
Chapter 8 
Theoretical Model of Dense Plasmas 

Abstract In the dawn of quantum mechanics, scientists had challenged to formulate 
the equation of many-electron system, such as atom and solid matter, just after the 
success of Schrodinger equation to explain a hydrogen atom. It is found, however, 
that a system of multi-electron requires the self-consistent treatment of exchange 
interaction stemming from Pauli exclusive principle. 

In 1930s, Hartree and Fock has derived the equation with use of Slater determi-
nant. It is called Hartree-Fock (HF) equation. This is the equation for many-electron 
system and if we can solve it, almost exact solution is obtained. However, it was 
difficult to solve it analytically and numerically. Scientists proposed a variety of 
approximate theoretical models to solve such many-electron system. 

Slater has proposed screened-hydrogenic model (SHM) in 1930. Thomas and 
Fermi have proposed a statistical model, now called Thomas-Fermi (TF) model. 
These two models have been widely used, modified, extended, and applied to many 
purposes even now. Their physical image is very simple and useful as comprehen-
sive understanding of the physics. The examples of applications to the equation of 
state (EOS) for shock compression (shock Hugoniot) are explained here. Such 
models can be used to single atom (ion) or statistically averaged ion, so-called 
average ion model (AIM). 

Even with the atomic data are supplied, the ionization potential depression (IPD) 
is essential to solve Saha equation of ionization population, especially at high-
density plasma. Thanks to a rapid progress of computer capability, even HF equation 
can be solved numerically in some cases. It is very hard to solve, for example, the 
band structure of condensed matters. Kohn-Sham proposed density-functional the-
ory (DFT) in 1960s. DFT solves one-electron Schrodinger equation for all electrons 
in the self-consistent potential. It is proved that the self-consistent potential is 
formulated as a function of only the density profile. 
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8.1 Introduction 

We have studied that the ablation pressure in the rage of 1–100 Mbar can be 
generated in solid matters, when an intense laser irradiates them. As we will see 
below, the solid matters are easily compressed and ionization, and the Coulomb 
interaction energy becomes comparable to the thermal energy of charged particles. If 
a matter is compressed by keeping low temperature, Fermi degeneracy of free 
electrons becomes dominant in its pressure. In modern physics of laser produced 
plasma to be generated from solids, the physics of condensed matters should be 
studied inter-disciplinary. How to extend the theory and computational methods in 
the condensed matter physics to the case with finite temperature becomes a chal-
lenging subject. 

Let us briefly summarized the matter state from solid in room temperature to 
extremely high-density state. In laser plasmas, special wards, warm-dense-matter 
(WDM) and high-energy-density plasma (HEDP) are widely used to show such 
high-pressure matter states. It is noted that such states are also called as non-ideal 
plasma. The physics of plasma at high-density has been studied for a long time in 
astrophysics relating to the plasma state inside stars and interior of planets, especially 
giant planets such as Jupiter. Roughly speaking, it is better to relate WDM to the 
giant planets and HEDP to the star interior. So, this chapter is strongly related to the 
evolution of objects in the space and astrophysics. It is noted that HEDP has 
relatively long history, while WDM became popular in the last two decades. 

Physical properties under high-pressure have been also studied as subject of the 
condensed matter physics from the beginning of quantum mechanism. Most popular 
topic is insulator-metal-transition (IMT) of hydrogen. The IMT was predicted 
theoretically by Wigner and Huntington in 1935 [1]. Hydrogen is the simplest atom 
and there have been a lot of theory and computation on IMT. Recently, thanks to the 
progress of high-pressure technology, it has become a hot topic to demonstrate IMT 
experimentally. In what follows, the readers must be careful about the definition of 
IMT, because the high-pressure physics (HPP) community tries to demonstrate 
IMT by keeping the temperature low as the room temperature. Using laser-driven 
shock waves, the pressure increase also accompanies, in general, the increase of 
temperature. Any matter can be conductor at high-pressure with high-temperature, 
because of thermal excitation to produce many free electrons, resulting high-
conductivity. This is called plasma phase transition. 

Since the quantum physics of many-body problem becomes essential to study 
such high-density plasmas, we need to have basic knowledge of quantum mechanics 
of many-electron system. In Chap. 5, single atom or ion with multi-electrons has 
been studied quantum mechanically. In the present chapter, not only modeling single 
ion but also many-ion system coupled with quantum mechanical wave functions of 
many electrons are required to be studied. 

In Fig. 8.1, progress of supercomputer is shown. It is surprising to know that its 
computational speed has increased 10,000,000 times in the last 25 years. In the early time 
to study the many-body problem, it was hard to do it even with such supercomputer,
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while now it is already the time to challenge a big computing of many-body problems. 
Before such supercomputing, however, it is important to obtain the sense of physics with 
simpler models. In the present Chapter, mainly single ion models developed in early 
stage of quantummechanics are explained. Then, it is explained how to solve “ab-initio” 
models of the real high-density plasma system. 

8.2 Variety of Physical States of Dense Plasmas 355

Fig. 8.1 Progress of supercomputer performance (Flops). The orange dots are the performance of 
the world-top computer the green dots are the sum of top 500 computers. Even the computer of 
No. 500 shows the performance of blue dots. Over the 25 years from 1995, the seven order of 
advancement has been achieved. The advancement of the computational speed also has changed the 
methods to study the plasmas. [From data in www.top500/] 

8.2 Variety of Physical States of Dense Plasmas 

8.2.1 Molecule and Solid 

In the book by Kittel [2], the table of bulk modulus is given for many solid states. 
The bulk modulus B is the pressure defined at solid density and room temperature as 

B= ρ 
∂P 
∂ρ

ð8:1Þ

https://www.top500/
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The bulk modulus indicates how high pressure is necessary to compress the solid 
material to increase its density two times. For example, H (0.002), C (4.43), Al 
(0.722), Fe (1.68), and Au (1.73), where the numbers are the bulk modulus in 
Mbar unit. 

With the bulk modulus data of the solid matters, intense laser can be used to 
perform experiments to study the physical properties of matters at densities higher 
than solids. In addition to the laser ablation pressure, such high-pressure physics has 
been also promoted with use of static pressure to generated in a tiny area by 
diamond anvil cell (DAC), which is shown later in this chapter. This is comple-
mentary to the laser ablation pressure method because DAC can increase the 
pressure to about one Mbar keeping the temperature as low as enough to avoid 
temperature effect on the physical property of matter. It is noted that a single shock 
compression by the ablation pressure increases both of density and temperature. To 
study almost adiabatic compression, it is required to use a shaped pulse with 
continuous increase of the laser intensity as discussed in Chap. 4, which is the 
same technology required for the high-gain target implosion for laser implosion. 

Let us consider a molecular bonding solid the simplest of which is the hydrogen 
solid at low temperature. A hydrogen molecule is formed by covalent bonding and 
the bonding force is due to the exchange interaction energy same as the para-
helium electron configuration shown in Chap. 5. At room temperature, the hydrogen 
molecule is in gas state. The potential energy of the center of mass of two hydrogen 
atoms is given in Fig. 8.2 as a function of the distance of two hydrogen nuclei. In 
Fig. 8.2, two potential profiles are plotted for UA with the case of two electrons with 
the same spins and for US of the case with opposite spins. US and UA represent 
symmetric and anti-symmetric bonding, respectively. Two electron spins are the 
same as para-helium and ortho-helium configurations as studied in Chap. 5.

Fig. 8.2 A famous 
hydrogen molecule eigen-
energy as the function of the 
molecular nuclei distance 
(r). Depending upon the 
combination of both spins, 
symmetric state Us with 
opposite spins becomes 
bound state, while anti-
symmetric case UA with the 
same spins is not bound 
state because of the Pauli 
exclusive principle

https://doi.org/10.1007/978-3-031-45473-8_4
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Exchange interaction is negative only for the case with the opposite spin pair, 
therefore, the molecule bonding is possible only for the opposite spin pair. Such 
covalent bonding force is strong and the dissociation energy is 4.52 eV. It suggests 
that high-temperature is demand to dissociate the molecule thermally.
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This potential energy U(r) at T = 0 is the total energy of the hydrogen molecule, 
and the force F(r) to compress of the system is given as 

F = -
∂U 
∂r

ð8:2Þ 

Note that the force vanishes at the equilibrium radius of the bottom of the potential as 
indicated at r = r0 (state 3) in Fig. 8.2, and it is attractive for the larger distance, the 
states 1 and 2, and repulsive at shorter distance state 4 in Fig. 8.2. This force can be 
converted to the pressure for the solid with many molecules. If the average volume of 
one molecule is give as V, U is nothing without the internal energy of the average 
molecule of the thermodynamic system. By use of the relation of thermodynamics, 
we obtain the pressure P and the force of the molecule surface in the forms 

dU = -PdV ⟹ P= 
∂U 
∂V 

⟹ 4πr2 P=F ð8:3Þ 

This pressure is called elastic pressure and cold pressure. 
The potential energy of the molecular bonding has been modeled with Lenard-

Jones potential. 

U rð Þ= 4ε 
σ 
r 

12
-

σ 
r 

6 
ð8:4Þ 

Then, the minimum energy is -ε at r = 21/6 σ. 

