
Chapter 6 
Non-local Transport of Electrons in Plasmas 

Abstract Since plasma is high temperature and the charge particles are running with 
high temperature, for example, at 1 keV, about the velocity of 109 (electron) and 
2 × 107 (ion) [cm/s]. Since Coulomb mean-free-path is proportional to (velocity)4 , 
higher velocity component transfers its energy over a long distance without Cou-
lomb collision. This is usually called as “non-local transport” and the traditional 
diffusion model in neutral gas cannot be applicable. In laser plasma, the locally 
heated electron thermal energy is transported into cold over-dense region 
non-locally. The best way to solve such problem is to solve Fokker-Planck equation, 
while it is time consuming and some theoretical models have been proposed and 
studied over the last four decades. The physics of such models are explained here 
and most recent model SNB is shown and compared to experiments. The difficulty 
of transport of charges particles such as electrons is how to include the effect of 
electrostatic field and magnetic field self-consistently. 

6.1 Spitzer-Harm Diffusion Model 

6.1.1 Model Equation for Diffusion 

Consider a simple equation describing time evolution of temperature. Assume that 
the particles carry the energy of plasma proportional to the temperature T. The 
plasma particles, mainly electrons, are assumed to be in random walk over every 
time interval Δt. The probability of the displacement during the time interval Δx is  
given as the probability density W(Δx, Δt). Then, the time evolution of the distri-
bution of the temperature T is governed by 

T x, tð Þ= 
1

-1 
W Δx,Δtð ÞT x-Δx, t-Δtð Þd Δxð Þ ð6:1Þ 

Note that for simplicity Δt is assumed constant. 
Under the condition that the spatial variation of T is gentle enough, (6.1) can be 

approximated with Taylor expansion to reduce to the form. 
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T x-Δx, t-Δtð Þ= T x, tð Þ-Δx 
∂T 
∂x 

þ 1 
2 

Δxð Þ2 ∂
2 T 

∂x2 
þ ⋯ ð6:2Þ 

In (6.1), the probability function W(Δx, Δt) is normalized, 

1

-1 
W Δx,Δtð Þd Δxð Þ= 1 ð6:3Þ 

It is also reasonable to assume that W(Δx, Δt) is an even function of Δx. 
Inserting (6.2) to (6.1), the following diffusion equation is obtained. 

∂ 
∂t 

T = 
∂ 
∂x 

χ 
∂ 
∂x 

T , 

χ = 
1 

2Δt 

1

-1 
W Δxð Þ  Δxð Þ2 d Δxð Þ  

χ = 
1 
2 
vΔx ) χ≈ 

Δxð Þ2 
Δt 

ð6:4Þ 

where < >  represents the ensemble average and we assumed that the space integral 
of T should be conserved. 

1

-1 
T x, tð Þdx=Q : const: ð6:5Þ 

This diffusion approximation is valid only when the following condition is satisfied. 

Δx 
T 

∂T 
∂x

≡ Δx 
LT 

< < 1 ð6:6Þ 

where LT is the scale length of the gradient of T. 
Let us consider that (6.4) is the energy diffusion by electron motion in plasma, the 

heat flux by the electron thermal motion should be in the form. 

qe = 
3 
2 
neχ Teð Þ∇Te ≈ neveλe∇Te = qFS 

λe 
LT 

ð6:7Þ 

where ve = (Te/m)1/2 , λe is the electron average mean-free-path, and qFS is the free 
streaming heat flux defined by 

qFS = neveTe ð6:8Þ
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The free-streaming heat flux is the maximum of the heat flux by all electron of 
Maxwell distribution in one–direction. If we integrate the heat flux it is 0.6 times the 
free streaming flux. 

In a historical paper by Spitzer-Harm [1], the mathematical formula of the 
electron heat conduction in fully ionized plasma was derived by starting with 
Fokker-Planck equation as we see soon. Its mathematical form is derived from the 
above simple model. Since the mean-free-path has the following relation, 

λe / T
2 
e 

ne 
ð6:9Þ 

The Spitzer-Harm heat flux qSH is given from (6.4). 

qe ≡ qSH = - κ0T
5=2 
e ∇Te ð6:10Þ 

where κ0 is a constant. This heat flux is already shown in (2.109). The heat flux of 
(6.10) has been widely used to describe the electron energy transport. 

6.1.2 Flux Limit 

In the early time 1970s of laser plasma research, it was found that the flux (6.7) is  
limited by the maximum much less than (6.8) and so-called flux limiter is proposed 
an ad hock method to be installed in simulation codes [2]. The flux-limiter was 
widely used in hydrodynamic simulations, because the temperature of the laser 
heated region becomes low without the flux-limiter to give higher absorption rate 
of laser via classical absorption as suggested in Chap. 2 in Volume 1. In the case 
where the flux-limiter is adopted in the simulation code, the heat flux propagating to 
higher density region is limited and the electron temperature in the absorption region 
becomes higher, consequently the absorption rate is suppressed. 

In laser produced plasmas, for example, it has been well recognized that a simple 
diffusive expression of electron transport given in (2.109) cannot be applicable. The 
phenomenon has been called flux-limit. In physics integrated computer simulation 
based on hydrodynamic description the flux-limiter f was artificially installed in 
order to avoid higher absorption rate and hydrodynamic efficiency. 

qL = f qFS, ð6:11Þ 

where f was evaluated to be 0.03–0.1 according to the difference of experiments. In 
hydrodynamic simulations, the following hear flus was modeled.
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Fig. 6.1 Bremsstrahlung 
x-ray emission spectrum 
obtained in a laser produced 
plasma experiment (solid 
circles). The time integrated 
spectrum has been 
compared to hydrodynamic 
simulation results with 
different flux limiters. 
Spitzer-Harm diffusion 
model ( f = 1) is far from 
the experimental spectrum, 
while with smaller flux 
limiter the data can be 
explained computationally. 
Strong flux limitation was 
suggested in the early time 
from such comparison. 
Reprint with permission 
from Ref. [2]. Copyright 
1998 by American Physical 
Society 

qeff = min qFL, qSHð Þ 6:12Þ 

or 

qeff = 
qSH . qL 
qSH þ qL , ð6:13Þ 

Then, the heat flow is small enough the Spitzer-Harm diffusion formula is used, but 
it is designed to limited by the limited flux. 

In Fig. 6.1, calculated Bremsstrahlung emission spectrum Iν versus photon energy 
hν for different value of the flux limiter f is compared to the experimental data (solid 
circles). It is clear that simulation without the flux limiter results very low temper-
ature in the Bremsstrahlung emission, while as the flux limiter increase hard x-ray 
emission reproduced as shown in Fig. 6.1. It is too early to conclude that in the 
experiment the flux is limited as f = 0.01–0.03. Such comparison of simulation to a 
variety of experimental results, however, had required to improve the mathematical 
model of the diffusion by electron heat conduction in high-intensity laser plasma 
interacting plasmas. 

6.1.3 Mathematical Derivation of Spitzer-Harm Diffusion 

In order to know the reason for the flux limit and the limiting condition of the validity 
of the diffusion approximation (6.10), let us repeat the mathematical process for 
deriving the diffusion model for the electron heat conduction.



ð
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Mathematical derivation of Spitzer’s heat flux can be done by starting with the 
following kinetic equation of Vlasov equation with Krook collision operator. 

∂ 
∂t 

f þ v .∇f -
e 
m 
E . ∂ 

∂v 
f = - νc f - f Mð Þ 6:14Þ 

where E is electrostatic field generated by charge separation due to electron motion 
by heat flux and fM is local Maxwell distribution. The collision frequency νc is due to 
electron-ion and electron-electron collisions to be fixed so that they are derived by 
Fokker-Planck equation as a function of velocity as shown later. 

In solving (6.14), space dependence is assumed one-dimensional in the 
x-direction and the velocity distribution function is assumed to consist of two 
terms; the isotropic component and the small anisotropic component. 

f x, v, μð Þ= f 0 x, vð Þ þ μf 1 x, vð Þ ð6:15Þ 
μ= cosθv ð6:16Þ 

where f0 and f1 are functions of only the absolute value of the velocity in v-space. 
The angle dependence of the velocity space is assumed only by θv, velocity angle 
along the x-direction as shown in Fig. 6.2. Inserting (6.15) to (6.14) yields 

∂ 
∂x 

vμ f 0 þ μf 1ð Þ½ ]- e 
m 
E 

∂ 
∂v 

μ f 0 þ μf 1ð Þ½ ]

þ e 
m 
E 
1- μ2 

v 
f 1 = -

v 
λc 

f 0 - f M þ μf 1ð Þ  
ð6:17Þ 

where λc = v/νc is an effective mean free path for electrons with the velocity v. 

Fig. 6.2 Schematics of 
electron velocity 
distribution function to be 
modeled for Fokker-Planck 
equation, where 
non-uniformity of 
temperature is assumed to be 
in the x-direction and the 
velocity distribution is 
axially symmetric along the 
x-velocity axis. Space 
one-dimension and velocity 
space two-dimension are 
assumed
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Taking the moment of velocity angle 1
- 1dμ of (6.17), the first order distribution 

function is obtained as 

f 1 = - λc 
∂ 
∂x

-
e 
m 
E 
v 
∂ 
∂v 

f M 

= -
λc 
Te 

eE þ 1 
2 

mv2 

Te
- 3 

∂Te 

∂x 
f M 

ð6:18Þ 

where f0 is assumed to be a local Maxwellian fM and the density is assumed to be 
uniform. 

