
Chapter 2 
Basic Properties of Plasma in Fluid Model 

Abstract If the spatial variation of plasma is longer than the particle mean free path 
and the time variation is sufficiently longer than the plasma Coulomb collision time, 
the plasma can be approximated as being in local thermal equilibrium (LTE) at any 
point (t, r). Then the velocity distribution functions of the particles become Max-
wellian. In addition, assuming Maxwellian is also a good assumption in many cases 
even for collisionless plasmas such as high-temperature fusion plasmas. In the fluid 
model of plasmas, The plasmas can be described in terms of five variables charac-
terizing local Maxwellian: the density n(t, r), flow velocity vector u(t,r), and 
temperature T(t, r). So, the mathematics used in fluid physics is widely applicable 
to studying plasma phenomena. 

Although conventional fluids are neutral, plasma fluids of electrons and ions 
couple with electromagnetic fields. It is, therefore, necessary to solve Maxwell’s 
equations simultaneously. It is also possible to approximate electrons and ions as 
two different fluids or as a single fluid in case-by-case. This requires an insight into 
what kind of physics is important in our problem. 

After reviewing the basic equation of fluids, several fluid models for plasmas are 
shown. Especially, a variety of waves appears because of charged particle fluids are 
derived to know why waves are fundamental to knowing the plasma dynamics. The 
mathematical method to obtain the wave solutions as an initial value problem is 
explained as well as the meaning of the resultant dispersion relations. 

Magneto-hydrodynamic equations (MHD) are derived to explain the effects of 
the Biermann battery, magnetic dynamo, etc. The relationship of magnetic field and 
vortex flow is studied. Resistive MHD is derived including the Nernst effect, which 
becomes important for the magnetic field in strong electron heat flux. 

Finally, electromagnetic (EM) waves in magnetized plasmas are derived to see 
how to use for diagnostics in the laboratory and observation of wide range of 
electromagnetic waves from the Universe. 
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2.1 Introduction 

The plasma is characterized by the collective motion of many charged particles 
through the Coulomb interaction. It is usually impossible to use the particle-in-cell 
(PIC) simulation to study a long-time and large-scale evolution of plasmas with 
many orders of magnitude differences in density and temperature in a system. It is 
more convenient to use the fluid approximation of plasmas by introducing macro-
scopic physical quantities, which are statistical averages of velocity moments of 
plasma particle velocity (momentum) distribution function. 

In the history of the fluid model, Euler and Lagrange derived a mathematical 
model of fluid dynamics. By the middle of the eighteenth century, “Bernoulli’s 
theorem,” which is said to be the first fundamental law of hydrodynamics, was 
proposed, followed by “Euler’s equation of motion” and “Lagrange’s equation of 
motion,” which are said to have given birth to modern fluid dynamics. 

The fluid model has been applied to gas dynamics. In most cases, it is a good 
approximation to assume that the relatively high-density plasma such as laser plasma 
is neutral fluid in the local thermodynamic equilibrium (LTE). Note that the fluid 
approximation assumes the distribution function of electrons and ions are Maxwel-
lian around their flow velocities, consequently, the so-called kinetic effects to be 
studied in Volume 4 can be neglected because they are not so important. 

In this chapter, it is explained how plasma is approximated as fluid and what kind 
of basic equations are used for plasmas as fluids. It is not necessary to assume that the 
plasma is completely ionized gas and that the fluid equations are applicable to the 
plasmas with the ionization process progressing. The fluid equations are widely used 
for cases to study the dynamics of the plasmas in any state such as neutral gas, fluid, 
and even solid. 

They are also collectively referred to as “continuum media”. Then the image of 
plasma in this textbook will be very wide. In assuming the plasma as continuum 
media, another physical state such as gas, liquid, solid, strongly coupled plasma, etc. 
are also expressed as plasmas in the present textbook, case by case. 

2.1.1 Coulomb Collision Relaxation Times 

Ideal plasma consists of many ions and electrons, and they are interacting with the 
Coulomb force in collisional plasma or freely moving by thermal motion in the 
collisionless plasma case. If the distribution function of the ions and electrons is not 
and far from Maxwellian distributions, it is required to study the plasma based on the 
kinetic theory starting with the Vlasov equation. In the present Volume 2, however, 
the plasma is assumed to consist of the ions and electrons characterized by shifted 
Maxwellian distributions.
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Fig. 2.1 Schematic of an 
electron scattering by 
Coulomb force of a heavy 
ion at the center 

As shown in Fig. 2.1, the Coulomb collision cross-section for an electron with 
velocity v by the ion Coulomb force in plasma is intuitively derived as follows. 

Δ mvð Þj jy ≈ 
Ze2 

4πε0r2 
Δt, Δt≈ r 

v 
, ð2:1Þ 

where the strong interaction becomes effective when the electron kinetic energy of 
the electron is comparable to the Coulomb force by the ion. Set its radius rc. Since 
this radius rc is the effective distance for strong interaction, the Coulomb collision 
cross-section of the electron is evaluated as follows. 

σc ~ πr2 c / Z
2 

v4
ð2:2Þ 

With use of this cross-section, the collision frequency, the inverse of collision time 
τc, is given as 

νc vð Þ= 
1 

τc vð Þ  = niσcv / Z 
v3 

ne ð2:3Þ 

Note that the Coulomb collision time strongly depends on the electron velocity and it 
vanishes for high-velocity electrons. This is the case of the collisionless plasma for 
high-temperature and low-density plasmas, such as plasmas in magnetically con-
fined fusion devices. 

In evaluating the average collision time for the Maxwellian distribution of 
electrons, the velocity in (2.3) is replaced with the thermal velocity ve = (Te/m)1/2 . 
This is roughly equal to the distribution function relaxation time τe for the electron 
group. The derivation from (2.1) can also apply to the ion-ion Coulomb collision and 
the velocity dependence is the same as (2.3). So, roughly speaking the ion relaxation 
time τi ~  (ve/vi)

3 >  >  τe, where vi is the ion thermal velocity.
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However, the electro-ion energy (temperature) relaxation time τT (has roughly the 
following relation [1]. 

τe < < τi < < τT ð2:4Þ 

The temperature relaxation time τT is roughly given as 

τT = 
mi 

me 
τe ð2:5Þ 

Since τe is almost equal to the classical laser heating time as shown in [1], the 
temperature relaxation time is almost three orders of magnitude longer than the laser 
heating time, consequently, the ion temperature is much lower than the electron 
temperature in the laser heating region. 

In the high-density and low-temperature regions such as near and in solid-density 
plasma, however, it is reasonable to assume a single temperature, Te = Ti = T, and 
both electron and ion temperatures are equal and given as T. In assuming the plasma 
is a single fluid, the fluid model of the plasma can be developed by use of 
conventional fluid mechanics to neutral fluids like air, water, and even solids. 
Most of the regions of laser-driven plasmas such as shock waves and implosion 
dynamics in over the solid density are well described by the single temperature and 
neutral fluid model. Let us start with the basic property of such neutral fluids. 

2.1.2 Fluid Model for Laser-Plasma 

In this chapter, a variety of fluid assumptions and fluid equations are introduced to 
describe the fluid dynamics of laser-produced plasma. The models explained in this 
chapter are listed as. 

One Fluid and One Temperature Fluid Model This is the traditional fluid 
equation to be applicable for the simplest case. The equation is the same as normal 
fluid, while the equation of state (EOS) from a wide range of temperature and density 
should be modeled in another way. This is because the pressure should be modeled 
from solids at room temperature where quantum physics is essential to the state of 
ionization and to the high-density state of strongly coupling plasma. In addition, 
electrons and radiation mainly x-rays, transfer the local energy in space. Such 
transports are modeled in general by heat conduction, while the conduction coeffi-
cient is a function of the temperature. In the case where the heat conductivity is 
proportional to the power of the temperature, it is possible to solve the heat wave 
analytically in some cases. 

One Fluid and Two Temperature Fluid Model In laser-produced plasma, the 
plasma density and temperature change in time and space over many orders of 
magnitude. In the ablating and expanding region, the plasma density is relatively



low, so that it is better to assume the ions and electrons have different temperatures. 
In addition, absorbed laser energy near the critical density is carried to an over-dense 
region via electrons and radiation heat conductions. The equation of both tempera-
tures, especially electron one should include such heat conduction terms. The first 
step is to model them with diffusion approximation, and so-called Spitzer’s heat 
conductivity is included in the electron temperature equation. However, the diffu-
sion model is not valid in any case of laser plasma and non-local heat conduction 
will be discussed in Chap. 6. 
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Two Fluid Equations It is hard to extend the above model to two fluids for 
electrons and ions. It is, however, general that two-fluid models are required to 
study the phenomena over the Debye length much shorter than the mean free path. It 
is not so bad to neglect to solve the energy equations and use some simple relation 
like isothermal or adiabatic relations. Since the attractive force by charge separation 
for two fluids is strong and the distance is about Debye length, the two-fluid model is 
applied to study plasma waves induced by charge separations. Laser propagation in 
plasma is affected only by electron motion and ions can be assumed at rest in high-
frequency motions. 

Mathematics for Wave Analysis For small perturbations in any type of fluid 
equations, it is general to obtain coupled partial differential equations providing 
wave phenomena. The basic equations are modified to coupled, algebraic equations 
after linearization, Fourier transformation, and Laplace transformation. It becomes 
clear by solving the wave equation as an initial value problem that why finding the 
poles of the dispersion relation is enough to discuss the waves in plasma. The 
waves in plasma are important to know how fast the energy of a local disturbance 
diffuses or propagates around via wave propagation. If there are many waves in a 
complicated plasma, how fast the plasma confinement breaks is predicted by know-
ing the fastest wave. 

Magneto-hydrodynamic (MHD) Equations It is usual to use a strong magnetic 
field to confine plasmas. Even in laser-produced plasma, strong magnetic fields are 
produced. In most cases, macroscopic fluid dynamics is controlled by ion motion, 
but electrons are easily run in the plasma by electric and magnetic fields in the 
plasma. The fluid model for plasma in external and internal magnetic fields is the 
MHD model, where additionally the equations to the electric current and magnetic 
field should be coupled. In most case, the equation to the current is replaced with a 
generalized Ohm’s law. Ideal MHD model for collisionless plasma and resistive 
MHD model including magnetic diffusion by resistivity and heat flux are derived. 

MHD waves In strongly magnetized plasma, new waves due to the magnetic 
tension and pressure become important as the fastest waves. The former is called 
the Alfven wave and the latter is called the compressible Alfven wave. Of course, it 
is more complicated because the thermal pressure force couples with the compres-
sional Alfven wave. In addition, circularly polarized-Alfven waves can carry the 
angular momentum of the plasma particles. So-called Alfven breaking by this

https://doi.org/10.1007/978-3-031-45473-8_6


torsional Alfven wave plays an important role to carry out the angular momentum of 
accretion discs around the stellar objects in the Universe. 
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Electromagnetic Waves Electromagnetic waves are widely used in our life and 
also used for plasma experiments for measurement and probing plasmas. External 
magnetic fields modify dramatically the dispersion relation of the waves. In astro-
physics, they are widely used to study the dynamics in the Universe by observing 
radio waves to gamma rays. It is also used to study the magnetic field in plasmas. The 
laser is electromagnetic wave with strong electric and magnetic fields. To know the 
properties of lasers in plasmas is a fundamental as studied in the book as well as well 
reviewed in Volume 1. 

2.2 Neutral and Single Fluid Approximation of Plasma 

2.2.1 Fluid Assumption 

What is the fluid approximation? Consider a local fluid element, say in a volume 
with a unit mass, out of all fluid composed of many particles as one mass point. First, 
consider the equation of motion of this local fluid called a fluid element. This is the 
governing equation on the average flow velocity of the fluid element. At the same 
time, it is considered that the fluid element has internal energy as a small thermo-
dynamic system, and a governing equation relating to its temperature is derived from 
the first law of the thermodynamics. In addition, the mass of the fluid element should 
be governed by the conservation relation. 

It is useful to know the intuitive image of the fluid approximation. Since fluids 
such as water are packed closely with molecules, it is natural for the readers to 
imagine that the molecules of water in a certain volume move together like a large 
mass point. However, if this is the case of gas with a mean free path much longer 
than the intermolecular distance, the molecules that make up the unit mass volume of 
fluid will interchange with external particles from time to time. Then, the image of 
moving together is wrong. However, since fluid equations can be mathematically 
derived from the Boltzmann equation, it is enough to think that a continuous group 
of fluid fragments like a point mass is a mathematical concept. 

However, the fluid approximation is reasonable only when the assumption 
of local thermal equilibrium is satisfied so that the velocity distribution function of 
particles made of fluid is close to Maxwellian. The same is true for the plasma. The 
mean free path of high-temperature plasma easily becomes longer than the plasma 
size. Still, the fluid equations are indeed appropriate mathematical models as long as 
the velocity distribution function of the plasma is close to the Maxwell distribution 
locally. This mathematics is shown in Appendix A.
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Consider the thermodynamics of the fluid element. With the internal energy 
density set to ε, the first law of thermodynamics should be satisfied. 

dε= -PdV þ dQ ð2:6Þ 

Here, P is the pressure, V = 1/ρ is the volume occupied by a unit mass (referred to as 
a specific volume), ρ is the mass density, and dQ indicates the amount of energy that 
flows into this volume as thermal energy by thermal conduction, heating, cooling, 
etc., and also the heat flowing out from the volume. 

The fluid of the specific volume moves at the average flow velocity vector u. The 
equation of motion is inferred from the Newton equation, 

ρ 
d 
dt 
u= ρF-∇P ð2:7Þ 

Here, F is an external force. The difference from the Newton equation is that the 
force due to the pressure appears in (2.7). When molecules cannot move freely like 
in water and move as a whole locally, the pressure can be regarded as the average 
force by the surrounding fluid molecules acting on the surface of the specific volume. 
It is hard to understand intuitively the physics image, however, when the particles are 
freely moving in the volume like in the case of collisionless plasma. As explained 
later, the pressure is the momentum flux of the microscopic particles passing through 
the unit surface per unit time. The reason why this is added to the Newton equation 
as a slope of pressure will be explained after deriving it mathematically. 

To analyze any fluid phenomenon, two other equations are necessary. One is the 
equation for mass density, the other is the form of the pressure P as a function of 
density and internal energy. The former is called the equation of continuity and the 
latter is called the equation of state, respectively. A fluid whose density hardly 
changes like water in our daily life is called an incompressible fluid. In this case, the 
density is unchanged, and the equation of continuity is not necessary. In studying the 
plasma produced by the high-intensity laser, however, it is easy to create the pressure 
of millions of atmospheres in the matters and the compression of even water is easy. 
In many cases in the laser-plasmas, it is necessary to consider the phenomena of 
compressive fluids whose density also changes dramatically. 

The governing equation for the mass density is called the equation of continuity 
(the continuity equation) and is given by the following relation, 

∂ρ 
∂t 

þ∇ ρuð  Þ= 0 ð2:8Þ 

This is also called the mass conservation law of fluid. It is clear that (2.8) is written 
in the same partial differential equation as the energy conservation equation of the 
electromagnetic wave in Vol. 1. In (2.8), ρu is the mass density flux.
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Integrating (2.8) over an arbitrary volume V, the following relations are obtained. 

∂ρ 
∂t 

dV = 
∂ 
∂t 

ρdV ð2:9Þ 

∇ ρuð ÞdV = ρu . dS ð2:10Þ 

Here, (2.10) is the Gauss theorem. Then, (2.8) has the following relation in the 
integrated expression. 

∂ 
∂t 

ρdV = - ρu . dS ð2:11Þ 

This indicates that the time change of the mass in any volume V is determined by the 
difference between the mass escaping from the volume surface and the mass flowing 
in. Therefore, total mass is kept constant when the volume V is taken to be the 
volume of the total system without any external mass flux. 

As mathematically proved with (2.8), it can be shown in a general form. 

∂W 
∂t 

þ ∇Q= 0 ð2:12Þ 

This is a partial differential equation showing the conservation relation to a 
physical quantity W and its flux Q. 

2.2.2 Basic Equations of Fluid Dynamics 

There are two ways of expression of fluid equations. They are mathematically the 
same as explained later, while the concept of physical quantities is different: 

1. Lagrange fluid equation 
2. Euler fluid equation 

These differences appear with difference on time derivative. Lagrange type is 
written with total derivative (d/dt), while Euler type is expressed with partial 
derivative (∂/∂t). Both are directly related as follows. 

d 
dt 

= 
∂ 
∂t

þ u .∇ ð2:13Þ 

Here, u . ∇is called the convection term of fluid, and it means the change of 
variables due to convective motion of fluid elements.
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Fig. 2.2 Equi-contours of a 
fluid field f(t, x) in one 
dimension in space. The 
solid line is trajectory of a 
fluid element. The total 
derivative, Lagrange 
derivative, has the relation 
with the fluid field in Euler 
coordinate. This figure 
shows the relation between 
Lagrangian and Euler time 
derivative intuitively 

In Newton mechanics, the equation of motion is governed by the force applied to 
a point mass. On the other hand, the Maxwell equation is that governing physical 
quantities of electric and magnetic fields defined in a given space. There are two 
ways to formulate hydrodynamic equations as the former image, Lagrange type, and 
Euler type that defines the field variables such as velocity fields like the electric field. 
One can choose one of two types of fluid equations that is convenient for one’s 
problem and mathematically easier to solve that problem. 

The relationship between the two types can be understood from Fig. 2.2. The 
contour lines are equi-contours of a certain physical quantity (e.g.; the velocity in 
x-direction) obtained by solving a fluid equation, where the brown line is the 
x-trajectory of a fluid element. For the sake of simplicity, assume that space is 
only one dimension on the x axis and consider the physical quantity shown in 
Fig. 2.2 as f (t, x). Then, the following relation can be obtained for small amounts 
Δx and Δt. 

Δf = 
∂f 
∂t 

Δt þ ∂f 
∂x 

Δx ð2:14Þ 

This is rewritten to be 

Δf 
Δt 

= 
∂f 
∂t 

þ Δx 
Δt 

∂f 
∂x

ð2:15Þ 

As can be seen in Fig. 2.2, since the local fluid moves in space, at the limit of 
Δt ! 0, (2.15) becomes, 

df 
dt 

= 
∂f 
∂t 

þ ux ∂f ∂x
ð2:16Þ 

Therefore, it is clear that in the three-dimensional space (2.16) becomes (2.13).
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When analyzing a fluid phenomenon, the Lagrange type of equation is easy to 
solve mathematically, and the image of physical results is also easy to grasp in some 
cases. For example, a one-dimensional compressible fluid is good example. How-
ever, when analyzing complicated flow or carrying out multidimensional computer 
simulation, the Euler type is generally easier to solve numerically. 

In the fluid equation of the Lagrange type, (2.7) can be regarded as the equation of 
motion for the point mass, ρ. Since it also carries the thermodynamic quantities, from 
the expression (2.6) applied to the internal energy per unit mass of the fluid, the 
following energy equation can be derived. 

dε 
dt 

= -P 
dV 
dt 

þ dQ 
dt

ð2:17Þ 

Here, the specific volume 

V = 
1 
ρ

ð2:18Þ 

It is noted that (2.17) is rewritten after inserting (2.18) into (2.17) and using (2.8), 

dε 
dt 

= -
P 
ρ
∇uþ dQ 

dt
ð2:19Þ 

As a result, the following coupled equations are derived for the fluid equation in 
Lagrange type 

dρ 
dt 

= - ρ∇ . u Equation of continuityð 2:20Þ 

ρ 
du 
dt 

= -∇Pþ ρF Equation of motionð Þ 2:21Þ 
dε 
dt 

= -
P 
ρ
∇uþ dQ 

dt 
Energy equationð Þ 2:22Þ 

On the other hand, in the Euler type, the hydrodynamic variables are considered as 
the field quantities in the time and space (t, r). As like the Maxwell equations, the 
equation governing such field quantities is a partial differential equation. Therefore, 
(2.20) can be in the Euler type as follows. 