8.2.2 High-Pressure Cold Matters 

Let us call the high-pressure state of condensed matter at room temperature or less as 
high-pressure cold condense matter or simply high-pressure cold matter (HPCM) 
in this Chapter. In Fig. 8.3, a conceptual diagram of the change of states and physical 
phenomena are shown. Decreasing the temperature of hydrogen gas, hydrogen liquid 
and solid is formed at very low temperature 14 K. The binding between the 
molecules is not covalent bonding, but the dipole-diploe interaction schematically 
shown in Fig. 8.4. The electron cloud in each molecule shifts so that each molecule 
has dipole moment of charge. This bonding is week compared to the covalent 
bonding. Such force is called Van der Waals force and it is also modeled with 
Lenard-Jones potential force in (8.4) with appropriate parameters ε and σ.
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Fig. 8.3 Schematic diagram of temperature and density showing the phase transitions in the 
different regions produced by intense laser irradiation on solid materials. The ablating plasma 
with green color finally becomes ideal plasma expanding to the vacuum. The shock compression of 
solid change the state of matter to strongly coupled plasma as shown in red. In HPP, metallic 
hydrogen has been studied by applying high-pressure without increase of temperature. This study is 
shown with blue lines and the point is compression without heating 

Fig. 8.4 Schematics of solid or liquid hydrogen bonding. The electron cloud in hydrogen molecule 
shifts from the center symmetry induces the dipole field to attract the other molecules via dipole 
interaction. In low temperature limit, they can stay as solid via this van der Waals force 

8.2.3 Pressure Ionization 

Using the DAC, the matter state changes as the light bule marks in Fig. 8.3, where 
the temperature is kept low enough. Initially, the solid hydrogen is insulator because 
all electrons are bounded in their parent molecules. In the word of the band theory of 
the solid-state physics, the electrons are all in the valence band and cannot move 
nonlocally. The insulator has a large band gap, and the Fermi energy is in the 
forbidden region as shown in Fig. 8.5. With increase of the density of the solid 
hydrogen, so-call pressure ionization mechanism becomes important. The pressure 
ionization makes the ionization potential depressed, and the matter state alters to 
semiconductor and conductor as schematically shown in Fig. 8.5.
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Fig. 8.5 A picture showing the difference of three state of normal solid matters. In the band theory, 
the system has valence band and conduction band. Many materials in solid state are classified to 
three, metal, semiconductor, and insulator. Metal has free electrons in the conduction band. The 
conduction and valence bands are separated by a gup, while it is called the semiconductor if the 
band gap is smaller than 3.2 eV. For the case with more wide energy gap and no electrons in the 
conduction band, it is insulator 

Fig. 8.6 If any atom is isolated and no effects by free electrons and nearby atoms, the energy levels 
of all bound electrons are affected only by the Coulomb forces by the nucleus and the other bound 
electrons. In solid materials and dense plasmas, the free electrons running in the atom shields the 
Coulomb field also the potential of the surrounding ions decrease the ionization potential. This is 
called pressure ionization and ionization potential lowering 

Let us explain the mechanism of the pressure ionization for a simple case 
regarding one atom in high-density after the dissociation of molecular state. As 
shown on the left in Fig. 8.6, the isolated atom in neutral state has bound electrons in 
the grand state. The potential field can confine all bound electrons. However, with 
the increase of the density, the Coulomb field by nearby nuclei works to weaken the 
force by the central nucleus and the overlapping of the Coulomb field changes the 
free state energy lower than the isolated case. In addition, the free electron density at 
the atomic shells becomes high to shield the nuclear Coulomb potential.
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As the result, the energy levels of the upper state electrons shift, and it also be 
broadened by the nearby nuclei and free electron fields. Many-body problem should 
be solved for a system made of N nuclei with N×Z electrons. Of course, it is possible 
to extend Hartree-Fock method explained in Chap. 5.3 to many-atom system 
formally. However, it is almost impossible to solve such many-body problem staring 
from total Hamiltonian to obtain the total wave function of electrons for a given 
positioning of all nuclei. Some challenge for solving approximated wave functions 
in each five-atom system has been carried out, where so called discreate-variational 
Xα method is used to obtain total electron wave function as shown later. 

Several methods have been developed to find approximated electron quantum 
states. There are two broad classes of methods, wavefunction-based and density-
based and each of these classes are further subdivided into different approaches. 
These two methods are. 

1. Wavefunction-based methods: An explicit form for the wavefunction is written 
down and observables are calculated using this wavefunction. Examples are 
Hartree-Fock method and para-potential method as already shown in Chap. 5. 
More simplified para-potential method, screened-hydrogenic model (SHM) will 
be explained soon below. In laser produced plasmas, SHM has been widely used 
to make data base of thermodynamic quantities in wide range of density and 
temperature by including the pressure ionization effect. This idea was initially 
proposed by Slater in 1930. 

2. Density-based methods: The focus is shifted from the wavefunction to the 
electronic density. The wavefunction is not written explicitly. Examples are 
Thomas-Fermi approximation and density-functional theory (DFT). In laser 
produced dense plasma, computer simulation based on the density functional 
theory has been used by coupling with molecular dynamic simulation for ion 
motion. Such simulation is called Ab initio simulation. 

The high-pressure physics experiment with use of DAC can keep the temperature 
low enough to study the physics of condense matter at higher density than solid. The 
long-standing challenge is the demonstration of metallic hydrogen experimentally. 
Recent apparent progress on this topic is given later. In addition, finding of super-
conductivity in hydrogen under extremely high pressure is also reported. 

The insulator metal transition of hydrogen is also very important in planet 
science. It is expected that the inside of giant planets such as the Jupiter and Saturn 
are made of hydrogen in metallic state. Like the dynamo-effect inside our Earth, a 
strong magnetic field can be generated by the dynamo motion in the Jupiter. 
Magnetic field on the Earth stems from the convective motion of melted iron inside. 
Since the hydrogen metal may have higher conductivity than the melted iron, 
roughly speaking, stronger magnetic field may be expected for the Jupiter case. 
About 20 times stronger magnetic field has been observed near the surface of the 
Jupiter, and it is predicted with the high-conducting metal of hydrogen inside the 
Jupiter. So, the high-pressure physics is important to study the physics of interior of 
giant planets, many of which have been found as outer-solar planets recently.

https://doi.org/10.1007/978-3-031-45473-8_5
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8.2.4 Warm Dense Matter 

In Fig. 8.7, shown is the density and temperature diagram in logarithmic scale of the 
regions of warm dense matters (WDM) and high energy-density plasma (HED). 
Note that there is no common clear definition of both states of WDM and HEDP. In 
addition, it is also difficult to clearly define the deference of matter and plasma. 
Roughly speaking, the physics of high-energy density is relatively simpler than the 
physics of warm dense matter, because almost no idealistic theory is applicable to 
describe the physical property of the warm dense matter. Since the temperature is 
higher in HEDP compared to the WDM, HEDP is strongly related to the physics of 
the evolution of stars as shown in Fig. 8.7, where the evolutional paths of the Sun 
and a star with 60 times solar mass are plotted. In contrast, the WDM can be said to 
be the physics of the evolution of planets, especially giant planets as shown in 
Fig. 8.7, where the giant planet such as Jupiter and brown dwarf are plotted. The 
central core of laser fusion implosion is located above the center of the Sun. 

The physics of warm dense matter is a frontier between condensed matter and 
plasma physics. Here the density goes around the solid density and the temperature 
varies from 0.1 to 100 eV. In this regime, matter is mostly degenerate, strongly 
coupled, and non-ideal. WDM is an interdisciplinary research field bridging

Fig. 8.7 Density and temperature diagram in logarithmic scale of the region of HED (high-energy-
density) and WDM (warm dense matter), while this zoning is very ambiguous and no clear 
boundary in general. Reprinted with permission from Ref. [1]. Copyright by National Academies 
Press



high-pressure physics community and laser-plasma community, where the former 
has grown from the condense matter physics historically. From the theory point of 
view, one must deal with ab initio calculations such as quantum molecular 
dynamics (QMD) which work well at low temperatures (T < 1 eV) and density 
functional theory for electrons.
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Fig. 8.8 Any materials in the state of insulator at cold temperature can show the property of 
conductor by the increase of the high-energy tail of Fermi distribution of electrons. Such change to 
metal from insulator by heating is called plasma phase transition 

Different from T = 0 case, the system of many particles is not in the grand state 
quantum mechanically. Atoms are ionized not only by the pressure ionization, but 
also by the thermal ionization as shown in Fig. 8.8. Free electrons are not completely 
degenerated and thermal excitation produces the free electrons in conduction band. 
In such case with thermal excitation of the system, the electron quantum system is 
calculated by assuming the nuclei are fixed in time. This is called the Born-
Oppenheimer approximation. Another way of stating this approximation is that 
the time scale of the motion of electrons is much shorter than the nuclei and thus the 
response time of the electrons to any change in the positions of the nuclei is 
considered immediate, namely quasi-steady-state response of electrons can be 
assumed. The motion of all nuclei is treated as classical Coulomb interaction system 
given by the electron charge distribution. This simulation is QMD. 

8.2.5 High-Energy Density Plasma 

When matters are compressed to the direction of the red marks in Fig. 8.3, the 
electron degeneracy is important even if the thermal energy of electrons are a few or 
several times larger than the Fermi energy. The main fusion fuel of DT should be 
compressed under its temperature as low as possible for the high gain fusion energy 
production to be discussed in Vol. 3. Such partially degenerate high-density matter is



also a target of our research. More high-density characterizing the inside of compact 
objects in Universe, then, strongly coupled plasma (SCP) should be studied. In 
SCP, the ion-ion Coulomb charge interaction becomes important with relatively 
uniform electron density background. 
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While there is no definitive threshold of being in the high-energy density regime, 
perhaps a rough measure would be material at pressures of around one megabar, 
which is a quantity whose units are energy per unit volume ~1 Mbar (105 J/cm3 ). For 
example, material at a density of 0.01 g/cm3 and heated to 100 eV is at 1 Mbar. A 
temperature of 100 eV corresponds to about 107 J/g for hydrogen. 

Roughly speaking, most of the theoretical models and numerical methods used 
for describing WDM can be extended to HEDP. It can be said that HEDP is simpler 
than WDM from theoretical modeling point of view. Special case of HEDP is, for 
example, the matter at the center of white dwarfs. Electrons are almost completely 
degenerate and the ions are moving like inside the sea of electrons. Such case is 
modeled by one-component plasma (OCP) and the ion-ion Coulomb correlation is 
studied in the uniform electron density. 

8.2.6 Ion Sphere and Average Ion Models 

The concept of ion sphere model has been widely used to describe the atomic state 
and thermo-dynamic property of the WDM and HEDP. In this model, the ion sphere 
radius R is defined by a simple relation. 

4 
3 
πR3 ni = 1 ð8:5Þ 

Assume that this ion sphere shown in Fig. 8.9 is not a real ion, but this sphere 
represents the statistically averaged ion sphere. Therefore, it gives any physical 
properties of the statistical averaged ions. When the physical properties stemming 
from the statistical distribution around this averaged state, it is required to do 
additional study. For example, line broadening is obtained only when the statistical 
distribution of ion-ion distance fluctuation is given. It is noted that many physical 
properties such as equation of state is approximated with the ion sphere model as 
shown below. 

