
Chapter 3 
Towards an Intensional Notion 
of Harmony 

Abstract In this chapter we discuss how the intensional account of harmony 
sketched in the first chapter can be developed in a systematic way for a class of 
connectives whose rules are obtained in a uniform way using an inversion princi-
ple. To handle disjunction and disjunction-like connectives, the formulation of the 
expansions requires particular care. We discuss and compare two different ways of 
formulating the inversion principle and finally we investigate the prospects of devel-
oping an account of harmony for connectives whose rules do not obey inversion, 
pointing at the weakness of the approaches proposed in the literature so far. 

3.1 Disjunction: A Problem for Stability 

The account of harmony in terms of reductions and expansions sketched in Sect. 1.3 
encounters a difficulty when one tries to apply it to the rules of disjunction: 

A ∨I1 A ∨ B 
B ∨I2 A ∨ B A ∨ B 

[A] 
C 

[B] 
C ∨E 

C 

As in the case of conjunction, it is quite uncontroversial that the rules satisfy both 
aspects of the informal characterization of harmony, and in fact deductive patterns 
of the two kinds discussed, as well as reductions and expansions can be exhibited in 
this case as well: 

D 

Ai ∨Ii A1 ∨ A2 

u1 [A1] 
D1 

C 

u2 [A2] 
D2 

C u1, u2 ∨E 
C 

∨βi 
D 

[Ai ] 
Di 

C 

(∨βi ) 

(for i = 1, 2) 

D 

A ∨ B 
∨η 

D 

A ∨ B 

u1 
A ∨I1 A ∨ B 

u2 
B ∨I2 A ∨ B u1, u2 ∨E 

A ∨ B 

(with u1 and u2 fresh for D) 

(∨η) 
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50 3 Towards an Intensional Notion of Harmony

Besides these rules for disjunction (which in most formulations are common 
to both intuitionistic and classical logic), Dummett [ 12] discusses also those for 
quantum disjunction (more commonly referred to as lattice disjunction). ∨. The  rules  
for this connective differ from those of standard disjunction in that the elimination 
rule comes with a restriction, to the effect that the rule can be applied only when 
the minor premises .C depend on no other assumptions apart from those that get 
discharged by the rule application (we indicate this using double square brackets in 
place of the usual ones): 

A ∨I1 
A ∨ B 

B ∨I2 
A ∨ B A ∨ B

 A 

C

 B 

C ∨EC 

Using the elimination rule for quantum disjunction one can derive from . A ∨ B
less than what one can derive from.A ∨ B using. ∨E . Thus, on the assumption that the 
standard rules for disjunction are in perfect balance, we expect the rules for quantum 
disjunction not to be in perfect harmony.1 In particular, we expect the no less aspect 
of harmony not to be met.2 That is, we expect the rules for . ∨ to be unstable.3 

However, and here is the problem, reductions and expansions are readily available 
in the case of quantum disjunction as well (again with double square brackets we 
indicate that no other assumption (apart from those indicated) occurs in.D1 and.D2): 

D 

Ai ∨Ii 
A1 ∨ A2 

u1
 A1 

D1 

C 

u2
 A2 

D2 

C u1, u2 ∨EC 

βi 
D

 Ai  

Di 

C 

(for i = 1, 2) 

D 

A ∨ B 
η 

D 

A ∨ B 

u1 
A ∨I1 

A ∨ B 

u2 
B ∨I2 

A ∨ B u1, u2 ∨E 
A ∨ B 

(with u1 and u2 fresh for D) 

Observe in particular that the restriction on . ∨E is satisfied by the applications of 
the rule in the expanded derivations and thus that, though unstable, the restricted 
elimination rule allows one to derive from .A ∨ B no less than what is needed in 
order introduce .A ∨ B back again. 

Most authors (see, e.g. [ 4, 103]) have taken the modest stance of regarding insta-
bilities of this kind as too subtle to be ruled out by the existence of expansions. Here 
we will argue against this modest stance, by showing that, once properly formulated, 
expansions are perfectly capable of detecting instabilities of this kind.
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3.2 A “Quantum-Like” Implication 

Before reformulating the expansion pattern for disjunction, we would like to point 
at some independent evidence in favor of the view that the existence of expansions 
should rule out instabilities of this kind. In so doing, we hope to dispel the possibly 
mistaken impression that our solution to the problem of quantum disjunction is 
merely ad hoc. 

Evidence in favor of our bolder stance towards stability and expansions arises 
when one considers a restriction on . ⊃I analogous to the one yielding quantum dis-
junction also briefly discussed by Dummett [ 12, p. 289] as a case of instability. Let 
.⊃ be the “quantum-like” implication connective governed by the following rules:

 A 

B ⊃I 
A ⊃ B 

A ⊃ B A  ⊃E 
B 

where the introduction rule is restricted to the effect that it can be applied only when 
the premise. B depends on no other assumptions apart from those that get discharged 
by the rule application. 

The restricted introduction rule sets higher standards for inferring a proposition 
of the form .A ⊃ B than those set by . ⊃I to derive a proposition of the form .A ⊃ B. 
Thus, on the assumption that. ⊃E is in perfect harmony with the standard introduction 
rule, we expect. ⊃E not to be in perfect harmony with the restricted introduction rule. 
In particular, as the restricted introduction rule sets higher standards to derive an 
implication, we expect that using. ⊃E we cannot derive from.A ⊃ B all that is needed 
to introduce.A ⊃ B again using its introduction rule. In other words, we expect also 
in this case the no less aspect of harmony not to be met. That is we expect the rules 
for. ⊃ to be unstable, the kind of instability at stake being the same as the one flawing 
the rules for . ∨.4 

As in the case of . ∨, in the case of .⊃ we have a reduction readily available which 
shows that—as expected—the no more aspect of harmony is satisfied: 

u
 A 

D 

B u ⊃I 
A ⊃ B 

D '
A ⊃E 

B 

β 
D '
 A 

D 

B 

Moreover, it is easy to see that the expansion pattern for standard implication does 
not work for quantum-like implication, as the application of . ⊃I would violate the 
restriction that the premise. B depends on no other assumptions than the one that get 
discharged by the rule: In the expanded pattern .B would depend not only on . A but 
also on all assumptions on which .A ⊃ B depends: 

D 

A ⊃ B does not expand to 

D 

A ⊃ B 
u 
A ⊃E 

B u ⊃I 
A ⊃ B
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The requirement that it should be possible to equip the rules with both reductions 
and expansions is thus capable of detecting the instability of the rules of quantum-
like implication. We take this as a reason to consider an alternative pattern for the 
expansion of disjunction, namely one capable of detecting the disharmony induced 
by the restriction on the quantum disjunction elimination rule.5 

3.3 Generalizing the Expansions for Disjunction 

The expansion pattern for disjunction (.∨η) we considered above—which was first 
proposed by Prawitz [ 66]—gives the instructions to expand a derivation in which the 
disjunctive proposition figures as conclusion of the whole derivation. 

The idea behind the alternative pattern is that an expansion operates on a formula 
which is not, in general, the conclusion of a derivation, but on one that occurs at some 
point in the course of a derivation. Consider a derivation .D in which the formula 
.A ∨ B may occur at some point. Such a derivation may be depicted as follows: 

D 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

D '
[A ∨ B] 

D ''
C 

—that is, it may be viewed as the result of plugging a (certain number .k ≥ 0) of  
copies of a derivation .D ' of .A ∨ B on top of a derivation .D '' of .C depending on (. k
copies of) the assumption .A ∨ B, possibly alongside other assumptions .  . 

It is certainly true that Prawitz’s expansion (.∨η) can also be used to expand a 
derivation .D of this form: To expand . D , we can apply Prawitz’s expansion to the 
upper chunk.D ' of .D (in which .A ∨ B figures as conclusion), and then we can plug 
the result of the expansion on top of the lower chunk.D '' of. D , thereby obtaining the 
following: 

D '
A ∨ B 

u1 
A ∨I 

A ∨ B 

u2 
B ∨I 

A ∨ B u1, u2 ∨E[A ∨ B] 
D ''
C 

It is however possible to define an alternative procedure to directly expand the 
whole of . D , namely the following: 

D '
[A ∨ B] 

D ''
C 

∨ηg D '
A ∨ B 

u1 
A ∨I[A ∨ B] 
D ''
C 

u2 
B ∨I[A ∨ B] 
D ''
C u1, u2 ∨E 

C 

(with u1 and u2 fresh for D ') 

(∨ηg)
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In the alternatively expanded derivation, the application of the elimination rule 
. ∨E is postponed to the effect that its minor premises are not the two copies of. A ∨ B
obtained respectively by . ∨I. 1 and . ∨I. 2 (as in Prawitz’s expansion), but rather two 
copies of .C which are the conclusions of two copies of the lower chuck .D '' of . D
that now constitute the main part of the derivations of the minor premises of the 
application of . ∨E. 

This alternative pattern, first proposed by Seely [ 97], is a generalization of 
Prawitz’s expansion pattern: Each instance of Prawitz’s pattern (.∨η) corresponds 
to an instance of the alternative pattern (.∨ηg) in which the lower chunk .D '' of the 
derivation .D is “empty” i.e. it just consists of the proposition .A ∨ B. 

