
Leveraging Semantic Representations via
Knowledge Graph Embeddings

Franz Krause, Kabul Kurniawan, Elmar Kiesling, Jorge Martinez-Gil,
Thomas Hoch, Mario Pichler, Bernhard Heinzl, and Bernhard Moser

1 Introduction

Knowledge graphs are becoming increasingly recognized as a valuable tool in
data-driven domains like healthcare [1], finance [2], and manufacturing [3], where
they have gained considerable popularity in recent research. They are commonly
employed to represent and integrate both structured and unstructured data, providing
a standardized approach to encode domain knowledge [4]. Built on ontologies
that conceptualize domain classes, relations, and logical inference rules, KGs
represent specific instantiations of ontological models and their inherent semantic
characteristics. Typically, KGs are divided into two modules: a terminological
TBox containing concepts (such as the class of a manufacturing process) and an
assertive ABox containing real-world instances (such as unique executions of a
manufacturing process).

F. Krause (�)
University of Mannheim, Data and Web Science Group, Mannheim, Germany
e-mail: franz.krause@uni-mannheim.de

K. Kurniawan
WU, Institute for Data, Process and Knowledge Management, Vienna, Austria

Austrian Center for Digital Production (CDP), Vienna, Austria
e-mail: kabul.kurniawan@wu.ac.at

E. Kiesling
WU, Institute for Data, Process and Knowledge Management, Vienna, Austria
e-mail: elmar.kiesling@wu.ac.at

J. Martinez-Gil · T. Hoch · M. Pichler · B. Heinzl · B. Moser
Software Competence Center Hagenberg GmbH, Hagenberg, Austria
e-mail: Jorge.Martinez-Gil@scch.at; thomas.hoch@scch.at; Mario.Pichler@scch.at;
bernhard.heinzl@scch.at; Bernhard.Moser@scch.at

© The Author(s) 2024
J. Soldatos (ed.), Artificial Intelligence in Manufacturing,
https://doi.org/10.1007/978-3-031-46452-2_5

71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46452-2protect T1	extunderscore 5&domain=pdf

 885 42454 a 885 42454 a

mailto:franz.krause@uni-mannheim.de
mailto:franz.krause@uni-mannheim.de
mailto:franz.krause@uni-mannheim.de
mailto:franz.krause@uni-mannheim.de

 885
47989 a 885 47989 a

mailto:kabul.kurniawan@wu.ac.at
mailto:kabul.kurniawan@wu.ac.at
mailto:kabul.kurniawan@wu.ac.at
mailto:kabul.kurniawan@wu.ac.at

 885 51863 a 885 51863 a

mailto:elmar.kiesling@wu.ac.at
mailto:elmar.kiesling@wu.ac.at
mailto:elmar.kiesling@wu.ac.at
mailto:elmar.kiesling@wu.ac.at

 885 55738 a 885 55738 a

mailto:Jorge.Martinez-Gil@scch.at
mailto:Jorge.Martinez-Gil@scch.at
mailto:Jorge.Martinez-Gil@scch.at
mailto:Jorge.Martinez-Gil@scch.at

 12059 55738 a 12059
55738 a

mailto:thomas.hoch@scch.at
mailto:thomas.hoch@scch.at
mailto:thomas.hoch@scch.at

 20792 55738 a 20792 55738 a

mailto:Mario.Pichler@scch.at
mailto:Mario.Pichler@scch.at
mailto:Mario.Pichler@scch.at

 -2016 56845 a -2016 56845 a

mailto:bernhard.heinzl@scch.at
mailto:bernhard.heinzl@scch.at
mailto:bernhard.heinzl@scch.at

 7813 56845 a 7813 56845
a

mailto:Bernhard.Moser@scch.at
mailto:Bernhard.Moser@scch.at
mailto:Bernhard.Moser@scch.at
https://doi.org/10.1007/978-3-031-46452-2_5
https://doi.org/10.1007/978-3-031-46452-2_5
https://doi.org/10.1007/978-3-031-46452-2_5
https://doi.org/10.1007/978-3-031-46452-2_5
https://doi.org/10.1007/978-3-031-46452-2_5
https://doi.org/10.1007/978-3-031-46452-2_5
https://doi.org/10.1007/978-3-031-46452-2_5
https://doi.org/10.1007/978-3-031-46452-2_5
https://doi.org/10.1007/978-3-031-46452-2_5
https://doi.org/10.1007/978-3-031-46452-2_5
https://doi.org/10.1007/978-3-031-46452-2_5

72 F. Krause et al.

We adopt the notion of a (standard) KG .G = (V ,E) as described in [5], which
is represented by a set of nodes V (also referred to as vertices) and a set of triples
.E ⊆ V × R × V consisting of directed and labeled edges. Here, R denotes the set
of valid relation types defined in the underlying ontology. Thus, an edge in the form
of a triple .(s, p, o) ∈ E implies an outgoing relation from the subject .s ∈ V to the
object .o ∈ V via the predicate .p ∈ R. Given such a KG, embedding techniques aim
to exploit the topology of the graph to generate latent feature representations

.γ : V → 𝚪 (1)

of its nodes V in a latent representation space . 𝚪, e.g., .𝚪 = R
d with .d ∈ N,

thereby enabling their utilization in downstream applications, e.g., graph-based
machine learning (ML). However, the findings of this work can be applied almost
analogously to the most well-known KG extensions, such as labeled property graphs
like Neo4j [6].

