Skip to main content

Mitochondrion: The Subordinated Partner Who Agreed to Come Short But Insists in Healthy Life

  • Chapter
  • First Online:
All Around Suboptimal Health

Part of the book series: Advances in Predictive, Preventive and Personalised Medicine ((APPPM,volume 18))

Abstract

Although became subordinated by eukaryotes, mitochondria maintain a certain level of their independence, e.g., by possessing own genetic information (mtDNA or mitochondrial DNA) for replication and highly dynamic homeostasis (fission, fusion, mitophagy) that enables functional mitochondria to effectively react towards changing environmental conditions and to remain within their comfort zone despite appearing health risks. Certainly, both partners, mitochondria and human cells, have their interests in common to protect the quality of life. Contextually, they learned to cooperate together on minimising health risks by utilising a spectrum of properties both complementary possess. Under stress conditions, mitochondria operate via their highly dynamic homeostasis and react promptly towards injury by increased mitophagy to rejuvenate the mitochondrial population and to warn all systems of the human body for a prompt induction of adaptive mechanisms aimed at increasing the level of systemic protection such as activated anti-oxidant defence and repair machinery.

The life-important functions of mitochondria and synergies with human cells are recognised as the highly innovative diagnostic and treatment target of great clinical utility in primary care to protect vulnerable individuals against the health-to-disease transition and to change the paradigm from reactive to predictive, preventive and personalised medicine (PPPM / 3PM) promoted by the European Association for Predictive Preventive and Personalised Medicine, EPMA, Brussels, www.epmanet.eu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADP:

Adenosine diphosphate

ATP:

Adenosine triphosphate

BHI:

Bio-energetic health index

CO2:

Carbon dioxide

CoA:

Coenzyme A

CoQ:

Coenzyme Q

Cyt c:

Cytochrome c

ETC:

Electron transport chain

FADH2:

Flavin adenine dinukleotide

GTP:

Guanosine triphosphate

MHI:

Mitochondrial health index

mtDNA:

Mitochondrial DNA

NADH:

Nicotinamide adenine dinucleotide

OXPHOS:

Oxidative phosphorylation

TCA:

Tricarboxylic acid

References

  1. Koklesova L, Mazurakova A, Samec M, Kudela E, Biringer K, Kubatka P, Golubnitschaja O (2022) Mitochondrial health quality control: measurements and interpretation in the framework of predictive, preventive, and personalized medicine. EPMA J 13(2):177–193. https://doi.org/10.1007/s13167-022-00281-6

    Article  PubMed  PubMed Central  Google Scholar 

  2. Golubnitschaja O (2023). What is the routine mitochondrial health check-up good for? A holistic approach in the framework of 3P medicine. Book chapter in “Predictive, Preventive, and Personalised Medicine: From Bench to Bedside”, Podbielska H, Kapalla M (eds), Springer. https://doi.org/10.1007/978-3-031-34884-6

  3. Ayoub IM, Radhakrishnan J, Gazmuri RJ (2008) Targeting mitochondria for resuscitation from cardiac arrest. Crit Care Med 36(11 Suppl):S440–S446. https://doi.org/10.1097/ccm.0b013e31818a89f4

    Article  PubMed  PubMed Central  Google Scholar 

  4. Donnino MW, Liu X, Andersen LW, Rittenberger JC, Abella BS, Gaieski DF, Ornato JP, Gazmuri RJ, Grossestreuer AV, Cocchi MN, Abbate A, Uber A, Clore J, Peberdy MA, Callaway CW, National Post Arrest Research Consortium (NPARC) Investigators (2017) Characterization of mitochondrial injury after cardiac arrest (COMICA). Resuscitation 113:56–62. https://doi.org/10.1016/j.resuscitation.2016.12.029

    Article  PubMed  PubMed Central  Google Scholar 

  5. Patil KD, Halperin HR, Becker LB (2015) Cardiac arrest: resuscitation and reperfusion. Circ Res 116(12):2041–2049. https://doi.org/10.1161/CIRCRESAHA.116.304495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ramachandra CJA, Hernandez-Resendiz S, Crespo-Avilan GE, Lin YH, Hausenloy DJ (2020) Mitochondria in acute myocardial infarction and cardioprotection. EBioMedicine 57:102884. https://doi.org/10.1016/j.ebiom.2020.102884

