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1 Introduction 

In the context of manufacturing systems, reconfiguration refers to the practice of 
changing a production system or process to meet new needs or to improve its 
performance. This might involve varying the structure of the production process, the 
order of the steps in which operations are executed, or the manufacturing process 
itself to make a different product. 

Reconfiguration may be necessary for several reasons, including changes in 
raw material availability or price, changes in consumer demand for a product, 
the need to boost productivity, save costs, or improve product quality, among 
others. It is a complex process that requires careful planning and coordination to 
ensure that production is not disrupted and that the changes result in the desired 
outcomes. In return, it may offer substantial advantages including enhanced product 
quality, reduction of waste, and greater productivity, making it a crucial strategy for 
enterprises trying to maintain their competitiveness in a rapidly changing market. 
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Self-reconfiguration is the capacity of a manufacturing system to autonomously 
modify its configuration or structure to respond to dynamic requirements. This 
concept is frequently linked to the development of modular and adaptive manufac-
turing systems. These systems exhibit high flexibility, efficiency, and adaptability by 
allowing the self-reconfiguration of their assets. However, self-reconfiguration is not 
directly applicable to all manufacturing systems. To implement self-reconfiguration, 
a particular level of technological maturity is required, including the following 
requirements [1]: 

• Modularity: The system is made up of a collection of standalone components. 
• Integrability: The components have standard interfaces that facilitate their 

integration into the system. 
• Convertibility: The structure of the system can be modified by adding, deleting, 

or replacing individual components. 
• Diagnosability: The system has a mechanism for identifying the status of the 

components. 
• Customizability: The structure of the system can be changed to fit specific 

requirements. 
• Automatability: The system operation and modifications can be carried out 

without human intervention. 

Additionally, self-reconfiguration may involve a variety of techniques and 
technologies, including IT infrastructure, robotic systems, intelligent sensors, and 
advanced control algorithms. These technologies enable machines to automatically 
identify and select the appropriate components or configurations needed to complete 
a given task, without requiring manual intervention or reprogramming. However, in 
some practical scenarios, human validation is still required before executing the 
reconfiguration. 

Self-reconfiguration in manufacturing typically focuses on process reconfigura-
tion and capacity reconfiguration with success stories in the automotive industry. 
Process reconfiguration involves changes in the manufacturing process itself, such 
as changing the sequence of operations or the layout of the production line, as 
well as modifications to the equipment. On the other hand, capacity reconfiguration 
involves adjusting the capacity of the manufacturing system to meet changes in 
demand. This may involve adding or removing production lines, or modifying the 
parameters of machines. It should be noted that modifying the parameters of existing 
equipment can increase production throughput without requiring significant capital 
investment; however, it may also require changes to the production process, such as 
modifying the material flow or introducing new quality control measures.
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2 Reconfiguration in Manufacturing 

2.1 Precursors of Reconfigurable Systems: Flexible 
Manufacturing Systems 

Current self-reconfigurable manufacturing systems are the result of the evolution 
of ideas that emerged more than 50 years ago. During the 1960s and 1970s, the 
production methods were primarily intended for mass production of a limited range 
of products [2]. Due to their rigidity, these systems needed a significant investment 
of time and resources to be reconfigured for a different product. During that period, 
supported by the rapid advancements and affordability of computer technology, the 
concept of flexible manufacturing system (FMS) emerged as a solution to address 
this scenario [3]. FMSs are versatile manufacturing systems, capable of producing a 
diverse array of products utilizing shared production equipment. These systems are 
characterized by high levels of automation and computer control, enabling seamless 
adaptation for manufacturing different goods or products. 

FMSs typically consist of a series of integrated workstations, each containing 
a combination of assets. These workstations are connected by computer-controlled 
transport systems that can move raw materials, workpieces, and finished products 
between workstations. When FMSs were introduced, they were primarily focused 
on achieving reconfigurability through the use of programmable controllers and 
interchangeable tooling. These systems may be configured to carry out a variety 
of manufacturing operations such as milling, drilling, turning, and welding. FMSs 
can also incorporate technologies such as computer-aided design/manufacturing 
(CAD/CAM) and computer numerical control (CNC) to improve efficiency and 
quality. This paradigm has been widely adopted in industries such as automotive 
[4], aerospace [5], and electronics [6] and continues to evolve with advances in 
technology. 