Moreover, it is easy to see that we cannot replace . ∨ with . ∨ in the above pattern 
for generalized expansions, since the application of . ∨E in the expanded derivation 
would violate the quantum restriction: The minor premises. C would not depend only 
on the assumptions of the form. A and. B that get discharged by the rules, but also on 
all other undischarged assumptions of .D '': 

D '
[A ∨ B] 

D ''
C 

does not expand to D '
A ∨ B 

n 
A ∨I[A ∨ B] 
D ''
C 

m 
B ∨I[A ∨ B] 
D ''
C n, m ∨EC 

(with n and m fresh for D) 

Thus, quantum disjunction does turn out to be unstable (in accordance with what 
we would expect), provided that stability is understood as the existence of generalized 
expansions. 

What the alternative expansion expresses is a generalization of the no less aspect 
of harmony that could be roughly approximated as follows: 

The elimination rule allows one to derive no less than what is needed to derive all conse-
quences from a logically complex proposition of a given form. 

Starting from the alternative formulation of harmony given by Negri and von Plato 
[ 53]: “whatever follows from the direct grounds for a proposition must follow from 
that proposition.” (see also Note 5 to Chap. 1 above) one may propose the following 
as the proper way of understanding harmony: 

Harmony: Informal statement 1 What can be inferred from the direct grounds for 
a proposition . A together with further propositions .  should be no more and no less 
that what follows from . A together with .  .
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3.4 Harmony: Arbitrary Connectives and Quantifiers 

Prawitz [ 69] first proposed a general procedure to map any arbitrary collection of 
introduction rules onto a specific collection of elimination rules which is in harmony 
with the given collection of introduction rules. We will refer to such procedures 
as inversion principles.6 Prawitz’s procedure has been refined by Schroeder-Heister 
[ 85, 86, 94] in a deductive framework that generalizes the key ingredients of standard 
natural deduction calculi called the calculus of higher-level rules. We will therefore 
refer to the Prawitz–Schroeder-Heister procedure to generate elimination rules from 
a given collection of introduction rules as .PSH-inversion. 

The details of the calculus of higher-level rules and a more general presentation of 
PSH-inversion for rules of propositional connectives will be given in the Appendix A 
(see in particular Sect. A.9). In the present section, we informally give these results 
for the simplest case which does not require rules of higher level, and we suggest how 
.PSH-inversion could be generalized to cover rules for arbitrary first-order quantifiers 
as well. 

In this chapter we will assume. † to be an.n-ary connective, and.†I to be a collection 
of .r ≥ 0 distinct introduction rules for . † of the following form: 

Bk1 … Bkmk †Ik †( A1, . . . ,  An) 

satisfying the following condition: for all.1 ≤ k ≤ r , either.mk = 0 or for all. 1 ≤ j ≤
mk there is an .1 ≤ i ≤ n such that .Bkj is syntactically identical to .Ai . (Introduction 
rules of a more general kind are discussed in Appendix A, see in particular Sect. A.9.) 

Definition 3.1 (.PSH-inversion) Let. † and.†I be as above. We indicate with. PSH(†I)
the collection of elimination rules containing only the following rule: 

†( A1, . . . ,  An) 
[B11] . . .  [B1m1 ] 

C … 

[Br1] . . .  [Brmr ] 
C 

†EPSH 
C 

where . C is distinct from each .Ai . 
We say that. † is a PSH-connectives in a calculus. K iff. K includes.†I and.PSH(†I), 

and . † does not occur in any other of the primitive rules of . K.7 

Let. K be a calculus in which. † is a.PSH-connective. In every.K-derivation, one can 
get rid of any maximal formula occurrence governed by. † as follows (we abbreviate 
.†(A1, . . . , An) with . †): 

Dk1 

Bk1 … 

Dkmk 

Bkmk †Ik † 

[ u11 B11] . . .  [ 
u1m1 
B1m1 ] 

D '1 
C … 

[ ur1 Br1] . . .  [ 
urmr 
Brmr ] 

D 'r 
C u11, . . . ,  urmr  †EPSH 

C 

†βk 
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Dk1 

[Bk1] … 

Dkmk 

[Bkmk ] 
D 'k 
C 

Moreover, given a.K-derivation.D ' of. C depending on some assumptions of the form 
.†(A1, . . . , An) and a .K-derivation .D of .†(A1, . . . , An) we can define the follow-
ing generalized .η-expansion (again we abbreviate .†(A1, . . . , An) with . †; freshness 
conditions on the discharge indeces will be left implicit henceforth): 

D 

[†] 
D '
C 

ηg 
D 

† 

u11 
B11 . . .  

u1m1 
B1m1 †I1[†] 

D '
C … 

ur1 
Br1 . . .  

urmr 
Brmr †Ir[†] 

D '
C u11, . . . ,  urmr  †EPSH 

C 

The disjunction rules of NI are obtained by instantiating these schemata for. r = 2
and .m1 = m2 = 1. To give a further example, for .r = 1 and .m1 = 2 we obtain the 
well-known variant of the rules for conjunction in which the two elimination rules 
of NI are replaced by the so-called general elimination rule for conjunction8: 

A B  ∧I 
A ∧ B A ∧ B 

[A][B] 
C ∧EPSH C 

for which we have the following reduction and (generalized) expansion: 

D1 

A 

D2 

B ∧I 
A ∧ B 

[u1 A][u2 B] 
D '
C u1, u2 ∧EPSH C 

β 
D1 

[A] 
D2 

[B] 
D '
C 

(∧βPSH) 

D 

[A ∧ B] 
D '
C 

ηg D 

A ∧ B 

u1 
A 

u2 
B ∧I[A ∧ B] 

D '
C u1, u2 ∧EPSH C 

(∧ηPSH g ) 

We intend the schema to cover also the limit case of .m = 0 that gives us the 
standard intuitionistic rules for . ⊥: 

no introduction
⊥ ⊥E 
C 

for which we have no reduction but the following (generalized) expansion:
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D 

[⊥] 
D '
C 

ηg 
D 

⊥ ⊥E 
C 

As we detail in the Appendix, in the setting of Schroeder-Heister’s calculus of 
higher-level rules the above schemata cover also the cases in which the .Bkj s are not 
formulas (i.e. rules of lowest level), but rules of arbitrary (finite) level.9 For example, 
take .⊃I to be the collection of introduction rules consisting only of the standard 
introduction rules for implication . ⊃I: 

[A] 
B ⊃I 

A ⊃ B 

The collection of elimination rules .PSH(⊃I) consists of the following rule: 

A ⊃ B 
[A ⇒ B] 

C ⊃EPSH 
C 

Using the notation that is introduced in the appendix, the reduction associated with 
these rules can be depicted as follows: 

[u1 A] 
D 

B u1 ⊃I 
A ⊃ B 

[ u2 
A ⇒ B] 
D '
C u2 ⊃EPSH 

C 

β 
D 

[A ⇒ B] 
C 

To give the reader at least an informal clarification of the notation involved in the 
reduction, we observe the following. A derivation of the rule .A⇒ B is equated by 
definition with a derivation of .B from. A, thus the derivation .D of .B from. A is ipso 
facto a derivation of .A⇒ B. The result of substituting the derivation .D of . A⇒ B
for the rule assumption .A⇒ B in .D ' can be informally described as the derivation 
which results by removing all applications of the assumption rule.A⇒ B in .D ' and 
inserting .D to fill the gap, i.e. by successively replacing all patterns of the form on 
the right with patterns of the form on the left. 

... 
A 

A ⇒ B 
B 
... 

... 
[A] 
D 
B 
... 

Observe that depending on the number of copies of the assumption . A in .D and the 
number of applications of .A⇒ B in .D ', the operation requires a quite involved
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transformation already for a rule of almost lowest level such as .A⇒ B. For exact 
definitions (covering rules of arbitrary level) see Appendix A. 