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yang KC, Bonini MG, Dudley SC Jr (2014) Mitochondria and arrhythmias. Free Radic Biol Med 71:351–361. https://doi.org/10.1016/j.freeradbiomed.2014.03.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, Krapfenbauer K, Mozaffari M, Costigliola V (2016) Medicine in the early twenty-first century: paradigm and anticipation – EPMA position paper 2016. EPMA J 7:23. https://doi.org/10.1186/s13167-016-0072-4

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chang JC, Chao YC, Chang HS, Wu YL, Chang HJ, Lin YS, Cheng WL, Lin TT, Liu CS (2021) Intranasal delivery of mitochondria for treatment of Parkinson’s disease model rats lesioned with 6-hydroxydopamine. Sci Rep 11(1):10597. https://doi.org/10.1038/s41598-021-90094-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chang JC, Chang HS, Wu YC, Cheng WL, Lin TT, Chang HJ, Kuo SJ, Chen ST, Liu CS (2019) Mitochondrial transplantation regulates antitumour activity, chemoresistance and mitochondrial dynamics in breast cancer. J Exp Clin Cancer Res 38(1):30. https://doi.org/10.1186/s13046-019-1028-z

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kropp M, De Clerck E, Vo TKS, Thumann G, Costigliola V, Golubnitschaja O (2023) Short communication: unique metabolic signature of proliferative retinopathy in the tear fluid of diabetic patients with comorbidities - preliminary data for PPPM validation. EPMA J 14(1):43–51. https://doi.org/10.1007/s13167-023-00318-4

    Article  PubMed  PubMed Central  Google Scholar 

  12. Traina G (2016) The neurobiology of acetyl-L-carnitine. Front Biosci (Landmark Ed) 21(7):1314–1329. https://doi.org/10.2741/4459

    Article  CAS  PubMed  Google Scholar 

  13. Chondrogianni N, Kapeta S, Chinou I, Vassilatou K, Papassideri I, Gonos ES (2010) Anti-ageing and rejuvenating effects of quercetin. Exp Gerontol 45(10):763–771. https://doi.org/10.1016/j.exger.2010.07.001

    Article  CAS  PubMed  Google Scholar 

  14. Rakha BA, Qurrat-Ul-Ain, Ansari MS, Akhter S, Akhter A, Awan MA, Santiago-Moreno J (2020) Effect of quercetin on oxidative stress, mitochondrial activity, and quality of Indian red jungle fowl (Gallus gallus murgha) sperm. J Biopreserv Biobank 18(4):311–320. https://doi.org/10.1089/bio.2020.0007

    Article  CAS  Google Scholar 

  15. Jardim FR, de Rossi FT, Nascimento MX, da Silva Barros RG, Borges PA, Prescilio IC, de Oliveira MR (2018) Resveratrol and brain mitochondria: a review. Mol Neurobiol 55(3):2085–2101. https://doi.org/10.1007/s12035-017-0448-z

    Article  CAS  PubMed  Google Scholar 

  16. Xia N, Daiber A, Förstermann U, Li H (2017) Antioxidant effects of resveratrol in the cardiovascular system. Br J Pharmacol 174(12):1633–1646. https://doi.org/10.1111/bph.13492

    Article  CAS  PubMed  Google Scholar 

  17. Slominski AT, Zmijewski MA, Semak I, Kim TK, Janjetovic Z, Slominski RM, Zmijewski JW (2017) Melatonin, mitochondria, and the skin. Cell Mol Life Sci 74(21):3913–3925. https://doi.org/10.1007/s00018-017-2617-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arinno A, Maneechote C, Khuanjing T, Ongnok B, Prathumsap N, Chunchai T, Arunsak B, Kerdphoo S, Shinlapawittayatorn K, Chattipakorn SC, Chattipakorn N (2021) Cardioprotective effects of melatonin and metformin against doxorubicin-induced cardiotoxicity in rats are through preserving mitochondrial function and dynamics. Biochem Pharmacol 192:114743. https://doi.org/10.1016/j.bcp.2021.114743