However, despite the adaptability to produce different products, the implemen-
tation of FMSs has encountered certain drawbacks such as lower throughput, high 
equipment cost due to redundant flexibility, and complex design [7]. In addition, 
they have fixed hardware and fixed (although programmable) software, resulting in 
limited capabilities for updating, add-ons, customization, and changes in production 
capacity [3]. 

2.2 Reconfigurable Manufacturing Systems 

Although FMSs can deal with the market exigence for new products or modifica-
tions of existing products, they cannot efficiently adjust their production capacity. 
This means that if a manufacturing system was designed to produce a maximum 
number of products annually and, after 2 years, the market demand for the product is 
reduced to half, the factory will be idle 50% of the time, creating a big financial loss.
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On the other hand, if the market demand for the product surpasses design capability 
and the system is unable to handle it, the financial loss can be even greater [8]. To 
handle such scenarios, during the 1990s, a new type of manufacturing system known 
as reconfigurable manufacturing system (RMS) was introduced. RMSs adhere to 
the typical goals of production systems: to produce with high quality and low cost. 
However, additionally, they also aim to respond quickly to market demand, allowing 
for changes in production capacity. In other words, they strive to provide the 
capability and functionality required at the right time [3]. This goal is achieved by 
enabling the addition or removal of components from production lines on demand. 

Design principles such as modularity, integrability, and open architecture control 
systems started to take more significance with the emergence of RMSs, given the 
relevance of dynamic equipment interconnection in these systems [9]. Consider-
ing their advantages, RMSs have been applied to the manufacturing of medical 
equipment [10], automobiles [11], food and beverage [12], and so on. Because they 
require less investments in equipment and infrastructure, these systems often offer 
a more cost-effective alternative to FMSs. 

Although these systems can adapt to changing production requirements, the 
reconfiguration decisions are usually made or supervised by a human, which means 
the systems cannot autonomously reconfigure themselves. This gives more control 
to the plant supervisor or operator, but the downside is that it limits the response 
speed. 

2.3 Evolution Towards Self-Reconfiguration 

As technology advanced and the demands of manufacturing increased, production 
systems began to incorporate more sophisticated sensing, control, and robotics 
capabilities. This allowed them to monitor and adjust production processes in real 
time, adapt to changes in the manufacturing environment, and even reconfigure 
themselves without human intervention. This shift from reconfigurable to self-
reconfigurable systems was driven by several technological advancements: 

• Intelligent sensors: sensors that are capable of not only detecting a particular 
physical quantity or phenomenon but also processing and analyzing the data 
collected to provide additional information about the system being monitored 
[13]. 

• Adaptive control: control systems that can automatically adjust the manufactur-
ing process to handle changes in the production environment while maintaining 
optimal performance [14]. 

• Autonomous robots: robots that can move and manipulate objects, work collabo-
ratively, and self-reconfigure. These robots can be used to assemble components, 
perform quality control checks, and generate useful data for reconfiguring 
production lines [15].
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• Additive manufacturing: 3D printing and additive manufacturing techniques 
allow to create complex and customized parts and structures on demand, without 
the need for extensive changes in the production system. Additionally, this 
technique is very useful for quick prototyping [16]. 

Compared to conventional RMSs, self-reconfigurable manufacturing systems 
enable to carry out modifications to the production process in a faster and more 
autonomous way [17]. Today, these systems are at the cutting edge of advanced 
manufacturing, allowing the development of extremely complex, specialized, and 
efficient production systems that require little to no human involvement. Self-
reconfiguration is receiving significant attention in the context of Industry 4.0, 
where the goal is to create smart factories that can communicate, analyze data, and 
optimize production processes in real time [18]. 

3 Current Approaches 

Currently, there are several approaches for designing self-reconfiguration solutions 
including computer simulation, which is one of the most reported in the literature 
with proof-of-concepts based on simulation results. Other alternative techniques 
include those based on artificial intelligence (AI), which provide powerful methods 
and tools to deal with uncertainty, such as fuzzy and neuro-fuzzy approaches, 
machine learning and reinforcement learning strategies. These approaches are not 
mutually exclusive and, in many cases, are used in a complementary way. 