In addition to the improved applicability of graph-based data in tasks like
recommendation systems [7] or question answering [8], embedding formalisms
have also proven to be valuable as intrinsic complements to graph-structured
data. This is due to their ability to provide an empirical approach for enhancing
the expressivity of graph topologies by means of downstream tasks like entity
linking [9] and link prediction [10]. Consequently, related areas such as relational
ML are receiving significant attention in both literature and applications [11].

In this chapter, we first provide a brief overview of representation learning as
the enabler of KG embeddings, addressing state-of-the-art embedding formalisms
for generating lean feature representations and describing their functionalities.
An analysis of the advantages and drawbacks of employing KG embeddings is
provided, along with a discussion of associated open research questions. We focus
specifically on potential challenges and risks that may hinder the usage of KG
embeddings in the highly dynamic manufacturing domain. Accordingly, we present
the methodologies developed within the Teaming. AI project to address those
problems. In this context, we describe the applicability and potential benefits of
KG embeddings in the human–AI-based manufacturing use cases of the project.
Furthermore, we showcase the Navi approach as an enabler of dynamic KG
embeddings that allows for real-time and structure-preserving computations of new
or updated node representations.

2 Knowledge Graph Embeddings

The generation of KG embeddings as per Eq. (1) denotes a subdiscipline of
representation learning. In the context of KGs, representation learning is applied
to determine lean feature representations that are able to capture inherent semantic

Leveraging Semantic Representations via Knowledge Graph Embeddings 73

relationships between KG elements. Thus, we first provide a general overview of
representation learning to subsequently describe its application in KG embeddings.

3 Representation Learning

Representation learning comprises techniques for the automatic detection of appro-
priate feature representations that can be employed by downstream models or tasks,
such as machine learning models [12]. Thus, the main objective of representation
learning is to eliminate the need for preprocessing raw input data. Given a set
of observable variables V with semantic representations .π : V → Π within
an inherent representation space . Π (which is not necessarily compatible with the
downstream model), these techniques aim to generate an alternative feature mapping
.γ : V → 𝚪 into a representation space . 𝚪 that satisfies the requirements of the
desired task.

Representation learning can be performed in a supervised, unsupervised, or
self-supervised manner. One example of a supervised approach for learning latent
feature representations is the training of deep neural networks on labeled input data.
Namely, given an input feature .π(v) for some .v ∈ V , the hidden layer outputs
(and also the output layer) obtained from the forward pass of the network can be
considered as alternative representations .γ (v), as illustrated in Fig. 1.

Contrarily, unsupervised representation learning techniques can be utilized
for unlabeled representations .π(v). Methods like principal component analysis
or auto-encoders intend to reduce the dimensionality of high-dimensional input
features. Accordingly, the goal of these algorithms is to determine alternative, low-
dimensional representations without the consideration of any target feature except
the input feature .π(v) itself. For example, auto-encoders feed a representation
.π(v) ∈ R

d '
into a deep neural network and attempt to reconstruct it, i.e., . π(v)

also serves as the output feature. However, the hidden layers are assumed to be low-
dimensional to serve as alternative representations .γ (v) ∈ R

d of .v ∈ V with . d ⪡ d '
as depicted in Fig. 2.

Fig. 1 Deep neural networks as supervised representation learning formalisms

74 F. Krause et al.

Fig. 2 Auto-encoders as unsupervised representation learning formalisms

Fig. 3 Extract from the abstract in [15]. The semantics of the word products is encoded within the
sentences that contain it

Finally, self-supervised representation learning aims to leverage the underlying
structure .SV of unlabeled data that contains the variables .v ∈ V and which
allows for deriving meaningful initial representations .π(v). For example, a word
.v ∈ V may appear in a set of sentences .π(v) within a shared text corpus . SV , as
exemplified in Fig. 3. While state-of-the-art NLP models like BERT [13] usually
split words into frequently occurring subword tokens via subword segmentation
algorithms such asWordpiece [14], the inherent methods can be applied analogously
to sets of complete words. In the course of training such NLP models, numerical
embeddings .γ (v) ∈ R

d are assigned to the domain variables .v ∈ V with respect to
their original representations .π(v). These alternative representations are optimized
by backpropagating the output of the LLM for at least one element of its initial
representation .π(v).