∂ρ 
∂t 

þ∇ ρuð  Þ= 0 ð2:23Þ 

ρ 
∂ 
∂t

þ u .∇ u= -∇Pþ ρF ð2:24Þ
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∂ 
∂t

þ u .∇ ε= -
P 
ρ
∇uþ dQ 

dt
ð2:25Þ 

It should be noted that the equations of (2.23, 2.24, and 2.25) differ significantly 
from that of the Maxwell equation; namely, the fluid equations are nonlinear 
equations. For example, the nonlinearity of fluid dynamics stems from the 
convection term: 

u .∇u ð2:26Þ 

As the fluid velocity increases, the convective term cannot be neglected and it plays 
an important role in the formation of a unique structure like shock waves to be 
discussed in Chap. 3. 

2.2.3 Conservation Relations 

Three conservation equations can be derived from the fluid equations. Consider 
the case without the external source force F in (2.14) and heat Q in (2.25). The 
conservation of mass has already been shown in (2.8). Next is the fluid momentum 
density conservation law, which is obtained by adding two equations after multiply-
ing (2.24) and (2.23) by the flow vector u. 

∂ 
∂t 

ρuð Þ þ  ∇ ρu⊗ uþP
$ 

= 0 ð2:27Þ 

Here, the mathematical symbol “⊗” means in this case to create a three-dimensional 
tensor from three-dimensional vectors, whose (i, j) component is uiuj in (2.27). This 
is called a dyadic product (tensor). The pressure was generally indicated in the form 
of a tensor in three-dimension. For the ideal gas, the pressure is a scalar and it can be 
considered that a scalar pressure is multiplied by a unit tensor in (2.27). 

The third and final one is the energy conservation equation. The sum of the 
kinetic energy of the fluid flow and the thermodynamic internal energy should 
be conserved. By deriving an equation for each energy density for both, the total 
conservation form can be obtained after adding both equations. Specifically, multi-
plying (2.23) by 1/2u2 , multiplying (2.24) by  u, and multiplying them by (2.25) 
multiplied by density ρ give 

∂ 
∂t 

1 
2 
ρu2 þ ρε þ ∇ 1 

2 
ρu2 þ ρεþ P u = 0 ð2:28Þ 

Here, P is a scalar for the sake of simplicity. Even if the pressure is tensor, the tensor 
pressure can be easily written in the same form as (2.28). In gas dynamics, the 
enthalpy in the form is also introduced.

https://doi.org/10.1007/978-3-031-45473-8_3
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h= ε þ P 
ρ

ð2:29Þ 

As a result, it is found that the conservation form of the fluid equation consists of 
(2.8) for mass, (2.27) for momentum, and (2.28) for total energy. It is easily found 
that these three equations are in the form of standard conservation Eqs. (2.12). 

2.2.4 Equation of State 

In general, the external force F and heat exchange dQ are given in solving (2.20, 
2.21, 2.22, 2.23, 2.24, and 2.25). Still, however, one another relation or equation 
is necessary in order to make the fluid equations in closed form. It is called the 
equation of state (EOS) and is a relation between internal energy ε and pressure P. 
The equation of state is usually given with a new thermodynamic quantity, 
temperature T, in the form 

P=P ρ,Tð Þ  
ε= ε ρ, Tð Þ  

ð2:30Þ 

In (2.22), the equation of energy can be transformed into the equation for 
temperature T, and the fluid equation can be solvable as a closed system of 
three equations for density ρ and flow velocity u (three-dimensional vector), and 
temperature T. 

Except for the case of the ideal gas, how to calculate the equation of state (2.30) 
itself is a major research topic in the laser plasma. The matter changes from solid to 
liquid, neutral gas to plasma. In laser-plasma experiments, it is usually required to 
study strong shock waves and related phenomena, where the shock waves pass 
through the solid and change the overall states. In such a case, it is necessary to 
introduce an appropriate formula for the equation of state within the range of density 
and temperature over many orders of magnitude. It is also required to model the 
phase transitions, although the fluid approximation is still valid. 

For the time being, the following EOS is assumed as the ideal gas for the fluid 
consisting of fully ionized ions with charge Z and electrons. 

P= Z þ 1ð ÞniT ð2:31Þ 

ε= 
Z þ 1ð  Þ  
γ- 1 

T 
M

ð2:32Þ 

Here, T is expressed in units of energy including Boltzmann constant kB. The unit of 
the electron volt (eV) is used in the present book for the temperature. In (2.31), ni is 
the number density of ions and M is approximated by the ion mass, because the



electron mass can be neglected. In addition, γ in (2.32) is the specific heat ratio. 
Note that γ is given simply as a function of the degree of freedom of the particle 
dynamics, and given number of the freedom, N, the following relation is satisfied. 
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γ = 
N þ 2 
N

ð2:33Þ 

If there are no internal degrees of freedom in all particles of the fluid and the particles 
freely fly in the x, y, and z spatial three dimensions, N = 3 and it is enough to set 
γ = 5/3. 

2.2.5 Thermodynamic Consistency 

If the laser intensity is not so high, the electrons on the solid surface are heated, the 
inside of the solid is heated by the heat conduction of electrons, and the temperature 
increases from the surface. When the temperature is high, the solid melts and 
undergoes a phase transition to a liquid state. Furthermore, the laser intensity is 
strong, and vaporization occurs from the liquid state when the temperature becomes 
high enough. Depending on the material, the phase transition proceeds while the gas 
and the liquid are mixed, and the state becomes a neutral gas state. Furthermore, as 
neutral gas absorbs laser photons, dissociation progresses and ionization starts. If the 
laser intensity is sufficiently strong and the Z-value of the solid is not so high, 
the material becomes in a completely ionized plasma state, and the temperature 
increases further. The microphysics of ionization and related processes will be 
discussed in Chap. 5. 

This book must be useful for analyzing the plasma process, and the plasma in 
stars, including non-ideal plasma with a wide range of temperature and density 
regions. If the fluid equations are used to analyze and simulate from a solid state 
to an ideal plasma with reasonable mathematical model, the ideal gas equation of 
state alone is not sufficient. When a star is born from a molecular cloud and evolves 
in time, non-ideal plasma should be studied about molecular dissociation, ionization 
processes etc. Therefore, the thermodynamics and statistical mechanics for under-
standing general properties of the equation of state should be studied including phase 
transition. 

When the system is in thermodynamic equilibrium, the equation of state is 
determined only by two state functions of the system, for example, temperature T 
and density ρ like (2.30). In general, the equation of state can be derived from the 
thermodynamic potential. It is known that Helmholtz free energy F (T, ρ) per unit 
mass of the system is defined with a function of only (T, ρ), and it satisfies the 
following relations.

https://doi.org/10.1007/978-3-031-45473-8_5
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S= -
∂F 
∂T

ð2:34Þ 

ε=F þ TS= - T2 ∂ 
∂T 

F 
T

ð2:35Þ 

P= -
∂F 
∂V 

, V = 
1 
ρ

ð2:36Þ 

Here, S is an entropy per unit mass. 
If F (T, ρ) is given, the equation of state is uniquely determined. At the same time, 

the following thermodynamic consistency is satisfied automatically. 

∂ε 
∂V 

= -Pþ T ∂P 
∂T

ð2:37Þ 

The relation (2.37) is obtained by partial differentiation of (2.35) with V, partial 
differentiation of (2.34) with V, and the change of the order of V and T. As can be 
seen from (2.37), it is not allowed to define P and ε independently. Given a function 
of pressure P, the internal energy ε must be uniquely determined by (2.37). When 
modeling the pressure P with some approximation, ε is necessary to be obtained 
from (2.37) by integrating with V. 

What happens if the equation of state does not satisfy (2.37)? When in the 
Newton equation, a point mass moves from the initial point to the endpoint in a 
mechanical potential, the energy obtained by the point mass is given by the differ-
ence between the potential energies at both points. As same as this, if the equation of 
state does not satisfy (2.37), the amount of change in internal energy depends on 
which path in the two-dimensional space of (V, T) the system took to change. This 
contradicts the assumption that the physical quantity changes in the thermal equi-
librium state. In the ideal gas equation of state (2.31, 2.32, and 2.33), both sides of 
(2.37) disappear, and it turns out that (2.37) is satisfied for arbitrary constant γ. 

2.2.6 Cold Pressure 

Intense lasers are also used to study the properties of matter at extremely high 
pressure. High-pressure physics by the use of lasers is now an important research 
field. For example, the physics of the insulator-metal phase transitions is intensively 
studied these days as will be discussed in Chap. 8. The pressure and internal energy 
of the matter compressed more than its solid density are mainly determined by the 
pressure due to the exchange interaction of electrons and the Coulomb repulsive 
force among electrons and ions for covariant bonding matter and electron degenerate 
pressure due to Pauli exclusive principle for the matter with many free electrons 
like metals. Such pressure at T = 0 is called the cold pressure Pc and it is only a 
function of the density ρ.

https://doi.org/10.1007/978-3-031-45473-8_8
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Fig. 2.3 The cold pressures 
of several materials 
commonly used as targets of 
laser plasma are plotted as 
function of density. Phase 
transition is clearly seen in 
the case of solid DT fusion 
fuel. Reprint with 
permission from Ref. [2]. 
Copyright 1998 by 
American Institute of 
Physics 

The functional form of the pressure of matter at high density can be written in the 
form. 

P ρ,Tð Þ=Pc ρð Þ þ  Pt ρ,Tð Þ ð2:38Þ 

where Pt is the thermal component and Pt = 0 at T  = 0. The cold pressures of 
several materials are plotted in Fig. 2.3 [2], where the pressure is equal to zero at the 
nominal solid density at T = 0. The cold pressure is plotted for DT fusion fuel, 
CH plastic, Be, Al aluminum, Fe iron, and Au gold, widely used for solid targets 
irradiated by intense lasers. The cold pressure is due to molecular bonding pressure 
and the electron Fermi pressure at density near and higher than the solid density. 

Then, it is clear that the cold component of the pressure should be calculated with 
(2.37) as  

εc ρð Þ= 
Pc ρð Þ  
ρ2 

dρ ð2:39Þ 

Of course, if one has the function of the cold internal energy, the cold pressure is 
obtained by the density derivative of the cold energy by (2.39). 

In solving the hydrodynamic equations with such a cold pressure, it is important 
to modify the equation of energy (2.22) as follows. Then, the total internal energy 
should be in the form. 

ε  ρ, Tð  Þ= εc ρð  Þ þ  εt ρ,Tð  Þ ð2:40Þ
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where εt is the thermal component derived from (2.37) with Pt in (2.38). Note then 
that the cold component satisfies the relation. 

dεc = -PcdV ð2:41Þ 

(2.41) indicates that the cold components of pressure and internal energy in (2.17) 
cancel to disappear from the equation of energy. It is enough to insert only the 
thermal component of (2.38) and (2.40) into (2.17). 

The energy equation is converted to the equation for the temperature as 

d 
dt 
εt ρ, Tð Þ= 

∂εt 
∂T 

dT 
dt 

þ ∂εt 
∂V 

dV 
dt

ð2:42Þ 

Inserting (2.42) to (2.17) the equation to the temperature is obtained from (2.25) as  

∂εt 
∂T 

dT 
dt 

= - Pt þ ∂εt 
∂V 

dV 
dt 

þ dQ 
dt 

= - T 
∂Pt 

∂T 
∇uþ dQ 

dt
ð2:43Þ 

In the case where the thermal component can be neglected and the pressure is only 
the function of the density, fluid equations are closed only with (2.23) and (2.24) and 
it is not necessary to solve (2.25). This is the case, for example, where the electron 
Fermi pressure is dominant in compression. It is also the case where the cold 
pressure by the ion Coulomb force is dominant in higher-density. 

On the other hand, the adiabatic compression without the heat term Q = 0 in  
(2.43) provides the temperature as a function of only the density, consequently, it is 
not necessary to solve the energy equation explicitly. In some cases, it is assumed 
that the pressure does not depend on the temperature in hydrodynamic model such as 
star formation in astrophysics or the formation of a large-scale structure in the 
Universe. Such a simplified EOS is used to model that “entropy decreases in the 
process of formation of stars” taking account of heating by compression and energy 
loss due to radiation emission. Such a case is called a polytrophic process in 
thermodynamics. That is, 

P=Aρn ð2:44Þ 

where A is a constant coefficient and the pressure is proportional to the n-th power of 
the density. In general, the “n” is called a polytrophic exponent. 

2.3 Sound Waves 

To know the fundamental property of the fluids, the linear response of small 
perturbations in the fluid Eqs. (2.23, 2.24, and 2.25) is studied. It is well known 
that they give the relation of sound waves propagating in any continuous media.



Now, when a very weak disturbance is generated externally in steady state fluid 
whose physical quantities are described with a subscript “0”. The physical quantities 
due to the disturbance are shown with a suffix “1”, where they change as a function 
of space and time. The linearized continuity equation and momentum equation are 
derived as follows. 
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∂ 
∂t 

ρ1 þ ρ0∇u1 = 0 ð2:45Þ 

ρ0 
∂ 
∂t 

u1 = -
∂P 
∂ρ 0 

∇ρ1 ð2:46Þ 

where u0 = 0 has been assumed. The external force is also neglected here. In (2.46), 
it is assumed that P = P (ρ). 

Partial differentiation due to the density of pressure has a dimension of velocity 
squared, and the velocity (sound velocity) Vs of the sound wave propagating in the 
fluid can be defined as follows. 

Vs = 
∂P 
∂ρ 

ρ= ρ0 

ð2:47Þ 

where RHS is a constant value calculated with ρ0 and P0. By substituting (2.47) into 
(2.46), a partial differential equation of the second order for the density disturbance 
is obtained. 

∂2 

∂t2
-Vs 

2∇2 ρ1 = 0 ð2:48Þ 

For simplicity, if the density perturbation is assumed to propagate in the x direction 
and there is no spatial change in the y and z directions, (2.48) becomes the form. 

∂ 
∂t

þ Vs 
∂ 
∂x 

∂ 
∂t

-Vs 
∂ 
∂x 

ρ1 = 0 ð2:49Þ 

Equation (2.49) gives the waves of the first term which propagates in the x direction 
at the velocity Vs and the wave which the second term propagates in the -x direction. 
The dispersion relation to the frequency ω and wavenumber k is easily calculated as 

ω2 =V2 
s k

2 ð2:50Þ 

In our everyday conversation, the density and pressure disturbance of sound is 
sufficiently small, and the sound wave propagates at the sound velocity obtained 
by substituting the air density and pressure in (2.47). In fact, we open and close



the vocal cord membrane in the throat of the mouth and adjust the waveform of the 
pressure coming out of the mouth. This generates sound waves, and since the 
propagation speed of the sound waves is constant and independent of the wavelength 
as derived in (2.50), the pressure wave of the same waveform goes all the way. 
Therefore, as a vibration of the eardrum of the listener, the time change of the 
pressure wave is sensed, and the conversation sound is recognized. 
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This fact can be applied to the sound waves in solids, liquids, and gases. What is 
understood from (2.47) is that the sound velocity is related to the bulk modulus 
B defined as follows. 

B= ρ0Vs 
2 ð2:51Þ 

The bulk modulus is the pressure to compress the matter to the density two times 
from the normal condition. It can be seen that the propagation speed of the sound 
wave is slower as it is easy to compress. In other words, in a continuous body 
regarded as incompressible such as a solid or a liquid which is difficult to compress 
in the everyday life. Since the density change due to pressure disturbance is almost as 
close as zero, the speed of sound is fast. That is, it can be seen that the incompressible 
fluid approximation is the limit of the infinite sound speed. 

A typical example of the data of Bulk modulus is listed below. Shock waves 
produced by laser irradiation generate the pressure of more than Mega bar (106 atm.) 
and the physical property of highly compressed matter is studied. 

water: 0.022×106 atm., carbon: 0.18×106 atm., 

aluminum: 0.75 × 106 atm., iron: 1.1 ×106 atm., 

polyethylene (CH): 0.04 × 106 atm., gold: 2.2 ×106 atm., 

air: 1 atm., solid hydrogen: 2000 atm. 

The sound velocity is the most important physical parameter of any kind of fluid 
or continuous media. When the spontaneous release of high pressure happens due to 
some natural or artificial reason at a certain point in space, the sound waves play a 
role to relax the pressure in space. The sound waves also carry the energy around so 
that the pressure disturbance disappears as time goes on. Earthquake is due to the 
release or generation of huge energy underground and this energy is spread by the 
waves propagating in the ground with given velocities. 

2.3.1 Wave Propagation in Spherical Geometry 

It is useful to know how the waves propagate in the spherical geometry. At a far 
distance place from the initial disturbance, it can be assumed that the wave pertur-
bation is spherically symmetric, and using the spherical Laplacian in (2.48), the 
wave equation becomes,
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∂2 

∂t2 
u1 -

1 
r2 

∂ 
∂r 

r2 
∂ 
∂r 

u1 = 0 ð2:52Þ 

Using the fact that the wave energy is conserved in propagation, it is expected that 
the energy flux satisfies the relation, 

1 
2 
ρ0u

2 
1Vs × 4πr

2 = const: ð2:53Þ 

This energy conservation relation suggests the functional structure of the perturba-
tions as 

u1 = 
A 
r 
eikr- iωt þ B 

r 
eikrþiωt ð2:54Þ 

where A and B are constants determined by the initial condition. The first one is a 
spherical wave propagating outward, while the second one is that coming from the 
out to the center. If the wave source is released at the center, B = 0 is satisfied. It is 
clear that (2.54) satisfies the wave equation in spherical geometry. If there is no 
damping of the perturbations, the amplitude of the waves decreases in proportion to 
1/r due to the spherical geometry effect. 

2.3.2 Importance of Wave Analysis 

Assume that some fluid is at rest and in a stationary state. Suppose, for example, an 
energy is released at a certain point in the stationary fluid. In the case of air, it is clear 
what happens when a firework explodes in the air. Then, we hear strong sounds 
generated by the explosion, and of course we enjoy the fireworks. This is analogous 
to the case of confined plasma. When some energy is released in some point of 
plasma, the energy disperses to the surrounding by waves. Even with a slight 
perturbation in the plasma, waves are excited, and they disperse energy and momen-
tum in the plasma. Because of this reason, it is very important to investigate the wave 
property in the equilibrium plasma beforehand. If the amplitude of the waves is 
large, the plasma itself is destroyed. 

The role of the waves in such equilibrium state is experienced in the case of the 
propagation of the seismic wave due to the earthquake. As shown in Fig. 2.4, when 
energy generation suddenly occurs at the seismic source, the energy propagates to 
the surface of the earth through seismic waves, tsunamis, etc. The seismic waves are 
longitudinal and transverse waves propagating from the epicenter. The longitudinal 
wave propagates by compressing the soil with the velocity of about 10,000 km/h 
(6 km/s). This is the sound wave in the soil material. The transverse wave arises due 
to the viscosity of soil and propagates at 5000 km/h (3 km/s). 

