Chapter 6 )
Non-local Transport of Electrons in Plasmas gz

Abstract Since plasma is high temperature and the charge particles are running with
high temperature, for example, at 1 keV, about the velocity of 10° (electron) and
2 x 107 (ion) [cm/s]. Since Coulomb mean-free-path is proportional to (velocity)4,
higher velocity component transfers its energy over a long distance without Cou-
lomb collision. This is usually called as “non-local transport” and the traditional
diffusion model in neutral gas cannot be applicable. In laser plasma, the locally
heated electron thermal energy is transported into cold over-dense region
non-locally. The best way to solve such problem is to solve Fokker-Planck equation,
while it is time consuming and some theoretical models have been proposed and
studied over the last four decades. The physics of such models are explained here
and most recent model SNB is shown and compared to experiments. The difficulty
of transport of charges particles such as electrons is how to include the effect of
electrostatic field and magnetic field self-consistently.

6.1 Spitzer-Harm Diffusion Model
6.1.1 Model Equation for Diffusion

Consider a simple equation describing time evolution of temperature. Assume that
the particles carry the energy of plasma proportional to the temperature T. The
plasma particles, mainly electrons, are assumed to be in random walk over every
time interval At. The probability of the displacement during the time interval Ax is
given as the probability density W(AXx, At). Then, the time evolution of the distri-
bution of the temperature T is governed by

T(x,1) :/jo W(Ax,At)T (x — Ax, t — At)d(Ax) (6.1)

Note that for simplicity At is assumed constant.
Under the condition that the spatial variation of T is gentle enough, (6.1) can be
approximated with Taylor expansion to reduce to the form.
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B oT 1, 20T,
T(X—AX,I—A[)—T()C, f) —AXE—FE(AX) W—’— (62)

In (6.1), the probability function W(Ax, At) is normalized,

/ " W(ax, At)d(ax) = 1 (63)

It is also reasonable to assume that W(Ax, At) is an even function of Ax.
Inserting (6.2) to (6.1), the following diffusion equation is obtained.
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= / W(Ax)(Ax)2d(Ax) (6.4)
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where < > represents the ensemble average and we assumed that the space integral
of T should be conserved.

/OO T(x,t)dx=Q : const. (6.5)

This diffusion approximation is valid only when the following condition is satisfied.

Ax OT

__:g
T Ox

=7 <<l (6.6)

where L is the scale length of the gradient of T.
Let us consider that (6.4) is the energy diffusion by electron motion in plasma, the
heat flux by the electron thermal motion should be in the form.

q,= %ne)((Te)VTe ~needoe VT, = qpg 2—6 (6.7)
T

where v, = (T,m)"?, A, is the electron average mean-free-path, and ggg is the free
streaming heat flux defined by

qrs =neveT e (68)
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The free-streaming heat flux is the maximum of the heat flux by all electron of
Maxwell distribution in one—direction. If we integrate the heat flux it is 0.6 times the
free streaming flux.

In a historical paper by Spitzer-Harm [1], the mathematical formula of the
electron heat conduction in fully ionized plasma was derived by starting with
Fokker-Planck equation as we see soon. Its mathematical form is derived from the
above simple model. Since the mean-free-path has the following relation,

T2
Ae o n—e (6.9)

e

The Spitzer-Harm heat flux qsy is given from (6.4).
q9e =4sn = — KOTS/ZVTe (6.10)

where K is a constant. This heat flux is already shown in (2.109). The heat flux of
(6.10) has been widely used to describe the electron energy transport.

6.1.2 Flux Limit

In the early time 1970s of laser plasma research, it was found that the flux (6.7) is
limited by the maximum much less than (6.8) and so-called flux limiter is proposed
an ad hock method to be installed in simulation codes [2]. The flux-limiter was
widely used in hydrodynamic simulations, because the temperature of the laser
heated region becomes low without the flux-limiter to give higher absorption rate
of laser via classical absorption as suggested in Chap. 2 in Volume 1. In the case
where the flux-limiter is adopted in the simulation code, the heat flux propagating to
higher density region is limited and the electron temperature in the absorption region
becomes higher, consequently the absorption rate is suppressed.

In laser produced plasmas, for example, it has been well recognized that a simple
diffusive expression of electron transport given in (2.109) cannot be applicable. The
phenomenon has been called flux-limit. In physics integrated computer simulation
based on hydrodynamic description the flux-limiter f was artificially installed in
order to avoid higher absorption rate and hydrodynamic efficiency.

qL=f4rs (6.11)

where f was evaluated to be 0.03—0.1 according to the difference of experiments. In
hydrodynamic simulations, the following hear flus was modeled.
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e = min(qpy Gspr) (6.12)
or

sy " 9L
= == =& 6.13
Aef dsu + 41, ( )

Then, the heat flow is small enough the Spitzer-Harm diffusion formula is used, but
it is designed to limited by the limited flux.

In Fig. 6.1, calculated Bremsstrahlung emission spectrum I, versus photon energy
hv for different value of the flux limiter fis compared to the experimental data (solid
circles). It is clear that simulation without the flux limiter results very low temper-
ature in the Bremsstrahlung emission, while as the flux limiter increase hard x-ray
emission reproduced as shown in Fig. 6.1. It is too early to conclude that in the
experiment the flux is limited as f = 0.01-0.03. Such comparison of simulation to a
variety of experimental results, however, had required to improve the mathematical
model of the diffusion by electron heat conduction in high-intensity laser plasma
interacting plasmas.

6.1.3 Mathematical Derivation of Spitzer-Harm Diffusion

In order to know the reason for the flux limit and the limiting condition of the validity
of the diffusion approximation (6.10), let us repeat the mathematical process for
deriving the diffusion model for the electron heat conduction.
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Mathematical derivation of Spitzer’s heat flux can be done by starting with the
following kinetic equation of Vlasov equation with Krook collision operator.

v =B L= 1) (6.14)

where E is electrostatic field generated by charge separation due to electron motion
by heat flux and fy is local Maxwell distribution. The collision frequency v. is due to
electron-ion and electron-electron collisions to be fixed so that they are derived by
Fokker-Planck equation as a function of velocity as shown later.

In solving (6.14), space dependence is assumed one-dimensional in the
x-direction and the velocity distribution function is assumed to consist of two
terms; the isotropic component and the small anisotropic component.

FOov ) =Fo(x,v) + uf1(xv) (6.15)
u=coso, (6.16)

where f and f| are functions of only the absolute value of the velocity in v-space.
The angle dependence of the velocity space is assumed only by 0,, velocity angle
along the x-direction as shown in Fig. 6.2. Inserting (6.15) to (6.14) yields

O ot + 1))~ S EL fulfo+ u)] o
)l
m Vv

fi1= _i(fo_fM_’_ﬂfl)

where A, = v/v, is an effective mean free path for electrons with the velocity v.

Fig. 6.2 Schematics of
electron velocity
distribution function to be
modeled for Fokker-Planck
equation, where
non-uniformity of
temperature is assumed to be
in the x-direction and the
velocity distribution is
axially symmetric along the
x-velocity axis. Space
one-dimension and velocity
space two-dimension are
assumed
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Taking the moment of velocity angle | 17 1Ay of (6.17), the first order distribution
function is obtained as

(6.18)

A 1 (mv? oT,
=7 €E+§<Te 3>W}fﬂf
where f; is assumed to be a local Maxwellian fy; and the density is assumed to be

uniform.
The electron current density is defined as

o= e [y == [pan (6.19)
0

Inserting (6.18) into (6.19), the current density is obtained in the form.

dT,
dx

Jjo=0E—p (6.20)
where o is the electron conductivity and f is the coefficient of thermal current.
Note that the coefficients ¢ and f are functions of the temperature. Once there is a
current flow in one-dimensional system, charge separation takes place. It is better to
assume that this charge separation is induces the return current to keep the current
neutral condition. Requiring the current neutral condition, the electric field is given
in the form.

