Skip to main content

Overview: Photovoltaic Solar Cells, Science, Materials, Artificial Intelligence, Nanotechnology and State of the Art

  • Chapter
  • First Online:
Trends and Innovations in Energetic Sources, Functional Compounds and Biotechnology

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 270 Accesses

Abstract

Since the sun can provide all the renewable, sustainable energy we need and fossil fuels are not unexhaustible, multidisciplinary scientists worldwide are working to make additional sources commercially available, i.e., new generation photovoltaic solar cells (PVScs), with novel technological properties. We overview the field of PVScs indicating actual state of the art as well as future trends and perspectives. We summarize the fundamental science of PVScs, Shockley-Queisser limit, generations, technological devices including (heterojunctions, multijunctions, tandem, multiple exciton generation, quantum dots, panels, arrays and power systems). Materials for PVScs including (inorganic semiconductors (Si, GaAs, CdTe, CIGS…), organic (small molecules, fullerenes, nonfullerenes, fused ring acceptors, non-fused ring electron acceptors, all polymer, polymer-small molecule acceptors); hybrid organic–inorganic (HOI), perovskite (Pe), Ruddelson-Popper phase (RP) Pe, Dion-Jacobson (DJ) phase Pe, dye synthetisized (DS), quantum dot (QD), colloidal QD (CoQD), QDDS, QDPe, QDHOI, core/yolk (shell), two dimensional nanolayers (2d-NL), graphene (G), graphene oxide (GO), reduced graphene (rGO), graphite, nanographite, carbon nano/quantum dot, graphene quantum dot (GQD), black/blue phosphorous, transition metal dichalcogenides (TMDCs), g-C3N4 (graphitic carbon nitride), low dimensional boron nitride (BN), Janus-like nanocrystals, one-dimensional photonic crystal (1DPC), MXene, two dimensional van der Waals heterostructures (2d-vdWHs), borophene monolayer, nanowire, nanotubes, nanorods, nanofiber, tetrapods as well as semi-transparent, ultra-thin, ultra-light, flexible, 3d printable PVS cells/panels that work within technological-based devices. Notably, nanotechnology and artificial intelligence should play important roles in PVScs whereas quantum dots/nanomaterials based Scs including QDDS, QDPe and QDHOI are promising for upcoming generation commercial available cells which should desirable also be highly efficient, cost effective, non-toxic, non-degradable, have material availability, aesthetic design potential, large scale production and reciclability. The future holds practically unlimited applications in screens, greenhouses, roof tops, open areas, water surfaces, underwater communication, smart glasses, homes, factories, colorful/colorless windows, automobiles, aero/deep space travel, satellites, drones, robotics, telecommunications 5g, 6G, skylight applications, catalysis, energy storage, wearable electronics (e-skin), internet of things (IoT), building-integrated solar photovoltaic (BIPV), weather balloons, optical wireless communications (OWC), charging of laptops and mobile devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pinto, F.M., de Conti, M.C.M.D., Dey, S., Velilla, E., Taft, C.A., de Almeida La Porta, F.: Emerging metal-Halide Perovskite materials for enhanced solar cells and light-emitting applications. In: Taft, C.A., de Lazaro, S.R. (eds.) Research Topics in Bioactivity, Environment and Energy, Experimental and Theoretical Tools. Springer Nature, Switzerland AG (2022). https://doi.org/10.1007/978-3-031-07622-0_2

  2. La Porta, F.A., Taft, C.A. (eds.): Functional Properties of Advanced Engineering Materials and Biomolecules. Engineering Materials. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-62226-8_2

  3. La Porta, F.A., Taft, C.A. (eds.): Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies. Engineering Materials. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-31403-3

  4. Canchaya, J.G.S., Furtado, N.C., Taft, C.A.: An overview of fuel cells and simulation models. Curr. Phys. Chem. 5, 223–252 (2015)

    Article  CAS  Google Scholar 

  5. Vodapally, S.N., Ali, M.H.: A comprehensive review of solar photovoltaic (PV) technologies, architecture, and its applications to improved efficiency. Energies 16, 319 (2023). https://doi.org/10.3390/en16010319

    Article  CAS  Google Scholar 

  6. Soonmin, H., Hardani, Nandi, P., Mwankemwa, B.S., Malevu, T.D., Malik, M.I.: Overview on different types of solar cells: an update. Appl. Sci. 13, 2051 (2023). https://doi.org/10.3390/app13042051

  7. David, C., Hussein, H.: Advances in photovoltaic technologies from atomic to device scale. Photonics 9, 837 (2022). https://doi.org/10.3390/photonics9110837

    Article  CAS  Google Scholar 

  8. Reddy, B.K., Reddy, B.S., Prakash, P., Vamshy, D., Reddy, P.R.K.K., Alhaider, M.M.: Latest trends and their adoptions in electrical power systems—an industrial perspective. Indonesian J. Electr. Eng. Comput. Sci. 29(1), 8–14