The former longitudinal waves are called the P waves, and the transverse waves 
are called the S waves. Furthermore, when both waves reach the surface of the earth,



they will become surface waves propagating on the ground surface like the gravita-
tional waves of the water surface explain in Volume 3. To issue an earthquake 
warning, the occurrence of an earthquake is detected by observing this P wave and S 
wave in advance. From the energy point of view, the waves act to disperse the energy 
soon after a huge energy such as a collapse of the ocean floor occurs locally. 
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Fig. 2.4 Schematic of propagation of seismic waves from the energy source (epicenter). The 
longitudinal and transverse waves transport the energy of the earthquake to the surface of the 
earth. Once the waves arrive on the surface, the surface wave spread the energy over the wider area 
of the earth. To study the property of the waves of continuous media is important to know the 
energy transport by such a hydrodynamic motion 

It is the same in plasmas. Consider, for example, the case where the plasma 
ejected by the explosion of the Sun surface (solar flare) falls as the plasma energy 
from the outside into the plasma confined in the earth magnetosphere. The abruptly 
injected energy propagates in the Earth’s magnetic field at high velocity by the 
Alfven waves discussed later. If the amplitude is too large, the plasma itself will be 
destroyed. When the plasma fluctuates greatly in the magnetic field, an electric field 
is generated, and electromagnetic waves are generated from the Maxwell equations. 
If this electric field is too strong, excessive current will flow in the circuit of the 
communication system and it will be destroyed. In order to predict such natural 
disasters, the research field of “space weather forecast” is promoted through collab-
oration between solar observation and numerical simulations. 

2.3.3 Wave Optics and Metamaterial 

For the readers, it is interesting to know more about another wave property of the 
sound waves. In Fig. 2.5,  a  metamaterial for sound wave is shown [3]. The 
scattering of a sound wave from the left on a rigid object at the center is shown on 
the left in Fig. 2.5. It is obvious that the wave is scattered due to the reflection by the 
object and interferometry makes the wave profile complex. The snapshot is the



density perturbation and quasi-specular reflection and deep shadow of the wave are 
observed in the right as the normal case. Surrounding the same object with an ideal 
cloaking shell, however, shows the absence of both reflection and shadow as shown 
on the right in Fig. 2.5. The wave power is transmitted around the metamaterial 
object with no losses and the existing of the object cannot be detected. 

2.4 Non-Ideal Fluid with Viscosity and Thermal Conduction 35

Fig. 2.5 A snapshot of the density contours of the sound wave scattered by an object. (a) is the case 
of scattering by a normal object, while (b) is by a meta-material with an additional shell around the 
object. Mathematical solution of the sound wave scattering allows almost no scattering object, and 
the object becomes transparent to the sound wave. Reprint with permission from Ref. [3]. Copyright 
1998 by American Institute of Physics 

Such concept of metamaterial is also applicable to any kind of waves. This is 
the so-called stealth function, which can be applied to any wave, for example, the 
reflection of radio waves from an object can be avoided with the same idea to the 
electromagnetic waves. 

2.4 Non-Ideal Fluid with Viscosity and Thermal 
Conduction 

2.4.1 Viscosity and Reynolds Number 

The ideal fluid has been assumed so far, and the effects such as molecular viscosity 
are ignored in the fluid equations. Also, we have ignored the heat conduction in the 
equation of energy. In any fluid dynamics with the non-uniformity of flow velocity 
and/or temperature, the viscosity and/or heat conduction should be evaluated at first 
whether they can be neglected. 

Consider the fluid dynamics of weather and climate phenomena in our daily life. 
In summer, strong sunlight raises the temperature of the earth’s surface. Heat 
conduction and convection phenomena in the air can cause the mirages. When this 
happens near the equator of the Pacific Ocean or the Atlantic Ocean, high temper-
ature seawater evaporates, creating rising air flow, and typhoons and hurricanes are 
born by the Coriolis force stemming from the rotation of the Earth. In the typhoons



and hurricanes, small eddies grow finally to one large vortex while being influenced 
by viscosity and nonlinear effects. It is well known that the lower the center pressure, 
the larger the size. 
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In order to study the actual fluid phenomena, there are cases where three coupled 
equations of ideal fluid (2.23, 2.24, and  2.25) are not appropriate. It is necessary to 
consider the viscosity effect accompanying the spatial variation of the flow velocity 
in the equation of motion. The viscosity relaxes the spatial variation of fluid velocity 
and converts the flow kinetic energy to the internal energy of fluid (heat). This is 
the viscosity heating of fluid same as the frictional heating of a body in a simple 
mechanics. 

In the equation of energy, in addition, when the temperature changes spatially, it 
is necessary to consider the transport of the internal energy. This is a corresponding 
phenomenon of the diffusion of internal energy. The continuity equation is an 
equation of mass conservation and can be used as it is. Taking into account these 
effects, the equation of motion in (2.21) and the equation of energy in (2.22) should 
be modified. 

Derivation of the details of that viscosity force is complicated, so the following 
equation of motion with a scalar viscosity is used in this book without any mathe-
matical derivation. 

ρ 
du 
dt 

= -∇P þ ρF þ 4 
3 
μ∇2 u- μ∇×∇× u ð2:55Þ 

This is Navier-Stokes equation. Here, μ is a viscosity coefficient and assumed to be 
constant. In (2.55), the first term of the viscosity is the diffusion of flow velocity with 
the diffusion coefficient 

ν= 
μ 
ρ

ð2:56Þ 

The ν in (2.56) is called the kinematic viscosity coefficient. The last term on RHS in 
(2.55) is the force that makes the flow velocity variation in space smooth when the 
flow velocity changes in perpendicular to the direction of flow vector. 

In many cases in fluid dynamics, incompressible assumption is used. For 
example, fluid dynamics of climate change and subsonic aircraft can be studied by 
neglecting the change of the density. In the subsonic flow the flow velocity is lower 
than the sound velocity and the density perturbation due to the motion of a body can 
be smoothed out by the sound waves. In the supersonic flow, shock waves to be 
described in Chap. 3 are generated, then, the compressibility becomes essential in 
the fluid dynamics. The motion of a submarine in the sea water is studied with the 
assumption of incompressibility. The Navier-Stokes equation is used for compli-
cated fluid calculations such as a change from laminar flow to turbulent flow of the 
wind flow in our life. The incompressible Navier-Stokes equation is directly derived 
from (2.55).

https://doi.org/10.1007/978-3-031-45473-8_3
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∂u 
∂t 

þ u .∇ð Þu= -∇ P 
ρ 

þ ν∇2 u,— ∙u= 0 ð2:57Þ 

In the incompressible case, it is enough to solve (2.57) instead of (2.20, 2.21, 2.22, 
2.23, 2.24, and 2.25). 

Change the equation of (2.57) to a non-dimensional form. For example, consider 
the wind flowing around a building. Assume that L is the typical length of 
the building, U is the typical speed of the wind, ρ is the density of the air, and P is 
the atmospheric pressure. Then, with a hat “~” (tilde) to the dimensionless quantities, 
the physical variables can be transferred to non-dimensional variables as follows. 

~r = 
r 
L 
, ~t = 

tU 
L 
, ~u= 

u 
U 
, ~p= 

P 
ρU2 ð2:58Þ 

Using these dimensionless variables, the Navier-Stokes Eq. (2.57) can be rewritten 
in non-dimensional form. 

∂~u 
∂~t 

þ ~u . ~∇ ~u= - ~∇~pþ 1 
Re 

~∇ 
2 
~u ð2:59Þ 

Whatever the scale of fluid phenomenon, the fluid dynamic phenomenon governed 
by (2.59) depends only on the dimensionless parameter 

Re = 
UL 
ν 

= 
ρUL 
μ

ð2:60Þ 

If the two fluid systems with different scales are similar, the fluids governed by 
(2.59) with the same value of “Re” has the same mathematical solution in the 
dimensionless form. This dimensionless quantity Re is an important value in 
discussing fluid turbulence and is called Reynolds number. For example, it is useful 
to calculate the value of Re in case of the wind around the building; for example, 
U = 10 m/s, L = 100 m, and air mean-free-path l ~ 20 Å , 

Re ≈ UL 
ℓVs 

≈ 10m=s× 100m 

π 2× 10- 9 m 
2 
× 1025 m- 3

- 1 
× 300m=s 

≈ 107 ð2:61Þ 

It is a very large number. Therefore, macroscopic fluid phenomena can be discussed 
by neglecting the effect of viscosity. It is noted, however, that the viscosity becomes 
essential in discussing fluid turbulences. The small vortexes in the turbulence 
disappear after transferring their kinetic energy to the thermal energy because of 
the viscosity. 

The convection term (u . ∇)u of the Navier-Stokes Eq. (2.57) is called the inertia 
term in the analysis of fluid turbulence. The term ν∇2 u is a viscosity term.  By  
inserting typical values in these terms, the inertia term is U2 /L and the viscosity term 
is νU/L2 , so the following relationship is satisfied
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Re = 
UL 
ν 

= 
inertia termð Þ  

viscosity termð Þ ð2:62Þ 

This is the definition of Reynold number, but it is not an exact definition. In gas 
dynamic phenomena in our daily life, the Reynold number is very large as (2.61). In 
the case of the wing of an airplane, it is as large as Re = 108 . Rather, it suggests that 
nonlinear effects (inertia term) often dominate phenomena in a variety of fluid and 
gas phenomena in our daily life. 

In the case of non-dimensional Eq. (2.59), the solution depends only on Re 
number, if two systems are in a similar structure. In fluid turbulence it is known 
that turbulent energy flows from large vortices to small vortices in three-dimensional 
case due to inertia terms. The larger the Reynold number, the larger and smaller 
vortices coexist at the same location in the fluid turbulence. 

Also, as the water or wind flows crossing a building of the cylinder structure 
changes its flow pattern according to the increase of the Reynold number due to the

Fig. 2.6 The flow pattern changes depending on the Reynold number of the system. The figure 
shows the flow forms and flow characteristic for the case where a laminar flow comes to the 
cylindrical obstacle with different Reynold numbers. It changes dramatically from laminar flow to 
turbulent flow. Preprint from Ref. [4] with kind permission from Springer Science + Business 
Media



increase of flow velocity. As shown in Fig. 2.6 [4], with increase of the flow velocity, 
the flow pattern is initially a laminar flow, peeling will occur next, the Karman 
vortex is formed, and it transits to turbulent flow. In Fig. 2.7, Karman vortices 
generated by the Canary Island are shown as a picture of clouds by a NASA weather 
satellite.
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Fig. 2.7 Karman vortex in the nature. Canary Islands kick up Karman vortices, May 20, 2015. 
(NASA earth observatory) 

2.4.2 Wave Damping by Viscosity 

It is clear intuitively that the viscosity plays a role to damp the amplitude of the 
sound waves. The wave equation including the viscosity in (2.48) is easily obtained 
to a Fourier component with k in the plane geometry. 

∂2 

∂t2 
u1 þ k2 ν ∂ 

∂t 
u1 þ k2 Vs 

2 = 0 ð2:63Þ 

Since (2.63) is an equation of a harmonic oscillation, the second term corresponds to 
a friction or damping term. The dispersion relation of (2.63)  is



ð
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ω≈ ± kVs - i 
ν 
2 
k2 ð2:64Þ 

So, mathematically it is easy to confirm that the solution is proportional to the form, 

exp ∓ ikVstð Þ exp -
ν 
2 
k2 t ð2:65Þ 

The term with a positive ν always damps the amplitude of the waves. It is informa-
tive to evaluate how large this damping is for the sound waves in the air. The vocal 
sound “do” is 260 Hz and the wavelength is about 1 m. The length of wave 
propagation Ld until the exponent of the damping reduces a factor ½ is estimated 
roughly, 

Ld ≈ 
Vs 

νk2 
≈ λ 

ℓ 
λ 

2πð Þ2 > > λ ð2:66Þ 

where λ is the wavelength, l is the air mean-free-path, and approximate relation 
ν ~ lVs was used. Since the vocal sound wavelength is much longer than the 
molecular mean-free-path, viscos damping can be neglected for our vocal sound 
waves. Note that the spherical damping is dominant as shown in (2.54). 

2.4.3 Thermal Conduction 

Next, thermal conduction should be also included in the equation of energy in high 
temperature plasmas. This is a phenomenon in which internal energy is given from 
or deprived by the surrounding fluid to a local fluid due to heat transport. This is 
included in the term corresponding to dQ in (2.6). Therefore (2.22) is modified to the 
form 

dε 
dt 

= -
P 
ρ 
∇u þ 4 

3 
μ 
ρ 

∇uð Þ2 þ 1 
ρ
∇ κ∇Tð Þ ð2:67Þ 

where κ is the heat conduction coefficient and the second term on RHS indicates 
that the flow kinetic energy is converted into heat energy by the viscosity. Thus, 
(2.67) shows a viscous term also appears in the energy eq. (2.22). 

Under the condition that the density is constant and no flow in (2.67), it reduces to 
the equation of temperature diffusion. In plasmas without magnetic field, the 
electron thermal conduction is more important. 

∂Te 

∂t 
=∇ χe∇Teð Þ 2:68Þ 

Here, Te is the electron temperature and χe is the electron temperature diffusion 
coefficient. In high-temperature plasmas, strong dependence of the Coulomb



collision time to the electron velocity shown in (2.3) results the Maxwellian aver-
aged diffusion coefficient is proportional to 
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χe ~ ℓeve / T5=2 
e ð2:69Þ 

Therefore, the temperature diffusion Eq. (2.68) is a nonlinear equation and Fourier 
decomposition method is not applicable. 

Fortunately, it is well-known that as long as the temperature dependence is power 
law and the initial and boundary conditions are not complicated, the following 
self-similar method helps to reduce the partial differential equation to an ordinary 
differential equation, which is in general one-dimensional eigen-value problem [5]. 

2.4.4 Self-Similar Solution 

Discuss a general case where the diffusion coefficient is given in the form. 

χ = aTn ð2:70Þ 

Here, “a” is a constant and “n” is a numerical value indicating the degree of 
nonlinearity. In general, n is often an integer or half integer. 

In the case where fluid is heated to a high temperature locally before fluid moves, 
the heat conduction becomes important than the effect of the sound waves We 
investigate one-dimensional plane given by the following equation. 

∂ 
∂t 

T = a 
∂ 
∂x 

Tn ∂ 
∂x 

T ð2:71Þ 

Let’s solve (2.71) while explaining the mathematics of self-similar solution. 
From the dimensional analysis of the Eq. (2.71), with the coordinates of the 

characteristic front of the heat conduction wave taken as xf and the average 
temperature as Ta at the time t, (2.71) should satisfy the following dimensional 
relation. 

aTn 
a ~

x2 f 
t

ð2:72Þ 

To solve this, it is required to impose an initial or boundary condition. 
As an example, suppose that energy E0 is instantaneously generated at x = 0. 

Then the law of conservation of energy is 

E0 = 
1 

γ- 1 
ρ0 

þ1

-1 
T t, xð Þdx ~ 2 

γ- 1 
ρ0Taxf = const: ð2:73Þ 

where 1/(γ-1) is the heat capacity. Equation (2.73) suggests the relation.



42 2 Basic Properties of Plasma in Fluid Model

Taxf ~ γ- 1 
2ρ0 

E0 ≡ α : const: ð2:74Þ 

Inserting (2.74) to (2.72), the time dependence of the heat wave front is 

xf ~ aαn tð Þ  1 
nþ2 ð2:75Þ 

The average temperature is obtained by substituting (2.75) into (2.82), 

Ta tð Þ ~ α2 

at 

1 
nþ2 

ð2:76Þ 

The dimensionless variable ξ is introduced as follows. 

ξ= 
x 

xf tð Þ ð2:77Þ 

The temperature is given by introducing a dimensionless function g(ξ), 

T t, xð Þ= Ta tð Þg ξð Þ ð2:78Þ 

The time and space differentiations are modified as. 

∂ 
∂t 

T = -
1 

nþ 2 
Ta tð Þ  
t 

gþ ξ dg 
dξ

ð2:79Þ 

a 
∂ 
∂x 

Tn ∂ 
∂x 

T = a 
Ta 

nþ1 

xf 2 
d 
dξ 

gn 
dg 
dξ

ð2:80Þ 

Equation (2.71) becomes an ordinary differential equation after one integration as 
follows. 

nþ 2ð Þgn dg 
dξ

þ ξg= 0 ð2:81Þ 

where the integral constant is zero evaluated as g(ξ) = 0 at  ξ infinity. This can be 
easily integrated, by assuming the value of at the wave-front (ξ = ξ0) constant, 

g ξð  Þ= β 1- ξ 
ξ0 

2 
1 
n 

ξj  j≤ ξ0 

0 ξj  j≥ ξ0 

ð2:82Þ
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Fig. 2.8 Time evolution of 
the nonlinear heat wave with 
n = 5/2, electron heat wave, 
in non-dimensional space 
and time. The nonlinearity 
makes the temperature 
profile being flat at high 
temperature region because 
of better conduction and 
steep profile near the front 
due to less conduction. In 
plotting the non-
dimensional profile, we set 
a= α= β= ξ0= 1 in (2.75), 
(2.76), (2.82) and (2.84) for 
normalized time 
t= 1, 2, . . . , 10  

T(t,x) 

x 

where β is a constant and is given as: 

β = 
n 

2 n þ 2ð Þ ξ0 
2 

1=n 

ð2:83Þ 

For the case of electron heat conduction with n = 5/2, the time evolution of 
temperature is shown in Fig. 2.8. As can be seen from the functional form of 
(2.82) with a large n, the wave front of heat conduction can be clearly defined unlike 
the case of linear diffusion with n = 0. Furthermore, the higher the temperature, the 
larger the thermal conductivity coefficient. The temperature profile is a flat shape 
rather than Gaussian for n = 0 case. 

The solution is 

T t, xð Þ= β 
α2 

at 

1 
nþ2 

g ξð Þ ð2:84Þ 

Note that the non-dimensional constant ξ0 is not obtained yet. It is obtained so that 
the total energy is conserved as (2.73). Inserting (2.84) into the second term in 
(2.73), the total energy becomes E0. In the case where the resultant ordinary 
differential equation is not analytically integrated, the problem becomes an eigen-
value problem with numerical integration, where ξ0 becomes the eigen-value. 

It is useful to solve for the case of n = 0, well-known linear diffusion problem, 
with this self-similar method. It is a standard way to solve (2.71) by using Fourier 
transformation. However, it can be applicable only for the linear diffusion. As seen 
above, the self-similar method can be applied to nonlinear diffusion equations, too. 
As clear in (2.82), it is not straight forward in n = 0 case. With this self-similar 
method, (2.81) becomes
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2 
dg 
dξ 

þ ξg= 0 ð2:85Þ 

This can be easily solved to obtain the well-known solution. 

T t, xð Þ /  1 
at

p e- x2= atð Þ ð2:86Þ 

Finally, let me explain the qualitative relationship between fluid motion and heat 
conduction waves. Generally, when rapid heating occurs on the surface of a solid, 
the speed of the heat conduction wave is very high, and the heat conduction wave 
propagates through the solid without fluid motion. Even in an insulator, free 
electrons increase at once by rapid heating, and a heat conduction wave propagates 
while ionizing atoms in the inside. 

However, the speed of the heat conduction wave suddenly decreases as seen in 
(2.75), and when the speed becomes about the sound speed of the heated region, the 
movement of the ions such as strong sound waves and shock waves will accompany. 
After that, a structure of density and temperature, in which heat conduction and fluid 
motion are combined as almost stationary state, is formed as deflagration wave to be 
explained in Chap. 3. 