3.1 Computer Simulation 

Computer simulation is a particularly valuable tool for the design and optimization 
of self-reconfigurable manufacturing systems. In this context, these tools aim to 
enhance the system’s responsiveness to changes in production requirements. The 
recent increase in computational capacities has enabled the testing of various 
configurations and scenarios before their actual implementation [19]. Currently, 
commercial applications such as AutoMod, FlexSim, Arena, Simio, and AnyLogic, 
among others, allow to create high-fidelity simulations of industrial processes [20], 
that even include three-dimensional recreations of factories for use in augment-
ed/virtual reality applications. Computer simulation becomes a powerful tool when 
integrated with the production process it represents. Based on this idea, digital twins 
have gained significant attention in both industry and academia [21]. Digital twins 
enable real-time data integration from the production process into the simulation, 
replicating the actual production environment. By evaluating different options and 
identifying the optimal configuration for the new scenarios, digital twins provide 
feedback to the production process, facilitating real-time modifications.
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3.2 Fuzzy Systems 

Fuzzy logic is a mathematical framework that can be used to model and reason with 
imprecise or uncertain data. This capability makes fuzzy logic particularly useful 
in situations where the system may not have access to precise data or where the 
data may be subject to noise or other sources of uncertainty. In the context of self-
reconfiguration, fuzzy systems can be used to model the behavior of the physical 
processes and make decisions about how to reconfigure them based on imprecise 
data. For instance, it is often very complex to assign a precise value to indicators 
such as expected market demand, product quality, or energy consumption [22]. 
These variables can be assigned to fuzzy membership functions and then, following 
predefined rules, combined using fuzzy operators to determine how the production 
system should be optimally reconfigured depending on the available data. 

3.3 Data-Driven Methods 

Data-driven methods deal with the collection and analysis of data, the creation of 
models, and their use for decision-making. This approach is extensively applied 
when historical data of the production process is available. By using data ana-
lytics, it is possible to identify bottlenecks or the inefficient use of assets in the 
production process. Also, data-driven methods make extensive use of machine 
learning algorithms for modeling the production process behavior [23]. Machine 
learning methods can be trained with datasets containing a large number of features 
and samples, learning to identify correlations, patterns, and anomalies that are 
beyond human perception [24]. Moreover, by collecting new data of the production 
process, machine learning models can be retrained or fine-tuned to improve their 
performance over time. Once the machine learning model has been trained with 
production data, it can be used as an objective function of an optimization algorithm 
to make decisions about how to reconfigure the manufacturing process to optimize 
desired indicators. 

3.4 Reinforcement Learning 

Reinforcement learning is a subfield of machine learning that has shown great 
capacity in the development of algorithms for autonomous decision-making in 
dynamic and complex environments. In reinforcement learning, an agent learns 
to make decisions based on feedback from the environment. The agent performs 
actions in the environment and receives feedback in the form of rewards or 
penalties. The goal of the agent is to maximize the cumulative reward over time 
by learning which actions are most likely to lead to positive outcomes. Self-



Self-Reconfiguration for Smart Manufacturing Based on Artificial Intelligence:. . . 127

reconfigurable manufacturing systems present a unique challenge for reinforcement 
learning algorithms because the environment is constantly changing [25]. The agent 
should be able to adapt to changes in the production environment, such as changes 
in demand or changes in the availability of resources. The agent can learn which 
modules are more effective for specific tasks and reconfigure itself accordingly [18]. 
Another important benefit of using reinforcement learning is the ability to learn from 
experience. These algorithms can learn from mistakes and errors and try to avoid 
repeating them. 

4 Lighthouse Demonstrator: GAMHE 5.0 Pilot Line 

To evaluate how AI tools can be applied for self-reconfiguration in manufacturing 
processes and how they can be integrated with one another, an Industry 4.0 pilot 
line was chosen for demonstration. The selected pilot line was the GAMHE 5.0 
laboratory, which simulates the slotting and engraving stages of the production 
process of thermal insulation panels. Figure 1 illustrates the typical workflow of 
the process. Initially, a robot picks up a panel and positions it in a machining center 
to create slots on all four sides. Subsequently, the same robot transfers the panel to 
a conveyor belt system that transports it to a designated location, where a second 
robot takes over the handling of the panel. Next, the panel is positioned in a visual 
inspection area by the robot. If the slotting is deemed correct, the panel is then 
moved to a second machining center for the engraving process. Finally, the robot 
transfers the panel to a stack of processed panels. 

