (1.124) for  every leg  may be used to show  
that entire classes of helicity gluon amplitudes vanish. 

Using Eq. (1.124) we find the polarisation vector products of legs i and j to be 

. ε+,i · ε+,j = <μi μj > [λj λi]
<λi μi> <λj μj > , ε+,i · ε−,j = −<μi λj > [μj λi]

<λi μi> [λj μj ] ,

ε−,i · ε−,j = <λi λj > [μj μi]
[λi μi] [λj μj ] , (1.159) 

with the only restriction on the reference spinors of leg i being distinct to the 
outflowing momentum of that leg, i.e. .μi /= λi and .μ̃i /= λ̃i . Clearly, if we choose 
the reference spinors of legs i and j to be identical, we have that 

.ε+,i · ε+,j = 0 = ε−,i · ε−,j ∀ i, j , (1.160) 

due to .<μiμj > = 0 = [μiμj ] for that choice. Let us see how to use this in order to 
identify vanishing trees. 

An n-gluon tree amplitude must depend on the n-polarisation vectors involved, 
which have to be contracted either with themselves (as .εi · εj ) or with the external 
momenta (as .pi · εj ). Now, what is the minimal number of polarisation vector 
contractions .εi · εj arising in the terms that constitute an n-gluon tree-amplitude? 
To find this number, we need to look at graphs which maximise the number of 
momentum-polarisation contractions, i.e. .pi · εj . This implies looking at graphs 
built entirely out of three-point vertices. Pure three-point vertex n-gluon trees are
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made of .(n−2)-vertices. This follows immediately from the half-ladder form in the 
DDM basis, cf. Fig. 1.4. 

As an n-leg graph contains n distinct polarisation vectors, we conclude that 
any n-gluon amplitude will consist of terms containing .at least one polarisation 
contraction .εi · εj (as this maximum configuration is attained by purely trivalent 
trees). Armed with this insight, we now prove the vanishing of three classes of tree-
amplitudes. 

1. Choosing the reference momenta . ri of an n-gluon tree-amplitude uniformly as in 
Eq. (1.160) implies that 

.Atree
n (1+, 2+, . . . , n+) = 0 , (1.161) 

as at least one .ε+,i · ε+,j contraction must arise. 
2. Similarly, the gluon tree-amplitude with one flipped helicity state vanishes: 

.Atree
n (1−, 2+, . . . , n+) = 0 . (1.162) 

This follows from the reference momenta choice 

.r1 = r /= p1 and r2 = . . . = rn = p1 , (1.163) 

as then all terms containing a .ε+,i · ε+,j = 0 contraction with . i, j ∈ {2, . . . , n}
vanish, and .ε+,i · ε−,1 = 0 due to Eq. (1.159) by the specific choice above. 

3. Finally, the .qq̄gn−2 amplitudes vanish if all gluons have identical helicity: 

.Atree
n (1−

q̄ , 2+
q , 3+ . . . , n+) = 0 . (1.164) 

Due to the presence of a quark line there is at least one contraction of the form 

.[2|/ε+,i |1> = λ̃2 α̇ εα̇α+,i λ1α = −√
2

[λ2 λi] <μi λ1>
<λiμi> (1.165) 

in every term constituting the amplitude. Choosing the gluon-polarisation refer-
ence momenta uniformly as .ri = μi μ̃i = λ1 λ̃1 for all .i ∈ {3, . . . , n} yields 
.[2|/ε+,i |1> = 0, and hence the vanishing of Eq. (1.164). 

By parity the vanishing of Eqs. (1.161) and (1.162) implies 

.Atree
n (1±, 2−, . . . , n−) = 0 . (1.166) 

Hence the first non-trivial class of pure gluon tree-amplitudes is the one with 
two flipped helicities, .Atree

n (1−, 2+, . . . , (i − 1)+, i−, (i + 1)+, . . . , n+), known 
as maximally helicity violating (MHV) amplitudes.
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MHV 

NMHV 

N2MHV 

A4,2 

A5,2 A5,3 

A6,2 A6,3 A6,4 

. . .. . .. . .. . .  