    Google Scholar 

  9. Al-Ezzi, A.S., Ansari, M.N.M.: Photovoltaic solar cells: a review. Appl. Syst. Innov. 5, 67 (2022). https://doi.org/10.3390/asi5040067

    Article  Google Scholar 

  10. Green, M.A., Dunlop, E.D., Siefer, G., Yoshita, M., Kopidakis, N., Bothe, K., Hinken, D., Rauer, M., Hao, X.: Solar cell efficiency tables (version 61). Prog. Photovolt. Res. Appl. 31, 3–16 (2022). https://doi.org/10.1002/pip.3646

  11. Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)

    Article  CAS  Google Scholar 

  12. Mumyatov, A.V., Troshin, P.A.: A review on fullerene derivatives with reduced electron affinity as acceptor materials for organic solar cells. Energies 2023, 16 (1924). https://doi.org/10.3390/en16041924

    Article  CAS  Google Scholar 

  13. Honger, J., Weber, S., Mayr, F., Jodlbauer, A., Reinfelds, M., Rath, T., Trimmel, G., Scharber, M.C.: Wide-bandgap organic solar cells with a novel perylene-based non-fullerene acceptor enabling open-circuit voltages beyond 1.4 V. J. Mater. Chem. A 10, 2888 (2022)

    Google Scholar 

  14. Jiang, Y., Bai, Y., Wang, S.: Organic solar cells: from fundamental to application. Energies 16, 2262 (2023). https://doi.org/10.3390/en16052262

  15. Lübke, D., Hartnagel, P., Hülsbeck, M., Kirchartz, T.: Understanding the thickness and light-intensity dependent performance of green-solvent processed organic solar cells. https://doi.org/10.1021/acsmaterialsau.2c00070.

  16. Sharma, A., Sharma, L., Bertrandie, J., Villalva, D.R., Gao, Y., De Castro, C.S.P., Troughton, J., Gorenflot, J., Laquai, F., Bronstein, H., Baran, D.: Reducing non-radiative voltage losses in organic solar cells using molecular encapsulation. Mater. Chem. Front. 7, 735 (2023)

    Google Scholar 

  17. van der Pol, T.P.A., van Gorkom, B.T., van Geel, W.F.M., Littmann, J., Wienk, M.M., Janssen, R.A.J.: Origin, nature, and location of defects in PM6:Y6 organic solar cells. Adv. Energy Mater. 13, 2300003 (2023)

    Google Scholar 

  18. Li, Y., Huang, B., Zhang, X., Ding, J., Zhang, Y., Xiao, L., Wang, B., Cheng, Q., Huang, G., Zhang, H., Yang, Y., Qi, X., Zheng, Q., Zhang, Y., Qiu, X., Liang, M., Zhou, H.: Lifetime over 10000 hours for organic solar cells with Ir/IrOx electron-transporting layer. Nat. Commun. https://doi.org/10.1038/s41467-023-36937-8.

  19. Liu, B., Sun, H., Lee, J.-W., Jiang, Z., Qiao, J., Wang, J., Yang, J., Feng, K., Liao, Q., An, M., Li, B., Han, D., Xu, B., Lian, H., Niu, L., Kim, B.J., Guo, X.: Efficient and stable organic solar cells enabled by multicomponent photoactive layer based on one-pot polymerization. Nat. Commun. https://doi.org/10.1038/s41467-023-36413-3

  20. Hu, D., Tang, H., Karuthedath, S., Chen, Q., Chen, S., Khan, J.I., Liu, H., Yang, Q., Gorenflot, J., Petoukhoff, C.E., Duan, T., Lu, X., Laquai, F., Lu, S.: A volatile solid additive enables oligothiophene all-small-molecule organic solar cells with excellent commercial viability. Adv. Funct. Mater. 2211873 (2022)

    Google Scholar 

  21. Fu, J., Fong, P.W.K., Liu, H., Huang, C.-S., Lu, X., Lu, S., Abdelsamie, M., Kodalle, T., Sutter-Fella, C.M., Yang, Y., Li, G.: 19.31% binary organic solar cell and low nonradiative recombination enabled by nonmonotonic intermediate state transition. https://doi.org/10.1038/s41467-023-37526-5.