The (generalized) expansion is the following: 

D 

[A ⊃ B] 
D '
C 

ηg 
D 

A ⊃ B 

u1 
A u2 

A ⇒ B 
B u1 ⊃I[A ⊃ B] 
D '
C u2 ⊃EPSH 

C 

It should be clear that the schemata above can be generalized to apply to more 
general collections of introduction rules which may not only be of arbitrary high 
level but which may also contain propositional quantification as in Schroeder-Heister 
[ 94]. A generalization covering also first-order quantification is possible too and 
expectedly straightforward. We limit ourselves to discuss a (hopefully suggestive) 
example, the rules characterizing a binary quantifier encoding the . I corner of the 
traditional square of oppositions (“Some. A are . B”). The collections of introduction 
and elimination rules.I I and.PSH(I I) consist of the following two rules respectively: 

A(t/x) B(t/x) 
I I 

Ix ( A, B) Ix ( A, B) 
[A(y/x)][B(y/x)] 

C 
I E 

C 

(where y is an eigenvariable) 

Also for these collections of rules we have a reduction and a (generalized) expan-
sion following the pattern of those of the rules of conjunction with the elimination 
rule in general form: 

D1 

A(t/x) 
D2 

B(t/x) 
I I 

Ix (A, B) 

[ u1 
A(y/x)][ u2 

B(y/x)] 
D '(y/x) 

C u1, u2 I E 
C 

β 
D1 

[A(t/x)] 
D2 

[B(t/x)] 
D '(t/x) 

C 

D 

[Ix ( A, B)] 
D '
C 

ηg D 

Ix ( A, B) 

u1 
A(y/x) 

u2 
B(y/x) 

I I[Ix (A, B)] 
D '
C u1, u2 I E 

C
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3.5 Stability and Permutations 

When calculi containing connectives with rules obeying .PSH-inversion are consid-
ered, such as the full calculus NI, one usually considers further conversions besides 
reductions and expansions. A typical example of further conversions are permuta-
tive conversions. The result of applying such conversions is a change in the order 
of application of certain rules within derivations. Permutative conversions were first 
introduced by Prawitz [ 65, Chap. IV] with the goal of extending the subformula prop-
erty of.β-normal derivations to the whole ofNI. Although.β-normal (and.βw-normal) 
derivations in NI are canonical (i.e. Fact 3 holds for NI),.β-normal derivations might 
contain occurrences of formulas which are neither a subformula of the undischarged 
assumptions nor of the conclusion. The following derivation in NI displays this fact 
(the example is taken from [ 26]): 

A ∨ A 

1 
A 

1 
A ∧I 

A ∧ A 

2 
A 

2 
A ∧I 

A ∧ A 1, 2 ∨E 
A ∧ A ∧E1 A 

The failure of the subformula property is triggered by the fact that, due to its peculiar 
form, the application of. ∨E “hides” the fact that the formula.A ∧ A is introduced (in 
both derivations of the minor premises of the application of. ∨E) and then eliminated. 

Prawitz [ 65] characterized the “hidden” redundancies of this kind in NI as maxi-
mal segments. Segments are defined as follows: 

Definition 3.2 A segment (of length . n) in a derivation is a sequence of formula 
occurrences .A1, . . . , An of the same formula . A such that 

1. for .n > 1, for all .i < n .Ai is a minor premise of an application of . ∨E with 
conclusion .Ai+1. 

2. .An is not the minor premise of an application of . ∨E; 
3. .A1 is not the consequence of an application of . ∨E. 
Note that in the above derivation the only two segments of length . 2 are those con-
sisting (respectively) of one of the two minor premises followed by the consequence 
of the application of . ∨E. All other formula occurrences in the derivations constitute 
segments of length . 1. 

Definition 3.3 A segment .A1, . . . An is maximal iff .A1 is the consequence of an 
application of an introduction rule or of . ⊥E and .An is the major premise of an 
application of an elimination rule.10 

In the above derivation both segments of lengths . 2 are maximal. Note that maximal 
formula occurrences in .NI∧⊃ are a limit case of maximal segments (i.e. maximal 
segments of length . 1). 

Whereas applications of .β-reductions allow one to get rid of maximal formula 
occurrences (i.e. maximal segments of length . 1), permutative conversions can be 
used to shorten the length of maximal segments. The permutative conversions for
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disjunction (which we will indicate as.∨γ ) can be schematically depicted as follows 
(in the derivation schemata, . D indicates the possible presence of minor premises 
in . †E, where . †E stands for the elimination rule of some connective . †)11: 

D1 

A ∨ B 
D2 

C 

D3 

C ∨E 
C  D 

†E 
D 

∨γ D1 

A ∨ B 

D2 

C  D 
†E 

D 

D3 

C  D 
†E 

D ∨E 
D 

(∨γ ) 

An application of (.∨γ ) to the above derivation yields the following one: 

A ∨ A 

1 
A 

1 
A ∧I 

A ∧ A ∧E1 A 

2 
A 

2 
A ∧I 

A ∧ A ∧E1 A 1, 2 ∨E 
A 

which by two applications of .∧β1 reduces to 

A ∨ A 
1 
A 

2 
A 1, 2 ∨E 

A 

Counterexamples to the subformula property in NI are triggered by applications 
of . ⊥E as well, as shown by the following derivation: 

⊥ ⊥E 
A ⊃ B A  ⊃E 

B 

which contains an occurrence of a formula—viz..A ⊃ B—which is not a subformula 
of either the undischarged assumptions or the conclusion. This formula occurrence 
constitutes a segment which qualifies as maximal according to Definition 3.3. Using  
the following permutative conversions for .⊥ one can get rid of such segments12: 

D 

⊥ ⊥E 
C  D 

†E 
D 

⊥γ 
D 

⊥ ⊥E 
D 

(⊥γ ) 

In NI, .βγ -reduction is not only weakly normalizing, but also confluent and 
strongly normalizing. Moreover, by generalizing the notion of track used for NI∧⊃ 

(see Sect. 1.5 above), it is possible to establish a result analogous to Fact 1, from  
which a result analogous to Fact 2 follows immediately, i.e. the subformula property 
for .βγ -normal derivations in the full calculus NI.13 

For future reference we observe that if one restricts oneself to the calculus for 
the .{⊃,⊥}-language fragment, to which we will refer as NI⊃⊥, there is no need to 
modify the notion of track used for NI∧⊃ and the subformula property for.βγ -normal 
derivations follows from the following: 

Fact 4 (The form of tracks) Each track.A1 . . . Ai−1, Ai , Ai+1, . . . An in a.βγ -normal 
derivation in NI⊃⊥ contains a minimal formula .Ai such that
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• If.i > 1 then.A j (for all .1 < j < i) is the premise of an application of an elimina-
tion rule of which .A j+1 is the consequence and thereby .A j+1 is a subformula of 
.A j . 

• If.n > i then.Ai is the premise of either an application of. ⊥E or of an introduction 
rule. 

• If .n > i then .A j (for all .i < j < n) is the premise of an application of an intro-
duction rule of which.A j+1 is the consequence and thereby.A j is a subformula of 
.A j+1. 

Proof For a derivation to be.βγ -normal, in each track all applications of elimination 
rules must precede all applications of introduction rules, and if . ⊥E is applied in the 
track, its consequence is either the last element of the track or the premise of an 
introduction rule. This warrants the existence of a minimal formula in each track. 
Since a track ends whenever it “encounters” the minor premise of an application of 
. ⊃E, the subformula relationships between the members of a track hold (as it can be 
easily verified by checking the shape of the rules of NI⊃⊥). .   

It is worth observing that permutative conversions can be “simulated” using gen-
eralized .η-expansions and .β-reductions. In particular, in the case of (.∨γ ) one can 
obtain the derivation on the right-hand side from the one on the left-hand side as 
follows. First apply a generalized expansion to the derivation on the left-hand side 
of (.∨γ ) by instantiating in the schema for the generalized expansion (.∨ηg) .D ' with 
.D1 and .D '' with 

A ∨ B 
D2 

C 

D3 

C ∨E 
C  D 

†E 
D 

thereby obtaining the following derivation: 

D1 

A ∨ B 

u1 
A 

A ∨ B 
D2 

C 

D3 

C ∨E 
C  D 

†E 
D 

u2 
B 

A ∨ B 
D2 

C 

D3 

C ∨E 
C  D 

†E 
D u1, u2 ∨E 

D 

in which the two rightmost occurrences of .A ∨ B constitute two local peaks. Their 
reduction yields the derivation on the right-hand side of .(γ∨). (In the case of .⊥ the 
permutation is just an instance of the generalized.η-expansion; for other connectives, 
see Sect. 3.7 below.) 

The relevance of permutations to harmony and in particular to stability was already 
pointed out by Dummett [ 12] and has been recently stressed by Francez [ 17]. The 
fact that permutative conversions can be recovered from generalized expansions 
thus provides on the one hand further evidence for the significance of permutative 
conversions for an inferential account of meaning, and on the other hand it offers 
further reasons to view generalized expansions as the proper way to capture stability.
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Actually, using the alternative expansion pattern one can recover a more general 
form of permutation, which we indicate as .∨γg-conversion, in which any chunk of 
derivation (and not only applications of elimination rule) can be permuted-up across 
an application of disjunction elimination [ 97]: 

D1 

A ∨ B 
D2 

C 

D3 

C ∨E[C] 
D 

D 

∨γg D1 

A ∨ B 

D2 

[C] 
D 

D 

D3 

[C] 
D 

D ∨E 
D 

(∨γg) 

Conversely, this general form of permutation coupled with Prawitz’s simple form 
of expansion is as strong as the alternative form of expansion. More precisely, 
the equivalence relation induced by .β-reductions, and generalized .ηg-expansions 
is equivalent to the one induced by .β-reductions, Prawitz’s .η-expansions and the 
generalized permutative .γg-conversions ([ 97], for a proof see [ 40]). 

As it has been recently established [ 83], .βηg-equivalence (or equivalently .βηγg-
equivalence) is the maximum non-trivial notion of equivalence in the full language 
of .NI. The notion of .βηg-isomorphism (see Sect. 2.5) has been shown to decidable, 
but only in the absence of . ⊥, whereas it is still an open question whether .βηg-
isomorphism is decidable in the full language of NI, though it is known that it is not 
finitely axiomatizable [ 33]. 