Occasionally, due to poor positioning in the slotting process, some sides of the 
panels are not slotted or the depth of the slot is smaller than required. In those cases, 
the visual inspection system should detect the irregularity and the workflow of the 
process should be modified to repeat the slotting process. Figure 2 illustrates this 

Fig. 1 Normal workflow of the pilot line
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Fig. 2 Workflow for reprocessing in the pilot line 

Fig. 3 Workflow for defective panels in the pilot line 

situation. Once the slotting irregularities are corrected, the system continues with 
the normal workflow. 

In some cases, the slotting process may cause damage to the panels. This 
can happen when working with new materials or previously unverified machining 
configurations. In those cases, the visual inspection system should detect that the 
panel is damaged and it should be sent directly to a stack of damaged parts. Figure 
3 shows this situation. 

Making accurate decisions about the process workflow depending on the quality 
of products, specifically on the result of the slotting process, has a direct impact 
on the productivity of the pilot line. For instance, in cases where a panel is 
damaged during slotting, it is crucial to remove it from the production line to 
prevent unnecessary time and resources from being spent on machining it during 
the engraving stage. To achieve this, the presence of a reliable visual inspection 
system becomes essential. Although a deep learning classifier could be used for 
this task, one drawback is that it is very hard to understand how the decision is 
made. For this reason, it is proposed a deep learning segmentation model, whose 
function is to separate the desired areas of the images from the unwanted regions.
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The output of a segmentation model provides a pixel-level understanding of objects 
and their boundaries in an image, enabling a detailed visual interpretation of the 
model prediction. Then, using the segmentation result, a reasoned decision can be 
made, making the outcome of the system more interpretable. Section 4.1 deals with 
this situation. 

On the other hand, a common situation is that the pilot line should deal with 
small batches of panels made of different materials and with different dimensions. 
Thus, the configuration of the assets for reaching an optimal performance varies 
frequently. For dealing with this situation a self-reconfiguration approach based on 
automated machine learning (AutoML) and fuzzy logic is proposed. Although the 
approach proposed in this work is generalizable to multiple objectives, for the sake 
of simplicity, the improvement of only one key performance indicator (KPI) will be 
considered. Sections 4.2 and 4.3 cover this topic. 

4.1 Deep Learning-Based Visual Inspection 

The segmentation model developed for application in the pilot line intends to 
separate the side surface of the panel from other elements within an image, allowing 
for later decisions on the panel quality and modifications of the process workflow. 
This model is based on a U-net architecture, which consists of an encoder path 
that gradually downsamples the input image and a corresponding decoder path that 
upsamples the feature maps to produce a segmentation map of the same size as the 
input image. This network also includes skip connections between the encoder and 
decoder paths that allow to retain and fuse both high-level and low-level features, 
facilitating accurate segmentation and object localization [26]. 

A dataset containing 490 images with their corresponding masks was prepared 
for training and evaluating the model. The image dataset was split into three subsets: 
training (70% of the data), validation (15% of the data), and testing (15% of the 
data). In this case, the validation subset serves the objective of facilitating early 
stopping during training. This means that if the model’s performance evaluated on 
the validation subset fails to improve after a predetermined number of epochs, the 
training process is halted. By employing this technique, overfitting can be effectively 
mitigated and the training time can be significantly reduced. 

A second version of the dataset was prepared by applying data augmentation 
to the training set while keeping the validation and test sets unchanged. The 
dataset was augmented using four transformations: horizontal flip, coarse dropout, 
random brightness, and random contrast. This helps increase the number of training 
examples, improving the model’s prediction capability and making it more robust to 
noise. Using the two versions of the dataset, two models with the same architecture 
were trained. Table 1 presents the output of the two models for three examples taken 
from the test set. As can be observed, the predictions obtained with the model trained 
on the augmented dataset are significantly better than those obtained with the model
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Table 2 Metric values obtained by segmentation models on the test set 

Model Accuracy F1 score Jaccard index Precision Recall 

Trained on the original dataset 0.892 0.639 0.563 0.997 0.564 
Trained on the augmented dataset 0.995 0.992 0.984 0.99 0.993 

Fig. 4 Squared contours detection for a compliant panel, a panel without slot, and a damaged 
panel, respectively 

trained on the original dataset. This is also confirmed by the values obtained in 
several metrics, which are shown in Table 2. 