Such kind of modeling is called average-ion-model (AIM) in plasma. It is also 
called average-atom model (AAM). The combination of AIM and SHM have been 
intensively used to make data base for radiation hydrodynamic codes for laser-
produced plasmas. Assuming that the ion sphere is a micro-thermodynamic system 
of plasma, it is possible to obtain the thermodynamic property, pressure, and internal 
energy as functions of density and temperature. 

To provide an easy image of AIM in statistical physics, it is a good example to 
compared to the fluid modeling of the plasma. The plasma is defined with velocity 
distribution function and the best way to study the physics of plasma is to start with



Vlasov equation. However, most of plasma can be described with fluid approxima-
tion. The fluid approximation is a mathematical model to reduce the freedom of 
statistical system. So, the reader not familiar with such atomic physics can regard 
that AIM is a kind of fluid model in plasma kinetic theory. 
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Fig. 8.9 A cartoon of the 
ion sphere model and its 
radius. Simplest modeling 
of atoms in high density is to 
treat an average atom with 
radius R as isolated atomic 
system 

In the case of local thermodynamic equilibrium (LTE), it is possible to obtain the 
Helmholtz free energy F for given (V, T), where the volume V is regarded as the 
volume of the ion sphere defined in (8.5). 

ε=F þ TS ð8:6Þ 

S= -
∂F 
∂T

ð8:7Þ 

P= -
∂F 
∂V

ð8:8Þ 

It is in general possible to separate F into three components, 

F =Fc Vð Þ þ  Fe V ,Tð Þ þ  Fi V , Tð Þ ð8:9Þ 

This free energy F should be the same as F in (8.2) at T  = 0. Therefore, Fc(V ) is  
determined by the molecular bonding and Coulomb repulsion or any bonding at 
T = 0 as in Fig. 8.2. 

Once the free electrons appear as metallic state shown in Fig. 8.5 due to the 
pressure ionization by compression, the free electrons contribute to the free energy to 
give Fermi pressure. As we discuss later, Coulomb interaction energy becomes 
important in some case of WDM, the Coulomb interaction energy with the nearby 
ions should also be included in Fc(V ). How to model Fe(V,T ) and Fi(V, T ) are the 
main subject of the equation of states in WDM as will be seen later.
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Historically, the quantum state of high-density matters has been studied by two 
different approaches. In the band theory, appearance of forbidden zone of a free 
electron in solid is clear, for example, by solving one-dimensional Schrodinger 
equation of an electron in a periodic potential. One example of simple theory is 
Kronig-Penny model. The other approach is mostly based on the ion sphere model. 
As already mentioned, there are two ways to study; namely, one is electron density-
based theoretical method and the other is wave-function based method. They have 
been developed to obtain the free energy by electrons Fc and Fe in (8.9) 

In the present Chapter, Thomas-Fermi theory is explained at first as the simplest 
theory for the density-based method. How sophisticated theory can be commonly 
used to study WDM and HEDP depends on the progress of experimental facility and 
diagnostics as well as computer technology. Precision diagnostics and well-defined 
laser experiments have recently demanded so-called ab-initio simulation as precise 
as possible to solve many-body system realized in experiments. Ab initio calcula-
tions are computations of electronic orbitals with no other hypotheses than Coulomb 
interactions between all electrons and nuclei with electrons obeying Fermi statistics 
with the Pauli exclusion principle. 

Computer simulation of molecular dynamics (MD) is used for dense plasma 
instead of particle-in-cell (PIC) simulation in relatively low density high-
temperature plasma. MD is originally used to solve the ion dynamics with effective 
potential such as Lenard-Jones potential in (8.3). Most popular example is dynamic 
simulation of protein folding in water molecule heat bath. On the other hand, the 
electron distribution in condense matters has been studied with density functional 
theory (DFT) for given positioning of all nuclei. The rapid progress of computing 
shown in Fig. 8.1 has made it possible to combine MD and DFT to know time 
evolution of WDM, where MD is replaced with ab-initio QMD. 

The second method, wavefunction-based model, can give us more detail infor-
mation of the electron quantum state. However, as already mentioned in Chap. 5, 
Hartree-Fock method can be formulated, while it is almost impossible to solve it in 
many-body problem. Wave-function based method results, for example, the property 
due to the quantum shell structure of bond electrons. In Fig. 8.10, the ionization 
energy needed to reach charge state Z from charge state Z-1 of a copper ion is 
plotted, where the color-coding indicates the valence electron shell of state Z-1. 
K, L, M, and N shells represent the quantum sates with the principal quantum 
number n = 1, 2, 3, and 4, respectively. The jump of the values in Fig. 8.10 is due to 
the shell structure of the wave functions. The Thomas-Fermi model cannot repro-
duce such shell-dependent property. 

In the ion-sphere model, if we can have self-consistent spherical potential 
V(r) in the ion sphere (r < R), it is easy to solve one-electron Schrodinger equation.

-
ħ2 

2m
∇2 þ V  rð  Þ  ψ i =Eiψ i ð8:10Þ

https://doi.org/10.1007/978-3-031-45473-8_5


366 8 Theoretical Model of Dense Plasmas

Fig. 8.10 The ionization 
energy needed to change the 
charge state Z from the 
charge state Z-1 of a copper 
atom. The color-coding 
indicates the valence 
electron shell of state 
Z-1. K, L, M, and N shells 
represent the quantum sates 
with the principal quantum 
number n = 1, 2, 3, and 
4, respectively 

where ψ i and Ei are the electron wave function and eigen-energy for a quantum state 
“i”, respectively. It is easy to solve (8.10) numerically for a given consistent potential 
V(r), while to find the V(r) is a tuff job. Note that V(r) should consist of 

V rð Þ=V ie þ Vee þ Vex ð8:11Þ 

where Vie is Coulomb interaction energy with nuclear charge, Vee is the electron-
electron Coulomb interaction energy, and Vex is the exchange interaction energy. 
The Hartree-Fock method is solved iteratively to obtain the total wave function in 
Slater matrix and all interaction energies are included consistently. However, new 
theoretical model is required for each of three potentials in (8.11) once Schrodinger 
equation is reduced to one electron equation. 

In the present Chapter, we look back the para-potential method to give a consis-
tent potential screened by many electrons in an atom. Based on the fundamental 
property of hydrogen atom, the method to fit the binding energy of each electron in 
multi-electron ion-sphere is explained. This is called screened hydrogen model 
(SHM) and has been widely used to obtain the thermodynamic property in laser-
plasma. 

It is noted that AIM gives only the physical quantity averaged over many 
statistical configurations is obtained. However, it is shown that how we can obtain 
the statistical spread of each configuration, such as charge distribution and energy 
shift of line emission due to the difference of the number of electrons in the same 
shell, is obtained by use of SHM in laser plasma as to be explained. 

8.2.7 Band and Band Gap 

It is better to see why bands and band gaps appear in dense-matters as quantum 
effect. The electrons in an atom occupy atomic orbitals, each with its own individual 
energy level. When two or more atoms combine to form a molecule, their atomic



orbitals overlap. In Fig. 8.11, the energy states of electrons are shown as the s-state 
and p-state when the interatomic distance is large, that is, the atom is an isolated 
atom. In the case of hydrogen molecule in Fig. 8.2, it is shown that the s-state 
becomes to have two energy levels because of the Pauli’s exclusion principle as US 

and UA. In a molecule, Pauli’s exclusion principle states that no two electrons can 
have the same quantum number. Therefore, when two identical atoms combine to 
form a diatomic molecule, each atomic orbital splits into two molecular orbitals with 
different energies. 
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This means once the overlapping of two electron wave functions takes place at a 
certain interatomic distance in Fig. 8.11, the separation of the energy level of the 
s-state appears as well as the p-state. The electrons in the previous atomic orbitals 
can occupy the new orbital structure without having the same energy. Similarly, 
when N identical atoms are assembled to form solid, such as crystal lattice, the 
electron orbitals overlap over many nuclei. Due to the Pauli exclusion principle, the 
wave functions of two electrons cannot overlap with the same quantum number, so 
the atomic orbitals are split into N individual orbitals, each with different energy. 
This is indicated on the left in Fig. 8.11, where the band in high-density with the 
interatomic distance “a” is made of many of different energy levels. 

Because the number of atoms in a macroscopic solid is so large (N~1022 ), the 
number of orbitals is also very large, and therefore the energies are very closely 
spaced. The energy of the adjacent levels is on the order of 10-22 eV. Since the 
energies of adjacent levels are very close, they can be considered as a continuum, or 
energy band. The formation of such bands is mostly a feature of the outermost 
electrons (valence electrons) of the atom, which are involved in chemical bonding

Fig. 8.11 On the right, the energy level structure change by the decrease of the interatomic distance 
is plotted. For the case where the atomic distance is large, the atom is isolated and fine discrete 
energy levels are defined. As the distance decreases, the many electrons from the surrounding atoms 
makes different eigen energy state like the case of hydrogen molecule in Fig. 8.2. At the solid 
density (radius a) or higher density, the band structure is formed. Since the band structure is formed 
by many electrons in the dense state, there are roughly the number of eigen states by all electrons 
1022 cm-3 in unit volume in solid as shown at the left



and electrical conduction. Since the inner electron orbitals do not overlap as much, 
their bands are very narrow.

368 8 Theoretical Model of Dense Plasmas

The band gap is the energy range that remains uncovered by any of the energy 
bands due to their finite width. The width of a band depends on the degree of overlap 
of the atomic orbitals from which the band originates. The width of two adjacent 
bands is insufficient to cover the full energy range. For example, the bands associ-
ated with core orbitals (such as 1s electrons) are very narrow due to the small overlap 
of adjacent atoms. As a result, the band gap between the core bands tends to be large. 
In the higher bands, the bands become progressively wider at higher energies due to 
the overlap of relatively large orbitals, and the band gap disappears at higher 
energies. 

8.3 Screened Hydrogen Models 

The wave quantum mechanics is found to give the precise quantum state of hydrogen 
atom thanks to the discovery of Schrodinger equation in 1926. Then, many peoples 
tried to extend one-electron Schrodinger equation to atoms with multi-electrons, 
including partially ionized atoms. In 1927, the next year, Hartree introduced 
so-called Hartree method to solve N-electron wave function in an atom. In 1930, 
Slater and Fock independently pointed out Hartree method did not satisfy the 
principle of anti-symmetry of the wave function required by the Pauli exclusive 
principle for Fermion electrons. In 1935, Hartree reformulated the method more 
suitable. Now, Hartree-Fock method with the wave function of the determinant of 
Slater matrix is widely used as very precise basic equation for multi-electron system. 