Analogously, most NLP techniques can be applied to KG structures . G = (V ,E)

by characterizing directed graph walks .(v1, p1, v2, p2, v3, . . . , vl−1, pl−1, vl) of
depth .l − 1 ∈ N as sentences that are composed of edges .(vi, pi, vi+1) ∈ E. For
instance, the sample manufacturing KG depicted in Fig. 4 contains the 4-hop walk

(John, executes, Task 1, output, Product 1, input, Task 2, output, Product 2).

One of these transfer approaches is RDF2Vec [16], which utilizes random graph
walks to generate input data for the NLP-based Word2Vec algorithm [17]. By doing
so, a mapping .γ : V ∪ R → R

d is trained and thus, alternative representations
of the graph nodes in V , but also for the relation types in R as well. Therefore,

Leveraging Semantic Representations via Knowledge Graph Embeddings 75

Fig. 4 Sample KG containing process flows within a production process

node embeddings can be derived via .γ (v) := γ (v). Besides transfer approaches
like RDF2Vec, various embedding algorithms exist, which are specifically tailored
toward KG structures. These are further discussed in the following.

3.1 Representation Learning for Knowledge Graphs

KG embedding techniques denote a subdiscipline of representation learning, taking
into account KG structures as initial input data. Given a KG .G = (V ,E), these
approaches intend to provide numerical representations .γ : V → 𝚪 as per Eq. (1).
However, as exemplified by RDF2Vec, KG embeddings may contain alternative
representations of graph elements .y /∈ V as well, such as embeddings of relations,
but also edges or subgraphs. Thus, in general, a KG embedding is a mapping
.γ : Ω → 𝚪, where . Ω represents a collection of KG elements pertaining to . G.
The node embedding of some .v ∈ V is accordingly obtained by restricting . γ to V ,
i.e., .γ (v) = γ (v).

Based on the research conducted in [10], KG embedding methods can be cate-
gorized into three model families, namely tensor decomposition models, geometric
models, and deep learning models. We adopt this subdivision in the following.

3.1.1 Tensor Decomposition Models

Tensor decomposition models for KG embeddings are based on the concept of
tensor decompositions within the area of multilinear algebra [18]. These attempt

76 F. Krause et al.

Fig. 5 Sample KG with .n = 4 nodes and .k = 2 relations . r1 (blue) and . r2 (red), including their
respective adjacency matrices . A1 and . A2

to characterize tensors via sequences of simplified tensor operations. For a KG . G,
this approach is applied to its unique adjacency tensor .A ∈ {0, 1}k×n×n, defined as

. Ah,i,j = 1 ⇐⇒ (
vi, rh, vj

) ∈ E.

Here, .k ∈ N denotes the cardinality of the underlying relation set R and .n ∈ N is
the number of nodes in V . Accordingly, without loss of generality, we may assume
labeled sets .R = {r1, . . . , rk} and .V = {v1, . . . , vn}, as exemplified in Fig. 5.

Accordingly, tensor decomposition-based KG embedding methods intend to
approximate . A by a sequence of lower dimensional tensor operations. Among these
methods, RESCAL [19] is considered to be the first work to apply this methodology
for determining KG embeddings. Regarding . A, it proposes a rank-d factorization

. Ah ≈ X · Rh · XT

of its h-th slice .Ah ∈ {0, 1}n×n by means of matrices .X ∈ R
n×d and . Rh ∈ R

d×d

with .d ⪡ n. Therefore, the i-th row of the matrix . X contains an alternative
representation .γ (vi) := (

Xi,1, . . . ,Xi,d

) ∈ R
d of .vi ∈ V . The optimization of

the matrices . X and .(Rh)1≤h≤k is accordingly achieved by solving the minimization
problems

. minX,Rh
f (X,Rh) for f (X,Rh) = 1

2

(∑k

h=1
‖Ah − X · Rh · XT ‖2F

)
,

with the Frobenius norm .‖ · ‖F and the corresponding element-wise operations

. f (h, i, j) = 1

2

(
Ah,i,j − γ (vi)

T · Rh · γ (vj)

)2

.

To reduce the complexity of these optimizations, DistMult proposes to use diagonal
matrices .(Rh)1≤h≤k [20]. However, by doing so, DistMult is limited to symmet-
ric relations. ComplEx solves this problem by employing .C-valued embedding
spaces [21]. In addition to the mentioned models, numerous other tensor decompo-

Leveraging Semantic Representations via Knowledge Graph Embeddings 77

sition models for KG embeddings exist, including ANALOGY [22], SimplE [23],
and HolE [24].

3.1.2 Geometric Models

Geometric KG embedding models represent semantic relations as geometric trans-
formations within a corresponding embedding space. In contrast to tensor decompo-
sition models, embeddings are not determined based on characteristics of the unique
adjacency tensor . A, but with respect to individual facts .(s, p, o) ∈ E.