After the image is segmented by the deep learning model, a second algorithm 
is used. Here, a convex hull is adjusted to each separate contour in the segmented 
image. Then, a polygonal curve is generated for each convex hull with a precision 
smaller than 1.5% of the perimeter of the segmented contour. Finally, if the 
polygonal curve has four sides, it is drawn over the original image. After this 
procedure, if two rectangles were drawn over the image it is assumed that the 
slotting was correct and the panel did not suffer any significative damage; thus, it 
can be sent to the next stage of the line. On the other hand, if only one rectangle was 
drawn, it is assumed that the slotting was not carried out or the panel was damaged 
during this process. Figure 4 shows the results obtained for illustrative cases of a 
compliant panel, a panel with missing slots, and a damaged panel, respectively. If 
only one rectangle was drawn, depending on its size and location, the panel will be 
sent to the slotting stage again or removed from the line. This method was applied 
to the test set images and in all the cases the output produced matched the expected 
output. 

4.2 Automating the Machine Learning Workflow 

As outlined in the previous sections, the working conditions of the pilot line are 
subject to rapid variations. To effectively address these variations and generate
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Fig. 5 General machine learning steps 

optimal parametrizations for the assets, machine learning emerges as a promising 
tool. 

The usual machine learning workflow is composed of a series of steps that are 
executed one by one by a team of specialists. However, this workflow can be auto-
mated. This research area is known as AutoML and recently has gained considerable 
attention. AutoML plays a crucial role in streamlining workflows, saving time, and 
reducing the effort required for repetitive tasks, thereby enabling the creation of 
solutions even for nonexperts. Noteworthy tools in this domain include Google 
Cloud AutoML, auto-sklearn, Auto-Keras, and Azure AutoML, among others. 
Typically, these tools encompass various stages, from data preprocessing to model 
selection. Moreover, in line with the automation philosophy of these systems, the 
process optimization step can also be integrated. This way the system would receive 
a dataset and return the parameter values that make the process work in a desired 
regime. Considering this idea, an end-to-end AutoML solution has been developed 
to be applied to GAMHE 5.0 pilot line. The following subsections describe the 
typical machine learning workflow, as well as the specificities of its different steps 
and how AutoML can be used for optimizing the production process. 

4.2.1 Typical Machine Learning Workflow 

Machine learning aims to create accurate and reliable models capable of identifying 
complex patterns in data. The creation and exploitation of these models is typically 
achieved through a series of steps that involve preparing the dataset, transforming 
the data to enhance its quality and relevance, selecting and training an appropriate 
machine learning model, evaluating the model’s performance, and deploying the 
model in a real-world setting. Figure 5 depicts these steps. By following this 
workflow, machine learning practitioners can build models that harness the power 
of data-driven learning, enabling them to effectively derive meaningful insights and 
make accurate predictions in practical applications. 

Data Preprocessing 

Data preprocessing is the initial step in the creation of a machine learning system. 
The data to be used may have a variety of sources and formats, thus it should be 
prepared before being used by any algorithm. If data are originated from different 
sources, it must be merged into a single dataset. Furthermore, most methods are
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not designed to work with missing data, so it is very common to remove samples 
with missing information. Preprocessing may also include filtering data to remove 
noise, which can result later in more robust models. In this stage, the data may be 
transformed to a format that is suitable for analysis, which can include operations 
such as normalization, bucketizing, and encoding. Finally, one common operation 
carried out in this stage is splitting. This refers to the partition of the dataset into 
two subsets, which will be used for training and evaluation purposes. Additionally, a 
third subset can be created if it is planned to carry out a hyperparameter optimization 
or neural architecture search over the model. 

Feature Engineering 

The goal of the feature engineering stage is to convert raw data into relevant features 
that contain the necessary information to create high-quality models. One of the 
most interesting techniques that can be used in this stage is feature selection. 
Feature selection aims to determine which features are the best predictors for a 
certain output variable. Then, when these features are selected, they can be extracted 
from the original dataset to build a lower dimensional dataset, allowing to build 
more compact models with better generalization ability and reduced computational 
time [27, 28]. Typically, for problems with numerical input and output variables, 
Pearson’s [29] or Spearman’s correlation coefficients [30] are used. If the input is 
numerical but the output is categorical, then the analysis of variance (ANOVA) [31] 
or Kendall’s rank coefficient [32] are employed. Other situations may require the 
use Chi-squared test or mutual information measure [33]. 