In contrast to .βγ -reduction, .βγg reduction is neither strongly normalizing nor 
confluent [ 1, 21, 40]. Due to the lack of confluence, it is thus difficult to make sense 
of the idea that .βγg-normal derivations in NI represent proofs in the most direct 
way possible. The same proof may be represented by more than one .βγg-normal 
derivation. Hence, without further ado there is no criterion of selecting one among 
the normal derivations belonging to the same equivalence class as “the” most direct 
way of representing a given proof.14 It therefore seems that in the case of the full 
language of NI it is hard to reconcile, on the one hand, the idea that maximality is the 
criterion to select the “correct” way of analyzing identity of proofs and, on the other 
hand, that conversions are means to transform a less direct representation of a proof 
into a more direct one. For these reasons, Girard famously referred to permutative 
conversions in NI as the ‘defects of the system’ (see [ 26], Sect. 10.1). 

We conclude this section by observing that some authors (notably [ 63, 110]) 
argued in favour of calculi in which all elimination rules follow the pattern of dis-
junction elimination (Tennant refers to rules of this form as ‘parallelized elimination 
rules’, while von Plato as ‘general elimination rules’). However, to avoid the com-
plications of rules of higher level, the following equivalent15 rule is adopted instead 
of the .PSH-elimination rule for . ⊃: 

A ⊃ B A  

[B] 
C ⊃Eg 

C 

The resulting natural deduction calculus, to which we will refer as NI. g , bears 
a close correspondence to sequent calculus (in fact, a much closer correspondence
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than the original NI) and as such is particularly suited for automated proof search 
(see, e.g., [113], Sects. 2.3.4 and 2.3.7). 

For reasons analogous to those discussed in connection with the rule of disjunction 
elimination in NI, in  NI. g permutative conversions are associated to all elimination 
rules. As in the case of disjunction, one can distinguish between permutative con-
versions involving only elimination rules (analogous to .∨γ above) and permutative 
conversions of a more general form (analogous to .∨γg). 

As in the case of NI, .βγ -reduction in NI. g is strongly normalizing and confuent 
(see [ 37] for a proof of strong normalization for the disjunction-implication fragment 
and [ 36] for a proof of confluence for the implication fragment alone; Matthes [ 46] 
claims that the proofs carry over to the full calculus), and the.βγ -normal derivations 
can be concisely described as those derivations in which all major premises of elimi-
nation rules are in assumption position (or, in Tennant’s terminology ‘stand proud’). 
Neither strong normalization nor confluence however hold for the more general kind 
of permutative conversions. 

Observe finally, that the adoption of elimination rules in general form jeopardizes 
the idea that normal derivations are the most direct way of denoting proofs already 
in the purely conjunctive fragment. For example, the following NI∧⊃ 

.β-normal 
derivation: 

A ∧ B ∧E1 A 
C ∧ D ∧E1 C ∧I 

A ∧ C 

A ∧ B ∧E2 B 
C ∧ D ∧E2 D ∧I 

B ∧ D ∧I 
(A ∧ C) ∧ (B ∧ D) 

corresponds to the following two distinct .βγ -normal derivations in the calculus in 
which . ∧E.PSH replaces . ∧E. 1 and . ∧E. 2: 

C ∧ D 
A ∧ B 

m1 
A 

n1 
C ∧I 

A ∧ C 

m2 
B 

n2 
D ∧I 

B ∧ D ∧I 
( A ∧ C) ∧ (B ∧ D) m1, m2 ∧EPSH 

( A ∧ C) ∧ (B ∧ D) n1, n2 ∧EPSH 
(A ∧ C) ∧ (B ∧ D) 

A ∧ B 
C ∧ D 

m1 
A 

n1 
C ∧I 

A ∧ C 

m2 
B 

n2 
D ∧I 

B ∧ D ∧I 
( A ∧ C) ∧ (B ∧ D) n1, n2 ∧EPSH 

(A ∧ C) ∧ (B ∧ D) m1, m2 ∧EPSH 
( A ∧ C) ∧ (B ∧ D) 

Although they are both.βγ -normal (and hence they are not.βγ -equivalent), these two 
derivations are .γg-equivalent: each can be obtained from the other by exchanging 
the order of the last two applications of . ∧E.PSH. 

The two derivations are two different representations of the same (function from) 
proof(s of the undischarged assumptions to proofs of the conclusion). However,



3.6 The Meaning of Harmony 63

neither of the two derivations can be said to represent their common denotation more 
directly than the other one. 

In this sense (although maybe not in other respects), the natural deduction cal-
culus NI∧⊃ can be deemed superiour to the conjunction-implication fragment of 
NI. g: the syntax of NI∧⊃ “filters out” inessential differences such as the order in 
which inference rules are applied within derivations by enabling a more canonical 
representation of proofs.16 

3.6 The Meaning of Harmony 

As argued in Sect. 2.3, collections of introduction rules play the role of definitions. 
This can be understood as meaning not only that each introduction rule for. † expresses 
a sufficient condition to prove a proposition having . † as main operator, but also that 
these conditions are jointly necessary. The joint necessity of these conditions is not 
captured by any of the introduction rules, but it is the content of the.PSH-elimination 
rule. That is, the content of the .PSH-elimination rules is that the introduction rules 
for a given kind of propositions encode all possible means of constructing proofs of 
propositions of that kind. Equivalently, the content of .PSH-elimination rules is that 
there are no other means of constructing proofs of their major premises other than 
those encoded by the corresponding introduction rules. 

The .PSH-elimination rules thus play the same role of the final clauses of induc-
tive definitions. This is best understood by resorting again to the analogy between 
numbers and proofs that was developed in the previous chapter. In the case of the 
natural numbers, their inductive definition consists of the following three clauses: 

(i) . 0 is a natural number; 
(ii) if . n is a natural number then .Sn is a natural number as well; 
(iii) nothing else is a natural number. 

If we look again at the rules for the predicate ‘. x is a natural number’ given at 
the end of Sect. 1.3, the first two clauses are captured by the two introduction rules, 
whereas the third is captured by the elimination rule. The content of the latter is 
namely that in order to infer that a certain property .C(x) holds of a natural number 
. t , it is enough to show that it holds of . 0 and that if it holds of a number, it holds of 
its successor as well. 

In the case of disjunction, the rule . ∨E tells us that what follows from both . A and 
. B follows from.A ∨ B as well. What warrants that a proof of. C can be obtained given 
a proof of .A ∨ B and given means of obtaining a proof .C from either a proof of . A
or a proof of . B? The answer seems to be that the only way of obtaining a proof of 
.A ∨ B is by applying one of the two operations (usually called injections) associated 
with the introduction rules for . ∨ to a proof of . A or a proof of . B. 

We wish to stress that neither the final clause of the inductive definition of natural 
numbers nor the elimination rule for .Nat warrant that every natural number can 
be reached by . 0 using the successor function in a finite number of steps. In fact, the
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existence of non-standard elements of the set of natural number is compatible with the 
introduction and elimination rules, since there may be non-standard natural numbers 
which are the successor of some other (again non-standard) natural number.17 

Moreover, the formulation of the inductive principle encoded by the elimination 
rules for a given kind of propositions does not require that the inductive process 
specifying how to construct the set of proofs for that kind of propositions satisfies 
any well-foundedness condition. 

The understanding of .PSH-elimination rules as final clauses of inductive defini-
tions was first proposed by Martin-Löf [ 42] and it constitutes one of the cornernstones 
of constructive type theory. Hallnäs [ 29] and Hallnäs and Schroeder-Heister [ 30, 31] 
explored the possibility of extending Martin-Löf’s ideas to cover the case of non-
wellfounded inductive definitions in the context of logic programming. In the second 
part of the present work the conception of PTS developed in the previous chapter will 
be used to connect the understanding of harmony described in the present section with 
the analysis of paradoxical expresssions in the setting of natural deduction proposed 
by Prawitz [ 65] and Tennant [109]. 

3.7 Comparison with Jacinto and Read’s GE-Stability 

Jacinto and Read [ 34] have also recently pointed out the need of generalizing the 
usual formulation of the no less aspect of harmony in order to properly capture 
stability. In particular, they refer to the original formulation of the no less aspect of 
harmony as ‘local completeness’ (thereby following [ 58]) and propose to replace it 
in favor of what they call ‘generalized local completeness’. 

Rather than cashing out generalized local completeness by formulating gener-
alized expansions as we did, Read and Jacinto formalize this notion as a complex 
requirement on derivability. Remarkably, to establish the generalized local complete-
ness of the collections of introduction and elimination rules that they consider, they 
show how to construct derivations that closely resemble the (generalized) “expanded” 
derivations obtained by our generalized expansions. Thus, although the work of Jac-
into and Read is not based on the idea of transformations on derivations or identity 
of proofs, the two approaches are quite close to each other. 

In this section we explore the possibility of recasting Jacinto and Read’s account 
of generalized local completeness using generalized.η-expansions. Some difficulties 
will be encountered, whose source is that Jacinto and Read (following [ 77, 78]) 
consider elimination rules whose form differs from the one discussed in the previous 
sections of this chapter. 