The electron current density is defined as 

je = - e vxf d
3 v= -

4πe 
3 

1 

0 
v3 f 1dv ð6:19Þ 

Inserting (6.18) into (6.19), the current density is obtained in the form. 

je = σE- β 
dTe 

dx
ð6:20Þ 

where σ is the electron conductivity and β is the coefficient of thermal current. 
Note that the coefficients σ and β are functions of the temperature. Once there is a 
current flow in one-dimensional system, charge separation takes place. It is better to 
assume that this charge separation is induces the return current to keep the current 
neutral condition. Requiring the current neutral condition, the electric field is given 
in the form. 

E= 
β 
σ 
dTe 

dx
ð6:21Þ 

The electron heat flux is calculated as follows. 

qe = 
m 
2 

v2 vxf d
3 v= 

4πm 
6 

1 

0 
v5 f 1dv ð6:22Þ 

Inserting (6.18) into (6.22) and eliminating E with (6.21), the heat flux (6.22) can be 
obtained in the form. 

qe = γje -Ke 
dTe 

dx
ð6:23Þ 

where γ is a constant and Ke is the electron heat conduction coefficient. Requiring 
the current neutral condition, the electron heat flux is given in the form: 

qe = -Ke∇Te ð6:24Þ
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In the precise calculation including electron and ion contribution to the effective 
mean-free path in (6.18), the heat flux derived by Spitzer-Harm has the following 
form [3]. 

qSH = -
128 Z þ 0:24ð Þ  
3π Z þ 4:2ð Þ  λSHneve∇Te ð6:25Þ 

where λSH is the Spitzer-Harm mean free path, 

λSH = 
3 

4 2π
p 

Z 

1 
neb

2 
0lnΛ

ð6:26Þ 

where the Coulomb impact radius defined in Chap. 2 in Volume 1 is given as b0 
satisfying the relation. 

e2 

4πε0b0 
=mv2 e = Te ð6:27Þ 

In (6.25), the Z is the charge state for partially ionized plasma and the Z-dependence 
of the coefficient stems from the different ratio between the electron and ion 
contribution to Coulomb scattering. It is useful to express the form (6.25) as  

qSH = - a0 
λSH 
LT 

qFS ð6:28Þ 

where a0 is the coefficient in (6.25) and qFS is called free-streaming flux defined as 

qFS = neTeve ð6:29Þ 

This free-streaming energy flux is frequently used as normalization value for elec-
tron heat flux. This is almost the maximum flux by the half of Maxwell distribution. 
So, any model for heat flux cannot be larger than qFS. This indicates that the mean-
free-path should be much shorter than the temperature gradient scale LT defined in 
(6.6). 

It is useful to note that the maximum electron heat flux is in general much smaller 
than the free-streaming flux for example as seen in Fig. 6.1. This is because the 
strong heat flux induces the electrostatic field inhibiting the large heat flow goes to 
one direction. The charge separation is very important to reduce the heat flux 
compared to the free-streaming value. This is not the case for charge neutral particles 
like photons as will be explained later in this Chapter. In the case of photon emission, 
it is easily seen near the plasma boundary that almost all photons flow freely in one 
direction.



292 6 Non-local Transport of Electrons in Plasmas

6.1.4 Breakdown of Diffusion Approximation 

We have to be careful that Spitzer-Harm diffusion formula of the electron heat flux 
derived in (6.24) has been obtained in (6.18) with the assumption that 

f 0 ≫ f 1j j ð6:30Þ 

Inserting (6.21) into (6.18) it is possible directly evaluate the condition (6.30) for f0 
being Maxwellian. 

f 1 
f M 

= 
λc veð Þ  
LT 

v 
ve 

4 
v 

2
p 

ve 

2

- 4 ð6:31Þ 

where LT is the gradient scale defined in (6.6). 
It is clear that the distribution function becomes negative for the case of |f1/f0| > 1. 

The velocity dependent heat flux v5 f1 in (6.22) is found to have its maximum at 
v = 3.4ve. Since the heat flux is the integral of large power of the velocity, the 
maximum heat flux is mainly due to the electrons with the velocity more than the 
thermal velocity. The effective mean free path of such electrons is (3.4)4 ~ 102 time 
longer than the SH mean free path in (6.26). Inserting v = 3.4ve to (6.31), it is found 
that the perturbation of the distribution become larger than the Maxwell distribution 
|f1/f0| > 1 at the value of the mean free path. 

λc veð Þ  
LT 

ffi 4× 10- 3 ð6:32Þ 

This means that the SH heat conduction model cannot be applicable for the 
temerature gradient shorter than that in (6.32). This is usual case of laser produced 
plasma, where laser heating energy is carried by heated electrons from near the 
cut-off density to the solid density surface. It is essential to model the heat flux in 
another way. 

6.2 Vlasov-Fokker-Planck Equation 

6.2.1 Boltzmann Equation 

Boltzmann equation is a kinetic equation of particles under collisional process. It is 
well known that in case of highly ionized plasma Coulomb collision between ions 
and electrons can be approximated by Fokker-Planck differential form. It is better, 
however, to start from Boltzmann equation to show what approximation are used to



derive Fokker-Planck equation to study the electron energy transport in laser pro-
duced plasma. See Appendix-C. 
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Boltzmann equation is non-linear integral-differential equation and time-
consuming computation is required to solve numerically. Boltzmann equation for 
Coulomb collision system in plasma is formally given to be: 

∂f 
∂t 

þ v . ∂f 
∂r

-
e 
m 
E . ∂ 

∂v 
f = 

df 
dt coll 

= 
df 
dt 

ei 

þ df 
dt ee 

ð6:33Þ 

In RHS in (6.33), the collision terms of electrons with ions and with electrons are 
shown in the first and second terms, respectively. 

Derive the collision term with assumption that only binary collision is enough to 
derive the collision term. Then, assume that binary collision changes the velocities of 
two particles before and after the collision. Consider the collision term of the 
electron distribution function with velocity v changes its velocity to v’ by the 
collision of electron or ion with velocity vs changing it to vs’ after the collision. In 
what follows the subscribe “s” represents the both cases of collision with ion and 
electron. 

v, vsf g→ v0, v0 s ð6:34Þ 

The differential cross section of such binary collision σs(Ω) is given as the function 
of the relative orientation of the vectors v-vs and v′-vs′, the unit vector of which is 
defined as Ω. Of course, the functional form, σs depends on the collision opponent is 
an electron or an ion. Then, it is easy to understand that the collision term is given in 
the form. 

df 
dt coll 

= 
s= i,e 

dΩ dvsσs Ωð Þ v- vsj j  f 0f 0 s - f f s ð6:35Þ 

In (6.35), 

f ≡ f r, v, tð  Þ, f 0 ≡ f r, v0, tð Þ  
f s ≡ f s r, vs, tð Þ, f s 

0 ≡ f s r, v
0 
s, t

ð6:36Þ 

The collision term (6.33) gives the change of the distribution function f after the 
collision with another or same particle with distribution fs at the point r and time 
t. The term f’ fs’ represents the gain to v from v’ due to the collision with vs’. On the 
other hand, the term f  fs represents the loss from v from v’ after the collision with a 
particle with the velocity vs. Integrating by vs provides all contribution from the 
particle in plasma at (r,t) position by the other electrons and ions. Since the integrand 
should be the collision frequency, it is proportional to σs(Ω)|v - vs|. The scattering 
cross section is given by Rutherford scattering formula.
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6.2.2 Taylor Expansion of Collision Term 

In the Coulomb scattering, the velocity change |Δv| by one binary collision is 
sufficiently smaller than the velocity |v|. In such case, Boltzmann equation of 
(6.33) can be expanded with the small velocity change. When the probability density 
of the small change of Δv due to the scattering of the distribution of v is W(v, Δv), 
the following relation holds 

f v, r, t þ Δtð Þ= f v-Δv, r, tð ÞW v-Δv,Δvð Þd Δvð Þ ð6:37Þ 

It is important to note the physical difference of (6.1) and (6.33). In case of random 
walk in real space (6.1), the mean random step <Δx> can be easily break the 
condition for approximation (6.6) and the breakdown of the diffusion approximation 
appears as in Spitzer-Harm model. However, the random scattering in the velocity 
space is always valid as long as Coulomb scattering is considered. So, it is expected 
that Taylor expansion of (6.37) is applicable even to the case with steep temperature 
gradients. This is because the velocity change in most of Coulomb scattering is due 
to small angle scattering. 