Other techniques that can be applied in the feature engineering stage include 
feature creation and dimensionality reduction. Feature creation implies creating new 
features either by combining the existing ones or by using domain knowledge [34]. 
On the other hand, dimensionality reduction techniques such as principal component 
analysis (PCA) or t-distributed stochastic neighbor embedding (t-SNE) algorithms 
are used to map the current data in lower dimensional space while retaining as much 
information as possible [35]. 

Model Selection 

The model selection step implies the creation, training, and evaluation of different 
types of models to, in the end, select the most suitable for the current situation. 
This practice is carried out since it does not exist a methodology for determining a 
priori which algorithm is better for solving a problem [36]. Therefore, the most 
adequate model may vary from one application to another as in the following 
cases: long short-term memory network (LSTM) [37], multilayer perceptron (MLP) 
[38], support vector regression (SVR) [39], Gaussian process regression (GPR) 
[40], convolutional neural network (CNN) [41], gradient boosted trees (GBT) 
[42]. The number and types of models to explore in this stage will depend on
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the characteristics of the problem and the available computational resources. The 
selection of the model is carried out taking into consideration one or more metrics. 
For regression problems is common to rely on the coefficient of determination (R2), 
mean squared error (MSE), and mean absolute percentage error (MAPE), among 
other metrics [43]. On the other hand, for classification problems, typical metrics 
are accuracy, recall, precision, F1-score,and so on. 

Optionally, this stage can also include hyperparameter optimization. Hyperpa-
rameters determine a model’s behavior during training and, in some cases, also how 
its internal structure is built. They are set before a model is trained and cannot 
be modified during training. The selection of these values can greatly affect a 
model’s performance. However, finding an optimal or near-optimal combination of 
hyperparameters is not a trivial task and, usually, it is computationally intensive. The 
most commonly used techniques for this task include grid search, random search, 
Bayesian optimization, and so on. 

4.2.2 Process Optimization 

Once a model has been created for representing a process, it can be used for 
optimizing it. Assuming the model exhibits robust predictive capabilities and the 
constraints are accurately defined, various input values can be evaluated in the model 
to determine how the system would respond, eliminating the need for conducting 
exhaustive tests on the actual system. In other words, the model created can be 
embedded as the objective function of an optimization algorithm for finding the 
input values that would make the production process work in a desired regime. In 
this context, popular strategies such as particle swarm optimization [44], simulated 
annealing [45], evolutionary computation [46], and Nelder-Mead [47], among 
others, are commonly employed. 

4.2.3 Application of AutoML to the Pilot Line 

To apply an AutoML methodology to the selected pilot line, it is essential to collect 
operational data from the runtime system under varying asset parametrization. 
This data should include recorded measurements of variables and KPIs. Since not 
all the collected data have to be necessarily recorded using the same rate, it is 
necessary to transform the data to the same time base. This is commonly done 
by downsampling or averaging the data recorded with a higher rate to match the 
time base of the data recorded with a lower rate. In this case, averaging was used. 
Once the historical dataset has been prepared, an AutoML methodology can be 
applied. While typical AutoML methodologies automate the steps shown in Fig. 
5, the proposed methodology also includes the process optimization procedure by 
embedding the selected model as objective function of an optimization algorithm 
for automatically finding the assets’ configuration as depicted in Fig. 6.
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Fig. 6 Overall description of the proposed AutoML methodology 

First, in the data preprocessing step, the dataset is inspected searching for missing 
values. If any are found, the corresponding sample is eliminated. Next, the features’ 
values are standardized and the dataset is divided into training and validation sets. 
In this case, hyperparameter optimization was not implemented for making the 
methodology applicable in scenarios with low computational resources. For this 
reason, a test set is not required. Following that, feature selection is carried out 
by computing the Pearson’s correlation coefficient (r) individually between each 
feature and the output variable on the training set, using the following equation: 

. r =
∑n

i=1 (xi − x) (yi − y)
√∑n

i=1 (xi − x)2
√∑n

i=1 (yi − y)2

where n is the number of samples, xi represents the value of the i-th sample of 
feature x, yi represents the value of the i-th sample of the output variable, and . x and 
. y represent the mean of the respective variables. 