Even with Hartree-Fock equation proposed in 1930s, it is almost impossible to 
solve it analytically and very time-consuming calculation was demanded to apply 
even atoms with a small number of electrons. Historically, the birth and rapid 
progress of computational capability has been required to solve Hartree-Fock equa-
tion. Therefore, a variety of models have been proposed in the early time by 
neglecting some physics elements due to multi-electron effect. By focusing on the 
Coulomb shielding effect in the multi-electrons bounded in an atom or ion, Slater 
proposed a method to obtain the eigen energy of multi-electron atom. This is the 
basic idea of the Screened Hydrogen Model (SHM) described in this section. Note 
that this model is still used widely after the improvement of the screening constants. 

The historical development of the SHM is reviewed briefly by Smithwick in 
[3]. Let me borrow his sentence. The SHM is an alternative and simple approach that 
uses the one-electron wavefunctions of the hydrogen atom for each electron of a 
multi-electron atom by substituting an effective nuclear charge Zi for the value of 
Z. Agreement with experimental energies can be obtained by varying Zi with 
screening parameters. The SHM provides a starting point for semi-empirical calcu-
lations involving complex atomic or molecular systems.
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The SHM was first used in 1930 by Slater who approximated the energies of 
electrons in 1s and 2s/2p orbitals as Ei = Zið Þ2 1 

2n2 in atomic units. Z1s (for ni = 1) 
equals Z – 0.30 when two 1s electrons were present and both Z2s and Z2p (with 
ni = 2) equals Z – 1.70-0.35 (N2S + N2P – 1) when two 1s electrons were present. 
The Slater 1 s wave function was the same as the hydrogen 1 s wave function with 
Z1S substituted for Z. The Slater 2s and 2p wave functions both had the same value 
of Z2S = Z2P substituted for Z and the same radial part of the hydrogen-like 2p wave 
function but with 2s or 2p angular parts. Numerous molecular orbital calculations 
were based on Slater wave functions. Layzer and Kregar each calculated screening 
parameters and electron energies with series functions in powers of Z. 

The calculation of the properties of dense plasmas at high temperatures is an 
important application of the SHM that involves the determination of the energies of 
atoms and ions across the periodic table. The Dirac equation is an alternative form of 
the SHM that includes relativistic corrections for each electron. A closer agreement 
between experimental and calculated electron energies is expected to lead to 
improved predictions of plasma properties. 

It is in general hard to solve ab-initio model such as Hartree-Fock equation in 
high-density plasma because it is not clear how to model the pressure ionization in 
Hartree-Fock method. If we have appropriate radial potential V(r) for modeling the 
ion sphere in any density and we can obtain reasonable wave functions to calculate 
not only the thermodynamic functions, the free energy F(ρ,T), but also oscillator 
strengths of line radiations etc. Then, it is convenient for installing equation of state 
and opacity in simulation codes. Note that equation of state can be modeled with 
statistically averaged atomic state, while the opacity, especially line radiation opac-
ity, calculation needs the variance distribution from the average atom state. 

Here, only the average ion model (AIM) is discussed to obtain the equation of 
state such as pressure and internal energy in dense plasma. They are used in 
modeling in hydrodynamic simulation for laser produced plasma. This AIM is a 
robust model to obtain the eigen energy of any ionization state of any atom, based on 
the quantum theory of hydrogen atom. The energy is given by taking account of the 
Coulomb charge screening in multi-electron bound atom or ion. 

8.3.1 Screened Hydrogen Model (SHM) 

By using SHM improved by More [4], the energy of an electron in an eigen state n 
(the principal quantum number) is given to be 

En = - IH 
Zn 

n 

2 

þ E0 
n ð8:12Þ 

Where IH is the Rydberg constant (13.6 eV). In (8.12), Zn is the effective nuclear 
charge seen by the electron in the state n and E0 

n is the screening effect by the
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electrons outside the orbit of the electron in the state n. In (8.12), the Zn and E0 
n are 

given to be 

Zn = Z-
m< n 

σn,mPm -
1 
2 
σn,nPn ð8:13Þ 

E0 
n = 

1 
2 
e2 

rn 
σn,nPn þ 

m> n 

e2 

rm 
σm,nPm ð8:14Þ 

where σnm is the screening constants proposed by More so that the ionization 
potentials of a variety of atoms are well reproduced compared to those obtained by 
solving Hartree-Fock Slater equation [5]. In (8.13) and (8.14), Z is the ion nuclear 
charge and Pn (Pm) is the number of electrons in the eigen-state n (m). In (8.14), 
rn (rm) is the effective orbit radius of the electron with the quantum number n (m) and 
defined as 

rn = aB 
n2 

Zn 
ð8:15Þ 

where aB is the Bohr radius. 
The well-known relations of the hydrogen-like ions are explicitly used to obtain 

the energy En. The relation of SHM has an advantage for the consistency condition; 

∂ 
∂Pn 

Eion =En ð8:16Þ 

where Eion is the total energy of the bound electrons in the ion and is defined as 

Eion = -
n 

IH 
Zn 

n 

2 

ð8:17Þ 

Since the electron-electron interaction energy should not be doubly counted, the 
following relation is required in the model. 

Eion ≠ 
n 

En ð8:18Þ 

It is convenient to use another expression of E0 
n and Zn in (8.13) and (8.14). 

Zn = Z-
m≤ n 

σAM 
nm Pm ð8:19Þ 

E0 
n = 

m> n 

σAM 
nm Pm ð8:20Þ
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Table 8.1 Screening constants σAM 
nm defined in (8.21) as a table of matrix [n, m]. The number 1–10 

is this table shows “n”. This means the screening effect to an electron in the n-sate by the m-state 
electron is large for n > m, while it is relatively small for n < m as easily understood from the spread 
of wave functions 

n= 

0.3125 0.9380 0.9840 0.9954 0.9970 0.9970 0.9990 0.9990 0.9999 0.9999 

0.2345 0.6038 0.9040 0.9722 0.9979 0.9880 0.9900 0.9990 0.9999 0.9999 

0.1093 0.4018 0.6800 0.9155 0.9796 0.9820 0.9860 0.9900 0.9920 0.9999 

0.0622 0.2430 0.5150 0.7100 0.9200 0.9600 0.9750 0.9830 0.9860 0.9900 

0.0399 0.1597 0.3527 0.5888 0.7320 0.8300 0.9000 0.9500 0.9700 0.9800 

0.0277 0.1098 0.2455 0.4267 0.5764 0.7248 0.8300 0.9000 0.9500 0.9700 

0.0204 0.0808 0.1811 0.3184 0.4592 0.6098 0.7374 0.8300 0.9000 0.9500 

0.0156 0.0624 0.1392 0.2457 0.3711 0.5062 0.6355 0.7441 0.8300 0.9000 

0.0123 0.0493 0.1102 0.1948 0.2994 0.4222 0.5444 0.6558 0.7553 0.8300 

0.0100 0.0400 0.0900 0.1584 0.2450 0.3492 0.4655 0.5760 0.6723 0.7612 

where σAM 
nm is the screening constant introduced in [6]. There is a simple relation with 

Kronecker δ. 

σAM 
mn = σmn 1-

1 
2 
δmn ð8:21Þ 

The matrix table of σAM 
mn is given in Table 8.1 [6]. 

It is important to know that the above formulation to obtain the well-
approximated energy of bound electrons can be used to any given configuration 
with integer n. Then, we can use the SHM for detailed configuration accounting 
(DCA) for all possible configurations. If we can model the transition cross sections 
of electron collision and photon processes as described in Chap. 5, even the photo-
ionizing non-LTE plasma atomic process can be studied reasonably by solving the 
rate equations of all possible detail configurations within SHM as shown, for 
example, in [7]. 

8.3.2 Average Ion of SHM 

In the case of the average atom model, the above relations to SHM are extended by 
assuming that the number of electrons in the n-shell is not the real number but the 
statistically averaged non-integer number. Of course, the relation Pn/gn ≤ 1 should 
be satisfied, where gn is the number of states of the eigen state n. 

Assume the local thermodynamic equilibrium (LTE) condition. The electrons 
in an averaged ion are separated to the bound electrons and free electrons. The 
energy distribution of the bound electrons is assumed to be governed by Fermi-Dirac 
distribution.

https://doi.org/10.1007/978-3-031-45473-8_5
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Pn = gn 1þ exp En þ ΔU- μ 
Te

- 1 

ð8:22Þ 

where μ is the chemical potential and ΔU is the energy shift due to the continuum 
lowering as schematically shown in Fig. 8.6. To derive the continuum lowering has 
been performed relating to the ion state inside stars in astrophysics. Recently, it has 
become possible to clarify the continuum lowering experimentally to verify such 
theories. Here, we adopt the continuum lowering expression in high-density limit of 
Steward-Pyatt model [8]. 

ΔUSP ≈ 
3 
2 

Z*e2 

4πε0R0 
ð8:23Þ 

Note that More details are given in the next section. 
We also assume that the free electrons are also in LTE, therefore, the number of 

free electrons per an ion is given to be 

Z* = 
1 

2π2ni 

2mTe 

ħ2 

3=2 

I1=2 μ=Teð Þ ð8:24Þ 

I1=2 xð Þ= 
1 

0 

y1=2 

1 exp x- y 
dy ð8:25Þ 

The chemical potential μ is determined so that the charge neutrality condition is 
satisfied. 

Z = Z* þ 
n 
Pn ð8:26Þ 

Assuming a certain value of the maximum of n (nmax) and using (8.12) and (8.26), 
we can obtain the statistically averaged population Pn for given density and 
temperature. 

