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A 500 eV Planck radiation generated by spherical implosion of plastic shell with intense lasers is 
used to study the emission spectra from photo-ionized plasmas near Black Hole (Cygnus X-3) and 
neutron star (Vela X-1) [see Chap. 5]. (Reprinted by permission from Macmillan Publisher Ltd: 
copyright 1993. (Courtesy of S. Fujioka))



Preface 

Volume 1 introduced the physics of laser-plasma interactions. There, the discussion 
assumed of a fully ionized plasma. The laser energy absorbed by the material is 
converted into random kinetic energy of electrons. In other words, it is the thermal 
energy of the electron population. Ions gain energy through inelastic Coulomb 
collisions with electrons. This is the physical mechanism of temperature relaxation. 

If the laser intensity is sufficiently non-relativistic, the velocity distribution of the 
produced electrons and ions can be approximated as being in local thermodynamic 
equilibrium (LTE). In this case, the macroscopic behavior of the electron and ion 
groups can be treated by the fluid model. Fluid models are widely used to study 
plasma phenomena over long periods of time and over a wide spatial range. 

Particle-in-Cell (PIC) simulations, cited many times in Volume 1, are now widely 
used to study the microscopic physics of laser-matter interactions, thanks to rapid 
advances in computer performance. However, the number of particles is still too 
large to study the whole picture of the plasma, and it is still difficult to follow the 
entire physical process with a computer. Therefore, fluid models with less degrees of 
freedom have been widely used to study the physics of plasmas in the laboratory, in 
space, and in the universe. 

Roughly speaking, PIC is used to study microscopic plasma physics under 
idealized conditions, while fluid simulations are used to study global phenomena 
of plasma dynamics. Another reason why the fluid approximation equations are 
widely used is that they can be modified to model the physics of non-ideal plasmas, 
such as ionization and other atomic processes, non-local energy transport, nuclear 
reactions, magnetohydrodynamic phenomena, and so on. The fluid approximation 
also has the advantage that plasma behavior can be analyzed from the knowledge of 
historical fluid mechanics, in three dimension, and that fluid physics is easily 
understood intuitively because of familiar phenomena such as air and water. 

In Volume 2, several plasma fluid equations are presented. We explain under 
what assumptions they were derived. The reader should choose with deep thought 
which equations are the simplest and good enough approximations for his or her 
research topic. Do not think about solving the fluid equations in the most precise
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form. How simple and close to the truth the equations should be to start with will be a 
test of the reader’s sense of physics. Rather, it is extremely difficult to find the 
necessary and sufficient basic equations and study the problem from the beginning. 
As you proceed with your research, please try to pursue the truth by simplifying the 
basic equations and then complicating them. 

viii Preface

Specifically, as introduced in this book, starting from the two-fluid plasma model 
of electrons and ions, a variety of physics and its mathematics will be introduced for 
the following subjects. Magnetohydrodynamics, thermodynamics of shock waves 
and non-ideal dense plasmas, self-similarity solutions of nonlinear fluids, atomic 
processes such as ionization and recombination, non-local electron heat transport, X-
ray energy transport and atomic physics, physics of quantum mechanical many-
electron states in dense plasmas, and its comparison with experiments. 

In this book, We introduce the above physics topics, intertwining them with 
astrophysics. However, in this book, We only introduce the case in which the spatial 
structure is one-dimensional: one-dimensional refers to physical phenomena limited 
to plane, cylindrical, and spherical symmetry. Therefore, the equations of the fluid 
model are described by mathematical solutions where the independent variables are 
(t, x) or (t, r). Furthermore, in many cases, one-dimensional solutions are obtained 
assuming stationarity in a coordinate system in motion. Knowing one-dimensional 
fluid plasma solutions is the foundation for analyzing complex plasma behavior. It is 
extremely important as basic knowledge. 

More complex plasma fluid physics, such as when the one-dimensional solution 
has a structure to the remaining two-dimensional disturbances, or even when those 
disturbances grow and cause fluid instability phenomena, will be carefully explained 
in the following Volume 3. There, the physics of charged fluids, which generate 
electric and magnetic fields and are subject to these field forces, will be explained. In 
studying such science, we look back the physics studied on neutral fluids such as 
water and air. Naturally, the study of plasma fluid turbulence becomes important. We 
will consider this while learning about neutral fluid turbulence and mathematical 
methods. 

This series consists of four volumes. Plasmas have high temperatures, so the 
mean free path is proportional to the square of the temperature. For individual 
particles, it is proportional to the fourth power of their velocity. Therefore, when 
studying the physics of high-temperature plasmas, the fluid approximation, which 
assumes that the plasma is in local thermal equilibrium and that the plasma state is 
determined only by the density, velocity, and temperature as a fluid, is no longer 
applicable. When high temperatures are attempted to be realized by shock waves, the 
high-speed component of the velocity distribution deviates from the Maxwell 
distribution. Plasmas in which such collisions are unlikely to occur are called 
“collisionless plasmas”. 

In Volume 4, we introduce the physics of collisionless plasmas by analyzing the 
time evolution of the velocity distribution function, rather than the fluid approxima-
tion. Collisionless shock waves, particle acceleration, and structure formation by 
self-induced electromagnetic fields are explained. While Volume 1 introduced the 
interaction between laser electromagnetic fields and charged particles, Volume 4



deals with plasmas that emerge when the plasma itself generates electric and 
magnetic fields due to instability, turbulence, and other factors, and charged particles 
interact with them as a result. 
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Chapter 1 
Introduction 

Abstract A brief overview of the fluid model to describe most of the plasmas is 
given. Assuming the velocity distributions of electrons and ions are shifted Max-
wellian distribution, plasmas can be described with fluid approximation regardless 
they are collisional or collisionless. The time evolution of laser plasmas is described 
with the fluid model with non-ideal equation of state, non-local electron transport, 
radiation transport, and so on. Modeling atomic state of plasma, effective charge, 
spectral opacity, and emissivity are calculated to couple with the energy equation of 
the electron fluid. As a reference to the plasma physics explained in this book, the 
physics scenario of laser fusion dynamics is used to know what kinds of physics 
become to couple from laser absorption to the fusion energy production through the 
implosion dynamics. 

It is emphasized that the development of a physics-integrated code is important to 
study such laser-produced plasmas. Along with the advancement of technology for 
diagnostics and lasers, the analysis of the experimental data has helped the improve-
ment of the physics models by comparing the experimental data to the corresponding 
simulations. Considering the technically limited number of implosion experiments 
with a huge laser facility, the advancement of the physics-integrated codes is 
becoming the main issue to increase the quality of analysis and design for better 
performance experiments. The progress of computer performance and advancement 
of experiments are now non-separable in complicated nonlinear systems such as 
plasma physics even within the hydrodynamic modeling of plasmas. 

1.1 Fluid Model 

As studied in Volume 1, intense lasers are used to heat the matter to produce high-
temperature plasmas, where extremely high pressure is produced to compress the 
matter to a density higher than the solid densities. In studying the physics of laser-
plasma interaction and the resultant heating of plasmas, the key physics was the 
mechanical dynamics of electron particles in the electric and magnetic fields of 
lasers. 
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2 1 Introduction

Since the phenomena are so complicated, the particle-in-cell (PIC) simulation 
has been used widely as seen in Volume 1. The usage of the PIC codes is the 
direct way to study plasma physics in the case of the interaction with ultra-short and 
ultra-intense lasers, because the pulse duration is very short less than a pico-second 
(10-12 s) and the density of the interaction region is relatively low compared to solid 
density. Therefore, PIC simulation is a powerful tool for studying physics under 
reasonable modeling of the interacting plasma region during the laser pulse duration. 

On the other hand, the laser-produced plasma dynamics in the range of more 
than a nano-second (10-9 s), is unable to study with the use of PIC codes the whole 
dynamics from the low-density region expanding to the vacuum to the compressed 
high-density region. It is required to model the laser-produced plasma with another 
mathematics. 

The next precise way is to solve Boltzmann equations directly, while the particle 
distribution functions at each space and time are also a function of particle velocity 
or energy at each point. Its degree of freedom is infinity and it should be discussed 
how many numerical grids are affordable in solving Boltzmann equations compu-
tationally. Solving the Vlasov equation is equivalent to solving particle dynamics 
directly in PIC code for collisionless plasma. In general, however, thanks to the 
progress of computer capability, the PIC codes are widely used because of the 
simplicity of numerical methods and their numerical stability. 

Instead of PIC or kinetic methods, the easier way to solve the physics is to model 
the plasma as fluids and use the basic equations for fluid dynamics. It is equivalent to 
assuming that the distribution function is Maxwellian locally with particle density n, 
flow velocity u, and temperature T, 

f v, r, tð Þ= 
n 

2πT=mð Þ3=2 
e-

m 
2T v-uð Þ2 ð1:1Þ 

In the fluid model, the basic fluid equations to n, u, and T are solved as functions of 
time and space (t, r). 

Taking the moments of velocity, v0 , v, and v2 of the Boltzmann equation, it is 
well known that the fluid equations are obtained even for the ion and electron 
two-fluid system. Then, the basic equation to be solved are coupled partial differ-
ential equations for 

Density n(r, t) or mass density ρ (r, t), 
Flow velocity or mean velocity vector u(r, t), 
Temperature T(r, t). 

Note that depending on the time and space scale of the plasma phenomena, the ions 
and electrons are assumed to be different densities, velocities, and temperatures. 
When we are interested in a long time and space scale phenomena, one-fluid 
one-temperature or one-fluid two-temperature models are used. In discussing 
two-fluid models, it is usual to take into account the coupling with Maxwell 
equations, because charge separation and electric current produce electric and 
magnetic fields working new forces to electron and ion fluids.
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The neutral fluid equations have a longer history than the Boltzmann equation. 
From the end of the seventeenth century, the analytical and algebraic aspects of 
mechanics were advanced, and the laws of conservation of mechanical quantities 
such as momentum, angular momentum, and energy were proposed, and the equa-
tions of motion were formulated. 

In the eighteenth century, the consideration of mechanics was extended from 
point mass to systems with many points, i.e., continua such as rigid bodies and 
fluids, and the theory of mechanics was applied to them as well. By the middle of the 
eighteenth century, Bernoulli’s theorem, the first fundamental law of fluids, was 
proposed, followed by Euler’s equations of motion and Lagrange’s equations of 
motion. This is said to be the birth of modern fluid mechanics. 

1.2 Brief History of Fluid Dynamics 

It is useful to give a general description of the development of fluid dynamics. 
Wikipedia is copied here since it is well-described. Fluid mechanics is the branch of 
physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the 
forces on them. It has applications in a wide range of disciplines, including mechan-
ical, civil, chemical, and biomedical engineering, geophysics, oceanography, mete-
orology, astrophysics, biology, and plasmas. 

It can be divided into fluid statics, the study of fluids at rest; and fluid dynamics, 
the study of the effect of forces on fluid motion. It is a branch of continuum 
mechanics, a subject that models matter without using the information that it is 
made out of atoms; that is, it models matter from a macroscopic viewpoint rather 
than from a microscopic one. 

Fluid mechanics, especially fluid dynamics, is an active field of research, typi-
cally mathematically nonlinear and complex systems. Many problems are partly 
or wholly unsolved and are best addressed by numerical methods, typically using 
computers. A modern discipline called computational fluid dynamics (CFD), is 
devoted to this approach. Particle image velocimetry, an experimental method for 
visualizing and analyzing fluid flow, also takes advantage of the highly visual nature 
of fluid flow. 

The study of fluid mechanics goes back at least to the days of ancient Greece 
when Archimedes investigated fluid statics and buoyancy and formulated his famous 
law known now as the Archimedes’ principle, which was published in his work “On 
Floating Bodies” – generally considered to be the first major work on fluid mechan-
ics. Rapid advancement in fluid mechanics began with Leonardo da Vinci (obser-
vations and experiments), Evangelista Torricelli (invented the barometer), Isaac 
Newton (investigated viscosity), and Blaise Pascal (researched hydrostatics, formu-
lated Pascal’s law), and was continued by Daniel Bernoulli with the introduction of 
mathematical fluid dynamics in “Hydrodynamica” (1739). 

The inviscid flow was further analyzed by various mathematicians (Jean le Rond 
d’Alembert, Joseph Louis Lagrange, Pierre-Simon Laplace, Siméon Denis Poisson)



and viscous flow was explored by a multitude of engineers including Jean Léonard 
Marie Poiseuille and Gotthilf Hagen. Further mathematical justification was pro-
vided by Claude-Louis Navier and George Gabriel Stokes in the Navier–Stokes 
equations and boundary layers were investigated (Ludwig Prandtl, Theodore von 
Kármán), while various scientists such as Osborne Reynolds, Andrey Kolmogorov, 
and Geoffrey Ingram Taylor advanced the understanding of fluid viscosity and 
turbulence. 

4 1 Introduction

1.3 Compressible Fluid Plasma 

Most of the classical fluid dynamics cited above are about incompressible fluid, 
where the fluid density is constant and flow velocity is slow. Compressible fluid 
dynamics starts to be studied in the field of aerodynamics. Once the flow velocity 
becomes near and higher than the sound velocity of the fluid, compressibility 
becomes essential. One of the pioneering good textbooks about compressible fluid 
dynamics is the book by Liepmann and Roshko [1]. Then, the compressible fluid in 
high temperature and high density is well described by a famous book by Zel’dovich 
and Raizer [2]. The shock wave structure of plasmas was studied precisely based on 
a two-fluid model including the charge separation effect in [3]. 

The book [2] is unique and highly related to the topics of shock waves and 
hydrodynamics of laser-produced plasma to be shown in the present book. It is 
noted, however, that the book is a good one for one-dimensional hydrodynamics, 
while almost no description of the hydrodynamic instabilities and resultant turbulent 
mixing is to be discusses in Volume 3. This is because such topics of hydrodynamic 
instabilities have been mainly developed after the publication of the book. The book 
“fluid dynamics” by Landau and Lifshitz [4] is also famous as a pioneering book of 
modern fluid mechanics, where the compressible fluids and stability of fluid dynam-
ics are also discussed. 

The study of the equation of state (EOS) of non-ideal matters and plasmas are 
not simple and self-consistent statistical physics should be studied. Plasma emits 
radiation in the X-ray region to affect the fluid dynamics via energy transport. The 
so-call radiation-hydrodynamics should be modeled as basic equations. In addi-
tion, electron transport becomes important and a simple diffusive approximation 
violates. This is because the laser energy is deposited dominantly near the cut-off 
density and the heated electrons transport their energy into a relatively cold region. 
Then, most of the energy is carried by high-energy electrons whose Coulomb mean-
free path is proportional to the square of the kinetic energy. Suck non-local transport 
should be modeled in the fluid equations. 

Different from most of the fluids cited above, the hydrodynamic equation is 
not appropriate to understand other plasma phenomena, because high-temperature 
plasma is almost collisionless and the velocity distribution function easily departs 
from Maxwell distribution in (1.1). A variety of plasma instabilities are induced 
when non-Maxwellian electrons or ions tend to be in a thermos-dynamics



equilibrium state after the growth of electromagnetic energy. For example, an 
electron beam is injected into plasma, and electro-static and electromagnetic waves 
are induced to grow their energies into a nonlinear stage where particle-field 
nonlinear interaction is essential. Such a phenomenon is in general to be studied 
by so-call kinetic theory of plasma, which will be given in Volume 4. 

1.4 Hydrodynamics of Laser Fusion 5

1.4 Hydrodynamics of Laser Fusion 

The author researched the possibility of laser fusion and its related physics to apply 
to studying astrophysics with intense lasers in the laboratory. The starting point is 
to study physics-integrated radiation hydrodynamics of laser fusion as shown in 
Fig. 1.1 [5]. The engineering scenario – an optimistic scenario – for fusion energy 
production is shown in the array at the center. This concept of laser-driven implosion 
is proposed in 1972 by Nuckolls et al. [6]. 

Why engineering (or optimistic) is because the physics scenario is assumed to be 
in spherical symmetry as schematically shown in Fig. 1.2. However, the physics in 
the laser fusion has been clarified to be not so simple through a lot of implosion 
experiments. In the laser-plasma interaction, energy loss by reflection and nonlinear 
physics of the interaction discussed in Volume 1 should be modeled. In general, the 
nonlinear interaction produced hot electrons to pre-heat the solid target, preventing 
the ideal hydrodynamic implosion. 

Electrons obtain energy from the laser and transport it to the ablation front. On the 
right side in Fig. 1.1, the non-ideal fluid physics is listed. The transport is not 
diffusive and anomalous physics should be considered because of non-local trans-
port, radiation transport, and the effect of self-generated magnetic and electric fields. 
We need to study plasma turbulences as shown in Volume 4. 

After accelerating the fuel plasma in the in-flight phase, the kinetic energy is 
converted to the thermal energy to ignite a fusion reaction at the center of a spherical 
target as shown in Fig. 1.2. The compressed fuel should be controlled so that it 
consists of the central ignitor (red) and the surrounding main cold fuel (blue) as 
shown at “ignition” in Fig. 1.2. In such one-dimensional scenario, it is possible to 
obtain fusion energy production larger than 100 times the input laser energy. The 
fusion product of alpha particles works to induce the nuclear-burn of the main fuel. 
It should be noted that for generation of electric power with such high-gain 
laser fusion, very challenging implosion with the compressed fuel radius less than 
1/30 ~ 1/50 of the initial radius is required, very different from the image of the 
cartoon in Fig. 1.2. 

On the left in Fig. 1.1, on the other hand, the physical issues to be studied are 
listed regarding the multi-dimensional effect of the laser implosion process. In the 
direct-drive laser fusion scheme, non-uniformity of laser absorption energy flux on 
the target surface initiates uneven hydrodynamics. This is called the “imprint” of 
hydrodynamic instability. How the imprint is serious depends on the thermal 
transport and the equation of states of ablating plasma and shocked solid material.
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Fig. 1.1 The laser fusion physical scenario. The central scenario is the spherically symmetric 
implosion and burn scenario in fluid assumption. The nature is, however, not so kind to allow us to 
keep in one dimension and fluid assumption. The right-hand-side represents the importance of 
transport issues and high-energy electron production. Long range heating by alpha particles helps 
smoothing of the non-uniform core. The scenario on the left-hand-side is related to multi-
dimensional effects. From instability to turbulence, challenging subjects will be described in 
Volume 3. Reprint with permission from Ref. [5]. Copyright by IAEA 

Since the laser intensity is extremely high, the initial shock wave induces 
Richtmyer-Meshkov instability. In the in-flight and final stagnation phases, 
Rayleigh-Taylor instability becomes important as the instability prevents the 
engineering scenario of implosion. Linear instability, nonlinear physics, and finally 
material mixing by turbulent mixing are the critical issue to realize the fusion 
energy, while their physics are still under intensive study. One fortunate physical 
phenomenon is known as ablative stabilization of the classical Rayleigh-Taylor 
instability, where the ablation flow and heat conduction by electrons and radiation 
reduces the growth rate of the Rayleigh-Taylor instability at the ablation front. The



physics of hydrodynamics instability and turbulent mixing will be shown in 
Volume 3. 

1.5 Modeling Radiation-Hydrodynamics in Astrophysics 7

Fig. 1.2 Schematics of Engineering scenario of laser fusion. The target with ablator (orange) and 
frozen DT fuel (blue) are irradiated by many laser beams for implosion with shock waves. The fuel 
DT are required to squeeze about 30 times smaller radius to ignite the imploded fuel. Ignition is 
triggered and fusion product alpha particles heat whole the compressed fuel to produce about 
100 times energy of input laser energy 

A review on the direct drive laser fusion is given for example, by Craxton et al. in 
[7]. One of the top runners in the theory, computing, and experiments of direct-drive 
laser implosion and fusion research has been the Laboratory for Laser Energetics, 
Univ. of Rochester. The review paper has summarized most of the accomplishments 
in direct-drive laser fusion with the OMEGA laser facility including all the other 
activities from the beginning of laser fusion research. The most critical issue of laser 
fusion is the physics stemming from the multi-dimensional effect, and more detail of 
the implosion physics will be given in Volume 3. 

1.5 Modeling Radiation-Hydrodynamics in Astrophysics 

One of the most attractive applications of the physics of laser plasma is to study 
astrophysical phenomena in the laboratory. This is called “laboratory astrophys-
ics”. There are two points of view linking laser-generated plasma and astrophysics; 
that is, sameness and similarity. The sameness is that the physics are identical, 
and the similarity is that the physical phenomena or dynamics are similar in 
non-dimensional time and space. For example,
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1. Sameness of physics 

(a) Ionization of plasmas, equation of state, 
(b) Opacity, emissivity 
(c) Nuclear reaction 

2. Similarity of physics 

(a) Dynamical phenomena of compressible plasma fluids, 
(b) Non-equilibrium atomic processes, 
(c) Radiation transport, particle transport 

The class (1) is easy to understand. For example, a laser fusion implosion experiment 
has achieved a plasma state comparable to the temperature and density of the Sun. 
The thermodynamic properties of astronomical objects can be studied in detail by 
generating small pieces of them in the laboratory. This is also the case of radiation 
properties like emission and absorption spectra of x-rays. 

Class (2) is an attempt to elucidate various physics of compressible fluid phe-
nomena, atomic processes, and so on by transforming time and space scales to the 
power of 10–20 (1010–20 ) on the basis of a similarity law. It is possible to reduce the 
phenomena to the time scale of density ratio (�1020 ) from phenomena in astrophys-
ics to those in the laboratory. Therefore, for example, we have considered the 
hydrodynamic similarity between laser implosion and supernova explosions. 

It is too much to explain more about laboratory astrophysics and interested 
readers are recommended to refer to a review paper [8] and the references cited 
therein. The following ten topics are reviewed about how laser experiments are 
carried out to clarify the physics in Universe. 

1. Equation of state experiment of high-energy-density plasmas compressed by 
shocks by lasers 

2. Opacity measurement of hot-dense plasmas produced by lasers 
3. Photo-ionized plasma experiment modeling Black-Hole binary system 
4. Blast waves generated by intense lasers 
5. Hydrodynamic instability and the physics of turbulent mixing 
6. Magnetic reconnection experiments 
7. Magnetic turbulence experiments 
8. Collisionless shock mediated by Weibel instability and magnetic turbulence 
9. Modeling cosmic-ray generation via relativistic laser and charged particle 

interaction 
10. Electron-positron plasma generation by ultra-intense Lasers 

In the present Volume 2, topics (1)–(4) will be discussed. A typical example to 
model photo-ionizing plasma near a black hole or neutron star is shown in the figure 
on the front page of the present book. By use of laser implosion, it is possible to 
generate Planckian radiation of radiation temperature 500 eV which is almost the 
same as from the surface of compact objects such as black holes or neutron stars 
[9]. On the right in the figure, a comparison of the measured spectrum in the model 
experiment and observed from the photo-ionized plasmas near the compact objects



are shown for silicon atoms to clarify the ionization process. The detail of this topic 
is described in Chap. 5. 

1.6 Verification and Validation (V&V) 9

1.6 Verification and Validation (V&V) 

One of the typical approaches in studying the laser-plasmas is to focus the develop-
ment of computer simulation code with all of related physics as mathematical 
models, which is called “physics-integrated code”. In Fig. 1.3, the elements of 
the integrated code are listed in relation to each other. Mostly, all the elements couple 
in a nonlinear manner, and the performance of the simulation is sensitive to the most 
unreliable modeling of physics. 

In the early time of research, one-dimensional integrated codes have been developed. 
It is because the computer performance was still low and multi-dimensional hydrody-
namic simulation was not possible. At that time, physics modeling of laser heating, 
atomic physics, and equation of state were the main issues in modeling the physics as 
simply as possible so that it fits the computer capability at that time. Then, the modeling 
done already in astrophysics has been adapted to the laser fusion codes. The kinetic 
effect of radiation and particles has been newly installed because of the discrepancy in 
the experimental result from the simplified model used in astrophysics. 

To upgrade the codes to two- and three-dimensions, we have to wait for the 
progress of the computer performance. This situation very resembles the case of the 
simulation of global warming. S. Manabe was awarded the Nobel Prize in physics in 
2021 for “the physical modeling of Earth’s climate, quantifying variability and 
reliably predicting global warming” [10]. His pioneering work is the temperature 
change on the earth’s surface in one-dimensional thermal equilibrium of the

Fig. 1.3 Physics elements in the integrated code for laser fusion research. Note that now hydro-
dynamics is required to be of three-dimensional



atmosphere due to the increase of CO2 gas in 1967. He has modeled many physics 
elements based on microphysics and developed one-dimensional code to solve 
nonlinear coupled systems. Such work has led the world to consider seriously 
about global warming and to decide on the carbon-neutral policy.
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Fig. 1.4 Rapid growth of supercomputer performance, based on data from the top500.org website. 
The logarithmic y-axis shows performance in Giga flops. Combined performance of 500 largest 
supercomputers (blue). Fastest supercomputer (red). Supercomputer in 500th place (yellow). [From 
data of https://www.top500.org/] 

Thanks to the rapid progress of computer capability as shown in Fig. 1.4, now 
three-dimensional radiation-hydrodynamic codes become an essential tool to study 
the performance of implosion experiments and to design and predict better experi-
ments. Multi-dimensional hydro-code also requires a heavy calculation of non-local 
transport, where the energy space needs multi-group transport. In addition, each 
physics model has been replaced by a new model with more sophisticated physics. It 
is noted that a magnetic field is generated in the multi-dimensional plasma fluid. 
Although its energy density is much less compared to the thermal energy, its effect 
on the energy transport coefficient of electrons is sensitive to alter the hydrodynamic 
phenomena. 

It is surprising to know that the performance (speed) of supercomputers increased 
10,000 times in the last 20 years. This means the increase of one order of perfor-
mance (speed) has been accomplished every 5 years. This progress suggests that the 
research method has changed from mostly experimental data analysis to analysis 
with the physics-integrated codes in laser fusion research. At the same time, such 
code development verified with experimental data has been regarded to be beneficial 
for the improvement of astrophysics research.

http://top500.org
https://www.top500.org/
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Let us here consider more general importance of verification and validation of 
simulation codes and the collaboration with experiments [11]. Simulation models are 
increasingly being used to solve many problems and to aid in decision-making like 
the carbon-neutral policy. The developers and users of these models, the decision 
makers using information obtained from the results of these models, and the 
individuals affected by decisions based on such models are all rightly concerned 
with whether a model and its results are “correct”. This concern is addressed through 
model verification and validation (V&V). 

Verification is the process of checking that software achieves its goal without any 
bugs. It is the process to ensure whether the program that is developed is right or not. 
It verifies whether the developed program fulfills the requirements that we have. 
Verification is static testing. Verification means “Are we building the code right?”. 

Validation is the process of checking whether the software product is up to the 
mark or in other words product has high-level requirements. It is the process of 
checking the validation of the code i.e., it checks what we are developing is the right 
to predict the experiments. It is the validation of actual and expected experimental 
products. Validation is dynamic testing. Validation means “Are we building the right 
code to explain and predict the product?”. Here we can regard the product as the 
implosion experiments. If not right, further improvement of the physical models 
and/or finding new physics are required. It is of course that the integrated codes can’t 
predict the real physics without checking with corresponding experimental results 
and model experiments, and continuous effort of improving the physics models. 

The rapid progress of computer performance has made it possible to use com-
puters for machine learning, neural network, big data analysis, statistical modeling, 
and so on. Artificial intelligence (AI) helps more advanced study of the integrated 
physics system. By activating the deep-neural network system shown in Fig. 1.5, it is  
advantageous for us to use wide knowledge of science and deep thinking to the input 
data. Such artificial intelligence starts to be used in many kinds of research, and its 
review has been published in the plasma physics field [12–17]. 

In the present volume, the physics of compressible hydrodynamics is introduced. 
The hydrodynamics is limited to only one-dimensional one, and multi-dimensional 
hydrodynamics will be studied in Volume 3. Atomic physics of plasma and the 
equation of the state of dense plasmas are explained as advanced models of plasma 
fluids as functions of density and temperature, including the case of non-local 
thermodynamic equilibrium (non-LTE) states. Most of the description is focused 
on theoretical physics, with which especially young researchers can obtain the image 
of physics in studying any kind of plasmas. Collisionless plasmas are also an 
interesting subject and are to be discussed in Volume 4. 

1.7 Brief in Each Chapter 

In Chap. 2, basic equations governing a variety of fluid models of plasmas are 
shown with simple explanations. In general, high-density plasmas are approximately 
modeled with neutral compressible fluid with heating and loss terms, and energy



transport terms. It is called “radiation-hydrodynamics”. Although the plasma is 
assumed as a neutral fluid, the equation of state should cover from the cold solid 
material to an electron-degenerated high-density state. The generation of the mag-
netic field is also briefly explained and the properties of the magneto-hydrodynamic 
(MHD) equation are discussed. A variety of waves in plasmas are derived and the 
importance to know the waves is discussed. 

12 1 Introduction

Fig. 1.5 Schematics of human brain and artificial intelligence. (Courtesy of TU Dresden) 

In Chap. 3, the physics of shock waves is discussed. Laser-driven ablation 
plasma produces extremely-high pressure called “ablation pressure”. Its physical 
mechanism is shown by relating to the slow combustion wave, namely the deflagra-
tion wave. The ablation pressure scaling law is obtained by solving a hydrodynamic 
equation in steady state assumption. Such simple theoretical results are compared to 
the data obtained in model experiments with intense lasers. The dynamics of plasma 
acceleration by the ablation pressure is also compared to the corresponding exper-
iments with advanced diagnostics. 

In Chap. 4, the time-dependent dynamics of laser plasmas is an essential issue to 
be studied and to be used for applications. It is needed to solve nonlinear partial 
differential equations even in one-dimensional assumptions. Especially, in spherical 
geometry, it is hard to find simple analytical solutions. However, it has been shown 
that the self-similar mathematical method provides a variety of analytical solutions 
as a function of self-similar variable ξ/ r/tα , where r is the radius, t is time, and α is a 
constant found finally as an eigenvalue of the problem. Several examples are 
described there related to the implosion dynamics in spherical symmetric systems. 
It is important to know such self-similar solutions to obtain the physics image of the 
implosion and shock dynamics in a converging system.
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In Chap. 5, atomic physics and the atomic process of partially ionized atoms are 
explained within an isolated atom or ion model. While re-reviewing the physics of 
the atomic structure of the multi-electron atomic system, the quantum physics of all 
atomic processes are also re-reviewed with intuitive images of the processes. It is not 
applicable to assume the atomic state of the laboratory plasmas is in the thermody-
namic equilibrium (LTE) state, and the non-LTE atomic process should be consid-
ered. Photo-ionizing plasma is a typical example of a non-LTE atomic state, and its 
model experiment with intense laser is compared to the astrophysical plasmas. 

In Chap. 6, it is emphasized that rapid heating of plasma by intense laser produces 
a steep temperature gradient, where the heat flux by the diffusion model is not 
applicable and the flux should be evaluated with the Fokker-Planck equation of 
electrons. This is because the plasma size is shorter than the mean free path of the 
electron component mostly transporting the heat flux. Different mathematical 
models have been proposed and compared to the Fokker-Planck simulations. 
The advanced modeling is explained and the importance for studying the direct-
drive laser fusion is discussed. The progress of the improvement of the models is 
reviewed. 

In Chap. 7, a brief review of the kinetics of radiation transport with many groups 
of photo energy is given. In this topic, the toughest job is to calculate the spectral 
opacity and emissivity, especially of partially ionized medium- and high-Z ions. 
Once the spectral line opacity becomes important in the radiation energy transport, 
the numerical modeling becomes complicated for optically thick plasmas. The 
density dependence of line profiles is discussed by paying attention to related 
microphysics. The same type of Boltzmann equation should be solved for neutrino 
transport in gravitationally collapsing supernova explosions of massive stars. Big 
computing of 3-D simulations is shown as a related topic of radiation transport. 

In Chap. 8, the basic knowledge to study dense and non-so-high-temperature 
plasmas produced by laser shock waves in solid materials is described. In general, 
the ions are treated as isolated ones in plasma in the case of magnetically confined 
plasma, space plasma, and so on. As we know, condensed matter shows a many-
body effect like band structure. This means with an increase in density and temper-
ature, the many-body effect should be taken into account in any theoretical model 
and computation. Thanks to the progress of computing, it became possible to carry 
out “ab initio” calculations. The widely used model, Density Functional Theory 
(DFT), is briefly derived to prepare its application to the physics of equation of state 
and warm dense matter. 

In Chap. 9, the physics of warm dense matter is discussed. A study of the equation 
of state with shock waves is introduced. The other method to study high-pressure 
physics with static high-pressure is also shown, and the long-standing physics of 
insulator-metal phase transition is discussed. The theory of strongly coupled plasma 
is studied backing to the old time when computer capability is not enough. It is 
shown that the warm dense mater can be studied precisely in experiments with X-ray 
Free-Electron-Lasers (XFEL) and precise theoretical analysis is introduced by the 
use of density-functional-theory.
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Chapter 2 
Basic Properties of Plasma in Fluid Model 

Abstract If the spatial variation of plasma is longer than the particle mean free path 
and the time variation is sufficiently longer than the plasma Coulomb collision time, 
the plasma can be approximated as being in local thermal equilibrium (LTE) at any 
point (t, r). Then the velocity distribution functions of the particles become Max-
wellian. In addition, assuming Maxwellian is also a good assumption in many cases 
even for collisionless plasmas such as high-temperature fusion plasmas. In the fluid 
model of plasmas, The plasmas can be described in terms of five variables charac-
terizing local Maxwellian: the density n(t, r), flow velocity vector u(t,r), and 
temperature T(t, r). So, the mathematics used in fluid physics is widely applicable 
to studying plasma phenomena. 

Although conventional fluids are neutral, plasma fluids of electrons and ions 
couple with electromagnetic fields. It is, therefore, necessary to solve Maxwell’s 
equations simultaneously. It is also possible to approximate electrons and ions as 
two different fluids or as a single fluid in case-by-case. This requires an insight into 
what kind of physics is important in our problem. 

After reviewing the basic equation of fluids, several fluid models for plasmas are 
shown. Especially, a variety of waves appears because of charged particle fluids are 
derived to know why waves are fundamental to knowing the plasma dynamics. The 
mathematical method to obtain the wave solutions as an initial value problem is 
explained as well as the meaning of the resultant dispersion relations. 

Magneto-hydrodynamic equations (MHD) are derived to explain the effects of 
the Biermann battery, magnetic dynamo, etc. The relationship of magnetic field and 
vortex flow is studied. Resistive MHD is derived including the Nernst effect, which 
becomes important for the magnetic field in strong electron heat flux. 

Finally, electromagnetic (EM) waves in magnetized plasmas are derived to see 
how to use for diagnostics in the laboratory and observation of wide range of 
electromagnetic waves from the Universe. 

© The Author(s) 2024 
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2.1 Introduction 

The plasma is characterized by the collective motion of many charged particles 
through the Coulomb interaction. It is usually impossible to use the particle-in-cell 
(PIC) simulation to study a long-time and large-scale evolution of plasmas with 
many orders of magnitude differences in density and temperature in a system. It is 
more convenient to use the fluid approximation of plasmas by introducing macro-
scopic physical quantities, which are statistical averages of velocity moments of 
plasma particle velocity (momentum) distribution function. 

In the history of the fluid model, Euler and Lagrange derived a mathematical 
model of fluid dynamics. By the middle of the eighteenth century, “Bernoulli’s 
theorem,” which is said to be the first fundamental law of hydrodynamics, was 
proposed, followed by “Euler’s equation of motion” and “Lagrange’s equation of 
motion,” which are said to have given birth to modern fluid dynamics. 

The fluid model has been applied to gas dynamics. In most cases, it is a good 
approximation to assume that the relatively high-density plasma such as laser plasma 
is neutral fluid in the local thermodynamic equilibrium (LTE). Note that the fluid 
approximation assumes the distribution function of electrons and ions are Maxwel-
lian around their flow velocities, consequently, the so-called kinetic effects to be 
studied in Volume 4 can be neglected because they are not so important. 

In this chapter, it is explained how plasma is approximated as fluid and what kind 
of basic equations are used for plasmas as fluids. It is not necessary to assume that the 
plasma is completely ionized gas and that the fluid equations are applicable to the 
plasmas with the ionization process progressing. The fluid equations are widely used 
for cases to study the dynamics of the plasmas in any state such as neutral gas, fluid, 
and even solid. 

They are also collectively referred to as “continuum media”. Then the image of 
plasma in this textbook will be very wide. In assuming the plasma as continuum 
media, another physical state such as gas, liquid, solid, strongly coupled plasma, etc. 
are also expressed as plasmas in the present textbook, case by case. 

2.1.1 Coulomb Collision Relaxation Times 

Ideal plasma consists of many ions and electrons, and they are interacting with the 
Coulomb force in collisional plasma or freely moving by thermal motion in the 
collisionless plasma case. If the distribution function of the ions and electrons is not 
and far from Maxwellian distributions, it is required to study the plasma based on the 
kinetic theory starting with the Vlasov equation. In the present Volume 2, however, 
the plasma is assumed to consist of the ions and electrons characterized by shifted 
Maxwellian distributions.
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Fig. 2.1 Schematic of an 
electron scattering by 
Coulomb force of a heavy 
ion at the center 

As shown in Fig. 2.1, the Coulomb collision cross-section for an electron with 
velocity v by the ion Coulomb force in plasma is intuitively derived as follows. 

Δ mvð Þj jy ≈ 
Ze2 

4πε0r2 
Δt, Δt ≈ r 

v 
, ð2:1Þ 

where the strong interaction becomes effective when the electron kinetic energy of 
the electron is comparable to the Coulomb force by the ion. Set its radius rc. Since 
this radius rc is the effective distance for strong interaction, the Coulomb collision 
cross-section of the electron is evaluated as follows. 

σc ~ πr2 c / Z
2 

v4
ð2:2Þ 

With use of this cross-section, the collision frequency, the inverse of collision time 
τc, is given as 

νc vð Þ= 
1 

τc vð Þ  = niσcv / Z 
v3 

ne ð2:3Þ 

Note that the Coulomb collision time strongly depends on the electron velocity and it 
vanishes for high-velocity electrons. This is the case of the collisionless plasma for 
high-temperature and low-density plasmas, such as plasmas in magnetically con-
fined fusion devices. 

In evaluating the average collision time for the Maxwellian distribution of 
electrons, the velocity in (2.3) is replaced with the thermal velocity ve = (Te/m)1/2 . 
This is roughly equal to the distribution function relaxation time τe for the electron 
group. The derivation from (2.1) can also apply to the ion-ion Coulomb collision and 
the velocity dependence is the same as (2.3). So, roughly speaking the ion relaxation 
time τi ~  (ve/vi)

3 >  >  τe, where vi is the ion thermal velocity.
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However, the electro-ion energy (temperature) relaxation time τT (has roughly the 
following relation [1]. 

τe < < τi < < τT ð2:4Þ 

The temperature relaxation time τT is roughly given as 

τT = 
mi 

me 
τe ð2:5Þ 

Since τe is almost equal to the classical laser heating time as shown in [1], the 
temperature relaxation time is almost three orders of magnitude longer than the laser 
heating time, consequently, the ion temperature is much lower than the electron 
temperature in the laser heating region. 

In the high-density and low-temperature regions such as near and in solid-density 
plasma, however, it is reasonable to assume a single temperature, Te = Ti = T, and 
both electron and ion temperatures are equal and given as T. In assuming the plasma 
is a single fluid, the fluid model of the plasma can be developed by use of 
conventional fluid mechanics to neutral fluids like air, water, and even solids. 
Most of the regions of laser-driven plasmas such as shock waves and implosion 
dynamics in over the solid density are well described by the single temperature and 
neutral fluid model. Let us start with the basic property of such neutral fluids. 

2.1.2 Fluid Model for Laser-Plasma 

In this chapter, a variety of fluid assumptions and fluid equations are introduced to 
describe the fluid dynamics of laser-produced plasma. The models explained in this 
chapter are listed as. 

One Fluid and One Temperature Fluid Model This is the traditional fluid 
equation to be applicable for the simplest case. The equation is the same as normal 
fluid, while the equation of state (EOS) from a wide range of temperature and density 
should be modeled in another way. This is because the pressure should be modeled 
from solids at room temperature where quantum physics is essential to the state of 
ionization and to the high-density state of strongly coupling plasma. In addition, 
electrons and radiation mainly x-rays, transfer the local energy in space. Such 
transports are modeled in general by heat conduction, while the conduction coeffi-
cient is a function of the temperature. In the case where the heat conductivity is 
proportional to the power of the temperature, it is possible to solve the heat wave 
analytically in some cases. 

One Fluid and Two Temperature Fluid Model In laser-produced plasma, the 
plasma density and temperature change in time and space over many orders of 
magnitude. In the ablating and expanding region, the plasma density is relatively



low, so that it is better to assume the ions and electrons have different temperatures. 
In addition, absorbed laser energy near the critical density is carried to an over-dense 
region via electrons and radiation heat conductions. The equation of both tempera-
tures, especially electron one should include such heat conduction terms. The first 
step is to model them with diffusion approximation, and so-called Spitzer’s heat 
conductivity is included in the electron temperature equation. However, the diffu-
sion model is not valid in any case of laser plasma and non-local heat conduction 
will be discussed in Chap. 6. 
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Two Fluid Equations It is hard to extend the above model to two fluids for 
electrons and ions. It is, however, general that two-fluid models are required to 
study the phenomena over the Debye length much shorter than the mean free path. It 
is not so bad to neglect to solve the energy equations and use some simple relation 
like isothermal or adiabatic relations. Since the attractive force by charge separation 
for two fluids is strong and the distance is about Debye length, the two-fluid model is 
applied to study plasma waves induced by charge separations. Laser propagation in 
plasma is affected only by electron motion and ions can be assumed at rest in high-
frequency motions. 

Mathematics for Wave Analysis For small perturbations in any type of fluid 
equations, it is general to obtain coupled partial differential equations providing 
wave phenomena. The basic equations are modified to coupled, algebraic equations 
after linearization, Fourier transformation, and Laplace transformation. It becomes 
clear by solving the wave equation as an initial value problem that why finding the 
poles of the dispersion relation is enough to discuss the waves in plasma. The 
waves in plasma are important to know how fast the energy of a local disturbance 
diffuses or propagates around via wave propagation. If there are many waves in a 
complicated plasma, how fast the plasma confinement breaks is predicted by know-
ing the fastest wave. 

Magneto-hydrodynamic (MHD) Equations It is usual to use a strong magnetic 
field to confine plasmas. Even in laser-produced plasma, strong magnetic fields are 
produced. In most cases, macroscopic fluid dynamics is controlled by ion motion, 
but electrons are easily run in the plasma by electric and magnetic fields in the 
plasma. The fluid model for plasma in external and internal magnetic fields is the 
MHD model, where additionally the equations to the electric current and magnetic 
field should be coupled. In most case, the equation to the current is replaced with a 
generalized Ohm’s law. Ideal MHD model for collisionless plasma and resistive 
MHD model including magnetic diffusion by resistivity and heat flux are derived. 

MHD waves In strongly magnetized plasma, new waves due to the magnetic 
tension and pressure become important as the fastest waves. The former is called 
the Alfven wave and the latter is called the compressible Alfven wave. Of course, it 
is more complicated because the thermal pressure force couples with the compres-
sional Alfven wave. In addition, circularly polarized-Alfven waves can carry the 
angular momentum of the plasma particles. So-called Alfven breaking by this



torsional Alfven wave plays an important role to carry out the angular momentum of 
accretion discs around the stellar objects in the Universe. 
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Electromagnetic Waves Electromagnetic waves are widely used in our life and 
also used for plasma experiments for measurement and probing plasmas. External 
magnetic fields modify dramatically the dispersion relation of the waves. In astro-
physics, they are widely used to study the dynamics in the Universe by observing 
radio waves to gamma rays. It is also used to study the magnetic field in plasmas. The 
laser is electromagnetic wave with strong electric and magnetic fields. To know the 
properties of lasers in plasmas is a fundamental as studied in the book as well as well 
reviewed in Volume 1. 

2.2 Neutral and Single Fluid Approximation of Plasma 

2.2.1 Fluid Assumption 

What is the fluid approximation? Consider a local fluid element, say in a volume 
with a unit mass, out of all fluid composed of many particles as one mass point. First, 
consider the equation of motion of this local fluid called a fluid element. This is the 
governing equation on the average flow velocity of the fluid element. At the same 
time, it is considered that the fluid element has internal energy as a small thermo-
dynamic system, and a governing equation relating to its temperature is derived from 
the first law of the thermodynamics. In addition, the mass of the fluid element should 
be governed by the conservation relation. 

It is useful to know the intuitive image of the fluid approximation. Since fluids 
such as water are packed closely with molecules, it is natural for the readers to 
imagine that the molecules of water in a certain volume move together like a large 
mass point. However, if this is the case of gas with a mean free path much longer 
than the intermolecular distance, the molecules that make up the unit mass volume of 
fluid will interchange with external particles from time to time. Then, the image of 
moving together is wrong. However, since fluid equations can be mathematically 
derived from the Boltzmann equation, it is enough to think that a continuous group 
of fluid fragments like a point mass is a mathematical concept. 

However, the fluid approximation is reasonable only when the assumption 
of local thermal equilibrium is satisfied so that the velocity distribution function of 
particles made of fluid is close to Maxwellian. The same is true for the plasma. The 
mean free path of high-temperature plasma easily becomes longer than the plasma 
size. Still, the fluid equations are indeed appropriate mathematical models as long as 
the velocity distribution function of the plasma is close to the Maxwell distribution 
locally. This mathematics is shown in Appendix A.
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Consider the thermodynamics of the fluid element. With the internal energy 
density set to ε, the first law of thermodynamics should be satisfied. 

dε= -PdV þ dQ ð2:6Þ 

Here, P is the pressure, V = 1/ρ is the volume occupied by a unit mass (referred to as 
a specific volume), ρ is the mass density, and dQ indicates the amount of energy that 
flows into this volume as thermal energy by thermal conduction, heating, cooling, 
etc., and also the heat flowing out from the volume. 

The fluid of the specific volume moves at the average flow velocity vector u. The 
equation of motion is inferred from the Newton equation, 

ρ 
d 
dt 
u= ρF-∇P ð2:7Þ 

Here, F is an external force. The difference from the Newton equation is that the 
force due to the pressure appears in (2.7). When molecules cannot move freely like 
in water and move as a whole locally, the pressure can be regarded as the average 
force by the surrounding fluid molecules acting on the surface of the specific volume. 
It is hard to understand intuitively the physics image, however, when the particles are 
freely moving in the volume like in the case of collisionless plasma. As explained 
later, the pressure is the momentum flux of the microscopic particles passing through 
the unit surface per unit time. The reason why this is added to the Newton equation 
as a slope of pressure will be explained after deriving it mathematically. 

To analyze any fluid phenomenon, two other equations are necessary. One is the 
equation for mass density, the other is the form of the pressure P as a function of 
density and internal energy. The former is called the equation of continuity and the 
latter is called the equation of state, respectively. A fluid whose density hardly 
changes like water in our daily life is called an incompressible fluid. In this case, the 
density is unchanged, and the equation of continuity is not necessary. In studying the 
plasma produced by the high-intensity laser, however, it is easy to create the pressure 
of millions of atmospheres in the matters and the compression of even water is easy. 
In many cases in the laser-plasmas, it is necessary to consider the phenomena of 
compressive fluids whose density also changes dramatically. 

The governing equation for the mass density is called the equation of continuity 
(the continuity equation) and is given by the following relation, 

∂ρ 
∂t 

þ∇ ρuð  Þ= 0 ð2:8Þ 

This is also called the mass conservation law of fluid. It is clear that (2.8) is written 
in the same partial differential equation as the energy conservation equation of the 
electromagnetic wave in Vol. 1. In (2.8), ρu is the mass density flux.
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Integrating (2.8) over an arbitrary volume V, the following relations are obtained. 

∂ρ 
∂t 

dV = 
∂ 
∂t 

ρdV ð2:9Þ 

∇ ρuð ÞdV = ρu . dS ð2:10Þ 

Here, (2.10) is the Gauss theorem. Then, (2.8) has the following relation in the 
integrated expression. 

∂ 
∂t 

ρdV = - ρu . dS ð2:11Þ 

This indicates that the time change of the mass in any volume V is determined by the 
difference between the mass escaping from the volume surface and the mass flowing 
in. Therefore, total mass is kept constant when the volume V is taken to be the 
volume of the total system without any external mass flux. 

As mathematically proved with (2.8), it can be shown in a general form. 

∂W 
∂t 

þ ∇Q= 0 ð2:12Þ 

This is a partial differential equation showing the conservation relation to a 
physical quantity W and its flux Q. 

2.2.2 Basic Equations of Fluid Dynamics 

There are two ways of expression of fluid equations. They are mathematically the 
same as explained later, while the concept of physical quantities is different: 

1. Lagrange fluid equation 
2. Euler fluid equation 

These differences appear with difference on time derivative. Lagrange type is 
written with total derivative (d/dt), while Euler type is expressed with partial 
derivative (∂/∂t). Both are directly related as follows. 

d 
dt 

= 
∂ 
∂t

þ u . ∇ ð2:13Þ 

Here, u . ∇is called the convection term of fluid, and it means the change of 
variables due to convective motion of fluid elements.
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Fig. 2.2 Equi-contours of a 
fluid field f(t, x) in one 
dimension in space. The 
solid line is trajectory of a 
fluid element. The total 
derivative, Lagrange 
derivative, has the relation 
with the fluid field in Euler 
coordinate. This figure 
shows the relation between 
Lagrangian and Euler time 
derivative intuitively 

In Newton mechanics, the equation of motion is governed by the force applied to 
a point mass. On the other hand, the Maxwell equation is that governing physical 
quantities of electric and magnetic fields defined in a given space. There are two 
ways to formulate hydrodynamic equations as the former image, Lagrange type, and 
Euler type that defines the field variables such as velocity fields like the electric field. 
One can choose one of two types of fluid equations that is convenient for one’s 
problem and mathematically easier to solve that problem. 

The relationship between the two types can be understood from Fig. 2.2. The 
contour lines are equi-contours of a certain physical quantity (e.g.; the velocity in 
x-direction) obtained by solving a fluid equation, where the brown line is the 
x-trajectory of a fluid element. For the sake of simplicity, assume that space is 
only one dimension on the x axis and consider the physical quantity shown in 
Fig. 2.2 as f (t, x). Then, the following relation can be obtained for small amounts 
Δx and Δt. 

Δf = 
∂f 
∂t 

Δt þ ∂f 
∂x 

Δx ð2:14Þ 

This is rewritten to be 

Δf 
Δt 

= 
∂f 
∂t 

þ Δx 
Δt 

∂f 
∂x

ð2:15Þ 

As can be seen in Fig. 2.2, since the local fluid moves in space, at the limit of 
Δt ! 0, (2.15) becomes, 

df 
dt 

= 
∂f 
∂t 

þ ux 
∂f 
∂x

ð2:16Þ 

Therefore, it is clear that in the three-dimensional space (2.16) becomes (2.13).
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When analyzing a fluid phenomenon, the Lagrange type of equation is easy to 
solve mathematically, and the image of physical results is also easy to grasp in some 
cases. For example, a one-dimensional compressible fluid is good example. How-
ever, when analyzing complicated flow or carrying out multidimensional computer 
simulation, the Euler type is generally easier to solve numerically. 

In the fluid equation of the Lagrange type, (2.7) can be regarded as the equation of 
motion for the point mass, ρ. Since it also carries the thermodynamic quantities, from 
the expression (2.6) applied to the internal energy per unit mass of the fluid, the 
following energy equation can be derived. 

dε 
dt 

= -P 
dV 
dt 

þ dQ 
dt

ð2:17Þ 

Here, the specific volume 

V = 
1 
ρ

ð2:18Þ 

It is noted that (2.17) is rewritten after inserting (2.18) into (2.17) and using (2.8), 

dε 
dt 

= -
P 
ρ
∇uþ dQ 

dt
ð2:19Þ 

As a result, the following coupled equations are derived for the fluid equation in 
Lagrange type 

dρ 
dt 

= - ρ∇ . u Equation of continuityð 2:20Þ 

ρ 
du 
dt 

= -∇Pþ ρF Equation of motionð Þ 2:21Þ 
dε 
dt 

= -
P 
ρ
∇uþ dQ 

dt 
Energy equationð Þ 2:22Þ 

On the other hand, in the Euler type, the hydrodynamic variables are considered as 
the field quantities in the time and space (t, r). As like the Maxwell equations, the 
equation governing such field quantities is a partial differential equation. Therefore, 
(2.20) can be in the Euler type as follows. 

∂ρ 
∂t 

þ∇ ρuð  Þ= 0 ð2:23Þ 

ρ 
∂ 
∂t 

þ u . ∇ u= -∇Pþ ρF ð2:24Þ
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∂ 
∂t 

þ u .∇ ε= -
P 
ρ
∇uþ dQ 

dt
ð2:25Þ 

It should be noted that the equations of (2.23, 2.24, and 2.25) differ significantly 
from that of the Maxwell equation; namely, the fluid equations are nonlinear 
equations. For example, the nonlinearity of fluid dynamics stems from the 
convection term: 

u .∇u ð2:26Þ 

As the fluid velocity increases, the convective term cannot be neglected and it plays 
an important role in the formation of a unique structure like shock waves to be 
discussed in Chap. 3. 

2.2.3 Conservation Relations 

Three conservation equations can be derived from the fluid equations. Consider 
the case without the external source force F in (2.14) and heat Q in (2.25). The 
conservation of mass has already been shown in (2.8). Next is the fluid momentum 
density conservation law, which is obtained by adding two equations after multiply-
ing (2.24) and (2.23) by the flow vector u. 

∂ 
∂t 

ρuð Þ þ  ∇ ρu⊗ uþP
$ 

= 0 ð2:27Þ 

Here, the mathematical symbol “⊗” means in this case to create a three-dimensional 
tensor from three-dimensional vectors, whose (i, j) component is uiuj in (2.27). This 
is called a dyadic product (tensor). The pressure was generally indicated in the form 
of a tensor in three-dimension. For the ideal gas, the pressure is a scalar and it can be 
considered that a scalar pressure is multiplied by a unit tensor in (2.27). 

The third and final one is the energy conservation equation. The sum of the 
kinetic energy of the fluid flow and the thermodynamic internal energy should 
be conserved. By deriving an equation for each energy density for both, the total 
conservation form can be obtained after adding both equations. Specifically, multi-
plying (2.23) by 1/2u2 , multiplying (2.24) by  u, and multiplying them by (2.25) 
multiplied by density ρ give 

∂ 
∂t 

1 
2 
ρu2 þ ρε þ ∇ 1 

2 
ρu2 þ ρεþ P u = 0 ð2:28Þ 

Here, P is a scalar for the sake of simplicity. Even if the pressure is tensor, the tensor 
pressure can be easily written in the same form as (2.28). In gas dynamics, the 
enthalpy in the form is also introduced.
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h= ε þ P 
ρ

ð2:29Þ 

As a result, it is found that the conservation form of the fluid equation consists of 
(2.8) for mass, (2.27) for momentum, and (2.28) for total energy. It is easily found 
that these three equations are in the form of standard conservation Eqs. (2.12). 