The electron heat flux is calculated as follows.
q,= %/Vzvxfcpv: 47[Tm/ Vf dv (6.22)
0

Inserting (6.18) into (6.22) and eliminating E with (6.21), the heat flux (6.22) can be
obtained in the form.

. dT,
qe:y]e_KL)E (623)

where y is a constant and K, is the electron heat conduction coefficient. Requiring
the current neutral condition, the electron heat flux is given in the form:

q,= —K.NT. (6.24)



6.1 Spitzer-Harm Diffusion Model 291

In the precise calculation including electron and ion contribution to the effective
mean-free path in (6.18), the heat flux derived by Spitzer-Harm has the following
form [3].

_128(Z+024)
qSH = — miwneveVTe (625)

where Agy is the Spitzer-Harm mean free path,

3 1
427z nbiinA

Ash (6.26)

where the Coulomb impact radius defined in Chap. 2 in Volume 1 is given as by
satisfying the relation.

2
e _ 2
dmeghy — e = T, (6.27)

In (6.25), the Z is the charge state for partially ionized plasma and the Z-dependence
of the coefficient stems from the different ratio between the electron and ion
contribution to Coulomb scattering. It is useful to express the form (6.25) as

A
qsu = _aO%CIFS (6.28)
T
where ag is the coefficient in (6.25) and qg is called free-streaming flux defined as
qps =ncTev, (6.29)

This free-streaming energy flux is frequently used as normalization value for elec-
tron heat flux. This is almost the maximum flux by the half of Maxwell distribution.
So, any model for heat flux cannot be larger than qgs. This indicates that the mean-
free-path should be much shorter than the temperature gradient scale Lt defined in
(6.6).

It is useful to note that the maximum electron heat flux is in general much smaller
than the free-streaming flux for example as seen in Fig. 6.1. This is because the
strong heat flux induces the electrostatic field inhibiting the large heat flow goes to
one direction. The charge separation is very important to reduce the heat flux
compared to the free-streaming value. This is not the case for charge neutral particles
like photons as will be explained later in this Chapter. In the case of photon emission,
it is easily seen near the plasma boundary that almost all photons flow freely in one
direction.
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6.1.4 Breakdown of Diffusion Approximation

We have to be careful that Spitzer-Harm diffusion formula of the electron heat flux
derived in (6.24) has been obtained in (6.18) with the assumption that

fo>If1l (6.30)

Inserting (6.21) into (6.18) it is possible directly evaluate the condition (6.30) for fy

being Maxwellian.
i ) (v v )
f1114_ Ly (V_) [(ﬁw) - (631

where Lt is the gradient scale defined in (6.6).

It is clear that the distribution function becomes negative for the case of |fi/fol > 1.
The velocity dependent heat flux vf; in (6.22) is found to have its maximum at
v = 3.4v,. Since the heat flux is the integral of large power of the velocity, the
maximum heat flux is mainly due to the electrons with the velocity more than the
thermal velocity. The effective mean free path of such electrons is (3.4)* ~ 10* time
longer than the SH mean free path in (6.26). Inserting v = 3.4v, to (6.31), it is found
that the perturbation of the distribution become larger than the Maxwell distribution
Ifi/fol > 1 at the value of the mean free path.

Ae(ve)
Lt

~4x10° (6.32)

This means that the SH heat conduction model cannot be applicable for the
temerature gradient shorter than that in (6.32). This is usual case of laser produced
plasma, where laser heating energy is carried by heated electrons from near the
cut-off density to the solid density surface. It is essential to model the heat flux in
another way.

6.2 Vlasov-Fokker-Planck Equation

6.2.1 Boltzmann Equation

Boltzmann equation is a kinetic equation of particles under collisional process. It is
well known that in case of highly ionized plasma Coulomb collision between ions
and electrons can be approximated by Fokker-Planck differential form. It is better,
however, to start from Boltzmann equation to show what approximation are used to
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derive Fokker-Planck equation to study the electron energy transport in laser pro-
duced plasma. See Appendix-C.

Boltzmann equation is non-linear integral-differential equation and time-
consuming computation is required to solve numerically. Boltzmann equation for
Coulomb collision system in plasma is formally given to be:

o o ep 0. (df) _df
aﬁ” or mE Ov _(dt)w”_dt

af

+ o (6.33)

ei e
In RHS in (6.33), the collision terms of electrons with ions and with electrons are
shown in the first and second terms, respectively.

Derive the collision term with assumption that only binary collision is enough to
derive the collision term. Then, assume that binary collision changes the velocities of
two particles before and after the collision. Consider the collision term of the
electron distribution function with velocity v changes its velocity to v’ by the
collision of electron or ion with velocity vg changing it to v’ after the collision. In
what follows the subscribe “s” represents the both cases of collision with ion and
electron.

v} {V.vl} (6.34)

The differential cross section of such binary collision ¢4(£2) is given as the function
of the relative orientation of the vectors v-v, and v’-v,’, the unit vector of which is
defined as Q. Of course, the functional form, o depends on the collision opponent is
an electron or an ion. Then, it is easy to understand that the collision term is given in
the form.

d ! ol
(7{) coll = ZS:i,e / dQ / dVSGS(Q)lv - vs| (ffs _ffY) (635)

In (6.35),

— ] /

SEFEwD, =5 636

fs Efx('.’vs’t)’ fs Efs(r’v;’t)
The collision term (6.33) gives the change of the distribution function f after the
collision with another or same particle with distribution f; at the point r and time
t. The term f° f;” represents the gain to v from v’ due to the collision with v,’. On the
other hand, the term f f; represents the loss from v from v after the collision with a
particle with the velocity v,. Integrating by v provides all contribution from the
particle in plasma at (r,t) position by the other electrons and ions. Since the integrand
should be the collision frequency, it is proportional to o,(£2)lv — v,l. The scattering
cross section is given by Rutherford scattering formula.
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6.2.2 Taylor Expansion of Collision Term

In the Coulomb scattering, the velocity change IAvl by one binary collision is
sufficiently smaller than the velocity Ivl. In such case, Boltzmann equation of
(6.33) can be expanded with the small velocity change. When the probability density
of the small change of Av due to the scattering of the distribution of v is W(v, Av),
the following relation holds

fv,rt+Ar) = /f(v—Av,r, )W (v — Av, Av)d(Av) (6.37)

It is important to note the physical difference of (6.1) and (6.33). In case of random
walk in real space (6.1), the mean random step <Ax> can be easily break the
condition for approximation (6.6) and the breakdown of the diffusion approximation
appears as in Spitzer-Harm model. However, the random scattering in the velocity
space is always valid as long as Coulomb scattering is considered. So, it is expected
that Taylor expansion of (6.37) is applicable even to the case with steep temperature
gradients. This is because the velocity change in most of Coulomb scattering is due
to small angle scattering.