In what follows, only the change of distribution function of electrons by the small 
angle scattering is formulated for simplicity. Assuming small angle scattering and 
considering that the distribution function change with short time interval Δt, (6.37) 
reduces to the Taylor expansion form to Δt and Δv in the form. 

f v, r, t þ Δtð Þ  = f v, r, tð ÞW v,Δvð Þ-Δv . ∂ 
∂v 

f v, r, tð ÞW v,Δvð Þ½  

þ 1 
2 

i k 

ΔviΔvk 
∂2 

∂vi∂vk 
f v, r, tð ÞW v,Δvð Þ½ d Δvð Þ  

ð6:38Þ 

From (6.38) the collision term in a differential form to Coulomb interacting system is 
obtained. 

df 
dt 

coll 

= 
∂ 
∂vi 

Δvi 
Δt 

f v, r, tð Þ  þ 1 
2 i k 

∂2 

∂vi∂vk 

ΔviΔvk 
Δt 

f v, r, tð Þ  ð6:39Þ 

where <  >  represents the ensemble average of the terms. In case of one-dimension 
in the real space, the velocity space can be approximated axial symmetric with the 
axis of the inhomogeneous direction as shown in Fig. 6.2. The velocity space is 
two-dimensional in the cylindrical coordinate system (vr, θv). The characteristics of 
Fokker-Planck equation are as follows:
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1. The distribution function never becomes negative, 
2. The equation satisfies the conservation of particle, momentum, and energy 

locally. 
3. It satisfies Boltzmann’s H-theorem. Even starting from any distribution function, 

the final distribution function becomes Maxwellian in LTE condition. 

6.2.3 Derivation of Fokker-Planck (FP) Equation 

What Fokker-Planck (FP) equation says is that any random force in Brownian 
motion reduces to the combination of the friction term and diffusion term. 

After a long algebra shown in [4, 5], FP equation is found to have the following 
form. 

∂ 
∂t 

f 
coll 

= -Γ 
∂ 
∂vk 

∂H 
∂vk 

f þ 1 
2 
Γ 

∂2 

∂vk∂vj 

∂2 G 
∂vk∂vj 

f ð6:40Þ 

where G is derived from Rutherford scattering cross section and H and G are given as 

Γ = 
Z2e4 

4πε2 0m
2 
lnΛ ð6:41Þ 

H vð Þ= Z2 
s 

mþ ms 

ms 

f s vsð Þ  
v- vsj j dvs ð6:42Þ 

G vð Þ= Z2 
s f s vsð Þ  v- vsj jdvs ð6:43Þ 

It is noted that the definition H and G are called the Rosenbluth potentials [6]. 
It is known that the first term of RHS in (6.40) is the dynamical friction and the 

second one is the diffusion term in the velocity space. The Fokker-Planck equation 
assumes only the scattering by the binary Coulomb collision, therefore, in the system 
of two kind of particles like fully-ionized ions and electrons, we have to solve the 
equation for electron distribution function changing in time by scattering due to 
electron-electron (e-e), electron-ion (e-i). It is noted that in the case of e-e scattering, 
(6.40) is a nonlinear equation to the distribution function. 

6.2.4 Linearized FP Model 

It is time consuming to solve exactly (6.40) at each time step in FP computer 
simulation. It is better to consider some approximation to make numerical method



much easier in solving (6.40). For the present problem of electron heat transport, the 
following two assumptions can be adopted. 
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1. In the collision with the ions, it is assumed that mi > >  me and energy transfer 
between electron and ions is neglected. This means the ions are regarded to be 
particles at rest. Then, the ion collision contributes to only the momentum change 
and no energy change of scattered electrons. 

2. The nonlinear term in calculation of H and G in (6.42) and (6.43) are assumed by 
replacing fs is local Maxwell distribution. In addition, |v- vs|is replaced with v in 
the both definitions. This is valid because the electron heat transport is sensitive to 
the collision of large v component by the electron with lower energy. 

The 1st and 2nd derivatives in velocity space (6.40) can be separated to the changes 
in the absolute value of v (energy) and the scattering to perpendicular direction 
without changing energy. The former is only due to electron-electron scattering and 
the latter is due to both. It is possible to separate them into two parts as shown below. 

The scattering term can be given as 

df 
dt ei,ee 

= 
s= i,e 

∂ 
∂v⊥ 

Ds 
∂ 

∂v⊥ 
f ð6:44Þ 

df 
dt ee 

= 
∂ 
∂vk 

Fef þ De 
∂ 
∂vk 

f ð6:45Þ 

In what follows, the distribution function is assume to be cylindrically symmetric in 
the velocity space along the x-direction, where the plasma parameters change in 
space locally in the x-direction. 

By use of Taylor expansion with care of the fact that hear flux is due to high 
velocity component, while the collisions are mainly with electrons with relatively 
low velocity, the following approximated linear form of Fokker-Planck equation is 
obtained 

∂ 
∂t 

f þ vμ ∂ 
∂x 

f -
e 
m 
E μ 

∂ 
∂v

þ 1- μ2 

v 
∂ 
∂μ 

f 

= 
v 

2λS vð Þ  
∂ 
∂μ 

1- μ2 
∂ 
∂μ 

f þ v2 

λf vð Þ  
∂ 
∂v 

ve 2 

v 
∂ 
∂v

þ ∂ 
∂v 

f 

ð6:46Þ 

The angle of the velocity space is replaced with a definition 

μ= cos θ ð6:47Þ 

It is noted that the following formula was used in (6.46).
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∂ 
∂vx 

= μ 
∂ 
∂v

þ 1- μ2 v- 1 ∂ 
∂μ

ð6:48Þ 

In the RHS of (6.46), the first term is the effective mean free path by scattering. 

λS vð Þ= 
m2v4 

4πne Z þ 1ð Þe4 lnΛ ð6:49Þ 

This is due to the scattering of electrons by ions and background electrons. The 
second term is due to the frictional force among electrons. 

λf vð Þ= 
m2v4 

4πnee4 lnΛ 
= Z þ 1ð ÞλS vð Þ½ ] 6:50Þ 

It is mathematically clear that the 1st term in RHS of (6.46) is diffusion in angular 
space without energy change, while the 2nd term is the change in v-space with 
change of energy. It is noted that the RHS of (6.46) disappears when the electron 
distribution function is a Maxwellian distribution with thermal velocity ve. The 
second term in (6.46) is derived by assuming that the counter electrons are in local 
Maxwellian. 

In order to check the validity of several heat conduction models, it has been done 
to solve directly the FP equation numerically as reference case. The property that the 
Legendre functions is the eigen function of 1st term of RHS of (6.46) has been well 
used. The distribution function is expanded by Legendre polynomial as follows: 

f = 
N 

n= 0 
f n x, v, tð ÞPn μð Þ ð6:51Þ 

Inserting (6.51) into (6.46) and using the following mathematical formula to Legen-
dre function. 

μPn = 
1 

2nþ 1 n þ 1ð ÞPnþ1 þ nPnþ1½ ]

μ2 - 1 
∂ 
∂μ 

Pn = n μPn -Pn- 1ð Þ  
∂ 
∂μ 

1- μ2 
∂ 
∂μ 

Pn = - n nþ 1ð ÞPn 

ð6:52Þ 

It is possible to make (6.46) as functions only proportional to Legendre function 
regarding the terms including μ. Comparing the term proportional to the same order 
of Legendre functions, the following coupled equations are obtained.



298 6 Non-local Transport of Electrons in Plasmas
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ð6:53Þ 

This can be numerically solved by coupling with Poisson equation. 

ε0 
dE 
dx 

= 4πene f d3 v- 1 ð6:54Þ 

FP equation shown in (6.53) looks like linear coupled equations for fn (n = 0 ~  nmax), 
where nmax is the maximum number of n to be solved. However, the electrostatic 
field generated by the electron heat flux is given by the sum of all Legendre 
component fn, consequently for example some iterative process is required to obtain 
at each time step consistently. In addition, very fast oscillation by plasma waves is 
also generated by charge separation. In order to weaken such oscillation effect, some 
idea is required in numerically solving (6.53) and (6.54). 

FP Eq. (6.53) has been solved numerically with numerically reducing the plasma 
oscillation frequency [7]. The plasma is initially uniform in density and temperature. 
The temperature in the region around the one boundary is quickly heated to 4 times, 
and the time progress of heat flux and temperature have been calculated. The 
Legendre components up to n = 8 have been solved in (6.53). In addition, Poisson 
equation is solved with an artificial fraction r = .0011 as a factor in RHS in (6.54). 
Plots of temperature <v2 > and heat flux <v2 vx> as function s of space x at three 
different times are shown in Fig. 6.3. It is seen that the heat flux is maximum near the 
heated region and the heat flux propagates from the left to the right in time. 

In Fig. 6.4, the calculated heat flux is plotted at two typical time with symbols 
(x) and (o) as functions of the local temperature gradient length L (=LT) normalized 
by the local mean free path λ. The hear flux Q by FP calculation is normalized by the 
local free streaming flux Qf = qFS defined by (6.8) in the vertical axis. In Fig. 6.4, the 
solid line is the relation of heat flux by SH model (6.24). It is found that the heat flux 
is saturated around 0.1 qFL for λ/LT < 0.01 in the FP calculation. In the next paper by 
Bell, he has carried out FP simulation for the density and temperature profile more 
realistic to the laser ablation plasma. He found the flux limitation of about f = 0.03 
for λ/LT < 0.01 [8]. 