2.2.4 Equation of State 

In general, the external force F and heat exchange dQ are given in solving (2.20, 
2.21, 2.22, 2.23, 2.24, and 2.25). Still, however, one another relation or equation 
is necessary in order to make the fluid equations in closed form. It is called the 
equation of state (EOS) and is a relation between internal energy ε and pressure P. 
The equation of state is usually given with a new thermodynamic quantity, 
temperature T, in the form 

P=P ρ,Tð Þ  
ε= ε ρ, Tð Þ  

ð2:30Þ 

In (2.22), the equation of energy can be transformed into the equation for 
temperature T, and the fluid equation can be solvable as a closed system of 
three equations for density ρ and flow velocity u (three-dimensional vector), and 
temperature T. 

Except for the case of the ideal gas, how to calculate the equation of state (2.30) 
itself is a major research topic in the laser plasma. The matter changes from solid to 
liquid, neutral gas to plasma. In laser-plasma experiments, it is usually required to 
study strong shock waves and related phenomena, where the shock waves pass 
through the solid and change the overall states. In such a case, it is necessary to 
introduce an appropriate formula for the equation of state within the range of density 
and temperature over many orders of magnitude. It is also required to model the 
phase transitions, although the fluid approximation is still valid. 

For the time being, the following EOS is assumed as the ideal gas for the fluid 
consisting of fully ionized ions with charge Z and electrons. 

P= Z þ 1ð ÞniT ð2:31Þ 

ε= 
Z þ 1ð  Þ  
γ- 1 

T 
M

ð2:32Þ 

Here, T is expressed in units of energy including Boltzmann constant kB. The unit of 
the electron volt (eV) is used in the present book for the temperature. In (2.31), ni is 
the number density of ions and M is approximated by the ion mass, because the



electron mass can be neglected. In addition, γ in (2.32) is the specific heat ratio. 
Note that γ is given simply as a function of the degree of freedom of the particle 
dynamics, and given number of the freedom, N, the following relation is satisfied. 
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γ = 
N þ 2 
N

ð2:33Þ 

If there are no internal degrees of freedom in all particles of the fluid and the particles 
freely fly in the x, y, and z spatial three dimensions, N = 3 and it is enough to set 
γ = 5/3. 

2.2.5 Thermodynamic Consistency 

If the laser intensity is not so high, the electrons on the solid surface are heated, the 
inside of the solid is heated by the heat conduction of electrons, and the temperature 
increases from the surface. When the temperature is high, the solid melts and 
undergoes a phase transition to a liquid state. Furthermore, the laser intensity is 
strong, and vaporization occurs from the liquid state when the temperature becomes 
high enough. Depending on the material, the phase transition proceeds while the gas 
and the liquid are mixed, and the state becomes a neutral gas state. Furthermore, as 
neutral gas absorbs laser photons, dissociation progresses and ionization starts. If the 
laser intensity is sufficiently strong and the Z-value of the solid is not so high, 
the material becomes in a completely ionized plasma state, and the temperature 
increases further. The microphysics of ionization and related processes will be 
discussed in Chap. 5. 

This book must be useful for analyzing the plasma process, and the plasma in 
stars, including non-ideal plasma with a wide range of temperature and density 
regions. If the fluid equations are used to analyze and simulate from a solid state 
to an ideal plasma with reasonable mathematical model, the ideal gas equation of 
state alone is not sufficient. When a star is born from a molecular cloud and evolves 
in time, non-ideal plasma should be studied about molecular dissociation, ionization 
processes etc. Therefore, the thermodynamics and statistical mechanics for under-
standing general properties of the equation of state should be studied including phase 
transition. 

When the system is in thermodynamic equilibrium, the equation of state is 
determined only by two state functions of the system, for example, temperature T 
and density ρ like (2.30). In general, the equation of state can be derived from the 
thermodynamic potential. It is known that Helmholtz free energy F (T, ρ) per unit 
mass of the system is defined with a function of only (T, ρ), and it satisfies the 
following relations.
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S= -
∂F 
∂T

ð2:34Þ 

ε=F þ TS= - T2 ∂ 
∂T 

F 
T

ð2:35Þ 

P= -
∂F 
∂V 

, V = 
1 
ρ

ð2:36Þ 

Here, S is an entropy per unit mass. 
If F (T, ρ) is given, the equation of state is uniquely determined. At the same time, 

the following thermodynamic consistency is satisfied automatically. 

∂ε 
∂V 

= -P þ T 
∂P 
∂T

ð2:37Þ 

The relation (2.37) is obtained by partial differentiation of (2.35) with V, partial 
differentiation of (2.34) with V, and the change of the order of V and T. As can be 
seen from (2.37), it is not allowed to define P and ε independently. Given a function 
of pressure P, the internal energy ε must be uniquely determined by (2.37). When 
modeling the pressure P with some approximation, ε is necessary to be obtained 
from (2.37) by integrating with V. 

What happens if the equation of state does not satisfy (2.37)? When in the 
Newton equation, a point mass moves from the initial point to the endpoint in a 
mechanical potential, the energy obtained by the point mass is given by the differ-
ence between the potential energies at both points. As same as this, if the equation of 
state does not satisfy (2.37), the amount of change in internal energy depends on 
which path in the two-dimensional space of (V, T) the system took to change. This 
contradicts the assumption that the physical quantity changes in the thermal equi-
librium state. In the ideal gas equation of state (2.31, 2.32, and 2.33), both sides of 
(2.37) disappear, and it turns out that (2.37) is satisfied for arbitrary constant γ. 

2.2.6 Cold Pressure 

Intense lasers are also used to study the properties of matter at extremely high 
pressure. High-pressure physics by the use of lasers is now an important research 
field. For example, the physics of the insulator-metal phase transitions is intensively 
studied these days as will be discussed in Chap. 8. The pressure and internal energy 
of the matter compressed more than its solid density are mainly determined by the 
pressure due to the exchange interaction of electrons and the Coulomb repulsive 
force among electrons and ions for covariant bonding matter and electron degenerate 
pressure due to Pauli exclusive principle for the matter with many free electrons 
like metals. Such pressure at T = 0 is called the cold pressure Pc and it is only a 
function of the density ρ.
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Fig. 2.3 The cold pressures 
of several materials 
commonly used as targets of 
laser plasma are plotted as 
function of density. Phase 
transition is clearly seen in 
the case of solid DT fusion 
fuel. Reprint with 
permission from Ref. [2]. 
Copyright 1998 by 
American Institute of 
Physics 

The functional form of the pressure of matter at high density can be written in the 
form. 

P ρ,Tð Þ=Pc ρð Þ þ Pt ρ,Tð Þ ð2:38Þ 

where Pt is the thermal component and Pt = 0 at T  = 0. The cold pressures of 
several materials are plotted in Fig. 2.3 [2], where the pressure is equal to zero at the 
nominal solid density at T = 0. The cold pressure is plotted for DT fusion fuel, 
CH plastic, Be, Al aluminum, Fe iron, and Au gold, widely used for solid targets 
irradiated by intense lasers. The cold pressure is due to molecular bonding pressure 
and the electron Fermi pressure at density near and higher than the solid density. 

Then, it is clear that the cold component of the pressure should be calculated with 
(2.37) as  

εc ρð Þ= 
Pc ρð Þ  
ρ2 

dρ ð2:39Þ 

Of course, if one has the function of the cold internal energy, the cold pressure is 
obtained by the density derivative of the cold energy by (2.39). 

In solving the hydrodynamic equations with such a cold pressure, it is important 
to modify the equation of energy (2.22) as follows. Then, the total internal energy 
should be in the form. 

ε  ρ, Tð  Þ= εc ρð  Þ þ  εt ρ,Tð  Þ ð2:40Þ
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where εt is the thermal component derived from (2.37) with Pt in (2.38). Note then 
that the cold component satisfies the relation. 

dεc = -PcdV ð2:41Þ 

(2.41) indicates that the cold components of pressure and internal energy in (2.17) 
cancel to disappear from the equation of energy. It is enough to insert only the 
thermal component of (2.38) and (2.40) into (2.17). 

The energy equation is converted to the equation for the temperature as 

d 
dt 
εt ρ, Tð Þ= 

∂εt 
∂T 

dT 
dt 

þ ∂εt 
∂V 

dV 
dt

ð2:42Þ 

Inserting (2.42) to (2.17) the equation to the temperature is obtained from (2.25) as  

∂εt 
∂T 

dT 
dt 

= - Pt þ ∂εt 
∂V 

dV 
dt 

þ dQ 
dt 

= - T 
∂Pt 

∂T 
∇u þ dQ 

dt
ð2:43Þ 

In the case where the thermal component can be neglected and the pressure is only 
the function of the density, fluid equations are closed only with (2.23) and (2.24) and 
it is not necessary to solve (2.25). This is the case, for example, where the electron 
Fermi pressure is dominant in compression. It is also the case where the cold 
pressure by the ion Coulomb force is dominant in higher-density. 

On the other hand, the adiabatic compression without the heat term Q = 0 in  
(2.43) provides the temperature as a function of only the density, consequently, it is 
not necessary to solve the energy equation explicitly. In some cases, it is assumed 
that the pressure does not depend on the temperature in hydrodynamic model such as 
star formation in astrophysics or the formation of a large-scale structure in the 
Universe. Such a simplified EOS is used to model that “entropy decreases in the 
process of formation of stars” taking account of heating by compression and energy 
loss due to radiation emission. Such a case is called a polytrophic process in 
thermodynamics. That is, 

P=Aρn ð2:44Þ 

where A is a constant coefficient and the pressure is proportional to the n-th power of 
the density. In general, the “n” is called a polytrophic exponent. 

2.3 Sound Waves 

To know the fundamental property of the fluids, the linear response of small 
perturbations in the fluid Eqs. (2.23, 2.24, and 2.25) is studied. It is well known 
that they give the relation of sound waves propagating in any continuous media.



Now, when a very weak disturbance is generated externally in steady state fluid 
whose physical quantities are described with a subscript “0”. The physical quantities 
due to the disturbance are shown with a suffix “1”, where they change as a function 
of space and time. The linearized continuity equation and momentum equation are 
derived as follows. 
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∂ 
∂t 

ρ1 þ ρ0∇u1 = 0 ð2:45Þ 

ρ0 
∂ 
∂t 

u1 = -
∂P 
∂ρ 0 

∇ρ1 ð2:46Þ 

where u0 = 0 has been assumed. The external force is also neglected here. In (2.46), 
it is assumed that P = P (ρ). 

Partial differentiation due to the density of pressure has a dimension of velocity 
squared, and the velocity (sound velocity) Vs of the sound wave propagating in the 
fluid can be defined as follows. 

Vs = 
∂P 
∂ρ 

ρ= ρ0 

ð2:47Þ 

where RHS is a constant value calculated with ρ0 and P0. By substituting (2.47) into 
(2.46), a partial differential equation of the second order for the density disturbance 
is obtained. 

∂2 

∂t2
-Vs 

2∇2 ρ1 = 0 ð2:48Þ 

For simplicity, if the density perturbation is assumed to propagate in the x direction 
and there is no spatial change in the y and z directions, (2.48) becomes the form. 

∂ 
∂t

þ Vs 
∂ 
∂x 

∂ 
∂t

-Vs 
∂ 
∂x 

ρ1 = 0 ð2:49Þ 

Equation (2.49) gives the waves of the first term which propagates in the x direction 
at the velocity Vs and the wave which the second term propagates in the -x direction. 
The dispersion relation to the frequency ω and wavenumber k is easily calculated as 

ω2 =V2 
s k

2 ð2:50Þ 

In our everyday conversation, the density and pressure disturbance of sound is 
sufficiently small, and the sound wave propagates at the sound velocity obtained 
by substituting the air density and pressure in (2.47). In fact, we open and close



the vocal cord membrane in the throat of the mouth and adjust the waveform of the 
pressure coming out of the mouth. This generates sound waves, and since the 
propagation speed of the sound waves is constant and independent of the wavelength 
as derived in (2.50), the pressure wave of the same waveform goes all the way. 
Therefore, as a vibration of the eardrum of the listener, the time change of the 
pressure wave is sensed, and the conversation sound is recognized. 
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This fact can be applied to the sound waves in solids, liquids, and gases. What is 
understood from (2.47) is that the sound velocity is related to the bulk modulus 
B defined as follows. 

B= ρ0Vs 
2 ð2:51Þ 

The bulk modulus is the pressure to compress the matter to the density two times 
from the normal condition. It can be seen that the propagation speed of the sound 
wave is slower as it is easy to compress. In other words, in a continuous body 
regarded as incompressible such as a solid or a liquid which is difficult to compress 
in the everyday life. Since the density change due to pressure disturbance is almost as 
close as zero, the speed of sound is fast. That is, it can be seen that the incompressible 
fluid approximation is the limit of the infinite sound speed. 

A typical example of the data of Bulk modulus is listed below. Shock waves 
produced by laser irradiation generate the pressure of more than Mega bar (106 atm.) 
and the physical property of highly compressed matter is studied. 

water: 0.022×106 atm., carbon: 0.18×106 atm., 

aluminum: 0.75 × 106 atm., iron: 1.1 ×106 atm., 

polyethylene (CH): 0.04 × 106 atm., gold: 2.2 ×106 atm., 

air: 1 atm., solid hydrogen: 2000 atm. 

The sound velocity is the most important physical parameter of any kind of fluid 
or continuous media. When the spontaneous release of high pressure happens due to 
some natural or artificial reason at a certain point in space, the sound waves play a 
role to relax the pressure in space. The sound waves also carry the energy around so 
that the pressure disturbance disappears as time goes on. Earthquake is due to the 
release or generation of huge energy underground and this energy is spread by the 
waves propagating in the ground with given velocities. 

2.3.1 Wave Propagation in Spherical Geometry 

It is useful to know how the waves propagate in the spherical geometry. At a far 
distance place from the initial disturbance, it can be assumed that the wave pertur-
bation is spherically symmetric, and using the spherical Laplacian in (2.48), the 
wave equation becomes,
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∂2 

∂t2 
u1 -

1 
r2 

∂ 
∂r 

r2 
∂ 
∂r 

u1 = 0 ð2:52Þ 

Using the fact that the wave energy is conserved in propagation, it is expected that 
the energy flux satisfies the relation, 

1 
2 
ρ0u

2 
1Vs × 4πr

2 = const: ð2:53Þ 

This energy conservation relation suggests the functional structure of the perturba-
tions as 

u1 = 
A 
r 
eikr- iωt þ B 

r 
eikrþiωt ð2:54Þ 

where A and B are constants determined by the initial condition. The first one is a 
spherical wave propagating outward, while the second one is that coming from the 
out to the center. If the wave source is released at the center, B = 0 is satisfied. It is 
clear that (2.54) satisfies the wave equation in spherical geometry. If there is no 
damping of the perturbations, the amplitude of the waves decreases in proportion to 
1/r due to the spherical geometry effect. 

2.3.2 Importance of Wave Analysis 

Assume that some fluid is at rest and in a stationary state. Suppose, for example, an 
energy is released at a certain point in the stationary fluid. In the case of air, it is clear 
what happens when a firework explodes in the air. Then, we hear strong sounds 
generated by the explosion, and of course we enjoy the fireworks. This is analogous 
to the case of confined plasma. When some energy is released in some point of 
plasma, the energy disperses to the surrounding by waves. Even with a slight 
perturbation in the plasma, waves are excited, and they disperse energy and momen-
tum in the plasma. Because of this reason, it is very important to investigate the wave 
property in the equilibrium plasma beforehand. If the amplitude of the waves is 
large, the plasma itself is destroyed. 

The role of the waves in such equilibrium state is experienced in the case of the 
propagation of the seismic wave due to the earthquake. As shown in Fig. 2.4, when 
energy generation suddenly occurs at the seismic source, the energy propagates to 
the surface of the earth through seismic waves, tsunamis, etc. The seismic waves are 
longitudinal and transverse waves propagating from the epicenter. The longitudinal 
wave propagates by compressing the soil with the velocity of about 10,000 km/h 
(6 km/s). This is the sound wave in the soil material. The transverse wave arises due 
to the viscosity of soil and propagates at 5000 km/h (3 km/s). 

The former longitudinal waves are called the P waves, and the transverse waves 
are called the S waves. Furthermore, when both waves reach the surface of the earth,



they will become surface waves propagating on the ground surface like the gravita-
tional waves of the water surface explain in Volume 3. To issue an earthquake 
warning, the occurrence of an earthquake is detected by observing this P wave and S 
wave in advance. From the energy point of view, the waves act to disperse the energy 
soon after a huge energy such as a collapse of the ocean floor occurs locally. 
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Fig. 2.4 Schematic of propagation of seismic waves from the energy source (epicenter). The 
longitudinal and transverse waves transport the energy of the earthquake to the surface of the 
earth. Once the waves arrive on the surface, the surface wave spread the energy over the wider area 
of the earth. To study the property of the waves of continuous media is important to know the 
energy transport by such a hydrodynamic motion 

It is the same in plasmas. Consider, for example, the case where the plasma 
ejected by the explosion of the Sun surface (solar flare) falls as the plasma energy 
from the outside into the plasma confined in the earth magnetosphere. The abruptly 
injected energy propagates in the Earth’s magnetic field at high velocity by the 
Alfven waves discussed later. If the amplitude is too large, the plasma itself will be 
destroyed. When the plasma fluctuates greatly in the magnetic field, an electric field 
is generated, and electromagnetic waves are generated from the Maxwell equations. 
If this electric field is too strong, excessive current will flow in the circuit of the 
communication system and it will be destroyed. In order to predict such natural 
disasters, the research field of “space weather forecast” is promoted through collab-
oration between solar observation and numerical simulations. 

2.3.3 Wave Optics and Metamaterial 

For the readers, it is interesting to know more about another wave property of the 
sound waves. In Fig. 2.5,  a  metamaterial for sound wave is shown [3]. The 
scattering of a sound wave from the left on a rigid object at the center is shown on 
the left in Fig. 2.5. It is obvious that the wave is scattered due to the reflection by the 
object and interferometry makes the wave profile complex. The snapshot is the



density perturbation and quasi-specular reflection and deep shadow of the wave are 
observed in the right as the normal case. Surrounding the same object with an ideal 
cloaking shell, however, shows the absence of both reflection and shadow as shown 
on the right in Fig. 2.5. The wave power is transmitted around the metamaterial 
object with no losses and the existing of the object cannot be detected. 
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Fig. 2.5 A snapshot of the density contours of the sound wave scattered by an object. (a) is the case 
of scattering by a normal object, while (b) is by a meta-material with an additional shell around the 
object. Mathematical solution of the sound wave scattering allows almost no scattering object, and 
the object becomes transparent to the sound wave. Reprint with permission from Ref. [3]. Copyright 
1998 by American Institute of Physics 

Such concept of metamaterial is also applicable to any kind of waves. This is 
the so-called stealth function, which can be applied to any wave, for example, the 
reflection of radio waves from an object can be avoided with the same idea to the 
electromagnetic waves. 

2.4 Non-Ideal Fluid with Viscosity and Thermal 
Conduction 

2.4.1 Viscosity and Reynolds Number 

The ideal fluid has been assumed so far, and the effects such as molecular viscosity 
are ignored in the fluid equations. Also, we have ignored the heat conduction in the 
equation of energy. In any fluid dynamics with the non-uniformity of flow velocity 
and/or temperature, the viscosity and/or heat conduction should be evaluated at first 
whether they can be neglected. 

Consider the fluid dynamics of weather and climate phenomena in our daily life. 
In summer, strong sunlight raises the temperature of the earth’s surface. Heat 
conduction and convection phenomena in the air can cause the mirages. When this 
happens near the equator of the Pacific Ocean or the Atlantic Ocean, high temper-
ature seawater evaporates, creating rising air flow, and typhoons and hurricanes are 
born by the Coriolis force stemming from the rotation of the Earth. In the typhoons



and hurricanes, small eddies grow finally to one large vortex while being influenced 
by viscosity and nonlinear effects. It is well known that the lower the center pressure, 
the larger the size. 
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In order to study the actual fluid phenomena, there are cases where three coupled 
equations of ideal fluid (2.23, 2.24, and  2.25) are not appropriate. It is necessary to 
consider the viscosity effect accompanying the spatial variation of the flow velocity 
in the equation of motion. The viscosity relaxes the spatial variation of fluid velocity 
and converts the flow kinetic energy to the internal energy of fluid (heat). This is 
the viscosity heating of fluid same as the frictional heating of a body in a simple 
mechanics. 

In the equation of energy, in addition, when the temperature changes spatially, it 
is necessary to consider the transport of the internal energy. This is a corresponding 
phenomenon of the diffusion of internal energy. The continuity equation is an 
equation of mass conservation and can be used as it is. Taking into account these 
effects, the equation of motion in (2.21) and the equation of energy in (2.22) should 
be modified. 

Derivation of the details of that viscosity force is complicated, so the following 
equation of motion with a scalar viscosity is used in this book without any mathe-
matical derivation. 

ρ 
du 
dt 

= -∇P þ ρF þ 4 
3 
μ∇2 u- μ∇×∇× u ð2:55Þ 

This is Navier-Stokes equation. Here, μ is a viscosity coefficient and assumed to be 
constant. In (2.55), the first term of the viscosity is the diffusion of flow velocity with 
the diffusion coefficient 

ν= 
μ 
ρ

ð2:56Þ 

The ν in (2.56) is called the kinematic viscosity coefficient. The last term on RHS in 
(2.55) is the force that makes the flow velocity variation in space smooth when the 
flow velocity changes in perpendicular to the direction of flow vector. 

In many cases in fluid dynamics, incompressible assumption is used. For 
example, fluid dynamics of climate change and subsonic aircraft can be studied by 
neglecting the change of the density. In the subsonic flow the flow velocity is lower 
than the sound velocity and the density perturbation due to the motion of a body can 
be smoothed out by the sound waves. In the supersonic flow, shock waves to be 
described in Chap. 3 are generated, then, the compressibility becomes essential in 
the fluid dynamics. The motion of a submarine in the sea water is studied with the 
assumption of incompressibility. The Navier-Stokes equation is used for compli-
cated fluid calculations such as a change from laminar flow to turbulent flow of the 
wind flow in our life. The incompressible Navier-Stokes equation is directly derived 
from (2.55).
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∂u 
∂t 

þ u .∇ð Þu= -∇ P 
ρ 

þ ν∇2 u,— ∙u= 0 ð2:57Þ 

In the incompressible case, it is enough to solve (2.57) instead of (2.20, 2.21, 2.22, 
2.23, 2.24, and 2.25). 

Change the equation of (2.57) to a non-dimensional form. For example, consider 
the wind flowing around a building. Assume that L is the typical length of 
the building, U is the typical speed of the wind, ρ is the density of the air, and P is 
the atmospheric pressure. Then, with a hat “~” (tilde) to the dimensionless quantities, 
the physical variables can be transferred to non-dimensional variables as follows. 

~r = 
r 
L 
, ~t = 

tU 
L 
, ~u= 

u 
U 
, ~p= 

P 
ρU2 ð2:58Þ 

Using these dimensionless variables, the Navier-Stokes Eq. (2.57) can be rewritten 
in non-dimensional form. 

∂~u 
∂~t 

þ ~u . ~∇ ~u= - ~∇~pþ 1 
Re 

~∇ 
2 
~u ð2:59Þ 

Whatever the scale of fluid phenomenon, the fluid dynamic phenomenon governed 
by (2.59) depends only on the dimensionless parameter 

Re = 
UL 
ν 

= 
ρUL 
μ

ð2:60Þ 

If the two fluid systems with different scales are similar, the fluids governed by 
(2.59) with the same value of “Re” has the same mathematical solution in the 
dimensionless form. This dimensionless quantity Re is an important value in 
discussing fluid turbulence and is called Reynolds number. For example, it is useful 
to calculate the value of Re in case of the wind around the building; for example, 
U = 10 m/s, L = 100 m, and air mean-free-path l ~ 20 Å , 

Re ≈ UL 
ℓVs 

≈ 10m=s× 100m 

π 2× 10- 9 m 
2 
× 1025 m- 3

- 1 
× 300m=s 

≈ 107 ð2:61Þ 

It is a very large number. Therefore, macroscopic fluid phenomena can be discussed 
by neglecting the effect of viscosity. It is noted, however, that the viscosity becomes 
essential in discussing fluid turbulences. The small vortexes in the turbulence 
disappear after transferring their kinetic energy to the thermal energy because of 
the viscosity. 

The convection term (u . ∇)u of the Navier-Stokes Eq. (2.57) is called the inertia 
term in the analysis of fluid turbulence. The term ν∇2 u is a viscosity term.  By  
inserting typical values in these terms, the inertia term is U2 /L and the viscosity term 
is νU/L2 , so the following relationship is satisfied
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Re = 
UL 
ν 

= 
inertia termð Þ  

viscosity termð Þ ð2:62Þ 

This is the definition of Reynold number, but it is not an exact definition. In gas 
dynamic phenomena in our daily life, the Reynold number is very large as (2.61). In 
the case of the wing of an airplane, it is as large as Re = 108 . Rather, it suggests that 
nonlinear effects (inertia term) often dominate phenomena in a variety of fluid and 
gas phenomena in our daily life. 

In the case of non-dimensional Eq. (2.59), the solution depends only on Re 
number, if two systems are in a similar structure. In fluid turbulence it is known 
that turbulent energy flows from large vortices to small vortices in three-dimensional 
case due to inertia terms. The larger the Reynold number, the larger and smaller 
vortices coexist at the same location in the fluid turbulence. 

Also, as the water or wind flows crossing a building of the cylinder structure 
changes its flow pattern according to the increase of the Reynold number due to the

Fig. 2.6 The flow pattern changes depending on the Reynold number of the system. The figure 
shows the flow forms and flow characteristic for the case where a laminar flow comes to the 
cylindrical obstacle with different Reynold numbers. It changes dramatically from laminar flow to 
turbulent flow. Preprint from Ref. [4] with kind permission from Springer Science + Business 
Media



increase of flow velocity. As shown in Fig. 2.6 [4], with increase of the flow velocity, 
the flow pattern is initially a laminar flow, peeling will occur next, the Karman 
vortex is formed, and it transits to turbulent flow. In Fig. 2.7, Karman vortices 
generated by the Canary Island are shown as a picture of clouds by a NASA weather 
satellite.
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Fig. 2.7 Karman vortex in the nature. Canary Islands kick up Karman vortices, May 20, 2015. 
(NASA earth observatory) 

2.4.2 Wave Damping by Viscosity 

It is clear intuitively that the viscosity plays a role to damp the amplitude of the 
sound waves. The wave equation including the viscosity in (2.48) is easily obtained 
to a Fourier component with k in the plane geometry. 

∂2 

∂t2 
u1 þ k2 ν ∂ 

∂t 
u1 þ k2 Vs 

2 = 0 ð2:63Þ 

Since (2.63) is an equation of a harmonic oscillation, the second term corresponds to 
a friction or damping term. The dispersion relation of (2.63)  is



ð

40 2 Basic Properties of Plasma in Fluid Model

ω≈ ± kVs - i 
ν 
2 
k2 ð2:64Þ 

So, mathematically it is easy to confirm that the solution is proportional to the form, 

exp ∓ ikVstð Þ exp -
ν 
2 
k2 t ð2:65Þ 

The term with a positive ν always damps the amplitude of the waves. It is informa-
tive to evaluate how large this damping is for the sound waves in the air. The vocal 
sound “do” is 260 Hz and the wavelength is about 1 m. The length of wave 
propagation Ld until the exponent of the damping reduces a factor ½ is estimated 
roughly, 

Ld ≈ 
Vs 

νk2 
≈ λ 

ℓ 
λ 

2πð Þ2 > > λ ð2:66Þ 

where λ is the wavelength, l is the air mean-free-path, and approximate relation 
ν ~ lVs was used. Since the vocal sound wavelength is much longer than the 
molecular mean-free-path, viscos damping can be neglected for our vocal sound 
waves. Note that the spherical damping is dominant as shown in (2.54). 

2.4.3 Thermal Conduction 

Next, thermal conduction should be also included in the equation of energy in high 
temperature plasmas. This is a phenomenon in which internal energy is given from 
or deprived by the surrounding fluid to a local fluid due to heat transport. This is 
included in the term corresponding to dQ in (2.6). Therefore (2.22) is modified to the 
form 

dε 
dt 

= -
P 
ρ 
∇u þ 4 

3 
μ 
ρ 

∇uð Þ2 þ 1 
ρ
∇ κ∇Tð Þ ð2:67Þ 

where κ is the heat conduction coefficient and the second term on RHS indicates 
that the flow kinetic energy is converted into heat energy by the viscosity. Thus, 
(2.67) shows a viscous term also appears in the energy eq. (2.22). 

Under the condition that the density is constant and no flow in (2.67), it reduces to 
the equation of temperature diffusion. In plasmas without magnetic field, the 
electron thermal conduction is more important. 

∂Te 

∂t 
=∇ χe∇Teð Þ 2:68Þ 

Here, Te is the electron temperature and χe is the electron temperature diffusion 
coefficient. In high-temperature plasmas, strong dependence of the Coulomb



collision time to the electron velocity shown in (2.3) results the Maxwellian aver-
aged diffusion coefficient is proportional to 
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χe ~ ℓeve / T5=2 
e ð2:69Þ 

Therefore, the temperature diffusion Eq. (2.68) is a nonlinear equation and Fourier 
decomposition method is not applicable. 

Fortunately, it is well-known that as long as the temperature dependence is power 
law and the initial and boundary conditions are not complicated, the following 
self-similar method helps to reduce the partial differential equation to an ordinary 
differential equation, which is in general one-dimensional eigen-value problem [5]. 

2.4.4 Self-Similar Solution 

Discuss a general case where the diffusion coefficient is given in the form. 

χ = aTn ð2:70Þ 

Here, “a” is a constant and “n” is a numerical value indicating the degree of 
nonlinearity. In general, n is often an integer or half integer. 

In the case where fluid is heated to a high temperature locally before fluid moves, 
the heat conduction becomes important than the effect of the sound waves We 
investigate one-dimensional plane given by the following equation. 

∂ 
∂t 

T = a 
∂ 
∂x 

Tn ∂ 
∂x 

T ð2:71Þ 

Let’s solve (2.71) while explaining the mathematics of self-similar solution. 
From the dimensional analysis of the Eq. (2.71), with the coordinates of the 

characteristic front of the heat conduction wave taken as xf and the average 
temperature as Ta at the time t, (2.71) should satisfy the following dimensional 
relation. 

aTn 
a ~ x

2 
f 

t
ð2:72Þ 

To solve this, it is required to impose an initial or boundary condition. 
As an example, suppose that energy E0 is instantaneously generated at x = 0. 

Then the law of conservation of energy is 

E0 = 
1 

γ- 1 
ρ0 

þ1

-1 
T t, xð Þdx ~ 2 

γ- 1 
ρ0Taxf = const: ð2:73Þ 

where 1/(γ-1) is the heat capacity. Equation (2.73) suggests the relation.
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Taxf ~ γ- 1 
2ρ0 

E0 ≡ α : const: ð2:74Þ 

Inserting (2.74) to (2.72), the time dependence of the heat wave front is 

xf ~ aαn tð Þ  1 
nþ2 ð2:75Þ 

The average temperature is obtained by substituting (2.75) into (2.82), 

Ta tð Þ ~  α
2 

at 

1 
nþ2 

ð2:76Þ 

The dimensionless variable ξ is introduced as follows. 

ξ= 
x 

xf tð Þ ð2:77Þ 

The temperature is given by introducing a dimensionless function g(ξ), 

T t, xð Þ= Ta tð Þg ξð Þ ð2:78Þ 

The time and space differentiations are modified as. 

∂ 
∂t 

T = -
1 

n þ 2 
Ta tð Þ  
t 

gþ ξ dg 
dξ

ð2:79Þ 

a 
∂ 
∂x 

Tn ∂ 
∂x 

T = a 
Ta 

nþ1 

xf 2 
d 
dξ 

gn 
dg 
dξ

ð2:80Þ 

Equation (2.71) becomes an ordinary differential equation after one integration as 
follows. 

nþ 2ð Þgn dg 
dξ 

þ ξg= 0 ð2:81Þ 

where the integral constant is zero evaluated as g(ξ) = 0 at  ξ infinity. This can be 
easily integrated, by assuming the value of at the wave-front (ξ = ξ0) constant, 

g ξð  Þ= β 1- ξ 
ξ0 

2 
1 
n 

ξj  j≤ ξ0 

0 ξj  j≥ ξ0 

ð2:82Þ
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Fig. 2.8 Time evolution of 
the nonlinear heat wave with 
n = 5/2, electron heat wave, 
in non-dimensional space 
and time. The nonlinearity 
makes the temperature 
profile being flat at high 
temperature region because 
of better conduction and 
steep profile near the front 
due to less conduction. In 
plotting the non-
dimensional profile, we set 
a= α= β= ξ0= 1 in (2.75), 
(2.76), (2.82) and (2.84) for 
normalized time 
t= 1, 2, . . . , 10  

T(t,x) 

x 

where β is a constant and is given as: 

β = 
n 

2 n þ 2ð Þ ξ0 
2 

1=n 

ð2:83Þ 

For the case of electron heat conduction with n = 5/2, the time evolution of 
temperature is shown in Fig. 2.8. As can be seen from the functional form of 
(2.82) with a large n, the wave front of heat conduction can be clearly defined unlike 
the case of linear diffusion with n = 0. Furthermore, the higher the temperature, the 
larger the thermal conductivity coefficient. The temperature profile is a flat shape 
rather than Gaussian for n = 0 case. 

The solution is 

T t, xð Þ= β 
α2 

at 

1 
nþ2 

g ξð Þ ð2:84Þ 

Note that the non-dimensional constant ξ0 is not obtained yet. It is obtained so that 
the total energy is conserved as (2.73). Inserting (2.84) into the second term in 
(2.73), the total energy becomes E0. In the case where the resultant ordinary 
differential equation is not analytically integrated, the problem becomes an eigen-
value problem with numerical integration, where ξ0 becomes the eigen-value. 

It is useful to solve for the case of n = 0, well-known linear diffusion problem, 
with this self-similar method. It is a standard way to solve (2.71) by using Fourier 
transformation. However, it can be applicable only for the linear diffusion. As seen 
above, the self-similar method can be applied to nonlinear diffusion equations, too. 
As clear in (2.82), it is not straight forward in n = 0 case. With this self-similar 
method, (2.81) becomes
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2 
dg 
dξ 

þ ξg= 0 ð2:85Þ 

This can be easily solved to obtain the well-known solution. 

T t, xð Þ /  1 
at

p e- x2= atð Þ ð2:86Þ 

Finally, let me explain the qualitative relationship between fluid motion and heat 
conduction waves. Generally, when rapid heating occurs on the surface of a solid, 
the speed of the heat conduction wave is very high, and the heat conduction wave 
propagates through the solid without fluid motion. Even in an insulator, free 
electrons increase at once by rapid heating, and a heat conduction wave propagates 
while ionizing atoms in the inside. 

However, the speed of the heat conduction wave suddenly decreases as seen in 
(2.75), and when the speed becomes about the sound speed of the heated region, the 
movement of the ions such as strong sound waves and shock waves will accompany. 
After that, a structure of density and temperature, in which heat conduction and fluid 
motion are combined as almost stationary state, is formed as deflagration wave to be 
explained in Chap. 3. 

Here, we showed how the self-similar method is powerful mathematics in solving 
a partial differential equation. The self-similar method has been applied to find 
analytical solutions of spherical implosion and explosion of compressible fluids 
driven by strong spherical shock waves. This topic will be studied in Chap. 4. 

2.5 Incompressibility and Vortex 

2.5.1 Incompressible Fluid 

The compressibility of fluids and gases such as water and air are defined as 

η= 
1 
B 
= -

1 
V 

dV 
dP 

= 
1 
ρ 
dρ 
dP

ð2:87Þ 

The “B” is the bulk modulus defined in (2.51) and corresponds to the pressure 
required to compress the nominal density twice. 

For incompressible fluids, the equation of continuity (2.20) can be replaced with 
the follow simple relation. 

∇ . u= 0 ð2:88Þ 

Here, we introduce the definition of vorticity vector ω.
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ω ≡ ∇× u ð2:89Þ 

In the case of incompressible and vortex-free flow (ω = 0), the flow velocity is 
defined with a potential (velocity potential), ϕ. 

∇× u= 0 ) u=∇ϕ ð2:90Þ 
∇ . u= 0 ) Δϕ= 0 ð2:91Þ 

Such flow is called the potential flow. 
It is better to see the image of the relation between the vortex and velocity vector. 

Image the case where a vortex is located at the center in the cylindrical geometry. It is 
easy to see the structure of the flow velocity vector by use of the analogy between 
electric current and static magnetic field. For a static condition, The Ampere law in 
the Maxwell equations is 

∇ ×H = j, H = 
B 
μ0 

ð2:92Þ 

Regarding the electric current as vorticity, the magnetic field vector corresponds to 
the fluid flow velocity. In the case where the vortex is localized at the center, the 
absolute value of the flow velocity decreases in proportion to 1/r. This is well-known 
magnetic field distribution in the electromagnetism. 

With a mathematical formula, Lagrange derivative of the flow velocity is rewrit-
ten as 

du 
dt 

= 
∂u 
∂t 

þ∇ 1 
2 
u2 - u×∇× u ð2:93Þ 

In the potential flow, from (2.93) and (2.90), the equation of motion (2.21) becomes. 

∇ -
∂ϕ 
∂t 

þ dP 
ρ 

þ 1 
2 
∇ϕj j2 þ U = 0 ð2:94Þ 

Here, the external force is given as a potential force 

F= -∇U ð2:95Þ 

From the Eq. (2.94), the following relation is found.

-
∂ϕ 
∂t 

þ dP 
ρ 

þ 1 
2 
∇ϕj  j2 þ U = 0 ð2:96Þ 

Here, RHS of (2.96) can be an arbitral function of time, f (t), but if we redefine the 
velocity potential like ϕ′ = ϕ - f(t)dt, we can generalize that f (t) = 0. In a steady
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flow of incompressible and vortex-free fluids, therefore, the following relation 
should be satisfied. 
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Fig. 2.9 Engineering application of Bernoulli’s theorem. (a) The difference of the height indicated 
the difference of velocity. This is used to measure the speed of an airplane flying at subsonic 
velocity where incompressibility is good assumption. (b) is the principle of lift force of airplanes. 
Design the main wing structure so that the top is longer than the bottom, and the pressure of the air 
passing over the top is lower than the pressure below. When the airplane takes off, this pressure 
difference provides lift and helps the aircraft to climb 

dP 
ρ 

þ 1 
2 
u2 þ U = constant in spaceð Þ 2:97Þ 

The relation of (2.96) and (2.97) is called Bernoulli’s theorem. 
Using (2.97), a mechanical device for measuring the speed of flow velocity is 

designed as in Fig. 2.9a. This principle has been used to measure the speed of 
subsonic-aircrafts. As seen in Fig. 2.9b, the wing of an aircraft is designed so that 
the upper length is longer than the lower length, then the flow velocity is higher in 
the top of the wings and the pressure is lower. The difference of the pressure pushes 
the wings upward. This force is called the lift force. 

2.5.2 Incompressibility Assumption 

In most of the hydrodynamic phenomena, the incompressible assumption can be 
used and the problems become simpler than the compressible fluids. Then, the 
equation of continuity and equation of energy can be replaced by the incompressible



condition (2.88). In general, the incompressible Navier-Stokes Eq. (2.55) is only one 
equation to be solved by coupling with (2.88). 
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Let us consider the condition under which the assumption of incompressible fluid 
is appropriate. Evaluate the density perturbation δρ in a uniform fluid with density 
ρ0. Induced velocity perturbation δu, originated by the compressibility can be given 
as the same form in (2.45) and (2.46) as follows. 

∂ 
∂t 

δρ= - ρ0∇δu ð2:98Þ 

∂ 
∂t 

δu= -
1 
ρ0 

∇δP= -
V2 
s 

ρ0 
∇δρ ð2:99Þ 

V2 
s = ∂P 

∂ρ
ð2:100Þ 

where δP is an induced pressure perturbation and Vs is the sound velocity defined 
in (2.47). From (2.98) and (2.99), the following relation is obtained. Assuming 
|∇| ≈ 1/L and |∂/∂t| ≈ τ, the relation is obtained 

δρ 
ρ0 

≈ L 
τ 

δuj j  
V2 
s 

ð2:101Þ 

It is clear from (2.101) that the density change by the compressibility can be 
neglected for the case with sufficiently high sound velocity Vs. For example, a car 
speed of 100 km/s is about L/τ~| δu|~0.1Vs and the density perturbation is only 1%. 
In the case of a supersonic jet fighter with Mach number more than unity, the density 
perturbation roughly evaluated with (2.101) is more than unity, so that hydrody-
namics should be solved as compressible fluid. 

2.5.3 Vortex Equation 

The following equation is obtained by taking the rotation of the equation of motion 
(2.57). 

∂ 
∂t 

ω=∇ × u ×ωð Þ þ  1 
ρ2

∇ρ×∇P þ 4 
3 
ν∇2 ω ð2:102Þ 

This can be rewritten in the form. 

∂ 
∂t 

ω þ u ∙∇ω= ω .∇ð Þu-ω ∇uð Þ þ  1 
ρ2

∇ρ×∇Pþ 4 
3 
ν∇2 ω ð2:103Þ 

Here, ω is the vorticity defined in (2.89).
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The first term of RHS in (2.103) is a term that exists only in the case of three-
dimensional flow, and a vortex localized in a certain region is stretched to the 
direction of vorticity vector by this term. In the three-dimensional fluid turbulence, 
the vortexes are cascaded to thin, long vortexes in the turbulence energy spectrum. 
This is called cascade in wavenumber space of the turbulence. As the vortex is 
elongated, the viscosity of the fourth term on RHS of (2.103) acts as a damping term 
of the vorticity. This is the effect of dissipation in which the kinetic energy of the 
vortex is converted into the thermal energy of the fluid. 

The second term in (2.103) disappears in incompressible fluid. This term is the 
compressibility effect of amplifying the vorticity in the fluid as it is compressed. 
And, the third term is a source term for vortex generation. Note that it depends on the 
property of the equation of state (EOS). If pressure is only a function of the density, 
this term disappears. 

Even with ideal fluid equation of state, vortexes are generated by this term. The 
third term in (2.103) is called the baroclinic term. In  fluid dynamics, the baroclinity 
is a measure of the stratification in a fluid. A baroclinic atmosphere is one for which 
the density depends on both the temperature and the pressure; contrast this with 
barotropic atmosphere, for which the density depends only on the pressure. In 
atmospheric terms, the barotropic zones of the Earth are generally found in the 
central latitudes, or tropics, whereas the baroclinic areas are generally found in the 
mid-latitude/polar regions. 

Let us see the difference of role of the first term of RHS of (2.103) in two- and 
three-dimensional vortices. The effect appears as the difference between a tornado 
and a typhoon. Our Earth’s atmosphere is about 5 km as the thickness of the air 
fluid. Since a relatively small-scale vortex is subjected to the three-dimensional 
effect and becomes a thin and long vortex like a tornado. However, in the case of 
typhoon, the size of the vortex is as much as 1000 km compared to the atmosphere 
thickness of ~5 km, which is like a vortex in a very thin water in two-dimension. 
Therefore, the typhoon is a two-dimensional vortex and the first term on RHS of 
(2.103) does not work for the evolution of vortex. In fact, when examining the 
two-dimensional vortex turbulence, it turns out that the energy of the vortex moves 
in the wavenumber space from small to large wavenumber direction. This is called 
an inverse cascade. 

To see explicitly the force to generate vortices on the surface of the earth, it is 
better to write the vortex equation in a rotating system with an angular momentumΩ. 
Then, Navier-Stokes Eq. (2.57) includes two new forces, since Newton equation is 
modified in this frame as 

dv 
dt 

= 
F 
m 
þ 2v×Ω-Ω × Ω× rð Þ ð2:104Þ 

where the second and third terms in RHS are the Coriolis and centrifugal forces, 
respectively. Of course, r and v are those in the rotating coordinate. It is relatively 
simpler to solve Navier-Stokes equation in the rotating system with these two forces.



2.6 One-Fluid and Two-Temperature Fluid Model 49

Fig. 2.10 A satellite picture of clouds by a typhoon attacking Japan islands (left, Courtesy of 
Tenki.jp), and X-ray image of the spiral Galaxy M51 taken by Chandra x-ray satellite by NASA 
(right by NASA/CXC/SAO) 

It is easy to image the centrifugal force which is always perpendicular to the 
rotating axis (Ω-direction). The Coriolis force is easily understood with the analogy 
of Lorentz force. Regarding 2Ω is like an constant magnetic field vector in the 
z-direction in the cylindrical coordinate, the Coriolis force is the same mathematical 
form as the Lorentz force. For example, it is perpendicular force to the rising air in 
Summer to generate vortices due to Coriolis force. 

A picture of clouds in a typhoon approaching to Japan and Korea is taken by a 
weather forecast satellite as shown in Fig. 2.10a. The vortex is enhanced on the way to 
the north by the Coriolis force. It is clearly seen the “eye” of the typhoon at the center. 

It is interesting to compare the spiral motion of the typhoon to the spiral motion of 
a galaxy. A galaxy consists of about 100 billion starts, and it can be regarded as fluid. 
In general, galaxy is of pancake type structure and starts are rotating around the 
center of the galaxy with given angular momentum. In Fig. 2.10b, an observed x-ray 
image of the M51 galaxy is shown. The spiral motion of the stars in the galaxy is 
observed in the satellite image. The image suggests that the vorticity is localized at 
the center of the galaxy. 

2.6 One-Fluid and Two-Temperature Fluid Model 

It seems to be that a precise treatment of laser-plasma should be based on the 
two-fluid and two-temperature model identifying the ion and electron fluids. As 
shown in (2.4) and (2.5), the next better is the assumption of two temperatures but 
one fluid. Two fluid is required when the charge separation is important to affect the



fluid phenomena. This is the case near low density and high-temperature region like 
laser expanding plasma to be discussed in Chap. 3. The other case is the situation 
where the charge neutrality is satisfied, but the electron current is strong to generate 
strong magnetic field affecting the fluid dynamics. This is modeled by magneto-
hydro-dynamics (MHD) fluid discussed later. 
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As described in Chap. 2 in Vol. 1, the velocity distribution of heated electrons 
becomes Maxwellian with an electron temperature Te due to collisions between 
electrons, and the ions tend to be a Maxwell distribution with Ti relatively slowly, if 
the time scale of phenomena is longer than τe and τi in (2.4). However, it takes even 
longer time for both temperatures to have the same value as suggested in (2.5). In the 
case of laser heating, electron cyclotron heating, etc., the electrons in the plasma are 
heated from outside, and the ions are heated through the temperature relaxation 
process by the electron-ion Coulomb collision. Therefore, it is generally better to 
assume that the temperatures of electrons and ions are different in such plasmas. 

In addition, plasma shock waves such as blast waves of supernova remnants heat 
the ions at the shock front, and the electrons slowly receive energy from the ions due 
to temperature relaxation. In the magnetic field confined plasma, when plasma is 
heated by a microwave source whose frequency is adjusted to resonate the ion 
cyclotron frequency, the ion temperature rises but the electron is heated slowly via 
the ion-electron collision. 

Of course, if the time scale of the fluid dynamics is faster than the electron and ion 
relaxation times, there is no guarantee that the distribution functions are in Maxwel-
lian. However, the fluid equation is much easier to solve compared to the Boltzmann 
equations directly. It is better to start with solving a plasma dynamic with the fluid 
model at first. Then, if some violation of fluid assumption is found in the solution, it 
is better to consider how to take into account the kinetic effect in the basic equation. 

The one-fluid and two-temperature fluid model is widely used as the basic 
equation for studying the whole dynamics from laser heating to fusion burn in 
laser nuclear fusion implosion dynamics. The basic equations are derived from the 
two fluid equations given, for example, in the Babinski’s book [6]. To assume charge 
neutrality, the scale length of the plasma fluid variation in space should be suffi-
ciently longer than the Debye length. Then, one fluid approximation is reasonable, 
and the equation of continuity and the equation of motion are same as (2.20) and 
(2.21), respectively. 

dρ 
dt 

= - ρ∇u ð2:105Þ 

ρ 
du 
dt 

= -∇P ð2:106Þ 

However, the energy equation should be formulated for the ion and electron fluids as 
separate thermodynamic systems. As important terms, the heat conductions, tem-
perature relaxation, and energy source terms should be included. For example, Se is 
the energy source by laser and radiation, and Si is a source by the collisional heating 
by fusion-product particles. Then, both energy equations are written as,



2.7 Two Fluid Equation of Plasma 51

ρ 
dεi 
dt 

= -Pi∇u-∇qi þ Qei þ Si ð2:107Þ 

ρ 
dεe 
dt 

= -Pe∇u-∇qe -Qei þ Se ð2:108Þ 

Here, εi and εe are the internal energies per unit mass of ion and electron fluids, qi and 
qe are heat fluxes of ions and electrons, Qei is the temperature relaxation in unit 
time per unit mass from electrons to ions (or vice versa when Qei is negative). The Si 
and Se are terms of energy sources and losses due to other effects to ion and electron 
fluids, respectively. For example, when the thermal x-ray radiation exchanges 
energy with plasma, the term Se should include the effects of heating and cooling 
by radiation. That term must be combined with an equation on radiation in a self-
consistent way. In (2.107) and (2.108), the thermal conduction coefficients of ions 
and electrons, and the temperature relaxation term are given as follows [6]. 

κe = α Zð Þ neTeτe 
me 

/ Te 
5 
2, κi = 3:9 

niTiτi 
mi 

/ Ti 
5=2 ð2:109Þ 

Qei = 
me 

mi 

Te - Ti 

τe 
ð2:110Þ 

Here, τeis the relaxation time given in (2.4). The collision time due to the Coulomb 
collision is subtly changed depending on the ionization degree Z of the ions, so it is 
applied as a correction term α(Z ) thereof. For example, α(Z )= 3.16 for Z = 1, others 
are in Ref [6]. Note that the thermal conduction coefficient roughly given as (2.69) 
for electrons and the same form livi for ions except numerical factors. It is found that 
the ion thermal conduction is much weaker than the electron thermal conduction 
even for the same temperature profile. 

Note that the one-fluid, two temperature fluid model is the basic equations for an 
integrated-physics code for laser fusion simulation. Depending on the difference of 
problems, additional physics are included in the basic equations. 

2.7 Two Fluid Equation of Plasma 

For analyzing short time and short scale plasma phenomena, two-fluid plasma model 
is widely used. In a short time, plasma is in general collisionless and there is no time 
for the ions and electrons to become Maxwell distributions via the Coulomb 
collision. Nevertheless, the ion and electron particle distributions are assumed to 
be in Maxwellian, and they are described with fluid models like the neutral fluids. 
The mathematical proof of the fluid approximation is shown in Appendix-A. 

In general, the energy equations to the ions and electrons are neglected for 
simplicity by assuming constant temperature or adiabatic response. For simplicity, 
consider the case of fully ionized hydrogen plasma. Extension to partially ionized



non-ideal plasma with other atomic and charge numbers is straightforward, if there is 
no need to be consistent with complicated atomic processes explained in Chap. 5. 
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Plasma consists of two kinds of charged particle groups whose masses are 
different by thousand times. Since the masses are very different, the ions behave 
separately as ion fluid and the electrons as electron fluid. Assume that both electrons 
and ions behave as the ideal fluid, and their degrees of freedom are only three-
dimensional translational motions. Then, both equations of state are the same as 
(2.31) and (2.32) with N = 3 and γ = 5/3. Then, the following equations are obtained 
for the ion fluid, after setting the number density of ions ni and setting its flow 
velocity and temperature to ui and Ti. 

∂ni 
∂t 

þ ∇ niuið Þ  = 0 ð2:111Þ 

mi 
∂ 
∂t 

þ ui . ∇ ui = -
1 
ni 
∇ niTið Þ þ  e Eþ ui ×Bð Þ- 1 

ni 
R ð2:112Þ 

Both the ion and electron gases are the ideal gas and charged particle ions are 
affected by Lorentz force. The electron fluid follows the equations. 

∂ne 
∂t 

þ∇ neueð Þ  = 0 ð2:113Þ 

me 
∂ 
∂t

þ ue . ∇ ue = -
1 
ne 

∇ neTeð Þ- e Eþ ue ×Bð Þ þ  1 
ne 

R ð2:114Þ 

Here, R is the force due to friction appearing when the velocities of the electron and 
the ion fluids are different, and is given as the following form [6]. 

R= -
mene 
τei 

ue - uið Þ ð2:115Þ 

Note that both the viscosity and thermal conductions have been neglected above. 
Electric and magnetic fields appearing in Lorentz force are not only imposed 

externally but also generated by the ion and electron fluid motions. The charge 
density ρ and current density j are defined as 

ρ= eni - ene j= eniui - eneue ð2:116Þ 

(2.116) should be used in solving the Maxwell equations. 

Faraday’s Law∇ ×E= -
∂B 
∂t

ð2:117Þ
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Ampere’s Law 
1 
μ0 

∇ ×B= j þ ε0 ∂E ∂t
ð2:118Þ 

Poisson Equation ε0∇ . E= ρ ð2:119Þ 
Gauss law∇ . B= 0 ð2:120Þ 

It is necessary to solve the fluid equations by coupling with the Maxwell equations at 
the same time self-consistently. This point is essential difference compared to the 
conventional fluid or gas with no charge, and soling any plasma physics is more 
complicated mathematically. So, when the computer appeared in the late 1940’s, the 
researchers in plasma physics became a pioneer in computational physics even with 
fluid assumption of plasmas. 

The basic equations were given above; however, it is not always necessary to 
couple all equations. For example, to investigate the phenomenon which is too fast 
for the ion fluid to follow, it is reasonable to keep the ions fixed and consider only the 
motion of the electron fluid. In a phenomenon, on the other hand, in which ions 
move slowly and the electrons just accompany them, the electron fluid follows the 
motion of the ion fluid. In such case, it is found the charge neutrality is good 
assumption without solving the electron equation. 

Plasma shock wave structures are studied precisely by soling complete equations 
of two fluid and two temperature fluid equation [7]. They have solved structure of 
stationary plasma shock waves and studied the effects of charge separation, electron 
and ion heat conduction, temperature relaxation, viscosity, etc. The same kind of 
research was done in the book [5], where the details are given in Chap. 7. It is too 
much here to discuss such precise calculation consistently by solving all above fluid 
equations, so the reader interested are recommended to read such references. 