As outlined in [10], transformations .τp(s) := τ (γ (s), γ (p)) ∈ 𝚪 are applied for
subject nodes .s ∈ V regarding predicates .p ∈ R. Accordingly, based on a distance
measure .δ : 𝚪 × 𝚪 → R≥0, KG embeddings are computed via score functions

. f (s, p, o) := δ
(
τp(s), γ (o)

)
.

Among the family of geometric KG embedding methods, TransE [25] constitutes
the most famous approach. As a translational model, it approximates object
representations .γ (o) via .γ (o) ≈ τp(s) = γ (s) + γ (p). Various geometric KG
embedding models build upon the idea of TransE, improving the representation of
nodes and relations by introducing additional components or transformations, such
as

• Relationship-specific hyperplanes to capture complex interactions between
nodes and relationships more effectively (TransH) [26]

• Relationship-specific node projection matrices to handle entities and relation-
ships with different characteristics more flexibly (TransR) [27]

• Adaptive projection matrices regarding differing node-relation-pairs (TransD)
[28]

• Relationship clustering to group similar relations (TransG) [29]

For a comprehensive overview of these methods, we refer to [10]. This work also
introduces negative sampling as a common obstacle of KG embedding formalisms.
Due to the open-world assumption of KGs, .(s, p, o) /∈ E does not necessarily imply
that the fact is false. Rather, it means that the KG does not contain information
about its validity. Thus, negative sampling is applied to create a set of false facts
.Eneg ⊆ V ×R ×V with .E ∩Eneg = ∅ to train the embeddings in a supervised way.

3.1.3 Deep Learning Models

Graph-based deep learning (DL) approaches, also referred to as Graph Neural
Networks (GNNs), exist for some time already, especially in the context of complex
network systems and their underlying undirected graph structures [30]. However,
the application of such algorithms on directed and labeled KGs may lead to a
loss of relevant information. To address this issue, Graph Convolutional Networks

78 F. Krause et al.

(GCNs) were first introduced to account for directed edges [31]. Furthermore, to
accommodate different relation types, Relational Graph Convolutional Networks
(RGCNs) were elaborated as extensions of GCNs [32], which were subsequently
extended by means of attention mechanisms [33] in Relational Graph Attention
Networks (RGATs) [34].

In contrast to geometric KG embedding models that apply score functions
to individual triples and tensor decomposition models that intend to reduce the
dimensionality of the adjacency tensor . A, DL-based models perform predictions
for labeled nodes .v ∈ V , taking into account itself and its outgoing neighbors

. N(v) := {y ∈ V | ∃(s, p, o) ∈ E : (s = y ∧ o = v) ∨ (s = v ∧ o = y)} .

These labels can be derived from the KG itself via node assertions or link
assignments, or they can be external, such as numerical or nominal node attributes.
Adjacent node representations are meant to be aggregated to receive a composite
node representation of v. By backpropagating a suitable loss, initial embeddings of
v and its neighbors are optimized. This process is repeated for each labeled training
node to generate latent feature representations for all .v ∈ V ∪ {N(v) : v ∈ V }. The
formalism proposed in [32] subdivides .N(v) into relation-specific neighborhoods

. Nr(v) := {y ∈ V | ∃(s, p, o) ∈ E : (s = y ∧ o = v) ∨ (s = v ∧ o = y) ∧ p = r} ,

regarding relation types .r ∈ R. Thus, given a matrix of (initial) feature representa-
tions .X ∈ R

n×d (i.e., the i-th row of . X is an embedding of .vi ∈ V), embeddings of
outgoing neighbors can be incorporated in the forward pass of a GNN via

. Ah · X ∈ R
n×d ,

where . Ah denotes the h-th slice of . A. For instance, in the context of the KG from
Fig. 5, the composite representation of . v1 regarding the relation . r1 equals the sum
of the initial embeddings of . v2 and . v3. To account for differing impacts of incoming
and outgoing edges, R is typically extended via inverse relations . r ' for each .r ∈ R.
Some works also consider a self-relation . r0. Accordingly, by taking into account the
adjacency matrices .A0 = Id and .A2h = AT

h for .1 ≤ h ≤ k, we extend the set R
via

. ̂R := R ∪ {
r ' | r ∈ R

} ∪ {r0} with r '
h = r2h.

By doing so, GNN models capture the semantics of directed and labeled graphs
by summing up weighted composite representations to receive a convoluted matrix

.