It is noted that the flux limit factor in Fig. 6.1 seems to be f = 0.02–0.01 for the 
best fit to the experiment, but the flux limiter is an ad hoc parameter and a different 
limiter may happen depending on the plasma parameters. These fact means SH 
diffusion model is not acceptable even in a simple model for the sharp temperature 
gradient satisfying λ/LT < 0.01, and it is required to derive another heat flux model 
easily installable into hydrodynamic simulation code. This will be discussed soon.
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Fig. 6.3 Time evolution of an effective temperature hv2i and heat flux hv2 vxi obtained by a model 
simulation for Fokker-Planck equation of electron in constant density. At the left boundary, the 
effective temperature is kept four times of that at the right boundary. The heat wave propagates from 
the left to right. Reprint with permission from Ref. [7]. Copyright 1998 by American Physical 
Society 

Fig. 6.4 The heat flux of Fokker-Planck simulation normalized with the free streaming flux is 
plotted at two different times as a function of measured temperature gradient length divided by the 
local electron mean-free-path. The solid line is the relation of Spitzer-Harm (SH) diffusion. The 
simulation data are higher than SH flux near the front of the heat flux, while it is automatically 
limited around f=0.1 to change to the reduced flux in the higher temperature region. This indicate 
that the local assumption of heat flux defined with the first derivative to space x is not valid. Reprint 
with permission from Ref. [7]. Copyright 1998 by American Physical Society



300 6 Non-local Transport of Electrons in Plasmas

Fig. 6.5 The double functions in Fig. 6.4 stems from the non-Maxwell distribution of f0(v). The 
distribution functions obtained by solving FP equation in more relativistic density and temperature 
profiles are shown. (a) and (b) are the distribution functions at the laser heated low density region 
and the heat wave front in the high-density region, near the ablation front, respectively. Reprint with 
permission from Ref. [9]. Copyright 1998 by American Physical Society 

Not only the limitation of the electron heat flux, but also the hysteresis of the heat 
flux is also seen in Fig. 6.4. Especially, the heat flux is enhanced than SH flux at the 
heat front region, right region in Fig. 6.3. Enhanced heat flux is due to the high-
energy component coming into the cold region from the hotter region, because the 
mean free path with velocity v is proportional to v4 and high-energy components 
freely penetrate in the front region. Such component contributes the preheating of 
cold region. It is very important if the absorbed laser energy is carried by heat flux, 
while the high-density and cold region has to be controlled to as cold as possible. 

The hysteresis property stems from the non-Maxwell distribution of f0(v). The 
distribution functions obtained by solving FP equation in more relativistic density 
and temperature profiles are shown in Fig. 6.5 [9]. Figures (a) and (b) are the 
distribution functions at the laser heated low density region and the heat wave 
front in the high-density region, near the ablation front, respectively. The distribution 
function near the heating region has less high-energy component than the local 
Maxwell distribution, therefore the heat flux is reduced than SH model. On the 
other hand, near the heat front with enhanced high-energy component is produced by 
electrons coming from the heated region without enough scattering. This enhances 
the heat flux than SH model in the cold region. This is called preheating. 

Since FP simulation is time consuming calculation and is not realistic to couple it 
with hydrodynamic codes. There have been proposed better modeling reproducing 
almost FP result with simple mathematical models. In what follows, such better 
models to provide the typical properties of the flux limitation and preheating are 
reviewed. As summary, the following two characters should be noted.
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1. Heat flux is limited in laser, hearting region because of the violation of SH model 
(flux limitation) 

2. Heat flux is higher than SH flux near the heat front region (nonlocal transport) 

6.2.5 Flux Limit Properties 

Before going to the advanced models for the electron heat flux in laser produced 
plasma, consider the difference of the heat fluxes mentioned so far from the FP 
simulation result. The reduction of heat conductivity in FP simulation has been 
studied by assuming sinusoidal temperature perturbation [10]. In this case, the heat 
diffusion with SH heat flux is solved numerically to compare to FP simulation result. 

3 
2 
n 
∂T 
∂t 

= -
∂ 
∂x 

qSH , qSH = - κSH 
∂ 
∂x 

T ð6:55Þ 

The initial condition is 

T 0, xð Þ= T0 þ δT 0ð Þ exp ikxð Þ ð6:56Þ 

From the time progress of heat conduction, it is clear that the relation 

δT tð Þ /  exp - γtð Þ ð6:57Þ 

is observed. The decay rate is directly related to the heat conduction coefficients for 
SH model and can be derived for FP simulation as follows. 

γSH = 2k2 κSH=3n, γFP = 2k2 κFP=3n ð6:58Þ 

Then, it is possible to define the following normalized value for measuring the flux 
reduction in FP simulation. 

κFP 
κSH 

ð6:59Þ 

The simulation result is plotted with solid circles in Fig. 6.6 [10]. In Fig. 6.6, the 
solid curve is a fitting curve and the relation is 

κFP 
κSH 

= 
1 

1þ 30kλeð Þ4=3
ð6:60Þ 

Further study showed that the FP simulation result can also fit with the following 
simpler formula [3].
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Fig. 6.6 Wavenumber 
dependence of an effective 
thermal conductivity 
obtained with Fokker-
Planck (FP) simulation 
normalized by the thermal 
conductivity used in SH heat 
diffusion model. FP 
simulation has been done to 
the sinusoidal temperature 
variation as initial condition 
characterized with the 
wavenumber k. It is clearly 
seen that the flux is limited 
for steeper temperature 
gradient case. Reprint with 
permission from Ref. [10]. 
Copyright 1998 by 
American Physical Society 

κFP 
κSH 

= 
1 

1þ 60kλe ð6:61Þ 

For long wavelength perturbation, the heat conductivity is well modeled with SH 
model, but the conductivity is strongly reduced at short wavelength perturbation. It is 
informative to compare this relation (6.61) to the case of flux limited heat flux easily 
calculated to be 

κFL 
κSH 

= 
1 

1þ f - 1 kλe 
ð6:62Þ 

It should be noted that the flux limiter f = 1/60 (=0.017) well reproduces the FP 
result. This value of f is consistent to the comparison with the experiment shown in 
Fig. 6.1. 

6.3 Flux-Limit and Nonlocal Models 

6.3.1 LMV Nonlocal Model 

In an early time, Luciani, Mora, and Virmont (LMV) proposed the following model 
expression for nonlocal transport [11]. Stationary state is assumed for the heat flux. 

qe xð  Þ= 
1

-1 
qe xþ Δxð ÞW Δx, xð  Þd Δxð  Þ ð6:63Þ
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The LMV nonlocal heat flux is given in the form after replacing the variable 
x’ = x +  Δx and approximating the heat flux in the integral with SH formula (6.10). 

qLMV xð Þ= 
1

-1 
qSH x

0ð ÞW x0, xð Þd x0ð Þ ð6:64Þ 

where the propagator (kernel) of the heat flux is defined [11]. 

W x, x0ð Þ= 
1 

2λ x0ð Þ  exp -
x 

x ′ 

ne x00ð Þ  
ne x0ð Þ  

dx00 

λ x0ð Þ ð6:65Þ 

The effective mean free path in the propagator is defined as 

λ= a λsλfð Þ1=2 
v= ve 

, a= 32 ð6:66Þ 

where λs and λf are velocity-averaged mean free paths calculated by scattering and 
friction given in (6.49) and (6.50), respectively. The coefficient “a” in (6.66) is the 
adjustable parameter and derived by comparison with FP simulations. 

6.3.2 Probability Density of Diffusion 

In order to investigate the physical property of the propagator of the heat flux model 
in (6.64), let us Fourier transform of the LMV heat flux qLMV in a uniform density 
and constant mean-free-path. 

qLMV xð Þ= 
1

-1 
W Δxð ÞqSH xþ Δxð Þd Δxð Þ ð6:67Þ 

where we assume for simplicity, 

W Δxð Þ= 
1 
2λ 

exp -
Δx 
λ

ð6:68Þ 

Fourier transformation of the propagator is defined as 

Ψ kð  Þ= 
1

-1 
W xð Þe- ikx dx ð6:69Þ 

Carrying out the Fourier transformation of (6.1), we can use of the convolution 
integral in Fourier transformation.
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G kð ÞH kð Þ= 
1 

2π
p 

1

-1 

1

-1 
g x- yð Þh yð Þdy e- ikx dx ð6:70Þ 

By use of the convolution relation, (6.67) can be easily transformed to Fourier 
relation. 

QLMV kð Þ=Ψ kð ÞQSH kð Þ ð6:71Þ 

where the Fourier function is defined as 

QLMV kð Þ= 
1

-1 
qLMV xð Þe- ikx dx ð6:72Þ 

The Fourier function of the propagator is the same as the heat conductivity ratio and 
the case of LMV model can be obtained as 

κLMV 

κSH
≡ Ψ kð Þ= 

1 

1þ kλð Þ2 ð6:73Þ 

where the following relation has been used. 