Fig. 1.5 The MHV classification of gluon amplitudes: .An,m denotes an n-gluon amplitude with 
m positive helicity states. Parity acts as a mirror across the vertical axis as .An,m ↔ An,n−m. For  
example the NMHV .A5,3 amplitude may be obtained from the parity mirror of the MHV .A5,2 one. 
Hence, the lowest multiplicity non-trivial NMHV amplitude is the . A6,3

To understand this name recall that in our convention all momenta are out-going. 
The MHV amplitudes describes, for example, a process in which all incoming 
gluons have one helicity and all but two outgoing gluons—the maximal allowed 
number—have the opposite helicity: flipping the momentum entails a flip in 
helicities. Hence, helicity is not conserved and this process is maximally helicity 
violating. 

Similarly, we have for the single-quark-line-gluon amplitude that 

.Atree
n (1−

q̄ , 2+
q , 3− . . . , n−) = 0 , (1.167) 

by choosing .qi = μi μ̃i = λ2 λ̃2 for all .i ∈ {3, . . . , n}. Alternatively, this may be 
seen by a parity and charge conjugation transformation of Eq. (1.164). 

As a matter of fact, the vanishing of these mostly-plus (or minus) amplitudes 
can be understood from a hidden supersymmetry in tree-level quark-gluon tree-
amplitudes, see [22, 23] for a discussion. 

Amplitudes comprised of 3 positive helicity and .(n − 3) negative helicity gluons 
are known as next-to maximally helicity violating (NMHV) amplitudes and so on, 
see Fig. 1.5 

1.11.2 The Three-Gluon Tree-Amplitudes 

We now want to establish the smallest amplitudes in gluon scattering. As a matter 
of fact, three-point amplitudes of massless particles are very special objects. Due to 
kinematics all Mandelstam invariants vanish, .pi · pj = 0 for all . i, j . This follows
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from momentum conservation 

.p
μ
1 + p

μ
2 + p

μ
3 = 0 , (1.168) 

which, with .p2
i = 0 for all i, implies that 

.pi · pj = 0 ∀ i, j ∈ {1, 2, 3} . (1.169) 

Hence for real momenta this implies the vanishing of the spinor brackets .<ij > and 
. [ij ], which are the building blocks of the amplitudes for massless particles. There 
is thus no Lorentz invariant object one could write down, and therefore the three-
particle amplitude must vanish. The situation is different if one allows for complex 
momenta .pi ∈ C4. In this case the helicity spinors . λi and . ̃λi are independent, and 
the conditions .pi · pj = 0 can be solved either by .[ij ] = 0 or by .<ij > = 0. Hence 
either .λ̃α

1 ∝ λ̃α
2 ∝ λ̃α

3 (collinear right-handed spinors) or .λα
1 ∝ λα

2 ∝ λα
3 (collinear 

left-handed spinors) solve the constraints .pi · pj = 0. The two choices correspond 
to the three-gluon MHV. 3 amplitude 

.Atree
3 (1−, 2−, 3+) = ig

<12>3
<23><31> , [12] = [23] = [31] = 0 , (1.170) 

and the dual .MHV3 amplitude 

.Atree
3 (1+, 2+, 3−) = −ig

[12]3
[23][31] , <12> = <23> = <31> = 0 , (1.171) 

respectively. The two are related by a parity transformation, which flips the helicity 
weights and exchanges .<ij > ↔ [ji]. 

As a useful exercise in spinor gymnastics, we will now derive these amplitudes 
from the colour-ordered Feynman rules. Using the three-gluon vertex in Eq. (1.149) 
we find 

. Atree
3 (1−, 2−, 3+)= i

g√
2

[
(p1−p2)·ε+,3 ε−,1 ·ε−,2

+ (p2−p3)·ε−,1 ε−,2 ·ε+,3 + (p3−p1)·ε−,2 ε+,3 ·ε−,1

]
,

(1.172) 

where the polarisation vector contractions are given in Eq. (1.159). Choosing the 
same reference-momentum spinor .μ1 = μ2 = μ3 = μ for the gluons we have 
.ε−,1·ε−,2 = 0. Then, by using momentum conservation and transversality . pi · εi =
0, we arrive at 

.Atree
3 (1−, 2−, 3+) = ig

√
2
[
p2 ·ε−,1 ε−,2 ·ε+,3 − p1 ·ε−,2 ε+,3 ·ε−,1

]
. (1.173)
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From Eq. (1.159) we derive the following expressions, 

.

ε−,2 ·ε+,3 = −<2μ>[3μ]
[2μ]<3μ> , ε−,1 ·ε+,3 = −<1μ>[3μ]

[1μ]<3μ> ,

p2 · ε−,1 = 1√
2

<12>[2μ]
[1μ] , p1 · ε−,2 = − 1√

2

<12>[1μ]
[2μ] ,

(1.174) 

and therefore 

.