2.7.1 Electron Plasma Waves 

Typical waves in two fluid plasma driven by the electric field are the electron 
plasma wave and ion acoustic wave. The electron plasma wave is sustained by 
the electric field due to charge separation by the electron motion. So, the electron 
inertial force balances the force by the electric field and electron pressure. In this 
case, the ions can be assumed to be at rest, namely, the ions cannot move because of 
their larger mass. 

To know the linear response of any plasma from an equilibrium state, small 
perturbations of physical quantities are considered after neglecting all nonlinear 
terms. This mathematical prescription is called “linearization”. In the electron 
plasma wave, the linear perturbations are the following electron density, electron 
velocity, and electrostatic field. 

ne1, ue1, E1 ð2:121Þ



Then, the continuity Eq. (2.113) is linearized as 
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∂ 
∂t 

ne1 þ ne0∇ue1 = 0 ð2:122Þ 

The equation of motion of electrons (2.114) is linearized as 

me 
∂ 
∂t 

ue1 = -
1 
ne0 

∇Pe1 - eE1 ð2:123Þ 

The Poisson Eq. (2.119) is linearized as 

∇E1 = -
e 
ε0 

ne1 ð2:124Þ 

Assuming that the pressure is given in the form (2.31), the linearized pressure is 

Pe1 = 
∂Pe 

∂ne 
ne1 = γTene1 ð2:125Þ 

where Te is assumed to be given. In (2.125), the γ is evaluated so that the electron 
motion is one-dimensional adiabatic and γ = 3 from (2.33). 

The dispersion relation to the electron plasma waves is easily obtained as 

ω2 =ωpe 
2 þ 3ve 2 k2 , ve = Te=me ð2:126Þ 

where ωpe is the electron plasma frequency, or simply called plasma frequency 
defined as 

ωpe = 
e2ne 
ε0me 

ð2:127Þ 

In the cold plasma limit, the plasma waves tend to a simple oscillation 

ω2 =ωpe 
2 ð2:128Þ 

This oscillation of electrons is called plasma oscillation. Note that ωpe is a reso-
nance frequency of the electrons in cold plasma.
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2.7.2 Ion Acoustic Waves 

If the time scale of the oscillation of perturbations is long enough, it is necessary to 
take account of the motion of ion fluid. The electric field due to the charge separation 
in slow time scale attracts the electrons, so that the electron fluid almost follows the 
motion of the ion fluid. Consider the electron and ion density perturbations are 
slightly different, while the electrons follow the ion fluid motion. Both fluids are 
coupled by the electrostatic field. Derive the equations for linear perturbations of the 
following four quantities. 

ni1, ui1, ne1, E1 ð2:129Þ 

The linearized equation of (2.111) is given as 

∂ 
∂t 

ni1 þ ni0∇ui1 = 0 ð2:130Þ 

Eq. (2.112) becomes 

mi 
∂ 
∂t 

ui1 = -
1 
ni0 

∇Pi1 - eE1 ð2:131Þ 

Then, in (2.114) it is possible to neglect the inertial term. Assume that the electric 
field should balance with the electron pressure force.

-
1 
ne0 

∇Pe1 - eE1 = 0 ð2:132Þ 

The final relation is the Poisson Eq. (2.119). 

∇E1 = 
e 
ε0 

ni1 - ne1ð Þ 2:133Þ 

After Fourier transformation, the ion density perturbation is found to have the 
following relation with the electron density perturbation. 

ni1 = 1 þ k2 λDe 2 ne1 ð2:134Þ 

Note that both density perturbations are almost the same for small k, while the 
electron density does not follow the ion density for large k. 

By solving the above coupled equations after Fourier-Laplace transformation, the 
dispersion relation of the ion acoustic wave or simply the ion wave is obtained.
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ω2 = 
γiT i 

mi 
þ γeTe 

mi 

1 
1þ k2 λDe 2 

, γi = 
5 
3 
, γe = 1 ð2:135Þ 

where the ion fluid is adiabatic and the electron fluid is assumed to keep a constant 
temperature because of the dominant electron thermal conduction. It is usual that the 
most of plasmas have higher electron temperature compared to the ion one. (2.135) is  
usually written to be 

ω2 =Cs 
2 k2

1 
1 þ k2 λDe 2

ð2:136Þ 

where Cs is the ion acoustic velocity defined by 

Cs = 
γeTe 

mi 
, ð2:137Þ 

The dispersion relation (2.136) is plotted in Fig. 2.11. It is noted that the ion acoustic 
wave phase velocity satisfies the relation. 

vi < 
ω 
k 
< < ve ð2:138Þ 

Once this relation is not satisfied, the ion waves are damped by the kinetic effect, 
so-called Landau damping. The physics of Landau damping will be discussed in 
Volume 4. 

Fig. 2.11 The dispersion relation of the ion acoustic wave is plotted by the red line. It starts with a 
constant velocity at small k, while saturates at large k region
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2.8 Mathematics for Wave Analysis 

The waves in plasma produced by the motion of ions and electrons coupled with 
Maxwell equation have the same role as the seismic waves, the sound wave, etc. So, 
if there is a disturbance somewhere in the plasma, the induced waves carry energy so 
as to disperse the energy spatially and temporally. As the result, plasma confinement 
is prohibited in some cases. When the amplitude of the waves is sufficiently small, it 
can be analyzed as weak deviation from the equilibrium state. Then, the governing 
equations can be linearized, and it is enough to solve the linearized wave equations. 
Fourier-Laplace transformation has been used to obtain the wave dispersion 
relation, but any precise mathematics has not been explained, yet. To proof the 
mathematics, we start with the small vibration of an oscillator before the wave 
analysis. In the wave theory, it is standard to analyze using Fourier-Laplace expan-
sion, and it is strait forward to use the mathematics of the analysis of such an 
oscillator. 

2.8.1 Initial Value Problem of an Equation of Oscillation 

First, let’s solve exactly the initial value problem of the equation for a harmonic 
oscillator with a damping term by the Laplace’s method. The equation of the 
harmonic oscillator with the eigen-frequency ω0 and damping coefficient γ can be 
written as follows. 

d2 x 
dt2 

þ 2γ dx 
dt 

þ ω2 
0x= 0 ð2:139Þ 

Multiplying (2.139) by  eiωt and introducing time-integrated variables, Laplace 
transformation is carried out with the definition. 

X ωð Þ= 
1 

0 
x tð Þeiωt dt ð2:140Þ 

It should be noted that even if x(t) grows exponentially in time, Im (ω) should be a 
positive value so that this integral (2.140) must not diverge. Carrying out the Laplace 
transform of (2.139), the second term becomes 

1 

0 

dx 
dt 

eiωt dt= xeiωt 
1 
0
- iωX ωð Þ= - x 0ð Þ- iωX ωð Þ ð2:141Þ 

The Laplace transform of the first derivative includes the initial value x (0). The 
second derivative is
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1 

0 

d2 x 
dt2 

eiωt dt = 
dx 
dt 

eiωt 
1 

0
- iω 

1 

0 

dx 
dt 

eiωt dt = - _x 0ð Þ þ  iωx 0ð Þ-ω2 X ωð Þ  ð2:142Þ 

This includes the first derivative at t = 0, _x 0ð Þ  = dx / dt (t = 0). 
If Laplace transform is performed accurately as mentioned above, Laplace 

transformed equation of (2.139) is given as 

ω2 þ 2iγω-ω2 
0 X ωð Þ= - _x 0ð Þ þ  iω- 2γð Þx 0ð Þ ð2:143Þ 

LHS of (2.143) is factorized. 

ω2 þ 2iγω-ω2 
0 = ω-ω1ð Þ  ω-ω2ð Þ ð2:144Þ 

Here, 

ω1 = ω2 
0 - γ2 - iγ, ω2 = - ω2 

0 - γ2 - iγ ð2:145Þ 

Since X(ω) is given in (2.143), the Laplace inverse transformation is performed to 
give 

x tð Þ= 
1 
2π 

þ1

-1 
X ωð Þe- iωt dω 

= -
_x 0ð Þ  
2π 

þ1

-1 
e- iωt 

ω-ω1ð Þ  ω-ω2ð Þ dω 

þ x 0ð Þ  
2π 

þ1

-1 

iω- 2γð Þe- iωt 

ω-ω1ð Þ  ω-ω2ð Þ dω ð2:146Þ 

Here, 1/2π of (2.146) is a normalization constant. 
The integration of (2.146) is easily carried out with the residue theorem and 

Cauchy’s theorem. For the sake of simplicity, the real part of the Eq. (2.145) is  
rewritten to be, 

Ω= ω2 
0 - γ2 ð2:147Þ 

The integral of (2.146) has singular pointsω = ω1, ω2. In the Laplace transform 
defined in (2.140), it was required that the imaginary part of ω should be positive and 
large enough so that the integral of (2.140) does not diverge. Now, in the integral of 
(2.146), take the value of Im (ω) is sufficiently large negative value and extend 
the integral to a closed curve (red) like Fig. 2.12. Then, according to the Cauchy’s 
theorem, this line integral (2.140) is obtained by adding negative signs to the



residues from the two poles like in Fig. 2.12. It should be the direction of the 
clockwise. The first term on RHS of (2.146) is integrated. 
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Fig. 2.12 The integration loop in the complex space for the inverse-integration of Laplace 
transformation. In the case of inverse-Laplace integration, it is necessary to down the integration 
line to the negative infinite circle for convergence of the integration. Then, it is found that Cauchy’s 
theorem indicates that only the contribution by the pole remains in the loop integration. If there are 
roots with positive imaginary part like shown in the small box above, then the integration pass 
should be modified as shown in the small box. Then, we obtain exponentially growing solutions

-
1 
2π 

þ1

-1 
e- iωt 

ω-ω1ð Þ  ω-ω2ð Þ dω= -
ie- γt 

2Ω eiΩt - e- iΩt 

= 
e- γt 

Ω sin Ωtð Þ ð2:148Þ 

The second term is 

1 
2π 

þ1

-1 

iω- 2γð Þe- iωt 

ω-ω1ð Þ  ω-ω2ð Þ dω= 
e- γt 

2 
eiΩt þ e- iΩt þ iγe

- γt 

2Ω 

⨯ eiΩt - e- iΩt = e- γt cos Ωtð Þ þ  γ 
ω3 

sin Ωtð Þ ð2:149Þ 

Finally, the solutions are obtained by substituting (2.148) and (2.149) into (2.146) as  
follows. 

x  tð  Þ= e- γt sin ω3tð  Þ  
Ω _x 0ð  Þ þ  cos Ωtð  Þ þ  γ Ω sin Ωtð  Þ  x 0ð  Þ ð2:150Þ
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It is easy to confirm that the solution obtained in this way satisfies the initial 
condition. 

In the absence of the damping term (γ = 0) the solution is simplified from (2.150). 

x tð Þ= _x 0ð Þ  sin ω0tð Þ  
ω0 

þ x 0ð Þ cos ω0tð Þ ð2:151Þ 

The form of (2.151) is the general solution of the harmonic oscillator in the form. 

x tð Þ=Asin ω0tð Þ þ  Bcos ω0tð Þ ð2:152Þ 

The constants of A and B in (2.152) should be determined from initial conditions as 
(2.151). 

The case of (2.139) is easy to solve even as an initial value problem as seen above. 
However, if the equation becomes higher order, third or fourth order differential one, 
it is hard to solve as above. Then, if the Laplace transform is used, the differential 
equations become algebraic equations, eventually resulting in a problem of finding 
poles in the Laplace inverse transformation. This is easy and useful as a general 
theory. This advantage is very powerful. 

It is useful to know the case where the relation (2.144) has solutions with positive 
imaginary. Then, it is necessary to down the integration contour from above to below 
by avoiding the singular point as shown in the inlet at the top right in Fig. 2.12. In  
this case, the solution has a term exponentially growing in time. So, the change of the 
contour from the Laplace to inverse-Laplace transformation should be carried out by 
paying attention to the assumption for the convergence of the integral for t > 0. 

2.8.2 Solving with Fourier-Laplace Method 

Apply the Fourier decomposition to the equation for the electromagnetic waves in 
vacuum. The mathematics are the same for the sound waves, plasma waves and 
any other waves. Solve the initial value problem for the Fourier component of 
wavenumber k. The Laplace transform same as the harmonic oscillator is used for 
this Fourier mode. For simplicity, try to solve the one-dimensional problem of space 
with the x direction. The basic equation is 

∂2 

∂t2
- c2 

∂2 

∂x2 
E = 0 ð2:153Þ 

where c is the speed of light in vacuum. (2.153) is the same type of equation as (2.49) 
and expanded as,
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∂ 
∂t

- c 
∂ 
∂x 

∂ 
∂t 

þ c 
∂ 
∂x 

E = 0 ð2:154Þ 

It is clear (2.154) has the general solution. 

E t, xð Þ= f x- ctð Þ þ g x  þ ctð Þ ð2:155Þ 

where f and g are arbitrary functions. The first term of (2.155) is the wave propa-
gating to the right in the x axis, and the second term is the wave propagating to the 
left. Here, f and g are determined by the initial condition. Since (2.153) is a linear 
partial differential equation, the principle of superposition can be used. Then, the 
solution can be given in the form with the sum of the Fourier components. 

E t, xð Þ= 
k 
Ek tð Þeikx ð2:156Þ 

Inserting (2.156) into (2.153), the following ordinary differential equations are 
obtained for each Fourier component. 

d2 Ek 

dt2 
þ c2 k2 Ek = 0 ð2:157Þ 

Assuming γ = 0 in  (2.139) and ω2 
0 = c2k2 in (2.139), (2.157) is of the same form as 

the harmonic oscillator. Therefore, from (2.151) the solution to the initial value 
problem is obtained. 

Ek tð Þ= 
dEk 0ð Þ  

dt 
sin ω0tð Þ  

ω0 
þ Ek 0ð Þ cos ω0tð Þ ð2:158Þ 

The solution can be obtained with the Fourier decomposition of the initial condition. 
Inserting (2.158) to (2.156), the following form is obtained as the solution. 

E t, xð Þ= 
k 
Ake

- ik ct- xð Þ þ 
k 
Bke

ik ctþxð Þ ð2:159Þ 

where Ak and Bk are given by the Fourier transformation of the initial condition. 
It is useful to know that partial differential equations can be solved as ordinary 

differential equations in the case of linear perturbations. Furthermore, solving the 
initial value problem of the Eq. (2.154) is nothing without finding the poles in closed 
curve of the Cauchy integral in the two-dimensional complex space. The solution 
has the form proportional to exp.(-iωt), and its frequency and growth rate 
(or damping rate) are the real part and the imaginary part of the singular points, 
respectively. 

Therefore, the solution of the algebraic equation corresponding to the singular 
points can be symbolically expressed 

ω=ω kð  Þ ð2:160Þ
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The relation (2.160) is generally called a dispersion relation. For wavenumber k, 
the number of waves is equal to the number of singularities of the denominator of the 
Laplace inverse transformation. The number of singularities increases as the basic 
equations become more complicated. Electromagnetic waves are simple, second-
order equations, but there are numerous waves in the plasma. Therefore, rather than 
directly solving the differential equation, it is better to use the Fourier-Laplace 
transform to obtain the algebraic equation of dispersion relation, for example, the 
dispersion relation of electromagnetic wave in the vacuum is simple as 

ω2 = c2 k2 ð2:161Þ 

In the case that the dispersion relation is a real function and has roots of complex, 
there is always a solution of wave growing in time. In such a case, the wave is said to 
be unstable. To find the instabilities in plasma is very common subject even in laser-
produced plasmas as will be seen later. 

2.9 Magneto-Hydrodynamic Equation of Plasma 

An ion is much heavier than an electron. Therefore, the relatively slow change in the 
plasma dynamics is often determined by the inertial of the ions. In this case, electrons 
move in association with ions so as to avoid charge separation to form a strong 
electric field. However, since the high temperature plasma has a high electric 
conductivity, the electron flow keeps electric current even in weak electric field. 
Then, while maintaining charge neutrality, an electron current is generated, and it is 
better to regard that the ions move slowly with strong magnetic field due to the 
electron current. 

In such a case, there is no need to solve the above two fluid equations separately. 
In general, the behavior of plasma is approximated by Magneto-Hydro-Dynamics 
(MHD) equation derived below. For example, in magnetic confined plasmas, we 
first study the confinement condition of plasma with use of the MHD equation. This 
MHD equation was derived by H. Alfven, awarded the Nobel Prize in Physics in 
1970. His achievement is stated in the citation for this award, “fundamental research 
and discovery with magneto-hydrodynamics as meaningful application to various 
parts of plasma physics”. 

In recent years, observation technology has been advanced rapidly to provide 
details of the plasmas in the Universe. As the result, there is a movement to 
reconstruct astrophysics based on plasma physics, for example, the explosive phe-
nomenon in the Universe. In the laser-plasma, the generation of magnetic field or 
coupling of external magnetic field has become an important topic mainly relating to 
laboratory astrophysics, such as magnetic reconnection [8]. 

The MHD equation have been introduced as basic equation to describe space 
plasmas and magnetically confined plasma. The magnetic field is ubiquitous in the 
Universe. It is important to understand the approximation in obtaining MHD



ð

ð

equation and the property of the equation. The MHD equation is derived while 
explaining the derivation procedure and approximation. 
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Multiply (2.111) by me, multiply (2.113) by mi, take the sum of both, and divide 
it by (mi + me). In derivation, charge neutrality ne/Z = ni = n is assumed as 
explained above. Furthermore, the mass density and flow rate of the MHD fluid 
are introduced as 

ρ= mi þ með Þn, v= 
miui þ meue 
mi þ me 

ð2:162Þ 

Then, the mathematical process above gives 

ρ 
∂v 
∂t 

= -∇P þ j×B ð2:163Þ 

In obtaining (2.163), the convective term was neglected. MHD equation is applica-
ble only when the flow velocity is sufficiently slow 

v . ∇vj j< <  
∂v 
∂t

ð2:164Þ 

Next, the following equation is obtained by multiplying (2.112) by me, multiplying 
(2.114) by mi, taking a difference and approximating me < <  mi. 

∂j 
∂t 

= 
e2ρ 
mime 

Eþ v ×B-
νeime 

ne2 
j -

e 
me 

j×B-
e 
mi 

∇Pi þ e 
me 

∇Pe ð2:165Þ 

Since the phenomenon is slow because of the heavy ions, it is reasonable to neglect 
LHS of (2.165) in what follows. Because of large mass ratio the term of Pi on the 
right side can also be ignored relative to the term with Pe. Then, (2.165) reduces to a 
generalized Ohm’s law. 

E þ v×B= 
1 
σei 

j þ 1 
en 

j×B-∇Peð Þ 2:166Þ 

Here, σei is the electric conductivity. The resistivity is 1/σei and it stems from the 
Coulomb scattering of electrons by ions in plasma. 

The first term of the parenthesis in the second term on RHS of (2.166) is called the 
Hall effect. This means if there is current flow under an external magnetic field, a 
potential difference appears in the vertical direction. The second term of the bracket 
on RHS of (2.166) shows the effect of ambipolar electric field which can be 
generated by electrons with large mobility to escape by the pressure gradient of 
electrons. Without magnetic field and pressure gradient in (2.166), it reduces to the 
well-known Ohm’s law in the form. 

j= σ E þ v ×Bð Þ 2:167Þ
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2.9.1 Biermann Battery Effect 

Now, assume that (2.166) is an equation giving the electric field. It is necessary to 
formulate governing equations for the magnetic field and density for the completion 
of the coupled equations for MHD phenomena. It is clear that the equation for 
density is a continuity equation of (2.111) for the density (2.162). 

∂ρ 
∂t 

þ ∇ ρvð Þ= 0 ð2:168Þ 

The equation governing the magnetic field is obtained by taking the rotation of 
(2.166) and using Maxwell Eq. (2.117). 

∂B 
∂t 

=∇ × v×Bð Þ-∇ × 
1 

μ0σei 
∇ ×B -∇ × 

j×B 
en 

þ ∇ 

× 
1 
en

∇Pe ð2:169Þ 

This equation is the governing equation of the magnetic field and can be rewritten as 
a combination of three terms with B and one source term. 

∂B 
∂t 

=∇ × v×Bð Þ-∇ × 
1 

μ0σei 
∇ ×B -∇ × 

j×B 
en

-
1 
en

∇n×∇Te ð2:170Þ 

The last term in (2.170) plays a role of source and sink of magnetic field. This term is 
called Biermann battery effect [9]. 

In laser plasma experiment, Biermann battery effect is used to generate magnetic 
fields to study, for example, magnetic reconnection physics [10, 11]. When a single 
intense laser, shown with the yellow arrow, irradiates a foil as shown in Fig. 2.13a, 
the produced plasma expands to the laser direction. Since the thermal conduction by 
electron is dominant and the electrons spread almost uniformly in the hemi-sphere, 
while the ions expand dominantly in the normal direction. Then, ∇n × ∇ Te term in 
(2.170) is produced like a torus (doughnut) shape as shown by blue in Fig. 2.13a. 
The surrounding arrows show charge current vector by expanding electrons. 

With use of a short-pulse proton beam (E = 32.8 MeV) generated by an ultra-
short laser pulse, a snapshot of the proton beam bending image is obtained as shown 
in Fig. 2.13b, where the dark image shows the region that the proton beams are 
bended by the magnetic field. The maximum strength of magnetic field is reported 
about 2 MG [10]. Note that the spatial size of Fig. 2.13b is about 1 mm and the life 
time of magnetic field is of the order of ns. 

By use of such strong magnetic field, dynamics of magnetic reconnection has 
been studied. Two intense lasers are focused on an aluminum plate with separation 
distance of ~1 mm to produce the same two magnetic field structure. The bending of 
the proton particles is measured to evaluate the magnetic field profiles as shown in



Fig. 2.13c [11]. The lines are magnetic field line speculated with the proton image. 
Several snap shots are obtained to study the time evolution of topology of magnetic 
field. 
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Fig. 2.13 Magnetic field generation in laser produced plasmas via Biermann battery effect. 
(a) Schematic of generation mechanism of magnetic field. A laser irradiated as yellow arrow at 
the center. (b) Proton back-light image of laser-produced magnetic field. (c) Magnetic lines 
overlapped on the proton back-light image to study magnetic reconnection in irradiating two lasers 
from the same direction. Reprint with permission from Refs. [10, 11]. Copyright 1998 by American 
Institute of Physics 

2.9.2 Similarity of Vortex and Magnetic Fields 

Let us discuss about the similarity of (2.169) to the equation of the vortex in neutral 
fluid (2.102). Except for the Hall effects, it is clear that both are mathematically 
same. In other words, if any vortexes seen in neutral fluid are generated in plasma, 
the plasma has electric current along the vortex flow, (see Fig. 2.14). Any vortex in 
plasma accompanies electric current, a relative motion of the electrons with respect 
to the ions, consequently, the magnetic field is generated. The vortex is a very 
important concept such as turbulence and turbulent transport in neutral fluid. In



plasma, the transport of charged particles is strongly affected by magnetic field, as 
magnetic field turbulence is developed by vortexes. 
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Fig. 2.14 The relation of 
flow velocity and magnetic 
field induced by the vortex 
and electron current in 
two-dimensional space, 
respectively. In the neutral 
fluid, the vortex is generated 
by the baroclinic term. This 
means that if the fluid is 
conducting plasma, the 
generation of vorticity 
means the generation of 
magnetic field in plasma 

Since MHD phenomena are generally discussed after neglecting the Hall effect or 
Biermann battery effect, the equation for the magnetic field is solved including the 
first two terms of (2.169). If the electric conductivity is also constant, the equation of 
(2.169) reduces to 

∂B 
∂t 

=∇ × v×Bð  Þ þ  1 
σeiμ0 

∇2 B ð2:171Þ 

The first term on RHS is the convection term and the magnetic field winds around the 
plasma flow. The electric resistance of the plasma appears in the second term. In the 
case where the plasma resistivity cannot be neglected, the magnetic field diffuses in 
space, consequently, charged particles diffuse across the magnetic field. The diffu-
sion of the charged particles is equivalent to the magnetic field diffusion through the 
plasma. The diffusion term disappears if the plasma is a perfect conductor, namely 
collisionless plasma. 

In general, the diffusion term of magnetic field is regarded same as the Reynolds 
number (2.62) of the neutral fluid. The diffusion of magnetic field also plays a role in 
converting the magnetic field energy into the thermal energy of the plasma. There-
fore, the magnetic Reynolds number in the MHD can be defined as the dimen-
sionless quantity corresponding to the Reynolds number as follows. 

Rm = 
inertial termð Þ  

magnetic diffusionð Þ  = μ0σeiUL ð2:172Þ
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Here, U and L are a characteristic flow velocity and a size of plasma. For Rm > >  1 
the plasma can be described with the ideal MHD equation to be explained below. In 
many of laser plasmas in the laboratory, Rm is not so large. On the other hand, the 
plasmas in the Universe have very large L and/or very low density, therefore, in 
either case Rm →1 can be assumed. It is good enough to assume the ideal MHD for 
study of such plasmas. 

2.9.3 Ideal MHD Plasma 

When the diffusion coefficient of the magnetic field is dominated by the Coulomb 
scattering, the diffusion is not important relatively in the laboratory plasmas aiming 
for nuclear fusion at high temperature or in space plasmas with large scale. There-
fore, the ideal plasma approximation in which the magnetic Reynolds number Rm is 
a very large means that the diffusion term can be neglected. However, in a phenom-
enon that is governed by dissipation such as magnetic reconnection on the solar 
surface, it is difficult to explain the observed dynamics by the classical diffusion only 
due to the Coulomb scattering. In such a case, be aware that the resistivity due to 
magnetic turbulence induced by plasma wave instabilities becomes dominant. Such 
resistivity is called anomalous resistivity and will be discussed in Vol. 4. 

The basic equation for the magnetic field of the ideal MHD is (2.171) without 
resistivity. 

∂B 
∂t 

=∇ × v×Bð Þ ð2:173Þ 

Use the following mathematical relation to the convection term. 

∇ × v×Bð Þ= B . ∇ð Þv- v .∇B-B∇v ð2:174Þ 

where the relation ∇ . B = 0 has been used. From the equation of continuity (2.168), 

∇ . v= -
1 
ρ 
dρ 
dt

ð2:175Þ 

Inserting (2.174) to (2.173) and replacing the second term on RHS of (2.174) to LHS 
of (2.173), a new relation is obtained. 

dB 
dt 

= B . ∇ð Þvþ B 
ρ 

dρ 
dt

ð2:176Þ 

This can be rewritten to be 

d 
dt 

B 
ρ 

= 
B 
ρ 
.∇ v ð2:177Þ
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It is found from (2.177) that when the flow is perpendicular to the magnetic field, 
RHS of (2.177) disappears and the quantity B/ρ is preserved along the plasma flow. 

In addition, an equation of motion (2.163) is  

ρ 
dv 
dt 

= j×B-∇ Pe þ Pið Þ ð2:178Þ 

In (2.178), the first term on RHS is modified from Ampere’s eq. (2.118) b  
neglecting the displacement current. 

j×B= 
1 
μ0 

∇ ×Bð Þ×B= -∇ B2 

2μ0 
þ 1 
μ0 

B .∇ð ÞB ð2:179Þ 

This means that the force due to the magnetic field acts on the plasma as the 
magnetic pressure with the first term of RHS in (2.179) and the magnetic tension 
with the second term. 

Here, the ideal MHD equation is closed with the three equations; namely, the 
equation of continuity (2.168), the equation for motion (2.178), and the equation for 
magnetic field (2.177). It is also necessary to give EOS for the pressure in (2.178). 
From the equation of motion, the ratio between the pressure due to the particles and 
that due to the magnetic field is a dimensionless quantity called plasma β value and 
is defined as. 

β = 
plasma pressureð Þ  
magnetic pressureð Þ  = 

Pi þ Pe 
B2 

2μ0 

ð2:180Þ 

Magnetic field confinement fusion machine such as Tokamak has β value of 
1–2 percent. In order to extract energy by nuclear fusion and to put it into practical 
use, it is said that from the viewpoint of various losses, any fusion machine is 
necessary to have the β value more than 10%. Therefore, researches on spherical 
Tokamak with high β values are actively studied. Also, in the solar surface, the 
magnetic field is very strong, and plasma research focuses on physical phenomena in 
the so-called low beta (low-β) plasma. However, the laser produced plasma and the 
various plasmas in the Universe are in general high-beta (high-β) plasma. In high-β 
plasmas, the magnetic field influence on the charged particle transport becomes more 
important than the magnetic pressure. 

It is useful to see the pressure form acting on MHD explicitly. Using the 
following relation to (2.179), 

B . ∇ð ÞB=∇ B⊗ Bð Þ ð2:181Þ 
B⊗ B½  ]ij ≡ BiBj
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The conservation form of the momentum density is given from (2.178) in the form: 

∂ 
∂t 

ρvð Þ þ ∇ ρu⊗ uþ Τ$ 
= 0 ð2:182Þ 

Here, the tensor Τ
$ 
is given to be 

Τ
$ 

= Pþ B
2 

2μ0 
I 
$

-
1 
μ0 

B⊗ B ð2:183Þ 

where I 
$ 

is the unit tensor and P is the total pressure, P = Pi + Pe. The tensor of 
(2.183) is the total tensor pressure acting on the MHD fluid. 

It is useful to show explicitly the component of the tensor: 

Tik = Pþ B
2 

2μ0 
δik -

BiBk 

μ0 
ð2:184Þ 

In the local frame in which the direction of the magnetic field is in the z-direction, Τ
$ 

can be given in the form. 

Τ
$ 

= 

Pþ B
2 

2μ0 
0 0  

0 Pþ B
2 

2μ0 
0 

0 0 P-
B2 

2μ0 

ð2:185Þ 

As is clear from (2.185), the pressure by the magnetic field is in the perpendicular 
direction to the magnetic field vector. On the other hand, the tension works in the 
magnetic field direction as negative pressure. The magnetic field component in the z 
direction is physically. 

(z-component by B) 

= magnetic pressure : 
B2 

2μ0 
þ magnetic tension : -

B2 

μ0 
ð2:186Þ 

Finally, the energy conservation equation of the MHD fluid is in the form. 

∂ 
∂t 

U þ ∇S= 0 ð2:187Þ 

where the energy density U and the energy flux density S are
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U = 
1 
2 
ρv2 þ 1 

γ- 1 
Pþ B

2 

2μ0 
ð2:188Þ 

S= 
1 
2 
ρv2 þ γ 

γ- 1 
P v þ 1 

μ0 
B× v ×Bð Þ ð2:189Þ 

In deriving (2.188) and (2.189), the ideal EOS for both particles have been assumed 
in the forms in (2.31) and (2.32) with the same specific heat  γ, say γ = 5/3 for the 
fully ionized plasma. 

2.9.4 Magnetic Dynamo Effect 

Magnetic field grows even for the case without the source term like the Biermann 
battery effect in (2.170). Given fluid velocity field v(r) in (2.171), it has an eigen 
function B0(r) in the form: B(r, t) = B0(r) exp (γt), where γ is the eigen value 
representing the growth rate of the magnetic field. 

The principle of the growth of magnetic energy is explained intuitively like this. 
As explained in (2.186), the magnetic field has tension force and one need a work to 
stretch the magnetic field line in the direction of the magnetic vector. When the 
topology of flow field v(r) is complicated due to the convective motion in rotating 
plasma fluid system, for example, the conducting fluid inside the earth, plasma in the 
Sun, etc., the length of magnetic field line is possibly stretched by the convective 
motion, if the resistivity term in (2.171) is small enough, namely large Rm case. 

In the case when the plasma pressure is much larger than the magnetic pressure, it 
is a good approximation to solve Navier-Stokes Eq. (2.57) independently from 
(2.171). 

After solving NS equation and find almost stational convective motion, the eigen-
value problem with reasonable boundary condition is solve to obtain the form 
B0(r) exp (γt) for the linear stability analysis. Then, the nonlinear evolution can be 
studied by solving numerically (2.171). We may find the nonlinear saturation profile 
of the magnetic field, where magnetic field is always enhanced by the first term in 
(2.171) to balance the dissipation of the second term. This is the case of magnetic 
field of the earth and the Sun. 

In Fig. 2.15, the magnetic field near the surface of the Sun observed via radiation 
emission by electrons in their cyclotron motions is shown [12]. Such strong mag-
netic field is originally produced by the magnetic dynamo effect in the deep inside 
of the Sun. It is clear that since the magnetized region has lower density than 
non-magnetized neighbor plasma, the magnetic field rises by the buoyancy. 
Figure 2.15 is a snap shot of such magnetic field appeared on the surface and will 
disappear later via the magnetic reconnection.
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Fig. 2.15 The magnetic field near the surface of the Sun observed via radiation emission by 
electrons in cyclotron motions [12]. Credit: NASA NASA/TRACE 

2.9.5 Plasma Confinement by Magnetic Field 

Eq. (2.178) gives the condition of plasma confined in magnetic field. The basic 
equation to solve configurations of plasma and magnetic field in the state of force 
balance is given as, 

j×B=∇P, j= 
∇ ×B 
μ0 

, ∇∙B= 0 ð2:190Þ 

To find a configuration of magnetic confinement device for collisionless fusion 
plasma, this ideal MHD equation should be solved at first. It is clear from the 
divergence-free property of magnetic field (∇ ∙ B = 0) that the solution should 
have torus topology as shown in Fig. 2.16. as represented by Tokamak machine. 

One of mathematically simple solution in an ideal one-dimension is the pinch 
plasma. To generate strong x-ray flux like that by lasers, Z-pinch machine driven by 
pulse power has been used [13]. The Z-machine has a solution of (2.190) with 
assuming one-dimensional cylindrical symmetric geometry, where j in the 
z-direction and B in the azimuthal direction. Then, (2.178) reduces to the. 

dP rð Þ  
dr 

þ Bθ rð Þ  
μ0r 

d 
dr 

rBθ rð Þ½ ]= 0 ð2:191Þ 

Then, (2.191) can be rewritten to be the force balance relation, 

d 
dr 

P þ B
2 
0 

2μ0 
þ B

2 
0 

μ0r 
= 0 ð2:192Þ 

Equation (2.192) represents that the pressure force by plasma and magnetic field 
balances with the tension force of magnetic field in (2.184). Solving (2.191), the



normalized profile of the magnetic field Bθ(r) and pressure P(r) of the Z-pinch is 
shown in Fig. 2.17. The magnetic field is normalized by the value at the outer radius 
(ρ = 1) and the pressure is normalized by the magnetic pressure at ρ = 1. The size of 
the radius is arbitrary as shown with the normalized radius ρ. 
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Fig. 2.16 Optimum 
structure of MHD solution, 
torus 

Fig. 2.17 Normalized 
pressure and magnetic field 
profiles of ideal 
one-dimensional Z-pinch 
solution 

The wire-array Z-machine is used to study the possibility of MagLIF (magnetic 
laser inertial fusion) with combination of Z-pinch compression and laser heating 
[14]. Combining the magnetic field in the compression phase, the particle heat 
conduction can be reduced to relax the fuel ignition condition. It is well known, 
however, that the Z-pinch plasma confinement is unstable to perturbation from the 
cylindrical symmetry of the plasma and magnetic field, and MHD stability has to be 
studied.
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2.9.6 Resistive MHD in Strong Heat Flux 

In high-density plasmas produced by lasers or Z-pinch, the ideal MHD is not 
appropriate to describe the dynamics of magnetic field and fluid phenomena. In 
the case where strong heat flow in proportion to -∇T is important to the fluid 
dynamics, (2.179) is not an appropriate relation. This is because in deriving 
(2.179), we have assumed that the distribution function is Maxwellian with electron 
flow velocity ue defined in (2.116). 

In laser produced plasma, the heat flow carries the absorbed laser energy to the 
over-dense region, and the temperature is non-uniform in space. In such a case, the 
distribution function is not isotropic and it deforms in the direction of the heat flow. 
In general, it is enough to consider the heat flux by the electrons and the following 
discussion is done for the electron distribution function fe(v, x, t). 

As will be seen in Chap. 6, the heat flux formula like (2.109) is derived by starting 
with Boltzmann equation. We follow the formulation given in [15]. The Boltzmann 
equation with a simplified Krook collision operator is given in the form. 

∂f e 
∂t 

þ v . ∇f e -
e 
m 

E þ v×Bð Þ .  ∂f e 
∂v 

= - νei f e - f Mð Þ ð2:193Þ 

where fM is the local Maxwell distribution with ne and Te. Consider that (2.190) is in  
the local frame of the ion motion. The collision frequency νei due to Coulomb 
collision of electrons by ions is given in (2.3). 

Note that the collision frequency is a function of the electron velocity. In the 
standard way to solve (2.193) is the perturbation method, where the gradient length 
of Te is assumed much longer than the electron mean-free-path. Then, it is assumed 
that 

f e = f 0 þ f 1 . v v ð2:194Þ 

where f1 is a vector function and small enough compared to f0. Assuming f0 is 
Maxwellian fM and inserting (2.194) into (2.193), the equation to the perturbed 
distribution function is obtained. 

∂f 1 
∂t 

þ v . ∇f 0 -
e 
m 
E . ∂f 0 

∂v
-

e 
m 
B × f 1 = - νeif 1 ð2:195Þ 

In general, the perturbation of the distribution consists of the two terms due to the 
mean flow and the temperature gradient. When both are in the x-direction, the f1 has 
only x-component and it can be expressed in the form: 

f 1 = a1j þ a2qT ð2:196Þ
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where j is the electric current and qT is the heat flux by electrons. In (2.195), a1 and 
a2 are constants. When the heat flux is neglected and in addition the velocity 
dependence in νei of (2.3) is neglected in (2.195), (2.166) is obtained by taking the 
velocity moment of (2.195). 

However, when the heat flux term is included, the v3 moment of νei should be 
considered. Then, the generalized Ohm’s law is obtained after neglecting the time 
dependence in the form. 

Eþ v×B= 
j 
σ* þ 1 

ene 
j×B-∇Peð Þ- 1 

e
∇Te -

2 
5 
qe ×B 
Pe 

ð2:197Þ 

where σ* = 5/2σ with σ in (2.166). The factor 5/2 stems from the v3 dependence of 
the collision frequency νei. The last two terms on RHS in (2.197) appear due to the 
heat flux proportional to∇Te. Note that the heat flux qe in (2.197) is not equal to the 
qT in (2.192). Since the energy is also carried by the plasma flow and qe is purely 
heat flux remaining only for j = 0. It is shown in [15] 

qe ≈ qT -
5 
2 
Te 

e 
j= - κe∇Te ð2:198Þ 

In order to keep the fundamental structure of the Ohm’s law as (2.166), it is required 
to derive the structure of j/σ term. In the real case, the Coulomb collision frequency 
is proportional to v-3 and σ in (2.166) should be replaced with σ* = 5/2σ. With 
inclusion of v-dependence of the Coulomb collision frequency, the Hall term is 
found to have two terms. One is proportional to the current and the other is 
proportional to the heat flux. So, consistently, the Hall term is given as the total 
convection flow velocity as 

uB = -
j 

ene 
þ 2 
5 
qe 
Pe 

ð2:199Þ 

This term is called the Nernst effect. The importance of the Nernst effect in laser 
ablation plasma was pointed out in [15]. 

2.10 MHD Waves 

Consider linear perturbations of the ideal MHD equation. The underlying formula is 
the equation of motion for the velocity of the magnetized fluid (2.163) and the 
eq. (2.173) for the magnetic field. Suppose that a stationary plasma is confined by an 
external magnetic field B0. For example, consider the plasma trapped in the earth’s 
magnetic field. Before linearizing, the following operation is applied to (2.173).



g
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∇ × v×Bð Þ= B .∇ð Þv- v . ∇ð ÞB þ v ∇ . Bð Þ-B ∇ . vð Þ ð2:200Þ 

Since from the Maxwell equation∇ . B = 0, three terms remain in (2.200). Then, the 
basic equations are 

ρ 
d 
dt 
v= 

1 
μ0 

∇ ×Bð Þ×B ð2:201Þ 

∂ 
∂t 

B= B .∇ð  Þv- v .∇ð ÞB-B ∇ . vð Þ ð2:202Þ 

Assume the form of the linear perturbations of the magnetic field and velocity as 

B=B0 þ B1 ð2:203Þ 
v= v0 þ v1 ð2:204Þ 

Linearize Eqs. (2.201) and (2.202), and assume the plasma is at rest, namely v0 = 0. 
Consider that the perturbation is assumed to be incompressible ∇ . v = 0. Then, the 
basic equations for the linear components are 

ρ0 
∂ 
∂t 

v1 = 
1 
μ0 

∇ ×B1ð Þ×B0 þ ∇ ×B0ð Þ×B1f ð2:205Þ 

∂ 
∂t 

B1 = B0 . ∇ð Þv1 - v1 .∇ð ÞB0 ð2:206Þ 

Since the current producing the external magnetic field B0 is outside the plasma, the 
second term of the parenthesis in (2.205) does not exist in the plasma. 

Consider two cases separately, namely the wave propagates parallel or perpen-
dicular to the external magnetic field. Waves propagating to the parallel direction are 
called Alfven waves, and in the perpendicular case they are called magnetic sonic 
waves or compressible Alfven waves. 

2.10.1 Alfven Waves 

Let’s use the Fourier decomposition to the linear perturbations and find the disper-
sion relation of the wave with wave number k. First, the incompressibility is 
assumed for the case where the vibration is perpendicular to the magnetic field and 
the wave number k is in the direction of the magnetic field. The direction of 
the external magnetic field is the z-axis direction as shown in Fig. 2.18. First of 
all, in the simple case, assuming that the wave number is in the z direction (θ = 0) 
and the wave oscillation is in the x direction, both (2.205) and (2.206) remain only 
the x component as follows.
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Fig. 2.18 The definition of 
the coordinate to study the 
waves in the constant 
external magnetic field in 
the z-direction 

ρ0 
∂ 
∂t 

v1 = 
B0 

μ0 

∂ 
∂z 

B1 ð2:207Þ 

∂ 
∂t 

B1 =B0 
∂ 
∂z 

v1 ð2:208Þ 

By taking ∂/∂t for (2.207) and substituting (2.208) into (2.207), the following wave 
equation is obtained. 

∂2 

∂t2 
v1 -VA 

2 ∂ 
∂z 

v1 = 0 ð2:209Þ 

Here, VA is called the Alfven velocity. The Alfven velocity is defined as follows. 

VA = 
B2 
0 

μ0ρ0 
ð2:210Þ 

This velocity is the value obtained by dividing the tension of the magnetic field of 
(2.186) by the mass density. As in the image shown in Fig. 2.19, it is a wave caused 
by the ions wound around the magnetic field vibrating due to the tension of the 
magnetic field. It is the same as the acoustic of the strings of a guitar. The acoustic 
sound becomes higher when the string is strongly tensioned (strong magnetic field), 
the thicker the string (the higher the ion density), the lower the acoustic sound is. 

Since the propagation velocity of the Alfven wave is constant, the dispersion 
relation of the Alfven waves is 

ω2 =VA 
2 k2 ð2:211Þ
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Fig. 2.19 A schematic of 
the perturbed magnetic field 
and ions in cyclotron motion 
following the deformed 
magnetic field line 

It is important to note that if the plasma is low-β plasma confined by some external 
magnetic field, the Alfven speed is faster than the sound waves in (2.47) and ion 
acoustic waves (2.137). Therefore, energy spontaneously generated in the plasma is 
dominantly carried by the Alfven waves. 

It is informative to obtain (2.211) by the energy principle. Let us find the change 
of the magnetic energy due to the sinusoidal distortion of the magnetic field δWB and 
the kinetic energy for the ions around the magnetic field δWk over one wavelength 
λ = 2π/k. As displacing ξ(x, t) = ξ0(t) sin (kz) in the perpendicular direction of the 
background magnetic field, the following energies are defined. 

δWB = tensionð Þ× elongated length of the magnetic fieldð  
δWk = kinetic energy of oscillation:ð Þ  

Both are easily calculated to be the following forms per one wavelength 

δWB = 
B2 
0 

μ0 

λ 

0 
1þ ∂ξ 

∂z 

2 

dz- λ = 
λ 
4 

kξ0ð Þ2 B
2 
0 

μ0 
ð2:212Þ 

δWk = 
λ 

0 

1 
2 
ρ0 

dξ 
dt 

2 

dz= 
λ 
4 
ρ0 

dξ0 
dt 

2 

ð2:213Þ 

Here, Lagrangian is defined by considering ξ0 as the generalized coordinate. Then, 
by solving the Euler-Lagrange equation, a simple oscillator equation can be derived. 
The frequency is easily obtained 

ω2 = k2 VA 
2 ð2:214Þ
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2.10.2 Compressive Alfven Wave (Magneto Acoustic Waves) 

Consider longitudinal waves propagating perpendicularly to the magnetic field. In 
this case, of course, since it is compressible, the pressure term of the eq. (2.178) also 
remains as the effect of finite temperature. The external magnetic field is the z 
direction as shown in Fig. 2.18, the oscillation is the x direction, and the wave 
number k is also in the x direction (θ = π/2). Then, the compressibility comes out, so 
the basic equations are (2.168), (2.178), and (2.173). 

As a new perturbation, density perturbation arises from the compressibility. 

ρ= ρ0 þ ρ1 ð2:215Þ 

By inserting (2.215), (2.203), and (2.204) into the three basic equations and linear-
izing them, the following linearized equations are obtained. 

∂ 
∂t 

ρ1 þ ρ0 ∂ ∂x 
v1 = 0 ð2:216Þ 

ρ0 
∂ 
∂t 

v1 = -CS 
2 ∂ 
∂x 

ρ1 -
B0 

μ0 

∂ 
∂x 

B1 ð2:217Þ 

∂ 
∂t 

B1 = -B0 
∂ 
∂x 

v1 ð2:218Þ 

By taking the time differentiation of (2.217) and using (2.216) and (2.218), a partial 
differential equation of the second order is obtained. 

∂2 

∂t2 
v1 -VS 

2 ∂
2 

∂x2 
v1 -VA 

2 ∂
2 

∂x2 
v1 = 0 ð2:219Þ 

Here, Vs is the sound velocity defined in (2.47). The dispersion relationship is easily 
obtained from (2.219) as  

ω2 = k2 VA 
2 þ VS 

2 ð2:220Þ 

This is a wave called the magneto acoustic wave. When a compressional wave is 
generated in the direction perpendicular to the magnetic field, the density perturba-
tion is oscillated by not only the magnetic pressure but also the pressure of the 
plasma. This is the reason of the name, magneto acoustic waves. For the case without 
thermal pressure, this wave is called the compressional Alfven wave. 

The difference of the magnetic field displacement of the wave of (2.214) and that 
of (2.220) is clear. Although the Alfven waves are transverse wave and the displace-
ment of the magnetic field is perpendicular to the propagation direction of the wave, 
the compressive Alfven wave is the same as the ion acoustic wave and it is a



s

longitudinal wave. Since the magnetic pressure also contributes to the restoring 
force, the propagation velocity is faster than the ion acoustic waves. 
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2.10.3 Ion Acoustic Wave and Three Waves 

We investigated the longitudinal and transverse waves, but there is a wave which 
receives restoring force by the pressure propagating in the magnetic field direction. 
Since the motion is parallel to the magnetic field, the force due to the magnetic field 
can be neglected (same as in the case without the magnetic field). Neglecting the 
magnetic field in (2.71), the following wave equation is obtained. 

∂2 

∂t2 
v1 -VS 

2 ∂
2 

∂x2 
v1 = 0 ð2:221Þ 

This is the same as the acoustic wave given at (2.48). Note that inclusion of charge 
separation effect, the dispersion relation of the ion acoustic waves (2.135) i  
reproduced. 

Therefore, we had already three waves. The waves propagating along the 
magnetic field are the Alfven wave (transverse wave) and ion acoustic wave 
(longitudinal wave). The wave propagating perpendicular to the magnetic field is 
the magneto acoustic wave (longitudinal wave). 

Then, what kind of waves can propagate obliquely to the magnetic field? Does the 
ion acoustic wave change continuously to the magneto acoustic wave? Or may it be a 
mixed wave of longitudinal and transverse waves? 

The basic equations are (2.168), (2.173), and (2.178). Assume that the arbitrary 
perturbations are given in the linearized forms and the angle that the wave number 
k forms with the magnetic field is θ as shown in Fig. 2.20. The oscillation component 
in the y-direction is transverse wave and the dispersion relation is 

ω2 = k2 VA 
2 cos 2 θ ð2:222Þ 

This is an obliquely propagating Alfven wave. At the same time there are two waves 
oscillating in the (x, z) plane, and after a bit messy calculation the dispersion relation 
can be found in the form. 

ω4 - k2 VS 
2 þ VA 

2 ω2 þ k4 VS 
2 VA 

2 cos 2 θ= 0 ð2:223Þ 

This can be easily solved and the dispersion relation is obtained as follows 

ω2 

k2 
= 

VS 
2 þ VA 

2 

2 
± VS 

2 þ VA 
2 2 - 4VS 

2VA 
2 cos 2θ ð2:224Þ
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Fig. 2.20 The phase 
velocities of three waves 
induced by ion oscillations 
in an external magnetic 
field, called Friedrichs 
diagram. The “f” represents 
fast magneto-acoustic wave 
(fast wave), “a” Alfven 
wave, and “s” slow 
magneto-acoustic wave 
(slow wave) 

In the case where the magnetic pressure is higher than the plasma pressure (lowβ) 
such as the earth’s magnetosphere, the sun, and the magnetic confinement fusion 
device VA > VS (= CS in Fig. 2.20), the angular dependence of the phase velocity is 
shown in Fig. 2.20. As can be seen from (2.222) and (2.224), there are three waves at 
an arbitrary angle, two waves degenerate at θ = 0, and at θ = π/2 the waves are only 
the magneto acoustic waves. In Fig. 2.20, the “f” represents the fast magneto 
acoustic wave (fast mode), “a” the Alfven wave, and “s” the slow magnetic acoustic 
wave (slow mode). This diagram is refereed to Friedrichs diagram. 

2.10.4 Torsional Alfven Wave 

The circularly polarized Alfven waves couple with the angular momentum of 
plasma. This is important as a physical mechanism for releasing the angular momen-
tum of the accretion disk in baby stars or planets. Consider an accretion disk with 
magnetic field as shown in Fig. 2.21. The accretion disk is modeled with a pan cake 
structure where the plasma is differentially rotating. 

v= rΩ r, z, tð Þeϕ ð2:225Þ 

The magnetic field is assumed axially symmetric and is considered to be composed 
of two components: a poloidal component (z-direction) and a toroidal component 
(ϕ-direction). 

B=Bp r, z, tð Þ þ Bϕ r, z, tð Þeϕ ð2:226Þ 

The magnetic field is substituted into (2.202)  to  find the following relations.
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Fig. 2.21 A schematic 
image of cut-view of 
accretion disk and external 
magnetic field. The 
accretion disk is plasma and 
the strong interaction 
between the plasma and 
magnetic field is expected 

∂Bp 

∂t 
= 0 ð2:227Þ 

∂Bϕ 

∂t 
= rBp .∇Ω ð2:228Þ 

Here, on RHS of (2.228), only the first term on the right side of (2.202) remains, and 
the second two terms disappear.The condition to keep stationary rotation (2.228) 
required the relation. 

Bp . ∇Ω= 0 ð2:229Þ 

This is called Ferraro’s theorem for a homogeneous rotation. If the magnetic field 
rotates at different angular velocities in the z-direction, the magnetic field twists and 
the rotation energy of plasma, that is, the angular momentum of plasma is converted 
into the energy of the magnetic field. However, since there is tension in the magnetic 
field, it should attempt to extract its twist outside the disc and to become a uniform 
magnetic field in the z-direction. The twist of the magnetic field is due to the angular 
momentum of the plasma of the disk, and the tension of the magnetic field transports 
the angular momentum by the torsional Alfven wave (explained below) outside 
the disk. 

Furthermore, inserting (2.225) and (2.226) into the equation of motion (2.201) 
leads 

∇ ×Bð  Þ×B= B . ∇ð ÞB ð2:230Þ 

Then, (2.201) becomes the following equation
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ρr 
∂ 
∂t 

Ω= 
1 
μ0 

Bp 
∂ 
∂z 

Bϕ ð2:231Þ 

Here, the convection term of (2.201) automatically disappears as follows. 

v . ∇v= 0 ð2:232Þ 

Substituting (2.228) into (2.230) leads the following wave equation 

∂2 

∂t2 
Ω-VA,p 

2 ∂
2 

∂z2 
Ω= 0 ð2:233Þ 

Here, VA,p is the Alfven velocity due to the poloidal magnetic field. As can be seen 
from the derivation above, there is no linearization, therefore, the displacement in the 
z direction with respect to an arbitrary amplitude is transported outside the accretion 
disk at the Alfven velocity. As a result, the poloidal component of the magnetic field 
tries to keep the linear shape. (2.233) is the wave equation for the “torsional Alfven 
wave”. 

The accretion disk shown in Fig. 2.21 is formed by the plasmas falling to the 
gravitational center with rotating motion. The rotation motion is not of a constant 
angular momentum Ω in radial direction. Such differential rotation is known to 
induce the magneto-rotational instability (MRI) [16], and turbulent magnetic field 
is generated. The turbulent magnetic field enhances the transport of the matter falling 
to the central gravity, namely angular momentum of the matter transport. It is 
interesting to point out that a large-scale experiment plans to be carried out with a 
cylinder box filled with high-temperature liquid sodium (liquid metal) under differ-
ential rotation as shown in Fig. 2.22 [17]. Since the normal fluid in the differential 
rotating system, called Taylor-Couette flow, is unstable to fast rotating condition, 
the magnetic field is amplified by the dynamo effect as shown in Sect. 2.9. 

2.11 Electromagnetic Wave in Magnetic Field 

The hydrodynamic equations are the most useful ones to find the dynamical physics 
in many kinds of plasmas from the laboratory to the Universe. The physics of 
electromagnetic (EM) waves discussed here are usually used to measure, diagnose, 
or observe different kinds and different scales of plasmas. Of course, intense-lasers 
have been used to generate plasmas as shown in Volume 1. Strong microwaves are 
also used to heat magnetically confined plasma and processing plasmas [18]. In 
general, however, the electromagnetic waves due to electron current in plasmas are 
relatively high-frequency and the ions with larger mass cannot follow the electron 
motions. Since the most of fluid motions of plasmas are driven by the ion motions 
and the electromagnetic waves stemming from the electron motions do not couple 
with the fluid motions explained above.
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Fig. 2.22 A structure of 
sodium liquid experiment to 
study MRI by differential 
rotations. Reprint with 
permission from Ref. [17]. 
Copyright 1998 by 
American Physical Society 

However, EM waves propagates not only in plasmas but also in vacuum. There-
fore, EM waves are convenient waves for observing and investigating any plasmas. 
It is useful to know the fundamental property of the electromagnetic waves in 
plasmas. Some examples of applications for measurement and observation of 
plasmas are discussed here. 

