
Multi-Stakeholder Perspective on 
Human-AI Collaboration in Industry 5.0 

Thomas Hoch, Jorge Martinez-Gil, Mario Pichler, Agastya Silvina, 
Bernhard Heinzl, Bernhard Moser, Dimitris Eleftheriou, 
Hector Diego Estrada-Lugo, and Maria Chiara Leva 

1 Introduction 

The potential applications of AI in smart manufacturing are numerous, ranging 
from improving the efficiency of machinery maintenance to detecting defects in 
the machine or the product to preventing worker injury. AI-based systems can 
identify bottlenecks, optimize production schedules, and adjust settings to maximize 
efficiency by analyzing large amounts of data from sensors and other sources in real 
time. 

Furthermore, AI-based software systems can provide context-specific support to 
machine operators. By monitoring machine performance in real time, these systems 
can detect potential issues, give the operators recommended actions to solve the 
problem, and even automate the resolution, if necessary. This support can reduce 
operator errors, improve machine up-time, and increase productivity. 

In general, collaborative processes in smart manufacturing are characterized by 
alternating phases of reactive and proactive elements, with each actor supporting 
the other alternately [1]. AI-enabled smart manufacturing systems can be self-
sensing, self-adapting, self-organizing, and self-decision [2, 3], enabling them to 
respond to physical changes in the production environment in a variety of ways. 
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Fig. 1 Teaming.AI project overview 

AI-guided interactions in the manufacturing process include stopping machines, 
adapting production tasks, or suggesting a change in production parameters. 
However, achieving effective teaming between machine operators and AI-enabled 
manufacturing systems requires mutual trust based primarily on the self-sensing and 
self-adaptation of each actor [4]. 

The increased situational awareness through an improved Human-AI collabo-
ration enables operators to make informed decisions about optimizing machine 
settings and adjusting production schedules. This collaboration can improve product 
quality, reduce waste, and increase efficiency [5]. As AI continues to evolve, we can 
expect to see even more significant advances in smart manufacturing in the years to 
come. 

In the frame of the international research project Teaming.AI,1 we develop 
a software platform to facilitate human-AI teaming in smart manufacturing as 
shown if Fig. 1. We already presented reference architecture in [6]. However, 
in this work, we elaborate on different stakeholders’ requirements regarding the 
quality characteristics of AI software platforms. For this purpose, we conducted 
14 structured interviews with various stakeholders of the prospective platform. 
They rated a set of 11 different quality characteristics and provided vital success 
factors that can evaluate the fulfillment of these quality characteristics during the 
development and operation of the platform. 

The results of our study provide valuable insights into the different stakeholders’ 
expectations and remark on the importance of addressing their specific needs in 
the platform’s design and development. Considering these quality characteristics 
and critical success factors, we can ensure effective collaboration between human 
operators and AI systems.

1 https://www.teamingai-project.eu/. 

https://www.teamingai-project.eu/
https://www.teamingai-project.eu/
https://www.teamingai-project.eu/
https://www.teamingai-project.eu/
https://www.teamingai-project.eu/
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The remainder of this work is structured as follows: Sect. 2 presents the related 
work regarding stakeholder interaction in AI-related projects. Section 3 addresses 
the three use cases we have faced in the context of the Teaming.AI project. Section 4 
details stakeholders’ different roles in projects of this type. Section 5 discusses 
the pains identified when implementing such a solution. Section 6 discusses the 
expectations toward the technical realization. Section 7 discusses the characteristics 
of the high-level teaming concept. Finally, we point out the lessons we have learned 
in this work and some lines of future work. 

2 Related Work 

The field of human-AI collaboration has gained significant attention in recent years, 
driven by the emphasis on integrating AI technologies into collaborative work 
settings in Industry 5.0 [7–12]. This growing interest revolves around the explo-
ration of how AI systems can complement human abilities rather than replace them. 
Numerous studies have delved into different aspects of human-AI collaboration, 
including the design of intelligent systems [13], the development of new interaction 
paradigms [14], and the evaluation of the usefulness of these approaches in real-
world scenarios [15]. 

One area of study in human-AI collaboration strives to design AI systems 
that can work effectively with human counterparts. Researchers have examined 
various strategies for designing intelligent systems to communicate and collaborate 
with human users, including natural language processing, machine learning, and 
cognitive modeling [14]. Additionally, some studies have focused on designing new 
interaction paradigms that enable seamless collaboration between humans and AI 
systems. For example, researchers have investigated using augmented and virtual 
reality to create immersive environments that improve human-AI interaction. 

Another focus is evaluating their usage in real-world scenarios. Several studies 
analyze the impact of AI systems on the performance of human workers, as well 
as their acceptance and adoption of these systems. These studies have explored dif-
ferent elements that influence the success of human-AI collaboration, such as trust, 
transparency, and the nature of the tasks being performed [16]. Additionally, some 
researchers have investigated the ethical implications of human-AI collaboration, 
such as the potential for bias in decision-making processes. 

Within this context, Knowledge graphs (KGs) have also become a powerful 
tool for making production lines more efficient and flexible in manufacturing and 
production [17]. They provide a means of organizing and processing vast amounts of 
data about devices, equipment, machine models, location, usage, and other related 
data [18]. KGs can also help make manufacturing smarter by providing insights 
into the complex and competitive landscape [19]. This can enable manufacturers to 
identify patterns, trends, and correlations that were previously hidden, leading to 
more informed decision-making and improved operational efficiency. The potential
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benefits of KGs in manufacturing and production make them an essential technology 
for the future of industrial operations and highlight the importance of continued 
research and development in this field [20]. 

Especially interesting and relevant in this context are recent AI developments like 
ChatGPT by OpenAI2 and Luminous by Aleph Alpha.3 Both of them are providing 
natural language interfaces for their human users, so that they are able to express 
their problems, information needs etc. through their most natural communication 
means. This seems beneficial especially in situations of mental pressure or other 
forms of stress that workers might have to cope with in their daily routines. The 
TEAMING.AI sister project COALA4 performs research on such kinds of voice-
enabled digital intelligent assistants. With Luminous-Explore, Aleph Alpha points 
out the importance of semantic representations,5 so that humans are no more forced 
to represent their thoughts and intentions in machine representations but are enabled 
to expressing them in a more natural way. With those kind of developments, Aleph 
Alpha is also focusing on industrial use cases of their technology.6 

3 Manufacturing Context 

The following use cases (UC) describe concrete applications where an AI-based 
smart manufacturing solution could support a Human and AI collaboration in a 
manufacturing context. UC1 and UC2 derive from automotive suppliers and cover 
the process of plastic injection molding. In UC3, we investigate the ergonomic risk 
assessment during large-part manufacturing. Optimization focuses on the interplay 
between AI-controlled machine tasks and manual human labor. 

3.1 UC1: Quality Inspection 

The main objective of UC1 is to support the machine operator during the visual 
quality inspection of plastic parts produced by injection molding. The software 
platform shall classify products as OK or not-OK (including the type of defect), with 
the machine operator double-checking the latter. The software system interacts with 
the machine operator during the quality inspection and provides context-specific 
information for fault analysis and adjusting parameters to mitigate product defects.

2 https://openai.com/blog/chatgpt. 
3 https://www.aleph-alpha.com/. 
4 https://www.coala-h2020.eu/. 
5 https://www.aleph-alpha.com/luminous-explore-a-model-\for-world-class-semantic-
representation. 
6 https://de.nachrichten.yahoo.com/aleph-alpha-weg-halben-einhorn-125545116.html. 

https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://www.aleph-alpha.com/
https://www.aleph-alpha.com/
https://www.aleph-alpha.com/
https://www.aleph-alpha.com/
https://www.aleph-alpha.com/
https://www.coala-h2020.eu/
https://www.coala-h2020.eu/
https://www.coala-h2020.eu/
https://www.coala-h2020.eu/
https://www.coala-h2020.eu/
https://www.aleph-alpha.com/luminous-explore-a-model-�or-world-class-semantic-representation
https://www.aleph-alpha.com/luminous-explore-a-model-�or-world-class-semantic-representation
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https://www.aleph-alpha.com/luminous-explore-a-model-�or-world-class-semantic-representation
https://de.nachrichten.yahoo.com/aleph-alpha-weg-halben-einhorn-125545116.html
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The main focus is on integrating human feedback: The machine operator should 
have the chance to overrule and correct the suggestions of the AI system, e.g., by 
manually marking defective regions if they were classified wrong. 

This collaborative interaction between the machine operator and the software 
platform reinforces the notion of human-AI partnership, with each contributing 
their unique strengths to achieve the best possible outcomes. It empowers the 
machine operator with the authority to validate and correct AI decisions while 
ensuring continuous learning and improvement of the AI system by incorporating 
the operator’s feedback [21]. 

3.2 UC2: Parameter Optimization 

UC2 is also concerned with injection molding. However, the produced plastic parts 
are bigger, and cycle times are longer. Therefore, the software platform should 
provide a more proactive way to reduce and prevent non-OK parts effectively (zero 
waste production). The software platform should predict possible process deviations 
and identify the likely root failure causes before they materialize in faulty parts. It 
should be able to explain its findings (e.g., likelihoods), present recommendations 
(e.g., on parameter changes), and give the machine operator the ability to provide 
feedback to the software platform. 

To achieve this proactive approach, the software platform leverages its analytical 
capabilities to predict possible process deviations. It analyzes real-time data from 
various sensors and monitors the production parameters to identify patterns or 
anomalies that might indicate an impending issue. The software platform can 
provide the machine operator with early warnings and proactive recommendations 
by continuously monitoring and analyzing the production process. 

3.3 UC3: Ergonomic Risk Assessment 

UC3 focuses on high-precision manufacturing of significant components (e.g., gear 
cases for wind turbines). This manufacturing process is typically time-consuming, 
physically strenuous, and involves a combination of automated and manual labor. 

The objective is to analyze the ergonomic risks of human workers in terms 
of static loads and repetitive strains, especially during workpiece setup (involving 
manual part positioning, clamping, unloading, etc.). Using a camera-based tracking 
system, the software platform can determine the location of the machine operators 
on the shop floor, analyze their pose for ergonomic suitability and give feedback to 
the operator, e.g., via alerts. In addition, the software platform should also identify 
manual tasks associated with milling operations (e.g., taking measurements) and 
collect information about the tooling used during these tasks. This way, the software
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platform mediates between the milling machine and the operator by combining this 
information with context information, such as machine data. Overall, the software 
system should 

1. Improve communication between the operator and the machine 
2. Perform a continuous ergonomic risk assessment 
3. Allow rescheduling of similar assembly tasks to reduce repetitive strains 

By incorporating these functionalities, the software platform empowers both the 
machine operator and the milling machine to work in harmony, prioritizing the well-
being and safety of the operator. It is an intelligent assistant providing real-time 
insights, guidance, and risk assessments to optimize ergonomics and prevent work-
related injuries. This holistic approach promotes a healthier and more productive 
working environment, ensuring the efficient manufacturing of large parts while 
prioritizing the workers’ welfare. 

4 Stakeholder Roles 

In the following, we describe the different stakeholder roles with their exemplary 
activities identified during requirements engineering. 

• Data Protection Officer (DPO) enforces the laws protecting the company and 
individuals’ data (e.g., the GDPR) by controlling the processing of data and 
properly auditing the system. 

• Software Scientist (SS) queries runtime data of the software components of the 
software platform, such as logging information, for evaluating and optimizing 
the system’s base code and behavior. 

• Data Scientist (DS) applies statistical methods to the data processed by a 
software platform. 

• Machine Operator (MO) performs a visual inspection of the produced parts, 
clamping, adjusting the workpieces, and performing manual tasks on the 
machine, such as obtaining measurements and making parameter adjustments. 

• Production Line Manager (PLM) monitors and optimizes the processes for 
producing and assembling the product or its parts on the shop floor. 

The involvement of these stakeholders, each with their unique roles and activities, 
highlights the multi-dimensional nature of the software platform and its impact on 
various aspects of the manufacturing process. By incorporating these stakeholders’ 
expertise and responsibilities, the software platform’s development and operation 
can benefit from a well-rounded perspective, ensuring compliance, optimization, 
data analysis, production efficiency, and quality assurance.
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5 Identified Pains 

According to [22], pains are “bad outcomes, risks, and obstacles related to customer 
jobs.” In a collaborative project like Teaming.AI, the end users’ participation enables 
the technical side to address real market needs. To this end, two questionnaires 
were circulated among all use case partners to identify the existing issues and 
pains related to their processes and understand the potential benefits they would 
expect from the technologies developed. Each questionnaire is directed toward 
two categories of employees: (1) Managers, who can present more managerial 
challenges of the organization, and (2) Operators, who can more effectively depict 
their day-to-day challenges and are the active users of the machines that will be 
retrofitted. 

Specifically, the questionnaire was circulated among 18 individuals who partic-
ipated in the study and distributed evenly for each use case through the EUSurvey 
platform.7 The personas analyzed included: 

• Injection Technician 
• Production Shift Coordinator 
• Operator 
• Engineering Director 
• Process Managers 
• R&D Manager 
• Innovation Manager 
• Production Manager 
• Head of Automotive Digital Transformation 
• Data Scientist 

The first section of the questionnaire aimed to analyze the profile of each end 
user. Overall, all end users are more results-driven organizations. When asked 
about the top 2 priorities in selecting third-party collaboration for Industry 4.0 
initiatives, 78% preferred parties with proven pilot cases. The next most selected 
priority involved the ability to ensure an easier integration of solutions by 45% of 
the respondents. The third and fourth most selected priorities were results-oriented 
and involved the capacity to promise short-term value and the market participant’s 
brand acknowledgment with 34% and 23%, respectively. Less prominent options 
also included the proximity of the technology provider and the sustainability 
improvement. 

5.1 UC1: Quality Inspection 

This particular use case involved the participation of the following roles:

7 https://ec.europa.eu/eusurvey/auth/login. 

https://ec.europa.eu/eusurvey/auth/login
https://ec.europa.eu/eusurvey/auth/login
https://ec.europa.eu/eusurvey/auth/login
https://ec.europa.eu/eusurvey/auth/login
https://ec.europa.eu/eusurvey/auth/login
https://ec.europa.eu/eusurvey/auth/login
https://ec.europa.eu/eusurvey/auth/login
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• Data scientist 
• Head of Mobile and Digital Transformation 
• R&D Manager 
• Operator 

Overall, the results indicate that the end user faces pains primarily within the 
production department, which also affects coordinating activities. Specifically: 

1. Setup parametrization: The most significant bottleneck in the particular pro-
duction system, according to the respondents. As the manufacturing context 
section demonstrates, adjusting the parameters is necessary to mitigate product 
defects. 

2. Scrap Generation: Causes for scrap generation can emerge from lack of quality 
raw materials, setup mistakes, machine issues, etc. Although scrap generation is 
considered financially sustainable, it impacts planning and financing. 

3. Unexpected downtime/equipment failures: Mechanical and electrical failures 
accompanied by non-optimal maintenance are primary factors leading to failures. 

4. Loss of time: Issues related to time loss refer to production delays, waste 
generation, lack of raw materials, non-productive processes, etc. 

5. Not optimal production quality: The capacity to be prone to errors is affected 
by the level of control in the existing production system. 

6. Increased inventory: Supply chain disruptions and unexpected failures lead 
to material unavailability, which leads planners to over-order to ensure that 
production does not remain stagnant. 

7. Lack of Flexibility in tasks and product design: Flexibility is not limited to 
how operators are liberated to move between activities but also to the ability 
to switch between orders and in the adaptability to produce different types of 
products. 

5.2 UC2: Parameter Optimization 

The second use case of the project involved the following six roles: 

• Engineering Director 
• Injection Technician 
• Operator 
• Process Manager 
• Production shift technician 
• R&D Manager 

As mentioned above, the first two use cases encounter similarities between each 
other contextually and, by extension, similar pains. Specifically: 

1. Setup parameterization: The level of operator expertise influences the possibil-
ity for a defect to occur.
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2. Unexpected downtimes/equipment failures: The main consequence of unex-
pected downtimes leads to production pauses and redirection of employees to 
other places. 

3. Lack of human-machine interaction: Similarly with the first pain, the level of 
expertise has a dominant impact on production and handling impending issues. 

4. Loss of time: The primary concern is from a managerial perspective. Identified 
loss of time lies in sales, dispatch, unexpected failures, and scrap generation for 
the organization. 

5. Scrap generation: At a similar level with UC1. However, areas such as cost 
management and logistics would be the first areas to be improved by reducing 
scrap in production. 

6. Increased inventory: Even though scrap generation is considered sustainable, 
it directly influences the purchasing and warehouse departments, which need to 
add to their risk management and planning activities. 

7. Increasing Costs: Although all UCs experience increased costs due to other 
pains, UC2 respondents have highlighted the challenges in their cost manage-
ment activities. 

5.3 UC3: Ergonomic Risk Assessment 

The third and final use case focused on the following roles: 

• Injection Technician 
• Innovation Manager 
• Machine Operator 
• Operator 
• Production Manager 
• R&D Manager 

Following the questionnaire results, the ergonomic risk assessment use case is 
characterized by the following pains: 

1. Setup parameters: In UC3, operators indicate that setup difficulties make them 
feel there is a lack of time. 

2. Unexpected downtimes/equipment failures: Similarly to other use cases, it 
leads to high rework costs. 

3. Waste generation: Classified as below average, there is an excess of production 
material waste in the current form of processes. 

4. The system does not help meet scheduling demands: Bureaucracy leads to a 
lack of control over increasing equipment productivity. 

5. Delivery delays: Inability to meet scheduling demands on time lead to delivery 
delays and profit reductions. 

6. Increased inventory: Like all the use cases mentioned above, over-ordering 
leads to an increased inventory and profit reduction.
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7. Not optimal planning: The current production system impedes stakeholders 
from conducting optimal planning activities. 

8. Loss of time: A consequence of those mentioned above and other relevant factors 
reduces the production system’s time and productivity. 

5.4 Total Results: Pains 

To summarize, although the project involves three different use cases, which may 
signify different needs from different stakeholders, some common themes offer a 
common ground to build upon. Particularly, 

1. Setup parameters 
2. Unexpected downtimes/equipment failures 
3. Loss of time 
4. Waste/scrap generation 
5. Increased inventory 

The five pains are the primary market needs that are the groundwork to construct 
compelling value propositions, which is one of the building blocks of a business 
model. 

6 Expectations Toward the Technical Realization 

In previous work [23], we conducted 14 interviews with stakeholders from three 
industry partners and three specialized SMEs for software development of AI-based 
systems. 

We defined candidate scenarios [24] that describe the context and the anticipated 
functionality from the stakeholders’ perspectives when interacting with the prospec-
tive software platform. In an interview-based case study, we assessed each of the 
11 quality characteristics in terms of their importance to the overall platform from 
the stakeholders’ perspective. We elicited the critical success criteria related to the 
software platform. The quality characteristics comprised the 11 characteristics of 
the ISO 25010:2011 standard for software quality (SQuaRE) [25] and 3 AI-specific 
quality characteristics, such as trustworthiness and explicability. 

At the beginning of the interviews, we explained the research context of our 
study (i.e., human-AI teaming in smart manufacturing) to the interviewees. Each 
interviewee thoroughly understood the research context since they had participated 
in the project for over 1 year. For the relevance assessment, we adapted the Quality 
Attribute Workshop format [26] and asked the interviewees to assign, in total, 100 
points to the different quality characteristics according to their subjective relevance 
for human-AI teaming in smart manufacturing.
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The interviewees rated trustworthiness, functional suitability, reliability, and 
security as the most important quality characteristics. In contrast, portability, 
compatibility, and maintainability are rated as the least important. Furthermore, 
the results indicate consensus regarding the relevance of the quality characteristics 
among interviewees with the same role. However, we also recognized that the 
relevance of the quality characteristics varies according to the concrete use case 
for the prospective software platform. In addition, we asked interviewees to discuss 
critical success factors related to the prospective software platform. According to the 
interviewees, critical success criteria for human-AI teaming in smart manufacturing 
are improved production cycle efficiency, fewer faulty parts and scrap, and a shorter 
period for detecting deviations (product or process quality). This response was 
unsurprising since similar pains had already been expressed earlier (see Sect. 5). 

7 Team Effectiveness 

As described in [27], well-designed coordination mechanisms can improve team 
effectiveness to ensure that relevant information is distributed throughout the team. 
These coordination mechanisms, which have first been described by Salas, Sims, 
and Burke [4] as part of their big five framework for team effectiveness, are: 

• Shared Mental Models: Shared mental models facilitate a common under-
standing of the environment by creating knowledge structures that promote 
the information exchange about state changes and team member needs. The 
knowledge structures need to be designed to be comprehensible by humans and 
AI. 

• Mutual Trust: Trust in the team setting has been defined by Webber [28] as  
“the shared perception ... that individuals in the team will perform particular 
actions important to its members and ... will recognize and protect the rights and 
interests of all the team members engaged in their joint endeavor.” A culture 
of mutual trust is essential in supporting the core components of teamwork, 
especially since, as [29] shows, trust critically influences how individuals within 
a team will interpret others’ behaviors. 

• Closed-Loop Communication: Communication between humans and AI may 
suffer from similar issues as communication between humans. Communication 
may be hindered because of misinterpretation of messages due to their perspec-
tives and biases or because team members have become focused on their tasks 
rather than on how those tasks affect other team members’ tasks. 

Although the original big five framework focused purely on teaming between 
humans, it nonetheless builds a solid foundation for human-AI teaming digitaliza-
tion. By prioritizing team effectiveness as a goal rather than just performance output, 
the emphasis remains on human team members instead of AI, acknowledging that 
the interactions among team members are equally vital.
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Effective communication is, therefore, essential for teams to function correctly. 
In the context of human-AI teams, communication can help to ensure that AI 
systems are correctly interpreting human input and that humans are correctly 
interpreting the output of AI systems. This can be particularly important in high-
stakes environments where errors can have serious consequences. 

8 Conclusions and Future Work 

In this work, we have seen how the development of AI-based software platforms 
that facilitate collaboration between human operators and AI services needs the 
integration of the different stakeholder perspectives into a common framework. 
In this regard, it is vital to identify the individual relevance of different quality 
characteristics per stakeholder and propose key success factors related to human-AI 
teaming to measure fulfillment. This can help ensure that the software platform is 
user-friendly and practical, meeting the expectations and needs of all stakeholders 
involved in the collaboration. Furthermore, it can mitigate conflicts arising from 
differing stakeholder perspectives during the projects. 

Our research has thoroughly analyzed the critical issues, challenges, and oppor-
tunities of integrating AI technologies into collaborative work environments. To do 
that, we have adopted a multi-stakeholder perspective, considering the perspectives 
of different actors involved in the human-AI collaboration process. We aim to pro-
vide insights and recommendations for designing effective human-AI collaboration 
systems that enhance productivity, innovation, and social welfare. 

We have observed that human-AI collaboration in Industry 5.0 requires careful 
consideration of various factors, such as the design of intelligent systems, the 
development of new interaction paradigms, the evaluation of the effectiveness of 
these systems in real-world scenarios, and the ethical implications of human-AI 
collaboration [24, 30]. Moreover, we have highlighted the importance of adopting a 
human-centric approach to AI system design, prioritizing human users’ needs, pref-
erences, and capabilities. Other elements (e.g., establishing trust and transparency 
in human-AI collaboration systems and ensuring fairness, accountability, and 
transparency in decision-making processes) are also essential in this manufacturing 
context. 

In conclusion, integrating AI technologies into collaborative work environments 
offers immense potential for enhancing productivity, innovation, and social welfare. 
However, it also presents numerous challenges that require careful consideration 
and proactive measures. By adopting a multi-stakeholder perspective, prioritizing 
human-centric design, fostering interdisciplinary collaborations, and implementing 
responsible governance, we can pave the way for practical and ethical human-
AI collaboration systems that maximize the benefits while minimizing the risks 
associated with this transformative technology. 

As future lines of research, it is necessary to remark that as AI technologies 
continue to advance, it becomes increasingly essential to handle the issue of AI
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bias in collaborative work environments. Bias in AI systems can perpetuate existing 
social imbalances, support discriminatory practices, and limit opportunities for 
specific groups. Therefore, it is crucial to develop mechanisms that detect and 
mitigate bias in AI algorithms and data sets used in human-AI collaboration. 
In addition, integrating AI technologies into collaborative work environments 
necessitates ongoing training and upskilling programs for people. These programs 
aim to introduce individuals to AI capabilities, promote digital literacy, and provide 
them with the necessary skills to collaborate with intelligent systems effectively. 
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