  22. Ali, U., Shaban, E.A., Ahmad, H.M.R.: Design approaches of imide based organic solar cells with computational chemistry state-of-the-art density functional theory: a perspective review. Ann Materials Sci Eng. 6(1), 1047 (2022)

    Google Scholar 

  23. Datt, R, Bishnoi, S., Lee, H.K.H., Arya, S., Gupta, S., Gupta, V., Tsoi, W.C.: Down-conversion materials for organic solar cells: progress, challenges, and perspectives. Photovoltaics. https://doi.org/10.1002/agt2.185

  24. Gao, H., Han, C., Wan, X., Chen, Y.: Recent progress in non-fused ring electron acceptors for high performance organic solar cells. https://doi.org/10.1039/d2im00037g

  25. Hu, Z., Wang, J., Ma, X., Gao, J., Xu, C., Wang, X., Zhang, X., Wang, Z., Zhang, F.: Semitransparent organic solar cells exhibiting 13.02% efficiency and 20.2% average visible transmittance. J. Mater. Chem. A 9, 6797 (2021)

    Google Scholar 

  26. Zhong, T., Guo, F., Lei, S., Xiao, B., Li, Q., Jia, T., Wang, X., Yang, R.: Multi-scale mechanical properties of bulk-heterojunction films in polymer solar cells. Flex. Electron. 7, 2 (2023). https://doi.org/10.1038/s41528-023-00236-5

    Article  CAS  Google Scholar 

  27. Ahmed, A.Y.A., Ike, J.N., Hamed, M.S.G., Mola, G.T.: Silver decorated magnesium doped photoactive layer for improved collection of photo-generated current in Polymer solar cell. Appl. Polym. https://doi.org/10.1002/app.53697

  28. Al-Azzawi, A.G.S., Aziz, S.B., Dannoun, E.M., Iraqi, A., Nofal, M.M., Murad, A.R., Hussein, A.M.: A mini review on the development of conjugated polymers: steps towards the commercialization of organic solar cells. Polymers 15, 164 (2023). https://doi.org/10.3390/polym15010164

  29. Liang, Z., He, J., Zhao, B., Gao, M., Chen, Y., Ye, L., Li, M., Geng, Y.: 8.30% efficiency P3HT-based all-polymer solar cells enabled by a miscible polymer acceptor with high energy levels and efficient electron transport. Sci. China Chem. 66, 216–227 (2023). https://doi.org/10.1007/s11426-022-1386-1

  30. Kausar, A.: Avant-garde polymer and nano-graphite-derived nanocomposites—versatility and implications. C 9, 13 (2023). https://doi.org/10.3390/c9010013

  31. Patil, P., Sangale, S.S., Kwon, S.-N., Na, S.-I.: Innovative approaches to semi-transparent perovskite solar cells. Nanomaterials 13, 1084 (2023). https://doi.org/10.3390/nano13061084

    Article  CAS  Google Scholar 

  32. Çokduygulular, E., Çetinkaya, Ç., Emik, S., Kınacı, B.: In‑depth analysis on PTB7 based semi‑transparent solar cell employing MoO3/Ag/WO3 contact for advanced optical performance and light utilization. Sci. Rep. 13, 7548 (2023). https://doi.org/10.1038/s41598-023-34507-y

  33. Schopp, N., Brus, V.V.: A review on the materials science and device physics of semitransparent organic photovoltaics. Energies 15, 4639 (2022). https://doi.org/10.3390/en15134639226. https://doi.org/10.3390/nano13071226

  34. Milani, E.A., Piralaee, M., Asgari, A.: Improving efficiency of semitransparent organic solar cells by constructing semitransparent microcavity. Sci. Rep. 13, 9508 (2023). https://doi.org/10.1038/s41598-023-36488-4

  35. Milani, E.A., Piralaee, M., Asgari, A.: Improving efficiency of semitransparent organic solar cells by constructing semitransparent microcavity. Sci. Rep. 13, 9508 (2023). https://doi.org/10.1038/s41598-023-36488-4

  36. Amin, P.O., Muhammadsharif, F.F., Saeed, S.R., Ketuly, K.A., Amin, P.O., Muhammadsharif, F.F., Saeed, S.R., Ketuly, K.A.: A review on performance and stability improvement of ternary semi-transparent organic solar cells: material and architectural approaches. https://doi.org/10.20944/preprints202307.0522.v1

  37. Srivishnu, K.S., Markapudi, P.R., Sundaram, S., Giribabu, L.: Semitransparent Perovskite solar cells for building integrated photovoltaics: recent advances. Energies 16, 889 (2023). https://doi.org/10.3390/en16020889

    Article  CAS  Google Scholar 

  38. Chavan, G.T., Kim, Y., Khokhar, M.Q., Hussain, S.Q., Cho, E.-C., Yi, J., Ahmad, Z., Rosaiah, P., Jeon, C.-W.: A brief review of transparent conducting oxides (TCO): the influence of different deposition techniques on the efficiency of solar cells. Nanomaterials 13, 1 (2023)

    Article  Google Scholar 

  39. Bouclé, J., Ribeiro Dos Santos, D., Julien-Vergonjanne, A.: Doing more with ambient light: harvesting indoor energy and data using emerging solar cells. Solar 3, 161–183 (2023). https://doi.org/10.3390/solar3010011