2.11.1 EM Waves in Plasmas 

Electromagnetic waves are widely used for diagnostics of plasmas in the laboratory 
and observation of the Universe. In astronomy, the electromagnetic waves of wide 
range of wavelength have been observed to study energetic dynamics in the Uni-
verse. Since magnetic field is ubiquitous in Universe, it is also important to know the 
property of the electromagnetic waves in external magnetic field. 

Maxwell equations provides the propagation of the electromagnetic waves in 
plasmas with the following simple equation as shown in Chap. 2.2.1 in Volume 1. 

∂2 

∂t2
- c2∇2 E= -

1 
ε0 

∂ 
∂t 

j ð2:234Þ 

where E is the electric field of the electromagnetic waves and j is an plasma current 
induced by E. It was already shown in Volume 1 that the dispersion relation of the 
electromagnetic waves in plasma is given as 

ω2 =ω2 
pe þ c2 k2 ð2:235Þ 

where ωpe is the plasma frequency defined as
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ω2 
pe = 

e2ne 
ε0m

ð2:236Þ 

Here, ne is the electron density. Note that ω2 
pe / m- 1, the inverse of an electron 

mass. In Fig. 2.23 the dispersion relation is plotted with the solid line and with the 
dotted line of the light in vacuum. 

The dispersion relation (2.235) indicates that the density of plasma with a size L 
can be measured from the phase shift of laser beams after passing through the 
plasma. By use of holographic interferometry technique, the density profile of 
an exploding foil heated by the other intense laser irradiated from the left is observed 
as shown in Fig. 2.24 [19]. The black-and-white stripe pattern shows the phase 
change due to the different densities of the measured light propagating in the 
expanding plasma. 

The refraction index N is a function of density. 

N ≡ c 
ω 
k 
≤ 1 ð2:237Þ 

This is used to obtain shadow image of plasmas. It is clear that the sharp density 
change reflects laser light impinging with a shallow angle. This property can be used 
to measure the spatial density structure of plasma shock waves etc. In Fig. 2.25, 
double exposure shadow images of laser-produced blast waves and the turbulence 
behind are shown [20]. 

Fig. 2.23 Dispersion 
relation of electromagnetic 
field in plasma
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Fig. 2.24 A snapshot of 
holographic interferometry 
image of exploding foil. 
Reprint with permission 
from Ref. [19]. Copyright 
1998 by American Physical 
Society 

Fig. 2.25 Double exposure image of laser produced blast wave in nitrogen gas. Laser irradiates 
from left on aluminum target. Reprint from Ref. [20] with kind permission from Springer Science + 
Business Media. (Courtesy of B. Ripin.) 

The dispersion measure (DM) defined as follows is also used to speculate the 
distance of a radio pulse source from a far distant space at L. 

DM = 
L 

0 
nedx ð2:238Þ



For example, a radio pulse with high energy ux was observed near GHz radio wave
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Fig. 2.26 Fast radio burst (FRB) signal observed in 2016. Time evolution of frequency. Reprinted 
by permission from Macmillan Publisher Ltd: Ref. [22], copyright 1993 

fl 

at first in 2007. After this discovery of such a short radio pulse, the events are now 
called FRB (Fast Radio Burst) [21]. In Fig. 2.26, the signal of FRB 121102 
observed in 2016 is shown [22]. Time–frequency data extracted from phased VLA 
visibilities at the burst location shows the ν-2 dispersive sweep of the burst. The 
solid black lines illustrate the expected sweep for DM = 558 pc cm-3 . The 
de-dispersed light curve is projected to the upper panel. The colour scale indicates 
the flux density. 

The group velocity vg of the electromagnetic waves in plasma with electron 
density ne is 

vg = c 1-
ω2 
pe 

ω2 

1=2 

ð2:239Þ
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This relation explains the reason of the delay of low frequency part. The time-delay 
of low frequency to high frequency (ωL - ωH) is obtained approximately for 
low-density plasma as 

vg ≈ c 1-
1 
2 

e2 

ε0m 
ne 
ω2 ð2:240Þ 

Δt= 
L 

Δvg 
= 

1 
2 

e2 

ε0m 
1 
ω2 
L

-
1 
ω2 
H 

DM ð2:241Þ 

The pulse delay in Fig. 2.26 is used to evaluate the distance of the energy source of 
the burst, and it is found that DM is 558 cm-3 pc, which is about 12 times higher than 
the DM of the Milky Way galaxy. It is concluded that the energy source, which is not 
explained theoretically yet, is located at cosmological distance. 

2.11.2 Electromagnetic Waves from Magnetized Plasmas 

The dispersion relation is modified depending on how the induced current is related 
to the electric field of the electromagnetic waves. When the external magnetic field is 
applied or exists in plasmas, the electron motion is affected by the Lorentz force and 
the electric current is modified from the case without B-field given in (2.234). We 
have already studied the case of ion fluid motions driving MHD waves in external 
magnetic field in Sect. 2.10. It is in general the electromagnetic waves don’t affect 
the MHD dynamics. 

It is better to consider two idealistic cases; one is when the EM wave propagates 
along with the magnetic field (Fig. 2.27), and the other is when EM wave propagates 
perpendicular to the magnetic field. This knowledge can be applicable to the general

Fig. 2.27 Electric field of 
EM wave propagating to B0 

or – B0 direction



ð

case when EM wave propagates with an arbitrary angle to the magnetic field, 
although it is not discussed here.
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Let us derive the induced current beginning with equation of motion of an 
electron. 

m 
d 
dt 
v= - e E þ v×Bð Þ 2:242Þ 

Estimate the effect of magnetic field by assuming that the magnetic force is weak 
enough compared to the force by E. Then, the perturbation method gives a simple 
relation 

v×B 
E 

~ ωce 

ω 
, ωce = 

eB 
m

ð2:243Þ 

where ωce is the electron cyclotron frequency. Namely, low frequency mode is 
strongly modified with ω near or lower than ωce. We consider here the case where 
EM wave propagates along the magnetic field, then, it is required to obtain coupled 
equations for the EM electric fields in x- and y-directions as in Fig. 2.27. 

Here, we don’t derive the dispersion relation because it needs a long calculation, 
and the readers wishing to know are recommended to refer to, e.g. [23]. There 
dispersion relation is the fourth order to ω in the form. 

ω2 - c2 k2 - α 
2
- α2 

ω2 
ce 

ω2 = 0 ð2:244Þ 

α= 
ω2 
pe 

1-ω2 
ce=ω

2 ð2:245Þ 

The dispersion relation (2.244) gives two independent modes. They are circularly 
polarized EM waves. The electric field of EM waves rotates to the right and left 
directions of magnetic field vector. Assuming that the magnetic field is in the 
z-direction and the rotating electric field with (k, ω) in (x, y) plane, two dispersion 
relations are obtained. 

[R-wave] for the mode Ex + iEy: 

ω2 = c2 k2 þ ω2 
pe 

1-ωce=ω
ð2:246Þ 

[L-wave] for the mode Ex - iEy: 

ω2 = c2 k2 þ ω2 
pe 

1 þ ωce=ω
ð2:247Þ 

The real part of the electric field of the R-wave, Re(Ex + iEy), is given as
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E=A cos  kx-ωt þ φð Þix þ sin kx-ωt þ φð Þiy ð2:248Þ 

where ix and iy are the unit vectors in x- and y- directions, and A and φ are constants. 
It is clear that the L-wave has the negative sign for the second term (y-component) 

in (2.238). That is, the electric field vector of the R-wave rotates to the right, facing 
the z-direction, and the L-wave rotates to the left. 

Note that the difference is only the sign of the denominators. Intuitively, we can 
image from (2.235) and (2.246) that the effect of magnetic field is regarded to 
assuming that the effective mass of electrons is given as 

meff = 1∓ ωce 

ω 
m ð2:249Þ 

It is easy to know that the dispersion relation of the L-wave is given with that same as 
in Fig. 2.23 with the plasma frequency with the effective mass of “+” sign in (2.249). 
The cut-off density effectively decreases in the magnetic field. This means EM wave 
can propagates in the plasmas with less density than the nominal cut-off density, if 
there is a strong external magnetic field. 

On the other hand, the R-wave has higher cut-off density for ωce < ω, and a new 
mode appears for low frequency EM wave with ωce< ω as shown in Fig. 2.28 for the 
case of ωce/ωpe = 0.5. In the case of ω = ωce, what happens is the resonance of EM

Fig. 2.28 Dispersion 
relation of the R-wave for 
the case with ωce = 0.5ωpe. 
The dashed lines are 
asymptotic of ω = ωce and 
ω = ck



wave and electron cyclotron motion. Then, the detail analysis gives the absorption of 
EM wave energy by the electron motion and the electron orbits continuously 
becomes larger in time. This resonance is used to heat electrons confined in strong 
magnetic field.
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It is important to know that thanks to the electron cyclotron motion, the electric 
field of EM wave is maintained even in the density higher than the nominal cut-off 
density. The R-wave in the region ω < ωce is called “whistler wave”. 

For the density ne [cm
-3 ] and magnetic field B [Gauss] units, both frequencies 

are. 

ωpe = 5:6 × 104 ne 
p 

s- 1 

ωce = 1:8× 107 B s- 1 

2.11.3 Faraday Rotation 

It is well-known that when linearly polarized EM wave propagates along an external 
magnetic field, the polarization angle rotates because of the difference of dispersion 
relations of the R and L waves as shown in Fig. 2.29 [24]. Since the linearly 
polarized EM wave propagates as two circularly polarized waves of the R and L 
waves with different phase velocity, the combined EM with have a different angle of

Fig. 2.29 The principle of Faraday rotation of linearly polarized EM wave traveling along 
magnetic field. The rotation angle is proportional to the Faraday rotation measure. Reprinted with 
permission from Ref. [24]. Copyright 1998 by Oxford University Press



polarization, when it goes out from the magnetized plasma. This phenomenon is 
called Faraday rotation in magnetized plasma. This effect was discovered by 
M. Faraday in 1845 with light propagating through magnetized glass.
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The Faraday rotation has been used to measure the self-generated magnetic field 
in laser produced plasmas [25]. Irradiating a linearly polarized laser for diagnostic 
purpose like the case of Fig. 2.27, the shift of the polarization direction after the 
passage of magnetized plasma gives the information of the magnetic field in the 
plasma. The magnetic field is generated via Biermann battery effect in the laser-
plasma as shown in Sect. 2.9. It was found that magnetic field of Mega Gauss is 
produced. It is noted, however, that the plasma β-value in (2.180) is still higher than 
unity, roughly β~100. Since the laser plasma is small, but high-energy density, such 
strong magnetic field is produced during a short time of ns. 

In Fig. 2.26, the polarization of the observed radio wave changes as a function of 
frequency. This fact can be used to evaluate the average magnetic field strength in 
the long path from the source. The principle is simple. For a give frequency ω, the 
difference of wavenumber, Δk(Δk ≪ k), of (2.246) and (2.247) is calculated to be, 

Δk ≈ 
ω2 
pe 

ω2 
ωce 

c
ð2:250Þ 

Integrating Δk over the propagation length L, the phase shift ΔΦ is expressed in the 
form 

ΔΦ= 
L 

0 
Δkdx= 

e3 

ε0cm2ω2 

L 

0 
neBkdx ≡ RMλ2 rad½ ] ð2:251Þ 

where Bk is the parallel magnetic field and λ is the wavelength. RM in (2.251) is  
called the Faraday rotation measure. 

In the case where EM wave propagates perpendicular to external magnetic field, 
there are two modes depending on the polarization direction. For the case of E-field 
is parallel to the magnetic field, no magnetic effect appears because v × B = 0 in  
(2.242) and the dispersion relation is given by (2.235). This mode is called the 
ordinary wave. On the other hand, when the polarization is perpendicular to the 
B-field, v × B term modify the EM propagation, and Lorentz force induces the 
plasma motion in k direction to couple with the electrostatic modes. This mode is 
called the extraordinary wave. The detail analysis is given, for example, in [23]. 

2.11.4 EM Waves from Magnetized Plasmas 

A variety of EM waves from the radio waves to the γ-rays is generated by plasma 
electron motions in the Universe. Synchrotron emission of EM wave by highly 
relativistic electrons are strong EM sources. In Fig. 2.30, a schematic of the



mechanism of the emission is shown [26]. The radiation is emitted in the case where 
a charged particle is in accelerating motion as shown by Larmor. It is called the 
Larmor emission in non-relativistic electron case and the radiation is emitted 
dominantly in the direction perpendicular to the acceleration vector. In relativistic 
motion, it is called the synchrotron emission. The emission angle becomes narrow 
in proportion to 1/γ, where γ is the Lorentz factor of a rotating electron. This is called 
relativistic beaming as discussed in Chap. 5 in Vol. 1. So, the emitted synchrotron 
frequency is up-shifted as ω = ωceγ

2 . This means radio waves emitting from 
non-relativistic electrons becomes x-ray for highly relativistic electrons. 
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Fig. 2.30 Schematics of 
synchrotron radiation 
emission from a highly-
relativistic electron rotating 
in magnetic field. The 
radiation is linearly 
polarized and the observed 
frequency is up-shifted by 
relativistic effect. Reprinted 
with permission from 
Ref. [26]. Copyright 1998 
by Oxford University Press 

Supernova remnants (SNRs) are known to be a candidate where high-energy 
cosmic rays are generated by the shock waves (blast waves) produced by supernova 
explosion. Note that the detail physics of blast waves will be discussed in Chap. 4. 
The SNR of the supernova-1006 which exploded almost 1000 years ago is well 
studied with the radio to gamma-ray obserbation. The x-ray image shows a clear 
evidence of the particle acceleration in the vicinity of the blast wave front. With 
evaluated strength of magnetic field in μG range, it is speculated that highly 
relativistic electrons (up to 1015 eV) are emitting x-rays. 

Since the synchrotron radiation is linearly polarized, the direction of magnetic 
field is speculated by the polarization measurement of radio wave. Assuming the 
magnetic field is given externally, and the structure is globally uniform in the SNR. 
The degree of polarization P is  defined as 

P ≡ Ipol 
I

ð2:252Þ 

where Ipol is the intensity of polarized EM component and I is the total intensity. As 
seen in the distribution of the degree of polarization in Fig. 2.31, left-top and right-
bottom are highly polarized [27]. From the distribution of the local polarization 
directions observed, it is concluded that the SN1006 has a large-scale magnetic field 
along the line from left-top to right-bottom [27].
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Fig. 2.31 Observed image 
of the degree of polarization 
of radio emission from SNR 
1006 remnant. Reprinted 
with permission from 
Ref. [27]. Copyright by 
American Astronomical 
Society 

Appendix-A: Fluid Approximation of Plasma 

Basic equations to describe microscopic to macroscopic phenomena have been 
proposed in plasma physics so that they provide the essence of physics with the 
reduction of the degree of freedom. They leave only the degree of freedom as small 
as possible. Of course, it is better to solve the following Vlasov equations to ion and 
electron velocity distribution functions fα(v) (α: ion or electron) as will be discussed 
in Volume 4 to study higher-freedom phenomena of laser-plasma. 

∂f α 
∂t 

þ v ∙ ∂f α 
∂r 

þ q 
m 

E þ v×Bð Þ ∙ ∂f α 
∂v 

= 0 ð2.A-1Þ 

where q and m are charge and mass of ion or electron, respectively. 
Except for the case where the distribution functions are very far from shifted-

Maxwellian, the fluid approximation of plasma is often adopted instead of Vlasov 
equation because of less freedom in the basic equations. Such a fluid is called 
“electromagnetic fluid” or “magneto-hydrodynamic fluid”. As a matter of course, 
such modeling may cause loss of the physics that should originally appear. This 
point which cannot be derived by fluid model will be explained in relation to the 
Landau damping later. 

In the case of neutral fluids, the mean free path is sufficiently shorter than the 
change length of the physical quantities and collision time is much shorter than the 
time scale of fluid changes. This means the distribution function in Boltzmann 
equation is well described with a local Maxwell distribution. Then, the collision 
term to appear in (2.A-1) in Boltzmann equation should also disappear mathemat-
ically. In such frequently colliding particle system like molecular gas, the velocity 
dependence of the distribution function is given with local Maxwell distribution and 
as seen below the fluid model is very reliable. 

The same fluid model is used to describe plasmas regardless of collision dominant 
or not. Within the assumption of local Maxwellian, the velocity moment equations of



Vlasov equation give the fluid equations as show below. The fluid variables are 
defined by the velocity moments. 
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Density : n t, rð Þ= 
1

-1 
fdv ð2.A-2Þ 

Flow rate : u t, rð Þ= 
1 
n 

1

-1 
vfdv ð2.A-3Þ 

Temperature : T t, rð Þ= 
2 
3 
1 
n 

1

-1 
1 
2 
m v- uð Þ2 fdv ð2.A-4Þ 

Heat flux : q t, rð Þ= 
1

-1 
1 
2 
m v- uð Þ2 v- uð Þfdv ð2.A-5Þ 

Here, we assumed charged particles have no internal degrees of freedom and the 
specific heat ratio Cp/Cv = γ = 5/3 for simplicity. We defined the third moment of 
velocity in (2.A-5). In the case of the Maxwell distribution, the velocity distribution 
function is shifted by the mean flow velocity u and spreads with the width T of the 
temperature. 

It is clear that (2.A-4) corresponds to the fact that the average kinetic energy per 
particle is 3/2 T. Maxwell distribution function is isotropic around v = u, and the 
heat flux q = 0. This means if we can derive such moment equations for the 
unknown variables n, u, T, it is closed coupled equations and be principally possible 
to be solved. These equations are the basic equations for fluids. 

There is no guarantee, however, that the plasma is collisionless and the velocity 
distribution function is close to the Maxwell distribution. The plasma distribution 
function may be determined by its production process, interaction with the confining 
wall, and so on. However, it is empirically proofed that in many cases the distribu-
tion can be approximated with the shifted Maxwell distribution. Although there is no 
theoretical validity to approximate plasmas as fluids, the fluid model is widely used 
instead of Vlasov kinetic model for more simplicity in mathematical treatment. If the 
deviation from Maxwellian is small enough, the heat flux q, viscosity etc. can be 
approximated proportional to the gradients of fluid quantities. The electron heat flux 
given in (2.A-5) will be derived later in Chap. 6. 

Let’s derive mathematically the equation of continuity and the equation of motion 
by taking the velocity moments of the Vlasov equation. First, the zeroth order 
moment is obtained by integrating (2.A-1) directly by v. The integral of the first 
term and the second term of Vlasov equation are simple. Although it seems that the 
integral value remains in the third term because of the force of v × B, the actual 
integration disappears because vi is not included in the i-component of v × B in 
actual calculation. Therefore, it reduces to 

∂n 
∂t 

þ ∇ nuð  Þ  = 0 ð2.A-6Þ



ð
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Next, integrate by multiplying (2.A-1) by the vector v. Calculate the i (= x, y, or z) 
component. The first term is simple. The following v’ which is the velocity spread 
from the mean velocity u is defined for integrating the second term as (2.A-4). 

v= u þ v’ ð2.A-7Þ 

The product with v is the vector and its i component of the second term of (2.A-1) is  

∂ 
∂xj 

vivjfdv = 
∂ 
∂xj 

nuiuj þ ∂ 
∂xj 

vi
0vj0fdv ð2.A-8Þ 

Note that when a subscript that indicates a coordinate appears twice, such as j, it 
means to take the sum of the three components x, y, and z with respect to j. Such 
notation is called Einstein notation. The pressure is generated on the second term on 
the RHS of (2.A-8). Since the Maxwell distribution is isotropic in the velocity space 
around the mean velocity u, the second term in (2.A-8) reduces to 

vi
0vj0fdv= nTδij ð2.A-9Þ 

Here, δij is the Kronecker delta, δij = 1 for i = j, and δij = 0 for otherwise. When the 
distribution function is isotropic, the pressure is a scalar. In general, the pressure is 
tensor unless the distribution function is isotropic. 

The calculation of the force term of Vlasov equation is not so simple. Calculate 
the x component and calculate the y and z components in the same way. Multiply the 
third term of Vlasov equation by vx and integrating it in vx, vy, and vz space, the 
following is obtained. 

dvxdvydvzvx 
Fj 

m 
∂f 
∂vj 

= 
Fx 

m 
dvydvz vx 

∂f 
∂vx 

dvx ð2.A-10Þ 

Here, we can put Fx out of the integral over vx in (2.A-10). This is possible because 
Lorentz force of F = q (E + v × B), E does not depend on vx and the x component of 
v × B does not depend on vx. Carrying out the same mathematics for y and z 
components, it is clear the same logics works. The integral with respect to vx in 
(2.A-10) is executed by using partial integral. With integration over vy and vz. Then, 
the x component of the velocity moments of the third term of Vlasov Eq. (2.A-1) is  
obtained. By performing the same calculation for vy and vz as well, we obtain all 
three components. 

From the above mathematics, the flowing equation of motion is obtained. 

m 
∂ 
∂t

þ u . ∇ u= -
1 
n
∇Pþ q Eþ u×Bð Þ 2.A-11Þ 

Here, P is pressure, P = nT.



96 2 Basic Properties of Plasma in Fluid Model

The second moment of velocity gives an equation for temperature T, but let’s 
omit the derivation in the text. In the phenomenon that thermal conduction is 
important and it can be assumed that the temperature T is a constant, the fluid 
equation is closed only by (2.A-6) and (2.A-11). 

The fluid approximation of plasma is the same as neutral fluid equations except 
for the force by the electromagnetic field Therefore, knowledge of fluid dynamics is 
fundamental for studying various phenomena of plasmas. In some cases, the plasma 
may be regarded as a neutral fluid and analysis becomes simpler. 

Since the same procedure from Vlasov equation to fluid model is applicable to 
electron and ion distribution functions. Through such procedure, the basic equations 
for two fluid model can be obtained following the mathematics shown above. 

Finally, it is noted that 

1. Plasma phenomena of electron and ion particles can be well studied with two fluid 
model for electrons and ions by coupling with Maxwell equations. This is correct 
only when each particle is in thermodynamic equilibrium with Maxwell velocity 
distribution function. 

2. The fluid model cannot provide the phenomenon of Landau damping. In Landau 
damping, only a small number of particles satisfying the resonant condition 
interact with electrostatic or electromagnetic waves. This is important physics 
appearing in plasmas. In addition, if the velocity distribution function is very far 
from a shifted-Maxwellian distribution in collisionless condition, a variety of new 
phenomena unpredicted with the fluid model appear in plasma as will be shown in 
Volume 4. 
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Chapter 3 
Shock Waves and Ablation Dynamics 

Abstract When an intense laser is irradiated on a solid target, the laser energy is 
absorbed on the surface so that the material becomes plasma to expand into the 
vacuum region. Through the laser-plasma interaction, the laser energy heats the 
expanding region spreading by its sound velocity. As the result the expanding region 
has the temperature ~ 1 keV and the pressure reaches 100 Mbar (10TPa). Since the 
laser is absorbed near relatively high density (~cut-off density), the plasma can be 
assumed to be in LTE and hydrodynamic description is acceptable. 

The surface pressure called ablation pressure drives strong shock waves in the 
solid material as if the solid is almost gas. The shock wave physics is briefly 
reviewed to use the Rankin-Hugoniot (RH) relation, although detail studied is 
needed for the equation of state of the compressed matter. By use of the ablation 
pressure, it is possible to accelerate a thin material to higher velocity like a rocket 
propulsion. 

One dimensional hydrodynamics is reviewed for steady state and time dependent 
dynamics within the ideal fluid assumption. Deflagration and detonation waves are 
also explained as jump condition with energy deposition. The laser implosion 
dynamics is compered between stationary solutions, computational results, and the 
experimental data. The importance of validation of simulation codes is discussed. 

3.1 Introduction 

Intense lasers have been used to generate high pressure (~ 10–100 Mbar) and high 
material ablation velocity (~ 100–10,000 km/s) from solid target surface. With such 
parameters, even any solid materials are easily compressed by a shock wave 
generated on the surface by abrupt energy deposition and/or heating by laser energy 
absorption as seen in Volume 1. The Coulomb mean free path of hydrogen plasma is 
about 1 μm for 1 keV at the cut-off density of laser with its wavelength 0.35 μm, 
which is the third harmonics of glass laser and widely used to study energetic 
phenomena driven by intense lasers. 
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Therefore, it is acceptable to model the dynamical phenomena driven by laser 
heating with hydrodynamic model explained in Chap. 2. For detail or precise study 
of the plasma, atomic process explained in this book becomes important, while the 
theoretical study is in general carried out with help of computer simulations. Study 
here the basic principle of laser-driven plasmas, which can be studied without details 
of transport physics given later in this book. 

In the present chapter, let us study a variety of analytical solutions of hydrody-
namic phenomena generated in laser-produced plasmas. Here, we assume the laser 
produced plasma is governed by the classical one-fluid and one-temperature equa-
tions given in. In some case, we decouple the energy equation by assuming a 
constant temperature, adiabatic, given pressure, and so on. In some case, the heat 
conduction in the energy equation plays important role. 

It is usually in these days that one can easily run an integrated hydrodynamic 
simulation code for laser plasma to compare the result to corresponding experimen-
tal result and others. In analyzing the experimental data directly or with help of such 
simulations, it is difficult to understand the plasma physically without the knowledge 
of plasma hydrodynamics. At first, one has to have enough knowledge about 
one-dimensional hydrodynamics of compressible fluid plasma. As good text 
books, the author recommend Refs [1, 2] for further study of the physics of 
compressible fluid dynamics. 

Relating to the laser-plasma hydrodynamic phenomena, we can enumerate sev-
eral analytical solutions found in a long history of hydrodynamics. In addition, we 
have to know some special solutions found in the history of laser plasma study. All 
of the solutions to be explained here are idealized one-dimensional solutions by 
assuming jump condition, stationary state, and self-similarity. The basic fluid equa-
tions are partial differential ones, but algebraic relations are obtained in the jump 
case such as a shock jump. In the stationary or self-similarity case, one can reduces 
the fluid equations to ordinary differential equations. Then, it is possible to solve 
analytically or numerically under one-dimensionally symmetric space. By combin-
ing these solutions, we can imagine the physics happening in the experiment or 
multi-dimensional simulation code. This is the reason why we have to study 
one-dimensional hydrodynamics of compressible fluid at first. 

As we see here, a jump condition of fluid provides the relation between upstream 
and down-stream in a shock wave. If the energy is generated at the jump surface by a 
chemical reaction, the shock wave may change to a detonation wave, and the 
rarefactive jump is also physically possible foe entropy increase by chemical reac-
tion . This is called deflagration wave (flame of candle, for example). The deflagra-
tion by laser heating maintains the ablated plasma expansion to the vacuum. The 
laser energy is absorbed at relatively lower density than the solid, and the electron 
and/or radiation energy transfer keep the solid surface ablation as schematically 
shown in Fig. 3.1. 

Then, the pressure of the ablation, ablation pressure, is extremely high to keep the 
shock wave propagating in the solid or keep accelerating the finite thickness target. 
This is called “ablative acceleration”. The shocked material is accelerated by rocket 
propulsion mechanism toward target center for a spherical fusion capsule. We can



find a stationary solution of ablation structure to know its profiles as see later. This 
can be used to study the detail of the stability as will be shown in Vol. 3. 
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Fig. 3.1 Schematics of time 
evolution of solid matter 
density and temperature. (a) 
before laser irradiation. (b) 
the laser energy is absorbed 
on the solid surface. The 
heat wave penetrates into the 
solid surface without 
hydrodynamic motion. (c) 
Rapid increase of the 
pressure in the surface area 
drives a shock wave going 
inside and expanding wave 
to the vacuum region 

Finally, one-dimensional compressible hydrodynamics is also studied to know 
the Laval nozzle. The principle of jet engine is mentioned to relate the physics of 
ablation acceleration of nuclear fusion targets by intense laser irradiation. 

3.2 Nonlinear Waves and Shock Waves 

In Chap. 2, the linear analysis of the sound wave has been discussed. How the 
physics will change if the amplitude of the sound wave is high and nonlinear term 
cannot be neglected. Let’s consider a wave propagating to the right that satisfies the 
first term of (2.49) for simplicity. Such a wave propagating in only one direction is 
called a simple wave. Keeping the nonlinear convection term in (2.46) as  in (2.24) 
and deriving a simple wave relation for velocity perturbation u1, the following is 
obtained. 

∂ 
∂t 

u1 þ Vs þ u1ð Þ  ∂ 
∂x 

u1 = 0 ð3:1Þ 

A nonlinear term by the convection 

u1 
∂u1 
∂x 

is added to the sound wave propagation equation. Consider to solve (3.1) under the 
initial condition at t = 0. Assume the initial wave velocity profile u1 is as shown at 
the left edge in Fig. 3.2. The large part of u1 propagates faster than the other part, and 
soon after the wave front becomes sharp to overlap at one point as shown with the



wave form at the center in Fig. 3.2, Mathematically, the wave solution becomes a 
multivalued function as shown on the right. Such multivalued functions are not 
allowed physically. Actually, (2.46) inherently ignores the physics that becomes 
important when the velocity profile becomes sharp. It is the viscosity due to collision 
between micro particles in the fluid and Coulomb collisions in plasmas. 

102 3 Shock Waves and Ablation Dynamics

Fig. 3.2 Mathematical solution of nonlinear sinusoidal wave with viscosity 

With the effect of viscosity, (2.46) becomes the Navier-Stokes equation (2.55). 
Therefore, it is physically reasonable to add the viscosity term to (3.1). Then, the 
equation will be given. In the frame moving with the sound velocity, x= Vst is easily 
derived as 

∂ 
∂t 

u1 þ u1 ∂ ∂x 
u1 = μ 

∂2 

∂x2 
u1 ð3:2Þ 

This equation is called the Burgers equation. It is known that (3.2) has a shock 
wave solution in stationary sate. Note that the shock wave travels with additional 
velocity depending on the strength of the shock. 

The shock front has a narrow region where the flow velocity changes due to the 
balance between fluid nonlinearity and viscosity. When the wave front becomes 
steep with nonlinearity, the viscosity term adjusts the gradient. This can be seen from 
the fact that RHS of (3.2) is in the form of diffusion. In microscopic view, when the 
flow velocity becomes steeps, it shows that the kinetic energy of the flow velocity is 
converted to the thermal energy by the collision between the molecules. Therefore, 
the entropy increases at the wave front from the upstream and down-stream. This is 
called shock wave heating. 

Although the Burgers equation is a nonlinear partial differential equation, it can 
be transformed to a linear equation by Cole-Hopf transformation. For this purpose, 
introduce new variable ϕ 

u1 = - 2μ 
1 
ϕ 

∂ϕ 
∂x

ð3:3Þ 

Inserting (3.3) into (3.2), the following new equation to ϕ is obtained. 

∂ 
∂x 

1 
ϕ 

∂ϕ 
∂t 

= μ 
∂ 
∂x 

1 
ϕ 

∂2 ϕ 
∂x2

ð3:4Þ
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Integrating (3.4) with x, a linear equation to the new variable ϕ is obtained 

∂ϕ 
∂t 

= μ 
∂2 ϕ 
∂x2 

þ f tð Þϕ ð3:5Þ 

Here, f(t) is an arbitrary function of time, and it is possible to set f(t) = 0. Then, the 
Eq. (3.5) becomes the following diffusion equation. 

∂ϕ 
∂t 

= μ 
∂2 ϕ 
∂x2

ð3:6Þ 

Since the RHS in (3.2) is small at the beginning (the initial condition in Fig. 3.2), the 
two terms on the LHS in (3.2) balance. As the slope of the wave front increases, the 
first term on LHS and RHS become balanced in (3.2). Since this is a diffusion 
equation, the amplitude of ϕ finally becomes small and it becomes flat and finishes 
Note that if the initial condistion is not sinusoidal but like u1(0,x) =-tanh(x/L) with 
a large value of L, one can see the time evolution of u1(t,x) to form a stationally 
shock wave, where the thickness of the shock front is deteremined as stationary 
solution of (3.2). 

3.3 Shock Wave Jump Relation 

In order to obtain more realistic relation to the shock waves it is required to solve the 
fluid equations in (20, 21, and 22) consistently. If there are no external force and 
no external energy source, it is possible to obtain the jump relation between the 
upstream and down-stream of the shock wave front. It is required to solve the fluid 
equation in the frame moving with the shock front. In this frame, the stationary state 
of a shock propagation can be assumed. To solve the jump relation or continuity 
relation in the shock frame is found to be mathematical relation between the given 
upstream condition and the solved downstream condition for a given strength of the 
shock wave. Such algebraic equations giving the jump relation is called Ranking-
Hugoniot relation. 

In many cases, it is possible to neglect the structure of the shock front being 
of order of mean-free-path. However, its structure becomes important in high-
temperature plasma, since the Coulomb mean free path is proportional to the square 
of the temperature. In the plasma described with two-temperature model as shown in 
Chap. 2, it is known that the electron heat conduction and temperature relaxation 
make the shock structure about one hundred times wider than the length of Coulomb 
collision mean free path [1, 3]. When the length of such structure becomes the size of 
the fluid system, we have to consider the kinetic effect and solve Fokker-Planck 
equation to the plasma shock structure. It is also shown that the concentration of 
multi-species ion plasma is modified by the force of electric field produced by the 
abrupt change of pressure.
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3.3.1 Rnaking-Hugoniot Relation 

The Burgers Eq. (3.2) giving the solution of the shock wave is an equation special-
ized for a simple wave. Let’s find the relation of the shock wave exactly from the 
neutral fluid equations. Ignoring the wave front of the shock wave, that is, the region 
where the nonlinearity and the viscosity are balanced (narrow range of about the 
mean free path), the basic equations for the one-dimensional plane flow are derived 
from (2.23), (2.24), and (2.25) by neglecting external force and heating. The 
viscosity and conductivity are also neglected, since the physical quantities are 
constant in both sides of the shock front. These three equations can be rewritten as 
conservative equations as follows. 

∂ 
∂t 

ρ þ ∂ 
∂x 

ρuð  Þ= 0 ð3:7Þ 

∂ 
∂t 

ρuð  Þ þ  ∂ 
∂x 

ρu2 þ P = 0 ð3:8Þ 

∂ 
∂t 

εþ 1 
2 
ρu2 þ ∂ 

∂x 
ε þ P þ 1 

2 
ρu2 u = 0 ð3:9Þ 

Equation (3.8) is obtained by multiplying (3.7) by u and adding it to (2.24). Equation 
(3.9) can be derived by multiplying (3.7) by 1/2u2 , adding it to (3.8) multiplied by u, 
and adding it to (2.25). 

Let’s consider a shock wave propagating to the left according to the custom. The 
Eqs. (3.7, 3.8, and 3.9) remain the same even in the system moving with the shock 
wave front, but the flow velocity becomes the velocity seen in the moving frame. 
Assume that the fluid is stationary and no time variation. In Fig. 3.3, the flow, and the 
change of variables across the shock front are schematically shown. The flowing 
fluid passes through the shock front and the deceleration of flow by the pressure 
accompanies the compression of flow. Since the viscosity and conduction are given 
by the spatial differentiation of the physical quantity, the spatially integrated relation 
of (3.7, 3.8, and 3.9) is sufficient for the jump relation of the shock wave. 

Fig. 3.3 Physical quantities in the upstream and downstream of a shock front
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Ignore the time derivative and require the conservation from the upstream 
(subscript 0 to the physical quantities) to the downstream (subscript 1 to the physical 
quantities). Spatial integration of (3.7, 3.8, and 3.9) gives the following relations. 

ρ0u0 = ρ1u1 ð3:10Þ 
ρ0u

2 
0 P0 = ρ1u

2 
1 P1 3:11 

ε0 þ P0 þ 1 
2 
ρ0u

2 
0 u0 = ε1 þ P1 þ 1 

2 
ρ1u

2 
1 u1 ð3:12Þ 

These relations should be transformed into more easily understandable relations. It is 
natural to assume that the density ρ0 and pressure P0 of the front of the shock wave 
are given. Then, let the physical quantity that determines the strength of the shock 
wave be the pressure P1 in the shocked region. As the equation of state, the ideal 
gas of (2.31) and (2.32) is assumed. Then, since (3.10, 3.11, and 3.12) has three 
unknowns and three relations, it can be solved. The relation of the pressure P1 on the 
shocked region and the reciprocal (referred to as specific volume) of the density of 
the shocked region V1 = 1/ρ1 can be derived as follows. 

P1 

P0 
= 

γ þ 1ð ÞV0 - γ- 1ð ÞV1 

γ þ 1ð ÞV1 - γ- 1ð ÞV0 
ð3:13Þ 

This relation is referred to as Rankin-Hugoniot (RH) relation. The curve given by 
(3.13) is also called Hugoniot curve or shock wave curve. This relation is shown 
with the line “RH” in Fig. 3.4. for the case with γ = 5/3. The line with “P” is the 
adiabatic curve (also referred as Poisson curve) and shows the relation (P / V-γ )

Fig. 3.4 The Ranking-
Hugoniot (RH) relation for a 
shock wave and Poisson 
relation (P) giving the 
adiabatic change



ð

ð Þ þ þð Þ½ ]

for constant entropy. It is noted that the RH relation is along with the adiabatic curve 
for a weak shock and the entropy increases clearly near ρ1~2ρ0. This indicates that it 
is possible to compress fluid almost adiabatically by designing the compression with 
a series of shock wave production. This is called adiabatic compression by pressure 
tailoring.
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First, let’s explain the characteristics of the shock wave curve. At the limit of 
P1 → 1, there is the limited value for V1, and its value can be obtained from 
eq. (3.13) as follows. 

V1 = 
γ- 1 
γ þ 1 V0, ρ1 = 

γ þ 1 
γ- 1 

ρ0 ð3:14Þ 

In the case that the degree of freedom of the gas heated by the shock wave is N, from 
(2.33) the maximum compression rate is 

ρ1 
ρ0 max 

=N þ 1 ð3:15Þ 

For gases of monoatomic molecules moving three-dimensionally, the compression 
ratio is four times. The reason why the compression ratio increases as the degree of 
freedom increases is as follows. The shock wave is heated by converting kinetic 
energy to the internal energy. 

How is the increase of the internal energy due to such energy conversion? For 
example, in diatomic molecule gas such as N2 and O2, the degree of freedom has 
three dimensions of translational motion and two dimensions of vibration and 
rotation of molecules, totaling 5 degrees of freedom. The five degree obtains energy, 
while only three degree of the translational motion contributes to the pressure. 
Therefore, even at the same speed, the temperature rise in the shocked region is 
only 3/5 times of the monoatomic molecule case. Since the pressure on the right side 
must support the ram pressure on the left side in (3.11), the density of the diatomic 
gas has to increase to maintain the pressure balance. This is also true when the 
ionization or phase transition happens at the shock front, the density jump depends 
on the details of equation of state. 

The relation of the flow velocities is obtained from (3.10, 3.11, and 3.12) in the 
form. 

u0 
2 = 

V0 

2 
γ- 1ð ÞP0 þ γ þ 1ð ÞP1½ ] 3:16Þ 

u1 
2 = 

V0 

2 
γ þ 1ð ÞP0 þ γ- 1ð ÞP1½ ]2 
γ- 1 P0 γ 1 P1 

ð3:17Þ 

As clear from Fig. 3.4, the shock wave curve is above the adiabatic curve for 
V1 < V0, indicating that the entropy increases through the shock wave surface. 
Although V1 > V0 is mathematically possible, it is not physically permitted in the



normal ideal gas. This is because the entropy decreases across the discontinuous 
surface without any energy leakage from the shock front. 
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The dimensionless number characterizing the strength of the shock wave is 
the Mach number. The Mach number is the flow velocity divided by the sound 
velocity. In general, the Mach number M of a shock wave is defined as the value 
obtained by dividing the speed of the shock wave by the speed of sound ahead of the 
wave front. 

M = 
u0 
VS 

, VS = γ 
P0 

ρ0 
ð3:18Þ 

The sound velocity given in (2.47) can be easily obtained in the ideal gas as above. 
Note that the Mach number M is always greater than unity. 

When the temperature rises due to the shock wave is extremely high, for example, 
the molecular gas is dissociated and ionized to be in a plasma state as its atomic 
process will be explained in Chap. 5. This phenomenon is called shock wave 
ionization. Let’s look for the relation when the molecule of the main constituent is 
completely ionized by the shock wave like air, diatomic molecules. Let γ0 be the 
specific heat ratio of the molecular gas, and γ1 be the specific heat ratio of the plasma 
of the shock wave backside ionized completely. In the extremely strong shock 
waves, we can ignore both the pressure and the internal energy in the shock wave 
front, so we can see that all γ in (3.13) is good for γ1. The compression ratio is 
determined only by the specific heat ratio of the rear side. However, note that (3.12) 
does not include the energy needed for the dissociation and ionization is not 
considered. It should be modeled. 

The above discussion is clear in comparing Hugoniot curve of (3.13) with γ1= 5/3 
to the experimental result for the liquid hydrogen shown in Fig. 3.5 [4] In Fig. 3.5, 
the orange line is RH curve for γ =5/3, while the marks with error bars are

Fig. 3.5 Shock Hugoniot 
data of liquid deuterium 
from an experiment and 
other experiments and 
theoretical curve. The 
orange curve is that from 
ideal RH relation. Reprint 
with permission from 
Ref. [4]. Copyright 1998 by 
American Physical Society



experimental data. The black lines are theoretical curves. It is suggested that the 
effective γ decreases around 30 GPa (0.3 Mbar), namely more freedom such as 
dissociation etc. increase the number of freedom N, [γ = (N + 2)/N].
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3.3.2 Structure of Shock Waves 

The jump relation by Ranking-Hugoniot tells us nothing about the transition region 
of two states. In the case of neutral fluid, it is determined as the diffusive structure by 
the viscosity in general. It is well-know that the physical quantities continuously 
vary from the front region to the shocked region with a typical with of the molecular 
mean-free-path, which is very thin in the air and gases on grand. Of course, it is 
different for a very strong shock wave generated by the space shuttle in the re-entry 
to the earth atmosphere. In such a case, the kinetic effect apart from the local 
Maxwellian assumption should be solved to determine the structure; namely, 
Boltzmann equation has to be solved to obtain the detail of the shock structure. 

The structure of the shock wave in the jump region, call hereafter it the shock 
front structure, in fully ionized plasmas was studied [3]. The stationary shock 
solution is solved with two fluid equations in (2.111, 2.112, 2.113, and 2.114) by  
coupling with two temperature energy Eqs. (2.107) and (2.108). In order to solve the 
steady state fluid equations, it is studied to find the property of the singularities in 
(velocity, temperature) space. The integration starts from the node point of the 
upstream region to the saddle point of the downstream region [3]. Such integration 
is demanded, because the plasma shock wave at high Mach-number has wide range 
of parameters. They are Debye length, Coulomb collision mean-free-path, dominant 
electron heat wave structure, and slow temperature relaxation between electrons 
and ions. 

The details of the shock front structures are given in [3] for a variety of Mach 
number. The shock wave picture is measured in an experiment with use of optical 
imaging of the shock in gas, where the shadow of the probe light shows the region 
where the refractive index changes abruptly in space such as shock front. The 
shadow image of a bullet in the air is shown in Fig. 3.6. The bullet is flying from 
left to right at supersonic speed in the air. A strong shock wave is generated in front 
of the bullet, and it is also seen a turbulent flow behind the bullet. Since the radius of 
the bullet is small, the shock front shows the structure of a bow, and such shock wave 
is called a bow shock. 

Extremely high-pressure generated by intense lasers on a variety of solid mate-
rials allows us to study the shock waves in high-density matters. The progress of 
femto-second diagnostics by X-FEL (X-ray Free Electron Laser) made it possible 
to visualize the shock structure propagating in solid matters. Since the x-rays can 
propagate in matter whose density is higher than solid densities in general, it is 
possible to use the ultra-short pulse x-rays for the imaging diagnostics. 

The temporal evolution of a shock wave in diamond is measured, yielding 
detailed information on shock dynamics, such as the shock velocity, the shock



front width, and the local compression of the material [5]. It is reported that an 
intense laser with 150 ps pulse width and energy 130 mJ is focused on solid diamond 
at intensity of 1013 W/cm2 . The compression wave with density change of 10% 
(1.2 ns) and shock front width of 1 μm is observed as shown in Fig. 3.7. The XFEL 
pulse duration is 50 fs and the spatial resolution of the image is 0.5 μm. The progress 
of diagnostics has made it possible to study the shock wave, equation of state, and 
related physical properties in high-density plasmas. 
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Fig. 3.6 An optical shadow 
image of a bullet flying in 
the air with supersonic 
velocity. The shock wave is 
generated in front of the 
bullet as well as both sides. 
Such shockwave is called a 
bow shock 

It is shown for example at p. 474 in Ref. [1] that the thickness of the shock front 
obtained by solving equation with the viscosity is given in the form. 

δ ~ l0 M 
M2 - 1

ð3:19Þ 

where l0 is the mean free path in the upstream region and M is the Mach number of 
the shock wave. Note that the collision cross-section σ is constant in the mean-free 
path proportional 1/nσ. 

To study the detail of the shock wave structure in high-density not only in single 
solid but also mixture material such as DT (deuterium-tritium), plastic CH (carbon-
hydrogen), and so on, the fluid model is not appropriate, and the kinetic equation 
should be solved. The first trial to apply suck kinetic model to obtain the shock 
structure has been done by Mott-Smith as indicated at page. 476 in Ref. [1], where 
the structure is solved by assuming a linear combination of bi-Maxwellian of those in 
both constant regions. As more advance theoretical study, Fokker-Planck code is 
used to study not only the structure, but also the change of concentration due to local 
electric field in the shock front layer [6]. 

In the Fokker-Planck simulation in [6], the electrons are solved with fluid 
assumption, while the ions are solved with Fokker-Planck equations with Coulomb



collisions between ions themselves and with electrons. In the collisional shock wave, 
the ion kinetic energy is converted to the thermal energy only via ion-ion collisional 
process and the ion viscosity determined the structure of ion density and temperature 
near the shock front. This thickness of the density variation of the ions at a shock 
front is roughly given as (3.19), although the mean-free-path of plasma strongly 
depends on the temperature. 
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Fig. 3.7 X-ray shadow images of a shock wave propagating in a diamond at 1.2 and 1.8 ns. The 
shock wave is generated by an intense laser. The two images below are the corresponding images 
after eliminating the back ground from the above two images. Reprinted by permission from 
Macmillan Publisher Ltd: Ref. [5], copyright 1993 

As shown in Chap. 2.2, ion and electron mean-free paths are the same except Z 
and mi dependence, while the diffusion coefficient is proportional to the product of 
the mean-free-path and the thermal velocity. Therefore, the electrons diffuse about 

mi=me times wider than the ion-mean-free path. The electrons are heated via 
temperature relaxation after the abrupt heating of ions by viscosity; however, it is



slow process. As the result, a strong plasma shock structure is given like as shown in 
Fig. 3.8 [6]. It consists of very sharp ion temperature and density jump with the 
thickness of the ion mean free path, and electron heat wave tongue in front of the ion 
jump and the temperature relaxation region behind the ion jump. 

3.3 Shock Wave Jump Relation 111

Fig. 3.8 Shock wave structure obtained by solving Fokker-Planck equations to multi-ion compo-
nents with Coulomb collision effect. The electrons are assumed to be fluid. The red is the ion 
temperature profile and the blue is electron temperature one. Reprint with permission from Ref. [6]. 
Copyright 1998 by American Physical Society 

In the Fokker-Planck calculation of Fig. 3.8, it is also found that strong electro-
static field is generated to cause nonuniform concentration of D and T ions in space 
[6]. The electric field is produced due to density and temperature gradients in the 
shock front. Since the electron inertial is much smaller than the ions, it is possible to 
neglect the electron inertial term in (2.114) to obtain the relation. 

eE þ 1 
ne 

∂ 
∂x 

neTeð  Þ= 0 ð3:20Þ
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At the shock front the density and temperature of electrons increases abruptly and a 
strong electric field is generated from high to low pressure direction. Note that the 
almost charge neutrality is kept between electron and ion fluids and the change 
separation appears over the distance of Debye length characterized by the higher 
temperature. It is concluded that due to the difference of the Z/mi in (2.112) for not 
hydrogen, but the mixture of deuterium and tritium, the component with larger 
Z/mi (D

+ ) shifts in the front region from the shocked region by the strong electric 
field, causing the change of concentration of multi-component ion plasma. This 
effect cannot be neglected in the fusion reaction of DT mixture fuel. 

It is noted that we have assumed the simple equation of state even for dense 
plasmas so far. As will be discussed in Chap. 9, the equation of state (EOS) of 
matters near and over the solid density is not ideal (not simple), and EOS including 
many body interaction such as strongly coupling should be studied. In higher density 
and relatively lower temperature, the quantum effects also play important role in the 
thermodynamic properties. In some case, the phase transition occurs by a shock 
wave. In the phase transition, the latent or dissolved heat appear as energy release or 
absorption modifying the Ranking-Hugoniot relation. 

3.4 Deflagration and Detonation Waves 

3.4.1 Jump Relation with Energy Source 

As described above, the discontinuous wave fronts where the density decreases from 
the upstream to the downstream cannot exist physically as long as the basic equa-
tions, (3.7), (3.8), and (3.9). This is because the entropy decreases from the upstream 
to the downstream of the jump. However, for example, if any chemical combustion 
or nuclear burning occur on the wave front, to increase the entropy at the jump layer, 
a solution of decreasing density is physically permitted. Such jump waves are called 
deflagration wave. In our surroundings, a good example is combustion waves. 

When energy is generated in the wave front, the energy W generated per unit time 
and unit area appears in LHS of (3.12). Then, the relation (3.13) is modified as. 

P1 

P0 
= 

γ þ 1ð Þ- γ- 1ð ÞV1=V0 þ 2W= J0V0ð Þ  
γ þ 1ð ÞV1=V0 - γ- 1ð Þ ð3:21Þ 

Here, J0 = n0u0 is the fluid particle flux. For a given value W, the relation (3.21)  is  
plotted in the (P, V) plane with thick solid line in Fig. 3.9. Note that there is no 
physical region between the points A and B because the value J0 

2 < 0 . For reference, 
the adiabatic curve with the entropyS=S0 (constant) of the upstream region is also 
plotted as “P” (Poisson curve), the curve of S0.
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Fig. 3.9 The deflagration 
and detonation curve from 
the upstream (V0, P0) to the 
downstream 

The physically meaningful solution is limited to the solution that transitions from 
the upstream (V0, P0) to the right point C, or the solution that to the left point D. The 
jump that transitions from the upstream to the right C is called deflagration wave. 
Since the propagation speed of the deflagration wave is slower than the sound speed 
in the upstream, a shock wave is generated in the upstream region by the pressure 
generation due to the energy release by combustion. On the other hand, the transition 
to compressible region D is called detonation wave. 

3.4.2 Deflagration Waves 

The basic structure of deflagration wave is shown in Fig. 3.10. The essential property 
of the deflagration is the same as those by chemical reaction, nuclear reaction, and 
laser heating in the critical region. The chemical and nuclear reaction rates are 
proportional to the higher power of the temperature; therefor, rapid heating happens 
when the temperature reaches the reaction temperature. Then, energy is generated in 
relatively narrow region as shown in Fig. 3.10. The same structure is also seen in the 
combustion waves in the jet and rocket engines. Energy is locally released in the 
region “b” in Fig. 3.10, and its energy is transported to the left conduction zone “a” 
by heat conduction. This is the basic structure of the deflagration waves and the 
heated gas by the reaction in the zone b tends to expand to relatively low-density 
region in the space or into the vacuum. The reaction of the exhaust of the expanding 
gas produces high pressure to generate shock waves toward left or sequential pulses 
of sound wave to accelerate the left region, for example, rocket propulsion. 

As can be seen in Fig. 3.9, the pressure hardly changes and the density drops due 
to the temperature distribution controlled by heat conduction. However, since heat 
conduction is not so high in a chemical reaction, the thermal conduction region “a” is 
not so wide and it looks as a sharp surface. The dimensionless quantity Z = a/b is



called the Zel’dovich number. As shown below the thickness of the conduction 
zone “a” is relatively thin compraed to the size of the system. 
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Fig. 3.10 Schematic of the 
deflagration wave. Chemical 
reaction takes place as “H” 
and thermal conduction 
penetrates temperature as 
“T”. The fuel density drops 
as “C” 

It is well know that the deflagration wave driven by the internal reaction is 
unstable to the rippling of the burning front [2]. Therefore, it cannot remain as 
one-dimensional combustion wave for a long time and the burning front easily 
becomes unstable to increase the reaction front surface. The increase of the surface 
leads the increase of the enegy production rate to strength the shock wave in the front 
and finally the deflagration changes to the detonation to be described below. This 
explanation seems contradict against the stable frame of candle. The density of the 
wax from the solid to after-burn decreases along the flow. Thanks to the gravitation 
force, the candle can keep such a stable flame. 

The deflagration wave produced by heating with laser has also the same structure. 
The heating region concentrates on the cutoff density of the laser, and the absorbed 
energy is transported to the left side by nonlinear electronic heat conduction, almost 
the same as Fig. 3.10. In Fig. 3.11, a snap shot of laser-deflagration is shown with 
1-D hydro-simulation, when a thin flat plastic plate is irradiated with intense laser. 
This is obtained with the single-fluid, two-temperature fluid Eqs. (2.105, 2.106, 
2.107, and 2.108). 

The density is the highest in the wave front of thermal conduction (ablation 
surface). This is because the target is accelerating to the left by the ablation 
pressure, and the effective gravity (inertial force) is to the right direction. Due to 
the nonlinearity of the electron heat conduction, the ablating plasma rapidly expands. 
Since only the electrons are heated by laser, the electron temperature reaches 3 keV, 
but ions are heated up to about the half of the electron fluid by the temperature



relaxation process. This wave front instability is very important for stable acceler-
ation of the targets, and will be discussed in Volume 3. 
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Fig. 3.11 A deflagration 
structure, called as ablation 
structure in general, 
calculated by 
one-dimensional implosion 
code showing compressed 
shell and heat conduction 
region 

Fig. 3.12 A candle is a 
typical example of the 
deflagration wave 

The flame of candle in Fig. 3.12 is a slowly combusting wave in 3-D. It is famous 
Michael Faraday’s “The Chemical History of a Candle” [7]. He mentioned in 1850 
as follows. 