We wish to stress however that the considerations to be developed below do not 
undermine the results of Jacinto and Read. Rather, these considerations show how 
their results can be given an intensional reformulation by taking the notion of identity 
of proofs into account. 

To spell out the issue in a more precise way, we begin by presenting the elimination 
rules considered by Jacinto and Read:
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Definition 3.4 (.JR-inversion) Let . † and .†I be as in Definition 3.1. 
We indicate with.JR(†I) the collection of elimination rules consisting of. 

||r
k=1 mk

rules, each of which has the following form: 

†( A1, . . . ,  An ) 
[ fh (1)] 

C … 

[ fh (r )] 
C 

†EJR hC 

(JR) 

where . fh is the . hth choice function that selects one of the premises of each of the 
. r introduction rules of . †, that is for each .1 ≤ k ≤ r , . fh(k) = Bkj for some . 1 ≤ j ≤
mk

18 and where . C is distinct from each .Ai . 
We say that . † is a JR-connectives in a calculus . K iff . K includes .†I and .JR(†I), 

and . † does not occur in any other of the primitive rules of . K.19 

When each rule in a collection of introduction rules .†I has at most one premise 
(as in the case of disjunction), then .PSH-inversion and .JR-inversion yield the same 
collection of elimination rules, i.e. .PSH(†I) = JR(†I). Not so if at least one of the 
introduction rules has more than one premise. For example, in the case of conjunction 
we obtain yet another variant of the collection of elimination rules consisting of the 
following two rules: 

A ∧ B 
[A] 
C ∧EJR 1C 

A ∧ B 
[B] 
C ∧EJR 2C 

The definition of reductions to get rid of local peaks is straightforward in the 
case of .JR-elimination rules (although one has to specify one reduction for each 
elimination rule): 

D1 

A1 

D2 

A2 ∧I 
A1 ∧ A2 

[ u Ai ] 
D '
C u ∧EJR iC 

β 
Di 

[Ai ] 
D '
C 

(for i = 1, 2) (∧βJR 
i ) 

In establishing that the introduction rule for conjunction. ∧I and the.JR-elimination 
rules. ∧E.JR1 and. ∧E.JR2 satisfy the condition for generalized local completeness, Jacinto 
and Read show how to construct the following derivation: 

D 

A ∧ B 

D 

A ∧ B 

u1 
A 

u2 
B ∧I[A ∧ B] 

D '
C u1 ∧EJR 1C u2 ∧EJR 2C 

Although they do not define an operation of expansion, one could argue that they 
could have defined it, by positing the derivation just given as what one obtains by 
expanding the following:
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D 

[A ∧ B] 
D '
C 

However, there is no principled reason why the expansion of this derivation should 
not rather be the following: 

D 

A ∧ B 

D 

A ∧ B 

u1 
A 

u2 
B ∧I[A ∧ B] 

D '
C u2 ∧EJR 2C u1 ∧EJR 1C 

in which the elimination rules are applied in a different order. 
By looking at more complex collections of introduction rules, one immediately 

realizes that the problem is not just the order in which the different elimination 
rules are applied. Consider the collection of introduction rules. I for the quaternary 
connective . consisting of the following two rules: 

A B  I1 ( A, B, C, D) 
C D  I2 ( A, B, C, D) 

The collection of elimination rules .JR( I) associated with . I by .JR-inversion 
consists of the following four rules:

 (A, B, C, D) 
[A] 
E 

[C] 
E  EJR 1E

 ( A, B, C, D) 
[A] 
E 

[D] 
E  EJR 2E

 (A, B, C, D) 
[B] 
E 

[C] 
E  EJR 3E

 ( A, B, C, D) 
[B] 
E 

[D] 
E  EJR 4E 

Using Jacinto and Read’s recipe, one can cook up the first derivation displayed in 
Table 3.1 (in which. (A, B,C, D) is abbreviated with.  ). However, in this case also 
there is no principled reason to claim that a derivation of the form: 

D 

[ ] 
D '
E 

should expand that way rather than, say, as in the second derivation of the table, where 
not only the order, but also the number of applications of the different elimination 
rules changes. By considering connectives with more complex introduction rules, the 
situation quickly becomes unwieldy as to the number of possible ways of expanding 
a given derivation. 

In light of this, it is not obvious how to cash out Jacinto and Read’s generaliza-
tion of the no less aspect of harmony in terms of (generalized) expansions. For the
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family of connectives they consider, there is no operation (i.e. function) to expand 
a given derivation, since in these cases the process of expansion would be highly 
non-deterministic. 

It is instructive to compare the collection of elimination rules.JR( I) obtained by 
.JR-inversion, with the collection.PSH( I) obtained by.PSH-inversion and consisting 
of the following rule:

 (A, B, C, D) 
[A][B] 

E 

[C][D] 
E  EPSH 

E 

To show that .PSH( I) is in harmony with . I one only need two reductions 
(instead of the eight reductions needed for.JR( I)), and the way in which a derivation 
should be expanded is unequivocally determined: in the expanded derivation each of 
the introduction rules and the elimination rule is applied exactly once, and each rule 
application discharges exactly one copy of each dischargeable assumption: 

D 

[ ] 
D '
E

 ηPSH g 
 

u1 
A 

u2 
B  I1[ ] 

D '
E 

u3 
C 

u4 
D  I2[ ] 

D '
E u1, u2, u3, u4  EPSH 

E 

Despite the more bureaucratic character of .JR-inversion, one can nonetheless 
argue that, from the intensional standpoint we advocate, .JR-elimination rules are as 
harmonious as .PSH-elimination rules. 

The reason is that it is possible to recover permutative conversions for the JR-
elimination rules using a combination of expansions and reductions in (almost) the 
same way as for disjunction (see above Sect. 3.5). 

Observe first that the strategy used to simulate the permutation for the disjunc-
tion elimination rule generalizes straightforwardly to all PSH-elimination rules. For 
instance, the permutative conversion for . ∧E. PSH20: 

D 

A ∧ B 

[u1 A] [u2 B] 
D '
C u1, u2 ∧EPSH [C] 

D ''
D 

permutes to 
D 

A ∧ B 

[u1 A] [u2 B] 
D '
[C] 
D ''
D u1, u2 ∧E1 D 

can be simulated using the reduction (.∧βPSH) and the generalized expansion (.∧ηPSH g ), 
since the derivation on the left-hand side of the permutation expands using (.∧ηPSH g ) 
to the following derivation: 
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D 

A ∧ B 

u1 
A 

u2 
B ∧I 

A ∧ B 

[u1 A][u2 B] 
D '
C u1, u2 ∧EPSH [C] 

D ''
D u1, u2 ∧EPSH D 

which in turn reduces using (.∧βPSH) to the derivation on the right-hand side of the 
permutation. 

In the case of JR-connectives, in order to simulate permutations one needs not 
only.β-reductions and (generalized).η-expansions but their inverse operations as well. 
Suppose one stipulates that the “official” way of performing generalized expansions 
involving the .JR-elimination rules for . ∧ is the following: 

D 

[A ∧ B] 
D '
C 

∧ηJR g 
D 

A ∧ B 

D 

A ∧ B 

u1 
A 

u2 
B ∧I[A ∧ B] 

D '
C u1 ∧EJR 1C u2 ∧EJR 2C 

(∧ηJR g ) 

The (general) permutative conversion for . ∧E. JR 1 : 

D 

A ∧ B 

[ u A] 
D '
C u ∧EJR 1[C] 

D ''
D 

permutes to 
D 

A ∧ B 

[ u A] 
D '
[C] 
D ''
D u ∧E1 D 

can be simulated as depicted in Table 3.2.21 A permutation for the other elimination 
rule . ∧E. JR 2 can be obtained in a similar manner. 

We observe that we could have simulated the permutations in a similar way also 
if we had stipulated the other possible expansion pattern to be the “official” one: 

D 

[A ∧ B] 
D '
C 

∧ηJR'g 
D 

A ∧ B 

D 

A ∧ B 

n 
A 

m 
B ∧I[A ∧ B] 

D '
C n ∧EJR 1C m ∧EJR 2C 

(∧ηJR'g ) 

In fact, the left-hand sides of the expansions (.∧ηJR g ) and (.∧ηJR'g ) differ only up to  
the order of application of the two elimination rules, and hence they would belong to 
the same equivalence class of derivations induced by the.β-reductions together with 
either of the two expansions. Thus the two equational theories induced by coupling 
the .β-reductions with either of the two generalized .η-expansions induce the same 
equivalence classes of derivations.22 
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Summing up, it is true that there is no unique way of defining expansion patterns, 
and it is also true that one cannot simulate permutations for the .JR-elimination 
rules using .β-reduction and generalized .η-expansions only (as one needs their 
inverses as well). Nonetheless, the different expansion patterns (coupled with the 
.βJR-reductions) yield the same equivalence relation on derivations. Hence the choice 
among different expansions patterns is irrelevant for the resulting notion of identity 
of proofs. 