In what follows, only the change of distribution function of electrons by the small
angle scattering is formulated for simplicity. Assuming small angle scattering and
considering that the distribution function change with short time interval At, (6.37)
reduces to the Taylor expansion form to At and Av in the form.

f(V,I', t+ At) = /f(v,r, t)W(V, Av) — Ay % [f(v’r’ I)W(V, Av)]
1 02
+ 3 Z:Zk:AV[AVk m [f(V, r, l) W(V, Av)] d(Av)

(6.38)

From (6.38) the collision term in a differential form to Coulomb interacting system is
obtained.

(4), - & Erenn] 15l ()] 60

where < > represents the ensemble average of the terms. In case of one-dimension
in the real space, the velocity space can be approximated axial symmetric with the
axis of the inhomogeneous direction as shown in Fig. 6.2. The velocity space is
two-dimensional in the cylindrical coordinate system (v,, 0,). The characteristics of
Fokker-Planck equation are as follows:
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1. The distribution function never becomes negative,

2. The equation satisfies the conservation of particle, momentum, and energy
locally.

3. It satisfies Boltzmann’s H-theorem. Even starting from any distribution function,
the final distribution function becomes Maxwellian in LTE condition.

6.2.3 Derivation of Fokker-Planck (FP) Equation

What Fokker-Planck (FP) equation says is that any random force in Brownian
motion reduces to the combination of the friction term and diffusion term.
After a long algebra shown in [4, 5], FP equation is found to have the following

form.
O\ ~ po (N Ll & (G, (6.40)
ot 5011_ Ovi \ Ovk 2 avkavj avkavj ’

where G is derived from Rutherford scattering cross section and H and G are given as

Z2e*
= W (6.41)
Ho) =22 (") [ L0 (642
G(v) :Z? /fs(vs)|v —v|dv (6.43)

It is noted that the definition H and G are called the Rosenbluth potentials [6].

It is known that the first term of RHS in (6.40) is the dynamical friction and the
second one is the diffusion term in the velocity space. The Fokker-Planck equation
assumes only the scattering by the binary Coulomb collision, therefore, in the system
of two kind of particles like fully-ionized ions and electrons, we have to solve the
equation for electron distribution function changing in time by scattering due to
electron-electron (e-e), electron-ion (e-i). It is noted that in the case of e-e scattering,
(6.40) is a nonlinear equation to the distribution function.

6.2.4 Linearized FP Model

It is time consuming to solve exactly (6.40) at each time step in FP computer
simulation. It is better to consider some approximation to make numerical method
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much easier in solving (6.40). For the present problem of electron heat transport, the
following two assumptions can be adopted.

1. In the collision with the ions, it is assumed that m; > > m,. and energy transfer
between electron and ions is neglected. This means the ions are regarded to be
particles at rest. Then, the ion collision contributes to only the momentum change
and no energy change of scattered electrons.

2. The nonlinear term in calculation of H and G in (6.42) and (6.43) are assumed by
replacing f; is local Maxwell distribution. In addition, v — vlis replaced with v in
the both definitions. This is valid because the electron heat transport is sensitive to
the collision of large v component by the electron with lower energy.

The 1st and 2nd derivatives in velocity space (6.40) can be separated to the changes

in the absolute value of v (energy) and the scattering to perpendicular direction

without changing energy. The former is only due to electron-electron scattering and

the latter is due to both. It is possible to separate them into two parts as shown below.
The scattering term can be given as

a  _ 0 0

E ei,ee B Z‘Y:i,ea—h (D3 a—vlf> (644)
df| i i
dilee 0y (FJ b avf> (6.45)

In what follows, the distribution function is assume to be cylindrically symmetric in
the velocity space along the x-direction, where the plasma parameters change in
space locally in the x-direction.

By use of Taylor expansion with care of the fact that hear flux is due to high
velocity component, while the collisions are mainly with electrons with relatively
low velocity, the following approximated linear form of Fokker-Planck equation is
obtained

0 0 e 0 1—u*0
atf+Vﬂaxf—mE<Mav+ 5,u>f

1%

(6.46)
v 0 0 v [(o0v2:0 0
— ) Syt (2l Oy
22s(v) | Ou ou A(v)\ov v ov  Ov
The angle of the velocity space is replaced with a definition
U= cosb (6.47)

It is noted that the following formula was used in (6.46).
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0 0 1 0
v :ﬂa—l— (1 —,uz)v 15_/4 (6.48)

In the RHS of (6.46), the first term is the effective mean free path by scattering.

m*v*

T 4 (Z + D) InA

2s(v) (6.49)

This is due to the scattering of electrons by ions and background electrons. The
second term is due to the frictional force among electrons.

m*v*

Ar(v) = W[: (Z+ 1)As(v)] (6.50)

It is mathematically clear that the 1st term in RHS of (6.46) is diffusion in angular
space without energy change, while the 2nd term is the change in v-space with
change of energy. It is noted that the RHS of (6.46) disappears when the electron
distribution function is a Maxwellian distribution with thermal velocity v.. The
second term in (6.46) is derived by assuming that the counter electrons are in local
Maxwellian.

In order to check the validity of several heat conduction models, it has been done
to solve directly the FP equation numerically as reference case. The property that the
Legendre functions is the eigen function of 1st term of RHS of (6.46) has been well
used. The distribution function is expanded by Legendre polynomial as follows:

F=Y00 fulev.0)Pup) (6.51)

Inserting (6.51) into (6.46) and using the following mathematical formula to Legen-
dre function.

1
uPy = 2n—+1[(" + 1)Pyi1 + nPyii]

0
(ﬂzfl)a—ﬂpn:n(ﬂpnfpn—l) (652)

0 0
8_;4{(1 _”2)8_;413”} = —n(n+1)P,

It is possible to make (6.46) as functions only proportional to Legendre function
regarding the terms including p. Comparing the term proportional to the same order
of Legendre functions, the following coupled equations are obtained.
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0 0 n+1
Efn—i_ a ( 1fn 1+2n+3fn+1)
e n (Of,_ n—1 Of S
EEL1< 3 v - ) 3< HHnt2) vﬂ)}

=—#(V)(n+ ( vav E)fn

(6.53)

This can be numerically solved by coupling with Poisson equation.

eo‘jl_f — 4ren, ( / FdPy— 1) (6.54)

FP equation shown in (6.53) looks like linear coupled equations for f;, (n = 0 ~ npax),
where n,,,, is the maximum number of n to be solved. However, the electrostatic
field generated by the electron heat flux is given by the sum of all Legendre
component f;,, consequently for example some iterative process is required to obtain
at each time step consistently. In addition, very fast oscillation by plasma waves is
also generated by charge separation. In order to weaken such oscillation effect, some
idea is required in numerically solving (6.53) and (6.54).

FP Eq. (6.53) has been solved numerically with numerically reducing the plasma
oscillation frequency [7]. The plasma is initially uniform in density and temperature.
The temperature in the region around the one boundary is quickly heated to 4 times,
and the time progress of heat flux and temperature have been calculated. The
Legendre components up to n = 8 have been solved in (6.53). In addition, Poisson
equation is solved with an artificial fraction r = .0011 as a factor in RHS in (6.54).
Plots of temperature <v>> and heat flux <v?v,> as function s of space x at three
different times are shown in Fig. 6.3. It is seen that the heat flux is maximum near the
heated region and the heat flux propagates from the left to the right in time.