It is not trivial to model an appropriate value of nmax. The maximum value is not 
given as a discreate value because we are dealing with statistically averaged atomic 
condition and some physical model of pressure ionization sis required for modeling 
of this problem. A model of the pressure ionization to SHM has been studied in [9], 
where it is modeled by decreasing the number of states in the upper bound levels. 

gn = 
2n2 

1þ a rn R0 

b ð8:27Þ 

The fitting constants a and b have been chosen as a = 3 and b = 4 to correspond to 
Thomas-Fermi result [10]. In (8.23), the pressure ionization is determined by the



electron orbit radius divided by the ion spere radius. It is intuitively reasonable that 
the bound state disappears abruptly for the electron orbit overlaps the orbits of 
nearby bound electrons. 
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Fig. 8.12 (a) The charge state of aluminum as a function of temperature and density calculated by 
SHM for AIM. In high-temperature and low density, the ionization is due to thermal effect and shell 
structure is clearly seen. In the low temperature and high density, the pressure ionization increases 
the number of free electrons [6]. (b) The ionization potential of an isolated aluminum atom 
calculated with SHM (black dots). For comparison, the same data are also shown with precise 
method, Hartree-Fock calculation (triangles). Reprinted with permission from Ref. [6]. Copyright 
1998 by Oxford University Press 

In Fig. 8.12a, the charge Z* as function of density and temperature is plotted for 
the case of aluminum (Z = 13) at high density plasma state [6, 9]. The shell structure 
is obtained for thermal ionization and pressure ionization is clear with increase of 
density. Note that the change of Pn, - En, and Zn due to the temperature increase at 
density 0.1 g/cm3 in Fig. 8.12a is shown in [10] as well as the case of gold, where 
nmax= 5 and 10 are assumed for aluminum and gold, respectively. 

In Fig. 8.12b, the ionization potential energy is also plotted without the pressure 
ionization effect, namely for an isolated aluminum atom. Energy jump due to shell 
structure of K-shell and L-shell is well reproduced by SHM (black dots) same as the 
result of Hartree-Fock calculation (triangles) [10]. 

8.3.3 Screened Hydrogen Model with (n, ℓ) 

The SHM has been extended to include angular momentum dependence in AIM. It is 
well-known that the degeneracy of the angular momentum quantum number ℓ at 
each principal quantum state n is accidental in case of hydrogen or hydrogen-like 
atom, where the potential is exactly proportional to 1/r. In the case of multi-electron



ð

bound atom, binding energy of each ℓ -state in the same n-shell has different values 
and no degeneracy appears. So, depending on how precise atomic model is required, 
inclusion of n and ℓ in SHM is natural. 
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A self-consistent model based on a nonrelativistic screened-hydrogenic model 
(SHM) with ℓ-splitting has been developed to calculate the equation of state (EOS) 
of matter in local thermodynamic equilibrium [11]. This model takes account of 
the quantum subshell effect to go beyond the simple semiclassical and statistical 
Thomas-Fermi approach to obtain the electronic properties. The whole model is fast, 
robust, and reasonably accurate over a wide range of temperatures and densities. 
New screening constants are given in [11, 12]. In this case, the total energy of bound 
electrons is given in the same form as (8.17) 

Eion = - IH 
k 

Zk 

nk 

2 

ð8:28Þ 

where k = {n, ℓ} and the energy sprit by ℓ is included in Zk in the form same as 
(8.13). 

Zk = Z-
j 

σj,k 1-
δjk 
Dk 

Pj ð8:29Þ 

where j also represents the configuration j = {n, ℓ} and the energy split by ℓ comes 
from the ℓ dependence of the set of the screening constant (σj, k) and the integer 
degeneracy of subshell k as follows. 

D0 
k = 2 2ℓk þ 1ð Þ 8:30Þ 

The screening constant (σj, k) are calculated by fitting over a large data basis 
containing nonrelativistic ionization potentials and excitation energies calculated 
using the Superstructure code and the multi-configuration Dirac–Fock code 
[12]. Note that additional assumption is also adopted in [11]. 

In [11], the fractional occupation number (Pk) is not given by Fermi-Dirac 
distribution, but it is calculated so that the electric Helmholtz free energy per average 
ion of the plasma (Fe) becomes minimum at fixed density and electron temperature. 

Fe =Fbound þ Ffree þ Fion- sphere ð8:31Þ 

In (8.31), Fbound is free energy of the average ion subsystem in the bound state given 
by SHM, Ffree is the free energy of homogeneous free electron gas, and Fion - sphere 

is the contribution by the continuum lowering. 
The free energy of the bound electrons is given with Eion in (8.28)  as
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Fbound =Eion - TSbound ð8:32Þ 

According to Boltzmann law on the entropy, Sbound is the sum of all bound state as 

Sbound = - kB 
k 

Pkln 
Pk 

Dk 
þ Dk -Pkð Þ ln Dk -Pk 

Dk 
ð8:33Þ 

where the decrease of the number of states by pressure ionization effect given in 
(8.23) is also modeled and Dk is reduced from D0 

k in (8.30). 
It is too much to repeat the description in [11] and let us see the resultant shock 

Hugoniot relation with EOS derived by this SHM. The density jump of a single 
shock wave is plotted in Fig. 8.13 and compared to the present SHM, QEOS, and 
experimental data [11]. The QEOS is an EOS model widely used in laser plasma 
study [13] and the electron EOS is based on Thomas-Fermi model described in the 
next section. The QEOS is given by separating the total free energy as in (8.9) and 
the cold and ion components are given with so-called Cowan model. 

In Fig. 8.13, EOS consisting of SHM for electron component and Cowan model 
for ion is shown as SHM-QEOS and the cases of three different coefficients of the 
ionization potential lowering given in (8.20) with different constants are plotted
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Fig. 8.13 Shock Hugoniot data of aluminum from an experiment (*) and the present SHM with 
different coefficients and the original QEOS data. Reprint from Ref. [11]. Copyright 2012, with 
permission from Elsevier



[11]. It is clear that all provides almost the same Hugoniot curve and the scattered 
experimental data are well explained. Just a qualitative difference is that QEOS does 
not give the shell effect of electron orbits, while the SHM predicts the effect.
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Fig. 8.14 The maximum compression rate as a function of different atomic elements (nuclear 
charge). As seen in Fig. 8.13, all solids have the maximum compression rate characterized by the 
atomic shell structure. The present SHM results are compared to other theoretical data. Reprint from 
Ref. [11]. Copyright 2012, with permission from Elsevier 

The effect of shell in atom is emphasized or clearly observed in Fig. 8.14, where 
the maximum compression ratio is plotted for all atomic number Z [11]. All curves 
are theoretical prediction and the simple current SHM can reproduce the prediction 
with more complicated calculation by Johnson and Pain. 

Let us consider that physics giving the oscillating structure in Figs. 8.13 and 8.14. 
In the case where the ionization happens in the shock surface region, a part of shock 
compression energy is used for ionization. This is regarded that the freedom of the 
thermodynamic system increased. As shown in Chap. 3, the density ration of strong 
shock wave is a function of the freedom of the gas, and the increase of the number of 
freedom N results the increase of compression ratio. The increase of the density ratio 
more than four (=2.712 × 4= 10.8 g/cm3 ) in Fig. 8.14 is due to this ionization effect. 
In the limit of the strong shock wave, the ratio reduced to the value of four, because 
the ionization energy is relatively small compared to the shock pressure work. 

The periodic structure seen in Fig. 8.14 is also due to the ionization energy loss in 
the compression. The first peak is for Na (Z = 11), K (=19), and so on. They are 
transition metal with one electron in the outer shell. In the case when the shock is 
strong to ionized this electron, the high-density compression is observed.

https://doi.org/10.1007/978-3-031-45473-8_3
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8.4 Thomas Fermi Model for an Ion Sphere 

To consider the physical property of compressed matters, a variety of theoretical 
models have been proposed to calculate the statistically averaged density distribution 
as consistently as possible. One of the convenient ways to calculate the electron 
density distribution for a system with a nucleus at the center and the surrounding 
electrons is Thomas-Fermi (TF) model as studied in early time of modern physics 
[14]. The TF model is still widely applied in many quantum systems, even to a 
hydrogen atom since it is very easy to solve numerically and provides approximate 
electron density profile in a compressed atom. 

Although it is easy to solve computationally at the present, it is interesting to 
know that R. Feynman wrote how to do numerical calculation before the computer 
was invented [15]. About forty wives of scientists gather in a classroom and follow 
Feynman’s instructions to turn the hand-cranked calculators, dividing the work 
among them and producing numerical values. He writes the results on the black-
board as the wives obtained in the numerical calculations. Although the TF model is 
not so complicated as seen below, it was difficult to solve without such human power 
before the computer era. 

The basic equation to be solved is Poisson equation to the potential ϕ(r), 

ε0 
1 
r2 

d 
dr 

r2 
d 
dr 

ϕ = - Zeδ rð Þ- ene rð Þ ð8:34Þ 

where ne(r) is the radial distribution of electron density around the nucleus with 
charge Z. It is assumed that the electron density is given by Fermi-Dirac statistics. 

ne rð Þ= 
2 
ħ3 

f FD r, pð Þd3 p= 
8π 
ħ3 

1 

0 
p2 f FD r, pð Þdp ð8:35Þ 

where fFD(r, p) is the Fermi-Dirac distribution. 

f FD r, pð Þ= 
1 

1þ exp p2=2m- eϕ- μ 
T 

ð8:36Þ 

It is clear that above equations are enough to determine the density profile ne(r),once 
the charge neutral sphere radius R0 is given and the chemical potential is determined 
so that the charge neutrality is satisfied in the ion sphere. In the limit (μ → -1), the 
electron density (8.35) tends to the Boltzmann distribution for a given electric 
potential ϕ. Due to this reason, the TF model is an extension of classical Debye-
Hueckel model to Fermion gas. Boltzmann distribution cannot be used in the case of 
high-density plasma, and the simple Debye shielding model should be replaced by 
TF model.
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8.4.1 Screened Electron Density Distribution 

Introducing x and y defined as 

x= 
p2 

2mT 
, y= 

eϕþ μ 
T

ð8:37Þ 

The electron density (8.35) is given in more simple form: 

ne rð Þ= 
1 
2π2 

2m 
ħ2 

3=2 1 

0 

x1=2 

1 þ exp x- yð Þ dx ð8:38Þ 

It is more convenient to solve (8.34) with assumption that the radial function of 
potential is given like 

ϕ rð Þ= 
Ze 

4πε0r 
Y rð Þ ð8:39Þ 

Then, (8.34) can be reduced to the second order differential equation to Y(r). 
In high-density plasmas, the ion-ion Coulomb coupling is strong and it is good 

approximation to introduce the ion sphere defined in (8.5) and set the boundary 
R = R0 here. It is also assumed that the same amount of charge is filled by electrons 
to make charge neutral in the ion sphere. Then, the problem to solve (8.34) becomes 
an eigen-value problem to the boundary conditions: 

Y 0ð Þ= 1, ð8:40Þ 
d 
dr 

ϕ r=R0ð Þ= 0 ð8:41Þ 

Since we assumed the form (8.39), the first term on RHS in (8.34) disappears. After 
rewriting (8.34) to the equation to Y(r), we obtain a second order nonlinear differ-
ential equation to Y(r). It is recommended to solve the equation to Y(r) by integrating 
from both boundaries. Such numerical method is called shooting method and the 
eigen value μ starting with a trial value at the beginning should be converged to the 
value so that both solutions integrated from the center r = 0 and from the boundary 
r = R0 continuously match at a given fixed matching point. 