2k∑

h=0

Âh · X ·Wh ∈ R
n×d '

,

Leveraging Semantic Representations via Knowledge Graph Embeddings 79

including relation-specific weight matrices .Wh ∈ R
d×d '

. Moreover, the extended
adjacency tensor .Â ∈ R

(2k+1)×n×n is not necessarily .{0, 1}-valued. Rather, it
is intended to contain normalization constants or attention scores to encode the
significance of individual nodes and relations to the forward pass of a GNN.
However,

.
(
vi, rh, vj

) /∈ E ⇒ Âh,i,j = 0

still holds. If no normalization constants or attention mechanisms are to be
implemented, this tensor can be directly derived from .A ∈ {0, 1}k×n×n by means
of matrix transpositions and the insertion of an additional identity matrix. Finally,
by introducing an activation function .σ : R → R such as ReLu, the generalized
forward pass of a GNN layer (including RGCNs and RGATs) can be defined as

.σ

(
2k∑

h=0

Âh · X ·Wh

)

=: X' ∈ R
n×d '

. (2)

4 Industrial Applications of Knowledge Graph Embeddings

The lack of use case scenarios poses a significant challenge to the application of
KGs and corresponding KG embeddings in the manufacturing domain. Without
specific applications, it becomes difficult to identify the relevant data sources,
design appropriate KG structures, and create meaningful embeddings that capture
the intricate relationships within manufacturing processes. Thus, the absence of
concrete use cases hinders the exploration of the full potential of KGs and KG
embeddings in improving efficiency, decision-making, and knowledge sharing
within this domain.

As a result of the research conducted within the Teaming.AI project, which
aims to enhance flexibility in Industry 4.0, while prioritizing human involvement
and collaboration in maintaining and advancing AI systems, we identified several
application scenarios within the manufacturing domain that can be leveraged by
introducing industrial KGs and KG embeddings. These are introduced in the
following.

Data Integration and Fusion Manufacturing involves diverse and complex data
from various sources, such as sensors, process logs, or maintenance records. While
KGs can integrate these heterogeneous data sources, KG embeddings map them into
a shared representation space. By representing KG nodes and their relationships in
this shared embedding space, it becomes easier to combine and analyze data from
different sources, leading to enhanced data fusion capabilities.

80 F. Krause et al.

Semantic Similarity and Recommendation KG embeddings allow for quantify-
ing the semantic similarity between nodes. In the manufacturing domain, this can
be useful for recommending similar products, materials, or processes based on their
embeddings. For example, embeddings can help to identify alternative materials
with desired properties or characteristics, thereby aiding in material selection.

Supply Chain Management Effective supply chain management is crucial for
manufacturing. KGs and corresponding KG embeddings can help model and
analyze complex supply chain networks by representing suppliers, products, trans-
portation routes, and inventory levels as graph entities. By considering their
semantic relations, embeddings can facilitate supply chain optimization, demand
forecasting, and identifying potential risks in the supply chain.

Decision Support Systems KG embeddings and relational ML techniques can
serve as a foundation for developing decision support systems in manufacturing.
By learning from empirical semantic observations, these systems can provide
recommendations, insights, and decision-making support to operators, engineers,
and managers. For example, based on the current state of the manufacturing
environment, the system can suggest optimal operating conditions or maintenance
actions. Moreover, models can be learned to recommend ML models for AI
activities, given the current manufacturing environment.

Fault Detection and Diagnosis KG embeddings combined with relational ML
techniques can aid in fault detection and diagnosis in manufacturing systems.
By analyzing historical data and capturing the relationships between machines,
process variables, and failure events, embeddings can be used to build systems that
identify faults or failures in advance. This facilitates proactive maintenance, reduces
downtime, and improves overall effectiveness.

In conclusion, KGs allow for representing manufacturing concepts and entities
(such as processes, machines, and human workers) and their semantic relationships.
KG embeddings, on the other hand, capture inherent semantics in lean numerical
representations which facilitate (i) the analysis of existing manufacturing knowledge
and (ii) the extraction of new manufacturing knowledge based on empirical
observations. As a powerful tool for representing domain knowledge in a human-
and machine-interpretable way, KGs enable the combination of human comprehen-
sibility with the computational capabilities of machines. This synergy of human and
machine intelligence enables effective collaboration, decision-making, and efficient
problem solving in the manufacturing domain. Moreover, it represents a step toward
optimized human-in-the-loop scenarios [35] and human-centric Industry 5.0 [36].

However, the manufacturing domain is inherently dynamic, with continuous
changes in its processes, equipment, materials, and market demands. Therefore, it
is crucial to incorporate these dynamics into KG embeddings, which are typically
designed for static snapshots of a domain (cf. Sect. 3.1). In the end, KG embeddings
should be able to capture the evolving relationships, dependencies, and contextual
information, preferably in real time. By incorporating dynamics, the embeddings

Leveraging Semantic Representations via Knowledge Graph Embeddings 81

can adapt to changes in manufacturing operations, such as process modifications,
equipment upgrades, or variations in product requirements. This enables the repre-
sentations to accurately reflect the current state of the manufacturing system and to
capture the evolving aspects of runtime observations and data.

5 The Navi Approach: Dynamic Knowledge Graph
Embeddings via Local Embedding Reconstructions

Most of the existing works on dynamic graph embeddings do not account for
directed and labeled graphs. Rather, they are designed to be applicable to undirected
and/or unlabeled graphs [37, 38], or they aim to embed temporally enhanced
snapshots of non-dynamic graphs [39, 40]. Moreover, approaches like the one
proposed in [41] exist that intend to perform an online training of KG embeddings
by focusing on regions of the graph which were actually affected by KG updates.
However, the overall embedding structure is still affected, leading to a need for
continuous adjustments of embedding-based downstream tasks, such as graph-
based ML models. Thus, we require a dynamic KG embedding formalism that (i)
can produce real-time embeddings for dynamic KGs and (ii) is able to preserve
the original structure of KG embeddings to allow for consistent downstream
applications.