  40. Saravanapavanantham, M., Mwaura, J., Bulović, V.: Printed organic photovoltaic modules on transferable ultra-thin substrates as additive power sources. Small Methods 7, 2200940 (2023)

    Article  CAS  Google Scholar 

  41. Ohashi, N., Kaneko, R., Sakai, C., Wasai, Y., Higuchi, S., Yazawa, K., Tahara, H., Handa, T., Nakamura, T., Murdey, R., Kanemitsu, Y., Wakamiya, A.: Bilayer indium tin oxide electrodes for deformation-free ultrathin flexible perovskite solar cells. Sol. RRL 7, 2300221 (2023)

    Google Scholar 

  42. Wu, J., Chen, P., Xu, H., Yu, M., Li, L., Yan, H., Huangfu, Y., Xiao, Y., Yang, X., Zhao, L., Wang, W., Gong, Q., Zhu, R.: Ultralight flexible perovskite solar cells. Sci. China Mater. 65(9), 2319–2324 (2022)

    Google Scholar 

  43. Muller-Buschbaum, P.: Testing flexible polymer solar cells in near-space. Nat. Sci. Rev. 10, nwad071 (2023). https://doi.org/10.1093/nsr/nwad071

  44. Xiong, S., Fukuda, K., Lee, S., Nakano, K., Dong, X., Yokota, T., Tajima, K., Zhou, Y., Someya, T.: Ultrathin and efficient organic photovoltaics with enhanced air stability by suppression of zinc element diffusion. Adv. Sci. 9, 2105288 (2022)

    Article  CAS  Google Scholar 

  45. Colenbrander, T., Peng, J., Wu, Y., Kelzenberg, M., Huang, J.S., MacFarland, C., Thorbourn, D., Kowalczyk, R., Kim, W., Brophy, J., Bui, A.D., Nguyen, D.-T., Nguyen, H.T., Atwater, H.A., White, T.P., Grandidier, J.: Low-intensity low-temperature analysis of perovskite solar cells for deep space applications. Energy Adv. 2, 298 (2023)

    Google Scholar 

  46. Xu, Z., Xu, G., Luo, Q., Han, Y., Tang, Y., Miao, Y., Li, Y., Qin, J., Guo, J., Zha, W., Gong, C., Lu, K., Zhang, J., Wei, Z., Cai, R., Yang, Y., Li, Z., Ma, C.Q.: In situ performance and stability tests of large-area flexible polymer solar cells in the 35-km stratospheric environment. Nat. Sci. Rev. 10, nwac285 (2023). https://doi.org/10.1093/nsr/nwac285

  47. Kim, S., Holz, M., Park, S., Yoon, Y., Cho, E., Yi, J.: Future options for lightweight photovoltaic modules in electrical passenger cars. Sustainability 13, 2532 (2021). https://doi.org/10.3390/su13052532

    Article  CAS  Google Scholar 

  48. Che Halin, D.S., Azhari, A.W., Mohd Salleh, M.A.A., Muhammad Nadzri, N.I., Vizureanu, P., Abdullah, M.M.A.B., Wahab, J.A., Sandu, A.V.: Metal-doped TiO2 thin, film as an electron transfer layer for perovskite solar cells: a review. Coatings 13, 4 (2023). https://doi.org/10.3390/coatings13010004

  49. He, C., Liu, X.: The rise of halide perovskite semiconductors. Light Sci. Appl. 12, 15 (2023). https://doi.org/10.1038/s41377-022-01010-4

  50. Li, Y., Yan, S., Cao, J., Chen, H., Liu, B., Xie, J., Shu, Y., Wang, F., Wang, A., Dong, J., Qin, T.: High performance flexible Sn-Pb mixed perovskite solar cells enabled by a crosslinking aditive. Flex. Electron. 7, 18 (2023). https://doi.org/10.1038/s41528-023-00253-4

  51. Bati, A.S.R., Zhong, Y.L., Burn, P.L., Nazeeruddin, M.K., Shaw, P.E., Batmunkh, M.: Next-generation applications for integrated perovskie solar cells. Commun. Mater. 4. (2023) https://doi.org/10.1038/s43246-022-00325-4, www.nature.com/commsmat

  52. Alanazi, T.I., Eid, O.I.: Simulation of triple-cation perovskite solar cells: key design factors for efficiency promotion. Energies 16, 2717 (2023). https://doi.org/10.3390/en16062717

    Article  CAS  Google Scholar 

  53. Lye, Y.-E., Chan, K.-Y., Ng, Z.N.: A review on the progress challenges, and performances of tin-based perovskite solar cells. Nanomaterials 13, 585 (2023). https://doi.org/10.3390/nano13030585