There is not a law under which any part of this universe is governed which does not come 
into play and is touched upon in these phenomena. There is no better, there is no more open 
door by which you can enter into the study of natural philosophy than by considering the 
physical phenomena of a candle.
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Deflagration wave is important to know the mechanism of ablation pressure 
sustained by laser absorption in the expanding plasma. It is useful hear remind the 
science of a candle. Consider the mechanism that keeps a candle burning. Solid wax 
is heated by its own flame, melts and rises with decrease of the density by buoyancy 
(In Fig. 3.10, from solid wax of “C” to the zone “a”). When evaporated wax reaches 
the temperature of reaction (region “b”), it starts chemical reaction and fire appears. 
That reaction heat is what maintains the light as a flame. 

The density of the wax expands from solid to vapor, and then expands further as it 
becomes even hotter as a result of the chemical reaction. We can regard the solid wax is 
the upstream state, and the flame heated by the chemical reaction corresponds to the 
downstream state. The zone “a” is the conduction zone, while it is assumed a jump from 
up- to down-stream. When we consider a flame that continues to burn in one dimension, 
it satisfies the discontinuity condition for the deflagration wave as shown below. 

It is better to point out essential difference of deflagrationwaves between the chemical 
reaction and laser ablation surface. The combustion front of chemical reaction is unstable 
to two/three-dimensional deformation of the front, because the energy release rate 
increases as the area of the surface increases by the deformation. The energy release is 
due to the reaction of the fluid itself. On the other hand, in the laser heating deflagration, 
the energy input rate is not affected by the deformation of the ablation surface, and no 
instability is induced. In the case of ablation front, the instability is due to the inertial 
force. This is called Rayleigh-Taylor instability as will be study in Volume 3. 

3.4.3 Detonation Waves 

On the other hand, the wave that transitions to the left “D” in Fig. 3.9 is supersonic to 
the upstream fluid. Such a burning wave is an explosive combustion and it is called a 
detonation wave. Detonation waves are often seen in movies such as explosives. 
Since the temperature increased by the shock wave compression is higher than the 
ignition temperature of the explosive, the chemical reaction is taken place on the 
shock wave front and the energy is explosively released. This is an explosion 
phenomenon. The engine of the car uses the explosion pressure to run the car. The 
gasoline and air are injected to mix for chemical reaction into the piston, and the 
ignition is sputtered by a spark plug. Then, a detonation wave is generated from that 
point, and high pressure is generated. This pressure pushes down the cylinder and 
converts its work into kinetic energy of mechanical rotation of car wheels. 

A schematic of the pressure and temperature profile of the detonation wave in a 
tube is shown in Fig. 3.13 [8]. The shock wave heats and compress the front to reach 
the ignition temperature of the fuel-air mixed gas (or unreacted explosive). Then, the 
chemical reaction heats the reaction zone to keep the shock propagation. The 
maximum temperature point in Fig. 3.13 corresponds to the point “D” in Fig. 3.9. 
Behind the reaction zone, low density expansion zone follows to continue the burned 
gas zone, which works strong pressure to the left wall.
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Fig. 3.13 A schematic of the pressure and temperature profiles of a detonation wave in a tube [8]. 
(Courtesy of Dr. Minchinton) 

It is well known that as mentioned above, the deflagration front of chemical 
reaction is hydrodynamically unstable. It is called Landau-Darrius instability and 
the deflagration front distorts to have fractal structure. Then, as the front surface 
(area in 3-D) increases, the energy generation rate due to the chemical reaction 
increases. Since the deflagration is subsonic and the strong sound wave or shock 
wave is formed in front of the deflagration wave. As the result, the increase of 
reaction energy enhances the strength of the shock. At the stage when the temper-
ature becomes high enough to ignite the fuel, the deflagration wave transits to the 
detonation wave. This is called deflagration-detonation transition (DDT). 

In Fig. 3.14, the temperature and pressure evolution around the time of DDT is 
shown from 2-D computer simulation of chemically-reacting gas [9]. In this case the 
deflagration wave is deformed by the boundary protruding at the center in the figure, 
it is seen that a reflected shock with higher pressure and temperature is generated at 
t = 10.48 ms. This reflected stronger shock wave locally ignites the fuel to change 
the burning to the detonation. The burning speed after this time increases dramati-
cally and the temperature and pressure increased globally after DDT occurs. 

3.4.4 Supernova Ia DDT 

The physics of supernova type Ia explosion observed in space is thought to be a 
carbon nuclear burning type explosion, in which a white dwarf (WD) explodes by 
nuclear burning [10]. A white dwarf, the mother body of type Ia supernova



explosion, is one of a binary system with a companion star, usually a main sequence 
star. The mass of the white dwarf is increases in time by peeling mass from the 
surface of the companion star with strong gravity. Before its mass reaches the critical 
mass of Chandrasekhar limit (approximately 1.4 times the solar mass), the gravity 
of WD is sustained by the Fermi pressure of the non-relativistic electrons. 
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Fig. 3.14 The time evolution of temperature and pressure showing the deflagration to ignite to 
change to a detonation by edge reflected shock heating [9]. From Journal of Combustion 

However, the mass approaches the critical mass, the Fermi energy of the electrons 
near the center of WD becomes more than mc2 . The density dependence of the 
pressure shifts from the non-relativistic case of ρ5/3 to the relativistic one of ρ4/3 , 
namely Fermi pressure becomes relatively soft. Then, the white dwarf cannot 
withstand further mass increase. As the result, the center of the white dwarf collapses 
to be higher temperature and higher density to ignite the nuclear fusion of carbon 
burning. 

Since the mass of the white dwarf at the time of explosion is determined by the 
Chandrasekhar mass, it can be considered that the explosion energy is almost 
constant for Type Ia supernovae. Since the explosion itself becomes brighter than 
a galaxy typically consisting of 100 billions of starts, it becomes a standard light 
source from a far distant Universe. Observation data have impacted the argument of 
cosmology such as whether the universe is open or closed. At the present time, it is 
concluded from the observation of type Ia supernovae that the universe is further 
accelerating with increase of the expansion velocity. This fact concluded the uni-
verse is expanded by the dark energy, consisting of 70% of the energy in Universe. 

A simple physical scenario of type Ia supernova explosion is as follows. The main 
components of white dwarfs before explosion are carbon and oxygen. If the



temperature near the center exceeds several hundred keV, nuclear fusion reaction of 
carbon and oxygen occurs. However, the pressure rises caused by the nuclear 
reaction is still smaller than the degenerate pressure of the electrons, so the defla-
gration front does not explosively spread, propagating as a weak combustion wave. 
In Fig. 3.15, the one-dimensional simulation is shown for the propagation of the 
nuclear burning wave in the density 1010 g/cm3 [11]. It is surprising to know that the 
thickness of the wave is extremely small compared to the size of the white dwarf of 
thousands of kilometers. 
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Fig. 3.15 One-dimensional thermonuclear deflagration wave propagating near the center of a white 
dwarf characterized with extremely high-density and electron Fermi pressure. Reprinted with 
permission from Ref. [11]. Copyright by American Astronomical Society 

If the wave front remains spherically symmetric, the stars will expand due to 
shock waves ahead of the deflagration wave, nuclear combustion will be terminated 
by this expansion. The nuclear deflagration front is hydrodynamically unstable same 
as chemical reaction, the deflagration front grows as fractal structure. As a result, the 
area of the deflagration front becomes many times larger than 4πR2 , where R is the 
average radius of the deflagration front. Then, the nuclear reaction energy released in 
unit time increases in proportion to the increase in area of the front, the shock wave is 
intensified. 

When the temperature rise due to this shock wave exceeds the temperature at 
which the nuclear reaction takes place as shown in Fig. 3.13, the nuclear reaction 
transits to the detonation wave. Such a combustion scenario is called a delayed 
detonation model in astrophysics. Among the heavy elements in the universe, it is 
believed that the iron is mainly nuclear synthesized by type Ia supernovae. In the 
above scenario, unstable nuclear nickel 56 is produced by carbon and oxygen 
nuclear fusion and 56 Ni nuclear decays eventually to the iron in the universe.
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3.5 Rarefaction Waves 

A shock wave is generated by pushing its boundary by a piston. On the other hand, 
we have no stationary solution of the case when the piston moves to the opposite 
direction. If the piston disappears abruptly, the fluid expands into the vacuum with 
its sound velocity. As it is already mentioned, the rarefactive shock wave is not 
physically acceptable and it is required to find time-dependent solution of such 
expanding wave. Such solution is called rarefaction wave. It is well known that it 
is given by a self-similar solution. Here we consider two cases; one is adiabatic 
rarefaction wave and the other is rarefaction wave that expands isothermally due to 
overwhelming heat conduction. For the sake of simplicity, we assume that the fluid 
is initially located in the vacuum at t = 0. 

Without viscosity and external force and assuming one-dimensional plane geom-
etry, (2.23) and (2.24) can be written as follows. 

∂ρ 
∂t 

þ ρ ∂u 
∂x

þ u ∂ρ 
∂x 

= 0 ð3:22Þ 

∂u 
∂t 

þ u ∂u 
∂x 

þ V
2 
s 

ρ 
∂ρ 
∂x 

= 0 ð3:23Þ 

We try to find self-similar solution and reduce (3.22) and (3.23) to coupled ordinary 
differential equations according to the method explained in Chap. 2. From the 
dimensional analysis of (3.22) and (3.23), it is found that there is only one dimen-
sionless variable ξ defined to be 

ξ= 
1 
c0 

x 
t

ð3:24Þ 

Here c0 is the sound velocity at t = 0 defined as 

c0 = 
∂P 
∂ρ 

ρ= ρ0 

ð3:25Þ 

Here ρ0 is the initial density. 
Let us assume that the solution of (3.22) and (3.23) can be written in the forms 

ρ= ρ0R ξð Þ, u= c0U ξð Þ, Vs = c0V ξð Þ ð3:26Þ 

Then, using relations 

∂ξ 
∂t 

= -
ξ 
c0t 

, 
∂ξ 
∂x 

= -
1 
c0t

ð3:27Þ



ð Þ
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Equations (3.22) and (3.23) can be transformed to the following coupled ordinary 
differential equations. 

U- ξð ÞR0 þ RU0 = 0 ð3:28Þ 

U- ξð ÞU0 þ V2 1 
R 
R0 = 0 ð3:29Þ 

Here, the superscript (′ ) represents the ordinary differentiation by ξ. For (3.28) and 
(3.29) to have a non-trivial solution, the determinant which can be made with the 
coefficients of differentiated variables needs to be zero. From this condition, the 
following relations are obtained. 

U- ξð Þ2 =V2 ð3:30Þ 
U = ξ±V 3:31 

For the case where the fluid is only in the region of 0 < x initially, the expansion 
front called as a rarefaction wave propagates in the fluid. This solution corresponds 
to the plus sign of (3.31). 

3.5.1 Adiabatic Rarefaction Wave 

The fluid expands adiabatically into the vacuum. Under the adiabatic condition the 
following relationship is satisfied. 

V =R 
γ- 1ð Þ  
2 ð3:32Þ 

With use of (3.31), (3.29) can be modified like 

2 
γ- 1 

d 
dξ 

R γ- 1ð Þ=2 = 
dU 
dξ

ð3:33Þ 

Integrating this equation with the condition U = 0 at R  = 1, the density profile is 
obtained. 

R= 
γ- 1 
2 

2 
γ- 1

-U 

2 
γ- 1ð Þ  

ð3:34Þ 

The condition U = 0  at  R  = 1 is the point which propagating to the minus x-direction 
with the sound velocity c0 and this corresponds to the front of the rarefaction wave.
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In the moving frame with the rarefaction front, we take the plus solution of (3.31) 

U = ξþ V ð3:35Þ 

Inserting (3.32) and (3.34 to 3.35), the flow velocity is obtained. 

U = 
2 

γ þ 1 ξ þ 1ð Þ ð3:36Þ 

Since U = 0 at the rear of the rarefaction wave, the normalized coordinate ξ should 
be ξ = -1, namely it is also clear that at this point the following relation is also 
satisfied. 

R - 1ð Þ=V - 1ð Þ= 1 ð3:37Þ 

In the present case of adiabatic expansion, the rarefaction wave expands with a finite 
velocity into vacuum and the expansion velocity of this front ufand its ξ value ξf are 
given by setting R = 0 in (3.34) as  

uf = 
2 

γ- 1 
c0 ð3:38Þ 

ξf = 
γ þ 1 
γ- 1

ð3:39Þ 

This expansion front velocity can be explained physically as follows. The fluid flow 
is driven by enthalpy h. Namely, the enthalpy is converted to the kinetic energy of 
the flow: 

h→ 
1 
2 
u2 ð3:40Þ 

Inserting the initial value of the enthalpy gives 

umax = 
2 

γ- 1 
c0 ð3:41Þ 

Such intuitive way gives the prediction of the solution (3.38). 
Here we have solved mathematics for the rarefaction wave and the solution of 

(3.22) and (3.23) is given from (3.36) and (3.34) as  

u  t, xð  Þ= 
2 

γ þ 1 
x 
t 
þ c0 ð3:42Þ
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Fig. 3.16 A snap shot of 
density and velocity profiles 
of an adiabatic 
rarefaction wave 

ρ t, xð Þ= ρ0 1-
γ- 1 
γ 1 

x 
c0t 

þ 1 

2 
γ- 1ð Þ  

ð3:43Þ 

It should be noted that the solutions are valid only for the region of the rarefaction 
wave defined by

- 1< 
x 
c0t 

< 
γ þ 1 
γ- 1

ð3:44Þ 

The density and velocity profiles at a given time is plotted in Fig. 3.16. 

3.5.2 Isothermal Rarefaction Wave 

As the degree of freedom increases, the specific heat ratio γ approaches unity, and as 
apparent from (3.38), the rarefaction wave spreads to infinity. However, when 
expanding while heating from the outside and keeping the initial temperature, the 
above analytical solution cannot be applied. Isothermal is possible, for example, by 
irradiating a solid surface with a high intensity laser, bringing it to a high-pressure 
state, and when a rarefaction wave is generated in the direction of laser irradiation in 
the vacuum. Because the electron heat conduction is dominant in the rarefaction 
region, the rarefaction wave expands while the temperature is almost uniform. It is 
useful to find an analytical solution for such a rarefaction wave. In this case as well, a 
self-similar solution exists.
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The basic equations are same as (3.22, 3.23, 3.24, 3.25, 3.26, and 3.27) except 
(3.26). Then, (3.26) should be modified like 

ρ= ρ0R ξð Þ, u= c0U ξð Þ, Vs = c0 : const: ð3:45Þ 

Although it is impossible to use (3.32) and (3.33), (3.30) gives the flow velocity. 

U = ξ þ 1 ð3:46Þ 

Then, (3.28) and (3.29) turn out the same equation as 

U0 þ 1 
R 
R0 = 0 ð3:47Þ 

This equation can be solved easily to give 

R= e-U ð3:48Þ 

This gives the density profile as 

R= e-U → ρ= ρ0e
- ξþ1ð Þ ð3:49Þ 

This profiles are plotted in Fig. 3.16. The front of the rarefaction wave is U = 0 at  
ξ = - 1. 

In order to maintain such an isothermal rarefaction wave, it is necessary to 
constantly supply energy to the rarefaction wave from the outside. This is because 
the temperature does not change and the internal energy does not change, so it is 
necessary to constantly supply the increment of the kinetic energy obtained by the 
rarefaction wave as heat. Let’s calculate the rate of energy increase per unit time. 
Assuming that the energy increase rate is given as an energy flux Q from the outside, 

Q= 
d 
dt 

1

- c0 

1 
2 
ρu2 þ 1 

γ- 1 
P dx ð3:50Þ 

Inserting the solution above and change the integral with self-similar coordinate, 
(3.50) becomes 

Q= ρ0c0 
2 

1

- 1 

1 
2 
RU2 þ 1 

γ- 1 
R dξ ð3:51Þ 

With the change of variable 

y= ξþ 1 ð3:52Þ
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(3.52) reduces to 

Q= ρ0c0 
3 

1 

0 

1 
2 
y2 e- y þ 1 

γ- 1 
e- y dy ð3:53Þ 

The integration of (3.53) is done easily to obtain 

Q= 
γ þ 1 
γ- 1 

ρ0c0 
3 ð3:54Þ 

Note that the coefficient of Q is 4 for γ = 5/3. 

3.5.3 Shock Tube 

Now, we knew that there is no jump solution with decreasing density along the flow, 
but the density decreases as the time-dependent rarefaction wave. The experiments 
of shock waves in gas have been carried out, for example, using the shock tube 
shown in Fig. 3.17. The cylindrical tube is divided into two parts by a thin film 
(diaphragm) and each pressure is set to a different pressure. When the thin film 
is burned out with a laser or the like, high-pressure gas expands to push the 
low-pressure part, and a shock wave is formed in the low-pressure part. However, 
in such experiments, only shock waves with a pressure jump of at most several 
atmospheres are possible to be generated. Therefore, a very strong shock wave was 
generated by high-explosives and so on. By using a high intensity laser to irradiate 
on gas or solid, it is now possible to generate high pressure more 10 times the bulk 
modulus B defined in (2.51). To study the high-pressure physics as to be discussed 
later, typically the diamond anvil cell for static high pressure or lasers are used to 
study the dynamical high-pressure property of solid material, such as internal state of 
the earth and planets. 

3.6 Ablation Pressure and Ablative Acceleration 

3.6.1 Ablation Structure 

Instead of the energy production by chemical reactions, the energy increase by 
intense laser can also keep the deflagration wave. In the case of Chapman-Jouguet 
deflagration wave, the exhaust velocity is the sound velocity at the rear of the 
deflagration wave. In the chemical reactions, the reacted molecule gas may have 
the temperature of the molecular bonding energy, namely T ~ 0.1 eV. Since the 
intense-laser can deposit much large amount of energy in the deflagration region, we



can expect the temperature of more than 1 keV as seen below. Such 
high-temperature exhaust plasma can accelerate any matter to the velocity of 
sound speed, namely v~3 × 107 cm/s as we already saw in Fig. 3.18. 
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Fig. 3.17 A schematics of shock tube. Pressure is initially different in both gases. The boundary of 
the gases is opened to shock wave travel to the right and the rarefaction wave goes to the left. Their 
trajectories ate plotted in above with a snap shot on the top 

Consider a simple structure of the deflagration wave produced and maintained by 
constant heating of the ablating plasma by an intense laser. Assume that a stationary 
deflagration with a shock wave in the over-dense solid target and iso-thermal 
rarefaction wave into the vacuum region. 

In Fig. 3.18a, the schematics of the trajectories of the shock front, deflagration 
zone, and the front of the rarefaction wave is plotted. The dashed line is a fluid 
particle trajectory from solid, shocked region, deflagration to the rarefaction wave. In 
the shocked region, fluids are accelerated to the left by the ablation pressure. The 
pressure generated by the deflagration is called ablation pressure.
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Fig. 3.18 Schematics of a 
laser driven shock wave and 
ablation of a solid target. 
(a) The time evolution of 
shock and deflagration 
waves. (b) The snapshot of 
density, temperatures, and 
flow velocity at the time t1. 
The broken curve in 
(a) represents a path of a 
fluid element 

In Fig. 3.18b, the rough snap shot at t = t1 is drawn. The density (n) increases by 
the shock compression in the Zone-2, dramatically decreases in the deflation zone-3, 
and exponentially decreases in the Zone-4. The temperature increases by shock 
heating in Zone-2, abruptly increases in Zone-3 by electron heat conduction, and 
keeps almost constant in the expansion Zone-4. In two-temperature model [12], the 
ion fluid is heated by Coulomb collision in the subsonic Zone-3, while to be cool 
down in the expansion Zone-4 as roughly indicated in Fig. 3.18b. 

The jump condition of the shock wave, ablation front, and the expansion into the 
vacuum region are shown as (V, P) diagram in Fig. 3.19. Fluid particles are 
compressed and accelerated forward by the shock wave from the point 1 to 2 and 
encounter the ablation surface. Then, they are heated in the direction of vacuum and 
accelerated as shown from point 2 to 3. After the passage of the Chapman-Jouguet



(CJ) deflagration point 3, the particles are exhausted as the rarefaction wave into the 
vacuum. This is the same mechanism as rocket exhaust. The difference is that the 
rocket fuel is a chemical reaction and can only produce exhaust speeds on the order 
of 10 km/s, but with laser ablation it can be more than 1000 km/s. 
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Fig. 3.19 The P-V diagram for the two jumps of the shock wave and the following deflagration 
wave driven by laser heating. The density and temperature profiles are schematically shown in the 
inlet figure 

Let’s calculate the laser heating energy needed to keep such almost stationary 
deflagration structure. The dominant energy is used to heat the exhausting plasma 
from the Chapman-Jouguet point and to heating the rarefaction wave expanding to 
the vacuum. The electron heat conduction penetrates in the deflagration structure and 
keeps the ablation of the dense material. Assuming the deflagration structure is 
stationary state, the inward heat flux is carried out as the ablation energy. We neglect 
the energy increase in the shocked region because it is a small fraction compared to 
the laser energy input. The energy flows out constantly into the rarefaction wave 
through the Chapman-Jouguet point. 

3.6.2 Ablation Pressure 

It is assumed that the rarefaction region has very good electron heat conduction and 
the temperature is constant in space. As derived in (3.54), energy flux required to 
maintain the isothermal rarefaction wave is evaluated to be,
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dEabl 

dt 
≈ 4PCsjCJ ð3:55Þ 

Here, the right side is evaluated with the values at the CJ point of the ablation 
structure. Requiring that the laser must supply this energy, the relationship between 
laser absorption intensity and ablation pressure can be obtained. 

By balancing the energy of the absorbed laser with the energy of (3.55), the 
scaling law of the following ablation pressure Pabl can be obtained. We use the fact 
that the pressure on the ablation surface is almost twice the pressure at the CJ point 
[12]. It is also assumed that the laser (wavelength is λ in μm unit) is absorbed at the 
critical density point. Then, the ablation pressure Pabl is calculated to be. 

Pabl ≈ 12 
I14 
λμm 

2=3 

Mbar½ ] ð3:56Þ 

Here, it is assumed that the CJ point of the ablation is the cut-off density point of the 
laser, and I14 is the absorbed laser intensity in the unit of 10

14 W/cm2 . In early time of 
laser plasma experiment, the ablation pressure has been measured with foil targets as 
shown in Fig. 3.20 by four different laser wavelengths [13]. It is noted that shorter 
wavelength laser generates higher ablation pressure up to ~100 Mbar. The theoret-
ical scaling law of (3.56) can well explain the experimental results. 

By solving the stationary solution, the mass flow velocity J0 flowing into the 
ablation region can also be obtained. It is called mass ablation rate _m and given as 

_m≈ 1:5× 105 
I14 

λμm 
4 

1=3 

g= cm2 s ð3:57Þ 

In Fig. 3.21, the experimental data are plotted for the cases of three different 
wavelength lasers [14]. It is seen that the theoretical result can explain the experi-
mental data. Note that the mass ablation rate is important value to estimating the 
ablative stabilization to reduce the hydrodynamic instability of implosion. So, 
shorter wavelength is better from this point. The ablative stabilization will be 
discussed in Volume 3. 

3.6.3 Rocket Model 

By using the relation of ablation pressure obtained above, we can derive an equation 
for acceleration of an object (thin foil) of finite mass by laser ablation pressure. This 
is called a “rocket model” and corresponds to a simple evaluation of rocket design. 
Now, when the thin foil is moving at the velocity V(t), the following relation is 
obtained with the mass of the accelerating part ahead of the ablation front as M (t).
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Fig. 3.20 Ablation pressure as functions of laser intensity and its wavelength. The data are 
obtained in early time of laser plasma research. Reprinted with permission from Ref. [13]. 
Copyright by Institute of Physics 

Fig. 3.21 Mass ablation frate at the ablation front as functions of laser intensity and laser 
wavelength. The data are obtained in early time of laser plasma research. Reprint from Ref. [14]. 
Copyright 2012, with permission from Elsevier 

M 
dV 
dt 

=Pabl ð3:58Þ 

Since mass decreases with the rate given in (), the following is given 

M  tð  Þ=M0 - _mt ð3:59Þ



ð
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where M0 is the initial mass. Assuming that _m and Pabl are constant, the Eq. (3.58) 
can be integrated and the following relation is obtained. 

V =V0 ln 
1 
ε 

ε= 1-
t 
τ0 

= 
M tð Þ  
M0 

ð3:60Þ 

where 

V0 =Pabl= _m≈ 2Cs, τ0 =M0= _m ð3:61Þ 

(3.60) show that the velocity is only a function of the remaining mass. V0 is a value 
about two times the sound velocity at the CJ point, Cs. That is, the maximum speed is 
determined by how high the temperature can be achieved in the deflagration. 
Acceleration distance can be calculated, 

d= d0 1- εþ εlnεð Þ 3:62Þ 

where 

d0 =V0τ0 ð3:63Þ 

As a result of acceleration, the fraction of the input energy to the kinetic energy is 
called hydrodynamic efficiency ηH. 

ηH ≡ 
1 
2MV2 

Eab 
= η0 

ε lnεð Þ2 
1- ε

ð3:64Þ 

With absorbed laser intensity Iab, the non-dimensional coefficient η0 is given to be 

η0 = 
Pablð Þ2 
_2mIab 

ð3:65Þ 

Figure 3.22 shows the dependence of ηH/η0 upon ε found in (3.65). The value of η0 is 
1/2 for the isothermal from CJ point to vacuum. Therefore, it can be ηh = 0.3 at 
maximum for ε ≈ 30 %. Accordingly, if the thin foil is accelerated to ablate about 
80%, the mass of the foil can be accelerated to about 1.6 times the sound velocity of 
the CJ point with an energy efficiency of 30 to 40%. 

For example, even if the sound velocity at the C-J point is low, the rocket which 
fly to the space must escape from the earth’s gravity and fly far. This is called the 
Earth escape velocity and its value is about 11.2 km/s (40,300 km/h). In the reaction 
of chemical fuel, the maximum sound velocity does not exceed this value. Therefore, 
by designing the final mass of the rocket is small, the escape speed can be achieved.



This corresponds to the fact that the spacecraft part flying into space is a very small 
tip part compared to the main body at the time of launch. 
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Fig. 3.22 Normalized 
rocket kinetic energy 
efficiency as a function of 
the mass ablation fraction 

3.7 Ablation Structure in Acceleration Phase 

In the early stage of laser fusion experiments, so called glass-micro-balloon (GMB) 
has been used as a spherical capsule to confine deuterium-tritium mixture fusion fuel 
gas [15]. Even for a very thin shell glass, it is seen that the glass is ablated by the 
laser heating explained in Chap. 2 (Vol. 1). The ablation pressure drives the shock 
waves and acceleration of the glass plasma to further accelerating the fuel by the 
shock waves. An example of one-dimensional simulation of the implosion dynamics 
of such a GMB is shown in Fig. 3.23. 

In the radius-time diagram, the lines are fluid Lagrange grids and totally, 
160 grids are used. The line crossing the grids is the trajectory of the cut-off density. 
The details of the parameters are given in Ref. [15]. A gaussian shape pulse is 
irradiated with about 10 kJ energy of green lasers. The top on the right is the time 
evolution of electron temperature and the bottom is the plasma density at 6 timings 
shown with arrows on the right in the r-t diagram. The ablation pressure generates a 
shock wave to accelerate the glass plasma and heat and compress the DT fuel 
plasma. It is seen that almost stationary ablation structure is propagating to the 
center of the target.
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Fig. 3.23 The radius-time diagram of the Lagrange fluid trajectories obtained with 
one-dimensional implosion code. A thin shell glass micro-balloon filled with DT fuel is imploded 
by laser irradiation to generate fusion neutrons. The snap shots at six different time indicated the r-t 
diagram are plotted on the right for electron temperature and density 

3.7.1 Stationary Accelerating Ablation Front 

To precisely study the hydrodynamic stability of such ablation structure, stationary 
accelerating ablation structure has been used in spherical geometry as the 
back-ground implosion dynamics [16]. One-fluid one-temperature hydrodynamic 
equations in spherical geometry have been used including the nonlinear thermal 
conduction. When the equations are normalized by the physical quantities at the CJ 
point of the deflagration wave, the normalized equations governing the stationary 
solution are as follows [16]. 

∂ 
∂~r 

~r2 ~ρ0~u0 = 0 ð3:66Þ 

~ρ0~u0 
∂ 
∂~r 

~u0 = -
∂ 
∂~r 

~P0 þ G~ρ0 ð3:67Þ 

3 
2 
~ρ0~u0 

∂ 
∂~r 

~T0 = -
~P0 

~r2 
∂ 
∂~r 

~r2 ~u0 þ K0 

~r2 
∂ 
∂~r 

~r2~T0 
5=2 ∂ 

∂~r 
~T0 , ð3:68Þ 

where G is the normalized gravity given by the inertial force. Here, ~ρ0, ~u0, ~T0 are 
normalized density, flow velocity, and temperature, respectively, and they are 
functions only of normalized spatial coordinate ~r. Normalized physical quantities 
are defined as follows using the physical quantities at the CJ sonic point.



ð Þ ð Þ

Þ
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~ρ0 = 
ρ0 
ρs 

, ~u0 = 
u0 
Cs 

, ~T0 = 
T0 

Ts 

~r= r=rs, ~t= t= rs=Cs 3:69 

Here, ~ρ0, ~u0, ~T0 are the unity at the sonic point of ablation. Cs is the sound velocity 
at the sonic point where ~u0 = u0=Cs = 1 is satisfied. Here, we also showed the 
normalized time to be used in the stability analysis in Vol. 3. 

In normalizing as above, the following two dimensionless coefficients appeared. 

G= 
grs 
C2 
s 

, K0 = 
K T  = Tsð Þ  
ρsCsrsA

- 1 ð3:70Þ 

Here, the numerator of the definition of K0 is the thermal conduction coefficient at 
the sonic point, and A is the atomic number of the matter. 

Equations (3.66, 3.67, and 3.68) are integrated numerically from the CJ sonic 
point toward the upstream side. For a given value of G, we obtain the following 
density ratio Rρ by varying the value of K0. 

Rρ = 
ρa 
ρs 

= 
density at ablation frontð  
density at sonic pointð Þ ð3:71Þ 

Regards this value as the eigenvalue of the integration, by changing the value of K0. 
The resultant density profiles are shown in Fig. 3.24 for the fixed density 

ration Rρ=50 and five different G [16]. It seems that the ablation front is discontin-
uous; however, the profiles are all continuous. This is because the heat conduction

Fig. 3.24 Stationary solution of compressed shell and expanding ablation profiles driven by 
Spitzer’s nonlinear heat conduction from the right boundary of the sonic point. Each profile is 
obtained for a fixed density ratio of 50 and different strength of the inertial force. Reprint with 
permission from Ref. [16]. Copyright 1998 by American Institute of Physics



coefficient is proportional to the 5/2-th power of the temperature, so it has a steep 
structure as shown in Fig. 2.8.
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The density profile in the left of the ablation front decreases rapidly as G 
increases. The thin shell GMB, the density profile in Fig. 3.23 is like the case with 
large G. The spatial structure of the compressed region is like the Earth’s atmosphere 
due to the gravity. In addition, when passing through that surface, the plasma is 
rapidly heated by the electron heat conduction, resulting in a dramatically varying 
structure. Namely, the density sharply decreases and temperature increases drasti-
cally. This is a typical profile of laser heating ablation. Note that the ablation profile 
is sensitive to the energy transport physics. As mentioned in Chap. 6 the profile 
changes for the case that the nonlocal electron transport and/or radiation one is 
dominant in the deflagration region. 

3.8 Implosion Dynamics and Ablation Profiles 
in Experiments 

3.8.1 Implosion Dynamics 

The dynamics of implosion has been measured experimentally by the framing 
camera of the self-emitting x-ray as shown in Fig. 3.25. In the implosion experiment, 
a CH polymer polystyrene micro-balloon of radius 226 μm and the thickness 8 μm is  
irradiated with a squared laser pulse of 1.6 ns width with a picket fence of 0.2 ns and 
the main pulse of 1,6 ns 0.4 ns after the picket pulse. The laser wavelength is 
0.53 μm. The time evolution of x-rat emitting mainly from the imploding high-
density shell plasma and the heated fuel gas at the final compression time are 
measured as shown at the right in Fig. 3.25. The x-ray emission is also calculated 
for the corresponding implosion with one-dimensional hydrodynamic simulation 
code ILESTA-1D [15]. It was confirmed that the implosion dynamics agrees well, 
while the final strong x-ray emission by heated fuel plasma in the stagnation phase is 
not clearly observed in the experiment. This is due to the hydrodynamic instability in 
the final stagnation phase. 

The implosion diagnostic image shown in Fig. 3.25 is rather old and the diagnostics 
of small scale and short time has progressed rapidly. More precision technique, for 
example, has demonstrated themeasurement of self-emission x-ray shadowgraph,which 
provides a method to measure the ablation-front trajectory and low-mode nonuniformity 
of a target imploded by directly illuminating a fusion capsule with laser beams [17]. The 
technique uses time-resolved images of soft x-rays (>1 keV) emitted from the coronal 
plasma of the target imaged onto an x-ray framing camera to determine the position of the 
ablation front. This method has been used to accurately measure the ablation-front 
radius, image-to-image timing, and absolute timing. Angular averaging of the images 
provides an average radius measurement and an error in velocity of 3%. This technique



has already been used as the diagnostics of implosion experiments at the Omega Laser 
Facility and the National Ignition Facility. 
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Fig. 3.25 Implosion dynamics of a spherical shell target with DD fuel. Both images show x-ray 
self-emission obtained with one-dimensional simulation and from the experiment in the same 
condition. The global image is same, while the final compression is very week in the experiment, 
suggesting hydrodynamic instability in the stagnation phase 

The experimental data can be used widely in the laser-produced plasmas to verify 
and validate (V&V) the physics-integrated simulation codes. The simulation code 
should be improved by checking its prediction via comparison with corresponding 
experiments. 

In Fig. 3.26, the series of the x-ray self-emission images from an implosion 
experiment is shown at the top. Each image is time integrated over ~40 ps, and 
interstrip timing is ~250 ps. The clear green circles are the surface of ablation front. 
The implosion is done with 19.6 kJ laser of 60 beams OMEGA facility. The target 
has an 867.8 μm outer diameter with a 26.8 μm thick CH ablator covered by 0.1 μm 
of aluminum and filled with deuterium at 10.5 atm. The laser pulse shape is plotted in 
Fig. 3.26a with the solid line. It has one 100-ps picket pulse to set the initial 
condition of target implosion, and the step-like main pulse of 2 ns duration. 

The trajectory of the ablation front is compared to the corresponding 
one-dimensional integrated code LILAC. The dashed line is the trajectory from 
LILAC simulation and the red marks are taken from the experiment data shown on 
the top. The imploding ablation front velocity is also compared in Fig. 3.26b. The 
maximum velocity is ~2 × 107 cm/s, well reproduced in LILAC code. The discrep-
ancy in the early phase is due to the sensitivity of modeling target material with fluid 
approximation. It is clear in both comparisons that the simulation code well repro-
duces the trajectory, meaning that the energetics of the implosion dynamics is 
predictable with LILAC code.
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Fig. 3.26 The top: Sequential photographs of self-emitting x-ray from ablation fronts imploding by 
laser irradiation. (a): Time evolution of laser intensity and the trajectory of ablation front. The red 
marks are experimental data and the dashed line is from simulation. (b): The velocity of the ablation 
front from data with red mark and the blue line from simulation. Reprinted with permission from 
Ref. [17]. Copyright by Cambridge University Press 

3.8.2 Back Light Imaging 

By use of external x-ray source more precise distribution of the density can be 
measured. This method is called X-ray back-lighting. To measure the density 
profile, plane target is used. The target is C + H polymer polystyrene. The thickness 
is 40 μm and the width is 200 μm. The main drive-laser is irradiated on the target 
surface. At the same time, another laser irradiates the titanium plate of 20 μm to  
produce a small titanium plasma near the target. Filtering x-rays so that only the 
x-ray of narrow energy band around 4.85 keV can transmit through the C + H plasma 
from the side, the shadow image of the accelerating foil plasma is measured. The 
spatial distribution of the transmission intensity as a function of time can be obtained 
with a high-speed X-ray camera and the data are processed to the time evolution of 
the density distribution. The principle is simple. Electrons in K shell of carbon (C) in 
the C + H plasma absorb X rays coming from the titanium plasma. With the known 
energy of X-ray (=4.85 keV), the absorption coefficient (=19.72 cm2 /g), and the 
initial width of the foil 200 μm, it is easy to obtain the density from the ratio of 
transmission. With such data the spatial distribution of density has been obtained 
experimentally as shown in Fig. 3.27 [18]. 

The experimental time evolution of the foil acceleration dynamics and that 
obtained with the ILESTA-1D code are compared. The trajectories of the foil 
ablation front and rear surface are plotted for experimental data (marks with error 
bars) and ILESTA-1D (dashed and dash dot lines) for the density of 0.5 g/cm3 . The 
trajectory of the center of mass is also plotted to compare. The ablation surface starts 
to move downward before 1 ns, and the shock wave is produced at the same time.



The shock wave reaches the rear surface around 2.2 ns, and a rarefaction wave 
having the initial velocity of the shocked region expands downward. In detail, the 
rarefaction wave propagates upward in Fig. 3.27 to the ablation surface. Then, 
gradually the density profile becomes a steady acceleration density one as shown 
in Fig. 3.24. As can be seen from this comparison, the experiment can be well 
reproduced with sufficient precision, and this code is widely used in the Japanese 
laser plasma community as the standard code for design and proposal of experiments 
and further analysis after a variety of experiments. 
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Fig. 3.27 R-T diagram from experiment and ILESTA code. The black marks are taken from time 
evolution of x-ray backlighting measurement. The mass center is plotted with black line. The flow 
lines of Lagrangian meshes from 1-D ILESTA code are plotted with water color lines. Reprint with 
permission from Ref. [18]. Copyright 1998 by American Institute of Physics 

In Fig. 3.28 the density distribution of the experiment and two simulations are 
plotted for the time of 3 ns in Fig. 3.27. In the simulations, the results are shown for 
two cases with the diffusion model (Spitzer-Harm: SH) or kinetic model (Fokker-
Planck equation: FP) as discussed later soon. In the present experiment, the laser 
intensity is relatively low at 7× 1013 W/cm2 , and the wavelength is short as 0.35 μm 
of the third harmonics. It is seen that the diffusion approximation sufficiently 
reproduces experimental data in this case.
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Fig. 3.28 The snap shot of the density profile around t = 3 ns in Fig. 3.27 is shown from 
experimental data with error bars, comparing to the corresponding simulation profile with solid 
line. Reprint with permission from Ref. [18]. Copyright 1998 by American Institute of Physics 

3.8.3 Hydrodynamics of the Final Compression 

In Fig. 3.29 a stretched view of the compression phase of the radius-time diagram of 
Fig. 3.23 is shown. After the shock front collides at the central singular point, the 
shock wave is reflected to decelerate the following fuel gas to stagnate the DT fuel 
plasma. Then, it collides at the boundary of high-density glass plasma and reflected 
toward the center again. Since the reflected shock becomes higher pressure via 
energy conversion from fluid kinetic energy to the thermal energy, the temperature 
and pressure of the fuel gas increases more to decelerate the glass plasma to 
finally push back outward as seen in Fig. 3.29. Of course, the assumption of 
one-dimensional spherical symmetry is too idealistic. It is natural to think that the 
lower-density fuel plasma cannot decelerate the heavier glass plasma and the glass 
plasma may penetrate directly to the central region repelling the DT fuel plasma. As 
the result, the fuel plasma cannot obtain enough pressure work by the glass plasma 
not to be heated up to enhance fusion reaction. Such physics is called hydrodynamic 
instability and mixing. Material mixing by hydrodynamic instability in the stagna-
tion phase is critical issue to explain the experimental results as shown in for 
example [15]. The instability and resultant turbulent mixing will be studied and 
discussed later. However, it is informative to know more about one-dimensional 
hydrodynamics in the final compression phase as shown in Fig. 3.29.
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Fig. 3.29 A stretched r-t 
diagram near the final 
compression of Fig. 3.23. 
When the shock wave 
collides the center, a 
reflected shock is generated 
to propagate outward to 
collide the contact surface 
with the falling glass shell 
plasma. This shock is again 
reflected by the higher 
density of the glass plasma 
by gaining energy from the 
kinetic energy of the glass 
plasma. This shock 
compress and heat further 
the DT plasma to enhance 
the DT fusion yield 

3.9 Ablation and Nozzle 

3.9.1 Laser Ablation by Heat Conduction 

It is useful to know a general property of the stationary ablation structure as shown in 
Fig. 3.18 driven by nonlinear electron heat wave, whose (P, V) diagram is plotted in 
Fig. 3.19. Let us consider for the case of plane geometry. From (2.23) and (2.27), the 
following two conservation relations are obtained. 

ρu= J0 : const: ð3:72Þ 
ρu2 P= 2P0 : const:, 3:73 

where the constants are given by the values at the sonic point defined with the 
subscript “0” as 

u2 0 = 
P0 

ρ0 
ð3:74Þ 

Chapman-Jouguet deflagration wave is given by knowing how to obtain the struc-
ture connecting from subsonic region to the sonic point. 

Let us discuss the structure in normalized flow velocity U = u/u0 and normalized 
temperature T = (P/P0)/(ρ/ρ0). From (3.72) and (3.73), the following simple relation 
is derived. 

T = - U- 1ð  Þ2 þ 1 ð3:75Þ
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Note that this relation gives a monotonic increase of the flow velocity in the subsonic 
region and requires the temperature is maximum at the sonic point (U = 1). 

dT = - 2 U- 1ð ÞdU ð3:76Þ 

In the case of laser ablation structure, the electron heat conduction determines the 
structure. So, the ablation structure depends on the physics of energy transport. In the 
case of diffusion-type heat conduction, the temperature change is managed by heat 
flux Q 

Q xð Þ= -K xð Þ∂T 
∂x

ð3:77Þ 

Therefore, the absorbed laser energy must supply this heat flux at the sonic point 
x = x0 with the laser heating rate S in the form. 

∂ 
∂x 

Q= Sδ x- x0ð Þ ð3:78Þ 

This assumption allows the solution continues to increase the flow velocity and 
expands to the vacuum region as the isothermal rarefaction wave. 

When we assume the stationary state even for the supersonic region, the temper-
ature must go down in the supersonic region as given in solution (3.75). This is not 
realistic model for the ablation structure expanding into the vacuum. As a simple 
model, it is appropriate to assume that the stationary deflagration wave is continu-
ously connects the iso-thermal rarefaction wave. 

Such one-dimensional stationary model can be applicable by changing the size of 
the one-dimensional geometry like a nozzle and spherical geometry as seen below. 

3.9.2 Laval Nozzle 

It is well-known that even with one-dimensional flow, but if the flow is in a nozzle 
with the cross-sectional area changing in space, it is possible to obtain a solution 
continuously transiting the sonic point from subsonic to supersonic. In this case, we 
have another valuable the cross-sectional area A(x). Then, (3.72) is replaced by the 
following relation. 

ρuA= const: ð3:79Þ 

In the present case, we have to use Bernoulli relation of steady state flow (2.97)  to  
compressible flow given as
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1 
2 
u2 þ dP 

ρ 
= const: ð3:80Þ 

Introducing the sound speed “a” and local Mach number M defined as 

a2 ≡ dP 
dρ 

, M = 
u 
a

ð3:81Þ 

Then, (3.80) is rewritten as 

dρ 
ρ 

= -M2 du 
u

ð3:82Þ 

This indicates that the density decreases along with the increase of the flow velocity. 
It is possible to change (3.79) as  

dρ 
ρ 
þ du 

u 
þ dA 

A 
= 0 ð3:83Þ 

Then, the following relation is obtained. 

1-M2 du 
u 

= -
dA 
A

ð3:84Þ 

This indicates that in the subsonic region (M < 1), the flow velocity increases with 
the decrease of the pipe size A, and the flow comes to the sonic point by keeping 
increase if A is minimum value at the sonic point M = 1. Then, in the supersonic 
region, the increase of flow velocity is maintained by increasing the size of the pipe. 
Such pipe is called Laval nozzle as shown in Fig. 3.30. 

It is useful to estimate how high supersonic flow velocity of gas is generated as 
the maximum. Let us assume that the high-pressure with very low velocity flow is 
generated out of the subsonic edge in Fig. 3.30. Assuming that the gas is adiabatic 
and P / ργ is satisfied. Then, (3.80) at the left boundary should conserve to reduce 
the relation. 

umax = 
2 

γ- 1 
Vs x0ð Þ ð3:85Þ 

where Vs(x0) is the sound velocity at the left boundary. Roughly speaking, the sound 
velocity increases with the temperature, increase of the gas temperature injecting to 
Laval nozzle gives higher exhausting velocity. In the jet engine, the fuel combustion 
in front of the nozzle increases the temperature of the gas to increase the pressure and 
the temperature to covert the heating energy to the large momentum flow. The total 
momentum flux is proportional to ρuAu. Increase of ρuA and exhausts with umax 

gives us the maximum propulsion force.
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Fig. 3.30 Structure of a 
Laval nozzle and flow 
velocity changing from 
subsonic to supersonic 

Gas jet generated with such Laval nozzle is widely used for laser-plasma 
experiments. In the laser wake-field acceleration of charged particles, ultra-intense-
short pulse laser propagates in low density gas and the gas jet is used to provides 
such almost constant density gas. The gas is spontaneously ionized when the laser 
interacts with the gas atom and plasma waves are generated as a wake of laser 
passage. In Fig. 3.31 an example of the gas density profile after the exhaust from the 
gas jet nozzle is shown. It is expected to give an almost constant density plasma in a 
vacuum chamber [19]. 

3.9.3 Solar Wind (Parker Solution) 

Although the temperature of the sun surface is about 6000 degrees, there is a corona 
region whose temperature is one million degrees in the outer layer, and plasma 
always flows out into outer space from the surface. This is called solar wind. The 
same thing happens with other stars, which is called stellar wind. Generally, 
hydrogen, helium and other heavy elements are ejected from the sun surface. It is 
huge amount of one million tons per second, and the solar wind is falling against 
the earth as well. The speed of the solar wind is as high as 300 to 900 km/s. The 
temperature is about 10 to one million degrees. 

Regarding solar wind, Parker elucidated the above Laval nozzle idea by applying 
it to solar wind. He has chosen the effect of spreading the cross-sectional area A to 
the spherical shape, and that M = 1 is gives with the radius at which the deceleration 
effect by the Sun gravity successfully transitions from subsonic to supersonic.
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Fig. 3.31 A typical experimental data of gas density ejected from the exit of gas jet nozzle for use 
to laser wake-field acceleration experiment. Reprint from Ref. [19]. Copyright 2012, with permis-
sion from Elsevier 

Let’s follow the Parker’s solution. First, the equation of continuity is 

4πr2 ρu= const:= 
dM 
dt

ð3:86Þ 

where M is the mass of the sun. We assume that the temperature of the solar wind is 
constant (T: constant). Then, the pressure is proportional to the density, and the 
sound speed a is also constant as 

a2 = 
P 
ρ 
= const: ð3:87Þ 

Then, the equation of motion is 

u 
du 
dr 

= -
a2 

ρ 
dρ 
dr

-
GM 
r2

ð3:88Þ 

Differentiation of (3.86) gives 

2 
dr 
r 
þ dρ 

ρ 
þ du 

u 
= 0 ð3:89Þ 

Substituting this into (3.88) and erasing dρ yields the following equation. 。
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Fig. 3.32 The velocity-
radius diagram to obtain the 
solution of the solar wind 
generated on the sun surface 
as subsonic flow to pass the 
sonic point to accelerate to 
supersonic. The integration 
path passing the saddle point 
provides uniquely the 
physically acceptable 
solution. Reprint from Ref. 
[20] with kind permission 
from Springer Science + 
Business Media 

M2 - 1 
1 
u 
du 
dr 

= 
2 
r 

1-
rc 
r

ð3:90Þ 

rc = 
GM 
2a2

ð3:91Þ 

Here, rc is the point at which the solar wind becomes sonic speed. When a typical 
value is entered, it is about 2.5 times the sun radius. 

Finally, it is useful to note about mathematics in obtaining the solution of Laval 
nozzle and the solar wind. It is easily found that for example, for a given tempera-
ture, numerical integration to the radius r cannot be extended to the supersonic 
region. As shown in Fig. 3.32, most of the integral solution of (3.90) cannot pass the 
sonic point, because the sonic point is mathematically singular point [20]. In general, 
it is recommended to find the pass from the sonic point to give physically reasonable 
solution at the solar surface and the infinity. 

3.9.4 Singularity and Saddle Points 

Now, in the case of Laval nozzle, an analytical solution has been shown already, but 
here we show that there exists a solution in which a differential equation having a 
singularity at the sonic point in (3.90) continues from subsonic to supersonic. For 
that purpose, we investigate the properties of differential curves at singular point 
(r = rc, u  = a). 

There are two types of singularities: saddle and node points. With a saddle point, 
the integral curve is uniquely determined in two-directional space in (3.90), but not 
uniquely determined if it is a node. It is understood that this sonic point is a saddle 
point, and there are two integral curves connecting from subsonic to supersonic 
speed. Let us see the mathematics below. 

Now, we study mathematical properties of the singular point in (3.90)
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r= rc þ δr ð3:92Þ 
u= a δu 3:93 

Then, Taylor expansion (3.90) is carried out with (3.91) and (3.92) to make (3.90) 
linearized equation around the singular pint. 

du 
dr 

= 2 
a 
rc 

2 
δr 
δu

ð3:94Þ 

The small deviations should be on the integral lines, namely 

δu 
δr 

= 
du 
dr

ð3:95Þ 

So, after all, the integral from the singular point must have the slope of the 
following two directions. 

du 
dr 

= ± 2 
p a 

rc 
ð3:96Þ 

The actual integral curve is as shown the thick solid line A-B in Fig. 3.32. The line 
C-D is non-physical integration path. 

In Fig. 3.32, the solar wind solution increases from subsonic to supersonic with 
radius, which corresponds to the solution of + sign in (3.96). Another integral curve 
is Bondi’s solution (1952) representing spherically symmetric accretion flow. The 
fundamental Eqs. (3.86) and (3.87) are the same, although the sign of the flow 
velocity is negative, namely matters fall on the surface of stars. The stationary 
solution of the so-called accretion flow, in which matters are accumulated from the 
surroundings, can be obtained at the same time. Actually, accretion is not spherical 
symmetry in the universe, in the case of a binary star system a white dwarf peels off 
the surface of a companion star and become heavier. In such a case, it is of a form of 
disk and it has an angular momentum at the same time. It rotates around the white 
dwarf and loses its angular momentum with viscosity and accretes matters on the 
surface of the white dwarf. Therefore, note that the Bondi solution is a very rough 
approximate solution. 
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Chapter 4 
Self-Similar Solutions of Compressible 
Fluids 

Abstract Strong shock waves are used to compress and heat any matters in the 
laboratory. The ablation pressure by intense laser is used to compress even solid 
matters. In plane geometry, it is easier to design multi-shocks to compress the 
matters, while it is more beneficial to use the spherical compression. No simple 
solutions are available to know the trajectories of shocks in one-dimensional spher-
ical symmetry. Here we see several analytical solutions with the self-similar method. 
The method is to find new governing solution of ordinary differential equation from 
partial differential fluid equations. The self-similar method is known before the birth 
of computer. 

The blast wave is the most famous one. Here, we review the basic method to 
derive several self-similar solutions allowing the spherical implosion, useful to laser 
driven implosion. The isobaric solution provides uniform pressure and spark-main 
fuel structure, and isochoric solution gives us uniform density profile at the maxi-
mum compression. It is shown that even including thermal conduction, it is possible 
to find a solution of ablation structure. This is an extended solution more appropriate 
compared to the steady state solutions shown in the previous chapter. 

The blast waves are widely used from laser experiments to supernova remnants 
(SNRs). SNRs are blast waves driven by the matters exploding by supernova 
explosion. A self-similar solution with forward and reverse shock waves is found 
to explain many observation data of SNRs. A numerical simulation shows that the 
solution of ejecta-driven shock changes from Chevalier’s self-similar solution to the 
other Sedov-Taylor one. The self-similarity is one of the key physics controlling 
nonlinear hydrodynamic equations. 

4.1 Introduction 

4.1.1 Strong Shock Reflection 

Consider strong shock limit where P1 ≫ P0 and P0 can be neglected in the Ranking-
Hugoniot relation in (3.13). In the case of irradiation of intense laser on solid matters,
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this limit is possible to be realized. However, as we see in Fig. 2.3, the equation of 
state (EOS) is not ideal. This means an effective specific heat γ is a function of 
density and pressure even in LTE. For example, aluminum is almost incompressible 
up to the 100 kBar (1 Bar = 105 Pa) and it becomes compressible over a few hundred 
k-Bar. The solid matters are hard because of Coulomb repulsive force in lower 
pressure than the Bulk modulus shown in Chap. 2. Over this pressure, most of solids 
have the dominant pressure of electron Fermi pressure. The Fermi pressure PF is 
proportional to the density as PF ρ5/3 .
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Neglecting P0, (3.16) gives the following scaling of achievable pressure by 
stagnation of a shock wave by a rigid boundary as shown in Fig. 4.1. 

P1 ≈ ρ0u
2 
0 ð4:1Þ 

The following simple formula is obtained 

P Mbar½ ]= 
ρ0 

g=cm3½ ]  
u0 

106 cm=s 

2 

ð4:2Þ 

If we can compress and accelerate a matter to the density of 100 g/cm3 and the 
velocity of 3 × 107 cm/s, an extremely high pressure around 100 Gbar can be 
achieved by the stagnation. It is hard to realize such initial condition with ρ0 and 
u0 in plane geometry, but the following idea is used. 

Fig. 4.1 The kinetic energy of fluid flow is converted to the thermal energy by collision with a rig 
wall. The density increases in the reflecting shock wave, but it is limited by the RH relation in plane 
geometry
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4.1.2 Tailored Compression 

Even in plane geometry, however, it is possible to compress matters to extremely 
high-density by use of multi shock waves, namely sequential shock compression. In 
Fig. 3.4, we have seen that the Ranking-Hugoniot curve is almost the same curve as 
the adiabatic curve for lower compression case. So, if we can shape the pressure 
to make shock waves so that each shock wave is that of compression of about 
two-times the density of the rear of the previous shock wave, it is possible to 
compress plasma under almost adiabatic condition. 

In Fig. 4.2, this tailored pressure compression is shown in x-t diagram (a) and a 
snap shot of the density at a time ts is plotted on the right (b). In this hydrodynamics, 
all shock waves are designed to arrive at x = 0 at the time of maximum compression 
(tm). The initial shock trajectory is plotted with blue and the sequential shocks are 
plotted with yellow lines in (a). Since a shock is always stronger than the front shock, 
the generated shock velocity is faster than the front one. If we can increase the 
number of shocks, it is equivalent to the adiabatic compression and the maximum 
density is proportional to the available maximum pressure. By use of a finite strength 
shock for the first one (blue), the adiabatic compression is possible with the entropy 
determined by the first shock wave. 