Ψ kð Þ= 
1 
2λ 

1

-1 
e- xj j=λ- ikx dx= 

1 
2 

1 
1þ ikλ -

1
- 1þ ikλ ð6:74Þ 

Although the physical meaning of the LMV model is easily understand and reason-
able to be used. However, the flux limit spectrum (means k-dependence) is different 
from FP calculation shown in (6.61). This is speculated that even with LMV model, 
the big difference of the mean-free-path on the velocity is not modeled. It suggests 
that it is better to develop the model for multi-group electron transport, where the 
heat flux is defined for each velocity component. 

In Fig. 6.7 [3], the normalized Fourier functions of the heat conductivity are 
compared for LMV model and FP result. The LMV model reduces faster than FP 
result for l/LT gets to large, too much heat flux is obtained. The other curve AWBS 
model is from [12] which has improved the LMV model, consequently better 
modeling. 

We have investigated how to improve SH heat conduction model to allow the flux 
limitation as suggested in experiment and FP simulation. However, even if the flux 
limitation is reproduced, the electron kinetic effect is also very important to provide 
the preheating effect. This should be also modeled in an appropriate conduction 
formula. For this purpose, we need a model allowing the difference of mean free path 
for difference of velocity of electrons. Let us see more modernized model for heat 
conduction by electrons.
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Fig. 6.7 Two different 
non-local heat flux models 
are compared to FP 
simulation result shown in 
Fig. 6.6. The integration 
form of heat flux LMV in 
(6.64) also reproduces the 
flux limitation property, 
while a difference is seen in 
the figure. AWBS model 
looks well reproduce FP 
simulation result. Reprint 
with permission from 
Ref. [11]. Copyright 1998 
by American Physical 
Society 

6.4 Comparison with an Experiment 

The nonlocal transport model and Fokker-Planck calculations have been compared 
to measured temperature profiles of electron temperature in laser heated nitrogen gas 
jet plasma [13]. Gas jet is irradiated with 1ω laser and the heat wave region are 
irradiated with a short pulse 2ω laser at the same time to measure Thomson scattering 
and Rayleigh scattering spectra of 2ω lights. The probe beam moves to cover the 
space of about 2 mm in front of the laser heating plasma region. Simply saying, the 
principle of Thomson scattering is as follows. The probe beam is scattered by the ion 
acoustic waves in the plasma and the probe beam is scattered with frequency shift 
which is the function of the dispersion relation of the ion acoustic wave. Since the 
ion acoustic wave has its phase velocity proportional to the square root of the 
electron temperature, the spatial profile of the electron temperature is inferred from 
the spatial profile of the phase shift [13]. 

In Fig. 6.8, the experimental data of electron temperature is compared for 
t = 0.3 ns and 1.5 ns. The heating laser has a Gaussian shape with 1.4 ns half 
width and intensity of 1.5 × 1014 W/cm2 . So, t = 0.3 ns is at the beginning and 
t = 1.5 ns is almost at the peak intensity. The typical electron density measured by 
Rayleigh scattering is 1019 cm-3 . When the laser intensity is week as t = 0.3 ns, the 
experimental data with error bars are well reproduced with LASNEX and it is almost 
independent of the flux limiter. At t = 1.5 ns, on the other hand, the experimental 
data differ substantially from LASNEX results with the flux limiter 0.05 and 1.0. 
Fokker-Planck simulation of 2D SPARK is used to compared to obtain a good 
agreement with the experimental data. This suggest that LASNEX code does not 
provide the heat flux penetrating to the deeper region and the flux limit f = 0.05 too 
much prevents the heat loss from the heating region.
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Fig. 6.8 Experimental data 
of electron temperature 
profiles at two different 
times (0.3 ns and 1.5 ns). 
The data are shown with 
solid squares with error bars. 
The temperature profile near 
the peak of laser pulse 
(t = 1.5ns) is compared to 
the flux limited diffusion 
model with f = 1 and 0.05 
shown with red and black 
lines, respectively. The 
Fokker-Planck simulation 
result is plotted with the 
dashed black line. HSR 
model can also reproduced 
the data well. Reprint with 
permission from Ref. [14]. 
Copyright 1998 by 
American Physical Society 

In order to validate a nonlocal model discussed previously with such comparison, 
the same type of form (6.64) has been calculated. It is called “hot spot relaxation 
(HSR)” model [14]. In HSR, the kernel W(x’, x) is modified from (6.65) so that 
Fourier spectrum of K/KSH is designed to be 

K 
KSH 

= 
1 

1þ akλeð Þ0:9 , λe = Z 
p 

λei, kλei ≤ 1 ð6:75Þ 

where a = 10(Z + 5)/(Z + 12). HSR roughly reproduce Fourier spectrum of FP 
simulation result shown in Fig. 6.6. 

6.5 Multi-group (SNB) Model 

The kernel (6.68) is physically well understood and it may give a good model for a 
single electron group. As we see, it can give the flux-limit property, although slightly 
different from FP numerical result. It is reasonable to extend it to the case of multi-
group electrons, where electron velocity distribution is divided to N group and the 
propagator is defined as function of the velocity. Then, the preheating by long mean-
free-path electrons can be included in the model as well as the flux-limiting property. 
There have been proposed several methods for such modeling, however, the



difference is mathematical method. Therefore, the idea on how to extend it to the 
multi-group case is explained for so-called SNB model by Schurtz, Nicolai, and 
Busquet [15]. 
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Before explaining the derivation of SNB model, it is useful to see the comparison 
of SNB model to FP and SH results. In Ref. [16], the models are compared to the 
situation relating to the laser plasma. In Fig. 6.9, “Heat bath problem” is shown at 
t = 80 ps after starting with the red curve of the temperature. The black is FP and 
blue is SNB result. It is well seen that the preheating is well given as that by FP 
calculation. The heat flux at this point at 10 ps is plotted in Fig. 6.10. The black is 
SH, red is FP and blue is SNB models, respectively. This result explains the flux 
limit and preheating well. The peak flux is limited compared to the SH model and the 
pre-heating in the region for x > 500 μm is reasonably predicted by SNB model. 

Fig. 6.9 Model simulation 
of VFP and SNB model 
starting from the initial 
temperature distribution 
plotted with red line. It is 
shown that SNB model 
reproduces well the VFP 
simulation. Reprint with 
permission from Ref. [17]. 
Copyright 1998 by 
American Institute of 
Physics 

Fig. 6.10 Heat flux 
distribution at the same time 
as in Fig. 6.9. The red line is 
from K2 code of VFP 
simulation and the blue line 
is SNB, which reproduces 
well the VFP result. The 
black line is from SH heat 
diffusion model. It is clear 
that SH overestimates the 
heat flux and does not show 
the preheating compared to 
VFP, while SNB well 
reproduces these two 
effects. Reprint with 
permission from Ref. [17]. 
Copyright 1998 by 
American Institute of 
Physics
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Fig. 6.11 The velocity 
dependence of v5 f1 at the 
point of x=500mm at the 
time of previous two figures. 
Near this point the 
preheating by higher 
velocity electrons becomes 
important in K2 (VFP) 
simulation and SNB model 
can well reproduce such 
preheating as shown with 
the blue line. Reprint with 
permission from Ref. [17]. 
Copyright 1998 by 
American Institute of 
Physics 

The velocity dependence of heat flux is compared in Fig. 6.11 for SH (black), FP 
(red), and SNB (blue) models at the heat front x = 500 μm at 10 ps. The f1 of SH is 
calculated with (6.31) and the sign change around v = 0.05c, and this is less 
evaluation of the preheating by high-energy electrons from the high-temperature 
region. FP shows enhanced component of heat flux by higher energy electrons, and 
this is well reproduced by SNB model. 

In SNB model, the electron heat flux is given as the sum of all velocity groups, 
consequently the property of long mean free path of high energy electrons are well 
reproduced. Let us consider the physics of SNB model. Note that SNB model is now 
used widely in modern hydrodynamic simulations. 

6.5.1 Derivation of SNB Model 

The basic equations for deriving SNB model is the same as (6.17) except for the 
collision operator. Assuming scattering frequency without energy change νei and 
electron-electron thermalize frequency νee, the 0th and 1st moment equation to the 
angle μ are derived as follows [17, 18]. 

v 
3 

∂ 
∂x 

f 1 -
eE 
3mv2 

∂ 
∂v 

v2 f 1 = - 2νee f 0 - f M 
0 ð6:76Þ 

v 
∂ 
∂x 

f 0 -
eE 
m 

∂ 
∂v 

f 0 = - νeif 1 ð6:77Þ 

Different from SH derivation, SNB model assumes the following form to the 
electron distribution function. 

f 0 = f M 
0 þ δf 0 

f 1 = f M 
1 þ δf 1 

ð6:78Þ
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The SH has assumed δf0 = 0 and δf1 = 0. In order to include the flux limit and 
non-local preheating effects, SNB model derives new equations to obtain the 
perturbations for δf0 and δf1 with reasonable assumption. Since the f1 

M in (6.78) is  
defined by (6.18), a relation to δf0 and δf1 from (6.77) is derived to be. 

v 
∂ 
∂x 

δf 0 -
eE 
m 

∂ 
∂v 

δf 0 = - νeiδf 1 ð6:79Þ 

where E is given by the SH relation (6.21) and by including the density gradient it is 
give as 

E= 
Te 

ne 
∂ne 
∂x 

þ γ ∂Te 

∂x
ð6:80Þ 

where the coefficient g is a function of the ion charge Z in the form [15]. 