In Fig. 8.15, the electron radial density profile obtained by the TF model is shown 
for an isolated neutral argon atom, where R0 is infinity. The resultant radial density 
distribution is compared to that obtained by the Hartree method described in 
Chap. 5. It is noted that the Hartree method solves Schrodinger equation to all 
wave functions for the bounded N electrons by including the Coulomb interaction. 
Although the exchange interaction is not included in this Hartree method, it is much 
better calculation than TF model. It is seen in Fig. 8.15 that electron density 
distribution obtained by such simple TF model is good enough in this case compared 
to that obtained by the Hartree method. Big difference is that the Hartree method can

https://doi.org/10.1007/978-3-031-45473-8_5


include the effect of shell structure by filling states with different principal quantum 
numbers. TF cannot reproduce such quantum shell effect. 
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Fig. 8.15 The electron density radial distribution of isolated neutral argon atom obtained by 
Thomas-Fermi model and more precise Hartree method. Since the Hartree method solve the 
wave functions and the shell structures are seen 

In the present TF model in high density and/or high temperature, it may be 
possible to divide the electrons into the bound and free components. There are two 
ways for the definition of the fraction of free electron component in the ion sphere as 
follows. 

f free = 
4π 
Z 

R0 

0 
ne 

p2 

2m
- eϕ rð Þ≥ 0 r2 dr ð8:42Þ 

f free = 
4π 
3Z 

R3 
0ne R0ð Þ ð8:43Þ 

The first one (8.42) is the case regarding the electrons with positive energy are the 
free electron, while the second one (8.43) simply regards the free electron density is 
equal to the density at the boundary of the ion sphere. 

8.4.2 Fitting Formula of TF Results 

Many scientists have developed approximate fitting formulae for the numerical 
result of Thomas-Fermi model. One of the best is the formula derived by R. M. 
More [4] to be shown here. This can be applied any materials with different atomic 
and charge numbers. As mentioned by More, Thomas-Fermi equation has a kind of 
self-similarity to the hydrogen case (Z = 1 and A = 1). It is well-know that Thomas-
Fermi data such as electron pressures Pe, and internal energy εe of plasma with Z and 
A can be reproduced once we have the data of the hydrogen case. At first, the plasma



density and electron temperature should be converted to the equivalent physical 
quantities for the hydrogen plasma. 
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ρ1 = 
ρ 
AZ 

, T1 = 
T 

Z4=3
ð8:44Þ 

More has shown that the charge state of any material at any density and temperature 
obtained with the numerical result of TF model can be reproduced by the following 
fitting formula. 

Z* ρ,Tð Þ= Z 
x 

1þ x þ 1þ 2xp ð8:45Þ 

where x is a function of (ρ1, T1) [4]. 
Inserting this x into (8.45), the effective charge predicted by TF model is very 

precisely given. The resultant of effective ionization charge for Z = 1 and A = 1 is  
shown in Fig. 8.16. The density and temperature correspond to ρ1 and T1 and it is 
easy to obtain the charge state with the relation (8.44) for any elements. 

It is clearly seen in Fig. 8.16 that for a given density and/or temperature, the 
ionization increases with the temperature and/or density, respectively. The former 
tendency is thermal ionization and common even in low density plasma, while the
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Fig. 8.16 Thomas-Fermi model has self-similarity solution, and all data of different Z number can 
be produced with use of the solution for hydrogen. Figure shows the ionization charge as a function 
of density and temperature by use of the fitting formula (8.45)



latter is typical for the high-density plasma. Since the number of states for the bound 
state decreases with the increase of density, many electrons must be in the free state. 
This indicate that Fermi energy of the electrons increases with the density and the 
plasma becomes Fermi degenerate state. So, in the dense plasma with low temper-
ature and high density, Fermi degeneracy of electrons becomes important.
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8.4.3 Property of Thomas-Fermi Results 

The effective charge Z* increases with the increase of density even at T = 0. Such 
ionization is called pressure ionization, because high density means the distance of 
nearby two ions makes a joint potential as schematically shown with the solid line in 
Fig. 8.17, and the ionization potential depression (IPD) (lowering) (χ) due to the 
overlapping of Coulomb potential allows the bound electrons in the higher-energy 
levels to be free. The pressure ionization is due to the depression of the ionization 
energy level by overlapping the potential of the nearby ions. 

This has a very important information, since the depression of the ionization 
energy level means most of the upper-bounded discreet energy states with a large 
principal number should be eliminated in the partition function of (5.5). In solving 
the Saha equation of (5.14), most difficult point is the evaluation of the function of 
uζ and uζ + 1. These values change dramatically depending on how the maximum 
quantum state can be regarded to be the bound states, since the number of states 
dramatically increases in the upper state as a single atom. 

However, the physics image will change in the case of finite temperature, where 
the ions are moving due to thermal motion. In such case, it is better to obtain the 
probability for the nearest neighbor two ions. This is a problem of statistical physics, 
and it is informative to see the case of Debye potential for the ideal plasma. The

Fig. 8.17 The image of 
pressure ionization is shown 
by overlapping the potential 
profile of two isolated ions 
(dotted lines) and the 
potential by summing both 
(solid lines). The decrease of 
interatomic distance by 
imposed high pressure 
depresses the ionization 
energy level as the solid line



probability of another ion comes to the radius r of the central ion is given by the 
following Boltzmann distribution
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f rð Þ= e-
Ze 
T ϕ rð Þ  = exp -

Z2e2 

4πε0Tr 
e- kDr ð8:46Þ 

Let us introduce the two dimensionless values. 

Γii = 
Z2e2 

4πε0TR0 
ð8:47Þ 

x= 
r 
R0 

ð8:48Þ 

where Γii is called ion-ion coupling parameter and R0 is the ion-sphere radius. 
Then, (8.46) is rewritten as, 

f xð Þ= exp -
Γii 

x 
e-

R0 
λD 
x ð8:49Þ 

The condition of the ideal plasma requires the parameter Γii is much smaller than 
unity. It is useful to see the radial structure of this probability. It is clear from (8.49) 
that f(x) tends to zero near r = 0 and two ions repel each other via Coulomb repulsive 
force. At far distant point f(x) = 1 and this function is monotonically increase with 
the radius. It is very reasonable and coincides with our intuitive image. 

Most of bound electrons with orbit radius more than R0 as an isolated atom will be 
continuum in such many-body system. In case of hydrogen, the average orbit rnof a 
s-state wave function is given in (5.26). 

rn = aB 
n2 

Z
ð8:50Þ 

It is easy to calculate the critical ion density whose orbit radius of the principal 
quantum state n satisfies the condition. 

4π 
3 
r3 nni = 1 → ni = 3× 1022 

Z3 

n6 
1=cm3 ð8:51Þ 

This approximately gives the critical principle number for pressure ionization. It is 
written also for hydrogen as 

ρn = 0:05 
1 
n6

g=cm3 ð8:52Þ 

At high-density plasma, such lowering is very essential.
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At the same time, the number of states of free electrons is also decreases as 
increase of density. It is useful to know that the number of free electron states per 
unit volume is given to be 

N Eð Þ= 2 
E 

0 
g kð Þdk= 

1 
3π 

2m 
ħ2 

3=2 

E3=2 ð8:53Þ 

where N(E) is the number of states of free electron to the energy of E. It should be 
noted that the energy obtained by setting N = Zni is Fermi energy. The number of 
free electron states per ion is also decrease in proportion to the inverse of ion density 
for a given energy E. This means that increase of density, the pressure ionization 
decreases the number of bound electrons, while the number of states of free electrons 
also decreases with the increase of density. Then, the required pressure of compres-
sion will increase due to Fermi degeneracy of free electrons. 

It is noted that TF model would be good enough for many problems even for 
contemporary subjects. The potential profile obtained by TF model can be used for 
an approximate potential for one electron Schrodinger equation. If you calculate the 
electron energy-states in the TF potential, it approximately reproduces the electron 
shell-structure (1s, 2s, 2p, 3s, 3p but then 4s comes before 3d. . .) of the periodic table 
of Mendeleev chart. It also correctly predicts how that structure is changed for high-
charge ions. 

TF is simple because it is one equation for all the electrons. The more accurate 
methods (Hartree or Hartree-Fock) have a separate differential equation for each 
electron, so it is 26 equations for Fe. Actually, of course, only 13 because the two 
spins (up and down spin) have almost the same potential, same equation. 

Historically, the TF model has been extended to include another physical effect as 
shown in Chap. 6 in Ref. [16]. For example, the extension to molecules such as a 
hydrogen bonding shown in Fig. 8.2. The attractive force by the exchange interac-
tion has been included as Thomas-Fermi-Dirac model, where the exchange potential 
is modeled as a function of local density. The density divergence near the central 
nuclear charge has been eliminated by Thomas-Fermi-Dirac-Weizsacker model. 
These models have been developed before commonly use of the computer, but it 
is informative to know how quantum mechanical equation should be simplified by 
use of such models. As the progress of computing, the following direct calculation of 
multi-electron and many-body system has become more popular. 