Here, we showed how the self-similar method is powerful mathematics in solving 
a partial differential equation. The self-similar method has been applied to find 
analytical solutions of spherical implosion and explosion of compressible fluids 
driven by strong spherical shock waves. This topic will be studied in Chap. 4. 

2.5 Incompressibility and Vortex 

2.5.1 Incompressible Fluid 

The compressibility of fluids and gases such as water and air are defined as 

η= 
1 
B 
= -

1 
V 

dV 
dP 

= 
1 
ρ 
dρ 
dP

ð2:87Þ 

The “B” is the bulk modulus defined in (2.51) and corresponds to the pressure 
required to compress the nominal density twice. 

For incompressible fluids, the equation of continuity (2.20) can be replaced with 
the follow simple relation. 

∇ . u= 0 ð2:88Þ 

Here, we introduce the definition of vorticity vector ω.

https://doi.org/10.1007/978-3-031-45473-8_3
https://doi.org/10.1007/978-3-031-45473-8_4
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ω ≡ ∇× u ð2:89Þ 

In the case of incompressible and vortex-free flow (ω = 0), the flow velocity is 
defined with a potential (velocity potential), ϕ. 

∇× u= 0 ) u=∇ϕ ð2:90Þ 
∇ . u= 0 ) Δϕ= 0 ð2:91Þ 

Such flow is called the potential flow. 
It is better to see the image of the relation between the vortex and velocity vector. 

Image the case where a vortex is located at the center in the cylindrical geometry. It is 
easy to see the structure of the flow velocity vector by use of the analogy between 
electric current and static magnetic field. For a static condition, The Ampere law in 
the Maxwell equations is 

∇ ×H = j, H = 
B 
μ0 

ð2:92Þ 

Regarding the electric current as vorticity, the magnetic field vector corresponds to 
the fluid flow velocity. In the case where the vortex is localized at the center, the 
absolute value of the flow velocity decreases in proportion to 1/r. This is well-known 
magnetic field distribution in the electromagnetism. 

With a mathematical formula, Lagrange derivative of the flow velocity is rewrit-
ten as 

du 
dt 

= 
∂u 
∂t 

þ∇ 1 
2 
u2 - u×∇× u ð2:93Þ 

In the potential flow, from (2.93) and (2.90), the equation of motion (2.21) becomes. 

∇ -
∂ϕ 
∂t 

þ dP 
ρ 

þ 1 
2 
∇ϕj j2 þ U = 0 ð2:94Þ 

Here, the external force is given as a potential force 

F= -∇U ð2:95Þ 

From the Eq. (2.94), the following relation is found.

-
∂ϕ 
∂t 

þ dP 
ρ 

þ 1 
2 
∇ϕj  j2 þ U = 0 ð2:96Þ 

Here, RHS of (2.96) can be an arbitral function of time, f (t), but if we redefine the 
velocity potential like ϕ′ = ϕ - f(t)dt, we can generalize that f (t) = 0. In a steady



ð

flow of incompressible and vortex-free fluids, therefore, the following relation 
should be satisfied. 
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Fig. 2.9 Engineering application of Bernoulli’s theorem. (a) The difference of the height indicated 
the difference of velocity. This is used to measure the speed of an airplane flying at subsonic 
velocity where incompressibility is good assumption. (b) is the principle of lift force of airplanes. 
Design the main wing structure so that the top is longer than the bottom, and the pressure of the air 
passing over the top is lower than the pressure below. When the airplane takes off, this pressure 
difference provides lift and helps the aircraft to climb 

dP 
ρ 

þ 1 
2 
u2 þ U = constant in spaceð Þ 2:97Þ 

The relation of (2.96) and (2.97) is called Bernoulli’s theorem. 
Using (2.97), a mechanical device for measuring the speed of flow velocity is 

designed as in Fig. 2.9a. This principle has been used to measure the speed of 
subsonic-aircrafts. As seen in Fig. 2.9b, the wing of an aircraft is designed so that 
the upper length is longer than the lower length, then the flow velocity is higher in 
the top of the wings and the pressure is lower. The difference of the pressure pushes 
the wings upward. This force is called the lift force. 

2.5.2 Incompressibility Assumption 

In most of the hydrodynamic phenomena, the incompressible assumption can be 
used and the problems become simpler than the compressible fluids. Then, the 
equation of continuity and equation of energy can be replaced by the incompressible



condition (2.88). In general, the incompressible Navier-Stokes Eq. (2.55) is only one 
equation to be solved by coupling with (2.88). 
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Let us consider the condition under which the assumption of incompressible fluid 
is appropriate. Evaluate the density perturbation δρ in a uniform fluid with density 
ρ0. Induced velocity perturbation δu, originated by the compressibility can be given 
as the same form in (2.45) and (2.46) as follows. 

∂ 
∂t 

δρ= - ρ0∇δu ð2:98Þ 

∂ 
∂t 

δu= -
1 
ρ0 

∇δP= -
V2 
s 

ρ0 
∇δρ ð2:99Þ 

V2 
s = ∂P 

∂ρ
ð2:100Þ 

where δP is an induced pressure perturbation and Vs is the sound velocity defined 
in (2.47). From (2.98) and (2.99), the following relation is obtained. Assuming 
|∇| ≈ 1/L and |∂/∂t| ≈ τ, the relation is obtained 

δρ 
ρ0 

≈ L 
τ 

δuj j  
V2 
s 

ð2:101Þ 

It is clear from (2.101) that the density change by the compressibility can be 
neglected for the case with sufficiently high sound velocity Vs. For example, a car 
speed of 100 km/s is about L/τ~| δu|~0.1Vs and the density perturbation is only 1%. 
In the case of a supersonic jet fighter with Mach number more than unity, the density 
perturbation roughly evaluated with (2.101) is more than unity, so that hydrody-
namics should be solved as compressible fluid. 

2.5.3 Vortex Equation 

The following equation is obtained by taking the rotation of the equation of motion 
(2.57). 

∂ 
∂t 

ω=∇ × u ×ωð Þ þ  1 
ρ2

∇ρ×∇Pþ 4 
3 
ν∇2 ω ð2:102Þ 

This can be rewritten in the form. 

∂ 
∂t 

ω þ u ∙∇ω= ω .∇ð Þu-ω ∇uð Þ þ  1 
ρ2

∇ρ×∇Pþ 4 
3 
ν∇2 ω ð2:103Þ 

Here, ω is the vorticity defined in (2.89).
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The first term of RHS in (2.103) is a term that exists only in the case of three-
dimensional flow, and a vortex localized in a certain region is stretched to the 
direction of vorticity vector by this term. In the three-dimensional fluid turbulence, 
the vortexes are cascaded to thin, long vortexes in the turbulence energy spectrum. 
This is called cascade in wavenumber space of the turbulence. As the vortex is 
elongated, the viscosity of the fourth term on RHS of (2.103) acts as a damping term 
of the vorticity. This is the effect of dissipation in which the kinetic energy of the 
vortex is converted into the thermal energy of the fluid. 

The second term in (2.103) disappears in incompressible fluid. This term is the 
compressibility effect of amplifying the vorticity in the fluid as it is compressed. 
And, the third term is a source term for vortex generation. Note that it depends on the 
property of the equation of state (EOS). If pressure is only a function of the density, 
this term disappears. 

Even with ideal fluid equation of state, vortexes are generated by this term. The 
third term in (2.103) is called the baroclinic term. In  fluid dynamics, the baroclinity 
is a measure of the stratification in a fluid. A baroclinic atmosphere is one for which 
the density depends on both the temperature and the pressure; contrast this with 
barotropic atmosphere, for which the density depends only on the pressure. In 
atmospheric terms, the barotropic zones of the Earth are generally found in the 
central latitudes, or tropics, whereas the baroclinic areas are generally found in the 
mid-latitude/polar regions. 

Let us see the difference of role of the first term of RHS of (2.103) in two- and 
three-dimensional vortices. The effect appears as the difference between a tornado 
and a typhoon. Our Earth’s atmosphere is about 5 km as the thickness of the air 
fluid. Since a relatively small-scale vortex is subjected to the three-dimensional 
effect and becomes a thin and long vortex like a tornado. However, in the case of 
typhoon, the size of the vortex is as much as 1000 km compared to the atmosphere 
thickness of ~5 km, which is like a vortex in a very thin water in two-dimension. 
Therefore, the typhoon is a two-dimensional vortex and the first term on RHS of 
(2.103) does not work for the evolution of vortex. In fact, when examining the 
two-dimensional vortex turbulence, it turns out that the energy of the vortex moves 
in the wavenumber space from small to large wavenumber direction. This is called 
an inverse cascade. 

To see explicitly the force to generate vortices on the surface of the earth, it is 
better to write the vortex equation in a rotating system with an angular momentumΩ. 
Then, Navier-Stokes Eq. (2.57) includes two new forces, since Newton equation is 
modified in this frame as 

dv 
dt 

= 
F 
m 
þ 2v×Ω-Ω × Ω× rð Þ ð2:104Þ 

where the second and third terms in RHS are the Coriolis and centrifugal forces, 
respectively. Of course, r and v are those in the rotating coordinate. It is relatively 
simpler to solve Navier-Stokes equation in the rotating system with these two forces.



2.6 One-Fluid and Two-Temperature Fluid Model 49

Fig. 2.10 A satellite picture of clouds by a typhoon attacking Japan islands (left, Courtesy of 
Tenki.jp), and X-ray image of the spiral Galaxy M51 taken by Chandra x-ray satellite by NASA 
(right by NASA/CXC/SAO) 

It is easy to image the centrifugal force which is always perpendicular to the 
rotating axis (Ω-direction). The Coriolis force is easily understood with the analogy 
of Lorentz force. Regarding 2Ω is like an constant magnetic field vector in the 
z-direction in the cylindrical coordinate, the Coriolis force is the same mathematical 
form as the Lorentz force. For example, it is perpendicular force to the rising air in 
Summer to generate vortices due to Coriolis force. 

A picture of clouds in a typhoon approaching to Japan and Korea is taken by a 
weather forecast satellite as shown in Fig. 2.10a. The vortex is enhanced on the way to 
the north by the Coriolis force. It is clearly seen the “eye” of the typhoon at the center. 

It is interesting to compare the spiral motion of the typhoon to the spiral motion of 
a galaxy. A galaxy consists of about 100 billion starts, and it can be regarded as fluid. 
In general, galaxy is of pancake type structure and starts are rotating around the 
center of the galaxy with given angular momentum. In Fig. 2.10b, an observed x-ray 
image of the M51 galaxy is shown. The spiral motion of the stars in the galaxy is 
observed in the satellite image. The image suggests that the vorticity is localized at 
the center of the galaxy. 

2.6 One-Fluid and Two-Temperature Fluid Model 

It seems to be that a precise treatment of laser-plasma should be based on the 
two-fluid and two-temperature model identifying the ion and electron fluids. As 
shown in (2.4) and (2.5), the next better is the assumption of two temperatures but 
one fluid. Two fluid is required when the charge separation is important to affect the



fluid phenomena. This is the case near low density and high-temperature region like 
laser expanding plasma to be discussed in Chap. 3. The other case is the situation 
where the charge neutrality is satisfied, but the electron current is strong to generate 
strong magnetic field affecting the fluid dynamics. This is modeled by magneto-
hydro-dynamics (MHD) fluid discussed later. 
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As described in Chap. 2 in Vol. 1, the velocity distribution of heated electrons 
becomes Maxwellian with an electron temperature Te due to collisions between 
electrons, and the ions tend to be a Maxwell distribution with Ti relatively slowly, if 
the time scale of phenomena is longer than τe and τi in (2.4). However, it takes even 
longer time for both temperatures to have the same value as suggested in (2.5). In the 
case of laser heating, electron cyclotron heating, etc., the electrons in the plasma are 
heated from outside, and the ions are heated through the temperature relaxation 
process by the electron-ion Coulomb collision. Therefore, it is generally better to 
assume that the temperatures of electrons and ions are different in such plasmas. 

In addition, plasma shock waves such as blast waves of supernova remnants heat 
the ions at the shock front, and the electrons slowly receive energy from the ions due 
to temperature relaxation. In the magnetic field confined plasma, when plasma is 
heated by a microwave source whose frequency is adjusted to resonate the ion 
cyclotron frequency, the ion temperature rises but the electron is heated slowly via 
the ion-electron collision. 

Of course, if the time scale of the fluid dynamics is faster than the electron and ion 
relaxation times, there is no guarantee that the distribution functions are in Maxwel-
lian. However, the fluid equation is much easier to solve compared to the Boltzmann 
equations directly. It is better to start with solving a plasma dynamic with the fluid 
model at first. Then, if some violation of fluid assumption is found in the solution, it 
is better to consider how to take into account the kinetic effect in the basic equation. 

The one-fluid and two-temperature fluid model is widely used as the basic 
equation for studying the whole dynamics from laser heating to fusion burn in 
laser nuclear fusion implosion dynamics. The basic equations are derived from the 
two fluid equations given, for example, in the Babinski’s book [6]. To assume charge 
neutrality, the scale length of the plasma fluid variation in space should be suffi-
ciently longer than the Debye length. Then, one fluid approximation is reasonable, 
and the equation of continuity and the equation of motion are same as (2.20) and 
(2.21), respectively. 

dρ 
dt 

= - ρ∇u ð2:105Þ 

ρ 
du 
dt 

= -∇P ð2:106Þ 

However, the energy equation should be formulated for the ion and electron fluids as 
separate thermodynamic systems. As important terms, the heat conductions, tem-
perature relaxation, and energy source terms should be included. For example, Se is 
the energy source by laser and radiation, and Si is a source by the collisional heating 
by fusion-product particles. Then, both energy equations are written as,

https://doi.org/10.1007/978-3-031-45473-8_3
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ρ 
dεi 
dt 

= -Pi∇u-∇qi þ Qei þ Si ð2:107Þ 

ρ 
dεe 
dt 

= -Pe∇u-∇qe -Qei þ Se ð2:108Þ 

Here, εi and εe are the internal energies per unit mass of ion and electron fluids, qi and 
qe are heat fluxes of ions and electrons, Qei is the temperature relaxation in unit 
time per unit mass from electrons to ions (or vice versa when Qei is negative). The Si 
and Se are terms of energy sources and losses due to other effects to ion and electron 
fluids, respectively. For example, when the thermal x-ray radiation exchanges 
energy with plasma, the term Se should include the effects of heating and cooling 
by radiation. That term must be combined with an equation on radiation in a self-
consistent way. In (2.107) and (2.108), the thermal conduction coefficients of ions 
and electrons, and the temperature relaxation term are given as follows [6]. 

κe = α Zð Þ neTeτe 
me 

/ Te 
5 
2, κi = 3:9 

niTiτi 
mi 

/ Ti 
5=2 ð2:109Þ 

Qei = 
me 

mi 

Te - Ti 

τe 
ð2:110Þ 

Here, τeis the relaxation time given in (2.4). The collision time due to the Coulomb 
collision is subtly changed depending on the ionization degree Z of the ions, so it is 
applied as a correction term α(Z ) thereof. For example, α(Z )= 3.16 for Z = 1, others 
are in Ref [6]. Note that the thermal conduction coefficient roughly given as (2.69) 
for electrons and the same form livi for ions except numerical factors. It is found that 
the ion thermal conduction is much weaker than the electron thermal conduction 
even for the same temperature profile. 

Note that the one-fluid, two temperature fluid model is the basic equations for an 
integrated-physics code for laser fusion simulation. Depending on the difference of 
problems, additional physics are included in the basic equations. 

2.7 Two Fluid Equation of Plasma 

For analyzing short time and short scale plasma phenomena, two-fluid plasma model 
is widely used. In a short time, plasma is in general collisionless and there is no time 
for the ions and electrons to become Maxwell distributions via the Coulomb 
collision. Nevertheless, the ion and electron particle distributions are assumed to 
be in Maxwellian, and they are described with fluid models like the neutral fluids. 
The mathematical proof of the fluid approximation is shown in Appendix-A. 

In general, the energy equations to the ions and electrons are neglected for 
simplicity by assuming constant temperature or adiabatic response. For simplicity, 
consider the case of fully ionized hydrogen plasma. Extension to partially ionized



non-ideal plasma with other atomic and charge numbers is straightforward, if there is 
no need to be consistent with complicated atomic processes explained in Chap. 5. 
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Plasma consists of two kinds of charged particle groups whose masses are 
different by thousand times. Since the masses are very different, the ions behave 
separately as ion fluid and the electrons as electron fluid. Assume that both electrons 
and ions behave as the ideal fluid, and their degrees of freedom are only three-
dimensional translational motions. Then, both equations of state are the same as 
(2.31) and (2.32) with N = 3 and γ = 5/3. Then, the following equations are obtained 
for the ion fluid, after setting the number density of ions ni and setting its flow 
velocity and temperature to ui and Ti. 

∂ni 
∂t 

þ ∇ niuið Þ  = 0 ð2:111Þ 

mi 
∂ 
∂t

þ ui .∇ ui = -
1 
ni 
∇ niTið Þ þ  e Eþ ui ×Bð Þ- 1 

ni 
R ð2:112Þ 

Both the ion and electron gases are the ideal gas and charged particle ions are 
affected by Lorentz force. The electron fluid follows the equations. 

∂ne 
∂t 

þ∇ neueð Þ  = 0 ð2:113Þ 

me 
∂ 
∂t

þ ue .∇ ue = -
1 
ne 

∇ neTeð Þ- e Eþ ue ×Bð Þ þ  1 
ne 

R ð2:114Þ 

Here, R is the force due to friction appearing when the velocities of the electron and 
the ion fluids are different, and is given as the following form [6]. 

R= -
mene 
τei 

ue - uið Þ ð2:115Þ 

Note that both the viscosity and thermal conductions have been neglected above. 
Electric and magnetic fields appearing in Lorentz force are not only imposed 

externally but also generated by the ion and electron fluid motions. The charge 
density ρ and current density j are defined as 

ρ= eni - ene j= eniui - eneue ð2:116Þ 

(2.116) should be used in solving the Maxwell equations. 

Faraday’s Law∇ ×E= -
∂B 
∂t

ð2:117Þ
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Ampere’s Law 
1 
μ0 

∇ ×B= j þ ε0 
∂E 
∂t

ð2:118Þ 

Poisson Equation ε0∇ . E= ρ ð2:119Þ 
Gauss law∇ . B= 0 ð2:120Þ 

It is necessary to solve the fluid equations by coupling with the Maxwell equations at 
the same time self-consistently. This point is essential difference compared to the 
conventional fluid or gas with no charge, and soling any plasma physics is more 
complicated mathematically. So, when the computer appeared in the late 1940’s, the 
researchers in plasma physics became a pioneer in computational physics even with 
fluid assumption of plasmas. 

The basic equations were given above; however, it is not always necessary to 
couple all equations. For example, to investigate the phenomenon which is too fast 
for the ion fluid to follow, it is reasonable to keep the ions fixed and consider only the 
motion of the electron fluid. In a phenomenon, on the other hand, in which ions 
move slowly and the electrons just accompany them, the electron fluid follows the 
motion of the ion fluid. In such case, it is found the charge neutrality is good 
assumption without solving the electron equation. 

Plasma shock wave structures are studied precisely by soling complete equations 
of two fluid and two temperature fluid equation [7]. They have solved structure of 
stationary plasma shock waves and studied the effects of charge separation, electron 
and ion heat conduction, temperature relaxation, viscosity, etc. The same kind of 
research was done in the book [5], where the details are given in Chap. 7. It is too 
much here to discuss such precise calculation consistently by solving all above fluid 
equations, so the reader interested are recommended to read such references. 