Of course, the design of the tailored compression is not so simple mainly because 
of non-ideal equation of state. As shown in Fig. 3.5, the phase transition from solid to 
plasma has complicated process with an effectively different freedom of physical 
condition. It has been carried out to study the equation of state of shocked solid 
materials theoretically, computationally, and experimentally. This issue will be 
discussed in this text later. 

Fig. 4.2 Schematics of tailored pressure for almost adiabatic compression in plane geometry. After 
the first shock wave shown in blue, many subsequent shock waves are generated. The density 
profile becomes like (b)  at  t  = ts. The maximum density is expected at t = tm
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4.1.3 Hollow Shell Implosion 

When an intense laser irradiates a solid material, it is possible to generate ~100 Mbar 
of so-called ablation pressure on the surface of a spherical target for nuclear fusion 
experiment shown, for example, in Fig. 4.3a. By use of spherical convergence 
geometry, it is possible to enhance the density and pressure. It is, however, hard to 
evaluate the effect of the spherical geometry, because as shown in Fig. 4.3b, the 
compressed and accelerated plasma of DT ice by shock waves is decelerated by the 
decrease of the surface shown with blue arrows (/r2 ), depending on the thickness of 
the shell and its pressure. In addition, self-pressure works to expands the shell as 
green force in Fig. 4.3b to reduce the density. It is true that we can achieve higher 
compression and extreme pressure if the thickness of the plasma shell is thin enough 
and the pressure is as low as possible, namely keeping low entropy state. As shown 
in Fig. 2.3, the lowest pressure at higher density is given by Fermi pressure and it is 
impossible to keep the pressure lower than the Fermi pressure. The Fermi pressure 
decelerate the shell velocity and force to expand the shell as shown in Fig. 4.3b. 

Therefore, it is not clear how the accelerated matter by shock waves converges 
toward the central singularity point. Theoretical guideline of the spherical effect on 
the shock dynamics is given as self-similar solution of the ideal fluid equations. 
This is explained in this Chapter. 

To obtain the image of one-dimensional fluid dynamics of laser implosion, one 
example obtained with the physics-integrated implosion code ILESTA [1] is shown 
for the case of a hollow plastic shell implosion. In Fig. 4.4, time evolution of fluid

Fig. 4.3 (a) A cut-view of a 
typical target structure of 
spherical laser fusion 
implosion. The ablator is 
irradiated by intense laser to 
generate the ablation 
pressure to compress the 
fusion fuel DT ice at the 
center of the target. The gas 
is residual gas with low 
pressure. (b) is the time the 
DT plasma is imploded near 
the center. It feels the force 
as shown with blue and 
green arrows



elements (Lagrangian trajectories) is plotted in radius and time diagram. A thin 
plastic shell (CH) of diameter 500 μm and thickness of 10 μm is irradiated by green 
laser (λL = 0.53μm) with energy of 8 kJ. The shapes of input (Pin) and the absorbed 
(Pabs) pulses are plotted in the inlet figure.
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Fig. 4.4 RT-diagram of dynamics of fluid elements in one-dimensional spherical implosion 
simulation. Plastic hollow shell is imploded by the laser power shown in the inlet 

In Fig. 4.4, the initial shock wave arrives at the rear-side of the shell at the point 
(1). The shock breaks through the shell and the shocked plasma expands as the 
rarefaction wave. The trajectory of the laser cut-off density is plotted with the line 
(2). As seen in the inlet, the peak of absorbed laser power is around t = 2.5 ns, and 
the shell plasma keeps to shrink toward the center of the target. The mean velocity of 
the plasma shell is kept almost constant and it is estimated to be u0 ≈ 3 × 107 cm/s. 

In Fig. 4.5, the trajectories of all fluid elements are plotted in the density and 
pressure diagram, where the cold curve of plastic shown with the blue dashed line 
from (0) to (1) is taken from Fig. 2.3. The initial condition of the simulation is all 
below the point (0). Since the laser intensity increases continuously, the plastic of
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solid CH is compressed almost adiabatically. The outer plastic is then ablated into 
vacuum, while it decreases the density more than two order of magnitude from the 
point (2) to (3). Note that the pressure is kept almost constant as the characteristic of 
the deflagration wave. This pressure is the ablation pressure to be discussed soon. It 
is seen that the ablation pressure is about 20 ~ 30 Mbar in Fig. 4.5. After the exhaust 
of plasma in the deflagration wave, the rarefaction wave expands to the vacuum 
while keeping a constant temperature, where the red dashed line is the constant 
temperature line (P ρ) in Fig. 4.5. 
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Fig. 4.5 Time evolution of all fluid elements in Fig. 4.4 are plotted in density-pressure diagram. 
The initial condition is near the point (0). The blue dashed line is the cold curve. The red dashed cure 
is a constant temperature line 

In the present simulation, the radiation preheat by d doped silicon is included. The 
radiation pre-heat increases the entropy of the plastic shell plasma. As the shrink of 
the shell radius, the density increases in the phase of the point (4) thanks to the effect 
of compression by the spherical convergence. The density increases from (2) to (5), 
then a strong shock wave generated at the center converted the shell kinetic energy to 
the compression energy as shown from the point (5) to (6). It is found that from (2) to 
(5) the compression is almost adiabatic and its adiabat α defined as 

P= αPc ð4:3Þ 

is about α = 8 in (2)–(5) and α = 10 at the maximum density.
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In the final convergence of the kinetic energy to the thermal energy, the maximum 
pressure is obtained in the simulation. By use of the velocity u0 and density ρ0 in the 
simulation, the point (5) in Fig. 4.5, rough evaluation (4.2) gives the pressure as 

P= 27 Gbar½ ] for ρ0 = 30 g=cc½ ] ð4:4Þ 

The simulation resulted the maximum pressure of about 40 Gbar, higher than the 
value above due to the spherical effect. As seen at the point (6) the density profile 
of the maximum pressure is clear to have a structure with the density from 30 to 
100 g/cc. This is because the center of the core is the part initially expanded by the 
shock at the time (1) in Fig. 4.4 and its entropy increases higher by the second shock 
at 2.4 ns. This means the final core has the central spark of high-temperature and the 
surrounding of high-density region automatically. The isobaric profile is commonly 
seen in the self-similar solution to be discussed later. 

It is well-known that to achieve the extremely high-pressure for nuclear fusion 
ignition, so-called tailored pulse is required [2]. Also, the implosion dynamics 
should be designed so that the DT ice plasma region in Fig. 4.3 is protected from 
the entropy increase by shock wave and radiation pre-heat. The material of the 
ablator should be selected by taking account that it does not emit x-ray radiation or it 
should be shielded by some idea. As the case of Fig. 4.4, the radiation pre-heat 
prohibited the low-adiabat compression of the adiabat, α < 2~3. 

The hydrodynamic stability of implosion is very critical especially for thin-shell 
and low-adiabatic implosion. This means that to achieve expected high-density 
compression, it is required to develop three-dimensional hydrodynamics code with 
important physics integrated in the code. For example, HYDRA and ASTER are 
used as the standard three-dimensional integrated codes [3, 4], respectively At least 
two-dimensional simulation code is necessary to analyze the implosion experiments 
from which we can obtain limit data indirectly. The hydrodynamic instability of 
implosion is hot topics and to be discussed in details in Volume 3. 

4.1.4 Analytic Solution of Spherical Implosion 

Any kind of computer simulation code should be verified through comparing to the 
code with the corresponding experiment. The comparison has been carried out for a 
simple part of the plasma dynamics as explained in the previous chapter. Since the 
implosion dynamics with help of the singularity of spherical geometry is important 
to the application of high-energy-density physics in laser plasma, it is useful to know 
some analytic solutions of spherical dynamics. Possible idealistic solutions have 
been found by altering the time and space dependent partial differential equations to 
coupled ordinary differential equations. This method is to find self-similar solution 
by finding the similarity variable. 

In the previous chapter, we studied analytic solutions with the steady state 
assumption in the appropriate moving frame. In the present chapter, on the other



hand, we will review the self-similar solutions describing spherical implosion and 
explosion dynamics. It is also shown that a self-similar solution is also found to the 
time dependent ablation structure under the idealized boundary condition. 
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4.2 Basic Equations for Self-Similar Solutions 

Try to study the physics of spherical compression by a strong shock wave propa-
gating from the outer sphere in a uniform density fluid. It is surprising to know that 
theoretical works were published in early time by Guderley, Landau, others as 
described in the books Chap. XII in [5] and Chap. 6.7 in [6], where the method of 
self-similar-solution has been used to reduce nonlinear partial differential equations 
to ordinary differential equations as an eigen value problem. They obtained approx-
imate analytical solution, and the mathematical method is described in [5, 6]. The 
hydrodynamic stability of the Guderley solution is studied in [7], where the property 
of the Guderley solution is numerically solved to obtain the solution. The Guderley 
solution gives the fluid dynamics in the converging phase of shock wave and the 
fluid dynamics after the shock reflection at the center, the singular point. It is 
reasonable to expect the geometrical effect, namely the shocked matter moves 
toward the center to be compressed and heated adiabatically by the geometrical 
effect and the central singularity effect. 

Of course, the spherically symmetric hydrodynamics is naive assumption and 
there is no proof that the spherical symmetry can be reasonably achieved even with 
highly precision technology. This is a big issue to be discussed relating to the laser 
fusion in Volume 3. The present understanding is that it is not possible because of 
the hydrodynamics instability and turbulent mixing generated by the thermal noise 
on the target and pressure nonuniformity by laser ablation as will be discussed later. 
But, analytical solution such as self-similar solution is very useful to know the fluid 
dynamics in such extreme condition. The solution can be used to verify the accuracy 
of the hydrodynamic simulation code under idealized condition. 

4.2.1 Self-Similar Solutions 

Compression of matters with shock waves can be evaluated by using the RH 
relations and rarefaction wave in the plane geometry. It is not trivial to predict the 
propagation of shock wave in the spherical geometry, because time dependent 
geometry effects on the shock front continuously change the density, flow velocity, 
and pressure in time, in space as well. In solving an idealized nonlinear coupled 
equations, so-called the method of self-similar solution has been applied in many 
cases. The type of the fluid dynamics consists of two-types [8].
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1. Implosion and collapsing cavities 
2. Converging and diverging shocks 

Following Refs. [6, 9], let us summarize the solutions useful for relating to the laser 
implosion. 

The self-similar solution is based on the dimensional analysis of the basic 
equations as we have already shown a simple case of the nonlinear heat conduction 
in Chap. 2. In what follows, we consider only the case of adiabatic dynamics except 
shock jump surface. Including the shock front in the self-similar solutions, the strong 
jump limit is assumed to connect two different self-similar solutions. Note that the 
adiabatic assumption means that the entropy S = P/ργ is constant in time for each 
fluid particle, while the spatial variation of S(r) is allowed as initial condition. 

Let us follow the notation in [9]. The basic equations are (2.20) – (2.22) with 
Q = 0, namely adiabatic condition dS/dt = 0 is assumed. In the spherical geometry, 
the equations are given in Euler description as 

∂ρ 
∂t 

þ ∂ 
∂r 

ρuð  Þ þ  2ρu 
r 

= 0 ð4:5Þ 

∂u 
∂t 

þ u ∂u 
∂r 

þ 1 
γρ 

∂ 
∂r 

ρc2 = 0 ð4:6Þ 

∂c 
∂t 

þ u ∂c 
∂r 

þ γ- 1 
2 

c 
∂u 
∂r 

þ 2u 
r 

= 0 ð4:7Þ 

where c is the sound velocity. 

c2 = γ 
P 
ρ

ð4:8Þ 

We take the similarity variable ξ with an unknown constant α in the form. 

ξ= 
r 
tj jα ð4:9Þ 

Note that ξ is non-dimensional variable with use of typical time t0 (t → t/t0) and 
r0 (r → r/r0) to be defined in applying the solutions to some real problem [6, 9]. 

Assume the following solution from the dimensional analysis. 

u r, tð Þ= α 
r 
t 
U ξð Þ ð4:10Þ 

c t, rð  Þ= α 
r 
t 
C ξð Þ ð4:11Þ 

ρ r, t = ρ0r
κ N ξ 4:12
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Note that α and κ are constants and α is the eigen value as see below. In the analysis, 
the constant α is determined like an eigen value to obtain any expected solution of 
U(ξ) and C(ξ), while the parameter κ is given so that the density profile is reasonable 
as expected. As we see soon, for a given test value of α, we can obtain the function 
U(ξ) and C(ξ) satisfying an appropriate boundary condition in the case of collapsing 
cavities. In the shock case, the jump relation connects the solution of U(ξ) and C(ξ) 
from subsonic to supersonic points. 

Inserting (4.10, 4.11, and 4.12) to (4.5, 4.6, and 4.7) and using the simple 
relations 

∂f ξð Þ  
∂t 

= - α 
ξ 
t 
df ξð Þ  
dξ 

, 
∂f ξð Þ  
∂r 

= 
ξ 
t 
df ξð Þ  
dξ

ð4:13Þ 

Then, (4.6) and (4.7) are reduced to the following two ordinary differential equations 
and one conservation relation [6], 

dU 
d lnξð Þ  = 

G U,Cð Þ  
D U,Cð Þ ð4:14Þ 

dC 
d lnξ 

= 
F U,Cð Þ  
D U,C

ð4:15Þ 

where 

D V ,Cð  Þ=C2 - 1-Uð Þ2 ð4:16Þ 
F U,Cð  Þ  

=C 1-Uð Þ  1 
α
-U þ U λ þ γ- 1ð Þ  U- 1ð Þ½ ]-C2 þ ε 

2γ 
C2 

U- 1 
ð4:17Þ 

G U,Cð  Þ=U 1-Uð Þ  1 
α
-U -C2 3U þ κ- 2λð Þ=γ½ 4:18Þ 

λ= 
1 
α
- 1, ε= κ γ- 1ð Þ þ  2λ ð4:19Þ 

And the conservation law provides the density profile as follows. 

N ξð Þ=K3 αξ
1=α C 

A 
1-Uð ÞB , ð4:20Þ 

A= 
μ κ þ 3ð Þ  

β 
, B= 

κ þ μλð Þ  
β 

, μ= 
2 

γ- 1 
, β = 3- μλ ð4:21Þ 

where K3 is constant. 
These equations are used by Guderley to solve the shock wave converging to the 

center and reflected by the center in the spherical geometry [9]. It is amazing to know
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that he solved this problem in 1942 [9]. Almost the same time, Taylor and Sedov 
has independently solved the problem of the blast wave, which is the shock 
dynamics of point source explosion in air [10–12]. In this chapter, let us briefly 
review the two cases relating to the laser-driven implosions and blast waves. The first 
one is isobaric and isochoric implosion, and the second one is Taylor-Sedov 
explosion. 
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4.3 Self-Similar Implosion (Isobaric) 

The mathematical method proposed by Guderley is applied to obtain an implosion 
dynamics to form almost constant pressure with higher temperature at the center 
behind the reflected shock wave at the maximum compression time [13]. The basic 
equations are (4.5, 4.6, and 4.7). In the implosion phase, we find the solution with the 
density like Fig. 4.2b, while spatial profile of the entropy increasing from the rear 
to the front of the imploding shell, so that the high-temperature with relatively 
low-density central core is expected. The free parameter of κ in (4.12) is set κ = 3. 

The general properties of coupled differential Eqs. (4.14) and (4.15) is studied. At 
first 

D= 0, C= -U þ 1 and U- 1 ð4:22Þ 

D = 0 gives a singularity condition. Integrating (4.14) and (4.15) on these lines, the 
derivative of U and C diverges except for G = 0 and F = 0. This means if we can 
find the point in the (U, C) plane where G = F = 0, the integration can be proceeded 
normally. This point is also a singular point (S). 

Solving the algebraic couple equations 

G U,C; αð Þ= 0 ð4:23Þ 
F U,C; α = 0 4:24 

on the line (4.22), it is possible to obtain the singular point (S) in a form. 

α= α Us,Csð Þ ð4:25Þ 

In the isobaric implosion [13], it is found that α = 0.7 gives the expected solution 
with reasonable profiles. In finding the exponent as an eigen value problem, the 
following integral is solved in (U,C) space with a trial value of α from (4.25). 

dU 
dC 

= 
G  U,C; αð Þ  
F  U,C; αð Þ ð4:26Þ
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Fig. 4.6 The integral 
trajectories to allow the self-
similar solution of isobaric 
implosion and explosion 
dynamics in (U, C) space. 
The implosion (t < 0) is in 
U > 0 region and explosion 
(t > 0) is in U < 0 region. 
Reprinted with permission 
from Ref. [6]. Copyright 
1998 by Oxford University 
Press 

It is concluded in [13] that the integration path of implosion phase (t < 0) and 
explosion phase (t > 0) should take the path as shown in Fig. 4.6. The point B and D 
are the singular points. 

In the implosion phase (t < 0), the integration path from F (r → 0) to B to 
O (r → 1) gives the solution. In the explosion phase (t > 0), the high-temperature 
central core is E(r → 0) to the rear of the reflection shock S1 to the state in front of the 
shock wave S2 connecting to the central high-temperature core E (r → 0). Note that 
the velocity is defined as in (4.10) and U > 0 in t  < 0 means the velocity is negative, 
namely in implosion phase. For t > 0, the strong shock jump from the RH relation is 
assumed, and the fluid is strongly decelerated by the shock from U ≈ - 3.5 to 
U ≈ - 0.5. 

It is important to know the properties of the singular points in (U,C) plane. It is 
easily found that the singular point B in Fig. 4.6 is the saddle point and the 
integration path can cross the singular line (4.22) only the path shown in a stretched 
view Fig. 4.7 near the singular point B. It shows a general property of integration 
paths started from different points in (U,C) plane. The point B is indicated as the 
point S, the saddle point in Fig. 4.7. We found that this is the same as the saddle point 
in Fig. 3.32. 

On the other hand, the singular point of O, where U = C = 0 is the other type of 
singular point. It is a node point. Near the node point, all integral paths converge to 
the node point or all paths can start all direction from the node point. In the present 
isobaric implosion, the solution should be an integral path from the point O to 
smoothly transit the singular point B on the saddle path shown with orange in 
Fig. 4.7. Then, all normalized functions, U(ξ), C(ξ), and N(ξ) are obtained by 
numerically integrating (4.14) and (4.15).
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Fig. 4.7 A schematic of a 
saddle point in the 
integration paths in 
two-dimensional space. The 
integration path can 
smoothly continue over the 
saddle point as the 
orange line 

Fig. 4.8 The density 
profiles given by the self-
similar solution for the 
isobaric implosion. Reprint 
with permission from 
Ref. [13]. Copyright 1998 
by American Physical 
Society 

The time evolution of the density profile is given as shown in Fig. 4.8 [13]. Note 
that the solution is a hollow shell with the front ξF = 0.96 and the shock front 
ξS = 0.198. Their trajectories are plotted with the dashed lines, r(t) = |t|α ξ, 
where ξ = ξF and ξS. To make the central hot spark, the density and entropy profiles 
in the implosion phase is assumed at t =-1 as shown in Fig, 4.8. At the time of void 
closure (t = 0), the solution continues to the explosion phase (t > 0). A strong shock 
wave traveling to the outward is generated in the still-imploding fluid. The spatial 
profiles of the density, temperature, and pressure after the implosion are shown in the 
inset figure at t = 1.6. So-called isobaric central ignition profile is formed.
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4.4 Guderley Self-Similar Solution 

The Guderley solution is also an implosion dynamics. The difference from the above 
is that in the implosion phase, a strong shock wave is assumed to travel in a uniform 
gas (κ = 0). Then, it is found that the eigen-value is α = 0.688 [9]. 

In this case, the self-similar solution starts from the shock front (ξ = 1). The 
imploding shock front is the point “A” in Fig. 4.6 obtained by the RH relation for 
strong shock limit. The integral path has to come to the singular point (saddle point) 
on the line U + C = 1 same as the previous case. The integration path goes to the 
point “O”. In the explosion phase, it takes the path in negative U and jump from “S1” 
in the negative U to “S2” in the positive U, then it goes to the large C region in 
Fig. 4.6. 

In Fig. 4.9, the time evolution of the density in (r, t) space is shown. The density 
behind the converging shock wave increases with the radius because of spherical 
geometry effect. The density becomes flat at t = 0 with negative velocity, but 
U = 0 in 0 < ξ < 1. Then, the reflected shock is produced and propagates to have 
the snap shot at t = 1 in Fig. 4.9. The maximum density is 32ρ0. 

It is noted that hydrodynamic stability is studied to this Guderley solution 
numerically. It is reported that the 3-D perturbation at the shock front oscillates 
and relatively stable to the hydrodynamics instability [7]. 

Fig. 4.9 The density 
profiles given by the self-
similar solution of 
converging shock wave in 
gas with constant density in 
spherical geometry, 
Guderley solution. 
Reprinted with permission 
from Ref. [6]. Copyright 
1998 by Oxford University 
Press
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4.5 Isochoric Implosion 

In Ref. [14], a self-similar implosion to provide with a uniform density profile behind 
the reflected shock is tried to find. This is the modification of the above isobaric 
implosion, and such uniform density is called “isochoric”, isochoric implosion. The 
initial condition of the entropy is almost null at the front with finite implosion 
velocity. This indicates that the front point (ξ = 1) should be (U, C) = (1, 0). 
Then, the integration path has to pass the saddle point on U + C = 1 in Fig. 4.6 to 
converge to the point “O”. 

In the explosion phase (t > 0), the shock wave travel outward while keeping high-
density behind the shock. We find a solution that the produced shock propagates 
outward with falling fluid in front and compressed fluid behind. In Ref. [14], the 
solution is found by starting the mathematical definition used in Ref. [8], where the 
similarity variable x = t/rλ . This corresponds to α = 1/λ in the form of ξ = r/tα . 

From the asymptotic solution given in [6], κ is found to be given as a function of 
α = 1/λ in the form. 

κ = 2 1=α þ 1ð Þ= γ- 1ð Þ ð4:27Þ 

This relation is obtained by requiring the density is flat in the asymptotic relation at 
t = 0. The eigen-value α = 0.789 is obtained. Then, the density profile must be steep 
as κ = 6.801 to allow very low adiabat at the front. 

The time evolution of the density from the resultant self-similar solution is plotted 
in Fig. 4.10 for the implosion phase (left) and explosion phase (right). About 
400 times the initial density is achieved with almost flat profile. 

In this paper, the authors tried to find the target design so that the high-density 
compression is approximately realized by laser irradiation on a spherical target. They 
try to find the laser pulse shape for a standard laser fusion target shown in Fig. 4.11. 
To form the initial condition with U, C, and N profiles in Fig. 4.10, one Mbar 
pressure is loaded at the DT ice surface neat t = 10 ns. The optimized radius-time 
evolution of all fluid elements obtained with HYDRA code is plotted in Fig. 4.12

Fig. 4.10 Time evolution of isochoric implosion (left) and explosion (right) based on a self-similar 
solution. Reprinted with permission from Ref. [14]. Copyright by IAEA
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Fig. 4.11 The optimized 
target structure to realize an 
isochoric implosion with 
HYDRA 1-D 
simulation code. Reprinted 
with permission from 
Ref. [14]. Copyright by 
IAEA 

Fig. 4.12 Flow diagram 
and the pressure history of 
the optimized implosion to 
realize the isochoric density 
profile after the maximum 
compression. Reprinted 
with permission from 
Ref. [14]. Copyright by 
IAEA 
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with the time evolution of corresponding pressure at the out surface of the DT ice. To 
keep the pressure reproduces the self-similar solution, 700 Mbar pressure is gener-
ated at the end of the optimized tailored laser pulse.
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Fig. 4.13 HYDRA 1-D 
simulation result of the 
density evolution modeling 
the self-similar solution of 
Fig. 4.10 (right). Reprinted 
with permission from 
Ref. [14]. Copyright by 
IAEA 

The initial shock wave travels in the ablator and collides the DT ice surface 
(t = 10 ns). Then, the rarefaction wave starts to expand to the inside of the shell 
around t = 19 ns to decrease the density like in Fig. 4.12. The rarefaction wave front 
comes to the DT ice surface to decrease the pressure near t = 20 ns. With continuous 
increase of laser power, the pressure increases to keep the self-similar solution. It is 
impossible to control the evolution after t > 0 in the self-similar solution. Actually, 
HYDRA simulation gave the density evolution after the shock formation as shown 
in Fig. 4.13. It is clear that almost the same profile as the self-similar solution in 
Fig. 4.10 is realized. The optimized laser pulse shape is given in [14], which is a 
highly tailored pulse with intensity from ~3 × 1012 to ~4 × 1015 W/cm2 . It  i  
concluded that this isochoric implosion can be designed with the total laser energy 
of ~500 kJ. 

4.6 Self-Similar Solution – Homogeneous Dynamics 

In early time of laser fusion research, adiabatic self-similar solutions have been 
studied for the implosion and the final stagnation phases. R. Kidder has published a 
series of papers to show self-similar solutions of hydrodynamics of spherical implo-
sion by tailored adiabatic compression [15]. Such solution is called homogeneous 
adiabatic flow. Hydrodynamic stability is also studied to the self-similar solution of 
implosion. The solution is applied to study the physics of ignition and nuclear burn 
as a pioneering work in laser fusion [16]. The homogeneous adiabatic flow is also 
applied to model the stagnation dynamics near the maximum compression of 
implosion [17] to study the hydrodynamic stability of the final compression phase.
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Both of self-similar solutions are important to study the dynamics of implosion 
and analytically study the stability of the solutions. The self-similar solution and its 
stability analysis can be useful not only to design the implosion dynamics but also 
to use the verification and validation (V&V). The self-similar solutions to be 
discussed here is obtained by the method of variable separation, not using the 
similarity variable in (4.9). The mathematics to obtain the self-similar solutions in 
this case is easier than the previous case, since the solution is adiabatic and not 
necessary to take into account the jump by shock wave. 

Here, two different self-similar solutions are derived for adiabatic assumption, 
Namely, it is possible to apply any cases with different spatial distribution of entropy 
for each fluid element in the imploding or stagnating plasmas. The solution of the 
stagnation dynamics is explained at first to derive the equations, and the implosion 
dynamics is explained by use of the same equation with different separation constant. 

4.6.1 Stagnation Dynamics 

The self-similar solutions for the spherical geometry studied so far always have 
singularity at t = 0 and we allow the fact that the solutions diverge to infinity. Of 
course, such divergence is allowed only mathematically and we have to consider 
neglected physics such as thermal conduction, viscosity, etc. We assume, however, 
that even such non-adiabatic physics plays important role near t = 0, the solution 
will be approximately continuous over the time t = 0. 

In laser plasmas, another type of self-similar solution is used to describe the final 
implosion phase, so-called stagnation phase [1]. This solution models the hydrody-
namics seen in Fig. 3.29. This self-similar method is introduced to model supernova 
explosion hydrodynamics [18]. In this case, the similarity variable in the form of 
(4.9) is not assumed, but ordinary differential equation is found by the mathematical 
method of separation of variables. Instead of Euler type basic equations in (2.23, 
2.24, and 2.25), Lagrangian type Eqs. (2.20, 2.21, and 2.22) is used to obtain the 
trajectory of each fluid element R(t, r0), where r0 is Lagrange coordinate of each fluid 
element. So, the density ρ(t, r), flow velocity u(t, r), and pressure P(t, r) are assumed 
in a functional form of A(r0)B(t). This means the Lagrangian coordinate r0 corre-
sponds to the similarity variable ξ. 

In spherical one-dimensional system, Lagrangian type Eqs. (2.20, 2.21, and 2.22) 
without the force and heat source can be given in the form with the Lagrangian 
coordinate R(t, r0), 

d 
dt 
ρþ ρ 

R2 
∂ 
∂R 

R2 u = 0 ð4:28Þ 

ρ 
d 
dt 
u= -

∂ 
∂R 

P ð4:29Þ



ð Þ ð Þ ð Þ ð Þ
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d 
dt 

P ρ- γð Þ= 0 ð4:30Þ 

The radius R is the radius of fluid element located at r = r0 at t = 0 and defined as 

d 
dt 
R= u ð4:31Þ 

The time evolution of the radius of a fluid element is defined with the scale function 
F(t), corresponding to the above B(t). We try to model the stagnation dynamics 
shown in Fig. 3.29. Smoothing the shock traveling effect in the stagnation dynamics, 
it is possible to obtain the functional form of F(t) so that the kinetic energy is 
converted to the thermal pressure to re-bounce the converging dynamics to 
our-ward. 

Setting t = 0 at the maximum compression and the radius of each fluid element to 
be ξ, the time dependence of each Lagrange mesh is defined as 

R t, ξð Þ= ξF tð Þ ð4:32Þ 

Then, F(t = 0) = 1 is required. 
It is easily to derive the following relation from conservation law of mass and 

entropy. 

ρ t, ξð Þ=Φ ξð ÞF tð Þ- 3 ð4:33Þ 
P t, ξ =Π ξ F t - 3γ 4:34 

where Φ(ξ) and Π(ξ) are the profiles of density and pressure at t = 0. For the case of 
deceleration to the center, the equation to the time evolution is derived from (4.29) in  
the form. 

F3γ- 2 d
2 

dt2 
F = 

1 
τ2

ð4:35Þ 

where τ is a characteristic time constant for the stagnation dynamics. It is order of 
nano-sec in laser implosion and sec in supernova explosion. 

We can assume any reasonable density profile Φ(ξ) at the maximum compression, 
while the pressure should satisfy the force balance relation, 

d 
dξ 

Π  ξð Þ= -
ξ 
τ2 
Φ ξð Þ ð4:36Þ 

It is easy to solve (4.35) and for the case with γ = 5/3, we obtain.
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Fig. 4.14 Normalized t-r 
diagram of fluid elements in 
the deceleration phase, 
where t = 0 is the maximum 
compression 

F tð Þ= 1 þ t 
τ 

2 1=2 

ð4:37Þ 

One can easily confirm that this F(t) is a good approximation of the dynamics of the 
contact surface in Fig. 3.29. It provides approximate model for convergence (t < 0) 
and expansion (t > 0) as shown in [t/τ,F(t)] diagram (t-r diagram) in Fig. 4.14. 

4.6.2 Kidder’s Implosion Dynamics 

In 1974, just after the proposal of tailored implosion for laser fusion by Nuckolls 
et al., Kidder proposed to use a self-similar solution for theoretical design of laser 
implosion to achieve extremely high-density [16]. It is the theory of homogeneous 
isentropic compression and its application to laser fusion. Homogeneous compres-
sion indicates that the target material with any layered structure converges uniformly 
with a constant entropy S given as the initial condition. The solution allows any 
entropy distribution in space. 

The equations are same from (4.28) to (4.34), while the variable separation 
constant in (4.35) has negative sign and (4.37) becomes as follow. 

F tð Þ= 1-
t 
τ 

2 1=2 

ð4:38Þ 

(4.38) is rewritten in the relation of circle in (t/τ,F) 

F2 þ t=τð Þ2 = 1 ð4:39Þ 

It is clear that the fluid is at rest at the beginning, t = 0, and dF/dt → at t/τ = 1.
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Fig. 4.15 Normalized t-r 
diagram of fluid elements in 
uniform implosion 
dynamics 

At the maximum compression, t = τ, implosion velocity becomes infinity and all 
fluid elements converge at the central singular point. Of course, this is mathematical 
solution and density of (4.33) and pressure (4.34) becomes infinity. 

In Fig. 4.15, virtual trajectories of fluid elements located in normalized space, 
ξ/R0, is plotted, where R0 is the initial radius of target and τ is regarded as the 
implosion time. This solution can be applicable to any density profile at t = 0, for a 
spherical solid ball, gas target, shell target, and so on. The application of the solution 
to laser fusion experiment, the critical issues are 

1. How to generate the initial condition satisfying (4.36). 
2. How high-density can be achieved even if the finite maximum pressure is 

demanded. 
3. How to generate the ablation pressure as shown in Fig. 4.12. 

Kidder has applied the solution of a hollow shell DT target to study the possible 
scenario, such as required laser pulse shape and its total energy, for demonstration of 
ignition, burn, and fusion energy production [19]. 

4.7 Self-Similar Solution of Ablation Dynamics 

It is already shown that the deflagration and isothermal rarefaction waves are 
generated, when an intense laser is absorbed by solid target. Then, it is assumed 
that the deflagration wave is in stationary state. It is better if we can find an self-
similar solution of the ablation structure valid to describe the time evolution of 
ablation plasma. The author found the self-similar solution of the ablation dynamics 
to the basic equations of one-fluid two-temperature fluid model [20], while the paper 
was published in Japanese. Therefore, I would like to show the self-similar solution



for the ablating plasma. The nonlinear electron heat conduction and electron-ion 
temperature relaxation are included within the ideal plasma assumption. 
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We assume that the plasma is fully ionized with ion charge Z and its mass mi. We  
solve (2.105, 2.106, 2.107, and 2.108) to the ion number density n, velocity u, and 
ion and electron temperatures, Ti and Te. The specific heat ratio γ = 5/3 is assumed. 
Then, ρ = min, εi = 3/2(Ti/mi), εe = 3/2(ZTe/mi). We try to find a self-similar solution 
in the plane geometry in the x-coordinate. Then, it is possible to reduce them to the 
following four coupled equations after neglecting source terms and ion thermal 
conduction much smaller than electron one. 

∂n 
∂t 

þ ∂ nuð Þ  
∂x 

= 0 ð4:40Þ 

∂u 
∂t 

þ u ∂u 
∂x 

þ 1 
min 

∂ 
∂x 

n ZTe þ Tið Þ½ ]= 0 ð4:41Þ 

∂Ti 

∂t 
þ u ∂Ti 

∂x 
þ 2 
3 
Ti 

∂u 
∂x

- ν0 
n Te - Tið Þ  

Te 
3 
2 

= 0 ð4:42Þ 

∂Te 

∂t 
þ u ∂Te 

∂x 
þ 2 
3 
Te 

∂u 
∂x

þ ν0 n Te - Tið Þ  
ZTe 

3 
2

-
2 
3n 

K0 
∂ 
∂x 

Te 
5 
2 
∂ 
∂x 

Te = 0 ð4:43Þ 

where ν0 and K0 are physical constants defined in (2.109) and (2.110) with Coulomb 
log. In the following calculations we solve the case with Z = 1 and  lnΛ = 10 for 
simplicity. 

It is important to note that if we try to find the solution with a given density at the 
ablation front, it is hard to obtain the self-similar solution because the density is fixed 
by this condition. Instead, we use the property of the ablation front that the density, 
velocity, and temperature profiles are very steep and the ablation structure may not 
be affected even if we adopt an ideal condition. The mass ablation rate, nu, and 
ablation pressure, nTe and nTi, are finite, while n is infinity and u, Te, and Ti are null. 
This assumption is acceptable as seen, for example, in Figs. 3.23 and 2.24. There-
fore, we find a self-similar solution satisfying the conditions. 

n=1, u,Te, Ti = 0 
nu, n Te þ Tið Þ  : finite at x= 0 ð4:44Þ 

4.7.1 Dimensional Analysis 

The dimensional analysis of (4.40)–(4.43) requires the following dependence to the 
coordinate x and time t. 

u ~ x 
t 
, Te,Ti ~ x 

t 

2 
ð4:45Þ



ð Þ ð Þ
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In the present analysis, the temperature relaxation and electron thermal conduction 
by Coulomb binary collision are determined by the collision time discussed in 
Sect. 2.1. They both are function of the collision frequency ν in the form. 

ν / n 

T3=2 
e 

ð4:46Þ 

Since (4.40) and (4.41) are homogeneous to the density n, (4.46) gives the dimension 
of the density n as the condition that a self-similar solution is possible. Inserting 
ν~1/t to (4.46), it is found that the density should be proportional in the form. 

n ~ x3 

t4
ð4:47Þ 

We introduce the similarity variable ξ same as (4.9). 

ξ= 
x 
tα

ð4:48Þ 

Then, we can assume the following functional form. 

n=K0m
5=2 
i t3α- 4 g ξð Þ ð4:49Þ 

u= tα- 1 v ξ 4:50 

Ti =mit
2 α- 1ð Þτi ξ 4:51 

Te =mit
2 α- 1ð Þτe ξ 4:52 

Inserting (4.49, 4.50, 4.51, and 4.52) into (4.40, 4.41, 4.42, and 4.43), the following 
coupled ordinary differential equations are obtained. 

v- αξð Þg0 þ v0 þ 3α- 4ð Þ½ ]g= 0 ð4:53Þ 

v- αξð Þv0 þ 1 
g 
g τe þ τið Þ½ ]0 þ α- 1ð Þv= 0 ð4:54Þ 

v- αξð Þτ0 i þ 2 
3 
v0 þ 2 α- 1ð Þ  τi - μ0 

g τe - τið Þ  
τ3=2 e 

= 0 ð4:55Þ 

v- αξð Þ  τe þ τið Þ0 þ 2 
3 
v0 þ 2 α- 1ð Þ  τe þ τið Þ- 2 

3g 
τ 
5 
2 
eτe

0 0 
= 0 ð4:56Þ 

where the dash (′ ) means the derivative by ξ.  In  (4.55), μ0 = miK0ν0 (=6.417).
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4.7.2 Integration 

We have to solve the coupled Eqs. (4.53, 4.54, 4.55, and 4.56) by starting from the 
boundary shown in (4.44). To numerically integrate them, approximated analytic 
solutions are necessary near the ablation front (x = 0). By use of the approximate 
boundary condition (4.44), (4.53, 4.54, 4.55, and 4.56) reduce to the following 
equations for ξ ≈ 0. 

vg= J0 : const: ð4:57Þ 
g τe τi =P0 : const: 4:58 

τe = τi 4:59 

v τe þ τið Þ0 þ 2 
3 
v0 τe þ τið Þ- 2 

3g 
τ 
5 
2 
eτe

0 0 
= 0 ð4:60Þ 

It is possible to set J0 = 1 by re-scaling the definition of ξ, but P0 should be 
determined so that the solution is acceptable. As we see below, the constant P0 is 
determined as the eigen-value problem so that the solution satisfies the boundary 
condition at large ξ point. 

Now, it is possible to solve (4.60) for ξ ≪ 1, and the following relation is 
obtained. 

τe = τi = 
25 
2 
ξ 

2=5 

ð4:61Þ 

g= 1=v= 
P0 

2 
25 
2 
ξ

- 2=5 

ð4:62Þ 

Consider an asymptotic solution for ξ → 1. Since we are interested in a solution 
with finite total energy of the ablation plasmas, namely the heat flux from ξ → 1 
should be finite. 

τ 
5 
2 
eτ

0 
e = S0 ξ→1ð Þ 4:63Þ 

where S0 is a constant to be determined after integration. The boundary condition 
(4.63) is satisfied with the asymptotic solution of the electron temperature. 

τe / ξ 2 7, τi = 0 ξ→1ð Þ 4:64Þ 

Consider how the integration path is determined by refereeing the same type of plane 
of Fig. 4.6. In the present case, we consider the velocity and temperature diagram 
(V, T) as defined below.



ð

ð

ð
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g ξð Þ= 
Γ ξð Þ  
ξ 

, v ξð Þ= ξV ξð Þ, τe ξð Þ þ  τi ξð Þ= ξ2 T ξð Þ ð4:65Þ 

Transform (4.53) and (4.54) to the coupled equations for the new variables. 

V - αð Þ dlnΓ 
dlnξ 

þ dV 
dlnξ 

= 4 1- αð Þ ð4:66Þ 

T 
dlnΓ 
dlnξ 

þ V - αð Þ  dV 
dlnξ 

= -
d 
dξ 

ξTð Þ- V - 1ð ÞV ð4:67Þ 

Consider the property of (4.66) and (4.67) in the asymptotic limit (ξ→1). From the 
asymptotic relation of (4.64), T and the pressure term in (4.67) vanishes. 

T // ξ- 12=7 , 
d 
dξ 

ξTð Þ /  ξ- 12=7 → 0 ξ→1ð Þ 4:68Þ 

Eliminating the velocity derivative term in (4.66) and (4.67), we obtain the following 
equation to the density. 

dlnΓ 
dlnξ 

= 
V - 1ð ÞV þ 4 1- αð Þ  V - αð Þ  

V - αð Þ2 - T
ð4:69Þ 

To satisfy the rarefaction wave condition that the density decreases monotonically 
with increase of ξ. 

dlnΓ 
dlnξ 

< 0 ξ→1ð Þ 4:70Þ 

For the case with α > 9/8, the numerator is positive for any value of V and the 
condition (4.70) requires 

T > V - αð Þ2 ð4:71Þ 

In this case, the physically reasonable solution is possible only when the integration 
path from subsonic near ablation front continuously goes to supersonic region of 
asymptotic flow with the path shown with the dashed lines in Fig. 4.16 This 
requirement gives unique solution for a given α (>9/8). It is also clear from () that 
the density decreases exponentially for ξ → 1. It is also possible to obtain the 
solution with exponential decay for 1 < α < 9/8. 

On the other hand, self-similar solution for α < 1, from (4.49, 4.50, 4.51, and 
4.52) it is clear that at t = 0, 

Te,Ti, u→1 4:72Þ
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Fig. 4.16 Similarity 
functions velocity and 
temperature. From both 
boundary conditions, the 
integration path is found to 
take the path shown with 
dotted line to converge the 
singular point (α, 0)  

The solution has singularity at t = 0. It is important to know that the solutions of 
implosion dynamics of the self-similar solutions in this Chapter have been obtained 
with α < 1. 

In [20], further new variables are introduced to solve (4.53, 4.54, 4.55, and 4.56) 
numerically with functions of slowly varying in the lnξ-ccoordinate, but we skip 
discussing this method here. 

4.7.3 Classical Absorption Case (α = 5/4) 

Although the heat flux is deposited near the critical surface, for example, short 
wavelength laser is irradiated with not so high-intensity, where the classical absorp-
tion is dominant process to hear the electron. Here we assume that the heat flux 
coming from ξ → 1 is approximately equal to the laser energy flux. The heat flux is 
given as 

Q=K0T
5=2 
e 

∂ 
∂x 

Te / t6α- 7 S0 ð4:73Þ 

where S0 is defined in (4.63) and obtained after solving the self-similar solution. It is 
clear that we can obtain the solution for the constant energy deposition for the case 
with α = 7/6. In Ref. [20], the classical absorption for DT plasma is assumed to



evaluate the absorbing power for a constant laser intensity. It is shown that α = 5/4 is 
approximated [20]. 
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Fig. 4.17 A self-similar 
solution of laser ablation 
plasma for the case 
of α =5/4 corresponding to 
the classical absorption of a 
constant intensity laser 
irradiation. The self-similar 
solution can be found by 
assuming that the density is 
infinite and the others are 
null in the moving frame, 
while the product pressure 
and mass ablation rate are 
kept finite. The profiles are 
normalized density (g), flow 
velocity (v), electron and ion 
temperatures (τe,τi) and 
electron heat flux (S) 

In Fig. 4.17, nondimensional ablation structure is shown after solving the eigen 
value problem to the normalized pressure P0. It is found that P0 = 2.7227. This is 
regarded better solution than the stationary solution shown in the previous chapter, 
while the self-similar solution gives approximately the same scaling laws for the 
ablation pressure and so on as a function of absorbed laser intensity within our 
interest for laser plasmas. 

4.8 Blast Wave (Taylor-Sedov Solution) 

After the implosion and energy concentration at the compressed small central area, it 
is also important to know how this energy spreads hydrodynamically in space 
spherically. It is surprising that with some idealization of the problem, it is possible 
to find another self-similar solution as mentioned above. This is well known as the 
one-dimensional mathematical solution in spherically symmetry when a point



energy source is released spontaneously at the center (r = 0). This is called a blast 
wave and a spherical wave with a strong shock front propagating outward. 
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It is well summarized on a brief history of study of the blast wave in Ref. [21], so 
let us follow the description. A blast wave follows the rapid and localized release of a 
large amount of energy in a medium. The physics community got seasonably 
interested in the dynamics of such shocks in air in the early 1940s. Taylor [10], 
von Neumann [12] and Sedov [11] independently understood that, because of the 
global conservation of mass and energy, the extension R of the blast had to grow 
with time like a power law (time)α with α = 2/5 [or 2/(N + 2) in dimension N. From 
a few publicly available snapshots of the blast at different times, Taylor could 
estimate within 10% the strength of the Trinity detonation in 1945, at the time 
classified information [22]. 

Remarkably, the hydrodynamic description of the flow inside the blast, now 
known as the Taylor–von Neumann– Sedov solution (or Taylor-Sedov solution), 
is self-similar in time, depending only on the rescaled radial distance r = R(t). This 
similarity is of the first kind [22], i.e., driven by global invariants, and all exponents 
can be derived by dimensional analysis. This solution found widespread relevance 
beyond its initial realm, notably in plasma physics to describe laser-induced shocks 
and in astrophysics for the evolution of supernova remnants. 

When the energy of the explosion is E0 and the density of the surrounding gas of 
uniform density is ρ0, the basic equations are one-dimensional equations of (4.5, 4.6, 
and 4.7). In this case, a strong shock wave propagates in the gas. Since the total 
energy of blast wave should conserve, the dimensional analysis requires the relation: 

E0 ~ ρu2 r3 ð4:74Þ 

Inserting (4.10, 4.11, and 4.12) into (4.74), the similarity valuable is obtained as 

α= 
2 
5 
, ξ= 

ρ0 
E0 

1=5 
r 
t2=5

ð4:75Þ 

Here uniform density K = 0 is assumed. 
The radius of the strong shock wave front is defined as 

R tð Þ= ξ0 
E0 

ρ0 

1=5 

t2=5 ð4:76Þ 

where ξ0 gives the shock front and ξ0 is the eigenvalue of this mathematical problem. 
The equations to be solved are the same as (4.14) and (4.15). In the present case, 

the eigen value of the consistent solution is determined so that the following energy 
conservation is satisfied. 

E0 = 
R 

0 
4πr2 ρ  ε  þ u

2 

2 
dr ð4:77Þ
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Fig. 4.18 (a) Taylor-Sedov solution for a strong point explosion in the U, C plane. 
Parameters:γ = 5/3, α = 2/5, K = 0. (b) Density ρ, pressure P and velocity U of the Taylor-
Sedov solution as a function of radius r. The label A denotes the values at the shock front. Reprinted 
with permission from Ref. [6]. Copyright 1998 by Oxford University Press 

The integration path in (U, C) plane is shown in Fig. 4.18a [9]. In this case, the shock 
RH relation allows to jump over the singular curve and the point A in Fig. 4.18a is 
found to satisfy (3.13). The shocked region finally goes to the node singular point 
(U,C) = (0, ) as shown in the Fig. 4.18a. 

The normalized blast wave profile is obtained in Fig. 4.18b. Three quantities 
abruptly increase at the shock front and the velocity and density disappear at the 
center. Note that the temperature becomes infinity at the center, and the product 
pressure of the density and temperature is kept finite. 

The calculation has been done with computer, however, in the former Soviet 
Union where there was no computer, surprisingly Sedov analytically solved the 
problem and found the eigenvalue. The approximate analytical solution of the eigen-
value is given in the form in [23]. 

ξ0 = 
75 γ- 1ð Þ  γ þ 1ð Þ2 

16π 3γ- 1ð Þ  
1=5 

ð4:78Þ 

The value agrees well with the numerical calculation values by Taylor. In Table 4.1, 
both results are compared for three different specific heat γ. Both gives reasonable 
γ-dependence. For the case with large γ, the internal freedom of the gas is at most 
N = 3 (x, y, z translational motions) and γ = (N + 2)/N gives γ = 5/3. Additional 
freedoms like molecular rotation and vibration yields N = 5 and γ = 7/5 = 1.4. 
Increase of freedom means more need for thermal energy for all freedoms and the



fraction of the energy going to the shock kinetic energy decreases. The decrease of 
the eigen-value in Table indicates the shock speed gets slow. 

178 4 Self-Similar Solutions of Compressible Fluids

It should be noted that both results give the eigen-value is almost equal to unity 
and this result encourages us in comparing some experimental result to the theoret-
ical self-similarity. Only with the dimensional analysis, it is reasonable to assume 
ξ0 = 1 for an approximate solution. Without solving the complicated equations for 
the spatial profile, it is possible to compare with the experimental data. 

Let’s calculate the energy partition ratio of the self-similar solution. The frac-
tional ratio of the thermal energy and kinetic flow energy to the explosive energies 
does not change in time. Although thermal energy escapes as energy such as 
radiation, kinetic energy is preserved and spreads to space. That proportion is 
obtained with the following integration 

F = 

R 

0 
4πr2ρεdr 

R 

0 
4πr2ρ u2 

2 dr 

ð4:79Þ 

The result is obtained as. 

F = 6:1 γ = 1:2ð Þ, = 3:5 γ = 1:4ð Þ, = 2:5 γ = 5=3ð Þ ð4:80Þ 

The ratio of conversion to the internal energy increases as γ approaches unity. The 
physical reason is clear as already mentions regarding to the Table 4.1. It was 
γ = (N + 2)/N, where N is the internal degree of freedom of gas. The greater the 
degree of internal freedom, the lower the proportion of compatible energy going to 
the flow kinetic energy. 

Let’s itemize the features of this solution. 

1. Flow velocity is null and the gradient of pressure is also null at the center (r = 0) to 
satisfy the boundary condition. As the result, the density is also zero at the center. 

2. Because the pressure is finite at the center, it turns out that the temperature 
diverges to infinity. 

3. When the blast wave arrives, the delta function-like force -∂P/∂r works out-
ward, while the opposite-directional force toward the center works immediately. 
After a while the force disappears. 

4. The solution shows that the temperature becomes infinity at the center cannot 
happen physically. This is because there is a self-similar solution only by 
neglecting heat conduction. In fact, in the early time of explosion radiative heat 

Table 4.1 The eigen value of 
self-similar solutions depends 
on the value of the specific 
heat γ 

γ → ξ0 Sedov (analytic) Taylor (numerical) 

5/3 = 1.66 1.27 1.15 

1.4 1.16 1.03 

1.03 0.72 0.897
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conduction waves such as X-rays (this is historically called fireball) spread and 
blast wave is generated after a while. 

5. Self-similar solution is not applicable at any time, but because the blast wave 
ionizes surrounding gas, it will cool down while losing energy by radiation such 
as X-rays from partial ionized plasma. As the density of the blast wave front is 
higher, it is easier to cool, so the pressure at the front decreases and the kinetic 
energy is accumulated near the front and shocked matter expands like a shell. 

4.9 Laser Blast Wave and Dissipation 

4.9.1 Laser Experiments 

By focusing and irradiating high-intensity short-pulse laser to a solid target surface 
placed in gas, the ablating plasma from the solid creates a clean blast wave in the gas 
as shown in Fig. 4.19a, where the blast wave image is taken by the darkfield shadow 
imaging [24]. Nd glass laser of 200 J and 5 ns pulse is irradiated on a foil to heat up 
about 1 keV. The gas is nitrogen gas of 5-torr, and the laser is irradiated from the 
right. The laser-irradiated target is an aluminum plate. It is measured that the ablating 
plasma expands with the velocity of 700 km/s. The shock wave is collisional shocks 
and the white ring in Fig. 4.19a is due to the refraction of the diagnostic laser beam at 
the shock front with abrupt electron density jump. 

In Fig. 4.20, the measured radius of the blast wave is plotted as a function of time. 
It is seen that for t = 6–18 ns the front moves at a constant velocity corresponding to

Fig. 4.19 Blast waves produced by laser irradiation on solid target in gas. (a) the case with nitrogen 
gas. This is a case of energy conserving blast wave. (b) the same experiment but the gas is higher Z 
xenon. Due to radiation energy loss, the blast wave front becomes unstable to hydrodynamic 
instability. Reprint with permission from Ref. [23]. Copyright 1998 by American Physical Society



the velocity of the ablating plasma, a blast wave not yet having formed. Around 
25 ns it is clear that the blast wave velocity change to the time dependence given by 
the blast wave in (4.76) in proportion to t-2/5 . As we see later, the early time evolution 
may be a blast wave induced by the ejecta-driven, where the ejecta means the 
ablating plasma.
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Fig. 4.20 Time evolution of the blast wave front from early ejecta motion to the phase of Taylor-
Sedov blast wave for a long duration. Reprint with permission from Ref. [23]. Copyright 1998 by 
American Physical Society 

In the case of the nitrogen gas, it is evaluated that the specific heat γ = 1.3 ± 0.1. 
On the other hand, when the same blast wave experiment is carried out in xenon gas, 
the image in Fig. 4.19b is measured. This is due to an instability of radiative blast 
wave predicted relating to astrophysical objects. It is concluded in Ref. [25] that 
because of the radiation cooling effect, the effective specific heat becomes lower 
than the previous nitrogen case, γ = 1.06 ± 0.02. This is the experimental evidence 
that the blast wave is unstable for γ < 1.2. This is called Vishiniac instability. 

For a variety of energy sources, the self-similar solution of the blast wave can be 
plotted on a single space of pressure and the scale range parameter S as shown 
below. From (4.76) and (4.74) with dimensional relation ρu2 ~P, it is easy to derive 
the following functional relation after eliminating the time. 

P= 
A 
S3 

, S= 
R 

E0ð Þ1=3
ð4:81Þ 

where A is a numerical constant of for a given γ and S is the scaled range parameter. 
In Fig. 4.21, the data from NRL experiment and NIF laser with 10 kJ irradiations are 
plotted with orange and green solid circles in (P, S) diagram [26]. For comparison to



another type of blast wave, those produced by high-explosive and nuclear explosion 
are also shown with red dashed and solid blue lines. For comparison of extremely 
different energy explosion, the radius is in unit of meter and energy is in the unit of 
kiloton of TNT (KT = 4x1012 J). It is found that for small S the relation (P/ S-3 ) is  
satisfied, while in large S region the relation tends to another relation (P / S-1 ). 
Note that A ~ 107 in these units with the value of NRL laser experiment 
(S, P) = (10, 10,000). 
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Fig. 4.21 Scaling law for 
the pressure at the blast 
wave front as a function of 
the scaled rage parameter. 
Three different scale 
experiments from laser, high 
explosive, and nuclear 
explosive are found to be in 
the same scaling law. 
Reprint with permission 
from Ref. [26]. Copyright 
1998 by American Institute 
of Physics 
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Although the explosion energy in Fig. 4.21 varies from 100 [J] to one [KT], while 
the change of S is about 4x10-4 in (energy)-3 and the radius of the same pressure for 
the laser blast wave of 1 cm as seen in Fig. 4.19 is 27 m in KT blast wave. 