8.5 Density Functional Theory for Multi-electron 
Interacting System 

We have studied the structure of atoms by assuming the ion sphere model. The 
electron density distribution or the wave function of each electron have been solved 
based on simple models derived from quantum mechanics. In the case of high-

https://doi.org/10.1007/978-3-031-45473-8_6


density plasma, it is essential to consider the statistical properties of many electrons 
whose wavefunctions spread over many nuclei. The nuclei also move slowly by the 
Coulomb force due to neighboring ions and surrounding electrons. It is natural to 
study such system with many charged particles by solving so-called “ab-initio” 
problem. The ab-initio calculation means to solve the many-body problem quantum-
mechanically as exact as possible by starting from multi-electron Schrodinger or 
Dirac equations, for example, the Hartree-Fock (HF) equation mentioned in 
Chap. 5 gives us the exact solution of the grand state of the many-electron system 
[16, 17]. To solve HF equation directly, however, faces numerical difficulty even 
with the supercomputer, and the density functional theory (DFT) based on the HF 
theory is widely used for the ab-initio calculation. 
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The rapid progress of supercomputer has made it possible to solve such compli-
cated problem in a reasonable CPU time. As shown in Fig. 8.1, it is surprising to 
know the progress of CPU time, for example, from the fastest supercomputer in the 
world Earth simulator in 2002 to now Fugaku in 2020 [18]. Their speeds are 
respectively 40 TF and 400 PF, namely 10,000 times progress in CPU over the last 
18 years in Japan (the world). Computer scientists are always demanded to challenge 
new and more ab-initio methods according to the progress of computer capability. 

Note, however, that if we would like to solve the N electron system with M 
classical nuclei like fixed points in space, Schrodinger equation for N electron 
system becomes a problem to solve it in 3N space dimension in three-dimensional 
real space, for example, in HF theory. Of course, challenges to solve HF equation by 
integrating over 3N space by use of Monte Carlo method has been carried out like a 
quantum Monte Carlo (QMC) [19]. 

More flexible numerical method, on the other hand, has been widely used mainly 
in the solid-state physics. In this method, Schrodinger equation for N electrons is 
independently solved as one-electron problem in an effective potential given as a 
function of the local electron density. This is called density functional theory 
(DFT), which results from the work of Hohenberg, Kohn and Sham [16]. This 
method has been applied also to atoms and molecules. In laser-produced warm dense 
plasmas, DFT has been extended to the system with finite temperature, for example, 
as reviewed in [20]. 

The simulation codes of DFT have been developed with different numerical 
schemes. They have been compared as code-comparison for the case of solids at 
T = 0 in [21]. It is surprising to know that many codes gave almost the same results 
with good accuracy. Here, after a brief explanation of the Hartree-Fock theory, the 
basic equation of DFT is derived for the case of finite temperature. 

8.5.1 Hartree-Fock Theory of Multi-electron System 

In Sect. 5.3, how to study the quantum state of single atom with multi electrons has 
been discussed. In the case of Helium atom, anti-symmetry of the total electron wave 
function is required to provide not only Coulomb interaction but also the exchange

https://doi.org/10.1007/978-3-031-45473-8_5
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interaction between two electrons. When a system has Nn nuclei and N electrons, the 
total Hamiltonian of the system is given in the form for Born-Oppenheimer 
approximation, where nuclei are fixed. 
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HH = 
N 

i= 1 

HH,i ð8:54Þ 

where HH, i is one-electron Hamiltonian indicated with “i” for the case when the 
wave functions of the other electrons are given. 

HH,i = -
ħ2 

2m 
∇ið Þ2 - e2 

4πε0 

Nn 

k = 1 

Zk 

ri -Rkj j þ e
2 

4πε0 

N 

j≠ i 

1 
ri - rj 

ψ j 
2 ð8:55Þ 

Assume the total wave function Ψ is given as the product of single electron, namely, 
Ψ has the form. 

ΨH r1, r2, . . . :rNð Þ=ψ1 r1ð Þψ2 r2ð Þ⋯⋯ψN rNð Þ ð8:56Þ 

This assumption is called the Hartree approximation. Note that the subscripts of 
the wave functions are independent number of the subscripts of the positions. The 
Schrodinger equation for ψ i(ri) is shown as 

HH,iψ i rið Þ= εiψ i rið Þ  for i= 1, . . .N ð8:57Þ 

where εi is the eigen value of the i-th electron and Coulomb interaction energy with 
the other electrons is consistently included. Since (8.57) is a nonlinear equation and 
is required to be solved iteratively by a numerical method so that the numerical 
solution is self-consistent. The solution of (8.57) has no exchange interaction 
between the electrons. The formulation should take account of the property of 
Fermion of the electron. 

It is known that the total wave function of the Fermion gas should be anti-
symmetry. Namely, the exchange of two electrons in the system should change the 
sign of the total wave function. A simple form of (8.56) is not acceptable as Fermion 
gas. The anti-symmetric total wave function is given by the following Slater 
determinant. It also should include the freedom of the electron spin, up or down 
(denoted with “s”). For simplicity, the coordinate including the spin (r, s) is shown 
as x in what follows. 

ΨHF x1, x2, . . . :xNð Þ= 
1 

N!
p 

ψ1 x1ð  Þ  ⋯ ψN x1ð  Þ  
⋮ ⋱ ⋮  

ψ1 xNð  Þ  ⋯ ψN xNð  Þ  
ð8:58Þ



j j
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This is called Hartree-Fock approximation. Then, the Schrodinger equation for the 
i-th electron is given as the same form, but the Hamiltonian becomes differential and 
integral operator F [16]. 

EHF = ΨHF jHjΨHFh i= 
N 

i= 1 

Hi þ 1 
2 

N 

i= 1 

N 

j= 1 

Jij -Kij ð8:59Þ 

where Hi, Jij, and Kij are defined as 

Hi = ψ*
i xð Þ -

ħ2 

2m
∇2 -

e2 

4πε0 

Nn 

k = 1 

Zk 

r-Rkj j  ψ i xð Þdx ð8:60Þ 

Jij = 
e2 

4πε0 
ψ i x1ð Þj j2 1 

r1 - r2 
ψ j x2ð Þ  2 

dx1dx2 ð8:61Þ 

Kij = 
e2 

4πε0 
ψ*
i x1ð Þψ j x1ð Þ  1 

r1 - r2 
ψ*
j x2ð Þψ i x2ð Þdx1dx ð8:62Þ 

Note that all integrals result real values and Jij ≥ Kij ≥ 0. The Jij is Coulomb integral 
representing the Coulomb repulsive force between all two electrons in the system. 
On the other hand, the Kij is the exchange integral and stems from the force due to 
the exclusive principle of Fermion particles. The exchange energy is purely quantum 
mechanical one and it appears because we have adopted the total wave function in 
the form Slater determinant to guarantee its anti-symmetry. It is important to note the 
fact that both energies look unphysical interaction for the case of j = i, while this 
unphysical case is excluded for the total energy in (8.59) since 

Jii =Kii ð8:63Þ 

We adopt (8.63) for extending to the density functional formulation to be 
discussed soon. 

Same as the Hartree approximation, we must adopt the wave functions ψ i(r) 
orthogonal, and then the following N coupled Schrodinger equation is obtained for 
the i-th single wave function.

F xð  Þψ i xð Þ= 
N 

j= 1 

εijψ j xð Þ ð8:64Þ 

where F is Hartree-Fock Hamiltonian. 

F xð  Þ= -
ħ2 

2m
∇2 -

e2 

4πε0 

Nn 

k = 1 

Zk 

r-Rkj  j þ g xð  Þ ð8:65Þ



In (8.64), εij is the eigen-value derived in matrix. (8.64) is called Hartree-Fock 
equation.
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On the right-hand side of (8.65), the first term the kinetic energy, the second term 
is Coulomb interaction with all nuclei, and the third term is integral operator due to 
the Coulomb and exchange interaction of the i-th electron with all other electrons in 
the system. It is given in the form. 

g xð Þ= j xð Þ- k xð Þ ð8:66Þ 

where the Coulomb coupling operator and exchange interaction operator are given to 
be 

j xð Þψ i xð Þ= 
e2 

4πε0 

N 

j= 1 

ψ j x
0ð Þ  2 1 

r- r0j jψ i xð Þdx0 ð8:67Þ 

k xð Þψ i xð Þ= 
e2 

4πε0 

N 

j= 1 

ψ*
j x

0ð Þψ i x
0ð Þ  1 

r- r0j jψ j xð Þdx0 ð8:68Þ 

A new eigen value εi defined as follows is obtained by integrating (8.65) after the 
product with ψ*

i . 

εi ≡ εii = ψ ijF jψ i =Hi þ 
N 

j= 1 

Jij -Kij ð8:69Þ 

Then, the total energy is given as 

EHF = 
N 

i= 1 

εi -Vee ð8:70Þ 

Vee = 
1 
2 

N 

i, j= 1 

Jij -Kij ð8:71Þ 

It is easily verified that the total wave function given in Slater determinant results the 
following form for two location probability after integration by x3, ⋯xn space. 

n x1, x2ð Þ= 
1 

N N - 1ð Þ  
N 

k, l 
ψ k x1ð Þj j2 ψ l x2ð Þj j2 -ψ*

k x1ð Þψ k x2ð Þψ*
l x2ð Þψ l x1ð Þ  ð8:72Þ 

The probability of two electrons at the same place and with the same spin x1 = x2 
becomes null.
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8.5.2 Kohn-Sham Density Functional Theory (DFT) 

Kohn-Sham theory provides the exact solution for the grand state of the system 
with many electrons and many nuclei by solving the following eigen-value problem 
of each electron. Then, the exchange effect due to the spin is modeled in the effective 
potential as a function of density. It starts to solve the single electron Schrodinger 
equation with the effective Hamiltonian derived by Kohn-Sham, HKS(r). 

HKS rð Þφi rð Þ= εiφi rð Þ ð8:73Þ 

where Kohn-Sham Hamiltonian is given in the form 

HKS rð Þ= -
ħ2 

2m
∇2 þ VKS rð Þ ð8:74Þ 

On RHS in (8.74), the first term is the kinetic energy of electron and the second term 
is the effective potential which is only the function of the electron density defined by 

n rð Þ= 
N 

i= 1 

φi rð Þj j2 ð8:75Þ 

It is assumed that KS potential is given as a function of density 

VKS rð Þ= f n  rð Þ½ ] ð8:76Þ 

It is important to note that the effective potential (Kohn-Sham) potential VKS(r) is  
common to all N electrons, so the eigen-energy εi and eigen-function φi(r) can be 
obtained by solving (8.73) as a single electron system. The orthogonality of all wave 
functions is certified. In solid-state physics, it is enough to obtain the N electron 
configuration after solving (8.73) for N wave functions from the lowest energy state. 
However, in the case of dense plasmas, it is required to solve many wave functions 
including excited states because of thermal excitation of electrons. 