In Fig. 6.4, the calculated heat flux is plotted at two typical time with symbols
(x) and (o) as functions of the local temperature gradient length L (=Lt) normalized
by the local mean free path A. The hear flux Q by FP calculation is normalized by the
local free streaming flux Qy = qgg defined by (6.8) in the vertical axis. In Fig. 6.4, the
solid line is the relation of heat flux by SH model (6.24). It is found that the heat flux
is saturated around 0.1 qgp, for A/Lt < 0.01 in the FP calculation. In the next paper by
Bell, he has carried out FP simulation for the density and temperature profile more
realistic to the laser ablation plasma. He found the flux limitation of about f = 0.03
for MLt < 0.01 [8].

It is noted that the flux limit factor in Fig. 6.1 seems to be f = 0.02-0.01 for the
best fit to the experiment, but the flux limiter is an ad hoc parameter and a different
limiter may happen depending on the plasma parameters. These fact means SH
diffusion model is not acceptable even in a simple model for the sharp temperature
gradient satisfying MLy < 0.01, and it is required to derive another heat flux model
easily installable into hydrodynamic simulation code. This will be discussed soon.
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Fig. 6.3 Time evolution of an effective temperature (v*) and heat flux (v*v,) obtained by a model
simulation for Fokker-Planck equation of electron in constant density. At the left boundary, the
effective temperature is kept four times of that at the right boundary. The heat wave propagates from
the left to right. Reprint with permission from Ref. [7]. Copyright 1998 by American Physical
Society
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Fig. 6.4 The heat flux of Fokker-Planck simulation normalized with the free streaming flux is
plotted at two different times as a function of measured temperature gradient length divided by the
local electron mean-free-path. The solid line is the relation of Spitzer-Harm (SH) diffusion. The
simulation data are higher than SH flux near the front of the heat flux, while it is automatically
limited around f=0.1 to change to the reduced flux in the higher temperature region. This indicate
that the local assumption of heat flux defined with the first derivative to space x is not valid. Reprint
with permission from Ref. [7]. Copyright 1998 by American Physical Society
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Fig. 6.5 The double functions in Fig. 6.4 stems from the non-Maxwell distribution of fy(v). The
distribution functions obtained by solving FP equation in more relativistic density and temperature
profiles are shown. (a) and (b) are the distribution functions at the laser heated low density region
and the heat wave front in the high-density region, near the ablation front, respectively. Reprint with
permission from Ref. [9]. Copyright 1998 by American Physical Society

Not only the limitation of the electron heat flux, but also the hysteresis of the heat
flux is also seen in Fig. 6.4. Especially, the heat flux is enhanced than SH flux at the
heat front region, right region in Fig. 6.3. Enhanced heat flux is due to the high-
energy component coming into the cold region from the hotter region, because the
mean free path with velocity v is proportional to v* and high-energy components
freely penetrate in the front region. Such component contributes the preheating of
cold region. It is very important if the absorbed laser energy is carried by heat flux,
while the high-density and cold region has to be controlled to as cold as possible.

The hysteresis property stems from the non-Maxwell distribution of fy(v). The
distribution functions obtained by solving FP equation in more relativistic density
and temperature profiles are shown in Fig. 6.5 [9]. Figures (a) and (b) are the
distribution functions at the laser heated low density region and the heat wave
front in the high-density region, near the ablation front, respectively. The distribution
function near the heating region has less high-energy component than the local
Maxwell distribution, therefore the heat flux is reduced than SH model. On the
other hand, near the heat front with enhanced high-energy component is produced by
electrons coming from the heated region without enough scattering. This enhances
the heat flux than SH model in the cold region. This is called preheating.

Since FP simulation is time consuming calculation and is not realistic to couple it
with hydrodynamic codes. There have been proposed better modeling reproducing
almost FP result with simple mathematical models. In what follows, such better
models to provide the typical properties of the flux limitation and preheating are
reviewed. As summary, the following two characters should be noted.
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1. Heat flux is limited in laser, hearting region because of the violation of SH model
(flux limitation)
2. Heat flux is higher than SH flux near the heat front region (nonlocal transport)

6.2.5 Flux Limit Properties

Before going to the advanced models for the electron heat flux in laser produced
plasma, consider the difference of the heat fluxes mentioned so far from the FP
simulation result. The reduction of heat conductivity in FP simulation has been
studied by assuming sinusoidal temperature perturbation [10]. In this case, the heat
diffusion with SH heat flux is solved numerically to compare to FP simulation result.

3 0T 0 0
an = — aqSH, qsg = —K'SHET (655)

The initial condition is
T(0,x) =To + 8T (0) exp(ikx) (6.56)
From the time progress of heat conduction, it is clear that the relation
8T (1) x exp(—yt) (6.57)

is observed. The decay rate is directly related to the heat conduction coefficients for
SH model and can be derived for FP simulation as follows.

ysy =2k ksg/3n,  ypp=2k>kpp/3n (6.58)

Then, it is possible to define the following normalized value for measuring the flux
reduction in FP simulation.

Kep (6.59)

KsH

The simulation result is plotted with solid circles in Fig. 6.6 [10]. In Fig. 6.6, the
solid curve is a fitting curve and the relation is

kep_ 1 (6.60)

Ksi 1+ (30kA,)*

Further study showed that the FP simulation result can also fit with the following
simpler formula [3].
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(6.61)

ksg 1+ 60kA,

For long wavelength perturbation, the heat conductivity is well modeled with SH
model, but the conductivity is strongly reduced at short wavelength perturbation. It is
informative to compare this relation (6.61) to the case of flux limited heat flux easily
calculated to be

KrL _ %1 (6.62)
Ksu 14+ f7 ki,

It should be noted that the flux limiter f = 1/60 (=0.017) well reproduces the FP

result. This value of fis consistent to the comparison with the experiment shown in
Fig. 6.1.

6.3 Flux-Limit and Nonlocal Models
6.3.1 LMYV Nonlocal Model

In an early time, Luciani, Mora, and Virmont (LMV) proposed the following model
expression for nonlocal transport [11]. Stationary state is assumed for the heat flux.

q,(x)= /OC q.(x + Ax)W(Ax, x)d(Ax) (6.63)

— o0
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The LMYV nonlocal heat flux is given in the form after replacing the variable
X’ = X + Ax and approximating the heat flux in the integral with SH formula (6.10).

G () = / " g (YW 0)d () (6.64)

— o0

where the propagator (kernel) of the heat flux is defined [11].

" 1 B X ne(x//) dx'
W(x,x') = ED) exp( /X/ 7o) 207 (6.65)
The effective mean free path in the propagator is defined as
A=a(da)?], a=32 (6.66)
V=1V,

where A and A are velocity-averaged mean free paths calculated by scattering and
friction given in (6.49) and (6.50), respectively. The coefficient “a” in (6.66) is the
adjustable parameter and derived by comparison with FP simulations.

6.3.2 Probability Density of Diffusion

In order to investigate the physical property of the propagator of the heat flux model
in (6.64), let us Fourier transform of the LMV heat flux q; ypv in a uniform density
and constant mean-free-path.

() = | W(ar)ag, -+ Anda) (6.67)
where we assume for simplicity,
1 Ax
W(Ax) = 537 &P (— 7) (6.68)

Fourier transformation of the propagator is defined as
o0 .
wm:/ W(x)e *dx (6.69)

Carrying out the Fourier transformation of (6.1), we can use of the convolution
integral in Fourier transformation.
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6w = [~ | [ semma]e e @0

By use of the convolution relation, (6.67) can be easily transformed to Fourier
relation.