We propose to utilize the dynamic Navi approach [42], which is based on the
core idea of GNNs as per Eq. (2). Given an initial KG .Gt0 = (Vt0 , Et0) at timestamp
. t0, we assume an embedding .γ̃t0 : Vt0 → R

d based on some state-of-the-art
KG embedding method from Sect. 3.1. Accordingly, a dynamic KG is defined as
a family of stationary snapshots .(Gt)t∈T with respect to some time set . T. Given
a future timestamp .t > t0, the Navi approach provides a consistent embedding
.γt : Vt → R

d so that previously trained downstream models can still be employed.
Since we leverage the idea of GNNs to reconstruct .γ̃t0(v) through local neighbor-

hoods, these reconstructions are based on the unique adjacency tensors . (A(t))t∈T
with .A(t) ∈ R

k×nt×nt . Here, .nt = ∣∣⋃
τ≤t Vτ

∣∣ denotes the number of nodes that
were known to exist since the graph’s initialization and thus .nt ≥ nt0 holds. Thus,
we assume an initial embedding matrix .X̃t0 ∈ R

nt0×d that contains the initial
embeddings as per . ̃γt0 . This matrix is then reconstructed based on itself via a single-
layer GNN

. σ

(
Â(t0)0 · Θt0 ·W0 +

∑2k

h=1
Â(t0)h · X̃t0 ·Wh

)
=: Xt0 ≈ X̃t0

by taking into account the extended adjacency tensor .Â(t0) (cf. Sect. 3.1.3). During
the training process, a global embedding .γr0 ∈ R

d is implemented regarding the
self-relation . r0 so that .Θt0 ∈ R

nt0×d contains . nt0 copies of . γr0 . Moreover, instead
of zero-value dropouts, overfitting is prevented by randomly replacing node embed-

82 F. Krause et al.

dings with . γr0 in the input layer, simulating the semantic impact of nodes that are
not known at time . t0. It is also used to represent self-loops, enabling reconstructions
that are independent of the (potentially unknown) initial representations. A detailed
overview, including training settings and benchmark evaluation results, can be found
in [42]. The evaluation implies that, given a timestamp .t > t0, this approach allows
for high-qualitative and consistent embeddings .γt : Vt → R

d that are computed via

. σ

(
Â(t)0 · Θt ·W0 +

∑2k

h=1
Â(t)h · X̃t ·Wh

)
=: Xt ,

i.e., the i-th row of . Xt represents the embedding .γt (vi) of the node .vi ∈ Vt . In the
case of new nodes, . ̃Xt and . Θt are the extensions of . ̃Xt0 and . Θt0 by inserting copies
of . γr0 , respectively. Moreover, the update of the adjacency tensor can be performed
via

. A(t)h = I (t0, t)
T ·A(t0)h · I (t0, t) + B(t0, t)h.

First, the matrix .I (t0, t) ∈ {0, 1}nt0×nt accounts for newly inserted nodes, i.e.,

. I (t0, t)i,j = 1 ⇐⇒ i = j.

Second, the update matrices .B(t0, t)h ∈ {−1, 0, 1}nt×nt identify KG updates

. B(t0, t)i,j ==
{
1 ⇐⇒ the edge (vi, rh, vj) was inserted between t0 and t

−1 ⇐⇒ the edge (vi, rh, vj) was deleted between t0 and t.

After the KG update, a synchronizing assistant is to provide (i) the number of
nodes . nt and (ii) the update tensor .B(t0, t) ∈ {−1, 0, 1}k×nt×nt . For instance, given
an Apache Jena Fuseki1 KG, existing logging tools like rdf-delta2 can be extended to
use them as synchronizing assistants. Moreover, while we focus on a single update
at time .t ∈ T, transitions between arbitrary timestamps can be handled as well, i.e.,

. A(t ')h = I (t, t ')T ·A(t)h · I (t, t ') + B(t, t ')h for t0 < t < t '.

In conclusion, the late shaping of KG embeddings via Navi reconstructions rep-
resents a promising approach for incorporating dynamic KG updates and semantic
evolutions into KG embeddings as lean feature representations of domain concepts
and instances. Besides the ability to allow for consistent embeddings, the results
in [42] even showed that the reconstruction of existing embeddings often leads
to an improved performance in downstream tasks like link predictions and entity
classifications as key enablers of the industrial use case applications outlined in
Sect. 4.