Atree
3 (1−, 2−, 3+) = −ig<12> [3μ]

<3μ>
( <2μ>

[1μ] + <1μ>
[2μ]

)

= ig<12> [3μ]
<3μ>

<μ|/p1 + /p2|μ]
[1μ][2μ] = ig

<12>[3μ]2
[1μ][2μ] .

(1.175) 

Finally, we use three-point momentum conservation to simplify 

.
[3μ]
[1μ] = <23>[3μ]

<23>[1μ] = <12>
<23> ,

[3μ]
[2μ] = <13>[3μ]

<13>[2μ] = <12>
<31> , (1.176) 

thus arriving at the result in Eq. (1.170). One could repeat this calculation for the 
scattering of three gravitons, this time using the three-graviton vertex of Eq. (1.87), 
arriving at a result proportional to .

[
Atree
3 (1−, 2−, 3+)

]2. The involved expression for 
the vertex Eq. (1.87) gives no hints of such a remarkable squaring relation! We shall 
take up this discussion in Chap. 2 again. 

1.11.3 Helicity Weight 

There is an important consistency requirement for scattering amplitudes based 
on checking their correct helicity weights. This is encoded in the following 
relation [24]: 

.ĥi A = −1

2

(
λα

i

∂

∂λα
i

− λ̃α̇
i

∂

∂λ̃α̇
i

)
A = hi A , (1.177) 

where . hi is the helicity of particle i. When combined with Lorentz invariance, this 
relation can be used to determine the functional form of the three-point amplitudes 
of particles of any spin. As we argued, above a massless three-particle amplitude 
in complexified momentum space can either only depend on .<i j > with .[i j ]=0 for 
all particles or vice versa. If we choose the MHV situation .[i j ]=0 for the helicity 
assignment .1−s , 2−s , 3+s , one can immediately see, using (1.177), that the answer
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tree 
4 (1− , 2− , 3+ , 4+ ) =  

(I) 

3+ 2− 

1− 4+ 

+ 

(II) 

3+ 2− 

1− 4+ 

+ 

(III) 

3+ 2− 

1− 4+ 

Fig. 1.6 The three colour-ordered graphs contributing to the four-gluon split helicity MHV 
amplitude 

must have the form 

.A(1−s , 2−s , 3+s) ∼ [
A(1−, 2−, 3+)

]s
. (1.178) 

In fact, for the gluon-amplitude with .s=1, the conditions 

.ĥ1A
MHV
3 = −AMHV

3 , ĥ2A
MHV
3 = −AMHV

3 , ĥ3A
MHV
3 = +AMHV

3 (1.179) 

uniquely fix the amplitude to take the form .A(1−, 2−, 3+) ∼ <1 2>3/(<2 3><3 1>). 
This may be seen as an independent derivation of both the 3-point gluon and 
graviton amplitudes—without referring to any Lagrangian! 

Exercise 1.10 (The .MHV3 Amplitude) Derive the anti-MHV three-gluon 
amplitude (1.171) using the colour-ordered Feynman rules. For the solution 
see Chap. 5. 

Example: A Four-Gluon Tree-Amplitude 

We shall now compute the simplest non-trivial tree-level colour-ordered gluon 
amplitude, namely the four-gluon MHV-amplitude with a split helicity distri-
bution .Atree

4 (1−, 2−, 3+, 4+). Employing the colour-ordered Feynman rules of 
Eq. (1.149) we see that the three diagrams of Fig. 1.6 contribute to the amplitude. 
Its computation is again considerably simplified by a clever choice of the 
reference momenta .ri = μi μ̃i of the gluon polarisations, 

.r1 = r2 = p4 , r3 = r4 = p1 , (1.180)
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where . pi denote the physical external momenta. Then one sees, using Eq. (1.159), 
that the polarisation-vector products 

.ε−,1 · ε−,2 = ε+,3 · ε+,4 = ε−,1 · ε+,4 = ε−,2 · ε+,4 = ε−,1 · ε+,3 = 0 (1.181) 

all vanish, and that the only non-vanishing contraction is 

.ε−,2 · ε+,3 = −<μ3 λ2> [μ2 λ3]
<λ3 μ3> [λ2 μ2] = −<12> [34]

<13> [24] . (1.182) 

Of course it is mandatory to use the same choice of reference momenta for 
all graphs. 

Diagram I 

. 

