Skip to main content

Experimental Analysis of a Peregrine Falcon 3D Prototype with Oscillating Feathers

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2023)

Abstract

The peregrine falcon is the fastest bird in the world. Previous studies have made it possible to observe its flight conditions. One characteristic that stands out is its dorsal feathers, which allow it to generate an effect of stability in flight. The form of these feathers can contribute to the design of similar devices in wind turbines, called vortex generators. Vortex generators maintain a turbulence that modifies the zone of detachment of the boundary layer of a blade. This paper shows an experimental wind tunnel study of a falcon prototype with a hotwire sensor, 3D accelerometer and a servomechanism that allows the movement of the feathers. Measured wake wind velocity curves in transient mode showed similarities. The magnitude spectrum of the wind velocity signal measured by oscillating the feathers of the prototype showed reduction peaks in its spectral components. This indicates reduction in the vibration of the prototype at a wind velocity of 10 m/s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deshmukh, S., Bhattacharya, S., Jain, A., Paul, A.R.: Wind turbine noise and its mitigation techniques: a review. Energy Procedia 160(2018), 633–640 (2019). https://doi.org/10.1016/j.egypro.2019.02.215

    Article  Google Scholar 

  2. Bodling, A., Sharma, A.: Numerical investigation of noise reduction mechanisms in a bio-inspired airfoil. J. Sound Vib. 453, 314–327 (2019). https://doi.org/10.1016/j.jsv.2019.02.004

    Article  Google Scholar 

  3. Mystkowski, A.: Piezo-stack vortex generators for boundary layer control of a delta wing micro-aerial vehicle. Mech. Syst. Signal Process. 40(2), 783–790 (2013). https://doi.org/10.1016/j.ymssp.2013.05.019

    Article  Google Scholar 

  4. Mereu, R., Passoni, S., Inzoli, F.: Scale-resolving CFD modeling of a thick wind turbine airfoil with application of vortex generators: validation and sensitivity analyses. Energy 187, 115969 (2019). https://doi.org/10.1016/j.energy.2019.115969

    Article  Google Scholar 

  5. Lu, G., Zhou, G.: Numerical simulation on performances of plane and curved winglet – Pair vortex generators in a rectangular channel and field synergy analysis. Int. J. Therm. Sci. 109, 323–333 (2016). https://doi.org/10.1016/j.ijthermalsci.2016.06.024

    Article  Google Scholar 

  6. Zhen, T.K., Zubair, M., Ahmad, K.A.: Experimental and numerical investigation of the effects of passive vortex generators on Aludra UAV performance. Chinese J. Aeronaut. 24(5), 577–583 (2011). https://doi.org/10.1016/S1000-9361(11)60067-8

    Article  Google Scholar 

  7. Troldborg, N., Zahle, F., Sørensen, N.N.: Simulations of wind turbine rotor with vortex generators. J. Phys.: Conf. Ser. 753, 022057 (2016). https://doi.org/10.1088/1742-6596/753/2/022057

    Article  Google Scholar 

  8. Ponitz, B., Triep, M., Brücker, C.: Aerodynamics of the cupped wings during peregrine falcon’s diving flight. Open J. Fluid Dyn. 04(04), 363–372 (2014). https://doi.org/10.4236/ojfd.2014.44027

    Article  Google Scholar 

  9. Ponitz, B., Schmitz, A., Fischer, D., Bleckmann, H., Brücker, C.: Diving-flight aerodynamics of a peregrine falcon (Falco peregrinus). PLoS ONE 9(2), e86506 (2014). https://doi.org/10.1371/journal.pone.0086506

    Article  Google Scholar 

  10. Gowree, E.R., Jagadeesh, C., Talboys, E., Lagemann, C., Brücker, C.: Vortices enable the complex aerobatics of peregrine falcons. Commun. Biol. 1, 27 (2018). https://doi.org/10.1038/s42003-018-0029-3

    Article  Google Scholar 

  11. Shi, S.X., Liu, Y.Z., Chen, J.M.: An experimental study of flow around a bio-inspired airfoil at Reynolds number 2.0 × 103. J. Hydrodyn. 24(3), 410–419 (2012). https://doi.org/10.1016/S1001-6058(11)60262-X

    Article  Google Scholar 

  12. Shanmukha Srinivas, K., Datta, A., Bhattacharyya, A., Kumar, S.: Free-stream characteristics of bio-inspired marine rudders with different leading-edge configurations. Ocean Engineering 170, 148–159 (2018). https://doi.org/10.1016/j.oceaneng.2018.10.010

    Article  Google Scholar 

  13. Post, M.L., Decker, R., Sapell, A.R., Hart, J.S.: Effect of bio-inspired sinusoidal leading-edges on wings. Aerosp. Sci. Technol. 81, 128–140 (2018). https://doi.org/10.1016/j.ast.2018.07.043

    Article  Google Scholar 

  14. Hassanalian, M., Throneberry, G., Abdelkefi, A.: Wing shape and dynamic twist design of bio-inspired nano air vehicles for forward flight purposes. Aerosp. Sci. Technol. 68, 518–529 (2017). https://doi.org/10.1016/j.ast.2017.06.010

    Article  Google Scholar 

  15. Drew Adam Wetzel: vortex generators for wind turbine rotor blades having noise-reducing features (2018)

    Google Scholar 

  16. Xia, H., Sun, Q., Liu, Y.: Energy absorption characteristics of bio-inspired honeycomb column thin-walled structure under low strain rate uniaxial compression loading. Energies 15, 6957 (2022)