Ormv (k) =¥ (k) Qgp (k) (6.71)

where the Fourier function is defined as

Oy (k) :/Oo Gy (X)e~Mdx (6.72)

— 00

The Fourier function of the propagator is the same as the heat conductivity ratio and
the case of LMV model can be obtained as

KLmy 1
——=Y¥Yk)= — 6.73
) (673)

where the following relation has been used.

R N By 71( P 1 )
T(k)*m/ﬂf =5\~ —Trm (6:74)

Although the physical meaning of the LMV model is easily understand and reason-
able to be used. However, the flux limit spectrum (means k-dependence) is different
from FP calculation shown in (6.61). This is speculated that even with LMV model,
the big difference of the mean-free-path on the velocity is not modeled. It suggests
that it is better to develop the model for multi-group electron transport, where the
heat flux is defined for each velocity component.

In Fig. 6.7 [3], the normalized Fourier functions of the heat conductivity are
compared for LMV model and FP result. The LMV model reduces faster than FP
result for I/Ly gets to large, too much heat flux is obtained. The other curve AWBS
model is from [12] which has improved the LMV model, consequently better
modeling.

We have investigated how to improve SH heat conduction model to allow the flux
limitation as suggested in experiment and FP simulation. However, even if the flux
limitation is reproduced, the electron kinetic effect is also very important to provide
the preheating effect. This should be also modeled in an appropriate conduction
formula. For this purpose, we need a model allowing the difference of mean free path
for difference of velocity of electrons. Let us see more modernized model for heat
conduction by electrons.
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6.4 Comparison with an Experiment

The nonlocal transport model and Fokker-Planck calculations have been compared
to measured temperature profiles of electron temperature in laser heated nitrogen gas
jet plasma [13]. Gas jet is irradiated with 1o laser and the heat wave region are
irradiated with a short pulse 2w laser at the same time to measure Thomson scattering
and Rayleigh scattering spectra of 2w lights. The probe beam moves to cover the
space of about 2 mm in front of the laser heating plasma region. Simply saying, the
principle of Thomson scattering is as follows. The probe beam is scattered by the ion
acoustic waves in the plasma and the probe beam is scattered with frequency shift
which is the function of the dispersion relation of the ion acoustic wave. Since the
ion acoustic wave has its phase velocity proportional to the square root of the
electron temperature, the spatial profile of the electron temperature is inferred from
the spatial profile of the phase shift [13].

In Fig. 6.8, the experimental data of electron temperature is compared for
t = 0.3 ns and 1.5 ns. The heating laser has a Gaussian shape with 1.4 ns half
width and intensity of 1.5 x 10'*W/cm?®. So, t = 0.3 ns is at the beginning and
t = 1.5 ns is almost at the peak intensity. The typical electron density measured by
Rayleigh scattering is 10" cm ™. When the laser intensity is week as t = 0.3 ns, the
experimental data with error bars are well reproduced with LASNEX and it is almost
independent of the flux limiter. At t = 1.5 ns, on the other hand, the experimental
data differ substantially from LASNEX results with the flux limiter 0.05 and 1.0.
Fokker-Planck simulation of 2D SPARK is used to compared to obtain a good
agreement with the experimental data. This suggest that LASNEX code does not
provide the heat flux penetrating to the deeper region and the flux limit f = 0.05 too
much prevents the heat loss from the heating region.
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In order to validate a nonlocal model discussed previously with such comparison,
the same type of form (6.64) has been calculated. It is called “hot spot relaxation
(HSR)” model [14]. In HSR, the kernel W(x’, X) is modified from (6.65) so that
Fourier spectrum of K/Kg is designed to be

K 1
= = W=Vl ki <1 6.75
Kso 1+ (aka,)"? ‘ ‘ ¢ (6.73)

where a = 10(Z + 5)/(Z + 12). HSR roughly reproduce Fourier spectrum of FP
simulation result shown in Fig. 6.6.

6.5 Multi-group (SNB) Model

The kernel (6.68) is physically well understood and it may give a good model for a
single electron group. As we see, it can give the flux-limit property, although slightly
different from FP numerical result. It is reasonable to extend it to the case of multi-
group electrons, where electron velocity distribution is divided to N group and the
propagator is defined as function of the velocity. Then, the preheating by long mean-
free-path electrons can be included in the model as well as the flux-limiting property.
There have been proposed several methods for such modeling, however, the
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difference is mathematical method. Therefore, the idea on how to extend it to the
multi-group case is explained for so-called SNB model by Schurtz, Nicolai, and
Busquet [15].

Before explaining the derivation of SNB model, it is useful to see the comparison
of SNB model to FP and SH results. In Ref. [16], the models are compared to the
situation relating to the laser plasma. In Fig. 6.9, “Heat bath problem” is shown at
t = 80 ps after starting with the red curve of the temperature. The black is FP and
blue is SNB result. It is well seen that the preheating is well given as that by FP
calculation. The heat flux at this point at 10 ps is plotted in Fig. 6.10. The black is
SH, red is FP and blue is SNB models, respectively. This result explains the flux
limit and preheating well. The peak flux is limited compared to the SH model and the
pre-heating in the region for x > 500 pm is reasonably predicted by SNB model.
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Fig. 6.11 The velocity 2.0x10"7 -
dependence of v°f; at the
point of x=500mm at the
time of previous two figures.
Near this point the
preheating by higher
velocity electrons becomes
important in K2 (VFP)
simulation and SNB model
can well reproduce such
preheating as shown with
the blue line. Reprint with
permission from Ref. [17].
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The velocity dependence of heat flux is compared in Fig. 6.11 for SH (black), FP
(red), and SNB (blue) models at the heat front x = 500 pm at 10 ps. The f; of SH is
calculated with (6.31) and the sign change around v = 0.05c, and this is less
evaluation of the preheating by high-energy electrons from the high-temperature
region. FP shows enhanced component of heat flux by higher energy electrons, and
this is well reproduced by SNB model.

In SNB model, the electron heat flux is given as the sum of all velocity groups,
consequently the property of long mean free path of high energy electrons are well
reproduced. Let us consider the physics of SNB model. Note that SNB model is now
used widely in modern hydrodynamic simulations.

6.5.1 Derivation of SNB Model

The basic equations for deriving SNB model is the same as (6.17) except for the
collision operator. Assuming scattering frequency without energy change v,; and
electron-electron thermalize frequency ve., the Oth and 1st moment equation to the
angle p are derived as follows [17, 18].

0 E 0
% afl - 3;‘)2 v (szl) = — 2, (f() _fg[) (6'76)
0 E 0
vacfo— S 5ofo= —vafy (6.77)

Different from SH derivation, SNB model assumes the following form to the
electron distribution function.

fo=ro +df

6.78
="+ (678
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The SH has assumed ofy = 0 and &f; = 0. In order to include the flux limit and
non-local preheating effects, SNB model derives new equations to obtain the
perturbations for 8f, and 8f; with reasonable assumption. Since the £;™ in (6.78) is
defined by (6.18), a relation to &fy and &f; from (6.77) is derived to be.