γ = 1þ 3 Z þ 0:477ð Þ  
2 Z þ 2:15ð Þ ð6:81Þ 

The Z-dependence is derived due to the change of ration between ion and electrons 
in the scattering coefficient νei in (6.77). 

Define the two mean-free paths for an electron with velocity v in the form. 

λee = 
v 
νee 

, λei = 
v 
νei 

ð6:82Þ 

SNB strategy is to delete the velocity derivative term with an intuitive way. It is clear 
that the second term at LHS in (6.79) is the acceleration or deceleration by electric 
field. The high energy electrons are decelerated by the ambipolar electric field E and 
the return current electrons are accelerated. Since the dynamics of the high-energy 
electrons is important in the transport modeling, the second term works as an 
deceleration and it can be modeled as the increase of the collision frequency as [15]. 

1 

λ Eð Þ  
ei 

= 
1 
λei 

þ eE 
1=2mv2

ð6:83Þ 

Note that (6.83) is not appropriate if the E-field dominantly accelerate electron. In 
SNB model, the deceleration of high-energy component limiting the heat flux is 
mainly taken account with (6.83). Equation (6.79) is reduced to the following form. 

λ Eð Þ  
ei 

∂ 
∂x 

δf 0 þ δf 1 = 0 ð6:84Þ 

In SH derivation, only the relation (6.77) is used to derive the f1 as in (6.18). 
However, we have to solve (6.76) at the same time as the second relation for δf0
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and δf1. In addition, as is explained later, the return current effect is neglected in the 
formulation and (6.76) is modified to the following relation; 

δf 0 þ λee 
6 

∂ 
∂x 

δf 1 = -
λee 
6 

∂ 
∂x 

gM 
1 ð6:85Þ 

The function gM 
1 is a modified form of f M 

1 to be explained later. Inserting (6.84) into 
(6.85), it is easy to obtain δf0 and δf1 numerically. 

In order to know qualitative property of the solutions, discuss about the case with 
constant mean free paths in space. Then, (6.85) is written in a form; 

∂2 

∂x2 
δf 0 -

1 
λ2 

δf 0 = S x, vð Þ  

S v, xð Þ= - λ Eð Þ  
ei 

∂ 
∂x 

gM 
1 

λ= 
λeeλ 

Eð Þ  
ei 

6 

ð6:86Þ 

where the source term S is a function of x for a given velocity v in the form and we 
introduced an effective mean free path λ(v). It is easy to formally solve (6.86) in the 
form. 

δf 0 x, vð Þ= 
λ vð Þ  
2 

1

-1 
S x0, vð Þ exp -

x- x0j j  
λ vð Þ  dx0 ð6:87Þ 

Let us consider how flux limit and nonlocal preheat are modeled in this SNB 
transport model. As seen in Fig. 6.6, the flux limit appears when the mean free 
path becomes long to approach the temperature gradient scale, namely λ/LT becomes 
of the order of unity. Let us assume that this condition means the first term becomes 
larger than the second term in LHS of (6.86). In such condition, we can obtain the 
following approximate relation from (6.85). 

δf 1 ≈ - gM 
1 ð6:88Þ 

As the result, f1 → 0 to result a strong flux limitation from (6.78). 
On the other hand, the opposite condition λ/LT >>1 is satisfied especially for the 

high energy component of electrons. Such component has long mean free path in 
(6.86) and the hear flux from the heating region propagates to the heat front region.
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6.5.2 Multi-group Heat Flux 

In SNB model, the heat flux is defined as a sum of multi-group heat fluxes. Let us see 
the definition of the heat flux by the velocity component (vg-1, vg), where g is an 
integer of each group of velocity. Each group g also corresponds to the normalized 
energy group βg, where β = mv2 /Te. 

Since the effect of electric field to prevent the heat flux is taken into account as 
(6.83), the electric field in (6.18) is neglected and the form (6.30) is more simplified 
as 

f M 
1 = 

λc β= 1ð Þ  
LT 

β2 β- 4ð Þf M 
0 ð6:89Þ 

→ gM 
1 = 

λc β = 1ð Þ  
LT 

β2 f M 
0 ð6:90Þ 

In SNB model, the total heat flux qSNB e is given as the sum of N groups due to gM 
1 and 

δf1 

qSNB e = 
N 

i= 1 

Qi 
1 þ Qi 

2 ð6:91Þ 

where 

Qi 
1 = 

2πm 
3 

vi 

vi- 1 

gM 
1 v

5 dv ð6:92Þ 

Qi 
2 = 

2πm 
3 

vi 

vi- 1 

δf 1v
5 dv ð6:93Þ 

Note that the first term is written also as 

Qi 
1 = qSH e 

1 
24 

βi 

βi- 1 

β4 e- β dβ ) Qi 
1 = qSH e ð6:94Þ 

The total flux is given by Spitzer-Harm heat flux (6.25) and 1/24 is the normalization 
factor. By replacing f M 

1 with gM 
1 , the total heat flux is the same as Spitzer-Harm one, 

while the maximum in the integral of (6.94) becomes β = 4. This means the mean 
free path of electrons carrying the maximum heat is λ = 32λe, the recommended 
value for the LMV model [11]. 

It should be noted that Qi 
2 modify the heat flux due to the electron components 

with long mean free path as can be guess from the propagator form. This term 
reduces the heat flux as flux limiter and provides heat flux by electrons of long mean 
free path, namely pre-heating is given by this new term.
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Fig. 6.12 Flux limitation 
property is compared among 
three models and VFP 
simulation with KIPP code. 
This is the same plot as 
Fig. 6.6, but for more 
realistic temperature profile. 
All three models show good 
agreement as VFP 
simulation result. The heat 
flux is limited dramatically 
for the case where the 
temperature gradient scale 
LT approached to ten times 
the electron scattering mean-
free-path. Reprint with 
permission from Ref. [19]. 
Copyright 1998 by 
American Institute of 
Physics 

Fourier spectrum of the transport propagator shown in Fig. 6.7 is calculated for 
SNB model and other models. They are compared in Fig. 6.12 to the other numerical 
models [18]. The results of VFP code KIPP is shown. Compared to the VFP result, 
the simple SNB model is found to reproduce the result well. The other data are 
explained in [18]. Considering the computation time, the SNB is very convenient, 
especially modeling the effect of flux limit and preheating in hydrodynamic simu-
lation code. Note that r = 2 is a coefficient of modeling electron-electron collision 
which is approximated with a simple form in (6.76). It is reported that using BGK 
collision operator with r = 2 gives a good agreement with VFP calculation. 

The multi-group diffusion model “SNB model” is widely used in several ICF 
codes such as Lawrence Livermore National Laboratory’s HYDRA, CELIA 
laboratory’s CHIC, CEA’s FCI2, DUED (U. Rome), and the University of Rochester 
Laboratory for Laser Energetics’ LILAC and DRACO [18]. It is also applicable to 
multi-dimensional space codes with magnetic fields [19]. 

Transport codes are compared in the background hydrodynamics obtained with 
HYDRA code. Gadolinium hohlraum containing a typical helium gas is heated by 
laser and the density and temperature profile at t = 20 ns are used as the initial 
condition of each code. After 5 ps run of simulation codes, the heat flux profiles are 
plotted in Fig. 6.13 [18]. In Fig. 6.13, “Local” is the heat flux calculated with 
Braginskii formula, which is equivalent to Spitzer-Harm heat flux. Two models of 
SNB are shown. It is clear that the SNB model provides well the property of flux 
limitation near the heating region and preheating character near the heat front as 
predicted by VFP simulation code IMPACT.
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Fig. 6.13 Heat flux distribution near the ablation front of high-Z material. VFP simulation result is 
shown with green line. It is typical that the maximum of heat flux is limited and the preheating tail is 
given. The SH extremely over-estimates the heat flux as shown in the dashed line. The model SNB 
with multi-group is more reasonable and the flux limitation and preheating are well modeled. 
Reprint with permission from Ref. [19]. Copyright 1998 by American Institute of Physics 

6.6 Comparison of SNB Model to Two Different 
Experiments 

By use of Thomson scattering diagnostics, electron distribution functions are measured 
in a model experiment of aluminum plasma ablating into the vacuum. An aluminum 
foil is irradiated with six beams 3ω laser with 2 ns pulse width and for the diagnostic 
probe 2ω laser is used [20]. The five points of ablating plasma are measured for 
Thomson scattering. In the present case, the scattered spectral shape is used to 
determine the electron distribution function at each point. The measured electron 
temperature and density are 1 ~ 1.3 keV and 0.5 ~ 1x1020 cm-3 , respectively  
Speculated density scale lengths are in the range λei/LT= 1.4 × 10-2 ~ 7  × 10-3 . 