Pearson’s correlation coefficient is a univariate feature selection method com-
monly used when the inputs and outputs of the dataset to be processed are 
numerical [48]. By using this method, it is possible to select the features with 
higher predictive capacity, resulting not only in a reduction of the dimensionality 
of data but also leads to more compact models with better generalization ability 
and reduced computational time [27, 28]. In the proposed approach, the features for 
which |r| > 0.3 are selected as relevant predictors, and the rest are discarded from 
both, the training and validation sets. Typically, a value below the 0.3 threshold 
is considered an indicator of low correlation [49]. During the application of the 
AutoML methodology to the data of the pilot line for improving the throughput, the 
number of features was reduced from 12 to 7. This intermediate result is important 
to guide the technicians on which parameters they should focus on while looking 
for a certain outcome. 

The next step involves model selection. Among the different models to evaluate 
in the proposed approach are MLP, SVR, GPR, and CNN, which have been 
previously used for modeling industrial KPIs [40, 50–52]. Table 3 presents details 
of these models. Each one of these models is trained on the training set and then
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Table 3 Details of the evaluated models 

Model Details 

MLP Architecture: Fully connected layer (128 units, ReLU activation) + Fully connected 
layer (64 units, ReLU activation) + Fully connected layer (1 unit, linear activation), 
Optimizer: RMSprop, Learning rate: 0.001, Epochs: 5000 

SVR Kernel: rbf, C: 1.0, Epsilon: 0.2, Tolerance: 0.001 
GPR Kernel: Dot Product + White Kernel, Alpha: 1e-10 
CNN Architecture: 1-D Convolution layer (64 filters, kernel size: 3, strides: 1, padding: 

same) + 1-D Max pooling layer (pool size: 2, strides: 1, padding: valid) + Flatten 
layer + Fully connected layer (64 units, ReLU activation) + Dropout layer (dropout 
rate: 0.1) + Fully connected layer (32 units, ReLU activation) + Fully connected layer 
(1 unit, linear activation), Optimizer: RMSprop, Learning rate: 0.001, Epochs: 5000 

they are evaluated on the validation set. The metric used for comparison was the 
coefficient of determination (R2). After this process is finished, the model that 
produced the best result is selected. The model selected during the application of 
the methodology to the pilot line was MLP with R2 = 0.963 during validation. The 
R2 value for the remaining candidate models was 0.958 for GPR, 0.955 for CNN, 
and 0.947 for SVR. One of the enablers of these results was the feature selection 
process, which allowed to retain the relevant predictors. 

Finally, an optimization method is applied for determining the most favorable 
parametrization of the production process to minimize or maximize the desired 
KPI using the selected model as the objective function. In this case, the goal is to 
maximize throughput. The optimization is carried out using random search, which 
is a simple, low-complexity, and straightforward optimization method [53]. This 
method can be applied to optimizing diverse types of functions, even those that are 
not continuous or differentiable. It has been proven that random search is asymptot-
ically complete, meaning that it converges to the global minimum/maximum with 
probability one after indefinitely run-time computation and, for this reason, it has 
been applied for solving many complex problems [54]. One aspect to consider 
before executing the optimization is that the feasible range of the parameters must 
be carefully decided to prevent the result of the optimization from being invalid. In 
the case analyzed, where the objective is to maximize the throughput of the pilot 
line, the obvious choice is to make the assets work at the maximum speed within 
the recommended ranges. To evaluate if the proposed methodology was capable 
of inferring this parametrization, during the preparation of the dataset the samples 
where all the assets were parametrized with the maximum speed were intentionally 
eliminated. As desired, the result of the methodology was a parametrization where 
all the assets were set to the maximum speed, yielding an expected throughput value 
of 163.37 panels per hour, which represents an expected improvement of 55.1% with 
respect to the higher throughput value present in the dataset. It is noticeable that the 
higher throughput value of the samples that were intentionally eliminated from the 
dataset is 158.52. The reason why the proposed methodology slightly overestimates 
this value is that the model is not perfectly accurate.