0 eE 0
Va5fo— ﬁ a5f0: — Veilf | (6.79)
where E is given by the SH relation (6.21) and by including the density gradient it is
give as

T, On oT.,
E=-==° < 6.80
ne 0x Ox (6.80)
where the coefficient g is a function of the ion charge Z in the form [15].
_ 3(Z +0477)
1=tz 209 (6:81)

The Z-dependence is derived due to the change of ration between ion and electrons
in the scattering coefficient v,; in (6.77).
Define the two mean-free paths for an electron with velocity v in the form.

Aee = . /1€i - (682)

, =
Vee Vej

SNB strategy is to delete the velocity derivative term with an intuitive way. It is clear
that the second term at LHS in (6.79) is the acceleration or deceleration by electric
field. The high energy electrons are decelerated by the ambipolar electric field E and
the return current electrons are accelerated. Since the dynamics of the high-energy
electrons is important in the transport modeling, the second term works as an
deceleration and it can be modeled as the increase of the collision frequency as [15].
_%:%+‘M
y) ; ei 1 / 2}1’!\/2

e

(6.83)

Note that (6.83) is not appropriate if the E-field dominantly accelerate electron. In
SNB model, the deceleration of high-energy component limiting the heat flux is
mainly taken account with (6.83). Equation (6.79) is reduced to the following form.

12 oy + o, =0 (6.84)

In SH derivation, only the relation (6.77) is used to derive the f; as in (6.18).
However, we have to solve (6.76) at the same time as the second relation for ofy
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and of;. In addition, as is explained later, the return current effect is neglected in the
formulation and (6.76) is modified to the following relation;

}vee a _ j'ee' a M
oo+ ¢ 55f1——?581 (6.85)

The function g is a modified form of f%' to be explained later. Inserting (6.84) into
(6.85), it is easy to obtain ofy and 5f; numerically.

In order to know qualitative property of the solutions, discuss about the case with
constant mean free paths in space. Then, (6.85) is written in a form;

62
a 2 f 6f0_ ( )
)y O
Senx) = — A7 gl (6.86)
fechsy)
A=\"% -

where the source term S is a function of x for a given velocity v in the form and we
introduced an effective mean free path A(v). It is easy to formally solve (6.86) in the
form.

S o(x,v) = @/0@ S(X',v) exp (— |xlzvj)d|)dx’ (6.87)

— 00

Let us consider how flux limit and nonlocal preheat are modeled in this SNB
transport model. As seen in Fig. 6.6, the flux limit appears when the mean free
path becomes long to approach the temperature gradient scale, namely A/Lt becomes
of the order of unity. Let us assume that this condition means the first term becomes
larger than the second term in LHS of (6.86). In such condition, we can obtain the
following approximate relation from (6.85).

o~ =g (6.88)

As the result, fi — 0 to result a strong flux limitation from (6.78).

On the other hand, the opposite condition /Lt >>1 is satisfied especially for the
high energy component of electrons. Such component has long mean free path in
(6.86) and the hear flux from the heating region propagates to the heat front region.
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6.5.2 Multi-group Heat Flux

In SNB model, the heat flux is defined as a sum of multi-group heat fluxes. Let us see
the definition of the heat flux by the velocity component (v,_;, vg), where g is an
integer of each group of velocity. Each group g also corresponds to the normalized
energy group f,, where = mv*T,.

Since the effect of electric field to prevent the heat flux is taken into account as
(6.83), the electric field in (6.18) is neglected and the form (6.30) is more simplified
as

=200 g —ayy (6:59)
gt = 0= g (6.90)

In SNB model, the total heat flux g5 is given as the sum of N groups due to g}/ and

o

g = ZQ, + 0 (6.91)
i=1
where
= 271'Tm ' g dv (6.92)
Vi
0, =2 [ s viay (6.93)

Vi—1

Note that the first term is written also as

0 =g / petip =30 =g (6.94)

The total flux is given by Spitzer-Harm heat flux (6.25) and 1/24 is the normalization
factor. By replacing lew with g}/, the total heat flux is the same as Spitzer-Harm one,
while the maximum in the integral of (6.94) becomes § = 4. This means the mean
free path of electrons carrying the maximum heat is 4 = 324,, the recommended
value for the LMV model [11].

It should be noted that Q5 modify the heat flux due to the electron components
with long mean free path as can be guess from the propagator form. This term
reduces the heat flux as flux limiter and provides heat flux by electrons of long mean
free path, namely pre-heating is given by this new term.
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Fourier spectrum of the transport propagator shown in Fig. 6.7 is calculated for
SNB model and other models. They are compared in Fig. 6.12 to the other numerical
models [18]. The results of VFP code KIPP is shown. Compared to the VFP result,
the simple SNB model is found to reproduce the result well. The other data are
explained in [18]. Considering the computation time, the SNB is very convenient,
especially modeling the effect of flux limit and preheating in hydrodynamic simu-
lation code. Note that r = 2 is a coefficient of modeling electron-electron collision
which is approximated with a simple form in (6.76). It is reported that using BGK
collision operator with r = 2 gives a good agreement with VFP calculation.

The multi-group diffusion model “SNB model” is widely used in several ICF
codes such as Lawrence Livermore National Laboratory’s HYDRA, CELIA
laboratory’s CHIC, CEA’s FCI2, DUED (U. Rome), and the University of Rochester
Laboratory for Laser Energetics’ LILAC and DRACO [18]. It is also applicable to
multi-dimensional space codes with magnetic fields [19].

Transport codes are compared in the background hydrodynamics obtained with
HYDRA code. Gadolinium hohlraum containing a typical helium gas is heated by
laser and the density and temperature profile at t = 20 ns are used as the initial
condition of each code. After 5 ps run of simulation codes, the heat flux profiles are
plotted in Fig. 6.13 [18]. In Fig. 6.13, “Local” is the heat flux calculated with
Braginskii formula, which is equivalent to Spitzer-Harm heat flux. Two models of
SNB are shown. It is clear that the SNB model provides well the property of flux
limitation near the heating region and preheating character near the heat front as
predicted by VFP simulation code IMPACT.
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Fig. 6.13 Heat flux distribution near the ablation front of high-Z material. VFP simulation result is
shown with green line. It is typical that the maximum of heat flux is limited and the preheating tail is
given. The SH extremely over-estimates the heat flux as shown in the dashed line. The model SNB
with multi-group is more reasonable and the flux limitation and preheating are well modeled.
Reprint with permission from Ref. [19]. Copyright 1998 by American Institute of Physics

6.6 Comparison of SNB Model to Two Different
Experiments

By use of Thomson scattering diagnostics, electron distribution functions are measured
in a model experiment of aluminum plasma ablating into the vacuum. An aluminum
foil is irradiated with six beams 3w laser with 2 ns pulse width and for the diagnostic
probe 2w laser is used [20]. The five points of ablating plasma are measured for
Thomson scattering. In the present case, the scattered spectral shape is used to
determine the electron distribution function at each point. The measured electron
temperature and density are 1 ~ 1.3 keV and 0.5 ~ 1x10*° cm >, respectively.
Speculated density scale lengths are in the range A,/L;= 1.4 x 1072 ~7 x 10°.

In the analysis of Thomson scattering data, the following spectral density function
S(k,w) of electron plasma contribution is used at high frequency region, where the
ion contribution can be neglected. Note that the previous experiment in Chap. 6.4
has used only the ion acoustic wave contribution in low frequency region, and
therefore only the information of electron temperature is inferred from Thomson
data. The spectral density function by electron plasma is given as [21].
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_ 2z fo(o/k)
Slle,0) = = ) (6.95)

where f,(w/k) is the one-dimensional electron distribution function and ¢(k, ) is the
dielectric constant of electron plasma wave.