(I) =
(

ig√
2

)2 −i ημν

s12

[
ε
μ
−,2 (p2q · ε−,1) + ε

μ
−,1 (pq1 · ε−,2)

]

×
[
εν
+,4 (p4(−q) · ε+,3) + εν

+,3 (p(−q)3 · ε+,4)
]
,

(1.183) 

with .q = −p1 − p2 = p3 + p4, .s12 = (p1 + p2)
2 = <12>[21] and . pij =

pi − pj . Due to only .ε−,2 · ε+,3 surviving in the contraction, we have 

. 

(I) = ig2

2s12
(ε−,2 · ε+,3) (p2 + p1 + p2) · ε−,1 (−p3 − p4 − p3) · ε+,4

= −2ig2

s12
(ε−,2 · ε+,3) (p2 · ε−,1) (p3 · ε+,4)

= −2ig2

s12

(
−<12> [34]

<13> [24]
) (

1√
2

<12> [24]
[14]

) (
1√
2

<13> [34]
<14>

)

= ig2 <12> [34]2
[12] <14> [41] ,

(1.184) 

where in the second line we used .p2 · ε−,1 = 1√
2

<12> [2μ1][1μ1]
μ1=4= 1√

2
<12> [24]

[14] , 
and similarly for .p3 · ε+,4. The last expression can be rewritten exclusively in 

(continued)
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terms of . λi spinors as 

. 

− i
g2

(I) = <12> [34]2
[12] <14> [41]

<43>
<43> = <12> [34]

[12] <14>

<12> [21]' '' '
[34] <43>
<43> [41]' '' '

−<34> [41]=<32> [21]

= −<12>2
<23> <41>

[34]
[21]''''
<12>
<43>

= <12>3
<23> <34> <41> .

(1.185) 

Here in the first step the four-point kinematical relation . s12 = <12> [21] =
s34 = <34> [43] was used. 

Diagram II 
Using again the fact that the only non-vanishing contraction is that of 
Eq. (1.182) we find a vanishing result: 

. (II) ∝ −i

2s14
(ε2 · ε3)

[
(p23 · ε1) (p1(−q) · ε4) + (p23 · ε4) (p(−q)4 · ε1)

]
= 0 .

(1.186) 

Here with .q = p1+p4 we have .p1(−q) ·ε4 = 2p1 ·ε4 = 0, which vanishes by 
virtue of our choice .q4 = p1 of Eq. (1.180). Similarly, . p(−q)4·ε = −2p4·ε1 =
0 as .q1 = p4. Hence diagram II gives no contribution. 

Diagram III 
The same holds true for the third graph as 

. (III) ∝ 2 (ε2 · ε4) (ε1 · ε3) − (ε2 · ε3) (ε1 · ε4) − (ε2 · ε1) (ε3 · ε4) = 0 ,

(1.187) 

where at least one of the vanishing contractions in Eq. (1.181) appears in each 
term.
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In summary, we have established the following compact result for the split-
helicity MHV four-point amplitude: 

.Atree
4 (1−, 2−, 3+, 4+) = ig2 <12>4

<12> <23> <34> <41> . (1.188) 

At this point it is also instructive to check the helicity weights of our final result 
for every leg using the helicity generator of Eq. (1.177). To wit 

. ̂h1 A4 = 1
2 (−4 + 2) A4 = −A4 , ĥ2 A4 = −A4 , h3 A4 = +A4 ,

ĥ4 A4 = +A4 , (1.189) 

so everything is in order. 
By cyclicity there is only one more independent four-gluon amplitude left 
to compute: the case .Atree

4 (1−, 2+, 3−, 4+) with an alternating helicity dis-
tribution. All other possible helicity distributions can be related to this or 
.Atree

4 (1−, 2−, 3+, 4+) of Eq. (1.188) by cyclicity. It turns out that we do not need 
to do another Feynman diagrammatic computation, as the missing amplitude 
follows from the .U(1) decoupling theorem of Eq. (1.156): 

. 

Atree
4 (1−, 2+, 3−, 4+) = −Atree

4 (1−, 2+, 4+, 3−) − Atree
4 (1−, 4+, 2+, 3−)

= −ig2
( <31>4

<12> <24> <43> <31> + <31>4
<14> <42> <23> <31>

)

= ig2 <31>4
<12> <23> <34> <41> .