    Article  CAS  Google Scholar 

  54. Nishimura, K., Kamarudin, M.A., Hirotani, D., Hamada, K., Shen, Q., Iikubo, S., Minemoto, T., Yoshino, K., Hayase, S.: Lead-free tin-halide perovskite solar cells with 13% efficiency. Nano Energy 74, 104858 (2020)

    Article  CAS  Google Scholar 

  55. Shi, W., Zhuang, Q., Zhou, R., Hou, X., Zhao, X., Kong, J., Fuchter, M.J.: Enantiomerically pure fullerenes as a means to enhance the performance of perovskite solar cells. Adv. Energy Mater. 2300054 (2023). https://doi.org/10.1002/aenm.202300054

  56. Ritzer, D.B., Abdollahi Nejand, B., Ruiz-Preciado, M.A., Gharibzadeh, S., Hu, H., Diercks, A., Feeney, T., Richards, B.S., Abzieher, T., Paetzold, U.W.: Translucent perovskite photovoltaics for building Integration. https://doi.org/10.1039/d2ee04137e

  57. De Bastiani, M., Larini, V., Montecucco, R., Grancini, G.: The levelized cost of electricity from perovskite photovoltaics. Energy Environ. Sci. 16, 421 (2023)

    Article  Google Scholar 

  58. Cassella, E.J., Spooner, E.L.K., Smith, J.A., Thornber, T., O’Kane, M.E., Oliver, R.D.J., Catley, T.E., Choudhary, S., Wood, C.J., Hammond, D.B., Snaith, H.J., Lidzey, D.G.: Binary solvent system used to fabricate fully annealing-free perovskite solar cells. Adv. Energy Mater. 13, 2203468 (2023)

    Google Scholar 

  59. Scalon, L., Vaynzof, Y., Nogueira, A.F., Oliveira, C.C.: How organic chemistry can affect perovskite photovoltaics. Cell Rep. Phys. Sci. (2023). https://doi.org/10.1016/j.xcrp.2023.101358

  60. Tun, M.Z., Pansa‑Ngat, P., Ruankham, P., Thant, K.K.S., Kamnoedmanee, S., Seriwattanachai, C., Rueangsawang, W., Supruangnet, R., Nakajima, H., Kanjanaboos, P.: Improving morphology and optoelectronic properties of ultra‑wide bandgap perovskite via Cs tuning for clear solar cell and UV detection applications. Sci. Rep. 13, 2965 (2023)

    Google Scholar 

  61. Roy, P., Ghosh, A., Barclay, F., Khare, A., Cuce, E.: Perovskite solar cells: a review of the recent advances. Coatings 12, 1089 (2022). https://doi.org/10.3390/coatings12081089

    Article  CAS  Google Scholar 

  62. Goldschmidt, V.M.: Die gesetze der krystallochemie. Naturwissenschaften 14(21), 477–485 (1926). https://doi.org/10.1007/BF01507527

    Article  CAS  Google Scholar 

  63. Giannouli, M.: Current status of emerging PV technologies: a comparative study of dye-sensitized, organic, and Perovskite solar cells. Int. J. Photoenergy 2021, Article ID 6692858. https://doi.org/10.1155/2021/6692858

  64. Ashfaq, M., Talreja, N., Singh, N., Chauhan, D.: A next-generation material for dye-sensitized solar cells. Electronics 12, 570 (2023). https://doi.org/10.3390/electronics12030570

    Article  CAS  Google Scholar 

  65. Roy, A., Mohamed, M.J.S., Gondal, M.A., Mallick, T.K., Tahir, A.A., Sundaram, S.: Co-sensitization effect of N719 dye with Cu doped CdS colloidal nanoparticles for dye sensitized solar cells. Inorganic Chem. Commun. 148, 110298 (2023)

    Google Scholar 

  66. Kharboot, L.H., Fadil, N.A., Bakar, T.A.A., Najib, A.S.M., Nordin, N.H., Ghazali, H.: A review of transition metal sulfides as counter electrodes for dye-sensitized and quantum dot-sensitized solar cells. Materials 16, 2881 (2023). https://doi.org/10.3390/ma16072881

    Article  CAS  Google Scholar 

  67. Coppola, C., Parisi, M.L., Sinicropi, A.: The role of organic compounds in dye-sensitized and perovskite solar cells. Energies 16, 573 (2023). https://doi.org/10.3390/en16020573

    Article  Google Scholar 

  68. Wulansari, A.D., Hayati, D., Long, D.X., Choi, K., Hong, J.: Hydroxycinnamic acid derivatives for UV‑selective and visibly transparent dye‑sensitized solar cells. Sci. Rep. 13, 3235. https://doi.org/10.1038/s41598-022-17236-6