    Article  CAS  PubMed  Google Scholar 

  19. Munmun F, Witt-Enderby PA (2021) Melatonin effects on bone: implications for use as a therapy for managing bone loss. J Pineal Res 71(1):e12749. https://doi.org/10.1111/jpi.12749

    Article  CAS  PubMed  Google Scholar 

  20. Ahluwalia A, Patel K, Hoa N, Brzozowska I, Jones MK, Tarnawski AS (2021) Melatonin ameliorates aging-related impaired angiogenesis in gastric endothelial cells via local actions on mitochondria and VEGF-survivin signaling. Am J Physiol Gastrointest Liver Physiol 321(6):G682–G689. https://doi.org/10.1152/ajpgi.00101.2021

    Article  CAS  PubMed  Google Scholar 

  21. Mocayar Marón FJ, Camargo AB, Manucha W (2020) Allicin pharmacology: common molecular mechanisms against neuroinflammation and cardiovascular diseases. Life Sci 249:117513. https://doi.org/10.1016/j.lfs.2020.117513

    Article  CAS  PubMed  Google Scholar 

  22. Raghuveer G, Hartz J, Lubans DR, Takken T, Wiltz JL, Mietus-Snyder M, Perak AM, Baker-Smith C, Pietris N, Edwards NM, American Heart Association Young Hearts Athero (2020) Hypertension and Obesity in the Young Committee of the Council on Lifelong Congenital Heart Disease and Heart Health in the Young. Cardiorespiratory Fitness in Youth: An Important Marker of Health: A Scientific Statement From the American Heart Association. Circulation 142(7):e101–e118. https://doi.org/10.1161/CIR.0000000000000866

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bisht B, Darling WG, White EC, White KA, Shivapour ET, Zimmerman MB, Wahls TL (2017) Effects of a multimodal intervention on gait and balance of subjects with progressive multiple sclerosis: a prospective longitudinal pilot study. Degener Neurol Neuromuscul Dis 7:79–93. https://doi.org/10.2147/DNND.S128872

    Article  PubMed  PubMed Central  Google Scholar 

  24. Guo S, Huang Y, Zhang Y, Huang H, Hong S, Liu T (2020) Impacts of exercise interventions on different diseases and organ functions in mice. J Sport Health Sci 9(1):53–73. https://doi.org/10.1016/j.jshs.2019.07.004

    Article  PubMed  Google Scholar 

  25. Krako Jakovljevic N, Pavlovic K, Jotic A, Lalic K, Stoiljkovic M, Lukic L, Milicic T, Macesic M, Stanarcic Gajovic J, Lalic NM (2021) Targeting mitochondria in diabetes. Int J Mol Sci 22(12):6642

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lee Y, Min K, Talbert EE, Kavazis AN, Smuder AJ, Willis WT, Powers SK (2012) Exercise protects cardiac mitochondria against ischemia-reperfusion injury. Med Sci Sports Exerc 44(3):397–405. https://doi.org/10.1249/MSS.0b013e318231c037

    Article  PubMed  Google Scholar 

  27. Di Meo S, Venditti P (2001) Mitochondria in exercise-induced oxidative stress. Biol Signals Recept 10(1–2):125–140. https://doi.org/10.1159/000046880

    Article  PubMed  Google Scholar 

  28. Layec G, Blain GM, Rossman MJ, Park SY, Hart CR, Trinity JD, Gifford JR, Sidhu SK, Weavil JC, Hureau TJ, Amann M, Richardson RS (2018) Acute high-intensity exercise impairs skeletal muscle respiratory capacity. Med Sci Sports Exerc 50(12):2409–2417. https://doi.org/10.1249/MSS.0000000000001735

    Article  PubMed  PubMed Central  Google Scholar 

  29. Crane JD, Ogborn DI, Cupido C, Melov S, Hubbard A, Bourgeois JM, Tarnopolsky MA (2012) Massage therapy attenuates inflammatory signaling after exercise-induced muscle damage. Sci Transl Med 4(119):119ra13. https://doi.org/10.1126/scitranslmed.3002882