Self-Reconfiguration for Smart Manufacturing Based on Artificial Intelligence:. . . 137

4.3 Fuzzy Logic-Based Reconfigurator 

Once the parametrization of the assets has been determined by the AutoML 
methodology to meet a desired KPI performance, it is important to ensure that the 
system will continue to work as desired. Unfortunately, some situations may prevent 
the system from functioning as intended. For instance, a degradation in one of the 
assets may result in a slower operation, reducing the productivity of the entire line. 
For such cases, a fuzzy logic-based reconfigurator is developed. The intuition behind 
this component is that if the behavior of some assets varies from their expected 
performance, the reconfigurator can modify the parameters of the assets to make 
them work in the desired regime again, as long as the modification of the parameters 
is within a predefined safety range. Additionally, if the deviation from the expected 
performance is significant, the component should be able to detect it and inform the 
specialists that a problem needs to be addressed. 

The proposed reconfigurator has two inputs and generates three outputs using the 
Mamdani inference method [55]. These variables are generic, so the reconfigurator 
can use them without any modification to try to keep each asset’s throughput level 
constant. The first input is the deviation from nominal production time (ΔT) and 
its safety range was defined as ±50% of the nominal production time. The second 
input is the change in the trend of the deviation from nominal production time (ΔT2) 
and its safety range was defined as ±20% of the nominal production time. There is 
an instance of these two variables for each asset in the line and they are updated 
whenever a panel is processed. These values are normalized in the interval [−1, 1] 
before being used by the reconfigurator. Figure 7 presents the membership functions 
defined for the two inputs. 

On the other hand, the first output is the operation that the reconfigurator must 
apply to the current asset’s working speed (Reco1). If the operation is Increase or 
Decrease, the values in the interval [−1, 1] are denormalized to a range comprising 
±50% of the nominal asset speed. The second output represents the timing when 
the modifications should be applied (Reco2), and the third output represents the 
operation mode (Reco3), which specifies if the previous reconfigurator outputs 

Fig. 7 Membership functions for inputs ΔT and ΔT2
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Fig. 8 Membership functions for outputs Reco1, Reco2, and  Reco3 

should be applied automatically, presented as recommendations for the operators, 
or ignored. Figure 8 shows the membership functions of the three outputs. 

Once the membership functions of the input and output variables were defined, 
a rule base was created for each output variable. Each rule base is formed by nine 
If–Then rules that associate a combination of the input membership functions with 
an output membership function, as in the following example: 

If ΔT is Negative And ΔT2 is Negative Then Reco1 is Increase 

The defined rule bases allow to obtain the output surfaces illustrated in Fig. 9 for 
the fuzzy inference systems corresponding to each output variable. 

To evaluate the reconfigurator, the nominal speed of each asset was set to 70% 
of its maximum speed and several disturbances were emulated. The first one was 
reducing the speed of all assets to 50% of their maximum speed, the second 
increasing the speed of all assets to their maximum speed, and finally, the speed 
of all assets was set to 30% of their maximum speed. As expected after the first 
disturbance the system recommended increasing the speed, after the second it 
recommended decreasing the speed, and after the third it recommended stopping 
the production. The results are shown in Table 4. 

5 Conclusions 

This work has addressed self-reconfigurable manufacturing systems from both 
theoretical and practical points of view, emphasizing how AI is applied to them. 
The emergence and evolution until the current state of these systems have been
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Fig. 9 Output surfaces of Reco1, Reco2, and  Reco3 

presented. Likewise, their potential benefits such as improved responsiveness, flex-
ibility, and adaptability have been analyzed. Current approaches for implementing 
self-reconfiguration in manufacturing have also been discussed. Additionally, the 
application of self-reconfiguration and AI techniques to a pilot line was tested. 
First, the integration in the pilot line of an AI-based solution for visual inspection 
was evaluated. This component has a direct relation with the workflow of the pilot 
line, thus influencing the productivity. Two segmentation models were trained for 
the visual inspection task and the best one, with an accuracy of 0.995 and a F1 
score of 0.992, was deployed in the pilot line, enabling the correct handling of 
products. Furthermore, an AutoML approach that includes generating the models 
and optimizing the production process was used for determining the optimal 
parametrization of the line. This way, a model with R2 = 0.963 was obtained 
and the expected improvement in throughput with respect to the data seen during 
training is 55.1%, which matches the values reached in real production at maximum 
capacity. Then, a fuzzy logic-based reconfigurator was used for dealing with the 
degradation in performance. This component demonstrated a correct behavior and 
showed robustness when tested against three different perturbations. The findings of 
this study suggest that self-reconfiguration is a key area of research and development 
in the field of advanced manufacturing. Future research will explore additional 
applications of self-reconfiguration in different manufacturing contexts.
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