1 Apache Software Foundation, 2021. Apache Jena, Available at https://jena.apache.org/.
2 https://afs.github.io/rdf-delta/.

https://jena.apache.org/
https://jena.apache.org/
https://jena.apache.org/
https://jena.apache.org/
https://afs.github.io/rdf-delta/
https://afs.github.io/rdf-delta/
https://afs.github.io/rdf-delta/
https://afs.github.io/rdf-delta/
https://afs.github.io/rdf-delta/
https://afs.github.io/rdf-delta/

Leveraging Semantic Representations via Knowledge Graph Embeddings 83

6 Conclusions

In this work, we highlighted the increasing importance of representing and exploit-
ing semantics, with a specific emphasis on the manufacturing domain. While
industrial KGs are already employed and utilized to integrate and standardize
domain knowledge, the generation and application of KG embeddings as lean
feature representations of graph elements have been largely overlooked. Existing
KGs lack either domain dynamics or contextuality, limiting the applicability of
context-dependent embedding algorithms. Thus, we provide an overview of state-of-
the-art KG embedding techniques, including their characteristics and prerequisites.
In this context, we emphasized the need for dynamic embedding methods and
their implementation in concrete manufacturing scenarios, describing potential KG
embedding applications in industrial environments, which were identified as a
result of the Teaming.AI project. Furthermore, we introduced the concept of Navi
reconstructions as a real-time and structure-preserving approach for generating
dynamic KG embeddings.

To summarize, KGs and KG embeddings offer significant advantages for the
manufacturing domain. The structured representation of complex relationships
in KGs enables context-awareness, dynamic analysis, and efficient information
retrieval. Furthermore, the utilization of KG embeddings promotes process opti-
mization, leading to improved product quality, reduced errors, and an increased
overall productivity.

Acknowledgments This work is part of the TEAMING.AI project which receives funding in the
European Commission’s Horizon 2020 Research Program under Grant Agreement Number 957402
(www.teamingai-project.eu).

References

1. Mohamed, S.K., Nováček, V., Nounu, A.: Discovering protein drug targets using knowledge
graph embeddings. Bioinformatics 36(2), 603–610 (2020)

2. Fu, X., Ren, X., et al.: Stochastic optimization for market return prediction using financial
knowledge graph. In: IEEE International Conference on Big Knowledge, ICBK, pp. 25–32.
IEEE Computer Society, New York (2018)

3. Buchgeher, G., Gabauer, D., et al.: Knowledge graphs in manufacturing and production: a
systematic literature review. IEEE Access 9, 55537–55554 (2021)

4. Hogan, A., Blomqvist, E., et al.: Knowledge graphs. ACM Comput. Surv. (CSUR) 54(4), 1–37
(2021)

5. Krause, F., Weller, T., Paulheim, H.: On a generalized framework for time-aware knowledge
graphs. In: Towards a Knowledge-Aware AI—Proceedings of the 18th International Confer-
ence on Semantic Systems, vol. 55, pp. 69–74. IOS Press, New York (2022)

6. Neo4j: Neo4j—the world’s leading graph database (2012)
7. Palumbo, E., Rizzo, G., et al.: Knowledge graph embeddings with node2vec for item

recommendation, In: The Semantic Web: ESWC Satellite Events, pp. 117–120 (2018)

www.teamingai-project.eu
www.teamingai-project.eu
www.teamingai-project.eu
www.teamingai-project.eu

84 F. Krause et al.

8. Diefenbach, D., Giménez-García, J., et al.: Qanswer KG: designing a portable question
answering system over RDF data. In: The Semantic Web: ESWC 2020, pp. 429–445 (2020)

9. Sun, Z., Hu, W., et al.: Bootstrapping entity alignment with knowledge graph embedding. In:
Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 4396–
4402. AAAI Press, New York (2018)

10. Rossi, A., Barbosa, D., et al.: Knowledge graph embedding for link prediction: a comparative
analysis. ACM Trans. Knowl. Discov. Data 15(2), 1–49 (2021)

11. Nickel, M., Murphy, K., et al.: A review of relational machine learning for knowledge graphs.
Proc. IEEE 104(1), 11–33 (2016)

12. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new perspectives.
IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

13. Devlin, J., Chang, M.-W., et al.: BERT: Pre-training of deep bidirectional transformers for
language understanding. In: Proceedings of the Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pp. 4171–
4186. Association for Computational Linguistics, Kerrville (2019)

14. Schuster, M., Nakajima, K.: Japanese and Korean voice search. In ICASSP, pp. 5149–5152.
IEEE, New York (2012)

15. Lu, Y., Xu, X., Wang, L.: Smart manufacturing process and system automation—a critical
review of the standards and envisioned scenarios. J. Manuf. Syst. 56, 312–325 (2020)

16. Ristoski, P., Rosati, J., et al.: Rdf2vec: RDF graph embeddings and their applications. Semantic
Web 10, 721–752 (2019)

17. Mikolov, T., Sutskever, I., et al.: Distributed representations of words and phrases and their
compositionality. In: Advances in Neural Information Processing Systems, vol. 26. Curran
Associates, Inc., New York (2013)

18. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500
(2009)

19. Nickel, M., Tresp, V., Kriegel, H.-P.: A three-way model for collective learning on multi-
relational data. In: Proceedings of the 28th International Conference on International Con-
ference on Machine Learning, pp. 809–816. Omnipress, New York (2011)

20. Yang, B., Yih, W.-T., et al.: Embedding entities and relations for learning and inference in
knowledge bases. In: 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings (2015)

21. Trouillon, T., Welbl, J., et al.: Complex embeddings for simple link prediction. In: Proceedings
of The 33rd International Conference on Machine Learning, vol. 48, pp. 2071–2080. PMLR,
New York (2016)

22. Liu, H., Wu, Y., Yang, Y.: Analogical inference for multi-relational embeddings. In: Proceed-
ings of the 34th International Conference on Machine Learning, vol. 70, pp. 2168–2178 (2017).
JMLR.org

23. Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge graphs. In:
NeurIPS, pp. 4289–4300. Curran Associates Inc., New York (2018)

24. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs. In:
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 1955–1961.
AAAI Press, New York (2016)

25. Bordes, A., Usunier, N., et al.: Translating embeddings for modeling multi-relational data. In:
Proceedings of the 26th International Conference on Neural Information Processing Systems,
vol. 2, pp. 2787–2795. Curran Associates Inc., New York (2013)

26. Wang, Z., Zhang, J., et al.: Knowledge graph embedding by translating on hyperplanes. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28(1) (2014)

27. Lin, Y., Liu, Z., et al.: Learning entity and relation embeddings for knowledge graph
completion. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
pp. 2181–2187. AAAI Press, New York (2015)

28. Ji, G., He, S., et al.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics, pages 687–696.
Association for Computational Linguistics, New York (2015)

Leveraging Semantic Representations via Knowledge Graph Embeddings 85

29. Xiao, H., Huang, M., Zhu, X.: TransG: a generative model for knowledge graph embedding.
In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics,
pp. 2316–2325. Association for Computational Linguistics, New York (2016)

30. Wu, Z., Pan, S., et al.: A comprehensive survey on graph neural networks. IEEE Trans. Neural
Networks Learn. Syst. 32(1), 4–24 (2021)

31. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In:
ICLR (2017)

32. Schlichtkrull, M., Kipf, T.N., et al.: Modeling relational data with graph convolutional
networks. In: The Semantic Web ESWC, pp. 593–607. Springer, Berlin (2018)

33. Vaswani, A., Shazeer, N., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

34. Busbridge, D., Sherburn, D., et al.: Relational Graph Attention Networks (2019)
35. Schirner, G., Erdogmus, D., et al.: The future of human-in-the-loop cyber-physical systems.

Computer 46(1), 36–45 (2013)
36. Leng, J., Sha, W., et al.: Industry 5.0: prospect and retrospect. J. Manuf. Syst. 65, 279–295

(2022)
37. Pareja, A., Domeniconi, G., et al.: EvolveGCN: Evolving graph convolutional networks for

dynamic graphs. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence AAAI, The
Thirty-Second Innovative Applications of Artificial Intelligence Conference IAAI, The Tenth
AAAI Symposium on Educational Advances in Artificial Intelligence EAAI, pp. 5363–5370.
AAAI Press, New York (2020)

38. Trivedi, R., Farajtabar, M., Biswal, P., Zha, H.: DyRep: learning representations over dynamic
graphs. In: International Conference on Learning Representations (2019)

39. Dasgupta, S.S., Ray, S.N., Talukdar, P.: HyTE: hyperplane-based temporally aware knowledge
graph embedding. In: Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pp. 2001–2011. Association for Computational Linguistics, Belgium
(2018)

40. Liao, S., Liang, S., et al.: Learning dynamic embeddings for temporal knowledge graphs. In:
Proceedings of the 14th ACM International Conference on Web Search and Data Mining, pp.
535–543. Association for Computing Machinery, New York (2021)

41. Wewer, C., Lemmerich, F., Cochez, M.: Updating embeddings for dynamic knowledge graphs.
CoRR, abs/2109.10896 (2021)

42. Krause, F.: Dynamic knowledge graph embeddings via local embedding reconstructions. In:
The Semantic Web: ESWC Satellite Events, pp. 215–223. Springer, Berlin (2022)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Leveraging Semantic Representations via Knowledge Graph Embeddings
	1 Introduction
	2 Knowledge Graph Embeddings
	3 Representation Learning
	3.1 Representation Learning for Knowledge Graphs
	3.1.1 Tensor Decomposition Models
	3.1.2 Geometric Models
	3.1.3 Deep Learning Models

	4 Industrial Applications of Knowledge Graph Embeddings
	5 The Navi Approach: Dynamic Knowledge Graph Embeddings via Local Embedding Reconstructions
	6 Conclusions
	References