4.9.2 Dissipative Blast Waves 

The radiation loss from shocked plasma decreases the temperature of the plasma and 
the pressure also decreases. Note that the self-similarity relation of Taylor-Sedov 
blast wave is first derived from the dimensional analysis of the system with the 
energy conservation relation. Namely, 

E0 / ρ0D2 rd / r
dþ2 

t2
ð4:82Þ 

where d is the dimension of the system. The power law dependence on the system 
dimension is given as



þð Þ ð Þ
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R tð Þ /  tα , ð4:83Þ 
α= 2= d 2 4:84 

The power α = 2/5 (3-D, spherical), =1/2 (2-D, cylindrical), = 2/3 (1-D, planar). 
The blasts caused by an intense explosion seen above like Taylor-Sedov blast 

wave are the prototypical example of self-similarity driven by conservation laws. In 
dissipative media, however, the energy conservation is violated, yet it is known that 
a distinctive self-similar solution appears. It hinges on the decoupling of random and 
coherent motion permitted by a broad class of dissipative mechanisms. This enforces 
a peculiar, layered structure in the shock as shown in [21]. It has been derived by the 
full hydrodynamic solution, validated by a microscopic approach based on molec-
ular dynamics simulations. 

When the thermal energy of the blast wave escapes or dissipates from the system 
by any process, for example, radiation loss, the blast wave changes from the energy 
conservative solution to the momentum conservation one. The dimensional analysis 
in this case is given as 

M0 / ρ0Drd / r
dþ1 

t
ð4:85Þ 

where M0 is the total momentum of the expanding matter and α in (4.84) is given as 

α= 1= d þ 1ð Þ ð4:86Þ 

In [21], the particle dynamics is solved by molecular dynamics simulation for a 
model system of granular gas consisting of identical spherical grains with the same 
radius and mass, where inelastic binary collisions conserve momentum but dissipate 
kinetic energy. The physical property of the results does not depend on specific 
dissipation mechanisms. In Fig. 4.22, the density, velocity, and temperature profiles 
are plotted as a function of the normalized radius. The cross marks with “Cons.” are 
the results of the energy conservation case of the Taylor-Sedov solution, while the 
open circles with “Dissip.” are the results obtained with the molecular dynamic 
simulation. The temperature decreases due to the dissipation inducing the increase of 
the density to keep the pressure jump at the blast wave. 

In Fig. 4.22, the orange zone is the shock front, and the next zone is cooling 
region. After the zone, cold fluid zone shown with the two dashed lines follows. 
Since the velocity is kept high after the shock front, the central fluid easily flows the 
cold fluid to generate the cavity region after the thin shell structure of the dissipative 
blast wave. In Fig. 4.22, the solid lines are theoretical curves obtained from the fluid 
equations by modeling a dissipation term proportional to the product of the density 
and temperature [21]. 

More general model of cooling blast wave has been solved by assuming homo-
geneous self-similar cooling in the equation of energy. It is mathematically shown 
that for assuming the radius of the shock front of the blast wave, R(t) / tα , there is



self-similar solution physically reasonable for a given α in the rage α = 1/4 ~ 2/5 as 
given above for spherically symmetric case [27]. The power law of the blast radius α 
is also called a deceleration parameter. 
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Fig. 4.22 The simulation result of a dissipative blast wave is shown with solid circles in a self-
similar evolution. The corresponding Taylor-Sedov solution is also plotted with cross marks. Strong 
dissipation in the shocked region leads the solution from energy conservative one (Taylor-Sedov) to 
momentum conservative self-similar solution. Reprint with permission from Ref. [21]. Copyright 
1998 by American Physical Society 

4.9.3 Radiation Effect on Blast Waves 

Let us consider the case where the radiation cooling by Bremsstrahlung and radiative 
recombination becomes important in the blast wave evolution. It is known that the 
both cooling rates are roughly proportional to the density times the square root of the 
electron temperature. So, the above dissipation model can be applicable to predict 
that the same type of the momentum conserving blast wave becomes dominant after 
the Taylor-Sedov blast wave and the power law of the time evolution of the blast 
wave radius changes from α = 2/5 to 1/4 for spherical geometry (d = 3). 

The study of blast waves produced by intense lasers in gases has also been done in 
the laboratory with better diagnostic instruments. A systematic scan of laser pro-
duced blast waves was performed and the structure of blast waves was examined 
over a wide range of drive laser energy. Lasers with energies ranging from 
10–1000 J irradiating a pin target in either xenon or nitrogen gas, creating a spherical 
blast wave [28]. 

A strongly radiating blast wave in xenon gas is observed while blast waves in 
nitrogen more closely approximate a pure Taylor–Sedov wave as already seen in 
Fig. 4.19. Radiation emitted from the hot expanding shell ionizs the gas ahead of the 
shock wave, leading to a radiative ionization precursor. The precursor is the same



as the preheating tongue in case of electron preheating in shock structure as show in 
Fig. 3.8. Furthermore, energy loss by radiation in an optically thin system will 
increase the rate of deceleration of the blast wave. 
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These blast waves exhibit significant energy loss through radiation while propa-
gating in xenon as evidenced by interferometric imaging revealing radiative pre-
cursors and deceleration parameter α well below those of an energy-conserving 
wave. Thinning of the blast wave shell from radiative cooling is observed through 
comparison of shocks launched in gases of differing atomic number. Shell thinning 
is also measured in cylindrical geometry (N = 2), when the gas density is altered, 
indicating the influence of conditions within the pre-shock medium [29]. These 
results are compared with radiative-hydrodynamic simulations. 

One-dimensional simulations of blast wave evolution in xenon were carried out 
using a radiation hydrodynamics code in which radiation transport was calculated 
using a multi-group implicit Monte Carlo (IMC) technique, and the individual 
plasma components are treated in LTE. Figure 4.23 shows the simulated radial 
profiles of the electron density compared with the experimental data at different 
times in the blast wave evolution [29]. This discrepancy is likely a result of non-LTE 
effects associated with the ion fluid since the ions typically take several nanoseconds 
to thermalize. The radiative precursor is larger for the higher density in agreement 
with the experimental profile but extends further ahead of the shock than measured. 

This indicates that in the precursor region the code does not accurately model the 
physics because of a significant departure from LTE caused by the detailed atomic 
physics of the radiating shock. The lower deceleration parameter of α = 0.44 
compared with α = 0.47 with high density. Such effect of non-LTE atomic process 
has been studied with use of the collisional radiative equilibrium (CRE) code the 
physics, where CRE will be discussed later. The previous experimental data [29] is  
analyzed with CRE non-LTE code and it concluded that non-LTE code can explain 
the experimental data [30]. 

Fig. 4.23 Time evolution 
of the electron density of a 
cylindrical blast wave 
generated by laser 
irradiation in gas. The dotted 
lines are corresponding 
simulation result with 
radiation transport. Reprint 
from Ref. [29] with 
permission from Institute of 
Physics
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4.10 Blast Waves in Supernova Remnants 

4.10.1 Supernova Remnants (SNRs) 

The blast wave generated by an explosion of supernova is very important for study 
of astrophysics mainly related to the heavy element production in Universe. There 
are a variety of types of the supernova explosions. Most of they are classified as 
Type Ia and Type II the explosion mechanisms of which are very different, but the 
explosion energies are almost the same as 1044 [J]. It is surprising to know that this 
energy can be imagined by comparing to the rest mass energy of the Sun, 
Mc2 = 2x1047 [J], where the mass of the Sun is M = 2x1033 [g] and c is the speed 
of light. 

In Type-Ia, the explosion energy is produced by nuclear fusion reactions in a 
white dwarf as explained in Fig. 3.15. On the other hand, Type II supernova 
explosion is triggered by gravitational collapse of massive start and the energy of 
about 1046 [J] is generated as the energy of neutrinos. Since the mean free path of the 
neutrinos is much larger than the column density of the star, only 1% of the neutrino 
energy is converted to the matter explosion energy. 

After such supernova explosions, the matter of exploded star and the surrounding 
gas continue to emit a wide range of electromagnetic waves over then of thousand 
years. Such remnant of the supernova explosion is called supernova remnant 
(SNR). In Fig. 4.24, X-ray image of the supernova remnant SN1006 is shown, 
where the image was taken by the x-ray satellite Chandra [31]. Its explosion was 
recorded many places in 1006. The detail of this remnant is given, for example, in

Fig. 4.24 The x-ray 
emission image of the 
supernova 1006 observed by 
Chandra x-ray satellite 
(NASA). Reprint from 
Ref. [31] with kind 
permission from Springer 
Science + Business Media



[31]. Its distance from the Earth is about 7200 light-years (~ 7 × 1016 km). SN1006 
was the brightest supernova (SN) witnessed in the human history. As of 1000 years 
later, it stands out as an ideal laboratory to study Type Ia supernova and the shocks in 
supernova remnants.
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Three-dimensional supernova explosions have been studied for a variety of 
so-called progenitors (stars before explosion). According to [32], the density 
structure of progenitor of Type II is given approximately in the power law form, 

ρ rð Þ= ρ0 
r 
r0

- 3 

ð4:87Þ 

where ρ0 = 1010 [g/cm3 ] and r0 = 107 [cm]. The surface of the star has about 
r = 1013 [cm] and ρ(r) = 10-8 [g/cm3 ]. The shock wave generated inside the 
propagates to propagate outward and in the idealistic limit like the power law density 
profile, we can also find a self-similar solution of the shock propagation as described 
at p. 812 in [5]. 

In [32], the averaged shock wave velocity is shown to be about 104 km/s, 3% of 
the speed of light. So, roughly speaking, the shock wave arrives at the surface of the 
progenitor after 3 h, then the star starts to shine. Once the shock front arrives at the 
surface of the star, the shocked material expands in a low density inter-stellar 
medium (ISM). This is the same as the free expansion of the ablation plasma by 
laser irradiation as seen in Fig. 4.20, where free expansion is measured until about 
20 ns and then the self-similar blast wave was generated. Since the density ratio of 
the expanding material called “ejecta” to the density in ISM is extremely high, the 
ejecting material pushes the ISM with the same velocity. This is because the velocity 
of the ejecta is faster than the sound velocity of compressed ISM in front of the 
contact surface. Such pushing is called “snowplow”. 

In Fig. 4.25, one-dimensional simulation of the gravitational collapsing super-
nova 1987A is shown [33]. Note that the surface of the progenitor has a sharp density 
drop at the surface because of strong stellar wind. In the figure, the stage numbers 
correspond to the time since explosion as (0) t = 0 s; (1) 8.96 s; (2) 1.67 × 102 s; 
(3) 1.06 × 103 s; (4) 3.33 × 103 s; (5) 7.46 × 103 s. It is seen that the shock wave 
arrives at the center around 2 h. The density profile at the time of the shock arrival at 
the surface is almost flat profile and due to the expansion, this density decreases as 
the volume of the matter increases with the expansion velocity of 10,000 km/s. Then, 
the snowplow continues for a long time. 

It is said that such a snowplow phase continues until the total mass of snow-
plowed gas becomes almost the same mass of the effective ejecta M. 

4 
3 
πR3 ρISM =M ð4:88Þ 

where ρISM is the mass density of ISM. Assuming the ejecta is expanding with the 
velocity 104 km/s, ρISM as one hydrogen per cm

3 , and demanding the mass M is



equal to the solar mass, then the timing to satisfy (4.88) is easily evaluated as about 
200 years. Note that this simple value is too early as see below. It takes long time to 
detach the ejecting material and the autonomous propagation of the blast wave as the 
self-similar solution. This is because the density of the ejecting material is very high 
compare to the density of ISM. 
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Fig. 4.25 Time evolution of the density profiles as a function of mass from the center. The shock 
wave is generated at t = 0. The stage numbers correspond to the time since explosion as (0) t = 0 s;  
(1) 8.96 s; (2) 1.67 × 102 s; (3) 1.06 × 103 s; (4) 3.33 × 103 s; (5) 7.46 × 103 s. Around the time of 
2 h, the shock wave arrives at the surface of the star to start shining. Reprinted with permission from 
Ref. [33]. Copyright by American Astronomical Society 

The snow-plowed gas forms Sedov-Taylor self-similar blast wave after the 
deceleration of the contact surface begins. At the same time, the deceleration of 
the front region of the ejecting material pushes the following ejecta material to 
produce a reverse shock wave propagating toward the central region, where the 
density increase. This is unstable scheme to hydrodynamic instability. The Rayleigh-
Taylor instability of the contact surface has been studied to compare the observation 
images.
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It is noted that the velocity of the collisionless shock of SN1006 in Fig. 4.24 is 
Us = 3000 km/s evaluated through the observation over 11 years. Typical values for 
the SNRs are given in [34] and (t, Rsh, Ush) = (100, 2, 8000), (1000, 5, 2000), 
(10,000, 12.5, 500), where t is the time after explosion in the unit of years, Rsh is the 
shock front radius in units of pc (=3.1 × 1016 m) and Ush is the velocity of the shock 
front in units of km/s, respectively. 

In Fig. 4.24, the spatial x-ray image of SN1006 near the sharp shock front has 
been analyzed in detail relating to the physics of cosmic-ray generation and con-
finement near the shock surface by magnetic field [35]. The typical temperature and 
density at the rear of the shock front is Ti~ 15 keV (Te~ 0.5–1 keV) and the number 
density ni ~ 1 cm-3 and the corresponding proton Coulomb mean free path is 
estimated to be 4 × 1017 m (= 41 light years). The diameter of SN1006 is about 
3 × 1017 m (= 32 light years). The shock front width which is here defined to be that 
of the sharp intensity front in Fig. 4.24 is about 1.2 × 1015 m (=0.12 light years) 
[35]. As a result, it is concluded that the thickness of the shock front of SN1006 SNR 
is less than 1% of the radius and the Coulomb mean free path is 400 times longer 
than the shock front thickness, namely, the shock should be the collisionless shock. 

Most of the shock waves are collisionless in Universe. To demonstrate the 
formation of collisionless shock with intense lasers, a model experiment was pro-
posed [36]. With use of NIF and OMEGA lasers, the collisionless shock generation 
has been demonstrated experimentally with use of counter streaming ablation plasma 
[37, 38]. The magnetic field is generated by Weibel instability and the collisionless 
shock wave is generated after the nonlinear amplification of magnetic field. 

In studying such collisionless shock waves, it is possible to use most of the 
hydrodynamics relations such as Ranking-Hugoniot relation except the shock wave 
structure. Instead of the particle collisions, Larmor motion of charge particles in 
turbulent magnetic field plays the role of dissipation. For example, a proton Larmor 
radius with a velocity of 103 km/s in the 3μG magnetic field is 3 × 107 m, extremely 
shorter than the radius of SNR and even shorter than the front thickness of the x-ray 
image, where the magnetic field in ISM is about 1 ~ 10 μG. 

It should be noted that the big and essential difference of the SNR shocks 
compared with the laser-driven shocks seen above is not the difference in the energy, 
the difference of 42 orders of magnitude, but the difference in physics. The shock 
wave of the SNRs is a collisionless plasma shock, but the laser shock wave is in 
general the collisional hydrodynamic shock wave. In the laser shock, the mean free 
path is almost the same as the thickness of the shock front. In addition, the 
collisionless shock accompanies the electric and magnetic fields which play an 
essential role in accelerating the charged particle, namely, the origin of cosmic 
rays [38]. 

Finally, let us evaluate the scale range parameter S in (4.81) for SN1006 blast 
wave. Assume the explosion energy is 1044 [J] and its radius 3x1017 [m], we obtain 
the value of S ~ 107 [m/KT1/3 ]. The pressure of the blast wave is evaluated roughly 
as P~4 × ρISM(USh)

2 . Then we obtain P~10-12 [atm] and the pressure evaluated with 
A = 107 is P~10-14 [atm]. They are different of two orders of magnitudes and main 
cause of the difference is over estimate of the radius due to rapid expansion in the



early snow-plow phase with expansion velocity of 10,000 km/s. The point is very far 
right in Fig. 4.21. This is because of extremely low pressure of ISM gas. It is not so 
bad evaluation. Note that the self-similar solution assumed adiabatic condition, 
while in later time around 100,000 years, it is said that the radiation cooling effect 
as shown below becomes important and the blast wave front continue to expand as a 
thin shell structure. 
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4.10.2 Self-Similar Solution of SNRs 

We see that the blast waves of SNRs are ejecta-driven blast wave and not the point-
energy driven one like laser-driven blast wave seen in Fig. 4.19a. It is, however, 
surprising that even in such a case, Chevalier has found a group of self-similar 
solutions including the whole structure of expanding ejecta, reverse-shock, and blast 
wave propagating outward [39]. The mathematical method is almost the same as 
Sect. 4.2. 

The ejecting matter is assumed to have the density profile in the radial direction 
like r-n initially, where n is a given constant. Assuming a uniform expansion, the time 
and spatial evolution of the ejecta density profile is given in the form; 

ρ / t- 3 r=tð Þ- n ð4:89Þ 

where t-3 is due to uniform expansion and r/t is due to the assumption of constant 
velocity to each Lagrange fluid. The density profile of the surrounding gas (ISM) is 
assumed in the form. 

ρ / r- s ð4:90Þ 

where s is a given constant. It is mentioned in [39] that Type-I supernovae are given 
for (n, s) = (7,0), while Type II is better for s = 2 modeling the expanding envelope 
by the wind. 

Since the time dependence of the radius of the contact surface, Rc(t) should be the 
same for both in (4.89) and (4.90). Inserting Rc(t) in the both and requiring both 
density has the same time dependence, it is easy to obtain the time dependence of 
Rc(t) in the form. 

Rc tð Þ=At n- 3ð Þ= n- sð Þ ð4:91Þ 

where A is a constant. Note that in the case of (n, s) = (5, 0), Rc(t) / t2/5 and it is the 
case of Sedov-Taylor solution and it is studied the case n > 5 for s = 0. In this case, 
the expansion velocity is faster than the case of n = 5 due to the ejector snow plow 
effect.
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Fig. 4.26 Self-similar solutions of density, pressure, and velocity of the ejector-dominant blast 
wave of a typical Type Ia supernova remnant. The radius r = Rc is the contact surface. The radii of 
the reverse shock front and the blast wave are 0.935 and 1.181. Reprinted with permission from ref. 
[39]. Copyright by American Astronomical Society 

In Fig. 4.26, dimensionless profiles of the density (ρ), pressure ( p), and velocity 
(u) profiles of the self-similar solution are plotted in the normalized coordinate, 
r/Rc(t). The radii of the reverse shock front and the blast wave are 0.935 and 1.181. 
The velocity is almost uniform, while the density changes rapidly around the contact 
surface. 

Consider an applicability of the ejecta-driven self-similar solution. It is clear that 
the mass of the ejecta (4.89) diverges near r = 0, while the total mass of the 
supernova ejecta is limited, for example, about the solar mass in Type I supernova 
explosion. It is clear that when the effective ejecta mass becomes near the solar mass, 
the present self-similar solution is not applicable. The ejecta velocity will reduce due 
to the energy transfer to the blast wave. It is clear that the total kinetic energy of the 
blast wave region EBW can be shown as 

EBW / dRc 

dt 

2 

R3 
c / t6=7 

It is reasonable to consider that after the present solution breaks down, the blast wave 
continues expanding by following Sedov-Taylor solution as far as the adiabatic flow 
is assumed.
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Fig. 4.27 The simulation result of time evolution of two shock fronts are plotted with the black 
solid lines. The shock fronts of the present ejector-driven self-similar solution are plotted with gray 
solid lines. The dotted two lines are analytic solution [40]. Credit: Fraschetti, Federico, et al., A&A, 
515, A104, 2010, reproduced with permission © ESO 

The trajectories of a blast wave (forward shock front; RBW) and the reverse shock 
front (RRS) were shown for further study with 3-D hydrodynamic simulation and 
one-dimensional result of radius-time evolution is plotted in Fig. 4.27 [40], where 
(n, s) = (7,0) and γ = 5/3. The characteristic time (tch) and radius (rch) is calculated 
so that the ejected mass becomes the same as the mass of the shocked gas (ISM) [41]. 

In Fig. 4.27, the simulation result of time evolution of (RBW,RRS) are plotted with 
the black solid lines. The present ejector-driven self-similar solution is plotted with 
gray solid lines. The dotted two lines are analytic solution. It can be said that the 
ejector-driven phase is over before t = tch, while the dynamics in the early phase 
(t < tch) well agrees with the simulation. Since the mass of the ejector is limited, the 
RRS travels toward the center after tch. After tch, RBW becomes slower to fit to Sedov-
Taylor solution. 

In Fig. 4.28, the time evolution of the density profiles obtained by the simulation 
is plotted as a function of the radius normalized by RBW(t), where tch =1950 years. In 
the figures, the ejector-dominant solution and Sedov-Taylor solution are also plotted 
with thin red lines. It is clearly seen that the simulation profiles smoothly transit 
around t = tch.
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Fig. 4.28 The simulation result of time evolution of density profiles. The thin red lines show the 
present and Taylor-Sedov blast wave solutions [40]. Credit: Fraschetti, Federico, et al., A&A, 515, 
A104, 2010, reproduced with permission © ESO 

It is clear that the contact surface is unstable to Rayleigh-Taylor instability in the 
ejector-driven phase seen in Figs. 4.26 and 4.28. Since Rc(t) / t4/7 and the contact 
surface is kept decelerating by the pressure gradient force. Three-dimensional



simulation has been done to study the physics of observation data, for example 
in [40]. In Fig. 4.29, X-ray image of Tycho SNR observed by Chandra x-ray satellite 
is shown. Very different of SN1006, Tycho SNR is sure to be affected by Rayleigh-
Taylor instability. It is concluded that the growth of Rayleigh-Taylor instability is 
rather independent of the seeding by the non-uniformity in the explosion 
phase [42]. It is out of the topics in the present volume and to be discussed in later 
chapters. 
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Fig. 4.29 X-ray image of 
Tycho SNR by Chandra 
x-ray satellite [NASA] 

Finally, it is useful to point out that the self-similar solution is studied in many 
situations in astrophysics. Even with the gravitational force, self-similar solution of 
star formation was found to explain the time evolution of gravitational collapse of 
molecular cloud. A famous solution is called the Larson-Penston (LP) type simi-
larity solution [43]. Such star formation has been studied also with computational 
method to compare with the self-similar solutions. The LP assumed that in early 
phase of contraction the proto-star is optically thin and the radiation cooling makes 
the system uniform temperature in time evolution. 

Numerical simulation with reasonable opacity of the cloud and radiation transport 
has been carried out [43]. The time evolution of the density, temperature and velocity 
are compared to the LP solution to find the good agreement in the early phase before 
the density approaches about 1020 cm3 over more than ten-order of magnitude 
evolution. In Fig. 4.30, the simulation result is shown for density, temperature, 
velocity and hydrogen molecule concentration distribution for time from 0 to 7 tim-
ings [43]. It is confirmed that the density and velocity profiles are well explained 
with LP solution up to the time of 5. After the time 5, the dissociation of hydrogen 
molecule makes the system relatively optically thick system to apart from the LP 
self-similar solution.
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Fig. 4.30 Simulation result of star formation starting from low-density molecular cloud in self-
gravitational system. The self-similar solution by Larson-Penston agreed well in the early stage. 
Reprinted with permission from Ref. [43]. Copyright by American Astronomical Society 
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Chapter 5 
Atomic Process in Plasmas 

Abstract When a high-intensity laser is irradiated onto a solid gold (Z = 79), half of 
the electrons is partially ionized. The multi-electron structure of such ions is not 
obvious. Quantum mechanics of multi-electron systems and calculations of ioniza-
tion statistics are required. In this chapter, the electrons in the ion are approximated 
to be bound in a spherically symmetric mean field, and the isolated atom is studied. 

The Hartree-Hock (HF) equation, which accurately describes atoms in many-
electron systems, can be solved, but it is a daunting task. For this purpose, simple but 
error-prone approximations have been used, such as the HULLAC and OPAL codes, 
which use the para-potential method instead of a rigorous description of the HF. It is 
an intuitive and easy-to-understand approximation. 

Once the quantum state of the bound electrons can be calculated, the statistical 
distribution of ionization can be obtained by solving the Saha equation for thermal 
equilibrium. The threshold of ionization (continuum lowering) is determined. The 
calculation of such an ionic structure is presented. Due to the high temperature of the 
plasma, interaction with thermal radiation and free electrons cause excitation, 
ionization, and the reverse process. Calculations of these processes will be presented. 

Applications of the rate equations will be explained. In the recently introduced X-ray 
laser (XFEL) heating, free electrons are also non-equilibrium (non-Maxwellian). This 
chapter begins with a review of hydrogen and helium atoms, and then introduces the 
topics of atomic physics and processes from the laboratory to the universe. 

5.1 Introduction 

In order to solve the hydrodynamic equation of partially ionized plasma, it is 
necessary to determine charge distribution and average charge of plasma ions. The 
equation of states, transport coefficients and so on are very sensitive to the charge 
state. In solving a time evolution of plasma, the charge state changes in time. Under a 
certain condition, the local thermodynamic equilibrium (LTE) is good approxima-
tion, while the other condition requires analysis based on some non-LTE atomic
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process model. In general, laser produced plasma requires such non-LTE analysis to 
determine the charge distribution.
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The charge distribution in LTE is given by solving well-known Saha relation. 
However, we have to know about the quantum states of bound electrons in all charge 
state ions in advance. Lasers irradiate not only low-Z materials, but also medium-Z 
and high-Z materials and the calculation of the quantum states themselves is a hard 
job. In the history of development of quantum mechanics, numerical methods to 
solve such quantum state of many electron system have been developed [1, 2]. 

Alongside development of such methods, a variety of simplified models have also 
been studied intensively. When we need only the charge state in a given condition, it 
is not necessary to solve Hartree-Fock equation with Slater matrix as shown in such 
textbooks. However, spectroscopic analysis and radiation transport demand data 
base obtained by such sophisticated calculation. Before going to details of the atomic 
model, we are required to speculate how detail atomic data are required in our 
specified plasma to be studied. 

In non-LTE plasma we have to solve dynamics of ionization, recombination, 
excitation, and de-excitation. All of such processes depend on the quantum state of 
bound electrons. The cross section of each process σ has to be solved with quantum 
mechanics [3, 4]. In general, we use the perturbation method to solve Schrodinger 
equation. Except for special case with XFEL as we see later, it is a good approxi-
mation to assume the free electrons are in Maxwell distribution. Then, the velocity 
averaged rate (frequency) of the collisional atomic process is given for the 
corresponding cross section σ(v) in the form. 

ν= nσ vð Þvh i, ð5:1Þ 

where hi represents to take average with Maxwell distribution. 
Then, we can formulate so-called rate equation to the population of each 

quantum state of all ions. It can be expressed by a relational expression that seems 
simple as follows. 

dNς 
m 

dt 
= 

k≠m, η≠ ς
- νςη mkN

ς 
m þ νης kmN

η 
k ð5:2Þ 

where Nς 
m represents the number of ions with the quantum state of bound electrons m 

and charge ζ. Of course, their numbers increase abruptly with the increase of atomic 
number Z of plasma or how detail atomic states we take account of. The first term on 
RHS gives the loss of Nς 

m due to the transition of (ς → η) and (m → k), while the 
second term gives the increase due to the transition of (η → ς) and (k → m). How 
many quantum states of bound electrons should be included strongly depends on 
how precise analysis are required. How we can reduce this task depends on modeling 
of atomic structure. Note that such a rate equation has been widely used in many 
different sciences; not only natural but also social sciences.
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In plasma physics, so-called collisional radiative model (CRM) of rate equation 
is widely used for solving atomic process of non-LTE plasma [5]. Such codes are 
applied to study Astrophysical objects. The details of photo-ionized plasmas in 
Universe and laboratory are explained. The principle of masers and lasers are also 
shown with rate equations as described later. The masers and lasers are also observed 
in Universe. 

Finally, interdisciplinary topics governed by rate equations are briefly described. 
Nucleosynthesis in Big-Bang and supernova explosion, Lorentz model giving chaos 
of weather, and virus infection are explained by showing how such rate equations are 
used in different natural and social sciences. 

5.2 Saha Equilibrium of Charge State 

In the region where the temperature is low and the density is moderately high, the 
collision effect by free electrons is dominant for excitation, ionization, de-excitation, 
and recombination even if the radiation field is very weak compared to Planckian 
distribution. In such a case, the ionization state of the plasma is realized while locally 
achieving thermal equilibrium. Such thermodynamically equilibrium (LTE) ioniza-
tion distribution is called Saha equilibrium after the name of the Indian astronomer 
Meghnad Saha (1893–1956), who first proposed the equation for calculating the 
distribution of ions in different charge state in LTE. 

Let us derive an equation of Saha equilibrium, which is coupled equations of the 
ionization distribution in the thermal equilibrium state. Here, the partition function Z 
is defined by Helmholtz’s free energy F and is given in the form 

F= - kT ln Z ð5:3Þ 

For example, when the system is made of different types of gases (ions and electrons 
of different charges in the case of plasma) and their number are N1, N2,. . ., the total 
partition function Z of the system is divided into individual partition functions Z1, 
Z2, in the form 

Z= 
ZN1 
1 

N1! 
. Z

N2 
2 

N2! 
. . . . ð5:4Þ 

Here, the partition function for N1 particles is defined as 

Z= 
n 
gne

- En 
kT ð5:5Þ 

The partition function is defined to be the sum of all possible quantum states for each 
particle system. Note that gn,  En are the degeneracy (number of states) and the 
intrinsic energy of all quantum states that the N1 particle can take.
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Inserting (5.5) into (5.4) and using the following Stirling formula, 

N!= 
N 
e 

N 

ð5:6Þ 

where “e” is the base of natural logarithm. The free energy of the formula (5.3) is  
obtained to be 

F= -N1kT ln 
Z1e 
N1

-N2kT ln 
Z2e 
N2

- . . . ð5:7Þ 

Now let’s consider ionization equilibrium. In the partially ionized state, various ionic 
states coexist from the neutral state to the completely ionized state of the same atom. 
A partial ionized plasma can be thought of as a group of ions with different charge 
numbers. Let Z be the atomic number of the neutral atom, we obtain 

F= -
ζ=Z 

ζ= 0 

NζkT ln 
Zζe 
Nζ

-NekT ln 
Zee 
Ne 

ð5:8Þ 

Here, ζ is the number of ionized electrons. The charge is Zζ and number is Nζ. The 
second term of Eq. (5.8) is a term due to free electrons. When the volume of plasma 
is V, the partition function is given to be 

Ze = 2 
mkT 
2πħ2 

3=2 

V ð5:9Þ 

It is clear in thermal equilibrium that the Helmholtz free energy F in (5.8) should take 
the minimum value. That is, if the ions in the ionization state are replaced with some 
ions, the following relationship holds. 

δNζ = - δNζþ1 = - δNe ð5:10Þ 

At the same time δF = 0 should also be satisfied. From this condition and (5.8), we 
obtain the relation 

Nζþ1Ne 

Nζ 
= 

Zζþ1Ze 

Zζ 
ð5:11Þ 

Defining the number density, ne = Ne/V, nζ = Nζ/V, (5.11) can be written 

nζþ1ne 
nζ 

= 2 
Zζþ1 

Zζ 

mkT 
2πħ2 

3=2 

ð5:12Þ 

This is the basic formula by Saha.
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Here, we introduce a new function of the energy uζ and the ionization state as 
follows 

Zζ = e-
E
ζ 
0 

kT 

n= 0 

gζ ne
-

E
ζ 
n -E

ζ 
0 

kT = e-
E
ζ 
0 

kTuζ ð5:13Þ 

Then, the Eq. (5.12) is  

nζþ1ne 
nζ 

= 2 
uζþ1 

uζ 
mkT 
2πħ2 

3=2 

e-
Iζþ1 
kT ð5:14Þ 

Iζþ1 =Eζþ1 
0 -Eζ 

0 ð5:15Þ 

Here, (5.15) is the ionization energy from the ionized state ζ to ζ + 1.  
Now, how is the internal excited state of each ion and its number of states 

determined? If it is hydrogen, the number of states is 2n2 and the energy level is 
simple. However, it is not simple how high n should be included as bound states, 
because the upper n states may be free state due to the perturbation by the ions 
surrounding. If we think that every ion is in the ground state, we can calculate the 
number of states if Z is small, so the above equation seems to be solvable. However, 
it is necessary to consider the excited state in the partially ionized plasma in the case 
where the density is high and the temperature is not so high. Also, there are many 
states in the shell of the same main quantum number, and when a part is clogged, 
there is degeneracy. In that case what should one do? Although the charge distribu-
tion of thermal equilibrium state in Saha’s equation seems to be apparent at first 
glance, the reality needs more detailed and lengthy study. Such ionization level 
lowering will be discussed in Chaps. 8 and 9 in detail. 

Equation (5.14) is a nonlinear algebraic equation that can be solved by consid-
ering the conservation law of the number of electrons and the number of ions. The 
result will be different depending on how to calculate the internal quantum state of 
each ion state. An example of charge state distribution as a function of temperature is 
shown in Fig. 5.1 for the characteristic density when aluminum foil is irradiated with 
intense laser, where simple energy levels are used. The ion density is 1018 cm-3 and 
temperature are from 10 eV to 10 keV. In thermodynamic equilibrium, complete 
ionization occurs when the temperature exceeds 1 keV. The charge state 11+ is seen 
in the wide temperature range is because a higher energy (temperature) of electrons 
is necessary for stripping off more from the bound state because ions are in a helium-
like closed shell state. 

Now, let us also discuss for widely seen ionization situation in laboratory 
discharge experiment. When the temperature is sufficiently low, at most one electron 
is ionized. Try to find an approximate Saha relation exactly applied to hydrogen 
atoms and approximately used for any atoms. In one electron ionization state, (5.14) 
closes only in the case of ζ = 0. Since ne = n1 at the same time, if we define 
ionization degree as α = ne/n, n = n0 +  n1, we obtain the one relation
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Fig. 5.1 An example of 
charge state distribution as a 
function of temperature is 
shown for the characteristic 
density when aluminum foil 
is irradiated with intense 
laser, where simple energy 
levels are used in solving 
Saha equation. The ion 
density is 1018 cm-3 and 
temperature is from 10 eV to 
10 keV 

α2 
1- α = 

2 
n 
u1 
u0 

mkT 
2πħ2 

3=2 

e-
I 
kT ð5:16Þ 

This is an exact relation for hydrogen, but an approximate relation for other ions. It 
can be applicable in the limit of I/kT ≪ 1 and α ≪ 1. Let us see the ionization degree 
when the ionization is triggered. With the condition α ≪ 1, the following density 
dependence is obtained from (5.16) 

α / 1 
n

p ð5:17Þ 

Even at the same temperature, the lower the density, the higher the degree of 
ionization. Physical reasons can be intuitively explained in the following two ways. 

1. Considering from the number of states, the number of bound states does not 
depend strongly on density, but as the space between atoms spreads wider, the 
number of identical energy states of free electrons increases proportionally to the 
volume. Therefore, many electrons gather in the free-state with a large number of 
states. 

2. In the space where the density is extremely low(n = 1  cm-3 ), it is found that even 
if the temperature is extremely low the hydrogen is completely ionized from 
(5.16). This is because if free electrons collide with neutral atoms and collision 
ionization occurs, the probability that other free electrons are captured by hydro-
gen ions are extremely low. Therefore, the free electrons will freely travel around 
the vacuum for a long time without encountering ions.
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5.3 Quantum States of Atoms 

In the plasma generation process, excitation and ionization of atoms by radiation 
absorption and electron collisions should be considered as elementary process. 
Moreover, it is necessary to understand quantum-mechanical interaction of atoms, 
electrons and photons, such as de-excitation, recombination, which is the reverse 
process of the above-mentioned elementary process. In some cases, it is necessary to 
calculate mathematical models with complicated atomic structures. To grasp the 
background knowledge of such atomic process, we will need to briefly review 
quantum mechanics and perturbation theory. However, we only discuss the quantum 
mechanics which is the foundation to study the atomic process in plasmas. 

In order to study atomic physics, a multi-electron wave equation is the basis. 
Quantum mechanics can be easily derived by the principle of correspondence with 
classical mechanics. 

5.3.1 Hydrogen Atom 

Let us show time-dependent Schrodinger equation for the wave function ϕ(r,t) of a 
single electron system i.e., Hydrogen atom for a given spherical potential U(r). 

H = 
p2 

2m
þ U=E ð5:18Þ 

p= iħ∇, E= - iħ 
∂ 
∂t

ð5:19Þ

-
ħ2 

2m
∇2 þ U rð Þ  ϕ t, rð Þ= - iħ 

∂ 
∂t 

ϕ t, rð Þ ð5:20Þ 

As is well known, the steady state solution of this equation is obtained by placing the 
conserved energy E 

ϕ t, rð Þ=ψ rð Þe- iωt , ω=E=ħ ð5:21Þ

-
ħ2 

2m
∇2 þ U rð Þ  ψ rð Þ=Eψ rð Þ ð5:22Þ 

This equation can be transformed into ordinary differential equations for r by a 
method such as the separation of variables. At that time, it can be seen that the three 
quantities of intrinsic energy, orbital angular momentum, and magnetic angular 
momentum cannot be taken as continuous values and are quantized as a separation 
constant.
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Let’s see why Schrodinger was able to arrive at (5.20). Naturally, without the 
predecessor work of analytical mechanics and electromagnetism, he never got to his 
idea. Analytical mechanics proves that geometric optics and wave optics can be 
connected by “introducing the concept of mechanics into the concept of wave” that 
the action function on the mass point of the Hamilton-Jacobi equation corresponds to 
the phase function of the wave. At the same time the boundary value problem of the 
Maxwell equation, for example, about the propagation of electromagnetic waves in a 
waveguide, it was found that the eigenvalue problem should be solved, and it was 
known that a specific frequency can exist only as a propagation solution. This is a 
concept conforming to Bohr’s quantum hypothesis. At the same time, wave hypoth-
esis of electron by de Broglie reminds us of the dynamic representation of wave 
optics. In this way academics clearly shows the birth of quantum mechanics that how 
to successfully adopt concepts of other fields and open up by giving new interpre-
tations when challenging new discipline. 

Hydrogen is the simplest atom binding one electron by the Coulomb force of a 
proton. The solution is the foundation for considering complex atoms, so let us 
review it briefly here. In the case of electrons bound to a hydrogen nucleus, the 
potential is a function of the radius coordinate r only in the form 

U rð Þ= -
e2 

4πε0r
ð5:23Þ 

Three eigenvalues appear when substituting (5.23) into (5.22) and solving it by 
separating the variables, and the wave function is found to be in the form with three 
eigenvalues n, ℓ, m. 

ψ r, σð Þ=Rnℓ rð ÞYm 
ℓ θ,φð Þχms 

σð Þ ð5:24Þ 

Here, Rnℓ(r) the radial wave function, Ym 
ℓ θ,φð Þ  is a spherical harmonic function. 

Note that the spherical harmonic function is an eigen-function satisfying the bound-
ary condition in Fourier decomposition in the two-dimensional space on the surface 
of a sphere. For the convenience of multi-electron atom, the spin function χms 

σð Þ  is 
also introduced. 

It is well known that the eigenvalue of energy is given in the form 

En = - 13:6 
1 
n2 

eVð Þ ð5:25Þ 

Here, the reason why the energy eigenvalue depends only on the principal quantum 
number n is that the potential of (5.23) is mathematically special and accidental 
degeneracy with respect to the orbital quantum number l appears. For example, 
when there is shielding by the electrons of the inner shell like an alkali metal, the 
energy of the electrons of the outermost shell does not degenerate. The energy level 
of the outermost shell electron of a lithium atom is shown in Fig. 5.2. Since there are



two electrons in the 1s state, there are two different energy levels 2s and 2p in n = 2 
state. Because of the spread of the wave function of two electrons in 1s state, the 
wave function of 2s of lithium shrinks more than 2s of hydrogen, and consequently 
the energy becomes deeper. Because of the spread of the charge distribution of the 
two electrons of 1s, the effective potential becomes different from (5.23) and the 
accidental degeneracy disappears. 
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Fig. 5.2 The energy level of the outermost shell electron of a lithium atom 

The number of quantum states of a hydrogen atom is 2n2 for each principal 
quantum state with its energy in (5.25). It is clear the sum of all of quantum states 
(n = 0~1) diverges. In calculating Saha equilibrium for hydrogen plasma, it is 
necessary to avoid this divergence. Pay attention to the orbit radius of the wave 
function of n in the form: 

rn = aB 
n2 

Z
ð5:26Þ 

where aB is the Bohr radius (=0.53 A). It is clear that the orbit becomes larger with 
the increase of n. In plasma, an ion is surrounded by many other ions, and the free 
electrons also shields the nuclear charge at the center. Both effects make the large 
orbit electron be out of the attractive force by the nucleus and it is rather a free 
electron. This fact is schematically shown in Fig. 5.3, where outer orbits of bound 
electrons overlap with those of adjacent atoms.
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Fig. 5.3 In plasma, an ion 
is surrounded by many other 
ions, and the free electrons 
also shields the nuclear 
charge at the center. Both 
effects make the large orbit 
electron be out of the 
attractive force by the 
nucleus and it is rather a free 
electron 

Fig. 5.4 The potential and bound states of an isolated atom are shown on the left. They must be 
modified like a plot in red as an atom embedded in plasma shown on the right. The electrons at 
higher energy levels becomes free electrons. As the result, the Coulomb field is shielded by such 
electrons disappears to make the potential structure sallower. Such modification is especially 
important in high-density plasma 

Then, as shown in Fig. 5.4, the potential and bound states of an isolated atom 
must be modified like a plot in red as an atom embedded in plasma. The electrons at 
higher energy levels becomes free electrons. As the result, charge shielding by such 
electrons disappears to make the potential structure sallower. Such modification is 
especially important in high-density plasma. If it is possible to evaluate the average 
number of the maximum n as n*, using this as the maximum value of n in (5.5) and 
(5.13) makes it possible to solve the Saha Eq. (5.14) for hydrogen plasma. Such 
physics is called ionization potential lowering to be discussed later in the next 
chapter. As shown in Fig. 5.5, the effect of the lowering is clearly seen in the 
observed emission spectrum from hydrogen pellet injection into magnetically con-
fined plasma. It is clear that line emissions from only three excited levels are 
observed, namely n* = 4 is inferred.
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Fig. 5.5 The effect of the 
ionization potential 
lowering is clearly seen in 
the observed emission 
spectrum from hydrogen 
pellet injection into 
magnetically confined 
plasma. It is clear that line 
emissions from only three 
excited levels are observed 

5.3.2 Helium Atom 

The property of electron spin and Paul’s exclusive principle is not considered in a 
hydrogen atom, while it becomes essential in the atom having more than one 
electron. This is because Pauli principle prohibits two electrons are in the same 
quantum state including the spin state. 

The Hamiltonian of a helium-like atom is 

H r1, r2ð Þ= -
ħ2 

2me 
∇2 

r1 þ∇2 
r2 -

Ze2 

4πε0 
1 
r1 
þ 1 
r2 

þ e
2 

4πε0 
1 
r12 

ð5:27Þ 

The first term is the kinetic energy of two electron whose coordinates are r1 and r2. 
The second one is the attractive force by the nucleus. The third one is Coulomb 
repulsive term between two electrons, where |r1 - r2| = r12. 

It is known that Fermi particles like electrons should have the anti-symmetry 
wave function. Describe two particle wave function as 

Ψ r1, σ1; r2, σ2ð Þ=Ψ τ1, τ2ð Þ ð5:28Þ 

where τ is a simplified notation of r and σ. The function Ψ is called spin-orbitals. The 
anti-symmetry condition requires 

Ψ  τ1, τ2ð  Þ= -Ψ  τ2, τ1ð  Þ ð5:29Þ
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This requirement indicates that just a product of two single electron wave function 
cannot be a total wave function, where two electrons are in the quantum states a and 
b, the two-electron wave function are in the form. 

Ψ τ1, τ2ð Þ= 
1 

2
p φa τ1ð Þφb τ2ð Þ-φa τ2ð Þφb τ1ð Þf ð5:30Þ 

Inserting (5.30) into Schrodinger equation with Hamiltonian (5.28), the total energy 
of two electrons is given in the form: 

E=E1 þ E2 þ J12 þ K12 ð5:31Þ 

where E1 and E2 are a single electron energy given by hydrogen like binding energy. 

E1 þ E2 = -Z2 EH 1ð Þ þ  EH 2ð Þf g ð5:32Þ 

J12 in (5.31) is Coulomb interaction energy of two electrons and defined by 

J12 = φa
* τ1ð Þφb

* τ2ð Þ  e
2 

4πε0 
1 
r12 

φa τ1ð Þφb τ2ð Þdτ1dτ2 
= φa τ1ð Þj j2 e2 

4πε0 
1 
r12 

φb τ2ð Þj j2 dτ1dτ2 
ð5:33Þ 

On the other hand, K12 in (5.31) is the exchange interaction energy 

K12 = φa 
* τ2ð Þφb 

* τ1ð Þ  e
2 

4πε0 
1 
r12 

φa τ1ð Þφb τ2ð Þdτ1dτ2 ð5:34Þ 

Note that K12 is null when the spins are anti-direction, while K12 is finite only when 
the spins are in the same direction. It is clear that the total energy is lower when the 
spins are anti-direction for K12 > 0 for same direction, but K12 = 0 for anti-direction. 

The energy diagram of helium atom is shown in Fig. 5.6. The left is for spins in 
anti-direction, while the right is for the spins in the same direction. The former is 
called para-helium (S = 0) and the latter is called ortho-helium (S = 1), where S is 
the sum of spins and S = 0 is called singlet and S = 1 is  triplets, because S = 1 has 
three quantum state of S = -1, 0, and 1. 

5.3.3 Many-Electron Atom 

In the case of atoms with many bound electrons, there are several approaches to 
obtain the atomic structure numerically, depending on how precisely the bound



states should be calculated. The Hamiltonian for an atom or ion with atomic number 
Z with N bound electrons is given as 
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Fig. 5.6 The energy diagram of a helium atom 

H = -
ħ2 

2me 

N 

i 

∇2 
ri þ e

2 

4πε0
-

N 

i 

Z 
ri 
þ 1 
2 

N 

i 

N 

j≠ i 

1 
ri - rj 

=Te þ Vne þ Vee 

ð5:35Þ 

The first term is total electron kinetic energy, the second is Coulomb attraction 
energy by the nucleus, the third is electron-electron Coulomb interaction energy. 

The basic strategy to solve (5.35) is to assume the configuration of N electrons. 
This means to define the quantum state of N electrons with the principal quantum 
number and the orbital angular momentum quantum number (n, l ). For example, 
when six electrons are bound in an ion, the configuration of the ground state is 
represented as (1s)2 (2s)2 (2p)2 , with spectroscopic notation for l-state (s, p, d, f, g, 
h. . .  for l = 0, 1, 2, 3, 4, 5, . . .). This is an approximate expression of N-electron 
quantum state. Note that the closed shells of 1s and 2s are omitted from the



expression in the above case, in general, and given as 2p2 . The potential force to each 
electron is also assumed to be spherically symmetric. This is called central field 
approximation. Then, the total wave function is assumed to be given by the 
combination of the function in (5.66) for assumed configuration of N-electrons 
[1, 2]. 
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The standard numerical method of atomic structure calculation is Hartree-Fock 
(HF) method. The total wave function is assumed to be given by Slater matrix so 
that the total wave function is anti-symmetric. In this method, an iterative calculation 
is required until the numerical solution finally converges. Sometimes, just the 
production of N single wave functions is also used as the total wave function and 
this method is called Hartree method. This method is simpler as numeric method 
than the Hartree-Fock method, but no exchange interaction is included. Numerical 
data base obtained with Hartree-Fock calculation may be used to solve Saha 
equation for multi-electron ions of medium- and high-Z atom plasma. However, it 
is too much just for obtaining the effective charge distribution. As we see later, more 
simplified atomic structure model is used for plasma hydrodynamic simulations. As 
seen in the case of helium atom, the exchange interaction gives different energy 
spectrum depending on the spins of N electrons. 

It is troublesome numerically to obtain the final radial wave functions of many 
electron system because of the iteration conversion process. Historically, more 
convenient way has been developed. It is parametric potential (para-potential) 
method [6]. So-called opacity codes have been developed to study the radiation 
transport in high-temperature plasma such as inside stellar objects and laboratory 
plasmas. As seen below, the opacity calculation demands reasonable atomic struc-
ture data. The number of atomic configurations is very huge in relatively mid and 
high Z atoms, it is convenient if a good approximate model is available to obtain the 
data of radial distribution functions in many configurations. 

The well-known opacity codes, OPAL [7] and HULLAC [8] have been devel-
oped with the parametric potential method. When discussing the effective potentials 
in OPAL, for example, the electron configurations are assumed with two compo-
nents. The first component is a “parent” configuration consisting of all the electrons 
in a given configuration except one. The excluded electron defines the second 
component or “running” electron. The parent configuration defines the effective 
potential for all the subshells available to the running electron. In order to incorpo-
rate the shell structure of the parent while retaining an analytic Fourier transform, 
OPAL introduced a potential with one Yukawa term for each occupied shell in the 
parent configuration. 

V rð  Þ= 
e 

4πε0r 
Z- νð Þ þ  

n* 

n= 1 

Nne
- αnr ð5:36Þ



where 
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ν= 
n* 

n= 1 

Nn ð5:37Þ 

is the number of electrons for the parent ion, Nn the number of electrons in the shell 
with principal quantum number n, n* the maximum value of n for the parent 
configuration, and αn the screening parameter for electrons in the shell n having 
principal quantum number n. 

αn ζ, νð Þ= ζþ 1ð Þ  a0 νð Þ þ  a1 νð Þ  
ζ þ a2 νð Þ  

ζ2
ð5:38Þ 

where 

ζ=Z- ν ð5:39Þ 

The table of {ai(ν), i = 0, 1, 2} are given in Ref. [6] and i = 3 is also given. These 
constants are obtained so that the results are optimized by comparing to the data of 
Dirac-Fock calculation. Relativistic version of Hartree-Fock. One electron wave 
function is calculated with Dirac equation in the potential (5.36). Note that some 
constants are also optimized to reproduce corresponding experimental data. 

It is largely due to the improvement of the capability of the computer that such 
detailed calculation has become possible. However, simple model of atomic struc-
ture is demanded for direct coupling of radiation transport in the integrated hydro-
dynamic code. 

5.3.4 Term Splitting 

As shown in Fig. 5.7, the ion with one excited electron with a configuration p3 s1 has 
the average energy for the configuration, splitting to three via exchange interaction 
and to six levels by L-S coupling. The energy levels given by the total wave function 
depend on the total orbital angular momentum L and total spin S. Each LS term is 
(2L + 1)(2S + 1)-fold degenerate, where 

L= 
i 

li, S= 
i 

si ð5:40Þ 

It may be shown that the splitting of the configuration depends on L and S. The 
energy levels which are characterized by certain values of L and S are called terms



and the splitting is called term splitting. The coupling of angular momenta of 
individual electrons to a resulting orbital angular momentum and spin is referred 
to as LS-coupling or Russell-Saunders coupling. 
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Fig. 5.7 An ion with one 
excited electron with a 
configuration p3 s1 has the 
average energy for the 
configuration, splitting to 
three via exchange 
interaction and to six levels 
by L-S coupling. The energy 
levels given by the total 
wave function depend on the 
total orbital angular 
momentum L and 
total spin S 

Since the term splitting depends on L and S, the total electron state referred to as 
configuration state functions (CSFs) are shown as the combination of orbitals and LS 
coupling term in the form. 

Ψ γ 2Sþ1ð ÞL 

where γ represents the orbital and S and L are the total spin and angular momentum. 
For example, the ground state of six electrons has the following two CSFs for anti-
spin or parallel spin in 2p state. 

1s2 2s2 2p21 P or  1s2 2s2 2p23 P 

For the case of helium atom in Fig. 5.6, the parahelium and ortho-helium in S = 0 
and S = 3 states, respectively. 

It is almost enough to determine the quantum state of multi-electron atoms or ions 
by Hartree-Fock methods. However, the details of line group structure become 
important for analyzing experimental spectroscopic data and/or computation of 
radiation hydrodynamics when the line radiation transport heats non-locally cold 
plasma region. It is required to improve by adding the spin-orbit interaction in 
Hamiltonian as follows. 

H=Te þ Vne þ Vee þ Vso ð5:41Þ 

where the spin orbit interaction is given in the form [1, 2].
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Vso = aso 
N 

i 

1 
ri 

∂V rið Þ  
∂ri 

li . si, aso = 
μB 

ħmec2
ð5:42Þ 

The energy levels of atomic electrons are affected by the sum of the interaction 
between the electron spin magnetic moment and the current due to orbital angular 
momentum of each electron. It can be visualized as a magnetic field caused by the 
electron’s orbital motion interacting with the spin magnetic moment of the electron. 
This effective magnetic field can be expressed in terms of the electron orbital angular 
momentum. Therefore, the energy levels have more fine structure and the number of 
energy levels becomes very huge when high-Z ions are considered. 

Finally, schematic diagram of the lowest configuration of a neutral neon atom is 
shown in Fig. 5.8. The levels of each configuration lie within the limited energy 
range shown by the corresponding colored blocks (bands). This suggests that if the 
line width is broader than the separation of fine structure, it is possible to model all as 
a band, while if the width is narrower, it is required to identify the fine structure 
depending on what physics should remain in our model. 

Fig. 5.8 Schematic 
diagram of the lowest 
configuration of a neutral 
neon atom. The levels of 
each configuration lie within 
the limited energy range 
shown by the corresponding 
shaded block 
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5.4 Quantum Theory of Electron Transitions 

It is a fundamental of quantum mechanics to study the physics of atom-photon 
interaction based on the perturbation method. It is also a good example of mathe-
matical physics on the perturbation theory. Try to derive the mathematics of transi-
tion of an electron in N-electron atom or ion, when a weak external perturbation is 
impacted on the bound electrons. Assume that the external one is due to a photon or 
an electron with its energy E0 and its wave function is given in the form. 

Vex t, rð Þ= a0e
- iω0tþik0.r ð5:43Þ 

where ω0 = E0/ħ. Note that the wavenumber k0 has the following relation with the 
energy, respectively, 

ω= ck photonð Þ  
ω= 

ħ 
2me 

k2 electronð Þ ð5:44Þ 

The total wave function of the initial bound electrons is Ψi(τ), where “i” means the 
initial state and τ indicate all coordinates of electrons. In addition, the total wave 
function of final state after transition is Ψf(τ), where “f” means the final state. 

Assume that the perturbation is weak and the transition is slow enough as 
adiabatic transition, namely it is possible to assume that the wave function during 
the transition is approximated as a liner combination of the two states with time-
dependent coefficients. 