2.7.1 Electron Plasma Waves 

Typical waves in two fluid plasma driven by the electric field are the electron 
plasma wave and ion acoustic wave. The electron plasma wave is sustained by 
the electric field due to charge separation by the electron motion. So, the electron 
inertial force balances the force by the electric field and electron pressure. In this 
case, the ions can be assumed to be at rest, namely, the ions cannot move because of 
their larger mass. 

To know the linear response of any plasma from an equilibrium state, small 
perturbations of physical quantities are considered after neglecting all nonlinear 
terms. This mathematical prescription is called “linearization”. In the electron 
plasma wave, the linear perturbations are the following electron density, electron 
velocity, and electrostatic field. 

ne1, ue1, E1 ð2:121Þ

https://doi.org/10.1007/978-3-031-45473-8_7


Then, the continuity Eq. (2.113) is linearized as 
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∂ 
∂t 

ne1 þ ne0∇ue1 = 0 ð2:122Þ 

The equation of motion of electrons (2.114) is linearized as 

me 
∂ 
∂t 

ue1 = -
1 
ne0 

∇Pe1 - eE1 ð2:123Þ 

The Poisson Eq. (2.119) is linearized as 

∇E1 = -
e 
ε0 

ne1 ð2:124Þ 

Assuming that the pressure is given in the form (2.31), the linearized pressure is 

Pe1 = 
∂Pe 

∂ne 
ne1 = γTene1 ð2:125Þ 

where Te is assumed to be given. In (2.125), the γ is evaluated so that the electron 
motion is one-dimensional adiabatic and γ = 3 from (2.33). 

The dispersion relation to the electron plasma waves is easily obtained as 

ω2 =ωpe 
2 þ 3ve 2 k2 , ve = Te=me ð2:126Þ 

where ωpe is the electron plasma frequency, or simply called plasma frequency 
defined as 

ωpe = 
e2ne 
ε0me 

ð2:127Þ 

In the cold plasma limit, the plasma waves tend to a simple oscillation 

ω2 =ωpe 
2 ð2:128Þ 

This oscillation of electrons is called plasma oscillation. Note that ωpe is a reso-
nance frequency of the electrons in cold plasma.
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2.7.2 Ion Acoustic Waves 

If the time scale of the oscillation of perturbations is long enough, it is necessary to 
take account of the motion of ion fluid. The electric field due to the charge separation 
in slow time scale attracts the electrons, so that the electron fluid almost follows the 
motion of the ion fluid. Consider the electron and ion density perturbations are 
slightly different, while the electrons follow the ion fluid motion. Both fluids are 
coupled by the electrostatic field. Derive the equations for linear perturbations of the 
following four quantities. 

ni1, ui1, ne1, E1 ð2:129Þ 

The linearized equation of (2.111) is given as 

∂ 
∂t 

ni1 þ ni0∇ui1 = 0 ð2:130Þ 

Eq. (2.112) becomes 

mi 
∂ 
∂t 

ui1 = -
1 
ni0 

∇Pi1 - eE1 ð2:131Þ 

Then, in (2.114) it is possible to neglect the inertial term. Assume that the electric 
field should balance with the electron pressure force.

-
1 
ne0 

∇Pe1 - eE1 = 0 ð2:132Þ 

The final relation is the Poisson Eq. (2.119). 

∇E1 = 
e 
ε0 

ni1 - ne1ð Þ 2:133Þ 

After Fourier transformation, the ion density perturbation is found to have the 
following relation with the electron density perturbation. 

ni1 = 1þ k2 λDe 2 ne1 ð2:134Þ 

Note that both density perturbations are almost the same for small k, while the 
electron density does not follow the ion density for large k. 

By solving the above coupled equations after Fourier-Laplace transformation, the 
dispersion relation of the ion acoustic wave or simply the ion wave is obtained.
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ω2 = 
γiT i 

mi 
þ γeTe 

mi 

1 
1þ k2 λDe 2 

, γi = 
5 
3 
, γe = 1 ð2:135Þ 

where the ion fluid is adiabatic and the electron fluid is assumed to keep a constant 
temperature because of the dominant electron thermal conduction. It is usual that the 
most of plasmas have higher electron temperature compared to the ion one. (2.135) is  
usually written to be 

ω2 =Cs 
2 k2

1 
1 þ k2 λDe 2

ð2:136Þ 

where Cs is the ion acoustic velocity defined by 

Cs = 
γeTe 

mi 
, ð2:137Þ 

The dispersion relation (2.136) is plotted in Fig. 2.11. It is noted that the ion acoustic 
wave phase velocity satisfies the relation. 

vi < 
ω 
k 
< < ve ð2:138Þ 

Once this relation is not satisfied, the ion waves are damped by the kinetic effect, 
so-called Landau damping. The physics of Landau damping will be discussed in 
Volume 4. 

Fig. 2.11 The dispersion relation of the ion acoustic wave is plotted by the red line. It starts with a 
constant velocity at small k, while saturates at large k region
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2.8 Mathematics for Wave Analysis 

The waves in plasma produced by the motion of ions and electrons coupled with 
Maxwell equation have the same role as the seismic waves, the sound wave, etc. So, 
if there is a disturbance somewhere in the plasma, the induced waves carry energy so 
as to disperse the energy spatially and temporally. As the result, plasma confinement 
is prohibited in some cases. When the amplitude of the waves is sufficiently small, it 
can be analyzed as weak deviation from the equilibrium state. Then, the governing 
equations can be linearized, and it is enough to solve the linearized wave equations. 
Fourier-Laplace transformation has been used to obtain the wave dispersion 
relation, but any precise mathematics has not been explained, yet. To proof the 
mathematics, we start with the small vibration of an oscillator before the wave 
analysis. In the wave theory, it is standard to analyze using Fourier-Laplace expan-
sion, and it is strait forward to use the mathematics of the analysis of such an 
oscillator. 

2.8.1 Initial Value Problem of an Equation of Oscillation 

First, let’s solve exactly the initial value problem of the equation for a harmonic 
oscillator with a damping term by the Laplace’s method. The equation of the 
harmonic oscillator with the eigen-frequency ω0 and damping coefficient γ can be 
written as follows. 

d2 x 
dt2 

þ 2γ dx 
dt 

þ ω2 
0x= 0 ð2:139Þ 

Multiplying (2.139) by  eiωt and introducing time-integrated variables, Laplace 
transformation is carried out with the definition. 

X ωð Þ= 
1 

0 
x tð Þeiωt dt ð2:140Þ 

It should be noted that even if x(t) grows exponentially in time, Im (ω) should be a 
positive value so that this integral (2.140) must not diverge. Carrying out the Laplace 
transform of (2.139), the second term becomes 

1 

0 

dx 
dt 

eiωt dt= xeiωt 
1 
0
- iωX ωð Þ= - x 0ð Þ- iωX ωð Þ ð2:141Þ 

The Laplace transform of the first derivative includes the initial value x (0). The 
second derivative is
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1 

0 

d2 x 
dt2 

eiωt dt = 
dx 
dt 

eiωt 
1 

0
- iω 

1 

0 

dx 
dt 

eiωt dt = - _x 0ð Þ þ  iωx 0ð Þ-ω2 X ωð Þ  ð2:142Þ 

This includes the first derivative at t = 0, _x 0ð Þ  = dx / dt (t = 0). 
If Laplace transform is performed accurately as mentioned above, Laplace 

transformed equation of (2.139) is given as 

ω2 þ 2iγω-ω2 
0 X ωð Þ= - _x 0ð Þ þ  iω- 2γð Þx 0ð Þ ð2:143Þ 

LHS of (2.143) is factorized. 

ω2 þ 2iγω-ω2 
0 = ω-ω1ð Þ  ω-ω2ð Þ ð2:144Þ 

Here, 

ω1 = ω2 
0 - γ2 - iγ, ω2 = - ω2 

0 - γ2 - iγ ð2:145Þ 

Since X(ω) is given in (2.143), the Laplace inverse transformation is performed to 
give 

x tð Þ= 
1 
2π 

þ1

-1 
X ωð Þe- iωt dω 

= -
_x 0ð Þ  
2π 

þ1

-1 
e- iωt 

ω-ω1ð Þ  ω-ω2ð Þ dω 

þ x 0ð Þ  
2π 

þ1

-1 

iω- 2γð Þe- iωt 

ω-ω1ð Þ  ω-ω2ð Þ dω ð2:146Þ 

Here, 1/2π of (2.146) is a normalization constant. 
The integration of (2.146) is easily carried out with the residue theorem and 

Cauchy’s theorem. For the sake of simplicity, the real part of the Eq. (2.145) is  
rewritten to be, 

Ω= ω2 
0 - γ2 ð2:147Þ 

The integral of (2.146) has singular pointsω = ω1, ω2. In the Laplace transform 
defined in (2.140), it was required that the imaginary part of ω should be positive and 
large enough so that the integral of (2.140) does not diverge. Now, in the integral of 
(2.146), take the value of Im (ω) is sufficiently large negative value and extend 
the integral to a closed curve (red) like Fig. 2.12. Then, according to the Cauchy’s 
theorem, this line integral (2.140) is obtained by adding negative signs to the



residues from the two poles like in Fig. 2.12. It should be the direction of the 
clockwise. The first term on RHS of (2.146) is integrated. 
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Fig. 2.12 The integration loop in the complex space for the inverse-integration of Laplace 
transformation. In the case of inverse-Laplace integration, it is necessary to down the integration 
line to the negative infinite circle for convergence of the integration. Then, it is found that Cauchy’s 
theorem indicates that only the contribution by the pole remains in the loop integration. If there are 
roots with positive imaginary part like shown in the small box above, then the integration pass 
should be modified as shown in the small box. Then, we obtain exponentially growing solutions

-
1 
2π 

þ1

-1 
e- iωt 

ω-ω1ð Þ  ω-ω2ð Þ dω= -
ie- γt 

2Ω eiΩt - e- iΩt 

= 
e- γt 

Ω sin Ωtð Þ ð2:148Þ 

The second term is 

1 
2π 

þ1

-1 

iω- 2γð Þe- iωt 

ω-ω1ð Þ  ω-ω2ð Þ dω= 
e- γt 

2 
eiΩt þ e- iΩt þ iγe

- γt 

2Ω

⨯ eiΩt - e- iΩt = e- γt cos Ωtð Þ þ  γ 
ω3 

sin Ωtð Þ ð2:149Þ 

Finally, the solutions are obtained by substituting (2.148) and (2.149) into (2.146) as  
follows. 

x  tð  Þ= e- γt sin ω3tð  Þ  
Ω _x 0ð  Þ þ  cos Ωtð  Þ þ  γ Ω sin Ωtð  Þ  x 0ð  Þ ð2:150Þ
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It is easy to confirm that the solution obtained in this way satisfies the initial 
condition. 

In the absence of the damping term (γ = 0) the solution is simplified from (2.150). 

x tð Þ= _x 0ð Þ  sin ω0tð Þ  
ω0 

þ x 0ð Þ cos ω0tð Þ ð2:151Þ 

The form of (2.151) is the general solution of the harmonic oscillator in the form. 

x tð Þ=Asin ω0tð Þ þ  Bcos ω0tð Þ ð2:152Þ 

The constants of A and B in (2.152) should be determined from initial conditions as 
(2.151). 

The case of (2.139) is easy to solve even as an initial value problem as seen above. 
However, if the equation becomes higher order, third or fourth order differential one, 
it is hard to solve as above. Then, if the Laplace transform is used, the differential 
equations become algebraic equations, eventually resulting in a problem of finding 
poles in the Laplace inverse transformation. This is easy and useful as a general 
theory. This advantage is very powerful. 

It is useful to know the case where the relation (2.144) has solutions with positive 
imaginary. Then, it is necessary to down the integration contour from above to below 
by avoiding the singular point as shown in the inlet at the top right in Fig. 2.12. In  
this case, the solution has a term exponentially growing in time. So, the change of the 
contour from the Laplace to inverse-Laplace transformation should be carried out by 
paying attention to the assumption for the convergence of the integral for t > 0. 

2.8.2 Solving with Fourier-Laplace Method 

Apply the Fourier decomposition to the equation for the electromagnetic waves in 
vacuum. The mathematics are the same for the sound waves, plasma waves and 
any other waves. Solve the initial value problem for the Fourier component of 
wavenumber k. The Laplace transform same as the harmonic oscillator is used for 
this Fourier mode. For simplicity, try to solve the one-dimensional problem of space 
with the x direction. The basic equation is 

∂2 

∂t2
- c2 

∂2 

∂x2 
E = 0 ð2:153Þ 

where c is the speed of light in vacuum. (2.153) is the same type of equation as (2.49) 
and expanded as,
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∂ 
∂t

- c 
∂ 
∂x 

∂ 
∂t

þ c 
∂ 
∂x 

E = 0 ð2:154Þ 

It is clear (2.154) has the general solution. 

E t, xð Þ= f x- ctð Þ þ  g xþ ctð Þ ð2:155Þ 

where f and g are arbitrary functions. The first term of (2.155) is the wave propa-
gating to the right in the x axis, and the second term is the wave propagating to the 
left. Here, f and g are determined by the initial condition. Since (2.153) is a linear 
partial differential equation, the principle of superposition can be used. Then, the 
solution can be given in the form with the sum of the Fourier components. 

E t, xð Þ= 
k 
Ek tð Þeikx ð2:156Þ 

Inserting (2.156) into (2.153), the following ordinary differential equations are 
obtained for each Fourier component. 

d2 Ek 

dt2 
þ c2 k2 Ek = 0 ð2:157Þ 

Assuming γ = 0 in  (2.139) and ω2 
0 = c2k2 in (2.139), (2.157) is of the same form as 

the harmonic oscillator. Therefore, from (2.151) the solution to the initial value 
problem is obtained. 

Ek tð Þ= 
dEk 0ð Þ  

dt 
sin ω0tð Þ  

ω0 
þ Ek 0ð Þ cos ω0tð Þ ð2:158Þ 

The solution can be obtained with the Fourier decomposition of the initial condition. 
Inserting (2.158) to (2.156), the following form is obtained as the solution. 

E t, xð Þ= 
k 
Ake

- ik ct- xð Þ þ 
k 
Bke

ik ctþxð Þ ð2:159Þ 

where Ak and Bk are given by the Fourier transformation of the initial condition. 
It is useful to know that partial differential equations can be solved as ordinary 

differential equations in the case of linear perturbations. Furthermore, solving the 
initial value problem of the Eq. (2.154) is nothing without finding the poles in closed 
curve of the Cauchy integral in the two-dimensional complex space. The solution 
has the form proportional to exp.(-iωt), and its frequency and growth rate 
(or damping rate) are the real part and the imaginary part of the singular points, 
respectively. 

Therefore, the solution of the algebraic equation corresponding to the singular 
points can be symbolically expressed 

ω=ω kð  Þ ð2:160Þ
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The relation (2.160) is generally called a dispersion relation. For wavenumber k, 
the number of waves is equal to the number of singularities of the denominator of the 
Laplace inverse transformation. The number of singularities increases as the basic 
equations become more complicated. Electromagnetic waves are simple, second-
order equations, but there are numerous waves in the plasma. Therefore, rather than 
directly solving the differential equation, it is better to use the Fourier-Laplace 
transform to obtain the algebraic equation of dispersion relation, for example, the 
dispersion relation of electromagnetic wave in the vacuum is simple as 

ω2 = c2 k2 ð2:161Þ 

In the case that the dispersion relation is a real function and has roots of complex, 
there is always a solution of wave growing in time. In such a case, the wave is said to 
be unstable. To find the instabilities in plasma is very common subject even in laser-
produced plasmas as will be seen later. 

2.9 Magneto-Hydrodynamic Equation of Plasma 

An ion is much heavier than an electron. Therefore, the relatively slow change in the 
plasma dynamics is often determined by the inertial of the ions. In this case, electrons 
move in association with ions so as to avoid charge separation to form a strong 
electric field. However, since the high temperature plasma has a high electric 
conductivity, the electron flow keeps electric current even in weak electric field. 
Then, while maintaining charge neutrality, an electron current is generated, and it is 
better to regard that the ions move slowly with strong magnetic field due to the 
electron current. 

In such a case, there is no need to solve the above two fluid equations separately. 
In general, the behavior of plasma is approximated by Magneto-Hydro-Dynamics 
(MHD) equation derived below. For example, in magnetic confined plasmas, we 
first study the confinement condition of plasma with use of the MHD equation. This 
MHD equation was derived by H. Alfven, awarded the Nobel Prize in Physics in 
1970. His achievement is stated in the citation for this award, “fundamental research 
and discovery with magneto-hydrodynamics as meaningful application to various 
parts of plasma physics”. 

In recent years, observation technology has been advanced rapidly to provide 
details of the plasmas in the Universe. As the result, there is a movement to 
reconstruct astrophysics based on plasma physics, for example, the explosive phe-
nomenon in the Universe. In the laser-plasma, the generation of magnetic field or 
coupling of external magnetic field has become an important topic mainly relating to 
laboratory astrophysics, such as magnetic reconnection [8]. 

The MHD equation have been introduced as basic equation to describe space 
plasmas and magnetically confined plasma. The magnetic field is ubiquitous in the 
Universe. It is important to understand the approximation in obtaining MHD
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equation and the property of the equation. The MHD equation is derived while 
explaining the derivation procedure and approximation. 
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Multiply (2.111) by me, multiply (2.113) by mi, take the sum of both, and divide 
it by (mi + me). In derivation, charge neutrality ne/Z = ni = n is assumed as 
explained above. Furthermore, the mass density and flow rate of the MHD fluid 
are introduced as 

ρ= mi þ með Þn, v= 
miui þ meue 
mi þ me 

ð2:162Þ 

Then, the mathematical process above gives 

ρ 
∂v 
∂t 

= -∇P þ j×B ð2:163Þ 

In obtaining (2.163), the convective term was neglected. MHD equation is applica-
ble only when the flow velocity is sufficiently slow 

v .∇vj j< <  
∂v 
∂t

ð2:164Þ 

Next, the following equation is obtained by multiplying (2.112) by me, multiplying 
(2.114) by mi, taking a difference and approximating me < <  mi. 

∂j 
∂t 

= 
e2ρ 
mime 

Eþ v ×B-
νeime 

ne2 
j -

e 
me 

j×B-
e 
mi 

∇Pi þ e 
me 

∇Pe ð2:165Þ 

Since the phenomenon is slow because of the heavy ions, it is reasonable to neglect 
LHS of (2.165) in what follows. Because of large mass ratio the term of Pi on the 
right side can also be ignored relative to the term with Pe. Then, (2.165) reduces to a 
generalized Ohm’s law. 

E þ v×B= 
1 
σei 

jþ 1 
en 

j×B-∇Peð Þ 2:166Þ 

Here, σei is the electric conductivity. The resistivity is 1/σei and it stems from the 
Coulomb scattering of electrons by ions in plasma. 

The first term of the parenthesis in the second term on RHS of (2.166) is called the 
Hall effect. This means if there is current flow under an external magnetic field, a 
potential difference appears in the vertical direction. The second term of the bracket 
on RHS of (2.166) shows the effect of ambipolar electric field which can be 
generated by electrons with large mobility to escape by the pressure gradient of 
electrons. Without magnetic field and pressure gradient in (2.166), it reduces to the 
well-known Ohm’s law in the form. 

j= σ Eþ v ×Bð Þ 2:167Þ
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2.9.1 Biermann Battery Effect 

Now, assume that (2.166) is an equation giving the electric field. It is necessary to 
formulate governing equations for the magnetic field and density for the completion 
of the coupled equations for MHD phenomena. It is clear that the equation for 
density is a continuity equation of (2.111) for the density (2.162). 