    Article  Google Scholar 

  17. Vu, D.T., et al.: Solar concentrator bio-inspired by the superposition compound eye for high-concentration photovoltaic system up to thousands fold factor. Energies 15(9), 3406 (2022). https://doi.org/10.3390/en15093406

    Article  Google Scholar 

  18. Zhang, H., Sheng, W., Zha, Z., Aggidis, G.: A preliminary study on identifying biomimetic entities for generating novel wave energy converters. Energies 15(7), 2485 (2022). https://doi.org/10.3390/en15072485

    Article  Google Scholar 

  19. Dvorak, P.: Conformal vortex generator and elastomer tab let NREL test turbine produce 22% more power. https://www.windpowerengineering.com/conformal-vortex-generator-elastomer-tab-let-nrel-test-turbine-produce-22-power/ (2017). Accessed Nov. 17, 2020

  20. Lattin, C.R., Emerson, M.A., Gallezot, J.D., Mulnix, T., Brown, J.E., Carson, R.E.: A 3D-printed modular device for imaging the brain of small birds. J. Neurosci. Methods 293, 183–190 (2018). https://doi.org/10.1016/j.jneumeth.2017.10.005

    Article  Google Scholar 

  21. Hongtu, Z., Ouya, Z., Botao, L., Jian, Z., Xiangyu, X., Jianping, W.: Effect of drill pipe rotation on gas-solid flow characteristics of negative pressure pneumatic conveying using CFD-DEM simulation. Powder Technol. 387, 48–60 (2021). https://doi.org/10.1016/j.powtec.2021.04.017

    Article  Google Scholar 

  22. Heydari, M., Sadat-Hosseini, H.: Analysis of propeller wake field and vortical structures using k−ω SST Method. Ocean Eng. 204(August 2019), 107247 (2019). https://doi.org/10.1016/j.oceaneng.2020.107247

    Article  Google Scholar 

  23. van Sluis, M., Nasrollahi, S., Rao, A.G., Eitelberg, G.: Experimental and numerical analyses of a novel wing-in-ground vehicle. Energies 15(4), 1497 (2022). https://doi.org/10.3390/en15041497

    Article  Google Scholar 

  24. Ung, S.-K., Chong, W.-T., Mat, S., Ng, J.-H., Kok, Y.-H., Wong, K.-H.: Investigation into the aerodynamic performance of a vertical axis wind turbine with endplate design. Energies 15(19), 6925 (2022). https://doi.org/10.3390/en15196925

    Article  Google Scholar 

  25. Aziz, S., et al.: Computational fluid dynamics and experimental analysis of a wind turbine blade’s frontal section with and without arrays of dimpled structures. Energies 15(19), 7108 (2022). https://doi.org/10.3390/en15197108

    Article  Google Scholar 

  26. ANSYS CFX-Solver Theory Guide, vol. 15317, no. November. (2011)

    Google Scholar 

  27. Whitehouse, G.R., Boschitsch, A.H.: Investigation of grid-based vorticity-velocity large eddy simulation off-body solvers for application to overset CFD. Comput. Fluids 225, 104978 (2021). https://doi.org/10.1016/j.compfluid.2021.104978

    Article  MathSciNet  MATH  Google Scholar 

  28. Shen, Z., Yang, Z., Wang, Y.: Unsteady correlation between shear layer vorticity and acoustic refraction in low speed open-jet wind tunnel. Appl. Acoust. 182, 108202 (2021). https://doi.org/10.1016/j.apacoust.2021.108202

    Article  Google Scholar 

  29. Belamadi, R., Settar, A., Chetehouna, K., Ilinca, A.: Numerical modeling of horizontal axis wind turbine: aerodynamic performances improvement using an efficient passive flow control system. Energies 15(13), 4872 (2022). https://doi.org/10.3390/en15134872

    Article  Google Scholar 

  30. Shirzadi, M., Tominaga, Y.: CFD evaluation of mean and turbulent wind characteristics around a high-rise building affected by its surroundings. Build. Env. 225, 109637 (2022). https://doi.org/10.1016/j.buildenv.2022.109637

    Article  Google Scholar 

  31. Zeng, F., Lei, C., Liu, J., Niu, J., Gao, N.: CFD simulation of the drag effect of urban trees: Source term modification method revisited at the tree scale. Sustain. Cities Soc. 56, 102079 (2020). https://doi.org/10.1016/j.scs.2020.102079

    Article  Google Scholar 

  32. Dondapati, R.S., Rao, V.V.: Influence of mass flow rate on Turbulent Kinetic Energy (TKE) distribution in Cable-in-Conduit Conductors (CICCs) used for fusion grade magnets. Fusion Eng. Des. 88(5), 341–349 (2013). https://doi.org/10.1016/j.fusengdes.2013.03.047

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector G. Parra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parra, H.G., Gaona, E.E., Ceron, H.D. (2023). Experimental Analysis of a Peregrine Falcon 3D Prototype with Oscillating Feathers. In: Figueroa-García, J.C., Hernández, G., Villa Ramirez, J.L., Gaona García, E.E. (eds) Applied Computer Sciences in Engineering. WEA 2023. Communications in Computer and Information Science, vol 1928. Springer, Cham. https://doi.org/10.1007/978-3-031-46739-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46739-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46738-7

  • Online ISBN: 978-3-031-46739-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics