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1 Introduction: Why Object Detection in the Industrial 
Environment is Helpful? 

The integration of Object Detection (OD) technology into industrial environments 
offers significant changes and improvements by addressing critical challenges and 
optimizing operations. By accurately detecting and recognizing objects in real time, 
OD systems play an important role in ensuring safety, streamlining workflows, and 
efficient assistance for humans. In today’s complex industrial landscape, accurate 
OD is pivotal as it serves as the foundation for various safety mechanisms, such 
as identifying obstacles and hazardous materials, thereby reducing accidents and 
downtime. 

Efficiency, productivity, and worker safety are paramount in industrial settings, 
making accurate object detection an essential component of worker assistance 
systems. Leveraging advanced algorithms, sensor fusion techniques, and machine 
learning methodologies, industries can achieve improved automation, enhanced 
human–robot interaction, and optimized processes. OD technology enables indus-
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trial modules and agents to perceive and analyze their surroundings, leading to 
optimized operations and safeguarding the well-being of workers. 

By integrating OD technology with human assistance and collaboration mech-
anisms, safer and more productive interactions are fostered in industrial environ-
ments. Collaborative robots, or Cobots, are increasingly deployed to augment the 
capabilities of human operators and improve overall productivity. Leveraging object 
detection technology, Cobots accurately perceive and respond to the presence of 
humans, ensuring safe and seamless cooperation within shared workspaces. This 
prioritizes safety and productivity in human–robot interactions, driving innovation 
and efficiency in the industrial domain. 

Assistance systems play an important role where manual work is prevalent. In 
industrial processes such as assembly, training, or maintenance processes, these 
systems support minimizing the workload of humans. There are different types 
of assistance systems, ranging from manual workstations equipped with cameras 
and displays to immersive assistance systems over head-mounted devices or smart 
devices. Computer vision techniques such as object detection help understand the 
worker’s environment from visual data. This understanding can be used to enrich 
existing software systems with object information to achieve multiple goals. With 
applications ranging from healthcare to the automotive industry, object detection 
models such as Yolo [22] and Faster RCNN [7] have gained popularity on account 
of their real-time detection performance. For example, in [15], an Advanced 
Driver Assistance System (ADAS) is equipped with real-time object detection 
to provide safety and a better driving experience. In use cases such as ADAS 
systems encountering moving objects, real-time object detection becomes even 
more important. Object detection also finds applications for solving industrial 
problems such as quality inspection. 

An Augmented Reality (AR)-based assistance system uses the context of the 
existing reality or real environment and intends to augment it with useful informa-
tion. In order to capture the real-world context, camera sensors play an integral 
part in the AR system. They provide real-world data, and the display serves as 
the counterpart helping the user visualize the system together with augmented 
information. The input visual data are understood using deep learning methods such 
as object detection and pose estimation, the output of which can be used for solving 
a large spectrum of problems in the form of an assistance system. 

Object detection outputs can be utilized to create effective assistance systems that 
provide real-time recommendations and guidance. By integrating OD with head-
worn devices, workers can receive valuable information and instructions related to 
their tasks. For instance, an OD system can detect and recognize objects in the 
assembly place, or potential hazards in the worker’s surroundings. The system can 
then analyze these data and provide recommendations, such as the next step in 
the assembly pipeline. It can also alert the worker to the presence of a hazardous 
object. These recommendations are displayed on the worker’s head-worn device, 
providing immediate and personalized assistance. By leveraging OD in human 
assistance systems, workers can benefit from increased safety, improved efficiency,
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and enhanced situational awareness, ultimately leading to a more productive and 
secure work environment. 

Supervised learning approaches such as object detection are highly dependent 
on data. A large amount of image data are required for training. Synthetically 
generated and labeled dataset offers several advantages in this regard. It simplifies 
and economizes the generation of large datasets, eliminating manual labeling and 
reducing human errors. Its flexibility allows for easy manipulation according to 
specific requirements, enabling researchers to control factors such as lighting, 
camera angles, and object placements. This enhances the model’s ability to learn 
from diverse scenarios and improves its generalization capabilities. 

Furthermore, synthetic data are well-suited for various computer vision tasks, 
including the detection of small or rare objects that may be challenging to capture 
in real-world datasets. Its ability to simulate objects of any scale or size makes it 
invaluable in training models. Synthetic data can be generated in large quantities, 
providing ample training samples for deep learning models that require extensive 
labeled data. Moreover, it allows for easy augmentation, increasing dataset diversity 
and variability. These advantages contribute to the development of more accurate 
and robust deep learning models in computer vision. 

In the subsequent sections, we will delve into the following aspects: 

1. Background: We will explore the utilization of object detection in industrial 
environments and its diverse range of applications. 

2. Scenarios: We will discuss two pivotal scenarios within the industrial environ-
ment setting where object detection is employed for human–robot interaction 
and worker assistance systems. Moreover, the respective methodology for the 
worker assistance systems scenario is discussed, and the results are presented. 

3. Ongoing and Future Work: We will highlight currently ongoing research that 
involves the exploration of continual learning techniques and dataset optimiza-
tion through the combination of real and synthetic datasets. 

4. Conclusion: The chapter will conclude by summarizing the key findings and 
contributions to the topic. 

2 Background 

The industrial environment is undergoing a profound transformation toward greater 
intelligence and autonomy, thanks to the emergence of machine learning (ML) 
approaches. With access to abundant data and powerful hardware resources, deep 
learning techniques and artificial intelligence methods have become increasingly 
valuable. In this context, leveraging AI-based methods within industrial settings 
offers significant potential for reducing human errors and enhancing safety [4], 
particularly in scenarios involving human–robot collaboration or shared workspaces 
with close proximity between these two crucial agents. The exploration of human– 
robot interaction in complex and unpredictable environments has become a promi-
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nent research area, where AI methods can be effectively harnessed [13]. Within this 
landscape, deep models serve as powerful tools that excel in addressing intricate 
challenges encountered in the industrial domain. Their ability to learn hierarchical 
representations directly from raw data positions them as ideal solutions for a wide 
range of applications, encompassing object detection, anomaly detection, predictive 
maintenance, quality control, and optimization. 

Deep models, capable of addressing diverse challenges encountered in industrial 
settings, have emerged as highly effective tools. These encompass vision-based 
approaches [25], natural language processing (NLP) techniques [1], as well as 
human wearable sensor-based approaches for HRI [16], among others. Notably, both 
conventional and deep-learning-based ML models have recently been harnessed 
for video streaming analysis with the aim of object detection [6]. Deep models, 
characterized by their end-to-end nature, aim to address the challenge of laborious 
and time-consuming feature extraction from data [11]. 

Vision-based AI approaches have become increasingly valuable in addressing 
industrial problems due to their ability to interpret and analyze visual data in real 
time. These approaches leverage deep learning algorithms and computer vision 
techniques to process images or video streams captured by cameras or sensors 
installed in industrial settings. By employing vision-based AI, various industrial 
challenges can be effectively tackled. Hence, vision-based approaches are widely 
recognized for their significant value across diverse scenarios. One prominent 
vision-based approach is object detection, which involves the classification and 
localization of multiple objects in the target frames or images. It has proven to 
be highly applicable in various scenarios, contributing to tasks such as improving 
safety, facilitating human–robot interaction [25], aiding in error identification for 
workers, and optimizing task completion time. 

Given the wide range of challenges and numerous common use cases encoun-
tered by vision-based AI approaches in industrial settings, it is imperative to 
thoroughly investigate various aspects of AI-based approaches, especially in indus-
trial environments. These aspects encompass examining the architecture of deep 
learning models, conducting comprehensive analysis and assessment of the data 
sources, and addressing other significant factors to ensure optimal performance and 
effectiveness. In the following, we dig into some of these challenges and solutions. 

2.1 Dataset 

In the case of industrial scenarios, there is difficulty in terms of real-world data 
collection. Especially in vision problems, collecting images with diverse conditions 
and viewpoints, and also labeling them, is an effort-intensive as well as a time-
consuming task. In some cases, the frames used as the source of input can originate 
from various cameras within the environment. These cameras can include ceiling-
mounted cameras, robot cameras, as well as head-worn cameras of mixed reality 
devices like HoloLens that capture workers’ point of view [24]. Also in some cases,
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the data collection cameras are different from the edge devices on which an object 
detection model needs to be deployed. In such a situation, synthetic data generation 
becomes inevitable. Also, CAD data play an eminent role in the complete product 
life cycle of a manufacturing product, and for the product as well as the machine, 
it is readily available. These CAD models can be exploited to generate synthetic 
datasets. However, using CAD data directly cannot serve as a reliable solution. The 
CAD data only resemble the real objects in geometry; however, they lack materials 
and texture. Thus, there exists a large amount of distinction in the appearance of the 
real and CAD data. If we use CAD-based synthetic images for training, which is to 
be tested on real-world objects, there is a problem of domain difference, i.e., the real 
and synthetic data domain. In an attempt to solve this issue, the technique of domain 
randomization is demonstrated in [19]. Domain randomization can be achieved 
by randomizing various aspects of the simulation scene such as the backgrounds, 
illumination, orientation of the objects, etc. [3]. 

2.2 Architectures 

Numerous prominent object detection architectures, including the R-CNN pipeline 
[7], Fast-RCNN [8], and Faster-RCNN [9], SSD [12], You Only Look Once 
(YOLO) approaches [22], and its following versions such as YOLOv7 [28], pro-
vide well-defined pipelines for detecting objects across different scenarios. These 
architectures offer robust methodologies for accurately identifying and localizing 
objects within the visual data. State-of-the-art techniques, such as YOLO object 
detection, have particularly excelled in enabling real-time or near-real-time object 
detection. This capability is of utmost importance in industrial environments, where 
the ability to detect objects promptly is crucial for effective use cases. By leveraging 
these advanced object detection methods, industries can enhance their operational 
efficiency, safety, and decision-making processes. 

2.3 Application in Industrial Environment 

Object detection is highly practical and beneficial in various broad use cases. For 
instance, in [21], object detection pipelines were employed to automate logistic 
processes within industrial environments. Saeed et al. [23] addressed the challenge 
of detecting faults in industrial product images, particularly focusing on small-
object detection. Another case study is conducted by Usamentiaga et al. [27] 
for evaluating the state-of-the-art deep-based object detection models as well as 
semantic segmentation in the scenario of automated surface inspection in metals. In 
the field of robotics, [2] researched the integration of an object detection CNN-based 
model to leverage a robot in a sorting task.
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2.4 Challenges 

It is obvious that object detection in the industrial environment can facilitate many 
tasks especially in which a robot and a human need to collaborate and work in a 
shared workplace, and promotes safety by facilitating interaction between humans 
and robots. However, object detection in the industrial environment does face some 
challenges. Object detection in a complex and unpredictable industrial environment, 
in which interference objects similar to the goal objects can be found easily due to 
the similarity in shape, size, and color, and random positioning and orientation of 
different objects make this detection much more difficult [2]. Also, detecting small 
objects poses a significant challenge due to their limited representation of features. 

An overview of concepts and terminology related to artificial intelligence (AI) 
is given in ISO/IEC 22989:2022 Information Technology—Artificial intelligence— 
Artificial intelligence concepts and terminology” [10]. 

3 Scenarios 

In this section, we explore the scenarios in both projects, STAR and InCoRAP 
for object detection in the factory environment with specific emphasis on safety 
in human–robot collaboration and interaction, and human assistance systems. 
We study the use cases in which object detection can be utilized for safety in 
the industrial environment. Additionally, we investigate the application of object 
detection in human assistance systems. Furthermore, we will explain our recent 
work on context-based object detection methods, particularly for small objects in 
the assembly use case within the industrial environment. We dive into the details of 
how context-based approaches can effectively detect and identify small objects in 
assembly scenarios. 

3.1 Object Detection for Human–Robot Interaction in the 
STAR Project 

Object detection for human detection can play a crucial role in enhancing safety 
in industrial environments. Although human detection can be considered as a sub-
task of object detection, it is facing some more complexity due to the wide range of 
possible appearances on account of the articulated pose, and clothing, to name a few 
[20]. Hence, studying human detection is vital from a safety perspective, especially 
in a complex, unpredictable, and dangerous industrial environment. Here are a few 
ways human detection will be utilized: 

– Enhancing Worker Safety: Implementing object detection systems that are capa-
ble of accurately identifying and tracking human presence can greatly contribute
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to worker safety. These systems enable the implementation of proactive safety 
measures to prevent accidents or potentially dangerous situations. For instance, 
if a worker enters a restricted area or approaches a hazardous machine, the object 
detection system can promptly detect their presence and trigger warnings that 
can be raised in the HoloLens head-worn device or automatically shut down the 
equipment to mitigate potential accidents. 

– Collision Avoidance: Object detection can be utilized to detect the presence of 
humans in the vicinity of moving machinery or vehicles. This information can be 
used to alert operators or autonomous systems to slow down, change direction, 
or stop to avoid collisions and ensure worker safety. 
Our pilot study aims to explore the practical application of ceiling cameras or 
robot cameras in hazardous accident scenarios occurring within an industrial 
environment. Our focus is specifically directed toward examining the collab-
oration between a moving robot and human workers. The moving robot’s 
primary role is to assist in the transportation of objects from the warehouse to 
the workstation, as well as facilitating the transfer of objects between various 
production lines, which often occurs in an unpredictable timescale. 
To ensure the safety of workers and prevent any potential accidents, we employ 
localization and classification from object detection techniques for both the robot 
and human agents. These techniques enable us to effectively localize the position 
of the robots and humans within the workspace through the ceiling cameras in 
the environment. By real-time monitoring and analyzing of the robot and human 
locations, we can promptly identify and mitigate potential collisions or unsafe 
situations, which leads to a secure and accident-free working environment. 

Overall, object detection for human detection in industrial environments brings 
safety by enabling proactive measures and collision avoidance. It helps create a safer 
working environment, reduces the risk of accidents, and enhances the well-being of 
workers. 

3.2 Object Detection for Manual Assembly Assistance System 
in InCoRAP 

In the InCoRAP use case, the AR-based Assistance system observes the egocentric 
point of view of the worker. The goal is to observe worker activity in the assembly 
process in order to support them through a mobile robot collaboration. The object 
detection model is a part of the assistance used to observe the assembly state based 
on the detected objects. For AR applications, the head-mounted device: HoloLens2 
is used. The detected objects are the observations that correspond to the assembly 
steps, and these observations are later used to support the worker. 

Research focusing on the evaluation of AR systems has proven AR-based 
assistance systems advantageous over conventional instruction manuals [5]. Thus,
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Fig. 1 The pipeline of the 3 experiments within the training phase with testing on the HoloLens2 
frames transferred to the edge server for detecting target objects [25] 

AR-based assistance places less workload on the worker or user compared to 
document-based guidance. 

The field of small-object detection has garnered considerable research interest 
and has become increasingly popular. In vision-based object detection methods, 
the texture and arrangement of objects play a pivotal role in enabling the object 
detection pipeline to extract relevant features. It is worth noting that smaller objects 
may pose a challenge, as their size can be reduced significantly during the feature 
extraction process. For example, an object with dimensions of .32 × 32 pixels, after 
passing through five pooling layers in the VGG16 model, would be represented as 
a mere 1-pixel [17]. The concept of small objects, as defined in [26], encompasses 
objects sized at .32 × 32 pixels within the context of image analysis. 

We specifically focus on small-object detection within an assembly scenario, 
where workers assemble various electrical components (e.g., buttons, resistors, 
LED, buzzers) on a breadboard to create a final product (Fig. 3b) [25]. In this 
scenario, a robot assists the worker by delivering parts from the warehouse, and 
an assistance system detects the current assembly steps and suggests the next 
probable part to be installed on the breadboard. The frames captured from the 
worker’s point of view (POV) are seized using the HoloLens2, which the worker 
wears during the assembly process. The pipeline for this approach is illustrated in 
Fig. 1. In the testing phase, the frames are transmitted to the server where the object 
detection model performs inference. The detected objects provide information such 
as class identification and bounding box coordinates. This information is then 
communicated from the server to the HoloLens2 device using Unity communica-
tion. Subsequently, the HoloLens2 device generates holographic representations, 
displaying the class identification and bounding box information as augmented data. 
Workers in the environment can observe these holograms when they focus their gaze 
on the respective objects.
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Fig. 2 Synthetic dataset generation pipeline [25] 

3.3 Methodology: Context-Based Two-Step Object Detection 

For computer vision problems such as image classification or object detection, 
the foremost task is the collection of suitable image data and then labeling it. 
However, this process can be automated using a game engine such as Unity [3]. 
In a Unity renderer space, there is a game camera that consists of the attributes 
of a physical camera. There are two types of views obtained in such a game 
development environment, one being the developer view and the other being the 
game view. These features allow for creating a simulation scene for synthetic image 
data generation. As introduced in [3], the Unity Perception allows for customization 
and user-defined feature development with the goal of synthetic data generation in 
Unity. We developed a scene similar to that of the Unity Perception Package that 
allows for multi-object detection dataset generation. The 3D models of the desired 
object are CAD models converted into Unity-compatible format and imported into 
the scene. 

The synthetic dataset generation pipeline shown in Fig. 2 shows the CAD model 
of the object imported into a Unity scene. On importing into the scene, the CAD 
models are processed to achieve a photo-realistic appearance using the renderer 
features. The scene is developed in such a way that it simulates a systematic image-
capturing process [3] to deliver the desired dataset. A script has been written for the 
game camera to capture the object images from various viewpoints and distances to 
the object during the simulation. From a set of background images, the backgrounds 
of the objects are randomized in the simulation. By rendering multiple views of 
the scenes, we generate a diverse set of synthetic images that mimic real-world 
conditions. Additionally, data augmentation techniques such as object rotation, 
scene illumination, and object occlusion are applied. Furthermore, the labeling tool 
within this Unity scene automatically annotates the generated images with bounding 
boxes, providing ground truth information for training and validation. 

In Table 1, the benefits of using synthetic data were demonstrated in the context 
of installing small objects on a breadboard as an assembly process. Additionally, 
utilizing synthetic data presents advancements in the two-step detection approach. 
Table 1 illustrates the Mean Average Precision (mAP) for the detection of the small 
button on the breadboard for our three experiments. The mAP is a widely used 
evaluation metric in object detection tasks. It measures the accuracy and precision
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Table 1 The mAP results for all 3 experiments for different Intersection of Union (IoU) are 
illustrated and confirmed that the two-step detection improved the mAP for the buttons, the target 
small object in the frames [25] 

mAP (full size) mAP (cropped) 

IoU 0.01 0.10 0.20 0.30 0.40 0.50 0.01 0.10 0.20 0.30 0.40 0.50 
Exp. 1 0.3% 0% 0% 0% 0% 0% 2.6% 0% 0% 0% 0% 0% 

Exp. 2 44% 26% 4% 0.6% 0.03% 

Exp. 3 44% 26% 4% 0.6% 0.03% 70% 69% 58% 27% 8.5% 

Fig. 3 (a) Synthetic image for assembly objects, (b) object detection on a video captured from 
HoloLens2 for the corresponding real objects 

of object detection algorithms by calculating the average precision for each class and 
then taking the mean across all classes. The mAP is calculated according to [18]. 
The first experiment is trained on the 295 conventional images from buttons and 
tested on the 90 images containing 221 tiny buttons. The same setup is applied in 
the 2nd experiment, but in the training phase, we utilized the 1300 synthetic images 
of the breadboard and 2500 images of tiny buttons installed on the breadboard. 
It is clear that the mAP for the second experiment is considerably higher than 
the first experiment, which is around 0% for almost all different IoUs. In the 
third experiment, we utilized the same training and testing data as in the second 
experiment. However, during the inference phase, we adopted a different approach. 
Instead of resizing the entire frame, we first detected the breadboard and then 
cropped it based on the context (specifically, the Breadboard). The resulting cropped 
frame was then forwarded to the YOLOv4 object detection pipeline to detect the 
buttons as small objects. Through the third experiment, we demonstrated how 
employing a context-based cropping approach on the frames leads to a significant 
improvement in mAP (Table 1). More details can be found in [25] (Fig. 3). 

4 Ongoing Research 

In this section, we present the current research endeavors conducted at our research 
center in the field of object detection. We will highlight the ongoing projects
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and studies that are directly aligned with our focus on advancing object detection 
techniques. 

4.1 Hybrid Dataset 

Considering the advantages that synthetic data offer with respect to reduced human 
effort and time consumption, it has gained research interest. However, it can 
encounter challenges related to optimizing various aspects of the scene, including 
CAD models, lighting conditions, backgrounds, and object textures. In our recent 
research, we are specifically investigating the utilization of real data in combination 
with synthetic data to enhance the precision of object detection. By leveraging 
real data in this manner, we aim to optimize the object detection performance and 
facilitate the creation of datasets that meet our specific requirements. 

4.2 Continual Learning (CL) 

An additional challenge in this chapter is the need to update previously trained 
object detection models to accommodate new tasks, rather than retraining the model 
from scratch with both old and new data. This process of continual learning aims 
to address the issue of catastrophic forgetting, where the model’s performance on 
previous tasks significantly declines as it is trained on new tasks [29]. This presents 
an interesting avenue for further exploration within the field of study. 

Both domain incremental learning and task incremental learning [14] offer  
potential research approaches that can be applied to our specific environmental 
scenarios. These methods enable the model to adapt to new tasks while retaining 
knowledge from previous tasks. Investigating and leveraging different continual 
learning techniques can contribute to the development of a more flexible and 
efficient object detection approach. 

Figure 4 depicts the utilization of continual learning to optimize the object 
detection process using the synthetic data in our scenarios. The procedure begins by 
importing CAD models of new objects and subsequently generating synthetic image 
datasets. These datasets are then passed to the next phase, where the previously 
trained YOLOv7 model is retrained using the replay approach of continual object 
detection. Finally, in the evaluation phase, frames captured from HoloLens are 
processed by the new object detection model, and the performance of this model 
is assessed. Thus it is an iterative process, starting from importing synthetic data 
to dataset generation, model retraining, and evaluation phase, aiming to expand the 
range of OD classes by updating the previously trained model.



330 H. Tavakoli et al.

Fig. 4 The pipeline demonstrates the sequential process of generating synthetic data, conducting 
training and testing using the HoloLens2 World Camera, with the aim of establishing a continual 
learning pipeline for model updates 

5 Conclusion 

This chapter provides an exploration of object detection in industrial environments, 
specifically focusing on various scenarios involving human assistance systems, and 
safety requirements for human–robot collaboration. Additionally, we examine the 
application of object detection in conjunction with augmented reality devices, which 
offer intuitive communication interfaces for workers in these environments. 

Moreover, we emphasize the substantial advantages gained from the incorpo-
ration of synthetic data in expediting the laborious data generation process and 
enhancing object detection outcomes. Through the utilization of synthetic data, we 
achieve improved efficiency and precision in object detection results. Additionally, 
we present our recent research focusing on the detection of small objects within 
industrial environments, which poses a significant challenge. We demonstrate that 
our approach significantly enhances the detection of small objects in manual 
assembly scenarios, resulting in notable improvements in performance. 

Ultimately, this chapter not only sheds light on some solutions to object detection 
barriers in industrial settings but also paves the way for further exploration in 
related fields. This includes the development of sustainable practices within our 
scenarios and the establishment of a more generalized process that encompasses 
data generation and the preparation of object detection models. 
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