We conclude this section by observing that JR-inversion shows a true deficiency 
if one tries to apply it to first-order quantifiers. Apart from the case of collections 
of introduction rules with at most one premise (in which case JR-inversion yields 
the same elimination rule as PSH-inversion) JR-inversion delivers elimination rules 
which are not stable. Let’s reconsider the quantifier expressing the . I corner of the 
square of opposition. With the collection .I I consisting of the introduction rule . I I, 
.JR-inversion may be expected to associate the collection of elimination rules. JR(I I) 
consisting of the following two rules: 

Ix (A, B) 
[A(y/x)] 

C 
I EJR 1C 

Ix ( A, B) 
[B(y/x)] 

C 
I EJR 2C 

with an eigenvariable condition on . y in the two elimination rules. Contrary to the 
case of.PSH(I I), when.I I is coupled with.JR(I I) it is not even possible to formulate 
an expansion following the simpler pattern of Prawitz, since the application of the 
first elimination rule would violate the eigenvariable condition: 

D 

Ix ( A, B) does not expand to D 

Ix ( A, B) 

D 

Ix ( A, B) 

u1 
A(y/x) 

u2 
B(y/x) 

I I 
Ix ( A, B) u1 I EJR 1Ix ( A, B) u2 I EJR 2Ix (A, B) 

Thus in general, it does not seem that JR-inversion can deliver stable rules for 
quantifiers apart from those instances in which it coincides with PSH-inversion. 

3.8 Harmony by Interderivability 

Although implicitly acknowledged by most authors, it was only recently observed in 
an explicit manner [ 56, 93, 94] that the specification of an inversion principle cannot 
constitute an exhaustive characterization of harmony. 

To see why, it is sufficient to reconsider the rules for conjunction discussed so far. 
The collection of rules consisting of. ∧E. 1 and. ∧E. 2 is not the one that one would obtain 
from the Prawitz–Schroeder-Heister inversion principle, namely the one consisting 
of the unique elimination rule in general form: 
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A ∧ B 
[A][B] 

C ∧EPSH C 

However, neither Prawitz nor Schroeder-Heister seem to be willing to deny that 
the elimination rules. ∧E. 1 and. ∧E. 2 are in harmony with. ∧I as much as the rule. ∧E. PSH. 

Similarly, when Read [ 77] argues that the rules: 

A ∧ B 
[A] 
C ∧EJR 1C 

A ∧ B 
[B] 
C ∧EJR 2C 

are in harmony with. ∧I he does not seem to be willing to deny that the other collections 
of elimination are in harmony with . ∧I as well. 

Thus, the collection of elimination rules generated by some inversion principle 
from a given collection of introduction rules is not, in general, the only one which is 
in harmony with it.23 

But what do all these alternative—but, intuitively at least, equally 
harmonious—collections of elimination rules have in common? What all mentioned 
authors explicitly observe is that the alternative collections of elimination rules are 
interderivable with each other (we indicate interderivability between (collections of) 
rules using.  ).24 For instance, both. ∧E. 1 and. ∧E. 2 (resp.. ∧E. JR 1 and. ∧E. JR 2 ) are deriv-
able from . ∧E. PSH, and conversely the latter rule is derivable from the former ones. 
Similarly, both . ∧E. JR 1 and . ∧E. JR 2 are derivable from. ∧E. 1 and . ∧E. 2 and vice versa. 

Although not stated in an explicit manner, this seems to be the reason why the 
rules of . ∧ of NI are considered as much in harmony as those obtained by PSH- and 
JR-inversion. 

That is, it seems plausible to claim that Prawitz and Schroeder-Heister, and Jacinto 
and Read (at least implicitly) endorse the following notions of harmony: 

Definition 3.5 (PSH-harmony by interderivability) Given two collections.†I and. †E 
of introduction and elimination rules for a connective . †, we say that .†I and .†E are 
in PSH-harmony via interderivability if and only if 

. †E   PSH(†I) 

Definition 3.6 (JR-harmony by interderivability) Given two collections .†I and . †E 
of introduction and elimination rules for a connective . †, we say that .†I and .†E are 
in JR-harmony via interderivability if and only if 

. †E   JR(†I) 

In fact, for any collection of introduction rules . †I, .PSH(†I)   JR(†I).25 Thus 
the same collections of rules qualify as harmonious according to the two definitions. 

The invariance of harmony with respect to the choice of the inversion principle has 
been taken by Schroeder-Heister as a reason for defining harmony without making 
reference to any inversion principle at all. In fact Schroeder-Heister [93, 94] proposed 



3.9 Yet Another Inversion Principle 73 

two different accounts of harmony, on the basis of which he then demonstrated that 
the rules obeying PSH-inversion satisfy the proposed condition for harmony. Both 
notions of harmony are equivalent with each other, and moreover they are equivalent 
to those resulting from Definitions 3.5 and 3.6. 

We will say that the rules satisfying these notions of harmony are in harmony by 
interderivability. 

We fully agree with Schroeder-Heister on the need for a notion of harmony going 
beyond the specification of an inversion principle. However, it is doubtful whether 
rules which are in harmony by interderivability can, in general, be equipped with plau-
sible reductions and expansions. In other words, it is doubtful whether the account 
of harmony obtained by coupling inversion with interderivability can still qualify as 
intensional. 

After introducing in the next Section a further example of inversion principles, in 
Sect. 3.10 we will present an example justifying this claim. 

3.9 Yet Another Inversion Principle 

In this section we consider a further inversion principle. Its range of applicability is 
limited to the restricted case of a collection of introduction rules consisting of a single 
introduction rule, which is however allowed to discharge assumptions, in contrast 
to the inversion principles discussed in Sects. 3.4 and 3.7. Nonetheless, whereas the 
two inversion principles of the previous chapter can be generalized to cover also 
introduction rules that can discharge assumptions (as shown in the Appendix, see 
Sect. A.9), the inversion principle introduced in this section cannot be generalized to 
cover more than one introduction rule. For this reason, we will referred to it as ‘toy 
inversion’, henceforth T-inversion. In spite of its limited range of applicability, it will 
be useful to establish the negative result in the final part of the present chapter, namely 
that harmony by interderivability is not intensional. As in the case of .PSH- and .JR-
inversion, the collection of rules obtained by T-inversion from a given collection of 
introduction rules is interderivable with those obtained by the other two inversion 
principles. 

Definition 3.7 (.T-inversion) Let  . † be an .n-ary connective and let .†I consist of a 
single introduction rules for . † of the following form: 

[B11] . . .  [B1p1 ] 
C1 … 

[Bm1] . . .  [Bmpm ] 
Cm †I 

†(A1, . . . ,  An) 

where either .m = 0 or .m ≥ 1 and both of the following two conditions hold: (i) 
for all .1 ≤ j ≤ m and either .p j = 0 or .p j ≥ 1 and for all .1 ≤ k ≤ p j there is an 
.1 ≤ i ≤ n such that .Bjk  is syntactically identical to .Ai ; (ii) for all .1 ≤ j ≤ m there 
is an .1 ≤ i ≤ n such that .C j is syntactically identical to .Ai . 
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We indicate with .T(†I) the collection of elimination rules consisting of .m elim-
ination rules, each of which has the following form (we take .T(†I) to be empty if 
.m = 0): 

† B j1 … B jp  j 
†E j 

C j 

We say that . † is a T-connectives in a calculus . K iff . K includes .†I and .T(†I), and 
. † does not occur in any other of the primitive rules of . K.26 

Clearly, . ⊃, . ∧ and . are T-connectives in NI. 
Connectives whose rules obey T-inversion satisfy the informal statement of har-

mony, as it is shown by the possibility of formulating the following.β- and.η-equations 
for .K-derivations in a calculus . K in which . † is a .T-connective (in the schemata we 
abbreviate .†(A1, . . . ,  An) with . †): 

[ u11 B11] . . .  [ 
u1p1 
B1p1 ] 

D1 

C1 … 

[ m1 
Bm1] . . .  [ 

umpm 
Bmpm ] 

Dm 

Cm u11, . . . ,  umpm  †I 
† 

D '1 
B j1 … 

D 'p j 
B j p  j 

†E j 
C j 

†βT j 
D '1 
[B j1] … 

D 'p j 
[B jp  j ] 

D j 

C j 

for 1 ≤ j ≤ m 

D 

† 
u11 
B11 … 

u1p1 
B1p1 †E1 C1 … 

D 

† 
um1 
Bm1 … 

umpm 
Bmpm †Em Cm u11, . . . ,  u1p1 , . . . ,  um1, . . . ,  umpm  †I 

† 

†ηT D 

† 

with u11 . . .  umpm fresh for D 

We conclude this section by presenting two collections of rules for two connectives 
.  and .  such that in a calculus . K consisting of both collections of rules as primitive 
both .  and .  are .T-connectives. Moreover for any pair of propositions . A and . B, the  
propositions.A B and.A B are interderivable but not.βη-isomorphic in. K. In the next 
section we will then consider the collection of rules for a third connective.  having the 
same collection of introduction of rules of .  and the same collection of elimination 
rules of .  . We will show that the rules of .  are in harmony as interderivability. 
However, although it is possible to define reductions and expansions for .  , the  most  
obvious candidates for these equations trivialize the notion of isomorphism. 
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Let’s first consider the following collections of rules . I and . E for .  :

 I  E 

[A] 
B 

[B] 
A A

 I 
A B 

A B A
 E1 B 

A B B
 E2 A 

A B
 E3 A 

Clearly, . E = T( I), and the harmonious nature of the rules is displayed by the 
.β- and .η-equations of Table 3.3. 