  69. Spinelli, G., Freitag, M., Benesperi, I.: What is necessary to fill the technological gap to design sustainable dye-sensitized solar cells? Sustain Energy Fuels 7, 916 (2023)

    Article  CAS  Google Scholar 

  70. Zhang, Y., Chen, M., He, T., Chen, H., Zhang, Z., Wang, H., Lu, H., Ling, Q., Hu, Z., Liu, Y., Chen, Y., Long, G.: Highly efficient and stable FA-based Quasi-2D Ruddlesden–Popper Perovskite solar cells by the incorporation of β-Fluorophenylethanamine cations, 35(17), 2210836 (2023)

    Google Scholar 

  71. Lasheen, D., Fathy, M., Othman, H.A., Elkholy, M.M., Kashyout, A.E.H.B.: Synthesis and characterization of InP quantum dots for photovoltaics applications. J. Mater. Sci.: Mater. Electron. 34, 843 (2023)

    Google Scholar 

  72. Jun, H.K., Tung, H.T.: A Short overview on recent progress in sem iconductor quantum dot-sensitized solar cells. Hindawi J. Nanomater. 2022, Article ID 1382580, 7 p. https://doi.org/10.1155/2022/1382580

  73. Paras, Yadav, K., Kumar, P., Teja, D.R., Chakraborty, S., Chakraborty, M., Mohapatra, S.S., Sahoo, A., Chou, M.M.C., Liang, C.-T., et al.: A review on low-dimensional nanomaterials: nanofabrication, characterization and applications. Nanomaterials 13, 160 (2023). https://doi.org/10.3390/nano13010160

  74. Khan, J., Ullah, I., Yuan, J.: CsPbI3 perovskite quantum dot solar cells: opportunities, progress and challenges. Mater. Adv. 2022, 3 (1931)

    Google Scholar 

  75. Lim, P.S., Lee, D.H., Choi, H., Choi, Y., Lee, D.G., Cho, S.B., Ko, S., Choi, J., Kim, Y., Park, T.: High‑performance perovskite quantum dot solar cells enabled by incorporation with dimensionally engineered organic semiconductor. Nano-Micro Lett. 14, 204 (2022)

    Google Scholar 

  76. AI Naureen, Sadanand, Lohia, P., Dwivedi, D.K., Ameen, S.: A comparative study of quantum dot solar cell with two different ETLs of WS2 and IGZO Using SCAPS-1D simulator. Solar 2, 341–353 (2022). https://doi.org/10.3390/solar2030020

  77. Chen, J., Mei, X., Zhang, X.: Emerging quantum dots spotlight on next-generation photovoltaics. Materials Lab 1 (2022)

    Google Scholar 

  78. Kim, T., Park, S., Iyer, V., Shaheen, B., Choudhry, U., Jiang, Q., Eichman, G., Gnabasik, R., Kelley, K., Lawrie, B., Zhu, K., Liao, B.: Mapping the pathways of photo-induced ion migration in organic-inorganic hybrid halide perovskites. Nat. Commun. 14, 1846 (2023)

    Google Scholar 

  79. Hu, C., Zhang, Z., Chen, J., Gao, P.: Surface passivation of organic-inorganic hybrid perovskites with methylhydrazine iodide for enhanced photovoltaic device performance. Inorganics 11, 168 (2023). https://doi.org/10.3390/inorganics11040168

  80. Liu, H.L., Xiao, H., Jin, K., Xiao, Z., Du, X., Yan, K., Hao, F., Bao, Q., Yi, C., Liu, F., Wang, W., Zuo, C., Ding, L.: 4‑terminal inorganic perovskite/organic tandem solar cells offer 22% efficiency, Nano-Micro Lett. 15, 23 (2023)

    Google Scholar 

  81. Perrakis, G., Tasolamprou, A.C., Kenanakis, G., Economou, E.N., Tzortzakis, S., Kafesaki, M.: Submicron organic−inorganic hybrid radiative cooling coatings for stable ultrathin, and lightweight solar cells. ACS Photon. 9, 1327–1337 (2022)

    Article  CAS  Google Scholar 

  82. Hu, C., Zhang, Z., Chen, J., Gao, P.: Surface passivation of organic-inorganic hybrid perovskites with methylhydrazine iodide for enhanced photovoltaic device performance. Inorganics 11, 168 (2023). https://doi.org/10.3390/inorganics11040168

    Article  CAS  Google Scholar 

  83. Bati, P.A.S.R., Zhong, Y.L., Burn, P.L., Nazeeruddin, M.K., Shaw, P.E., Batmunkh, M.: Next-generation applications for integrated perovskite solar cells. Commun. Mater. 4 (2023). https://doi.org/10.1038/s43246-022-00325-4, www.nature.com/commsmatdoi.org/10.1038/s43246-022-00325-4