    Article  CAS  PubMed  Google Scholar 

  30. Gao M, Yang HY, Liu TY, Kuai L (2005) Effects of manual acupuncture and electro-acupuncture on mitochondria of skeletal muscle cells in rats of acute swimming exercise. Zhongguo Zhen Jiu 25(6):421–424

    CAS  PubMed  Google Scholar 

  31. Lee YM, Choi DH, Park JH, Cheon MW, Kim JG, Kim JS, Choi T, Kim HR, Youn D (2023) The effects of manual acupuncture on mitochondrial fusion and fission gene expression in rat spleen. J Acupunct Meridian Stud 16(2):49–55. https://doi.org/10.51507/j.jams.2023.16.2.49

    Article  CAS  PubMed  Google Scholar 

  32. Li MY, Dai XH, Yu XP, Zou W, Teng W, Liu P, Yu XY, An Q, Wen X (2022) Scalp acupuncture protects against neuronal ferroptosis by activating the p62-Keap1-Nrf2 pathway in rat models of intracranial haemorrhage. J Mol Neurosci 72(1):82–96. https://doi.org/10.1007/s12031-021-01890-y

    Article  CAS  PubMed  Google Scholar 

  33. Wang H, Chen S, Zhang Y, Xu H, Sun H (2019) Electroacupuncture ameliorates neuronal injury by Pink1/Parkin-mediated mitophagy clearance in cerebral ischemia-reperfusion. Nitric Oxide 91:23–34. https://doi.org/10.1016/j.niox.2019.07.004

    Article  CAS  PubMed  Google Scholar 

  34. Jiang YH, He JK, Li R, Chen ZH, Jia BH (2022) Mechanisms of acupuncture in improving Alzheimer’s disease caused by mitochondrial damage. Chin J Integr Med 28(3):272–280. https://doi.org/10.1007/s11655-022-3511-6

    Article  PubMed  Google Scholar 

  35. Xiao Y, Chen W, Zhong Z, Ding L, Bai H, Chen H, Zhang H, Gu Y, Lu S (2020) Electroacupuncture preconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting mitophagy mediated by the mTORC1-ULK1-FUNDC1 pathway. Biomed Pharmacother 127:110148. https://doi.org/10.1016/j.biopha.2020.110148

    Article  CAS  PubMed  Google Scholar 

  36. Li H, Liu Y, Lin LT, Wang XR, Du SQ, Yan CQ, He T, Yang JW, Liu CZ (2016) Acupuncture reversed hippocampal mitochondrial dysfunction in vascular dementia rats. Neurochem Int 92:35–42. https://doi.org/10.1016/j.neuint.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  37. Jittiwat J (2017) Laser acupuncture at GV20 improves brain damage and oxidative stress in animal model of focal ischemic stroke. J Acupunct Meridian Stud 10(5):324–330. https://doi.org/10.1016/j.jams.2017.08.003

    Article  PubMed  Google Scholar 

  38. Aon MA, Cortassa S, O’Rourke B (2008) Mitochondrial oscillations in physiology and pathophysiology. Adv Exp Med Biol 641:98–117. https://doi.org/10.1007/978-0-387-09794-7_8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Feng Q, Wang L, Chen Y, Teng J, Li M, Cai Z, Niu X, Rein G, Yang Q, Shao X, Zhang C, Bai X (2022) Effects of different music on HEK293T cell growth and mitochondrial functions. Explore (NY) 18(6):670–675. https://doi.org/10.1016/j.explore.2022.01.002

    Article  PubMed  Google Scholar 

  40. Toda T, Ito M, Takeda JI, Masuda A, Mino H, Hattori N, Mohri K, Ohno K (2022) Extremely low-frequency pulses of faint magnetic field induce mitophagy to rejuvenate mitochondria. Commun Biol 5(1):453. https://doi.org/10.1038/s42003-022-03389-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Golubnitschaja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Golubnitschaja, O. (2024). Mitochondrion: The Subordinated Partner Who Agreed to Come Short But Insists in Healthy Life. In: Wang, W. (eds) All Around Suboptimal Health . Advances in Predictive, Preventive and Personalised Medicine, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-031-46891-9_3

Download citation

Publish with us

Policies and ethics