Using these equations, it easy to show that.A B is.βη-isomorphic to. (( A ⊃ B) ∧ 
(B ⊃ A)) ∧ A in NI∧⊃ , the extension of NI∧⊃ with . I and . E. 

Consider now the collections of rules . I and . E for the connective .  . These two 
collection of rules differ from those of .  in having .B instead of .A as third premise 
of the only introduction rule, and, correspondingly, in having .B instead of .A as 
consequence of the third elimination rule:

 I  E 

[A] 
B 

[B] 
A B

 I 
A B 

A B A
 E1 B 

A B B
 E2 A 

A B
 E3 B 

These two collections of rules also obey T-inversion and thus.β- and.η-equations 
that follow the same pattern of those of .  are available. Using them, it easy to show 
that .A B is .βη-isomorphic to .((A ⊃ B) ∧ (B ⊃ A)) ∧ B in NI∧⊃ , the extension 
of NI∧⊃ with .  I, . E. 

It is moreover easy to see that in the calculus consisting of . I,  E,  I,  E we 
have that .A B   A B and .A B / A B. To establish the latter fact it suffices to 
adapt to this system the interpretation of NI∧⊃ in the category of finite sets (see 
above Sect. 2.6), by interpreting .A B and .A B as the sets of triples whose first two 
members are functions from the set interpreting .A to that interpreting .B and vice 
versa, and whose third members are elements of the interpretation of .A and of . B 
respectively. Whenever. A and. B are interpreted on finite sets of different cardinalities 
so are .A B and .A B. 
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3.10 Harmony by Interderivability is Not Intensional 

To show the limit of harmony by interderivability we now consider a collection of 
rules for a third connective, we call it .  , which is obtained by “crossing over” the 
collections of rules of .  and .  : The collection . I consists of the introduction rule 
obtained by replacing.  with.  in.  I; and the collection. E consists of the elimination 
rules obtained by replacing .  with .  in .  E. 1, .  E. 2 and .  E. 3. 

Clearly,. I and. E do not obey T-inversion, due to the mismatch between the third 
premise .A of the introduction rule and the consequence .B of the third elimination 
rule. We list all of .  . . ( )

 I  E T( I) 

[A] 
B 

[B] 
A A

 I 
A B 

A B A
 E1 B 

A B A
 E1 B 

A B B
 E2 A 

A B B
 E2 A 

A B
 E3 B 

A B
 E∗3A 

I, E, and T I :

Although . E /= T( I), the two collections of rules are clearly interderivable. 
Hence, in spite of the fact that they do not obey T-inversion, the two collections 
of rules . I and . E do qualify as in harmony by interderivability. 

The question that we want to address now is the following: Can we define appro-
priate .β- and .η-equations for the derivations of a calculus . K in which the rules 
governing .  are . I and . E? 

Whereas the.β-reductions for local peaks generated by.  I and.  E. 1 and.  E. 2 follow 
the pattern of those of.  and.  , one may doubt that a reduction for the peak generated 
by.  I and.  E. 3 can be found. A moment of reflection however dispels this doubt, since 
one can come up with the following reduction: 

[ u A] 
D1 

B 

[ v 
B] 
D2 

A 

D3 

A u, v  I 
A B

 E3 B

 β3 
D3 

[A] 
D1 

B 

This reduction shows that, in spite of the mismatch between the third premise of .  I 
and the consequence of .  E. 3, this elimination rule allows one to derive no more than 
what is needed in order to infer its premise by the introduction rule. 

Similarly, although the expansion pattern cannot simply be constituted by applica-
tions of the three elimination rules followed by an application of the introduction rule, 
the following.η-expansion shows that what one gets from.A B using the elimination 
rules is no less than what is needed to reintroduce.A B by means of its introduction 
rule: 
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D 

A B 
u 
A

 E1 B 

D 

A B 
v 
B

 E2 A 

D 

A B 

D 

A B
 E3 B

 E2 A u, v  I 
A B

 η D 

A B 

In spite of the fact that these conversions show that the rules for .  satisfy the 
informal statement of harmony, they are inadmissible from the viewpoint of the 
intensional approach to inferentialism that we advocated. 

To see why, consider the derivation obtained by expanding a given .K-derivation 
.D of .A B ending with an introduction rule. The form of .D is the following: 

u1 [A] 
D1 

B 

u2 [B] 
D2 

A 

D3 

A u1, u2  I 
A B 

and that of the derivation .D ' obtained by . η-expanding .D is depicted in Table 3.4. 
In such a derivation all occurrences of .A B (apart from the conclusion) constitute 
local peaks. By .β-reducing them we do not obtain the derivation .D of which the 
derivation considered is an expansion, but instead the following: 

v1 [A] 
D1 

B 

v2 [B] 
D2 

A 

D3 

[A] 
D1 

[B] 
D2 

A v1, v2  I 
A B 

By symmetry and transitivity of the equivalence relation induced by the .β- and 
.η-conversions for .  we thus have the following equivalence: 

u1 [A] 
D1 

B 

u2 [B] 
D2 

A 

D3 

A u1, u2  I 
A B 

βη ≡ v1 [A] 
D1 

B 

v2 [B] 
D2 

A 

D3 

[A] 
D1 

[B] 
D2 

A v1, v2  I 
A B 

This means that all instances of these two derivation schemata (obtained by replacing 
.D1, .D2 and .D3 with actual derivations) pairwise belong to the same equivalence 
classes induced by.β- and.η-equations. This is problematic and the reason is that the 
derivations obtained by appending an application of .  E. 3 to the conclusions of the 
previous ones will belong to the same equivalence classes as well: 
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u1 [A] 
D1 

B 

u2 [B] 
D2 

A 

D3 

A u1, u2  I 
A B

 E3 B 

βη ≡ 
v1 [A] 
D1 

B 

v2 [B] 
D2 

A 

D3 

[A] 
D1 

[B] 
D2 

A v1, v2  I 
A B

 E3 B 

By reducing using . β3 on both side of this equivalence we obtain the following: 

D3 

[A] 
D1 

B 

βη ≡ 

D3 

[A] 
D1 

[B] 
D2 

[A] 
D1 

B 

and in the limit case in which .D1 and .D3 simply consist of the assumption of some 
formula (in which case, .A = B = C for some . C) these schemata boil down to the 
following: 

C 
βη ≡ 

[C] 
D2 

C 

This means that in presence of the reductions and expansion for.  , for any formula 
. C , any derivation from .C to .C is equated with the derivation consisting only of the 
assumption of . C (i.e. the identity function on the set of proofs of . C). But this means 
that in presence of .  any two interderivable formulas are also isomorphic, since the 
compositions of the proofs establishing that each is derivable from the other are 
equated to the identity functions (cf. Sect. 2.5 above). 

In other words, the addition of.  to any calculus. K, even one containing interderiv-
able but not isomorphic formulas, has the result of making formula isomorphism 
collapse onto interderivability. 

We take this fact to show that the rules for .  equipped with the reductions and 
expansion discussed in this section should not qualify as harmonious, at least not on 
the intensional account of harmony we want to advocate. As we argued in Sect. 2.6, 
what is characteristic of this conception of harmony is that it is not formulated 
merely in terms of derivability conditions, but rather on the availability of certain 
proof-transformation that induce a notion of identity of proofs, which in turn makes 
room for the definition of the notion of isomorphism, that is of an equivalence relation 
on formulas which is finer grained than intederivability. Given the dramatic conse-
quences for identity of proofs and isomorphism of the rules and equations associated 
with .  , it seems that a genuine intensional account of harmony should disqualify 
these rules as genuinely harmonious. 
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This shows that, on an intensional account of harmony, in order for a collection of 
elimination rules to qualify as in harmony with a certain collection of introduction 
rules, one should require more than just its interderivability with the collection of 
elimination rules generated by inversion from the given collection of introduction 
rules. The notion of harmony as intederivability cannot be taken as a satisfactory 
definition of an intensional account of harmony. 

Notes to This Chapter 

1. It is worth observing already now that we are not assuming that given a col-
lection of introduction rules, at most one collection of elimination rules can be 
in perfect harmony with it. We only assume that if a collection of elimination 
rules is in harmony with a given collection of introduction rules, a necessary 
condition for another collection of elimination rules to be also in harmony with 
that collection of introduction rules is that the two collections of elimination 
rules are interderivable. (For an exact definition of the notion of derivability of 
rules, see Appendix A below.) That this condition is not sufficient is suggested 
by the operator governed by the following (doubtly harmonious) rules: 

A B  ⊗I 
A ⊗ B 

A ⊗ B ⊗E1 
A 

A ⊗ B A  ⊗E2 
B 

A thorough discussion of this point will be the content of Sect. 3.10. 
2. In Steinberger [102] terminology, the rules for quantum disjunction are a case 

of E-weak (or equivalently I-strong) disharmony. 
3. Another difficulty with quantum disjunction consists in the fact that in a calculus 

containing both standard disjunction and quantum disjunction the two connec-
tives are interderivable, i.e. they “collapse” into one another. It is true that the 
collapse of quantum disjunction into standard disjunction is clearly related to 
the problem of stability. However, at least according to Dummett (see [ 12], 
p. 290), this is “another interesting phenomenon illustrated by the restricted 
‘or’-elimination rule”, rather than an illustration of the failure of stability itself. 
In fact, stability (in Dummett’s sense at least) seems to be orthogonal to this 
kind of “collapses”: An analogous collapse takes place if one considers a natu-
ral deduction calculus with both intuitionistic and classical negation, but this is 
usually (and certainly by Dummett) not taken as a reason for deeming intuition-
istic negation as unstable. Conversely, as is shown by the example discussed in 
the next section, we may have instability (in Dummett’s sense) without an anal-
ogous collapse taking place (see below Note 5). Although the point is certainly 
debatable, the given reconstruction is, at least, sound to Dummett’s intent. 