  84. Huo, M., Hu, Y., Xue, Q., Huang, J., Xie, G.: Solution-processed large-area organic/inorganic hybrid antireflective films for perovskite solar cell. Molecules 28, 2145 (2023). https://doi.org/10.3390/molecules28052145858532858555

    Article  CAS  Google Scholar 

  85. Nie, T., Fang, Z., Ren, X., Duan, Y., Liu, S.: Recent advances in wide-bandgap organic-inorganic halide perovskite solar cells and tandem application. Nano-Micro Lett. 15, 70 (2023)

    Article  CAS  Google Scholar 

  86. Vercelli, B.: The role of carbon quantum dots in organic photovoltaics: a short overview. Coatings 11, 232 (2021). https://doi.org/10.3390/coatings11020232

    Article  CAS  Google Scholar 

  87. Sadhu, A.S., Huang, Y.-M., Chen, L.-Y., Kuo, H.-C., Lin, C.-C.: Recent advances in colloidal quantum dots or perovskite quantum dots as a luminescent downshifting layer embedded on solar cells. Nanomaterials 12, 985 (2022). https://doi.org/10.3390/nano12060985

    Article  CAS  Google Scholar 

  88. Jeong, H.-S., Kim, D., Jee, S., Si, M.-J., Kim, C., Lee, J.-Y., Jung, Y., Baek, S.W., Jun, K., Tung, H.T.: Colloidal quantum dot:organic ternary ink for efficient solution-processed hybrid solar cells. Int. J. Energy Res. 2023, Article ID 4911750, 14 p. https://doi.org/10.1155/2023/4911750

  89. Zhao, H., Rose, F.: Colloidal quantum dots for solar technologies. Chem 3, 229–258 (2017)

    Google Scholar 

  90. Yan, D., Liu, M., Li, Z., Hou, B.: Colloidal quantum dots and metal halide perovskite. J. Mater. Chem. A 9,15522 (2021)

    Google Scholar 

  91. Jung, Y., Shin, H., Baek, S.-W., Tai, T.B., Scheffel, B., Ouellette, O., Biondi, M., Hoogland, S., Pelayo García de Arquer, F., Sargent, E.H.: Near-unity broadband quantum efficiency enabled by colloidal quantum dot/mixed-organic heterojunction. Energy Lett. 8(5), 2331–2337 (2023). https://doi.org/10.1021/acsenergylett.3c00495

  92. Blachowicz, T., Ehrmann, A.: Recent developments of solar cells from PbS colloidal quantum dots. Appl. Sci. 10, 1743 (2020). https://doi.org/10.3390/app10051743

    Article  CAS  Google Scholar 

  93. Meng, L., Wang, X.: Doping colloidal quantum dot materials and devices for photovoltaics. Energies. https://doi.org/10.3390/en15072458

  94. Liu, L., Xie, Y., Tse, J.S., Ma, Y.: Theoretical design of two-dimensional AMInP2X3Y3 =(AM = Li, Na, K; X/Y = S, Se, Te) monolayers for highly efficient excitonic solar cells. Mater. Adv. https://doi.org/10.1039/d2ma00937d

  95. Goodwin, H., Jellicoe, T.C., Davis, N.J.L.K., Böhm, M.L.: Multiple exciton generation in quantum dot-based solar cells. Nanophotonics 7(1), 111–126 (2018)

    Google Scholar 

  96. Zhang, Z., Li, L., Xu, C., Jin, P., Huang, M., Li, Y., Wang, H., Yi, Y., Zhang, C., Yang, Y., Xu, W., Lin, Y.: Single photovoltaic material solar cells with enhanced exciton dissociation and extended electron diffusion. Cell Rep. Phys. Sci. 3, 100895 (2022)

    Google Scholar 

  97. Jia, Z., Ma, Q., Chen, Z., Meng, L., Jain, N., Angunawela, I., Qin, S., Kong, X., Li, X., Yang, Y. (M.), Zhu, H., Ade, H., Gao, F., Li, Y.: Near-infrared absorbing acceptor with suppressed triplet exciton generation enabling high performance tandem organic solar cells. Nat. Commun. 14, 1236. https://doi.org/10.1038/s41467-023-36917-y

  98. Kolay, I., et al.: PbSe nanorod-quantum dot bulk nano-heterojunction solar cells generating multiple excitons with record photo conversion efficiencies. Mater. Today Commun. 35, 106064 (2023)

    Article  CAS  Google Scholar 

  99. Hu, Z., Lin, D., Lynch, J., Xu, K.: How good can 2D excitonic solar cells be? Device 1, 100003 (2023)

    Google Scholar 

  100. Luo, D., Jiang, Z., Tan, W.L., Zhang, L., Li, L., Shan, C., McNeill, C.R., Sonar, P., Xu, B., Kyaw, A.K.K.: Non-fused ring acceptors achieving over 15.6% efficiency organic solar cell by long exciton diffusion length of alloy-like phase and vertical phase separation induced by hole transport layer. First published: 19 December 2022. https://doi.org/10.1002/aenm.202203402