The Thomson scattering is dominated by the contribution of the plasma waves
satisfying the dispersion relation (resonance condition),

ek,w)=0 = wk)= xor(k) + iy, (k) (6.96)

The electron plasma wave is called Langmuir wave with the frequency w; (k). In
general, the resonance solution is complex as in (6.96) and the imaginary part y; (k)
is due to wave damping by Landau damping process. It is well known that the
Landau damping is proportional to a velocity derivative at the resonance speed,
y1(k) o< Of,/Ov at v = wr /k. By use of these theoretical relations and compare them to
Thomson scattering spectra, it is possible to obtain the local electron distribution
function in non-Maxwell form. This data also provides the electron density and
temperature values at the scattered five points in the experiment.

In Fig. 6.14, the resultant heat flux obtained by the Thomson scattering data
(TS) is shown with red circles (The detail of TS principle will be discussed in
Chap. 9). Spitzer-Harm heat flux is also shown with use of the temperature distri-
bution at the five points as (SH) with blue triangles. In order to check the validity of
the nonlocal transport model SNB described in the previous section, a multi-group
simulation code has been used for the density and temperature profiles obtained in
the experiment. The SNB result is shown with black diamonds. The authors insists
that SNB nonlocal transport model cannot reproduce the experimental data and it is
about the halfway between SH and the experimental heat flux. I think this conclud-
ing remark is too strict for evaluating a robust nonlocal transport model such as SNB.
As we have studied in the previous section, SNB guarantees the preheating and flux
limit physics, while it is not so strict theoretical model to compare the form of
distribution functions.
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Fig. 6.15 Comparison of T T
the velocity dependent heat
flux at the point in the
experiment. Three curves
are from FP calculation
(dashed red curve), Spitzer-
Harm (solid blue curve), and
SNB (dotted black curve).
Reprint with permission
from ref. [21]. Copyright
1998 by American Physical
Society
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It is also informative to show Fig. 6.15 [20]. The velocity dependent heat flux
(6.22) is plotted for one point (1200 pm). Three curves are from FP calculation
(dashed red curve), Spitzer-Harm (solid blue curve), and SNB (dotted black curve).
It is not so meaningful to compare the distribution function of heat flux. Since the
introduction of the function g}/ instead of Spitzer-Harm fll'/’ in (5.15) has no
mathematical base and just to avoid too much negative component. So, in general
there may be other ways to replace fﬂ” to a convenient way for modeling nonlocal
transport. The reason why g}/ is introduced is that it guarantees the preheating effect
and the property of flux limit robustly.

It is difficult to say, therefore, that there is not seen an improvement of heat flux in
SNB model because it is almost the same as SH, but different from FP result. The
validity of SNB should be checked under the condition that the heat flux is strongly
inhibited like the flux limit and in the opposite case that the high energy electrons
penetrate into cold plasma region. In addition, it is noted that SNB requires to be
adjusted about the collisional modeling.

The preheating has been studied in relatively higher density plasma comparing to
the experimental data of plastic form plasma with the density near 0.1 g/cm® and
temperature near 30 eV [22]. As a tool to study such high-density plasma, so-called
warm dense matter (WDM), the authors used X-ray Thomson scattering diagnostic
to obtain the electron temperature, density, and ionization state by comparing x-ray
spectrum with theoretical one, by varying the plasma parameters. The target is made
of plastic, gold, aluminum and plastic form layers to observe the preheating effect in
the plastic form layer.

In the experiment, preheating of the expanding form plasma was observed and a
variety of simulations have been carried out to find the physical source to give
preheating to the form region over the high-density plasma region. Even with detail
opacity and radiation transport, it was not possible to obtain enough preheating
energy flux to the form region. It was finally concluded that about 10% of the free
streaming heat flux from the shocked high-density region transfers large amount of
heat to preheat the preheat region more than 30 eV as shown in Fig. 6.16 [22]. It is



316 6 Non-local Transport of Electrons in Plasmas

4.5

6.0
4.0} 4.5°5 1120
{ _ 3.02
3.5k 8 1100 %
3.0} L% 5
& - ™ ] =
o 2.5} 200 225 250 0:9 ol =
8 e =
50 2.0} 60 =
< >
1.5¢ 40 %
1.0} =
5 b 20
0. o Lplastic Al ,pusher, 0
=50 100 150 250
z [pm]

Fig. 6.16 A multi-layered target is heated by laser to find the preheating in the rear side of the
target. The enhanced temperature has been measured as preheat in CH foam region in the
experiment and computationally reproduced by including non-local transport model. Reprint with
permission from Ref. [22]. Copyright 1998 by American Physical Society

surprising to know that the temperature of preheating region is higher than the
upstreaming region of the heat flux. It is unphysical in the local thermodynamic
equilibrium (LTE) thermodynamics. There should be some unknown physics at the
shock front, where the temperature decreases from the front to the rear of the shock
front, this means an entropy of plasma decreases by the shock wave. It is not clear
why such result is obtained in a nonlocal simulation, while one thing to be clarify is
that the contribution of electrostatic field at the shock surface.

As explained in modeling nonlocal transport, it is hard to model the effect of
electrostatic field even n one-dimensional system. In SNB model, the electric field is
included into an effective mean free path as shown in (6.83) and the electric field is
evaluated from the neutral current condition (6.21). Note that there is no density
gradient dependence and the force to electrons -eE is the direction of — dT./dx.
However, the electrostatic field at the shock front is in general given by the
Boltzmann relation;

1 (x) = 1o exp {e "J’}f)} = ey =T.In (’}%‘:) (6.97)

The potential jump at the shock front is more than Te (~20-30 eV) and most of the
electrons with energy more than egy, are reflected back at the shock front. The
evaluation of E field in any non-local transport is difficult issue.
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Vlasov equation is a powerful equation in studying waves, transport, turbulence, and
so on from view point of wave-particle interaction and non-Maxwellian plasmas. As
mentioned already, Vlasov equation is applicable only for collisionless physics in
plasmas. However, collisional effect cannot be neglected in some non-LTE plasmas,
especially plasma with strong heat flow and inhomogeneity of physical quantities.
Principally, of course, it is required to solve Boltzmann equation of (C.1) with
appropriate collision cross section. It is, however, not so easy to solve such
differential-integral equation directly. Such collision effect in plasmas is the same
as random walk or thermal noise widely seen in the nature. It is easy to use Fokker-
Planck equation used widely in non-equilibrium statistical mechanics.

Langevin to Fokker-Planck Equation

In order to clarify the intuitive image of the readers to Fokker-Planck equation, it is
better to start with a simple one-dimensional Langevin equation for a Brownian
motion in spatially uniform medium.

m ™ — v+ mR(1) (1)
Here the 1st term in RHS is the frictional force and the 2nd term is a random force,
Such equation is called stochastic differential equation. The governing equation to
the velocity distribution function P(v,t) defined as ensemble average probability
distribution in velocity space is given as follows as will be explained from now.
The ensemble average of any physical quantity of function V is defined by

(A(V)) = / " AW)P( ) (C2)

— 00

The random force R(t) in (C.1) is Markovian process with Gaussian probability to
given as

(R())=0. (ROR())=Ds(t ~1) (C3)

and the following relation is satisfied.