(1.190) 

Comparing this result to Eq. (1.188) we may express all four-gluon MHV 
amplitudes in a single and crafty formula, 

.Atree
4 (. . . i− . . . j− . . .) = ig2 <ij >4

<12> <23> <34> <41> , (1.191) 

where the dots stand for positive-helicity gluon states. 
In fact we shall show in Chap. 2 that this formula has a straightforward 
generalisation to the n-gluon MHV case, in which only the denominator is 
modified to 

.Atree
n (. . . i− . . . j− . . .) = ign−2 <ij >4

<12> <23> . . . <(n − 1)n> <n1> , (1.192)
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known as the Parke-Taylor amplitude [25]. It is a remarkably simple and closed 
expression for a tree-level amplitude with an arbitrary number n of gluons. We 
shall derive it in the next chapter. 
By parity this results implies the n-gluon .MHV amplitudes 

. Atree
n (. . . i+ . . . j+ . . .) = (−1)nign−2 [ij ]4

[12] [23] . . . [(n − 1)n] [n1] ,

(1.193) 

in agreement with the result of Exercise 1.10 for the .n = 3 case. 

Exercise 1.11 (Four-Point Quark-Gluon Scattering) Show, by using the 
colour-ordered Feynman rules and a suitable choice for the gluon-polarisation 
reference vector .rαα̇

3 = μα
3 μ̃α̇

3 , that the first non-trivial .q̄qgg scattering 
amplitude is given by 

.Atree
q̄qgg(1

−
q̄ , 2+

q , 3−, 4+) = −ig2 <13>3 <23>
<12> <23> <34> <41> . (1.194) 

Also convince yourself that the result for this amplitude has the correct 
helicity assignments, as we did in Eq. (1.189) for the pure-gluon case. For 
the solution see Chap. 5. 

1.11.4 Vanishing Graviton Tree-Amplitudes 

The observation of Sect. 1.11.1 that the mostly-plus gluon amplitudes vanish, 
.An(1+, . . . , n+) = 0 = An(1−, 2+, . . . , n+), carries over to the graviton case as 
well: 

.Mn(1
++, . . . , n++) = 0 = Mn(1

−−, 2++, . . . , n++) . (1.195) 

The proof is completely analogous. Recall the representation of the graviton 
polarisation tensor as a product of two spin-1 polarisations in Eq. (1.129): 

.ε±±
μν, i = ε±

μ, i ε±
ν, i i = 1, . . . , n . (1.196)
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Again suitable choices for the reference momenta . ri allow us to set to zero all 
possible .εμν

i εj, μν contractions for the two mostly-plus helicity configurations of 
Eq. (1.195). 

1. .Mn(1++, . . . , n++): Here we choose all reference momenta uniformly . ri = r∀i

with .r /= pi∀i ∈ {1, . . . , n}. This implies that all contractions 

.ε
μν ++
i ε++

j, μν = (ε+
i · ε+

j )2 = 0 (1.197) 

vanish by virtue of (1.124). 
2. .Mn(1−−, 2++, . . . , n++): Here we choose .r1 /= p1 arbitrarily, and the remaining 

.ri = p1 uniformly .∀i ∈ {2, . . . , n}. This entails .ε−
1 ·ε+

i = 0 as well as .ε+
i ·ε+

j = 0, 
and the analogue for the graviton polarisation contractions, 

.ε−−
1 · ε++

i = 0 = ε++
i · ε++

j = 0 , ∀i, j ∈ {2, . . . , n} . (1.198) 
In order to show the vanishing of these amplitudes we need to ensure that in every 
term comprising a mostly-plus graviton tree-level amplitude there is at least one 
polarisation-tensor contraction .εμν

i εj, μν . This is easy to show: as we saw in the 
discussion of Sect. 1.7, all multi-graviton vertices scale homogeneously quadrati-
cally in the momenta due to .

√
g R ∼ Σ

n ∂2hn. Therefore, the maximum number 
of momenta in the numerator of an n-graviton tree-level scattering amplitude arises 
from pure three-graviton vertex graphs. These graphs contain .n − 2 three-vertices, 
hence the counting for these yields a total of .2(n − 1) momenta and n graviton 
polarisation tensors, each one splitting up into a product of two polarisation vectors. 
Looking at the possible contractions of this set of .2(n − 1) momentum vectors and 
2n polarisation vectors we see that at least one contraction of the type .εi · εj must 
happen. As these may be set to zero through a suitable choice of reference momenta, 
this proves the vanishing graviton trees of Eq. (1.195). 
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