  101. Tho, C.C., Yu, C., Tang, Q., Wang, Q., Su, T., Feng, Z., Wu, Q., Nguyen, C.V., Ong, W.-L., Liang, S.-J., Guo, S.-D., Cao, L., Zhang, S., Yang, S.A., Ang, L.K., Wang, G., Ang, Y.S.: Cataloguing MoSi2N4 and WSi2N4 van der Waals heterostructures: an exceptional material platform for excitonic solar cell applications. Adv. Mater. Interfaces 10, 2201856 (2023)

    Google Scholar 

  102. Almonacid-Olleros, G., Almonacid, G., Fernandez-Carrasco, J.I., Espinilla-Estevez, M., Medina-Quero, J.: A new architecture based on IoT and machine learning paradigms in photovoltaic systems to nowcast output energy. Sensors 20, 4224 (2020). https://doi.org/10.3390/s20154224

  103. Häse, F., Roch, L.M., Friederich, P., Aspuru-Guzik, A.: Designing and understanding light-harvesting devices with machine learning. Nat. Commun. 11, 4587 (2020). https://doi.org/10.1038/s41467-020-17995-8, www.nature.com/naturecommunications

  104. Haupt, S.E., McCandless, T.C., Dettling, S., Alessandrini, S., Lee, J.A., Linden, S., Petzke, W., Brummet, T., Nguyen, N., Kosović, B., Wiener, G., Hussain, T., Al-Rasheedi, M.: Combining artificial intelligence with physics-based methods for probabilistic renewable energy forecasting. Energies 13, 1979 (2020). https://doi.org/10.3390/en13081979

  105. Zhou, J., Huang, B., Yan, Z., Bünzli, J.-C.G.: Emerging role of machine learning in light-matter Interaction. Light: Sci. Appl. 8, 84 (2019). https://doi.org/10.1038/s41377-019-0192-4

  106. Mateo Romero, H.F., González Rebollo, M.A., Cardeñoso-Payo, V., Alonso Gómez, V., Redondo Plaza, A., Moyo, R.T., Hernandez Callejo, L.: Applications of artificial intelligence to photovoltaic systems: a review. Appl. Sci. 12, 10056 (2022). https://doi.org/10.3390/app121910056

  107. Michaels, H., Rinderle, M., Benesperi, I., Freitag, R., Gagliardi, A., Freitag, M.: Emerging indoor photovoltaics for self-powered and self-aware IoT towards sustainable energy management. https://doi.org/10.1039/d3sc00659j

  108. Taft, C.A., Canchaya, J.G.S., dos Santos, J.D., Silva, J.C.F.: Review: simulation models for materials and biomolecules. In: La Porta, F.A., Taft, C.A. (eds.) Functional Properties of Advanced Engineering Materials and Biomolecules. Engineering Materials. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-62226-8_2

  109. Taft, C.A., Canchaya, J.G.S.: Overview: Catalysts, Feedstocks in Biodiesel Production Research Topics in Bioactivity, Environment and Energy, Experimental and Theoretical Tools. Springer Nature, Switzerland AG (2022). https://doi.org/10.1007/978-3-031-07622-0_13

  110. Aga, F.G., Bakare, F.F., Dibaba, S.T., Gelmecha, D.J., Amente, C.: Investigation of the impact of active layer and charge transfer layer materials on the performance of polymer solar cells through simulation. Hindawi Adv. Mater. Sci. Eng. 2022, Article ID 6779260, 7 p. https://doi.org/10.1155/2022/6779260

  111. Cai, X., Liu, F., Yu, A., Qin, J., Hatamvand, M., Ahmed, I., Luo, J., Zhang, Y., Zhang, H., Zhan, Y.: Data-driven design of high-performance MASnxPb1-xI3 perovskite materials by machine learning and experimental realization. Light: Sci. Appl. 11, 23 (2022). https://doi.org/10.1038/s41377-022-00924-3

  112. Bouclé, J., Ribeiro Dos Santos, D., Julien-Vergonjanne, A.: Doing more with ambient light: harvesting indoor energy and data using emerging solar cells. Solar 3, 161–183 (2023). https://doi.org/10.3390/solar3010011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlton Anthony Taft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taft, C.A., Canchaya, J.G.S. (2024). Overview: Photovoltaic Solar Cells, Science, Materials, Artificial Intelligence, Nanotechnology and State of the Art. In: Taft, C.A., de Almeida, P.F. (eds) Trends and Innovations in Energetic Sources, Functional Compounds and Biotechnology. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-46545-1_2

Download citation

Publish with us

Policies and ethics