AW:/tMtR(t)dt (C4)
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(AW)=0 (C5)
(AW?) = DAt (C.6)

Expanding A(V) with Taylor series in velocity, the following relation is obtained

dA 1 d*A

el ea A 2, ... ]
aVly_vi (t)+2dv2 V()" + (C.7)

V=V(r)

A(V(t+Ar)=A(V(2)) +

Taking the ensemble average of (C.7) yields the following form

(A(V(1 + A1) = (A(V(1))) + <§§‘, o V@Ava)> +5
<d2A

X _
dv?

Taking finite difference of (C.1) and inserting AV(t) in (C.8) and keeping the term
proportional only to the Ist order of At, the following equation can be derived
finally.

AV(t)2> 4 (C.8)
)

V=Vt

d dA\ | D /d’A
Gamo)= (v g ) +5(4) (€9)
It is noted that the second term of RHS of (C.9) is remains as the 1st order because of

(C.6).
Return to the definition (C.2), (C.9) can be changed to the equation to probability
function P(v,t) as follows. The LHS of (C.9) is

AW ) :./OO A(v)%dv (C.10)

The 1st term of RHS of (C.9) is

dA © dA o 0
- Uf<V(t) dV> =— Vf[mva(v, )dv = vf[ ooA(V) > {vP(v,t)}dv (C.11)
Where partial integral is used with the assumption that P(co, ) = P(—oo,t) = 0.

<2’2‘2> _ / h di;;gﬂ P(v, t)dv = / h A(v)azgivz’t)dv (C.12)

— o0 — o0

The 2nd term of RHS is modified by using the partial difference two times. As the
result, (C.9) should be satisfied for any function A(v) only when the condition:
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OP(v,1)
ot

D 0°P(v.1)
2 0w

= uf% [vP(v,1)] + (C.13)
is satisfied. (C.6) is Fokker-Planck equation.

It should be noted that solving Fokker-Planck equation is exactly the same as
calculating an ensemble average for many test particles motioned by Langevin
Eq. (C.1). As a simple examples, Fokker-Planck equation is used to study any
Brownian motion, white noise in electric circuit, polymer dynamics, etc.

It is useful think about the case of stationary state of (C.13). Then, RHS of (C.13)
should vanish and the following relation should be satisfied after integrating it:

dP(v) 2u
T = - #VP(V) (C.14)

This can be easily solved to give

P(v)= exp (— %vz) (C.15)

This is the velocity distribution in the equilibrium state and should be Maxwellian
distribution, namely the diffusion coefficient in velocity space given in (C.13)
should satisfy the following condition.

D T

It is very interesting to compare the diffusion coefficient in velocity space (C.16) and
that in real space (5.71) which is called Einstein relation. Note that dependence on
the collision frequency is opposite. In a very collisional system, the diffusion in
velocity space is fast and get to be equilibrium soon, while in the real space it is very
slow to diffuse.

In plasmas, collision frequency is a strong function of the particle velocity and in
non-LTE plasmas the distribution function is not isotropic in 3-dimensional velocity
space. It is, therefore, difficult to directly use Fokker-Planck equation of (C.13). It is
now easier, however, to extend the above mathematical derivation from Langevin
equation to Fokker-Planck equation. Then, it is clear that the following Fokker-
Planck equation can be obtained in 3-diemnsional space of velocity.

apgt’t) _ % K%MW)} +;aj;vj{<“vﬁvf>p(v,;)} (C.17)

This expression is easily understood that RHS of (C.17) is an extension to 3 dimen-
sion of Taylor expansion and the form is derived with the same manner as (C.8),
(C.9), and (C.10).
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What Fokker-Planck equation says is that any random force in Brownian motion
reduces to the combination of the friction term and diffusion term.

It is noted that the probability function P(v,t) in (C.17) is the ensemble averaged
velocity distribution function in velocity space and it is exactly the same as the
velocity distribution function at each real space point as long as the collision is taken
place at a point and no change in r after each binary collision.

After a long algebra shown in [5], new functions and constant are introduced

r= Mzz—f;z InA (C.18)
H) = <’"+’”)/f ) g, (C.19)
G(v)sz/ng(vs)dvs (C.20)

Here g is a function of v and v, and given in [5]. It is noted that the definition (C.19)
and (C.20) are called the Rosenbluth potentials. It is well known that the Fokker-
Planck equation is reduced to the following form.

0 0 (0H 1. 22 %G
(Ef >m,,— ow (a—ka ) T2 5wy <—avkav,-f ) (€21)

It is known that the first term of RHS in (C.21) is the dynamical friction and the
second one is the diffusion term. The Fokker-Planck equation assumes only the
scattering by the binary Coulomb collision, therefore, in the system of two kind of
particles like fully-ionized ions and electrons, we have to solve the equation for
electron distribution function changing in time by scattering electron-electron(e-¢),
electron-ion(e-i) and for ion distribution by ion-electron(i-e), ion-ion(i-i). It is noted
that in the case of e-e and i-i scattering, (C.7) is a nonlinear equations to the
distribution function.

In order to see what happens to a test particle injected from the boundary due to
the Coulomb collision in a uniform plasmas, assume the distribution function of the
particle is a delta function.

fvt)=6{v—u(®)} (C.22)

Inserting (C.22) to (C.21) and taking the v moment of (C.21) lead the following
simple form.

=r = —y(u)u (C.23)
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The term with G vanish in partial integral process. Equation (C.23) clearly shows
that the term H gives the drag force and the frictional coefficient vy is calculated.
Fokker-Planck equation is more precise equations for the ion stopping discussed in
Sect. 4.8. In ion stopping simulation, however, the ionization process should be also
included in RHS of (C.21).

Fokker-Planck Equation in Maxwellian Scatterers

It is useful to show the explicit form of Fokker-Planck equation of (C.21) in the case
of the distribution of the scatterers is Maxwellian with temperature T and mass m;.

3

) =Pl =S exp(— ) (C24)
s
al= T (C.25)

Here ng are the number density of the scatterers.

X=agyw (C.26)

3/2

/ Te” dy=""erf () (C.27)

— 00 |y_x|

The Rosenbluth potentials is given in the flowing form by use of the spherical
symmetry in velocity space.

erf (x) = % / e Yy,
0

(C.28)
2
=1 , =—= 0
erf (x) (x—00), erf(x) N (x—0)
Here erf(x) is an error function defined as
H(v)= Zf (M) angr!? er_(x) (C.29)
my X
The G defined in (C.20) reduces
Zn, [ d 1
G =5 [ﬁ erf () + (5 +2¥) erf(x)} (C.30)
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It should be noted that since the Maxwell distribution is isotropic in velocity space
and depend only on the absolute value of the velocity, H and G reduce to functions
only on v as shown in (C.29) and (C.30).

If the distribution function of the scatterers is isotropic in the velocity space,
H and G can be given only functions of v. Therefore, the following convenient
relations can be obtained.

OH Ov 0H dH Ov

and

vc 26 _dG

ovov; 02 dv? (C.32)

The v derivative of H and G in (C.31) and (C.32) can be obtained explicitly as

i (4()) = e+ e =) (€33)
5_; [deZ;(X) + G* Zx)erf(X)] = x% {erf(x) - %e*] = ;y/(x) (C.34)

Here ¥(x) is defined as

)= g o) = 2o (€33)
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