∂ρ 
∂t 

þ ∇ ρvð Þ= 0 ð2:168Þ 

The equation governing the magnetic field is obtained by taking the rotation of 
(2.166) and using Maxwell Eq. (2.117). 

∂B 
∂t 

=∇ × v×Bð Þ-∇ × 
1 

μ0σei 
∇ ×B -∇ × 

j×B 
en 

þ ∇ 

× 
1 
en

∇Pe ð2:169Þ 

This equation is the governing equation of the magnetic field and can be rewritten as 
a combination of three terms with B and one source term. 

∂B 
∂t 

=∇ × v×Bð Þ-∇ × 
1 

μ0σei 
∇ ×B -∇ × 

j×B 
en

-
1 
en

∇n×∇Te ð2:170Þ 

The last term in (2.170) plays a role of source and sink of magnetic field. This term is 
called Biermann battery effect [9]. 

In laser plasma experiment, Biermann battery effect is used to generate magnetic 
fields to study, for example, magnetic reconnection physics [10, 11]. When a single 
intense laser, shown with the yellow arrow, irradiates a foil as shown in Fig. 2.13a, 
the produced plasma expands to the laser direction. Since the thermal conduction by 
electron is dominant and the electrons spread almost uniformly in the hemi-sphere, 
while the ions expand dominantly in the normal direction. Then, ∇n × ∇ Te term in 
(2.170) is produced like a torus (doughnut) shape as shown by blue in Fig. 2.13a. 
The surrounding arrows show charge current vector by expanding electrons. 

With use of a short-pulse proton beam (E = 32.8 MeV) generated by an ultra-
short laser pulse, a snapshot of the proton beam bending image is obtained as shown 
in Fig. 2.13b, where the dark image shows the region that the proton beams are 
bended by the magnetic field. The maximum strength of magnetic field is reported 
about 2 MG [10]. Note that the spatial size of Fig. 2.13b is about 1 mm and the life 
time of magnetic field is of the order of ns. 

By use of such strong magnetic field, dynamics of magnetic reconnection has 
been studied. Two intense lasers are focused on an aluminum plate with separation 
distance of ~1 mm to produce the same two magnetic field structure. The bending of 
the proton particles is measured to evaluate the magnetic field profiles as shown in



Fig. 2.13c [11]. The lines are magnetic field line speculated with the proton image. 
Several snap shots are obtained to study the time evolution of topology of magnetic 
field. 
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Fig. 2.13 Magnetic field generation in laser produced plasmas via Biermann battery effect. 
(a) Schematic of generation mechanism of magnetic field. A laser irradiated as yellow arrow at 
the center. (b) Proton back-light image of laser-produced magnetic field. (c) Magnetic lines 
overlapped on the proton back-light image to study magnetic reconnection in irradiating two lasers 
from the same direction. Reprint with permission from Refs. [10, 11]. Copyright 1998 by American 
Institute of Physics 

2.9.2 Similarity of Vortex and Magnetic Fields 

Let us discuss about the similarity of (2.169) to the equation of the vortex in neutral 
fluid (2.102). Except for the Hall effects, it is clear that both are mathematically 
same. In other words, if any vortexes seen in neutral fluid are generated in plasma, 
the plasma has electric current along the vortex flow, (see Fig. 2.14). Any vortex in 
plasma accompanies electric current, a relative motion of the electrons with respect 
to the ions, consequently, the magnetic field is generated. The vortex is a very 
important concept such as turbulence and turbulent transport in neutral fluid. In



plasma, the transport of charged particles is strongly affected by magnetic field, as 
magnetic field turbulence is developed by vortexes. 
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Fig. 2.14 The relation of 
flow velocity and magnetic 
field induced by the vortex 
and electron current in 
two-dimensional space, 
respectively. In the neutral 
fluid, the vortex is generated 
by the baroclinic term. This 
means that if the fluid is 
conducting plasma, the 
generation of vorticity 
means the generation of 
magnetic field in plasma 

Since MHD phenomena are generally discussed after neglecting the Hall effect or 
Biermann battery effect, the equation for the magnetic field is solved including the 
first two terms of (2.169). If the electric conductivity is also constant, the equation of 
(2.169) reduces to 

∂B 
∂t 

=∇ × v×Bð  Þ þ  1 
σeiμ0 

∇2 B ð2:171Þ 

The first term on RHS is the convection term and the magnetic field winds around the 
plasma flow. The electric resistance of the plasma appears in the second term. In the 
case where the plasma resistivity cannot be neglected, the magnetic field diffuses in 
space, consequently, charged particles diffuse across the magnetic field. The diffu-
sion of the charged particles is equivalent to the magnetic field diffusion through the 
plasma. The diffusion term disappears if the plasma is a perfect conductor, namely 
collisionless plasma. 

In general, the diffusion term of magnetic field is regarded same as the Reynolds 
number (2.62) of the neutral fluid. The diffusion of magnetic field also plays a role in 
converting the magnetic field energy into the thermal energy of the plasma. There-
fore, the magnetic Reynolds number in the MHD can be defined as the dimen-
sionless quantity corresponding to the Reynolds number as follows. 

Rm = 
inertial termð Þ  

magnetic diffusionð Þ  = μ0σeiUL ð2:172Þ
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Here, U and L are a characteristic flow velocity and a size of plasma. For Rm > >  1 
the plasma can be described with the ideal MHD equation to be explained below. In 
many of laser plasmas in the laboratory, Rm is not so large. On the other hand, the 
plasmas in the Universe have very large L and/or very low density, therefore, in 
either case Rm →1 can be assumed. It is good enough to assume the ideal MHD for 
study of such plasmas. 

2.9.3 Ideal MHD Plasma 

When the diffusion coefficient of the magnetic field is dominated by the Coulomb 
scattering, the diffusion is not important relatively in the laboratory plasmas aiming 
for nuclear fusion at high temperature or in space plasmas with large scale. There-
fore, the ideal plasma approximation in which the magnetic Reynolds number Rm is 
a very large means that the diffusion term can be neglected. However, in a phenom-
enon that is governed by dissipation such as magnetic reconnection on the solar 
surface, it is difficult to explain the observed dynamics by the classical diffusion only 
due to the Coulomb scattering. In such a case, be aware that the resistivity due to 
magnetic turbulence induced by plasma wave instabilities becomes dominant. Such 
resistivity is called anomalous resistivity and will be discussed in Vol. 4. 

The basic equation for the magnetic field of the ideal MHD is (2.171) without 
resistivity. 

∂B 
∂t 

=∇ × v×Bð Þ ð2:173Þ 

Use the following mathematical relation to the convection term. 

∇ × v×Bð Þ= B .∇ð Þv- v .∇B-B∇v ð2:174Þ 

where the relation ∇ . B = 0 has been used. From the equation of continuity (2.168), 

∇ . v= -
1 
ρ 
dρ 
dt

ð2:175Þ 

Inserting (2.174) to (2.173) and replacing the second term on RHS of (2.174) to LHS 
of (2.173), a new relation is obtained. 

dB 
dt 

= B .∇ð Þvþ B 
ρ 

dρ 
dt

ð2:176Þ 

This can be rewritten to be 

d 
dt 

B 
ρ 

= 
B 
ρ
.∇ v ð2:177Þ
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It is found from (2.177) that when the flow is perpendicular to the magnetic field, 
RHS of (2.177) disappears and the quantity B/ρ is preserved along the plasma flow. 

In addition, an equation of motion (2.163) is  

ρ 
dv 
dt 

= j×B-∇ Pe þ Pið Þ ð2:178Þ 

In (2.178), the first term on RHS is modified from Ampere’s eq. (2.118) b  
neglecting the displacement current. 

j×B= 
1 
μ0 

∇ ×Bð Þ×B= -∇ B2 

2μ0 
þ 1 
μ0 

B .∇ð ÞB ð2:179Þ 

This means that the force due to the magnetic field acts on the plasma as the 
magnetic pressure with the first term of RHS in (2.179) and the magnetic tension 
with the second term. 

Here, the ideal MHD equation is closed with the three equations; namely, the 
equation of continuity (2.168), the equation for motion (2.178), and the equation for 
magnetic field (2.177). It is also necessary to give EOS for the pressure in (2.178). 
From the equation of motion, the ratio between the pressure due to the particles and 
that due to the magnetic field is a dimensionless quantity called plasma β value and 
is defined as. 

β = 
plasma pressureð Þ  
magnetic pressureð Þ  = 

Pi þ Pe 
B2 

2μ0 

ð2:180Þ 

Magnetic field confinement fusion machine such as Tokamak has β value of 
1–2 percent. In order to extract energy by nuclear fusion and to put it into practical 
use, it is said that from the viewpoint of various losses, any fusion machine is 
necessary to have the β value more than 10%. Therefore, researches on spherical 
Tokamak with high β values are actively studied. Also, in the solar surface, the 
magnetic field is very strong, and plasma research focuses on physical phenomena in 
the so-called low beta (low-β) plasma. However, the laser produced plasma and the 
various plasmas in the Universe are in general high-beta (high-β) plasma. In high-β 
plasmas, the magnetic field influence on the charged particle transport becomes more 
important than the magnetic pressure. 

It is useful to see the pressure form acting on MHD explicitly. Using the 
following relation to (2.179), 

B .∇ð ÞB=∇ B⊗ Bð Þ ð2:181Þ 
B⊗ B½ ]ij ≡ BiBj
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The conservation form of the momentum density is given from (2.178) in the form: 

∂ 
∂t 

ρvð Þ þ ∇ ρu⊗ uþ Τ$ 
= 0 ð2:182Þ 

Here, the tensor Τ
$ 
is given to be 

Τ
$ 

= Pþ B
2 

2μ0 
I 
$

-
1 
μ0 

B⊗ B ð2:183Þ 

where I 
$ 

is the unit tensor and P is the total pressure, P = Pi + Pe. The tensor of 
(2.183) is the total tensor pressure acting on the MHD fluid. 

It is useful to show explicitly the component of the tensor: 

Tik = Pþ B
2 

2μ0 
δik -

BiBk 

μ0 
ð2:184Þ 

In the local frame in which the direction of the magnetic field is in the z-direction, Τ
$ 

can be given in the form. 

Τ
$ 

= 

Pþ B
2 

2μ0 
0 0  

0 Pþ B
2 

2μ0 
0 

0 0 P-
B2 

2μ0 

ð2:185Þ 

As is clear from (2.185), the pressure by the magnetic field is in the perpendicular 
direction to the magnetic field vector. On the other hand, the tension works in the 
magnetic field direction as negative pressure. The magnetic field component in the z 
direction is physically. 

(z-component by B) 

= magnetic pressure : 
B2 

2μ0 
þ magnetic tension : -

B2 

μ0 
ð2:186Þ 

Finally, the energy conservation equation of the MHD fluid is in the form. 

∂ 
∂t 

U þ ∇S= 0 ð2:187Þ 

where the energy density U and the energy flux density S are
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U = 
1 
2 
ρv2 þ 1 

γ- 1 
Pþ B

2 

2μ0 
ð2:188Þ 

S= 
1 
2 
ρv2 þ γ 

γ- 1 
P vþ 1 

μ0 
B× v ×Bð Þ ð2:189Þ 

In deriving (2.188) and (2.189), the ideal EOS for both particles have been assumed 
in the forms in (2.31) and (2.32) with the same specific heat  γ, say γ = 5/3 for the 
fully ionized plasma. 

2.9.4 Magnetic Dynamo Effect 

Magnetic field grows even for the case without the source term like the Biermann 
battery effect in (2.170). Given fluid velocity field v(r) in (2.171), it has an eigen 
function B0(r) in the form: B(r, t) = B0(r) exp (γt), where γ is the eigen value 
representing the growth rate of the magnetic field. 

The principle of the growth of magnetic energy is explained intuitively like this. 
As explained in (2.186), the magnetic field has tension force and one need a work to 
stretch the magnetic field line in the direction of the magnetic vector. When the 
topology of flow field v(r) is complicated due to the convective motion in rotating 
plasma fluid system, for example, the conducting fluid inside the earth, plasma in the 
Sun, etc., the length of magnetic field line is possibly stretched by the convective 
motion, if the resistivity term in (2.171) is small enough, namely large Rm case. 

In the case when the plasma pressure is much larger than the magnetic pressure, it 
is a good approximation to solve Navier-Stokes Eq. (2.57) independently from 
(2.171). 

After solving NS equation and find almost stational convective motion, the eigen-
value problem with reasonable boundary condition is solve to obtain the form 
B0(r) exp (γt) for the linear stability analysis. Then, the nonlinear evolution can be 
studied by solving numerically (2.171). We may find the nonlinear saturation profile 
of the magnetic field, where magnetic field is always enhanced by the first term in 
(2.171) to balance the dissipation of the second term. This is the case of magnetic 
field of the earth and the Sun. 

In Fig. 2.15, the magnetic field near the surface of the Sun observed via radiation 
emission by electrons in their cyclotron motions is shown [12]. Such strong mag-
netic field is originally produced by the magnetic dynamo effect in the deep inside 
of the Sun. It is clear that since the magnetized region has lower density than 
non-magnetized neighbor plasma, the magnetic field rises by the buoyancy. 
Figure 2.15 is a snap shot of such magnetic field appeared on the surface and will 
disappear later via the magnetic reconnection.
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Fig. 2.15 The magnetic field near the surface of the Sun observed via radiation emission by 
electrons in cyclotron motions [12]. Credit: NASA NASA/TRACE 

2.9.5 Plasma Confinement by Magnetic Field 

Eq. (2.178) gives the condition of plasma confined in magnetic field. The basic 
equation to solve configurations of plasma and magnetic field in the state of force 
balance is given as, 

j×B=∇P, j= 
∇ ×B 
μ0 

, ∇∙B= 0 ð2:190Þ 

To find a configuration of magnetic confinement device for collisionless fusion 
plasma, this ideal MHD equation should be solved at first. It is clear from the 
divergence-free property of magnetic field (∇ ∙ B = 0) that the solution should 
have torus topology as shown in Fig. 2.16. as represented by Tokamak machine. 

One of mathematically simple solution in an ideal one-dimension is the pinch 
plasma. To generate strong x-ray flux like that by lasers, Z-pinch machine driven by 
pulse power has been used [13]. The Z-machine has a solution of (2.190) with 
assuming one-dimensional cylindrical symmetric geometry, where j in the 
z-direction and B in the azimuthal direction. Then, (2.178) reduces to the. 

dP rð Þ  
dr 

þ Bθ rð Þ  
μ0r 

d 
dr 

rBθ rð Þ½ ]= 0 ð2:191Þ 

Then, (2.191) can be rewritten to be the force balance relation, 

d 
dr 

P þ B
2 
0 

2μ0 
þ B

2 
0 

μ0r 
= 0 ð2:192Þ 

Equation (2.192) represents that the pressure force by plasma and magnetic field 
balances with the tension force of magnetic field in (2.184). Solving (2.191), the



normalized profile of the magnetic field Bθ(r) and pressure P(r) of the Z-pinch is 
shown in Fig. 2.17. The magnetic field is normalized by the value at the outer radius 
(ρ = 1) and the pressure is normalized by the magnetic pressure at ρ = 1. The size of 
the radius is arbitrary as shown with the normalized radius ρ. 
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Fig. 2.16 Optimum 
structure of MHD solution, 
torus 

Fig. 2.17 Normalized 
pressure and magnetic field 
profiles of ideal 
one-dimensional Z-pinch 
solution 

The wire-array Z-machine is used to study the possibility of MagLIF (magnetic 
laser inertial fusion) with combination of Z-pinch compression and laser heating 
[14]. Combining the magnetic field in the compression phase, the particle heat 
conduction can be reduced to relax the fuel ignition condition. It is well known, 
however, that the Z-pinch plasma confinement is unstable to perturbation from the 
cylindrical symmetry of the plasma and magnetic field, and MHD stability has to be 
studied.
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2.9.6 Resistive MHD in Strong Heat Flux 

In high-density plasmas produced by lasers or Z-pinch, the ideal MHD is not 
appropriate to describe the dynamics of magnetic field and fluid phenomena. In 
the case where strong heat flow in proportion to -∇T is important to the fluid 
dynamics, (2.179) is not an appropriate relation. This is because in deriving 
(2.179), we have assumed that the distribution function is Maxwellian with electron 
flow velocity ue defined in (2.116). 

In laser produced plasma, the heat flow carries the absorbed laser energy to the 
over-dense region, and the temperature is non-uniform in space. In such a case, the 
distribution function is not isotropic and it deforms in the direction of the heat flow. 
In general, it is enough to consider the heat flux by the electrons and the following 
discussion is done for the electron distribution function fe(v, x, t). 

As will be seen in Chap. 6, the heat flux formula like (2.109) is derived by starting 
with Boltzmann equation. We follow the formulation given in [15]. The Boltzmann 
equation with a simplified Krook collision operator is given in the form. 

∂f e 
∂t 

þ v .∇f e -
e 
m 

E þ v×Bð Þ . ∂f e 
∂v 

= - νei f e - f Mð Þ ð2:193Þ 

where fM is the local Maxwell distribution with ne and Te. Consider that (2.190) is in  
the local frame of the ion motion. The collision frequency νei due to Coulomb 
collision of electrons by ions is given in (2.3). 

Note that the collision frequency is a function of the electron velocity. In the 
standard way to solve (2.193) is the perturbation method, where the gradient length 
of Te is assumed much longer than the electron mean-free-path. Then, it is assumed 
that 

f e = f 0 þ f 1 . v v ð2:194Þ 

where f1 is a vector function and small enough compared to f0. Assuming f0 is 
Maxwellian fM and inserting (2.194) into (2.193), the equation to the perturbed 
distribution function is obtained. 

∂f 1 
∂t 

þ v .∇f 0 -
e 
m 
E . ∂f 0 

∂v
-

e 
m 
B × f 1 = - νeif 1 ð2:195Þ 

In general, the perturbation of the distribution consists of the two terms due to the 
mean flow and the temperature gradient. When both are in the x-direction, the f1 has 
only x-component and it can be expressed in the form: 

f 1 = a1jþ a2qT ð2:196Þ

https://doi.org/10.1007/978-3-031-45473-8_6


74 2 Basic Properties of Plasma in Fluid Model

where j is the electric current and qT is the heat flux by electrons. In (2.195), a1 and 
a2 are constants. When the heat flux is neglected and in addition the velocity 
dependence in νei of (2.3) is neglected in (2.195), (2.166) is obtained by taking the 
velocity moment of (2.195). 

However, when the heat flux term is included, the v3 moment of νei should be 
considered. Then, the generalized Ohm’s law is obtained after neglecting the time 
dependence in the form. 

Eþ v×B= 
j 
σ* þ 1 

ene 
j×B-∇Peð Þ- 1 

e
∇Te -

2 
5 
qe ×B 
Pe 

ð2:197Þ 

where σ* = 5/2σ with σ in (2.166). The factor 5/2 stems from the v3 dependence of 
the collision frequency νei. The last two terms on RHS in (2.197) appear due to the 
heat flux proportional to∇Te. Note that the heat flux qe in (2.197) is not equal to the 
qT in (2.192). Since the energy is also carried by the plasma flow and qe is purely 
heat flux remaining only for j = 0. It is shown in [15] 

qe ≈ qT -
5 
2 
Te 

e 
j= - κe∇Te ð2:198Þ 

In order to keep the fundamental structure of the Ohm’s law as (2.166), it is required 
to derive the structure of j/σ term. In the real case, the Coulomb collision frequency 
is proportional to v-3 and σ in (2.166) should be replaced with σ* = 5/2σ. With 
inclusion of v-dependence of the Coulomb collision frequency, the Hall term is 
found to have two terms. One is proportional to the current and the other is 
proportional to the heat flux. So, consistently, the Hall term is given as the total 
convection flow velocity as 

uB = -
j 

ene 
þ 2 
5 
qe 
Pe 

ð2:199Þ 

This term is called the Nernst effect. The importance of the Nernst effect in laser 
ablation plasma was pointed out in [15]. 