In the analysis of Thomson scattering data, the following spectral density function 
S(k,ω) of electron plasma contribution is used at high frequency region, where the 
ion contribution can be neglected. Note that the previous experiment in Chap. 6.4 
has used only the ion acoustic wave contribution in low frequency region, and 
therefore only the information of electron temperature is inferred from Thomson 
data. The spectral density function by electron plasma is given as [21].
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S k,ωð Þ= 
2π 
k 

f e ω=kð Þ  
E k,ωð Þj j2 ð6:95Þ 

where fe(ω/k) is the one-dimensional electron distribution function and E(k,ω) is the 
dielectric constant of electron plasma wave. 

The Thomson scattering is dominated by the contribution of the plasma waves 
satisfying the dispersion relation (resonance condition), 

E k,ωð Þ= 0 ) ω kð Þ= ±ωL kð Þ þ iγL kð Þ ð6:96Þ 

The electron plasma wave is called Langmuir wave with the frequency ωL(k). In 
general, the resonance solution is complex as in (6.96) and the imaginary part γL(k) 
is due to wave damping by Landau damping process. It is well known that the 
Landau damping is proportional to a velocity derivative at the resonance speed, 
γL(k)/ ∂fe/∂v at v = ωL/k. By use of these theoretical relations and compare them to 
Thomson scattering spectra, it is possible to obtain the local electron distribution 
function in non-Maxwell form. This data also provides the electron density and 
temperature values at the scattered five points in the experiment. 

In Fig. 6.14, the resultant heat flux obtained by the Thomson scattering data 
(TS) is shown with red circles (The detail of TS principle will be discussed in 
Chap. 9). Spitzer-Harm heat flux is also shown with use of the temperature distri-
bution at the five points as (SH) with blue triangles. In order to check the validity of 
the nonlocal transport model SNB described in the previous section, a multi-group 
simulation code has been used for the density and temperature profiles obtained in 
the experiment. The SNB result is shown with black diamonds. The authors insists 
that SNB nonlocal transport model cannot reproduce the experimental data and it is 
about the halfway between SH and the experimental heat flux. I think this conclud-
ing remark is too strict for evaluating a robust nonlocal transport model such as SNB. 
As we have studied in the previous section, SNB guarantees the preheating and flux 
limit physics, while it is not so strict theoretical model to compare the form of 
distribution functions. 

Fig. 6.14 The heat flux 
observed experimentally is 
compared to those from SH 
diffusion and SNB transport 
models. Reprint with 
permission from Ref. [21]. 
Copyright 1998 by 
American Physical Society

https://doi.org/10.1007/978-3-031-45473-8_9
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Fig. 6.15 Comparison of 
the velocity dependent heat 
flux at the point in the 
experiment. Three curves 
are from FP calculation 
(dashed red curve), Spitzer-
Harm (solid blue curve), and 
SNB (dotted black curve). 
Reprint with permission 
from ref. [21]. Copyright 
1998 by American Physical 
Society 

It is also informative to show Fig. 6.15 [20]. The velocity dependent heat flux 
(6.22) is plotted for one point (1200 μm). Three curves are from FP calculation 
(dashed red curve), Spitzer-Harm (solid blue curve), and SNB (dotted black curve). 
It is not so meaningful to compare the distribution function of heat flux. Since the 
introduction of the function gM 

1 instead of Spitzer-Harm f M 
1 in (5.15) has no 

mathematical base and just to avoid too much negative component. So, in general 
there may be other ways to replace f M 

1 to a convenient way for modeling nonlocal 
transport. The reason why gM 

1 is introduced is that it guarantees the preheating effect 
and the property of flux limit robustly. 

It is difficult to say, therefore, that there is not seen an improvement of heat flux in 
SNB model because it is almost the same as SH, but different from FP result. The 
validity of SNB should be checked under the condition that the heat flux is strongly 
inhibited like the flux limit and in the opposite case that the high energy electrons 
penetrate into cold plasma region. In addition, it is noted that SNB requires to be 
adjusted about the collisional modeling. 

The preheating has been studied in relatively higher density plasma comparing to 
the experimental data of plastic form plasma with the density near 0.1 g/cm3 and 
temperature near 30 eV [22]. As a tool to study such high-density plasma, so-called 
warm dense matter (WDM), the authors used X-ray Thomson scattering diagnostic 
to obtain the electron temperature, density, and ionization state by comparing x-ray 
spectrum with theoretical one, by varying the plasma parameters. The target is made 
of plastic, gold, aluminum and plastic form layers to observe the preheating effect in 
the plastic form layer. 

In the experiment, preheating of the expanding form plasma was observed and a 
variety of simulations have been carried out to find the physical source to give 
preheating to the form region over the high-density plasma region. Even with detail 
opacity and radiation transport, it was not possible to obtain enough preheating 
energy flux to the form region. It was finally concluded that about 10% of the free 
streaming heat flux from the shocked high-density region transfers large amount of 
heat to preheat the preheat region more than 30 eV as shown in Fig. 6.16 [22]. It is



surprising to know that the temperature of preheating region is higher than the 
upstreaming region of the heat flux. It is unphysical in the local thermodynamic 
equilibrium (LTE) thermodynamics. There should be some unknown physics at the 
shock front, where the temperature decreases from the front to the rear of the shock 
front, this means an entropy of plasma decreases by the shock wave. It is not clear 
why such result is obtained in a nonlocal simulation, while one thing to be clarify is 
that the contribution of electrostatic field at the shock surface. 
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Fig. 6.16 A multi-layered target is heated by laser to find the preheating in the rear side of the 
target. The enhanced temperature has been measured as preheat in CH foam region in the 
experiment and computationally reproduced by including non-local transport model. Reprint with 
permission from Ref. [22]. Copyright 1998 by American Physical Society 

As explained in modeling nonlocal transport, it is hard to model the effect of 
electrostatic field even n one-dimensional system. In SNB model, the electric field is 
included into an effective mean free path as shown in (6.83) and the electric field is 
evaluated from the neutral current condition (6.21). Note that there is no density 
gradient dependence and the force to electrons -eE is the direction of – dTe/dx. 
However, the electrostatic field at the shock front is in general given by the 
Boltzmann relation; 

ne xð Þ= n0 exp e 
ϕ xð Þ  
Te 

) eϕ01 = Te ln 
n0 
n1 

ð6:97Þ 

The potential jump at the shock front is more than Te (~20–30 eV) and most of the 
electrons with energy more than eϕ01 are reflected back at the shock front. The 
evaluation of E field in any non-local transport is difficult issue.
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Appendix-C. Fokker-Planck Equation 

Vlasov equation is a powerful equation in studying waves, transport, turbulence, and 
so on from view point of wave-particle interaction and non-Maxwellian plasmas. As 
mentioned already, Vlasov equation is applicable only for collisionless physics in 
plasmas. However, collisional effect cannot be neglected in some non-LTE plasmas, 
especially plasma with strong heat flow and inhomogeneity of physical quantities. 
Principally, of course, it is required to solve Boltzmann equation of (C.1) with 
appropriate collision cross section. It is, however, not so easy to solve such 
differential-integral equation directly. Such collision effect in plasmas is the same 
as random walk or thermal noise widely seen in the nature. It is easy to use Fokker-
Planck equation used widely in non-equilibrium statistical mechanics. 

Langevin to Fokker-Planck Equation 

In order to clarify the intuitive image of the readers to Fokker-Planck equation, it is 
better to start with a simple one-dimensional Langevin equation for a Brownian 
motion in spatially uniform medium. 

m 
dV tð Þ  
dt 

= - νf mV tð Þ þ mR tð Þ ðC:1Þ 

Here the 1st term in RHS is the frictional force and the 2nd term is a random force。 
Such equation is called stochastic differential equation. The governing equation to 
the velocity distribution function P(v,t) defined as ensemble average probability 
distribution in velocity space is given as follows as will be explained from now. 

The ensemble average of any physical quantity of function V is defined by 

A Vð Þh i= 
1

-1 
A vð ÞP v, tð Þdv ðC:2Þ 

The random force R(t) in (C.1) is Markovian process with Gaussian probability to 
given as 

R tð Þh i= 0, R tð ÞR t0ð Þh i=Dδ t- t0ð Þ ðC:3Þ 

and the following relation is satisfied. 

ΔW = 
tþΔt 

t 
R  tð  Þdt ðC:4Þ
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ΔWh i= 0 ðC:5Þ 
ΔW2 =DΔt ðC:6Þ 

Expanding A(V) with Taylor series in velocity, the following relation is obtained 

A V  t þ Δtð Þð Þ=A V  tð Þð Þ þ  dA 
dV V =V tð Þ  

ΔV tð Þ þ  1 
2 
d2 A 
dV2 

V =V tð Þ  
ΔV tð Þ2 þ ⋯ ðC:7Þ 

Taking the ensemble average of (C.7) yields the following form 

A V  t  þ Δtð Þð Þh i= A V  tð Þð Þh i þ  dA 
dV V =V tð Þ  

ΔV tð Þ  þ 1 
2

⨯ d2 A 
dV2 

V =V tð Þ  
ΔV tð Þ2 þ ⋯ ðC:8Þ 

Taking finite difference of (C.1) and inserting ΔV(t) in (C.8) and keeping the term 
proportional only to the 1st order of Δt, the following equation can be derived 
finally. 

d 
dt 

A V  tð Þð Þh i= - νf V tð Þ  dA 
dV 

þ D 
2 

d2 A 
dV2 ðC:9Þ 

It is noted that the second term of RHS of (C.9) is remains as the 1st order because of 
(C.6). 