4. One of the referees objects that one might expect in the case of .⊃ that it is the 
no more aspect of harmony which is not met, since “. ⊃E permits to draw more 
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conclusions from .A ⊃ B than we should be able to: applying . ⊃E immediately 
after . ⊃I results in a deduction of .B from all kinds of assumptions, whereas 
. ⊃I requires a deduction from .A alone.” [emphasis added]. We agree with the 
referee in pointing out that using. ⊃E one can infer . B from. A only given further 
assumptions, namely .A ⊃ B (or, possibly, the assumptions on which . A ⊃ B 
depends). This is however “less” than what is needed to infer .A ⊃ B using the 
introduction rule, which is why we claim that it is the no less aspect of harmony 
the one which is not met. For now, that .C is “less” than .D can be understood 
in terms of deductive strength, i.e. in the sense in which for instance, . A ⊃ B 
is less than . B, or  . , A ⇒ B is less than .A ⇒ B: whenever .B is derivable so 
is .A ⊃ B but not necessarily the other way around, and similarly whenever 
.A ⇒ B is derivable so is . , A ⇒ B but not necessarily the other way around. 
The considerations to be developed in the final section of the chapter suggest 
however that in order to attain a genuinely intensional account of harmony a 
finer grained understanding of ‘more’ and ‘less’ might be required. 

5. It is worth remarking that, contrary to what happens in the case of the two dis-
junctions, ‘quantum like’ implication does not collapse on standard implication 
in a calculus containing both connectives (although.A ⊃ B is implied by.A ⊃ B, 
the converse is not true). As for Dummett the rules of ‘quantum-like’ implication 
give rise to a situation of instability analogous to the one of quantum disjunction, 
for him the collapse issue cannot be the heart of the problem (cf. Note 3 above). 

6. Although Prawitz (see [ 65], Chap. 2) actually uses this term to refer to the “no 
more” aspect of the informal characterization of harmony given at the begin-
ning of Sect. 1.3 above, our way of using the term is certainly in the spirit 
of Lorenzen [ 41], who coined it to refer to a particular principle of reasoning 
(whose role corresponds essentially to that of an elimination rule) which he 
obtained by “inverting” a certain collection of defining conditions for an expres-
sion (whose role corresponds essentially to that of introduction rules). For more 
details, see Moriconi and Tesconi [ 50]. 

7. The rules governing PSH-connectives are referred to by Kürbis (see [ 38], Sect. 
2.8) ‘rules of type 2’. 

8. For a discussion on the origin of the terminology, see Schroeder-Heister [ 91]. 
9. For a definition of how the schemata 

Dk1 

[Bk1] … 

Dkmk 

[Bkmk ] 
D 'k 
C 

and 
Bk1 . . .  Bkmk †Ik † 

are to be understood in the context of the calculus of higher-level rules see the 
Appendix. 

10. Prawitz [ 65] restricts the rule. ⊥E to atomic conclusions and shows that in the vari-
ant of NI with restricted. ⊥E, all instances of the unrestricted rule are derivable. 
Normalization is then established for the modified system. As in the modified 
system no maximal segments beginning with . ⊥E can arise, Prawitz drops the 
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wording ‘or of . ⊥E’ from his definition of maximal segment. Details of nor-
malization for the calculus with the unrestricted rule can be found in Troelstra 
and Schwichtemberg [122]. Gentzen’s unpublished normalization result is also 
worked out using the unrestricted rule, see von Plato [ 64]. We stick to the unre-
stricted rule to stress the fact that the rules for .⊥ in NI follow the pattern of 
Definition 3.1, i.e. that .⊥ is a .PSH-connective in NI. 

11. The notions of (1-step) .∨γ -conversion, to be indicated with . (1)∨γ are to be 
understood in analogy with those of (one-step) .β-reduction as introduced in 
Sect. 1.4, and similarly for the other connectives. 

12. Due to the fact that . ⊥E has no minor premises, the permutative conversions in 
this case do not exchange the order of application of rules, but simply erase some 
rule applications. 

13. The notions of .βγ -reduction and .βγ -normal derivation are to be understood 
in analogy with those of .βη-reduction and .βη-normal derivation introduced in 
Sect. 1.5. 

14. The development of formalisms for the full language of NI in which it is possible 
to single out a unique representative for each equivalence class of derivations is 
an active field of research. These formalisms rely on advanced proof-theoretic 
techniques, such as (multi-)focusing [ 82] or normalization by evaluation [ 1]. 

15. The rule . ⊃E. g and . ⊃E.PSH are equivalent in the sense defined in Appendix A. 
In other contexts, notably in constructive type theory, the higher-level rule is 
however essentially stronger than both . ⊃E. g and . ⊃E (see [ 19]). 

16. The natural deduction calculus for Tennant’s [113] Core Logic is obtained from 
NI. g by allowing only derivations in.βγ -normal form, and additionally, by drop-
ping the rule of. ⊥E altogether and imposing on the other rules some restrictions 
which enforce the relevance of the assumptions for the conclusion of the deriva-
tions. Observe that the two derivations of .( A ∧ C) ∧ (B ∧ D) from.A ∧ B and 
.B ∧ C discussed in the text are perfectly accetable core proofs for Tennant’s 
standards. Thus the criticism raised against NI. g applies to Tennant’s system 
as well. We thereby do not call into question Tennant’s claim that core proofs 
capture the core of derivability, in the sense that whenever . A follows from.  in 
NI (or NI. g) there is a subset of .  from which either .A or .⊥ can be shown to 
follow by a derivation in Core Logic. What the remarks in this section however 
call in to question is whether the derivations in the natural deduction calculus 
for Core Logic are really capable of representing the proofs they denote in the 
most direct way possible. 

17. Non-standard elements are of course ruled out by the second-order definition 
(“The set of natural numbers is the smallest set. X such that…”) which is however 
strictly stronger than the first-order formulations given by clauses (i)–(iii) or 
encoded by the introduction and elimination rules. 

18. Clearly, the number of these functions is the product of the numbers .mk (. 1 ≤ 
k ≤ r ) of premises of each of the . r introduction rules 

19. As in the case of.PSH-inversion, also.JR-inversion generalizes straightforwardly 
to collections of introduction rules of higher-level, by taking the .Bkj  to be rules 
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rather than formulas (see Appendix A for details). Read [ 77] and Francez and 
Dyckhoff [ 18] initially suggested an inversion principle that they claimed could 
generate harmonious elimination rules of level .≤ 2 (i.e. possibly discharging 
formulas but not rules) for collection of introduction of level .≤ 2. As shown  
by Dyckhoff [ 13] and Schroeder-Heister [ 91], the need of elimination rules of 
higher-level is however unavoidable and Jacinto and Read [ 34] rectify these 
initial attempts by using higher-level rules unrestrictedly. 

20. Here and below we consider the more general form of permutations in which 
arbitrary chunks of derivations (and not just applications of elimination rules) 
are permuted upwards, corresponding to the more general form of permutations 
for disjunction discussed at the end of Sect. 3.5. 

21. I thank Paolo Pistone for his help in getting this right. 
22. The same is true in the case of more complex collection of rules as well, such 

as . I and .R( I), although showing that the alternative expansion patterns are 
equivalent is, in general, a lot more laborious. 

23. An exception is Kürbis, who defines the rules of a connective as harmonious 
if they follow either the pattern of PSH-inversion or that of T-inversion to be 
defined below in Sect. 3.9 (see [ 38], Sect. 2.8, and Notes 7 and 26 to the present 
chapter). Thus, on Kürbis definition, JR-connectives are not harmonious, unless 
one ascribes him the implicit adoption of a notion of harmony by interderivability 
along the lines introduced in the present section. 

24. For an exact definition of structural derivability and .K-derivability of rules, and 
of collections of rules, see Appendix, in particular Sect. A.5. Whenever not 
otherwise stated, by (inter-)derivability of (collections of) rules we will always 
understand structural (inter-) derivability. 

25. Although a proof of this fact is still missing in the literature, its precise presen-
tation would require the introduction of further notation (needed to keep track 
of the indexes occurring in the R-elimination rules) and for this reason will be 
omitted. 

26. The rules governing T-connectives are referred to by Kürbis (see [ 38], Sect. 2.8) 
as ‘rules of type 1’. 
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