For the case where the computational system is assumed to have Nn nuclei and N 
electrons, the KS potential is given in the form: 

VKS rð Þ=Vne rð Þ þ  VH rð Þ þ  Vxc rð Þ ð8:77Þ 

where Vne(r) is Coulomb potential to the i-th electron by the nuclei and given as 

Vne rð  Þ= -
e2 

4πε0 

Nn 

j= 1 

Zj 

r-Rj 
ð8:78Þ



8.5 Density Functional Theory for Multi-electron Interacting System 389

where Zjand Rj are the nuclear charge and position of the j-th nucleus. The second 
term on RHS in (8.77) is the Hartree potential by all electron at the point r. 

VH rð Þ= 
e2 

4πε0 
d3 r0 

n rð Þ  
r- r0j j ð8:79Þ 

The third term in (8.77) stands for the potential giving the force stemming from the 
exchange and correlation (xc) energy among N electrons. In DFT, both energies 
are represented with Exc as a function of only the electron density n(r). Then, Vxc(r) 
in (8.77) is defined by the functional derivative. 

Vxc = 
δExc 

δn rð Þ ð8:80Þ 

It is better to say that if the exchange-correlation (xc) energy Exc is derived as a 
function of the local density exactly, Kohn-Sham density functional theory is exact. 
This exchange-correlation energy Exc is not only these two energies, but it represents 
all energy left in (8.77) stemming from multi-electron system. It is hard job to 
correctly formulate the xc energy, and it is usually defined approximately. 

In solving DFT with computers, many numerical schemes have been developed. 
This is reported as code comparison in [21]. Typical numerical issue in calculating 
all wave functions with (8.73) appear from the fact that some electron wave function 
changes smoothly far from any nuclei, while it changes rapidly near a nucleus due to 
the deep Coulomb potential. 

8.5.3 Density Functional Theory for Finite Temperature 
System 

The Kohn-Sham theory has been applied to the case of solids, where total electrons 
are in the ground state. In the case of finite electron temperature (T ≠ 0), we must 
extend the Kohn-Sham theory so that the electrons are excited thermally to have a 
finite probability at the higher energy levels. Then, it is reasonable to assume that the 
electron energy distribution is given by Fermi-Dirac distribution fFD. 

f FD εið Þ= 
1 

exp εi - μð Þ=T½ ] ð8:81Þ 

where μ is the chemical potential. With the factor two of spin freedom, the electron 
density is given as 

n rð  Þ= 2 
N 

i= 1 

f FD εið  Þ φi rð  Þj  j2 ð8:82Þ
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The unknown chemical potential μ is determined to satisfy the electron number 
conservation relation: 

N= 2 
N 

i= 1 

f FD εið Þ ð8:83Þ 

After solving the above relations with one-electron Schrodinger Eq. (8.73) itera-
tively, the self-consistent density and each eigen-energy give the total energy of the 
electrons E in the system. 

E= 
N 

i= 1 

f FD εið Þεi - 1 
2 

e2 

4πε0 
d3 r d3 r0 

n rð Þn r0ð Þ  
r- r0j j  þ Exc

- d3 rVxc rð Þn rð Þ ð8:84Þ 

where the first term is the sum of eigen energies of N electrons as single electron. 
Since this term double counts the Coulomb interaction energy among multi-
electrons, the second term is needed in (8.84). 

In (8.84), the total exchange energy for each electron is defined by the following 
integral. 

Exc = d3 rεxc rð Þn rð Þ ð8:85Þ 

It is very hard subject to derive the local exchange-correlation energy εxc(r) as  a  
function of the local density n(r) [22]. In the form (8.84), the xc energy is also double 
counted and the fourth term is required. 

In the actual computation, the coupled equations are solved iteratively so that the 
numerical result becomes self-consistent. 

In [20], density functional theory with molecular dynamics (DFT-MD) has 
been developed to solve the problem including the ion motion. New formulation of 
the xc energy for finite-temperature hydrogen has been derived and its effect has 
been discussed in WDM. Using the Kohn-Sham approach, the xc energy of the 
system, εxc(r), is replaced by the xc free energy fxc(r) within the local density 
approximation (LDA) based on parametrized path integral Monte Carlo data for 
the uniform electron gas (UDG) at warm dense matter conditions [20]. 

In the UDG, Slater has derived the following simplest form of the xc energy as a 
function of density for solids [16]: 

εxc rð  Þ= an1=3 , a= -
3 
4 

3 
π 

1=3 

ð8:86Þ
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Fig. 8.18 The density surface distribution for given density in three different stage in laser 
compression of solid aluminum. The simulation is carried out with time-dependent density func-
tional theory (TDDFT). Reprinted by permission from Macmillan Publisher Ltd: ref. [23], Copy-
right 1993 

This simplest form has been used for many cases. The intensive works have focused 
on the improvement of the density functional form of the xc energy as general form 
for the grand state in solids. In the case of WDM system with finite temperature, the 
research to formulate the xc energy is still challenging subject [22]. 

In Fig. 8.18, three snap shots of time-dependent density functional theory simu-
lations of the formation of WDM are shown This is the result of TDDFM based on 
DFT-MD to the following experiment [23]. 

Two 4.5 J laser beams were used to irradiate 50-μm-thick Al foils (initial density 
of ρ = 2.7 g/cm3 ) coated with 2-μm-thick perylene. The laser beams were absorbed 
by the perylene, heating the material, and two counter-propagating multi-Mbar 
shock waves were launched into the solid aluminum by ablation pressure. Within 
0.5 ns, the laser power rose to a power that was constant over time, with an intensity 
of 35 TWcm-2 . Each laser operated at 527 nm and was spatially smoothed over a 
focal spot of 60 μm to launch strong shocks. 

The left is solid state, the middle is melting phase, and the right is WDM state. In 
the figure, the ions (blue) abandon their lattice positions. Although core electrons 
(grey) remain mostly unchanged, the delocalized conduction electrons (represented 
by orange iso-surfaces) are disturbed from the very regular structure in the lattice. 

8.5.4 Time Dependent DFT 

Numerical method, of course, changes in solving the time dependent DFT 
(TDDFT). The basic equation to be solved is now the following time-dependent 
Schrodinger equation.



392 8 Theoretical Model of Dense Plasmas

i 
∂ 
∂t 

φi r, tð Þ=HKS r, tð Þφi r, tð Þ ð8:87Þ 

The Kohn-Sham Hamiltonian is given with the same form (8.74) as functions of the 
time-dependent density n(r, t). The density is defined by (8.82). If we use the finite 
dereference method to the time integration, the iteration should be carried out to keep 
the consistency of Kohn-Sham theory at each time step. 

At first, consider that case of very fast phenomena seen when an ultra-short laser 
pulse irradiate gas with atom or molecule. Even in such a case of single atom or 
molecule, DFT is useful to obtain the spectrum of higher-harmonic generation 
(HHG) due to nonlinear oscillation of electrons in the gas. In Chap. 2 (Volume-1), 
the multi-photon ionization process has been discussed. When an intense laser is 
irradiated with the intensity less than dominant ionization process, the bound 
electrons oscillate in the potential by nuclei and this un-harmonic oscillation causes 
the emission of many harmonic radiations. 

As shown in [24], the time dependent potential by the laser electric field VL(r, t) is  
given under the dipole approximation. 

VKS rð Þ )  VKS r, tð Þ þ  VL r, tð Þ ð8:88Þ 

where 

VL =E0f tð Þ sin ωtð Þr ∙α ð8:89Þ 

where the peek electric field is E0 and the structure of laser envelope is f0 and α is the 
unit vector showing the laser polarization. Note that (8.87) is applicable only in the 
non-relativistic case. In the ultra-intense and relativistic laser case, Schrodinger 
equation should be replaced by Dirac equation and the potential VL should include 
the force by magnetic field of laser. 

It is useful to see TDDFT simulation applied for the HHG from the He atom as 
shown in Fig. 8.19 [24]. Note that the solid line is obtained from the simulation and 
the squares represent experimental data. It is concluded that even atomic or molec-
ular gas system, DFT results reasonable HHG spectrum being able to explain the 
corresponding experiment. 

More complicated case where laser is irradiated to solid and other has been 
carried out. The time-dependent simulation code is now available as an open source 
(name SALMON) in our community [25]. 

8.5.5 Quantum Molecular Dynamics (QMD) 

To study a long-time evolution of WDM, it is necessary to solve the motion of nuclei 
consistently. It is reasonable to assume that since the mobility of electrons is much



ð

larger than that of nuclei, DFT is applicable to given positions of nuclei at each time 
step. The motion of a nucleus k is governed by the following equation of motion. 

8.5 Density Functional Theory for Multi-electron Interacting System 393

Fig. 8.19 The higher-harmonic generation (HHG) is clearly seen by the post process of the dipole 
moment spectral analysis with total wave functions obtained from TDDFT. Reprinted with permis-
sion from Ref. [24]. Copyright by Annual Review Journal 

Mk 
d 
dt 
vk = -∇k Ee Rkð Þ þ V Rkð Þ½ ] 8:90Þ 

where Mk, vk, and Rk are the mass, velocity, and position of a nucleus k. Ee(Rk) is the 
total electron energy at the point Rk calculated by DFT for electron system. In 
addition, the nucleus k is affected the Coulomb force by the other nuclei whose 
potential energy is given as 

V Rkð Þ= 
e2 

4πε0 

Nn 

j= 1 

ZkZj 

Rk -Rj 
ð8:91Þ 

Since the force to nuclei is given at each time step by quantum mechanical method 
DFT, it is QMD and different from the classical molecular dynamics (MD) where 
usually the force is given by Lenard-Johns type potential shown in (8.4). 

In Fig. 8.19, three snap shots of time dependent DFT simulation are already 
shown [23]. This is the case of DFT-QMD simulation. Do not confuse that TDDFT 
for (8.87) is the time-dependent simulation of electron dynamics for fixed nuclei and 
the time step is very short, while the DFT-QMD is the time evolution of ion motions 
with time step much longer than the previous case. It is, of course, easy to extend 
TDDFT to follow the motion of nuclei, but the problem is the time-consuming 
computation time.
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