Return to the definition (C.2), (C.9) can be changed to the equation to probability 
function P(v,t) as follows. The LHS of (C.9) is  

d 
dt 

A V  tð Þð Þh i= 
1

-1 
A vð Þ∂P v, tð Þ  

∂t 
dv ðC:10Þ 

The 1st term of RHS of (C.9) is

- νf V tð Þ  dA 
dV 

= - νf 
1

-1 
v 
dA 
dv 

P v, tð Þdv= νf 
1

-1 
A vð Þ  ∂ 

∂v 
vP v, tð Þf gdv ðC:11Þ 

Where partial integral is used with the assumption that P(1, t) = P(-1, t) = 0. 

d2 A 
dV2 = 

1

-1 

d2 A vð Þ  
dv2 

P v, tð Þdv= 
1

-1 
A vð Þ∂

2 P v, tð Þ  
∂v2 

dv ðC:12Þ 

The 2nd term of RHS is modified by using the partial difference two times. As the 
result, (C.9) should be satisfied for any function A(v) only when the condition:
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∂P v, tð Þ  
∂t 

= νf 
∂ 
∂v 

vP v, tð Þ½ ] þ  D 
2 

∂2 P v, tð Þ  
∂v2

ðC:13Þ 

is satisfied. (C.6) is Fokker-Planck equation. 
It should be noted that solving Fokker-Planck equation is exactly the same as 

calculating an ensemble average for many test particles motioned by Langevin 
Eq. (C.1). As a simple examples, Fokker-Planck equation is used to study any 
Brownian motion, white noise in electric circuit, polymer dynamics, etc. 

It is useful think about the case of stationary state of (C.13). Then, RHS of (C.13) 
should vanish and the following relation should be satisfied after integrating it: 

dP vð  Þ  
dv 

= -
2νf 
D 

vP vð Þ ðC:14Þ 

This can be easily solved to give 

P vð Þ= exp -
νf 
D 
v2 ðC:15Þ 

This is the velocity distribution in the equilibrium state and should be Maxwellian 
distribution, namely the diffusion coefficient in velocity space given in (C.13) 
should satisfy the following condition. 

D 
2 
= 

T 
m 
νf ðC:16Þ 

It is very interesting to compare the diffusion coefficient in velocity space (C.16) and 
that in real space (5.71) which is called Einstein relation. Note that dependence on 
the collision frequency is opposite. In a very collisional system, the diffusion in 
velocity space is fast and get to be equilibrium soon, while in the real space it is very 
slow to diffuse. 

In plasmas, collision frequency is a strong function of the particle velocity and in 
non-LTE plasmas the distribution function is not isotropic in 3-dimensional velocity 
space. It is, therefore, difficult to directly use Fokker-Planck equation of (C.13). It is 
now easier, however, to extend the above mathematical derivation from Langevin 
equation to Fokker-Planck equation. Then, it is clear that the following Fokker-
Planck equation can be obtained in 3-diemnsional space of velocity. 

∂P v, tð  Þ  
∂t 

= 
∂ 
∂vi 

Δvi 
Δt 

P v, tð Þ  þ 1 
2 

∂2 

∂vi∂vj 

ΔviΔvj 
Δt 

P v, tð Þ ðC:17Þ 

This expression is easily understood that RHS of (C.17) is an extension to 3 dimen-
sion of Taylor expansion and the form is derived with the same manner as (C.8), 
(C.9), and (C.10).

https://doi.org/10.1007/978-3-031-45473-8_5#Equ71
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What Fokker-Planck equation says is that any random force in Brownian motion 
reduces to the combination of the friction term and diffusion term. 

It is noted that the probability function P(v,t) in (C.17) is the ensemble averaged 
velocity distribution function in velocity space and it is exactly the same as the 
velocity distribution function at each real space point as long as the collision is taken 
place at a point and no change in r after each binary collision. 

After a long algebra shown in [5], new functions and constant are introduced 

Γ = 
Z2e4 

4πε2 0m
2 
lnΛ ðC:18Þ 

H vð Þ= Z2 
s 

mþ ms 

ms 

f s vsð Þ  
g 

dvs ðC:19Þ 

G vð Þ= Z2 
s gfs vsð Þdvs ðC:20Þ 

Here g is a function of v and vs and given in [5]. It is noted that the definition (C.19) 
and (C.20) are called the Rosenbluth potentials. It is well known that the Fokker-
Planck equation is reduced to the following form. 

∂ 
∂t 

f 
coll 

= -Γ 
∂ 
∂vk 

∂H 
∂vk 

f þ 1 
2 
Γ 

∂2 

∂vk∂vj 

∂2 G 
∂vk∂vj 

f ðC:21Þ 

It is known that the first term of RHS in (C.21) is the dynamical friction and the 
second one is the diffusion term. The Fokker-Planck equation assumes only the 
scattering by the binary Coulomb collision, therefore, in the system of two kind of 
particles like fully-ionized ions and electrons, we have to solve the equation for 
electron distribution function changing in time by scattering electron-electron(e-e), 
electron-ion(e-i) and for ion distribution by ion-electron(i-e), ion-ion(i-i). It is noted 
that in the case of e-e and i-i scattering, (C.7) is a nonlinear equations to the 
distribution function. 

In order to see what happens to a test particle injected from the boundary due to 
the Coulomb collision in a uniform plasmas, assume the distribution function of the 
particle is a delta function. 

f v, tð Þ= δ v- u tð Þf g C:22Þ 

Inserting (C.22) to (C.21) and taking the v moment of (C.21) lead the following 
simple form. 

∂u tð Þ  
∂t 

=Γ 
∂H uð  Þ  
∂u 

= - νf uð  Þu ðC:23Þ
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The term with G vanish in partial integral process. Equation (C.23) clearly shows 
that the term H gives the drag force and the frictional coefficient νf is calculated. 
Fokker-Planck equation is more precise equations for the ion stopping discussed in 
Sect. 4.8. In ion stopping simulation, however, the ionization process should be also 
included in RHS of (C.21). 

Fokker-Planck Equation in Maxwellian Scatterers 

It is useful to show the explicit form of Fokker-Planck equation of (C.21) in the case 
of the distribution of the scatterers is Maxwellian with temperature Ts and mass ms. 

f s vsð Þ= f M vsð Þ= ns 
a3 s 
πð Þ3=2 

exp - a2 s v
2 
s ðC:24Þ 

a2 s = 
ms 

2Ts 
ðC:25Þ 

Here ns are the number density of the scatterers. 

x= asv ðC:26Þ 
1

-1 
e- y2 

y- xj j d
3 y= 

π3=2 

x 
erf xð Þ ðC:27Þ 

The Rosenbluth potentials is given in the flowing form by use of the spherical 
symmetry in velocity space. 

erf xð Þ= 
2 
π

p 
x 

0 

e- y2 dy, 

erf xð Þ= 1 x→1ð Þ, erf xð Þ= 
2 
π

p x x→ 0ð Þ  
ðC:28Þ 

Here erf(x) is an error function defined as 

H vð Þ= Z2 
s 

mþ ms 

ms 
asnsπ

3=2 erf xð Þ  
x

ðC:29Þ 

The G defined in (C.20) reduces 

G  vð  Þ= 
Z2 
s ns 
2as 

d 
dx 

erf xð  Þ þ  1 
x
þ 2x erf xð  Þ ðC:30Þ

https://doi.org/10.1007/978-3-031-45473-8_4#Sec18
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It should be noted that since the Maxwell distribution is isotropic in velocity space 
and depend only on the absolute value of the velocity, H and G reduce to functions 
only on v as shown in (C.29) and (C.30). 

If the distribution function of the scatterers is isotropic in the velocity space, 
H and G can be given only functions of v. Therefore, the following convenient 
relations can be obtained. 

∂H 
∂vk 

= 
∂v 
∂vk 

∂H 
∂v 

= 
dH 
dv 

∂v 
∂vk 

ðC:31Þ 

and 

∂2 G 
∂vk∂vj 

= 
∂2 G 
∂v2 

= 
d2 G 
dv2

ðC:32Þ 

The v derivative of H and G in (C.31) and (C.32) can be obtained explicitly as 

d 
dx 

erf xð Þ  
x 

= -
1 
x2 

erf xð Þ þ  2 
π

p 
x 
e- x2 = 2ψ xð Þ ðC:33Þ 

d2 

dx2 
derf xð Þ  

dx 
þ 1 

x
þ 2x erf xð Þ  = 

2 
x3 

erf xð Þ- 2x 
π

p e- x2 = 
4 
x 
ψ xð Þ  ðC:34Þ 

Here Ψ(x) is defined as 

ψ xð Þ= 
1 
2x2 

erf xð Þ- 2x 
π

p e- x2 ðC:35Þ 
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