2.10 MHD Waves 

Consider linear perturbations of the ideal MHD equation. The underlying formula is 
the equation of motion for the velocity of the magnetized fluid (2.163) and the 
eq. (2.173) for the magnetic field. Suppose that a stationary plasma is confined by an 
external magnetic field B0. For example, consider the plasma trapped in the earth’s 
magnetic field. Before linearizing, the following operation is applied to (2.173).



g
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∇ × v×Bð Þ= B .∇ð Þv- v .∇ð ÞB þ v ∇ . Bð Þ-B ∇ . vð Þ ð2:200Þ 

Since from the Maxwell equation∇ . B = 0, three terms remain in (2.200). Then, the 
basic equations are 

ρ 
d 
dt 
v= 

1 
μ0 

∇ ×Bð Þ×B ð2:201Þ 

∂ 
∂t 

B= B .∇ð  Þv- v .∇ð ÞB-B ∇ . vð Þ ð2:202Þ 

Assume the form of the linear perturbations of the magnetic field and velocity as 

B=B0 þ B1 ð2:203Þ 
v= v0 þ v1 ð2:204Þ 

Linearize Eqs. (2.201) and (2.202), and assume the plasma is at rest, namely v0 = 0. 
Consider that the perturbation is assumed to be incompressible ∇ . v = 0. Then, the 
basic equations for the linear components are 

ρ0 
∂ 
∂t 

v1 = 
1 
μ0 

∇ ×B1ð Þ×B0 þ ∇ ×B0ð Þ×B1f ð2:205Þ 

∂ 
∂t 

B1 = B0 .∇ð Þv1 - v1 .∇ð ÞB0 ð2:206Þ 

Since the current producing the external magnetic field B0 is outside the plasma, the 
second term of the parenthesis in (2.205) does not exist in the plasma. 

Consider two cases separately, namely the wave propagates parallel or perpen-
dicular to the external magnetic field. Waves propagating to the parallel direction are 
called Alfven waves, and in the perpendicular case they are called magnetic sonic 
waves or compressible Alfven waves. 

2.10.1 Alfven Waves 

Let’s use the Fourier decomposition to the linear perturbations and find the disper-
sion relation of the wave with wave number k. First, the incompressibility is 
assumed for the case where the vibration is perpendicular to the magnetic field and 
the wave number k is in the direction of the magnetic field. The direction of 
the external magnetic field is the z-axis direction as shown in Fig. 2.18. First of 
all, in the simple case, assuming that the wave number is in the z direction (θ = 0) 
and the wave oscillation is in the x direction, both (2.205) and (2.206) remain only 
the x component as follows.
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Fig. 2.18 The definition of 
the coordinate to study the 
waves in the constant 
external magnetic field in 
the z-direction 

ρ0 
∂ 
∂t 

v1 = 
B0 

μ0 

∂ 
∂z 

B1 ð2:207Þ 

∂ 
∂t 

B1 =B0 
∂ 
∂z 

v1 ð2:208Þ 

By taking ∂/∂t for (2.207) and substituting (2.208) into (2.207), the following wave 
equation is obtained. 

∂2 

∂t2 
v1 -VA 

2 ∂ 
∂z 

v1 = 0 ð2:209Þ 

Here, VA is called the Alfven velocity. The Alfven velocity is defined as follows. 

VA = 
B2 
0 

μ0ρ0 
ð2:210Þ 

This velocity is the value obtained by dividing the tension of the magnetic field of 
(2.186) by the mass density. As in the image shown in Fig. 2.19, it is a wave caused 
by the ions wound around the magnetic field vibrating due to the tension of the 
magnetic field. It is the same as the acoustic of the strings of a guitar. The acoustic 
sound becomes higher when the string is strongly tensioned (strong magnetic field), 
the thicker the string (the higher the ion density), the lower the acoustic sound is. 

Since the propagation velocity of the Alfven wave is constant, the dispersion 
relation of the Alfven waves is 

ω2 =VA 
2 k2 ð2:211Þ
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Fig. 2.19 A schematic of 
the perturbed magnetic field 
and ions in cyclotron motion 
following the deformed 
magnetic field line 

It is important to note that if the plasma is low-β plasma confined by some external 
magnetic field, the Alfven speed is faster than the sound waves in (2.47) and ion 
acoustic waves (2.137). Therefore, energy spontaneously generated in the plasma is 
dominantly carried by the Alfven waves. 

It is informative to obtain (2.211) by the energy principle. Let us find the change 
of the magnetic energy due to the sinusoidal distortion of the magnetic field δWB and 
the kinetic energy for the ions around the magnetic field δWk over one wavelength 
λ = 2π/k. As displacing ξ(x, t) = ξ0(t) sin (kz) in the perpendicular direction of the 
background magnetic field, the following energies are defined. 

δWB = tensionð Þ× elongated length of the magnetic fieldð  
δWk = kinetic energy of oscillation:ð Þ  

Both are easily calculated to be the following forms per one wavelength 

δWB = 
B2 
0 

μ0 

λ 

0 
1þ ∂ξ 

∂z 

2 

dz- λ = 
λ 
4 

kξ0ð Þ2 B
2 
0 

μ0 
ð2:212Þ 

δWk = 
λ 

0 

1 
2 
ρ0 

dξ 
dt 

2 

dz= 
λ 
4 
ρ0 

dξ0 
dt 

2 

ð2:213Þ 

Here, Lagrangian is defined by considering ξ0 as the generalized coordinate. Then, 
by solving the Euler-Lagrange equation, a simple oscillator equation can be derived. 
The frequency is easily obtained 

ω2 = k2 VA 
2 ð2:214Þ
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2.10.2 Compressive Alfven Wave (Magneto Acoustic Waves) 

Consider longitudinal waves propagating perpendicularly to the magnetic field. In 
this case, of course, since it is compressible, the pressure term of the eq. (2.178) also 
remains as the effect of finite temperature. The external magnetic field is the z 
direction as shown in Fig. 2.18, the oscillation is the x direction, and the wave 
number k is also in the x direction (θ = π/2). Then, the compressibility comes out, so 
the basic equations are (2.168), (2.178), and (2.173). 

As a new perturbation, density perturbation arises from the compressibility. 

ρ= ρ0 þ ρ1 ð2:215Þ 

By inserting (2.215), (2.203), and (2.204) into the three basic equations and linear-
izing them, the following linearized equations are obtained. 

∂ 
∂t 

ρ1 þ ρ0 ∂ ∂x 
v1 = 0 ð2:216Þ 

ρ0 
∂ 
∂t 

v1 = -CS 
2 ∂ 
∂x 

ρ1 -
B0 

μ0 

∂ 
∂x 

B1 ð2:217Þ 

∂ 
∂t 

B1 = -B0 
∂ 
∂x 

v1 ð2:218Þ 

By taking the time differentiation of (2.217) and using (2.216) and (2.218), a partial 
differential equation of the second order is obtained. 

∂2 

∂t2 
v1 -VS 

2 ∂
2 

∂x2 
v1 -VA 

2 ∂
2 

∂x2 
v1 = 0 ð2:219Þ 

Here, Vs is the sound velocity defined in (2.47). The dispersion relationship is easily 
obtained from (2.219) as  

ω2 = k2 VA 
2 þ VS 

2 ð2:220Þ 

This is a wave called the magneto acoustic wave. When a compressional wave is 
generated in the direction perpendicular to the magnetic field, the density perturba-
tion is oscillated by not only the magnetic pressure but also the pressure of the 
plasma. This is the reason of the name, magneto acoustic waves. For the case without 
thermal pressure, this wave is called the compressional Alfven wave. 

The difference of the magnetic field displacement of the wave of (2.214) and that 
of (2.220) is clear. Although the Alfven waves are transverse wave and the displace-
ment of the magnetic field is perpendicular to the propagation direction of the wave, 
the compressive Alfven wave is the same as the ion acoustic wave and it is a



s

longitudinal wave. Since the magnetic pressure also contributes to the restoring 
force, the propagation velocity is faster than the ion acoustic waves. 
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2.10.3 Ion Acoustic Wave and Three Waves 

We investigated the longitudinal and transverse waves, but there is a wave which 
receives restoring force by the pressure propagating in the magnetic field direction. 
Since the motion is parallel to the magnetic field, the force due to the magnetic field 
can be neglected (same as in the case without the magnetic field). Neglecting the 
magnetic field in (2.71), the following wave equation is obtained. 

∂2 

∂t2 
v1 -VS 

2 ∂
2 

∂x2 
v1 = 0 ð2:221Þ 

This is the same as the acoustic wave given at (2.48). Note that inclusion of charge 
separation effect, the dispersion relation of the ion acoustic waves (2.135) i  
reproduced. 

Therefore, we had already three waves. The waves propagating along the 
magnetic field are the Alfven wave (transverse wave) and ion acoustic wave 
(longitudinal wave). The wave propagating perpendicular to the magnetic field is 
the magneto acoustic wave (longitudinal wave). 

Then, what kind of waves can propagate obliquely to the magnetic field? Does the 
ion acoustic wave change continuously to the magneto acoustic wave? Or may it be a 
mixed wave of longitudinal and transverse waves? 

The basic equations are (2.168), (2.173), and (2.178). Assume that the arbitrary 
perturbations are given in the linearized forms and the angle that the wave number 
k forms with the magnetic field is θ as shown in Fig. 2.20. The oscillation component 
in the y-direction is transverse wave and the dispersion relation is 

ω2 = k2 VA 
2 cos 2 θ ð2:222Þ 

This is an obliquely propagating Alfven wave. At the same time there are two waves 
oscillating in the (x, z) plane, and after a bit messy calculation the dispersion relation 
can be found in the form. 

ω4 - k2 VS 
2 þ VA 

2 ω2 þ k4 VS 
2 VA 

2 cos 2 θ= 0 ð2:223Þ 

This can be easily solved and the dispersion relation is obtained as follows 

ω2 

k2 
= 

VS 
2 þ VA 

2 

2 
± VS 

2 þ VA 
2 2 - 4VS 

2VA 
2 cos 2θ ð2:224Þ
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Fig. 2.20 The phase 
velocities of three waves 
induced by ion oscillations 
in an external magnetic 
field, called Friedrichs 
diagram. The “f” represents 
fast magneto-acoustic wave 
(fast wave), “a” Alfven 
wave, and “s” slow 
magneto-acoustic wave 
(slow wave) 

In the case where the magnetic pressure is higher than the plasma pressure (lowβ) 
such as the earth’s magnetosphere, the sun, and the magnetic confinement fusion 
device VA > VS (= CS in Fig. 2.20), the angular dependence of the phase velocity is 
shown in Fig. 2.20. As can be seen from (2.222) and (2.224), there are three waves at 
an arbitrary angle, two waves degenerate at θ = 0, and at θ = π/2 the waves are only 
the magneto acoustic waves. In Fig. 2.20, the “f” represents the fast magneto 
acoustic wave (fast mode), “a” the Alfven wave, and “s” the slow magnetic acoustic 
wave (slow mode). This diagram is refereed to Friedrichs diagram. 

2.10.4 Torsional Alfven Wave 

The circularly polarized Alfven waves couple with the angular momentum of 
plasma. This is important as a physical mechanism for releasing the angular momen-
tum of the accretion disk in baby stars or planets. Consider an accretion disk with 
magnetic field as shown in Fig. 2.21. The accretion disk is modeled with a pan cake 
structure where the plasma is differentially rotating. 

v= rΩ r, z, tð Þeϕ ð2:225Þ 

The magnetic field is assumed axially symmetric and is considered to be composed 
of two components: a poloidal component (z-direction) and a toroidal component 
(ϕ-direction). 

B=Bp r, z, tð Þ þ  Bϕ r, z, tð Þeϕ ð2:226Þ 

The magnetic field is substituted into (2.202)  to  find the following relations.
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Fig. 2.21 A schematic 
image of cut-view of 
accretion disk and external 
magnetic field. The 
accretion disk is plasma and 
the strong interaction 
between the plasma and 
magnetic field is expected 

∂Bp 

∂t 
= 0 ð2:227Þ 

∂Bϕ 

∂t 
= rBp .∇Ω ð2:228Þ 

Here, on RHS of (2.228), only the first term on the right side of (2.202) remains, and 
the second two terms disappear.The condition to keep stationary rotation (2.228) 
required the relation. 

Bp .∇Ω= 0 ð2:229Þ 

This is called Ferraro’s theorem for a homogeneous rotation. If the magnetic field 
rotates at different angular velocities in the z-direction, the magnetic field twists and 
the rotation energy of plasma, that is, the angular momentum of plasma is converted 
into the energy of the magnetic field. However, since there is tension in the magnetic 
field, it should attempt to extract its twist outside the disc and to become a uniform 
magnetic field in the z-direction. The twist of the magnetic field is due to the angular 
momentum of the plasma of the disk, and the tension of the magnetic field transports 
the angular momentum by the torsional Alfven wave (explained below) outside 
the disk. 

Furthermore, inserting (2.225) and (2.226) into the equation of motion (2.201) 
leads 

∇ ×Bð  Þ×B= B .∇ð ÞB ð2:230Þ 

Then, (2.201) becomes the following equation
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ρr 
∂ 
∂t 

Ω= 
1 
μ0 

Bp 
∂ 
∂z 

Bϕ ð2:231Þ 

Here, the convection term of (2.201) automatically disappears as follows. 

v .∇v= 0 ð2:232Þ 

Substituting (2.228) into (2.230) leads the following wave equation 

∂2 

∂t2 
Ω-VA,p 

2 ∂
2 

∂z2 
Ω= 0 ð2:233Þ 

Here, VA,p is the Alfven velocity due to the poloidal magnetic field. As can be seen 
from the derivation above, there is no linearization, therefore, the displacement in the 
z direction with respect to an arbitrary amplitude is transported outside the accretion 
disk at the Alfven velocity. As a result, the poloidal component of the magnetic field 
tries to keep the linear shape. (2.233) is the wave equation for the “torsional Alfven 
wave”. 

The accretion disk shown in Fig. 2.21 is formed by the plasmas falling to the 
gravitational center with rotating motion. The rotation motion is not of a constant 
angular momentum Ω in radial direction. Such differential rotation is known to 
induce the magneto-rotational instability (MRI) [16], and turbulent magnetic field 
is generated. The turbulent magnetic field enhances the transport of the matter falling 
to the central gravity, namely angular momentum of the matter transport. It is 
interesting to point out that a large-scale experiment plans to be carried out with a 
cylinder box filled with high-temperature liquid sodium (liquid metal) under differ-
ential rotation as shown in Fig. 2.22 [17]. Since the normal fluid in the differential 
rotating system, called Taylor-Couette flow, is unstable to fast rotating condition, 
the magnetic field is amplified by the dynamo effect as shown in Sect. 2.9. 

2.11 Electromagnetic Wave in Magnetic Field 

The hydrodynamic equations are the most useful ones to find the dynamical physics 
in many kinds of plasmas from the laboratory to the Universe. The physics of 
electromagnetic (EM) waves discussed here are usually used to measure, diagnose, 
or observe different kinds and different scales of plasmas. Of course, intense-lasers 
have been used to generate plasmas as shown in Volume 1. Strong microwaves are 
also used to heat magnetically confined plasma and processing plasmas [18]. In 
general, however, the electromagnetic waves due to electron current in plasmas are 
relatively high-frequency and the ions with larger mass cannot follow the electron 
motions. Since the most of fluid motions of plasmas are driven by the ion motions 
and the electromagnetic waves stemming from the electron motions do not couple 
with the fluid motions explained above.
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Fig. 2.22 A structure of 
sodium liquid experiment to 
study MRI by differential 
rotations. Reprint with 
permission from Ref. [17]. 
Copyright 1998 by 
American Physical Society 

However, EM waves propagates not only in plasmas but also in vacuum. There-
fore, EM waves are convenient waves for observing and investigating any plasmas. 
It is useful to know the fundamental property of the electromagnetic waves in 
plasmas. Some examples of applications for measurement and observation of 
plasmas are discussed here. 

2.11.1 EM Waves in Plasmas 

Electromagnetic waves are widely used for diagnostics of plasmas in the laboratory 
and observation of the Universe. In astronomy, the electromagnetic waves of wide 
range of wavelength have been observed to study energetic dynamics in the Uni-
verse. Since magnetic field is ubiquitous in Universe, it is also important to know the 
property of the electromagnetic waves in external magnetic field. 

Maxwell equations provides the propagation of the electromagnetic waves in 
plasmas with the following simple equation as shown in Chap. 2.2.1 in Volume 1. 

∂2 

∂t2
- c2∇2 E= -

1 
ε0 

∂ 
∂t 

j ð2:234Þ 

where E is the electric field of the electromagnetic waves and j is an plasma current 
induced by E. It was already shown in Volume 1 that the dispersion relation of the 
electromagnetic waves in plasma is given as 

ω2 =ω2 
pe þ c2 k2 ð2:235Þ 

where ωpe is the plasma frequency defined as
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ω2 
pe = 

e2ne 
ε0m

ð2:236Þ 

Here, ne is the electron density. Note that ω2 
pe / m- 1, the inverse of an electron 

mass. In Fig. 2.23 the dispersion relation is plotted with the solid line and with the 
dotted line of the light in vacuum. 

The dispersion relation (2.235) indicates that the density of plasma with a size L 
can be measured from the phase shift of laser beams after passing through the 
plasma. By use of holographic interferometry technique, the density profile of 
an exploding foil heated by the other intense laser irradiated from the left is observed 
as shown in Fig. 2.24 [19]. The black-and-white stripe pattern shows the phase 
change due to the different densities of the measured light propagating in the 
expanding plasma. 

The refraction index N is a function of density. 

N ≡ c 
ω 
k 
≤ 1 ð2:237Þ 

This is used to obtain shadow image of plasmas. It is clear that the sharp density 
change reflects laser light impinging with a shallow angle. This property can be used 
to measure the spatial density structure of plasma shock waves etc. In Fig. 2.25, 
double exposure shadow images of laser-produced blast waves and the turbulence 
behind are shown [20]. 

Fig. 2.23 Dispersion 
relation of electromagnetic 
field in plasma
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Fig. 2.24 A snapshot of 
holographic interferometry 
image of exploding foil. 
Reprint with permission 
from Ref. [19]. Copyright 
1998 by American Physical 
Society 

Fig. 2.25 Double exposure image of laser produced blast wave in nitrogen gas. Laser irradiates 
from left on aluminum target. Reprint from Ref. [20] with kind permission from Springer Science + 
Business Media. (Courtesy of B. Ripin.) 

The dispersion measure (DM) defined as follows is also used to speculate the 
distance of a radio pulse source from a far distant space at L. 

DM = 
L 

0 
nedx ð2:238Þ



For example, a radio pulse with high energy ux was observed near GHz radio wave
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Fig. 2.26 Fast radio burst (FRB) signal observed in 2016. Time evolution of frequency. Reprinted 
by permission from Macmillan Publisher Ltd: Ref. [22], copyright 1993 

fl 

at first in 2007. After this discovery of such a short radio pulse, the events are now 
called FRB (Fast Radio Burst) [21]. In Fig. 2.26, the signal of FRB 121102 
observed in 2016 is shown [22]. Time–frequency data extracted from phased VLA 
visibilities at the burst location shows the ν-2 dispersive sweep of the burst. The 
solid black lines illustrate the expected sweep for DM = 558 pc cm-3 . The 
de-dispersed light curve is projected to the upper panel. The colour scale indicates 
the flux density. 

The group velocity vg of the electromagnetic waves in plasma with electron 
density ne is 

vg = c 1-
ω2 
pe 

ω2 

1=2 

ð2:239Þ
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This relation explains the reason of the delay of low frequency part. The time-delay 
of low frequency to high frequency (ωL - ωH) is obtained approximately for 
low-density plasma as 

vg ≈ c 1-
1 
2 

e2 

ε0m 
ne 
ω2 ð2:240Þ 

Δt= 
L 

Δvg 
= 

1 
2 

e2 

ε0m 
1 
ω2 
L

-
1 
ω2 
H 

DM ð2:241Þ 

The pulse delay in Fig. 2.26 is used to evaluate the distance of the energy source of 
the burst, and it is found that DM is 558 cm-3 pc, which is about 12 times higher than 
the DM of the Milky Way galaxy. It is concluded that the energy source, which is not 
explained theoretically yet, is located at cosmological distance. 

2.11.2 Electromagnetic Waves from Magnetized Plasmas 

The dispersion relation is modified depending on how the induced current is related 
to the electric field of the electromagnetic waves. When the external magnetic field is 
applied or exists in plasmas, the electron motion is affected by the Lorentz force and 
the electric current is modified from the case without B-field given in (2.234). We 
have already studied the case of ion fluid motions driving MHD waves in external 
magnetic field in Sect. 2.10. It is in general the electromagnetic waves don’t affect 
the MHD dynamics. 

It is better to consider two idealistic cases; one is when the EM wave propagates 
along with the magnetic field (Fig. 2.27), and the other is when EM wave propagates 
perpendicular to the magnetic field. This knowledge can be applicable to the general

Fig. 2.27 Electric field of 
EM wave propagating to B0 

or – B0 direction



ð

case when EM wave propagates with an arbitrary angle to the magnetic field, 
although it is not discussed here.
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Let us derive the induced current beginning with equation of motion of an 
electron. 

m 
d 
dt 
v= - e E þ v×Bð Þ 2:242Þ 

Estimate the effect of magnetic field by assuming that the magnetic force is weak 
enough compared to the force by E. Then, the perturbation method gives a simple 
relation 

v×B 
E

~ ωce 

ω 
, ωce = 

eB 
m

ð2:243Þ 

where ωce is the electron cyclotron frequency. Namely, low frequency mode is 
strongly modified with ω near or lower than ωce. We consider here the case where 
EM wave propagates along the magnetic field, then, it is required to obtain coupled 
equations for the EM electric fields in x- and y-directions as in Fig. 2.27. 

Here, we don’t derive the dispersion relation because it needs a long calculation, 
and the readers wishing to know are recommended to refer to, e.g. [23]. There 
dispersion relation is the fourth order to ω in the form. 

ω2 - c2 k2 - α 
2
- α2 

ω2 
ce 

ω2 = 0 ð2:244Þ 

α= 
ω2 
pe 

1-ω2 
ce=ω

2 ð2:245Þ 

The dispersion relation (2.244) gives two independent modes. They are circularly 
polarized EM waves. The electric field of EM waves rotates to the right and left 
directions of magnetic field vector. Assuming that the magnetic field is in the 
z-direction and the rotating electric field with (k, ω) in (x, y) plane, two dispersion 
relations are obtained. 

[R-wave] for the mode Ex + iEy: 

ω2 = c2 k2 þ ω2 
pe 

1-ωce=ω
ð2:246Þ 

[L-wave] for the mode Ex - iEy: 

ω2 = c2 k2 þ ω2 
pe 

1 þ ωce=ω
ð2:247Þ 

The real part of the electric field of the R-wave, Re(Ex + iEy), is given as
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E=A cos  kx-ωt þ φð Þix þ sin kx-ωt þ φð Þiy ð2:248Þ 

where ix and iy are the unit vectors in x- and y- directions, and A and φ are constants. 
It is clear that the L-wave has the negative sign for the second term (y-component) 

in (2.238). That is, the electric field vector of the R-wave rotates to the right, facing 
the z-direction, and the L-wave rotates to the left. 

Note that the difference is only the sign of the denominators. Intuitively, we can 
image from (2.235) and (2.246) that the effect of magnetic field is regarded to 
assuming that the effective mass of electrons is given as 

meff = 1∓ ωce 

ω 
m ð2:249Þ 

It is easy to know that the dispersion relation of the L-wave is given with that same as 
in Fig. 2.23 with the plasma frequency with the effective mass of “+” sign in (2.249). 
The cut-off density effectively decreases in the magnetic field. This means EM wave 
can propagates in the plasmas with less density than the nominal cut-off density, if 
there is a strong external magnetic field. 

On the other hand, the R-wave has higher cut-off density for ωce < ω, and a new 
mode appears for low frequency EM wave with ωce< ω as shown in Fig. 2.28 for the 
case of ωce/ωpe = 0.5. In the case of ω = ωce, what happens is the resonance of EM

Fig. 2.28 Dispersion 
relation of the R-wave for 
the case with ωce = 0.5ωpe. 
The dashed lines are 
asymptotic of ω = ωce and 
ω = ck



wave and electron cyclotron motion. Then, the detail analysis gives the absorption of 
EM wave energy by the electron motion and the electron orbits continuously 
becomes larger in time. This resonance is used to heat electrons confined in strong 
magnetic field.
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It is important to know that thanks to the electron cyclotron motion, the electric 
field of EM wave is maintained even in the density higher than the nominal cut-off 
density. The R-wave in the region ω < ωce is called “whistler wave”. 

For the density ne [cm
-3 ] and magnetic field B [Gauss] units, both frequencies 

are. 

ωpe = 5:6 × 104 ne 
p 

s- 1 

ωce = 1:8× 107 B s- 1 

2.11.3 Faraday Rotation 

It is well-known that when linearly polarized EM wave propagates along an external 
magnetic field, the polarization angle rotates because of the difference of dispersion 
relations of the R and L waves as shown in Fig. 2.29 [24]. Since the linearly 
polarized EM wave propagates as two circularly polarized waves of the R and L 
waves with different phase velocity, the combined EM with have a different angle of

Fig. 2.29 The principle of Faraday rotation of linearly polarized EM wave traveling along 
magnetic field. The rotation angle is proportional to the Faraday rotation measure. Reprinted with 
permission from Ref. [24]. Copyright 1998 by Oxford University Press



polarization, when it goes out from the magnetized plasma. This phenomenon is 
called Faraday rotation in magnetized plasma. This effect was discovered by 
M. Faraday in 1845 with light propagating through magnetized glass.
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The Faraday rotation has been used to measure the self-generated magnetic field 
in laser produced plasmas [25]. Irradiating a linearly polarized laser for diagnostic 
purpose like the case of Fig. 2.27, the shift of the polarization direction after the 
passage of magnetized plasma gives the information of the magnetic field in the 
plasma. The magnetic field is generated via Biermann battery effect in the laser-
plasma as shown in Sect. 2.9. It was found that magnetic field of Mega Gauss is 
produced. It is noted, however, that the plasma β-value in (2.180) is still higher than 
unity, roughly β~100. Since the laser plasma is small, but high-energy density, such 
strong magnetic field is produced during a short time of ns. 

In Fig. 2.26, the polarization of the observed radio wave changes as a function of 
frequency. This fact can be used to evaluate the average magnetic field strength in 
the long path from the source. The principle is simple. For a give frequency ω, the 
difference of wavenumber, Δk(Δk ≪ k), of (2.246) and (2.247) is calculated to be, 

Δk ≈ 
ω2 
pe 

ω2 
ωce 

c
ð2:250Þ 

Integrating Δk over the propagation length L, the phase shift ΔΦ is expressed in the 
form 

ΔΦ= 
L 

0 
Δkdx= 

e3 

ε0cm2ω2 

L 

0 
neBkdx ≡ RMλ2 rad½ ] ð2:251Þ 

where Bk is the parallel magnetic field and λ is the wavelength. RM in (2.251) is  
called the Faraday rotation measure. 

In the case where EM wave propagates perpendicular to external magnetic field, 
there are two modes depending on the polarization direction. For the case of E-field 
is parallel to the magnetic field, no magnetic effect appears because v × B = 0 in  
(2.242) and the dispersion relation is given by (2.235). This mode is called the 
ordinary wave. On the other hand, when the polarization is perpendicular to the 
B-field, v × B term modify the EM propagation, and Lorentz force induces the 
plasma motion in k direction to couple with the electrostatic modes. This mode is 
called the extraordinary wave. The detail analysis is given, for example, in [23]. 

2.11.4 EM Waves from Magnetized Plasmas 

A variety of EM waves from the radio waves to the γ-rays is generated by plasma 
electron motions in the Universe. Synchrotron emission of EM wave by highly 
relativistic electrons are strong EM sources. In Fig. 2.30, a schematic of the



mechanism of the emission is shown [26]. The radiation is emitted in the case where 
a charged particle is in accelerating motion as shown by Larmor. It is called the 
Larmor emission in non-relativistic electron case and the radiation is emitted 
dominantly in the direction perpendicular to the acceleration vector. In relativistic 
motion, it is called the synchrotron emission. The emission angle becomes narrow 
in proportion to 1/γ, where γ is the Lorentz factor of a rotating electron. This is called 
relativistic beaming as discussed in Chap. 5 in Vol. 1. So, the emitted synchrotron 
frequency is up-shifted as ω = ωceγ

2 . This means radio waves emitting from 
non-relativistic electrons becomes x-ray for highly relativistic electrons. 
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Fig. 2.30 Schematics of 
synchrotron radiation 
emission from a highly-
relativistic electron rotating 
in magnetic field. The 
radiation is linearly 
polarized and the observed 
frequency is up-shifted by 
relativistic effect. Reprinted 
with permission from 
Ref. [26]. Copyright 1998 
by Oxford University Press 

Supernova remnants (SNRs) are known to be a candidate where high-energy 
cosmic rays are generated by the shock waves (blast waves) produced by supernova 
explosion. Note that the detail physics of blast waves will be discussed in Chap. 4. 
The SNR of the supernova-1006 which exploded almost 1000 years ago is well 
studied with the radio to gamma-ray obserbation. The x-ray image shows a clear 
evidence of the particle acceleration in the vicinity of the blast wave front. With 
evaluated strength of magnetic field in μG range, it is speculated that highly 
relativistic electrons (up to 1015 eV) are emitting x-rays. 

Since the synchrotron radiation is linearly polarized, the direction of magnetic 
field is speculated by the polarization measurement of radio wave. Assuming the 
magnetic field is given externally, and the structure is globally uniform in the SNR. 
The degree of polarization P is  defined as 

P ≡ Ipol 
I

ð2:252Þ 

where Ipol is the intensity of polarized EM component and I is the total intensity. As 
seen in the distribution of the degree of polarization in Fig. 2.31, left-top and right-
bottom are highly polarized [27]. From the distribution of the local polarization 
directions observed, it is concluded that the SN1006 has a large-scale magnetic field 
along the line from left-top to right-bottom [27].

https://doi.org/10.1007/978-3-031-45473-8_4
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Fig. 2.31 Observed image 
of the degree of polarization 
of radio emission from SNR 
1006 remnant. Reprinted 
with permission from 
Ref. [27]. Copyright by 
American Astronomical 
Society 

Appendix-A: Fluid Approximation of Plasma 

Basic equations to describe microscopic to macroscopic phenomena have been 
proposed in plasma physics so that they provide the essence of physics with the 
reduction of the degree of freedom. They leave only the degree of freedom as small 
as possible. Of course, it is better to solve the following Vlasov equations to ion and 
electron velocity distribution functions fα(v) (α: ion or electron) as will be discussed 
in Volume 4 to study higher-freedom phenomena of laser-plasma. 

∂f α 
∂t 

þ v ∙ ∂f α 
∂r 

þ q 
m 

E þ v×Bð Þ ∙ ∂f α 
∂v 

= 0 ð2.A-1Þ 

where q and m are charge and mass of ion or electron, respectively. 
Except for the case where the distribution functions are very far from shifted-

Maxwellian, the fluid approximation of plasma is often adopted instead of Vlasov 
equation because of less freedom in the basic equations. Such a fluid is called 
“electromagnetic fluid” or “magneto-hydrodynamic fluid”. As a matter of course, 
such modeling may cause loss of the physics that should originally appear. This 
point which cannot be derived by fluid model will be explained in relation to the 
Landau damping later. 

In the case of neutral fluids, the mean free path is sufficiently shorter than the 
change length of the physical quantities and collision time is much shorter than the 
time scale of fluid changes. This means the distribution function in Boltzmann 
equation is well described with a local Maxwell distribution. Then, the collision 
term to appear in (2.A-1) in Boltzmann equation should also disappear mathemat-
ically. In such frequently colliding particle system like molecular gas, the velocity 
dependence of the distribution function is given with local Maxwell distribution and 
as seen below the fluid model is very reliable. 

The same fluid model is used to describe plasmas regardless of collision dominant 
or not. Within the assumption of local Maxwellian, the velocity moment equations of



Vlasov equation give the fluid equations as show below. The fluid variables are 
defined by the velocity moments. 
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Density : n t, rð Þ= 
1

-1 
fdv ð2.A-2Þ 

Flow rate : u t, rð Þ= 
1 
n 

1

-1 
vfdv ð2.A-3Þ 

Temperature : T t, rð Þ= 
2 
3 
1 
n 

1

-1 
1 
2 
m v- uð Þ2 fdv ð2.A-4Þ 

Heat flux : q t, rð Þ= 
1

-1 
1 
2 
m v- uð Þ2 v- uð Þfdv ð2.A-5Þ 

Here, we assumed charged particles have no internal degrees of freedom and the 
specific heat ratio Cp/Cv = γ = 5/3 for simplicity. We defined the third moment of 
velocity in (2.A-5). In the case of the Maxwell distribution, the velocity distribution 
function is shifted by the mean flow velocity u and spreads with the width T of the 
temperature. 

It is clear that (2.A-4) corresponds to the fact that the average kinetic energy per 
particle is 3/2 T. Maxwell distribution function is isotropic around v = u, and the 
heat flux q = 0. This means if we can derive such moment equations for the 
unknown variables n, u, T, it is closed coupled equations and be principally possible 
to be solved. These equations are the basic equations for fluids. 

There is no guarantee, however, that the plasma is collisionless and the velocity 
distribution function is close to the Maxwell distribution. The plasma distribution 
function may be determined by its production process, interaction with the confining 
wall, and so on. However, it is empirically proofed that in many cases the distribu-
tion can be approximated with the shifted Maxwell distribution. Although there is no 
theoretical validity to approximate plasmas as fluids, the fluid model is widely used 
instead of Vlasov kinetic model for more simplicity in mathematical treatment. If the 
deviation from Maxwellian is small enough, the heat flux q, viscosity etc. can be 
approximated proportional to the gradients of fluid quantities. The electron heat flux 
given in (2.A-5) will be derived later in Chap. 6. 

Let’s derive mathematically the equation of continuity and the equation of motion 
by taking the velocity moments of the Vlasov equation. First, the zeroth order 
moment is obtained by integrating (2.A-1) directly by v. The integral of the first 
term and the second term of Vlasov equation are simple. Although it seems that the 
integral value remains in the third term because of the force of v × B, the actual 
integration disappears because vi is not included in the i-component of v × B in 
actual calculation. Therefore, it reduces to 

∂n 
∂t 

þ∇ nuð  Þ  = 0 ð2.A-6Þ

https://doi.org/10.1007/978-3-031-45473-8_6
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Next, integrate by multiplying (2.A-1) by the vector v. Calculate the i (= x, y, or z) 
component. The first term is simple. The following v’ which is the velocity spread 
from the mean velocity u is defined for integrating the second term as (2.A-4). 

v= u þ v’ ð2.A-7Þ 

The product with v is the vector and its i component of the second term of (2.A-1) is  

∂ 
∂xj 

vivjfdv = 
∂ 
∂xj 

nuiuj þ ∂ 
∂xj 

vi
0vj0fdv ð2.A-8Þ 

Note that when a subscript that indicates a coordinate appears twice, such as j, it 
means to take the sum of the three components x, y, and z with respect to j. Such 
notation is called Einstein notation. The pressure is generated on the second term on 
the RHS of (2.A-8). Since the Maxwell distribution is isotropic in the velocity space 
around the mean velocity u, the second term in (2.A-8) reduces to 

vi
0vj0fdv= nTδij ð2.A-9Þ 

Here, δij is the Kronecker delta, δij = 1 for i = j, and δij = 0 for otherwise. When the 
distribution function is isotropic, the pressure is a scalar. In general, the pressure is 
tensor unless the distribution function is isotropic. 

The calculation of the force term of Vlasov equation is not so simple. Calculate 
the x component and calculate the y and z components in the same way. Multiply the 
third term of Vlasov equation by vx and integrating it in vx, vy, and vz space, the 
following is obtained. 

dvxdvydvzvx 
Fj 

m 
∂f 
∂vj 

= 
Fx 

m 
dvydvz vx 

∂f 
∂vx 

dvx ð2.A-10Þ 

Here, we can put Fx out of the integral over vx in (2.A-10). This is possible because 
Lorentz force of F = q (E + v × B), E does not depend on vx and the x component of 
v × B does not depend on vx. Carrying out the same mathematics for y and z 
components, it is clear the same logics works. The integral with respect to vx in 
(2.A-10) is executed by using partial integral. With integration over vy and vz. Then, 
the x component of the velocity moments of the third term of Vlasov Eq. (2.A-1) is  
obtained. By performing the same calculation for vy and vz as well, we obtain all 
three components. 

From the above mathematics, the flowing equation of motion is obtained. 

m 
∂ 
∂t

þ u .∇ u= -
1 
n
∇Pþ q Eþ u×Bð Þ 2.A-11Þ 

Here, P is pressure, P = nT.
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The second moment of velocity gives an equation for temperature T, but let’s 
omit the derivation in the text. In the phenomenon that thermal conduction is 
important and it can be assumed that the temperature T is a constant, the fluid 
equation is closed only by (2.A-6) and (2.A-11). 

The fluid approximation of plasma is the same as neutral fluid equations except 
for the force by the electromagnetic field Therefore, knowledge of fluid dynamics is 
fundamental for studying various phenomena of plasmas. In some cases, the plasma 
may be regarded as a neutral fluid and analysis becomes simpler. 

Since the same procedure from Vlasov equation to fluid model is applicable to 
electron and ion distribution functions. Through such procedure, the basic equations 
for two fluid model can be obtained following the mathematics shown above. 

Finally, it is noted that 

1. Plasma phenomena of electron and ion particles can be well studied with two fluid 
model for electrons and ions by coupling with Maxwell equations. This is correct 
only when each particle is in thermodynamic equilibrium with Maxwell velocity 
distribution function. 

2. The fluid model cannot provide the phenomenon of Landau damping. In Landau 
damping, only a small number of particles satisfying the resonant condition 
interact with electrostatic or electromagnetic waves. This is important physics 
appearing in plasmas. In addition, if the velocity distribution function is very far 
from a shifted-Maxwellian distribution in collisionless condition, a variety of new 
phenomena unpredicted with the fluid model appear in plasma as will be shown in 
Volume 4. 
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