Ψ t, τð Þ=Ci tð ÞΨi þ Cf tð ÞΨf ð5:45Þ 

Of course, the conservation relation should be satisfied. 

Cij j2 þ Cfj j2 = 1 ð5:46Þ 

The initial and final wave functions are stationary ones and satisfy the Schrodinger 
equation.

- iħ 
∂ 
∂t 

Ψ t, τð Þ=H0 τð ÞΨ t, τð Þ ð5:47Þ 

where H0 is Hamiltonian given in (5.37) for N-electron atom. The initial and final 
states Ψi(τ) and Ψf(τ) are eigen sates of (5.22) for N-electron Schrodinger equation. 
In addition to H0, the perturbation potential energy (5.43) is included in time 
dependent Schrodinger equation. Assume that the wave function in the transition



} ð

phase is given by the form (5.45). Then the Schrodinger equation for the perturbation 
terms is given as
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- iħ 
∂ 
∂t 

Ci tð ÞΨi þ Cf tð ÞΨf½ }=Vex t, τð Þ  Ci tð ÞΨi þ Cf tð ÞΨf½ 5:48Þ 

Integrating (5.48) by all coordinate τ after the product by the complex conjugate of 
the final state Ψf 

* , the following relation is obtained.

- iħ 
∂ 
∂t 

Cf tð Þ½ }=Ci tð Þ  Ψf
*Vex t, τð ÞΨidτþ Cf tð Þ  Ψf

*Vex t, τð ÞΨfdτ ð5:49Þ 

Note that the transition is given by the change of electron configuration. For 
example, consider the initial state is the oxygen ground state and the final state is 
one of the following two. 

1s2 2s2 2p4 → 1s2 2s2 2p3 nd ð5:50Þ 
1s2 2s2 2p4 → 1s2s2 2p3 np ð5:51Þ 

(5.50) is the transition of an outer shell electron, while (5.50) is the inner-shell 
electron transition. It is possible to integrate (5.49) by  τ except for the transiting 
electron coordinate r. (5.49) becomes the integral to one electron wave function 
(φi,φf). 

dCf 

dt 
= i 

a0 
ħ 
eiΔωt φi 

*eik0.rφfdr= αif eiΔωt ð5:52Þ 

where 

Δω= ωi -ωfð Þ-ω0 ð5:53Þ 

αif = i 
a0 
ħ 

φi 
*eik0.rφfdr ð5:54Þ 

In deriving (5.52), it is assumed that Ci = 1. The second term in (5.49) is neglected 
because of the rapidly oscillating term with small Cf at the beginning, and only the 
first term remains because of resonance. 

Cf tð Þ= αif 
eiΔωt - 1 
iΔω ð5:55Þ



Therefore, the probability of the j state is near the time origin 
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Cfj j2 =C* 
f Cf = αifj j2 2 1- cosΔωtð Þ  

Δωð Þ2 ð5:56Þ 

As can be seen from the uncertainty principle, the energy level has a finite width and 
it is necessary to integrate over the frequency ω for obtaining the transition proba-
bility of electrons. Then, changing variables like 

Δωt= ξ= 2x ð5:57Þ 

and using the relation 

1

-1 
1- cos ξ 

ξ2 
dξ= 

1

-1 
sin 2 x 
x2 

dx= π ð5:58Þ 

The following solution is obtained. 

Cfj j2 = νif t, νif = 2π αifj j2 ð5:59Þ 

where νif is the transition probability (in unit of s-1 ). 

5.5 Photo-excitation and Ionization 

Calculate the transition probability by photon interaction. As mentioned in Vol. 
1, Hamiltonian of an electron including interaction with photon in the vacuum is 
given in the form [9] 

H= 
P2 
c 

2m 
= 

pþ eAð Þ2 
2m 

=H0 þ e 
m 
p . Aþ e

2 

m 
A2 

H0 = 
p2 

2m 

, ð5:60Þ 

where A is the vector potential of photon field. Assume that only one electron 
interacts with the photon for the transition and the other electrons are not necessary 
to consider in the following analysis. Use the following corresponding relation of the 
operators. 

E→ iħ 
∂ 
∂t 

, p→ -iħ∇ ð5:61Þ



Then, Schrodinger equation is obtained as 
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iħ 
∂ 
∂t 

Ψ= H0 þ iħ e 
m 
A . ∇þ e

2 

2m 
A2 Ψ ð5:62Þ 

It is clear that the second term on RHS is linear perturbation and the third term is 
non-linear perturbation. Here, the analysis is limited to the case of the linear theory 
and the third term is neglected. Assume that the vector potential is due to plane 
electromagnetic wave polarized in the x-direction. 

A t, rð Þ=A0ixe- i ω0t- k0rð Þ ð5:63Þ 

Comparing (5.43) and (5.62), the assumed coefficient a0 is in the present case found 
to be an operator. 

a0e
ik0.r = - iħ 

e 
m 
A0e

ik0.r ix .∇ ð5:64Þ 

In order to calculate αif in (5.54), we have to calculate 

αif = 
e 
m 
A0 ih jeik0.r ix . ∇ fj i ð5:65Þ 

It is not easy to directly integrate (5.65). Let’s examine the relationship between the 
photon energy and the energy level of electrons. In the case of hydrogen, the wave 
function of electrons is at most the extent of the Bohr radius. However, its energy 
level is about 10 eV, and the wave number of the photon with energy of 10 eV is 
k = 8 × 104 cm-1 . This is because of the difference of the dispersion relation shown 
in (5.44). Therefore, the exponent of (5.65) is very small such as 

k0rh i ~ 10- 3 ð5:66Þ 

This means it is possible to use Taylor expansion. 

eik0.r ≈ 1 þ ik0 . rþ 1 
2 

k0 . rð Þ2 þ : . . . ð5:67Þ 

When only the first term unity is taken, the wavelength of the radiation field 
corresponds to an infinite. Such assumption is called dipole approximation. The 
second term in (5.67) gives electric quadrupole transition and magnetic dipolar 
transition, while they are neglected in the following analysis.
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5.5.1 Dipole Transition Matrix Element 

In integrating (5.65), the corresponding relation is used.

- iħ∇= p=m 
dr 
dt 

= - imωr ð5:68Þ 

(5.65) is rewritten by setting ω in (5.68) as  ωif. 

αif = 
e 
ħ 
A0ωif ih jx fj i ð5:69Þ 

In general, the transition from i to j defines the dipole matrix element as. 

rij = ih jr jj i ð5:70Þ 

The matrix of (5.65) is its x component of (5.70). The value of the matrix element is 
large as the overlapping of the wave functions of i and j becomes stronger. The one 
electron wave function is possible to be given in the form (5.66). The radial 
distribution of the electron, rR(r) can be imaged from that of an electron in hydrogen 
atom in Fig. 5.9. It is seen that the closer the principal quantum number is, the 
stronger the overlapping in (5.70). However, note that the integral on θ and φ in 
(2.97) gives the selection rule to be explained later. 

Since the electric field E0 = ω0A0, (5.65) is shown as 

αifj j2 = 
e2 

ħ2 
E2 
0 xifj j2 ð5:71Þ 

Now, since the polarization direction is along x, the transition probability is sym-
metric around the x axis and θ is the angle formed by r and the x axis, x = r cos θ 

1 
τif 

= νif = 
4 
3 
π2 

cħ2 
e2 

4πε0 
I ωð Þ  rifj j2 , 

I ωð Þ= 
1 
2
ε0cω2 A2 

0 

ð5:72Þ 

Here, I(ω) is the photon energy flux overlap with the transition energy spectrum and 
the relationship hcos2 θi = 1/2 is used. Consequently, τif represents the transition 
time. When the number density of atoms or ions with the same configuration of the 
initial state is ni, the transition cross section σif is given by the relation. 

νif = niσif ð5:73Þ
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Fig. 5.9 The radial 
distributions of an electron, 
rR(r), of a hydrogen atom 

5.5.2 Einstein’s A, B Coefficients 

(5.72) gives coefficients of absorption and emission due to induced process, but in 
fact there is spontaneous emission process that cannot be solved by the above 
perturbation theory. Consider two energy levels as a simple quantum system. The 
upper level is indicated by 2, and the lower level is indicated by 1. Then, considering 
the three processes shown in Fig. 5.10, the number of the state 1 (N1), evolves 
according to the following coupled equation. 

dN1 

dt 
=A21N2 þ B21I ωð ÞN2 -B12I ωð ÞN1 ð5:74Þ 

At the same time, a similar equation governs the evolution of N2. Here, A is the 
spontaneous emission coefficient, which is derived from the fact that the state other 
than the ground level is unstable and has a finite lifetime. Then, B21 and B12 indicate 
induced emission coefficient and absorption coefficient, respectively. 

When both atoms and radiation fields are completely in thermal equilibrium, the 
right side of Eq. (5.74) must be balanced. In other words, when the photon field is 
Planck distribution (see Appendix) and the electron population is Boltzmann distri-
bution, the detail balance relation should be satisfied.
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Fig. 5.10 Energy diagram 
of two-level system showing 
absorption, spontaneous 
emission, and stimulated 
emission 
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A21N2 þ B21I ωð ÞN2 -B12I ωð ÞN1 = 0 ð5:75Þ 

where I(ω) = (Planck distribution). 

BT νð Þ= 
2hν3=c2 

exp hν=Tð Þ- 1
ð5:76Þ 

The electron equilibrium population should satisfy the relation 

N2 

N1 
= 

g2 
g1 

exp -
E2 -E1 

kBT
ð5:77Þ 

It is noted that B12 has already been given by (5.72), so it is possible to explicitly 
obtain the remaining B21 and A21 from the three simultaneous equations. Equation 
(5.72) gives B12 as follows 

B12 = 
2 
3 

π 
ħ2 

e2 

4πε0 
r12j j2 ð5:78Þ 

Using (5.78), B21 and A21 are obtained as follows. 

B21 = 
g1 
g2 

B12, ð5:79Þ
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B12 and A21 are written as 

A21 = 
2hν3 

c2 
B21 ð5:80Þ 

Since the three coefficients are proportional to the dipole moment, we introduce a 
dimensionless quantity of order of unity called oscillator strength 

fij = 
2mω 
3ħ 

rij 
2 ð5:81Þ 

Then, the spontaneous emission coefficient is given in [10]. 

A21 = 8:0× 109
ħω 

13:6eV 

2 

f21 s- 1 ð5:82Þ 

In order to estimate the size of fij intuitively, rewrite (5.81) as  

f12 = 
2 
3 
ħω 
E0 

r12j j2 
a2 B 

, ð5:83Þ 

where E0 is the energy of hydrogen ground state. 
We found that Einstein’s A and B coefficients are proportional to the oscillator 

strength. From the integral in the spherical coordinates in the calculation of the 
oscillator strength, it is found that the selection rule is derived. What remains is the 
integral of radial direction r. Radial wave function is a solution oscillating to positive 
and negative except for the ground state (Fig. 5.9). It is clear that when the principal 
quantum numbers of |1i and |2i states are too far each other, the integral becomes 
that of positive and negative oscillating functions and becomes smaller. Oscillator 
strength takes a large value when both principal quantum numbers are close to each 
other. In addition, it can be expected that the larger ħω/E0 in (5.83) the value of 
r12j j2 =a2 0 the smaller. In fact, the magnitude of the oscillator strength is a constant 
value, and in the case of hydrogen atoms, it is known to be as shown in 
Table 5.1 [10]. 

In addition, the following sum rule called Fermi’s golden rule is satisfied. 

j 

f ij = 1 ð5:84Þ 

Note that the summation of (5.84) represents all states for the complete system, 
including free electron states.
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Table 5.1 Oscillator strength of hydrogen atom. The values are for the principal quantum number 
n = 1–5 [10]. The positive values are the absorption oscillator strength and the negative ones the 
emission oscillator strength. The larger values mean easier transition from the initial state to the final 
state 

initial 1s 2s 2p 3s 3p 3d 

final np np ns nd np ns nd np nf 

n=1 -0.139 -0.026 

2 0.4162 -0.041 -0.145 - -0.417 -
3 0.0791 0.349 0.014 0.696 

4 0.0290 0.1028 0.003 0.122 0.484 0.012 0.619 0.011 1.016 

5 0.0139 0.0419 0.001 0.044 0.121 0.007 0.139 0.002 0.156 

5.5.3 Selection Rule 

Carry out the integration of (5.70). As is well known each Cartesian coordinate is 
transferred to the spherical coordinate as follows, 

x= r sin θ cosφ 
y= r sin θ sinφ 
y= r cos θ 

ð5:85Þ 

The spherical harmonics in (5.24) is  defined as 

Ym 
ℓ θ,φð Þ= Pm 

ℓ θð Þeimφ ð5:86Þ 

where Pl 
m is Legendre fold function. The integral (5.70) by  θ coordinate has the 

following form, 

1

- 1 

ξPm 
ℓ ξð ÞPm0 

ℓ0 ξð Þdξ ð5:87Þ 

Legendre fold function has a formula. 

ξPm 
ℓ ξð Þ= 

ℓþ m 
2ℓþ 1 P

m 
ℓ- 1 ξð Þ þ ℓ-mþ 1 

2ℓþ 1 Pm 
ℓþ1 ξð Þ ð5:88Þ 

Inserting (5.88) into (5.87), it is easy to show that the integral has finite value only 
for the case, 

Δℓ= ± 1 ð5:89Þ
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In addition, the integral to φ coordinate requires the following selection rule, too. 

Δm= 0, ± 1 ð5:90Þ 

5.6 Photo Excitation and De-excitation 

In case where ions are partially ionized, spontaneous transition from the upper-level 
q to the lower-level p has been derived in (5.78). Rewriting it with the oscillator 
strength of radiation fp,q, we obtain 

A q, pð Þ= 
e2ω2 

2πmc3ε0 
g pð Þ  
g qð Þ fp,q s- 1 ð5:91Þ 

Here, g(p) and g(q) are the number of states at the levels p and q, respectively. The 
oscillator strength fq,p of radiation emission is related to the absorption oscillator 
strength fp,q as follows. 

fq,p = 
g pð Þ  
g qð Þ fp,q ð5:92Þ 

Regarding the oscillator strength of absorption in the case of hydrogen, there is a 
classical expression by Kramers (p. 269 in [10]), 

fp,q = 
26 

3 3π
p 1 

2p5 
1 
q3 

1 

p- 2 - q- 2ð Þ3 gbb ð5:93Þ 

Here, gbb is a gaunt factor, which is a correction factor for matching with quantum 
mechanically accurate calculation. The subscript “bb” means a transition from a 
bound state to a bound state. 

It is valuable to note a simple property of fp,q. For a given p, fp,q becomes smaller 
in proportion to q-3 for larger q. In addition, the oscillator strength between higher 
levels such as fp,p + 1 tends to the following form. 

fp,pþ1 ≃ pþ 1ð Þ=5 ð5:94Þ 

Let’s find the photo excitation cross section. From the relation (5.72), we see that the 
reciprocal of the transition time from p to q is Bp,qI(ω). This should be equal to ρ(ω)σ 
where ρ(ω) is the number density of photons at thermal equilibrium (Planck distri-
bution) and we obtain the cross section of spontaneous emission.
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σ p, qð Þ= 
1 
4 

c3h2 

ħωð Þ2 A q, pð Þ ð5:95Þ 

Figure 5.11 shows the p and q dependence of A (q, p). 
The cross section of the photo de-excitation is automatically obtained from the 

relation of detailed balance by using the cross section of the photo excitation. In 
thermodynamic equilibrium condition, RHS of (5.74) should balance, namely (5.75) 
should be satisfied. This is called the principle of detailed balance. That is, if the 
cross-section of photo-excitation is given, the cross-section of photo de-excitation in 
the reverse process should be automatically determined with use of (5.77) and (5.78). 
We insert Planckian intensity distribution into (5.74), and we use the relation (5.76). 
If we put these relationships into (5.74), we obtain the photo de-excitation cross 
section. 

σ q, pð Þ=Bq,pBT ωð Þ ð5:96Þ 

Here, BT(ω) is energy flux of the Planck distribution define by ħωcρ(ω) and (5.76). 
Bq,p in (5.96) is obtained by using (5.77). 

Fig. 5.11 The p and q 
dependence of Einstein’s A  
coefficient A (q, p) [4]. 
Reprinted with kind 
permission by T. Fujimoto
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5.7 Photoionization and Photo-recombination 

Let’s calculate the cross section of photoionization where a photon interacts an atom 
and one electron becomes free electron by absorption of photon energy. The way of 
thinking is the same as in the above photo-excitation case, and this time we think 
about the transition including the electron free state from the bound state. We have to 
start with finding the wave function of free electron whose energy derived from 
Schrodinger equation is positive and the wave function is infinitely spread. This 
results in a wave function including the spherical Bessel function derived by the 
scattering problem. However, as the calculation becomes complicated, let’s calculate 
the cross-section within Born approximation here. In Born approximation, free 
electron is assumed plane wave and is written in the following normalized form 

ψf = 
1 
2π 

3=2 

eikr ð5:97Þ 

That energy is 

Ef = 
ħ2 k2 

2m
ð5:98Þ 

Consider the photo-ionization cross section for the case where the initially bound 
electron |ii is ionized and becomes a final state of free electron |fi. Then, as has been 
derived in (5.65), we obtain the following form as the transition probability 

αif = 
e 
m 
A0 ih je- ik.r ep .∇ fj i ð5:99Þ 

Try to integrate (5.99) explicitly by assuming the case of |ii being the 1s of a 
hydrogen atom. The radial wave function of the hydrogen 1s is given as 

ψi = 
1 
πa3 0 

1=2 

e- r=a0 ð5:100Þ 

Inserting (5.100) and (5.97) into (5.99), the integration is easily carried out with 
assumption of the dipole approximation (5.67) in the form. 

e- r=a0 e- ik.r dr= 
8π 

a0 a- 2 
0 þ k2 f 

2 ð5:101Þ 

With use of (5.101), the cross section (5.73) for photo-ionization is derived to be the 
following form.
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σ ωð Þ= 32α ħ 
mωa5 0 

k2 f 
a- 2 
0 þ k2 f 

4 cos 2θdΩ ð5:102Þ 

where θ is the angle formed by the polarization direction of light and the direction of 
the wave number of free electrons. In (5.100) α is the fine-structure constant. 

α= 
e2 

2ε0hc 
= 1=137 ð5:103Þ 

Note that in deriving (5.102) we have assumed the wave number of free electrons is 
short, that is, the energy of light is sufficiently larger than the binding energy of the 
ground state; 

kf > >  
1 
a0 

ð5:104Þ 

In addition, (5.102) can be written for any hydrogen-like ions of atomic number Z in 
the form, 

σ ωð Þ= 
128π 
3 

α ħ 
mω 

Z 
kfa0 

5 

ð5:105Þ 

(5.105) can be written finally as follows. 

σ ωð Þ= 
16 2

p 
π 

3 
α Z 

a0 

5 
ħ 
mω 

7=2 

ð5:106Þ 

As you can see in (5.106), the photo-ionization cross section strongly depends on the 
photon energy. 

The above calculation can be also expressed using the concept of the absorption 
oscillator strength in the free state fp,ε. Assuming that the energy of incident light is 
hν, the cross-section of photoionization is analytically obtained with respect to 
hydrogen-like case. Ionization cross section can be written with the oscillator 
strength fp,ε in the form; 

σp,ε νð Þ= 
e2 

4mcε0 
dfp,ε 
dν ð5:107Þ 

Here, fp,ε is the continuous absorption oscillator strength for the transition from the 
bound state p to a free state with kinetic energy ε. In the case of hydrogen atoms, the 
expression of fp,θ in (5.93) can be used and extended to the bound-free transition. 
Replacing the final state to free state as q → iκ, a pure imaginary number, we obtain 
the following form;
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fp,κ = 
26 

3 3π
p 1 

2p5 
1 
κ3 

1 

p- 2 þ κ- 2ð Þ3 gbf ð5:108Þ 

where κ should satisfy the energy conservation relation 

hν= z2 R 
1 
p2

þ 1 
κ2

ð5:109Þ 

where R is the Rydberg constant (=13.6 eV), and z is equal to 1 in the case of 
hydrogen and the charge number of the hydrogen-like ion. About the hydrogen-like 
atom whose charge number is z and who has one-electron in the s-state, we have the 
following relation. 

dfp,ε = fp,κdκ= fp,κ 
hκ3 

2z2R 
dν ð5:110Þ 

Using (5.110) the photoionization collision cross section is given 

σp,ε νð Þ= απ 2
6 

3 3
p p2aB 

z 

2 
1 
p3 

z2R=p2 

hν 

3 

gbf ð5:111Þ 

Here, α is the fine structure constant (=1/137). This equation is equivalent to (5.107). 
When considering the case of a hydrogen atom and looking for the value at the point 
of hν = R, the cross section of the ground state (p = 1) is calculated 

σ= 7× 10- 18 cm2 

For the case of hydrogen, the photoionization cross section is shown in Fig. 5.12. In  
the log-log figure, the straight line is a power law as given in (5.111). The following 
features are known for the cross section. 

1. There is a threshold for hν for photoionization, requiring the photon energy more 
than the ionization energy 

2. Photo-ionization cross section from the s-state is proportional to 1/(hν)3 

3. For higher energy photon, the photo-ionization cross section is larger for the 
lower energy level transition as seen in Fig. 5.12. 

Regarding the iron atom (Fe), the photoionization coefficient from the K shell of iron 
is shown in Fig. 5.13 as a function of photon energy. As can be seen from Fig. 5.12, 
the ionization cross section is maximum at the threshold of photon energy, and 
abruptly decreases by the power of energy as the energy increases. Another charac-
teristic feature is that as shown in Fig. 5.13. the ionization cross section from the 
grand state 1s hardly depends on ionization state. In other words, when high energy 
photons are incident on atoms with high-Z value, it is necessary to always consider 
inner shell ionization.
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Fig. 5.12 The 
photoionization cross 
section of a hydrogen 
atom [4]. Reprinted with 
kind permission by 
T. Fujimoto 

Fig. 5.13 The 
photoionization coefficient 
from the K shell of iron is 
shown as a function of 
photon energy [3]. 
Reprinted with kind 
permission by D. Salzmann
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As evidenced by the discussion above, when a photon energy high enough to 
ionize 1s-electron, the 1s electron is ionized predominantly even if there are 2s 
electrons. Since the photo-ionization cross section is larger for the inner shell, it can 
be seen that the inner shell ionization is dominant. In this way, photoionization 
plasma needs to be modeled by taking account of the ionization progresses after the 
inner shell vacancy is produced. 

Now, photo recombination, which is the reverse process of the photoionization, is 
an elementary process in which a free electron is captured to a bound state (quantum 
state m) to release the excess energy as a photon. The problem is a two-body problem 
in terms of quantum mechanics; a plane wave (5.97) of the free electron is defined as 
an initial state of (5.99). However, the cross section of the photo-recombination is 
easily obtained by considering the detail balance relation in the thermodynamic 
equilibrium state. 

5.8 Quantum Theory of Electron Impact on Atom 

In plasma high energy electrons play important role in ionizing and recombining the 
ions via electron impact. They are called collisional ionization and recombination, 
respectively. Most of plasma temperature is low compared to mc2 and 
non-relativistic analysis is enough to obtain the cross sections of such processes. 
The situation is the same in the cases of excitation and de-excitation as well. 
Therefore, the following analysis is limited to the non-relativistic case. It is, how-
ever, noted that the highly relativistic electron beam produced by accelerators have 
been used as diagnostic tool to study the structure of nuclei and quarks inside nuclei 
[9]. This is because the de-Broglie wavelength of impacting electron can resonate 
with the size of nucleus and elementary particles. So, the following analysis to be 
done by stating with Schrodinger equation can be easily extended to the relativistic 
case, if Dirac equation is instead used as the basic equation. 

Consider the case where free electrons collide to ionize or excite atoms or ions. 
This is called electron impact excitation or ionization. Precise calculation requires 
computation using wave function of free electrons distorted by the atomic field, and 
analytical handling is complicated. It is now possible to solve almost exact equations 
in detail with computers. 

The cross section of the collisional excitation is shown in Fig. 5.14 for helium 
atoms in the para-helium ground state already explained in Fig. 5.6. As can be seen 
from the Fig. 5.14, the probability of transition to the p-state is the largest, and it is 
also possible for transition to 2s which is the optically forbidden. It is also noted that 
the cross section decreases as the transition to the higher energy levels. Unlike 
photoionization, the cross section gradually increases from the threshold energy, 
and when the energy is about three times the threshold energy, the cross section 
becomes maximum, and thereafter decreases with the power of energy as determined 
by the Born approximation described later.
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Fig. 5.14 The cross 
sections of the collisional 
excitation of helium atoms 
from the para-helium 
ground state as a function of 
an impacting electron 
kinetic energy 

Different from the photoionization, in the electron collision, the ionization cross 
section of the outermost shell electron is largest, and bound electrons are peeling 
from the outside. It is also important to note that the photo-ionization cross section is 
of the order of barn (=10-24 cm2 ), whereas the electron impact ionization cross 
section is on the order of 10-16 cm2 . Although it is not very meaningful to compare 
the cross section in Fig. 5.13 and one in Fig. 5.14, it is insufficient by comparison 
only with the cross sections. It is required to compare the ionization rates 

ν= nσvh i ð5:112Þ 

should be compared, taking average of the number of photons and photo energy 
distribution for the photo-ionization or the number of electrons and electron energy 
distribution in the electron impact ionization. In comparing the both ionization rates, 
it is necessary to evaluate the plasma temperature, density and optical depth etc. The 
optical depth is needed to evaluate if the photon density and energy distribution is 
close to the Planck distribution. 

With sizes like normal laboratory plasma the density of photons is much lower 
than in Planck distribution and such plasma is called “optically thin plasma”. 
However, in huge plasmas like in the sun, radiation can be considered Planck 
distribution. Even in a laboratory plasma for example, when heating material with 
a high Z such as gold (Au: Z = 79) or uranium (U: Z = 92) with a high intensity 
laser, the radiation field is close to Planck distribution with the temperature of 
hundreds of eV. 

The collisional ionization cross section of argon when peeling off electrons one 
by one is shown in Fig. 5.15. It can be seen that as the bound electrons are ionized 
and the ionization energy increases, the ionization cross section decreases. This can 
be interpreted intuitively that the interaction with free electrons becomes less likely 
as the wave function of bound electrons becomes smaller.
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Fig. 5.15 The collisional ionization cross sections of argon when peeling off electrons one by one 
from neutral atom 

5.8.1 Electron Impact to Atom 

Consider the case where an electron collides on a neutral atom. There are three cases 
in the phenomena; elastic collision, electron collisional excitation, and electron 
impact ionization. These three processes are important elementary processes in 
plasma generation, plasma heating, and plasma transport. In plasma generation in 
a discharge tube, neutral atom excitation and plasma formation are the most basic 
atomic processes. This physics needs to be quantum mechanically analyzed, and the 
quantum scattering is the base for analysis. 

Now let ra be the coordinates of electrons subjected to excitation and ionization 
within the target atom, and denote with r the coordinates of the impact electron. The 
Schrodinger equation for a steady state where such phenomena continue is

-
ħ2 

2m
∇2 þ Ha rað Þ þ  V rað , rÞ-E Ψ ra, rð Þ= 0 ð5:113Þ 

Here, E is the total energy of the atom and the free electron. The general solution of 
(5.113) is given by expanding the ra dependence of the wave function by eigen-
functions, so that we obtain the following multi electron wave function solution.
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Ψ ra, rð Þ= 
α 
Fα rð Þφα rað Þ ð5:114Þ 

Ha rað Þφα rað Þ=Eαφα rað Þ ð5:115Þ 

Here, φα(ra) is the complete orthogonal functions to the Hamiltonian Ha(ra) includ-
ing all free electron eigen states. Substituting (5.114) into (5.113) and using the 
relation of (5.115), (5.113) becomes a simple form. Then, multiplying φα 

*(ra) to the 
resultant form of (5.113) the following relation is obtained. 

∇2 þ k2 α Fα rð Þ= 
β 
Uαβ rð ÞFβ rð Þ ð5:116Þ 

where 

k2 α = 
2m 
ħ2 

E-Eαð Þ ð5:117Þ 

Uαβ rð Þ= 
2m 
ħ2 

φα 
* rað ÞV ra, rð Þφβ rað Þdra ð5:118Þ 

We think that the initial state of the electron in the atom is constantly excited to the 
eigenstate α (α can also be in the continuous state). Then, when there is a free 
electron sufficiently far from the atom before the impact, it is possible to assume the 
wave function of the two electrons before the impact is given by 

Ψ0 ra, rð Þ= exp ik0 . rð Þφ0 rað Þ ð5:119Þ 

As the two electrons interact in the atomic potential, the bound-bound electron 
transit from the initial state to the eigen-state α of the bounded electron. The free 
electron becomes a spherical scattering state with the center of the atom as the origin. 
Therefore, the wave function of the free electron is described as 

Fα rð Þ→ δα0 exp ik0 . rð Þ þ  1 
r 
f 0→ α; θ,φð Þ exp ikα . rð Þ ð5:120Þ 

Multiply (5.120) by the ratio of the electron flow velocity, that is, the wave number 
ratio, and integrate (5.120) over all angles. Then, the following equation can be 
obtained as the collisional cross section where the bound electron is excited as | 
0i → |αi and at the same time the free electron is scattered. 

σ 0→ αð  Þ= 
kα 
k0 

f 0→ α; θ,φð Þj j2 sin θdθdφ ð5:121Þ 

(5.121) is the cross-section of elastic scattering.
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Based on the perturbation theory to find the solution of (5.121), so-called Born 
approximation is used. That is, (5.120) is assumed to be expanded as 

Fα = Fα 
0ð Þ þ Fα 1ð Þ þ Fα 2ð Þ þ . . . ð5:122Þ 

In this approximation, the term V(ra, r) in (5.113) is regarded a perturbation term. 
Then the first order equation is given 

∇2 þ k2 α F 1ð Þ  
α = 

β 
Uαβ rð ÞF 0ð Þ  

β rð Þ ð5:123Þ 

In addition, the following form is also assumed. 

F 0ð Þ  
α rð Þ= δα0 exp ik0 . rð Þ ð5:124Þ 

Then, RHS of (5.123) is given. It is noted that Green function method is usually used 
to solve (5.116) exactly [9]. 

The collision cross section in the case of elastic collision is shown in Fig. 5.16. Its 
value is, of course, a function of the energy of the colliding electrons. It is useful to 
note that it is larger than the cross-section of “inelastic collision” such as collisional 
excitation and collision ionization. 

As shown in Fig. 5.15, the ionization energy has the threshold value for the 
impact ionization cross section and the cross section abruptly increases. It takes the 
maximum value at about 2–3 times the threshold energy, and thereafter suddenly 
decreases. The detailed calculations of (5.121) are given in more specialized books, 
but a comparison between the results of Born approximation and experimental

Fig. 5.16 Elastic collision 
cross sections for Ar, Kr, 
and Xe neutral atoms as a 
function of impacting 
electron velocity. Note that 
such elastic collision cross 
section is larger than the 
cross-section of “inelastic 
collision” such as collisional 
excitation and collision 
ionization



values is shown for the case of hydrogen in Fig. 5.17 [9]. Even when Born 
approximation is used, impact ionization of hydrogen can be obtained with such 
degree of accuracy. The Born approximation is appropriate at the high energy limit 
of the colliding electron, but the height of the peak of the cross section in the vicinity 
of the threshold is only about 1.5 times different. It is surprising to note that the 
properties of the curve are well reproduced.
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Fig. 5.17 Elastic collision 
cross section obtained 
theoretically by Born 
approximation compared to 
the experimental value for 
the case of hydrogen atom. 
The horizontal and vertical 
axis are impacting electron 
momentum and collision 
cross sections in arbitrary 
units, respectively. It is seen 
that the theory can predict 
well the experiment. 
Reproduced from ref. [9] by  
permission of Person 
education 

5.8.2 Elastic Scattering 

Let us calculate the cross-section of the elastic collision. Since the coordinate 
dependence of (5.113) can be fixed for ra, the wave function can be obtained by 
solving an equation for one electron wave function F0(r) in the form of (5.120). 
Partial wave expansion, which is Fourier transformation of any function axially 
symmetric, is applied to the scattering component as 

F0 rð Þ= 
1 
r 

ℓ 

Aℓuℓ rð ÞPℓ cos θð Þ ð5:125Þ 

where Pℓ is a normalized Legendre function. 
By multiplying Pℓ to (5.113) and integrating it over the angle, the following 

equation is obtained after the separation of variables. 

d2 uℓ 
dr2 

þ k2 0 -V  rð  Þ- ℓ  ℓ  þ 1ð  Þ  
r2

uℓ = 0 ð5:126Þ
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Consider the properties of the solution of (5.126) intuitively without solving. Since 
the effective range of V (r) is of the order of Angstrom (10-8 cm), the inside of the 
parentheses in (5.126) becomes negative for large values of ℓ. In other words, it can 
be considered that there is only a small component of ℓ in scattering of low energy 
electrons. It is also clear that the increase of the free electron energy, large angle 
scattering described with large numbers of ℓ appears. It is noted that the partial 
waves with ℓ = 1, 2, 3 are called s-wave, p-wave, d-wave. Since the s-wave has no 
ℓ-dependency, it shows isotropic scattering. The asymptotic solution of Eq. (5.126) 
at large radius is known to be 

uℓ rð Þr→1 → 
1 
k0 

sin k0r-
1 
2 
ℓπþ ηℓ ð5:127Þ 

Here, ηℓ is the “phase shift“due to scattering for the partial wave with angular 
quantum number ℓ. By placing (5.127) in  (5.121), the scattering cross section can be 
found as follows. 

σ= 
4π 
k2 0 

1 

ℓ= 0 

2ℓ þ 1ð Þ sin 2ηℓ ð5:128Þ 

In the scattering of low energy electrons only a small number of partial waves appear 
with lower ℓ numbers. This fact suggests that the phase shift of larger l number is 
near nπ, where n is an integer. Especially when it is less than 1 eV, only s-wave 
appears. It is also known that the phase shift becomes nπ at certain electron energy. 
Then, the scattering cross section of (5.128) becomes extremely small. This phe-
nomenon is called the Ramsauer effect. In Fig. 5.16, elastic collision cross section 
by the noble gas is shown. It is seen that Ramsauer effect clearly appears at the 
low-speed part. 

In Vol. 1, the scattering of an electron in Coulomb field by classical mechanics 
was solved to find the formula of Rutherford scattering. Let’s compare the same 
electron scattering due to bare hydrogen nucleus (proton) to that obtained by the 
quantum mechanical analysis. The same problem can be solved exactly as the 
scattering problem described above. The scattering cross section thereof agrees 
with the classical Rutherford scattering one in the form [9]. 

σ= 
e2 

4πε0mv2 

2 
1 

4 sin 2 θ=2ð Þ ð5:129Þ 

It is useful to note that such quantum scattering of electron beam is applied to study a 
nuclear structure of many nuclei. In this case the potential force is due to not only 
Coulomb force but also nuclear force is inserted in (5.113). Historically, such 
electron beam measurement has been used to identify the particle distribution of 
nucleus and quarks in nucleon [11]. Note that in the case of relativistic electron 
scattering measurement by nuclei, the spin effect of electron and nucleus becomes



important and the cross-section (5.129) is modified to Mott scattering cross-section 
as shown in this chapter [11]. With the increase of Lorentz factor β to unity, the 
scattering angle becomes narrower than Rutherford scattering (5.129). The Motto 
formula is the relativistic quantum scattering derived by stating with Dirac equation. 
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5.8.3 Electron Collision De-excitation and Recombination 

Solving (5.113), the cross sections of the collisional excitation and de-excitation are 
obtained. As clear in the above formulation, the bound state wave function transits 
from the initial state hi| = h0| to the final state hf| = hα| in (5.118). Such an inelastic 
collision, the wavenumber of the scattered electron k0 in (5.120) should be replaced 
with kα in (5.117). 

However, recombination due to electron collision cannot be described by the 
formulation above with only one electron scattering wave. It is necessary to formu-
late for two electron scattered wave after the ionization. This is a three-body 
problem, it is hard to deal with quantum mechanically. The detail mathematics is 
out of the scope of the book. 

If the cross sections of the electron collision excitation and electron impact 
ionization are calculated, the electron collision de-excitation and electron collisional 
recombination can be obtained. This principle is called the detail balance requiring 
that the latter two reversal process should balance in each when the thermodynamic 
equilibrium is established in plasma. Then, the distribution function of free electrons 
is Maxwellian. 

The measured cross sections of the elastic, collisional-excitation, and collisional 
ionization are shown in Fig. 5.18 for the case of neutral argon gas as a function of 
impacting electron energy. When increasing the energy of electrons, firstly elastic

Fig. 5.18 The cross 
sections of elastic, 
collisional excitation, and 
collisional ionization as 
function of impacting 
electron kinetic energy for 
an argon atom



scattering is dominant, excitation occurs from the point where electron energy 
exceeds the threshold, and then electron impact ionization becomes dominant in 
further high energy region. By injection of high-energy electron beams to any neutral 
gas, it is possible to generate plasma.
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5.9 Atomic Process in Maxwellian Free Electrons 

Even if we have some detail database via computation about photon and electron 
atomic processes, it is hard job to chase the time evolution of all atomic states. This is 
because the atomic process cross sections discussed are functions of photon energy 
and electron kinetic energy. If the photon field is not Planck distribution or the free 
electron energy distribution is not Maxwellian, the atomic process demands a huge 
computation. This resembles to the case why the hydrodynamic approximation is 
used to study the macroscopic plasma dynamics, instead of solving kinetic equation 
to the velocity distribution. 

Most of the plasma analysis, the free electron distribution is assumed to be 
Maxwellian, even when the electron distribution in the bound state is not necessarily 
Boltzmann distribution. Regarding the photon energy distribution, it is usual that the 
photon field is neglected in laboratory plasmas, while it is assumed Planckian in 
stellar objects. This is valid by evaluating the optical thickness of the plasmas. Most 
of laboratory plasmas are optically thin except for the plasma of high-Z atom 
like gold. 

It is useful to summarize the atomic processes to be taken into account for 
studying the physics of laboratory and astrophysical plasmas. It is also necessary 
to include the free-free radiation (called Bremsstrahlung radiation) and free-free 
absorption (inverse-Bremsstrahlung) already discussed in Vol. 1. 

1. Photo excitation 
2. Photo de-excitation (spontaneous and stimulated emission) 
3. Photo-ionization 
4. Photo-recombination 
5. Electron collisional excitation 
6. Electron collisional de-excitation 
7. Electron impact ionization 
8. Electron collisional recombination (two-electron recombination): 
9. Bremsstrahlung radiation 

10. Inverse-Bremsstrahlung (absorption): 

In the photo excitation, we need to know the detailed distribution of atomic energy 
levels and line-profile of radiation emission and absorption. The line profile in 
frequency space is determined by synthesized effects such as natural width, 
Doppler broadening, Stark broadening. Especially the theory of Stark broadening 
at high density plasma is still the theme of the forefront of research. The discussion is 
relatively simple if the photon distribution is Planckian. However, in the laboratory



plasma and the interstellar plasma whose density is relatively low, the radiation 
spectrum in plasma is generally very different from Planck distribution. Therefore, 
usually the photo-ionization and excitation process are neglected in determining the 
atomic states in plasma. 
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Assume that the plasma is close to the thermodynamic equilibrium state and the 
electron velocity distribution is Maxwellian. Then, the number of atomic process for 
an ion per unit time and unit volume, ν is given as an averaged value over the free 
electron velocity distribution. 

ν= nσvh i ð5:130Þ 

Here, n is the number density of atoms or ions, v is the velocity of electrons, σ is the 
velocity-dependent cross section, and hi means to take average value with the 
electron velocity distribution. Considering that n can be put out from the averaging 
and the free electrons have a Maxwell distribution of the temperature T, then 

ν= n σvfM vð Þdv= 4π m 
2πT 

3=2 
v3σ vð Þ exp -

mv2 

2T 
dv ð5:131Þ 

Converting (5.131) to the integral to the kinetic energy ε= 1=2mv2, the followings is 
obtained 

χ= 
ν 
n 
= 

23=2 m
p 

π
p 

T3=2 

1 

0 
ε3=2σ εð Þ exp -

ε 
T 

dε ð5:132Þ 

where χ is called rate coefficient. It is found that the rate coefficient for excitation 
and ionization due to electron collision is a function only of temperature. 

The coefficients of the atomic process involving the collision by free electrons are 
obtained by substituting the cross section as a function of electron energy into 
(5.132) and performing integration. However, it should be noted that the velocity 
distribution function of free electrons is limited to Maxwell distribution. For exam-
ple, in the case of impact ionization, as shown in Fig. 5.15, the cross-section of the 
integrand of (5.132) is a function that rapidly rises from the ionization energy. 
However, Maxwell distribution has the shape as shown in Fig. 5.19, which has the 
maximum value. When the temperature is low, the tail component of the Maxwell 
distribution contributes greatly to those products as shown in Fig. 5.19. It is noted 
that depending on generation and heating process, plasma is not necessarily Maxwell 
distribution. Particularly, since the tail component of the velocity distribution is 
often elongated, it is better approximated by the Maxwellian distribution with two 
temperatures. It should keep in mind in using to the average values. It is useful to 
note that nuclear reaction cross sections such as DT fusion reaction also have strong 
dependence on the particle energy and the corresponding integrand in (5.132) has a 
peak called Gamow peak.
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Fig. 5.19 Maxwellian averaged cross section in the case of impact ionization (see Fig. 5.15). The 
cross-section rapidly rises from the ionization energy like σAor σT, while Maxwell distribution has 
the shape like v2 fe(v) as shown in the figure. When the temperature is relatively low, only the high-
energy component of the Maxwell distribution contributes greatly to the averaged cross sections 

The following point should also be noted. The electron velocity distribution has 
been assumed to be isotropic (spherically symmetric in speed space). However, 
when energy transport is strong in a certain direction, or when electrons confined by 
magnetic field are heated, the distribution function may become anisotropic. When 
ions in such plasma are excited by free electrons in an anisotropic velocity distribu-
tion, it is known that the excited quantum state can be biased, and line emission via 
transition to the ground state by spontaneous emission is polarized. The science field 
for studying physics of polarized emission is called “polarization spectroscopy“, 
and studies are progressing with space physics observations and laboratory plasmas. 
Polarization spectroscopy is used as a method to investigate the structure of the 
magnetic field, especially in the universe. 

5.9.1 Rate Coefficient of Electron Collision Excitation 

The rate coefficient of velocity-averaged electron collisional excitation is 

χm,n = σm,nvh i  

≈ 16π 2πEH 

3m 

1=2 

a2 0fm,n 
EH 

Em,n 

EH 

T 

1=2 

gm,n exp -
Em,n 

T 
ð5:133Þ 

Here, m < n, EH = 13.6 eV = R (Rydberg constant), a0 is the Bohr radius, gm,n is the 
gaunt factor. fm, n is the oscillator strength of the absorption defined in (5.83). (5.133) 
reduces to
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νbb m,n = ne σm,nvh i= 4:3× 10- 6 fm,n 
ne 
T3=2 
eV 

T 
Em,n 

exp -
Em,n 

T 
s- 1 ð5:134Þ 

Here, Gaunt factor gmn = 0.275 was used as approximate value. 

5.9.2 Rate Coefficient of Electron Impact Ionization 

The impact ionization coefficient (5.67) can be calculated in principle by setting the 
initial state to be bound electrons in atoms and the wave function after collision to be 
a plane wave (free electron) in a certain direction. However, it is easier to start with 
the formula by Thomson (1912) that has been used historically as the simplest 
expression given in (6.83) in [12]. 

σm,c = 4πa2 0 
EH 

E 

2 E 
Em,c

- 1 ð5:135Þ 

where E is the electron kinetic energy and Emc is the ionization energy from the 
bound state hm|. When this ionization cross section is multiplied by the Maxwell, the 
following rate is obtained after the integration. 

χ = σm,cvh i  

= 8πa2 0 
2EH 

πm 

1=2 EH 

Em,c 

3=2 

β- 1=2 βe- β - βE1 βð Þ ð5:136Þ 

where 

β= 
Em,c 

T
ð5:137Þ 

The definition of E1 and the approximate expression for the large value of β are 

E1 βð Þ= 
1 

β 

e- x 

x 
dx= e- β 1 

β -
1 
β2

þ ⋯ ð5:138Þ 

Using (5.138), (5.136) becomes 

χm,c = 8πa2 0 
2EH 

πm 

1=2 EH 

Em,c 

3=2 

β- 1=2 e- β ð5:139Þ 

As a more precise expression, Lotz has obtained the following formula fitted well 
with one-electron data of high Z [3].
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χm,c = 8πa2 0 
2EH 

πm 

1=2 EH 

Em,c 

3=2 

β- 1=2 0:69e- βf βð Þ ð5:140Þ 

where 

f βð Þ= βeβE1 βð Þ ð5:141Þ 

This function varies from 0.34 to 0.90 for β = 1/4 to 8. Here, if you obtain the rate 
coefficient of impact ionization after inserting the values into (5.139), the impact 
ionization frequency is 

νbf m,c = 2:15× 10- 6 T- 3=2 
eV neβ- 2 e- β s- 1 ð5:142Þ 

5.9.3 Detailed Balance and Collisional Rates 

The rate coefficient of collisional de-excitation is obtained from the rate coefficient 
of collisional excitation based on the detailed balance. The governing equation for 
transition of bound electrons due to electron collision with respect to the quantum 
states m and n can be written as follows. 

dNm 

dt 
= -

dNn 

dt 
= νbb n,mNn - νbb m,nNm ð5:143Þ 

This relation should be balanced in the thermal equilibrium state. Using the rate 
coefficient of (5.134), the following is obtained. 

νbb n,m = 
Nm 

Nn 
νbb m,n 

= 
gm 

gn 
eEn -Emνbb m,n 

ð5:144Þ 

Now, in collisional recombination coefficient is also derived from the detailed 
balance, using the impact ionization coefficient. In case of the high-density state, it 
becomes necessary to use the Fermi-Dirac distribution for electrons, but here the rate 
coefficient at the limit of low density satisfying the condition,-μ/T > >  1, is 
obtained as follows from the detailed balance with (5.139). 

νfb cm = 3:55× 10- 28 gm 
n2 e 
T3 
eV 

β- 2 s- 1 ð5:145Þ
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5.9.4 Rate Coefficient of Photo-recombination 

The rate coefficient of photo recombination is obtained from the rate coefficient of 
photoionization in the local thermal equilibrium (LTE) state where photo distribu-
tion is Planckian. In LTE, the ionization cross section of (5.107) needs to be 
averaged by the radiation field of the Planck distribution. Planck distribution is a 
function of the temperature. The coefficient of optical recombination averaged by the 
energy distribution of electrons and photons is a function of only the quantum state 
of bound electrons in the ion. 

When the cross section of photo-recombination is calculated from the detailed 
balance, the general theory is very complicated. Limit the study to the case only 
when a captured electron forms a hydrogen-like ion of charge state z from the charge 
state z-1. Write the photo recombination cross section as σε,p, where the suffix 
indicates that ε is the kinetic energy of a free electron and that the free electron 
emits a photon of energy hν and is captured in the state of the principal quantum 
number p. The following energy conservation should be satisfied. 

hν= 
1 
2 
mv2 þ z

2IH 
p2 

, ε= 
1 
2 
mv2 ð5:146Þ 

In LTE, the rate coefficient of photoionization given by (5.107) needs to be equal to 
the rate coefficient of photo recombination given by σε,p., namely the relation 
becomes as follows using the Planck distribution. 

nζþ1 
0 nefM vð Þdvvσε,0 = 

p 
nζ pρνdνcσp,ε 1- e- hν=T ð5:147Þ 

Here, fM is the normalized Maxwell distribution, and ρν is the photon density of the 
Planck distribution. The last parenthesis on R is a term for subtracting the number of 
photons by stimulated emission. In addition, the relationship dν/(vdv) = h/m is 
satisfied by (5.146). 

The cross section of photo recombination is obtained from (5.147) as follows 

σε,0 = 
p 

nζ p 

nζþ1 
0 ne 

m 
h 

ρνc 
fM vð Þ  1- e- hν=T σp,ε ð5:148Þ 

where ρν is given by (B2.3), and fM is (B1.19). The first term of (5.148) is given by 
Saha’s solution found in (5.14). Inserting the constants to (5.148), it is shown as 

σε,0 = 2:8× 10- 21 z
2 

εeV 
φ z

2IH 
ε cm2 ð5:149Þ
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The dimensionless function φ (x) is a constant of order unity only depending on the 
principal quantum number. For the case where p = 1 contributes the most, its value 
is about 1, and (5.149) is approximated as follows 

σε,0 ≈ 3 × 10- 21 z2 

εeV 
cm2 ð5:150Þ 

5.10 Bremsstrahlung Emission and Absorption 

Via collisions of free electrons with ions, photons are emitted. Since the above 
atomic processes via photons are important to be installed in the radiation hydrody-
namic simulation to be discussed later, it is better to study the radiation process via 
free-free electron interaction. This photo-emission is called Bremsstrahlung. The 
reverse process contributes photo-absorption by free electrons. Note that this process 
is very important as classical absorption of laser photons as studied in Vol. 1. Cal-
culate the cross-sections of Bremsstrahlung and its inverse process. Do not calculate 
strictly, try intuitive derivation, and finally match numerical coefficients to the exact 
solutions. Keep in mind that an electron is accelerated by an ion. 

The charged particles under acceleration radiates electromagnetic waves. The 
electric dipole p has the following relationship for charged particles 1 and 2: 

p= e1r1 þ e2r2 = μ e1 
m1

-
e2 
m2 

r ð5:151Þ 

Here, μ is the reduced mass, and r is the inter-particle distance. As can be seen, 
dipole radiation does not occur in collisions between electrons. Radiation emission 
by two electrons can be made by quadrupole effect. Consider radiation emitted when 
an electron collides at high speed with an iron of electric charge Z via Coulomb 
force. Then, electron is decelerated to run away from the ion. 

In the case of the collision parameter b introduced in Chap. 2 and the typical 
acceleration is 

€rj j= α= 
1 
m 

e2Z 
4πε0b2

ð5:152Þ 

Also, the time interval to feel acceleration force is 

Δt= 
2πb 
v

ð5:153Þ



Therefore, the energy radiated by one collision is 
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ΔE= PΔt= 
π 

4c3ε0 
e2Z 

4πε0m 

2 
1 
vb3

ð5:154Þ 

where P is the power of Larmor radiation emission. 
Introduce a new physical quantity qν defined as 

dqν =ΔE × 2πbdb ð5:155Þ 

Note that this has dimensions of (energy) × (area). Assuming that the reciprocal of 
the frequency ν of the light emitted is roughly equal to Δt in (5.153), the following 
relation is obtained after inserting (5.154) to (5.155). 

dqν = 
e6Z2 

32m2c3ε0 3 
1 
v2 

dν ð5:156Þ 

This is a rough calculation. It is known that the exact coefficient is larger by 
4= 3

p 
= 2:3 after solving the trajectory mathematically, 

dqν = 
e6Z2 

8 3
p 

m2c3ε0 3 
1 
v2 

dν ð5:157Þ 

For a given free electron distribution f (v), the energy radiated per unit time, volume, 
and frequency is 

ninef vð Þdvvdqν νð Þ ð5:158Þ 

The minimum velocity vm at which electrons are not captured by ion is 

1 
2 
mvm 

2 = hν ð5:159Þ 

Maxwell distribution of temperature T is 

f vð Þdv= 
2 
π 

m 
T 

3=2 
v2 e-

mv2 
2T dv ð5:160Þ 

Integrate Eq. (5.159) from the minimum velocity vm in (5.159), the spectral emission 
is obtained. 

Jνdν= nine 
1 

vm 

f v0ð Þdv ′ v ′ dqν v0ð Þ ð5:161Þ 

Inserting (5.160) and (5.157)  to  (5.161), the spectral emission power is obtained.
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Fig. 5.20 Bremsstrahlung emission spectrum shows a straight line in the semi-logarithmic graph in 
the experimental data. Reproduced from Ref. [13] by permission of John Wiley & Sons Ltd 

Jνdν= 
1 
4 

2 
3πmT 

1=2 e6Z2 

mc3ε0 2 
e-

hν 
T dν ð5:162Þ 

This is the energy spectrum of Bremsstrahlung emission of plasma from unit volume 
and unit time. 

(5.162) indicated that Bremsstrahlung shows a straight line in the semi-
logarithmic graph as shown in the experimental data of Fig. 5.20 [13]. Since this 
inclination represents temperature, it is used for temperature measurement of opti-
cally thin plasma. By integrating over the spectrum, the radiant energy per unit time 
and unit volume can be obtained as follows. 

J= 
1 

0 
Jνdν= 1:7× 10- 26 Z2 neni TeV W=cm3 ð5:163Þ 

where ne and ni is in unit of cm
-3 and T is in eV unit. 

Now, consider the absorption coefficient by the inverse-Bremsstrahlung pro-
cess. From the detail balance, the photo-absorption by free electrons in the Planck 
distribution should balance with the emission of (5.158). That is
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nineUν,Pdνf vð Þcdvaν 1- e- hv=T ð5:164Þ 

Here, aν is the spectral absorption coefficient, Uν,P is Planck distribution, which is 
defined as 

Uν,P = hνρν ð5:165Þ 

The last term in Eq. (5.164) is required due to stimulated emission effect. 
The energy conservation relation is given as 

1 
2 
mv02 = 

1 
2 
mv2 þ hν ð5:166Þ 

where v and v′ are the electron velocity after and before the photon absorption, 
respectively. Define the emission cross section σν by 

dqν = hνdσν ð5:167Þ 

The spectral absorption coefficient is shown as 

aν = 
c2v02 
8πν2v 

dσν 
dν ð5:168Þ 

This is the absorption coefficient of the inverse-bremsstrahlung. With use of (5.167) 
and (5.157), the spectral absorption coefficient is obtained. 

aν = 
e6Z2 

64 3
p 

π2hcm2ε3 0ν3v
ð5:169Þ 

This was derived by Kramers in 1923. When this is integrated with respect to the 
Maxwell distribution, the absorption coefficient is obtained. 

Kν = 4:1× 10- 37 Z2 neni 
TeV 

7=2 x3 
cm- 1 , x= 

hν 
T

ð5:170Þ 

Here, the densities are in units of [cm-3 ]. 

5.11 Rate Equations 

In general, the ionization and excitation of each ion at a local point should be solved 
as a function of time, because such processes have typical times to be some steady 
sate. As we have seen in this chapter, the reaction rates are calculated when the



physical values of electrons and ions are gives with the information of photon fields 
in the case of local thermodynamic equilibrium being satisfied. It is useful to note 
that rate equations to be explained here are widely solved in many different kinds of 
problems. Of course, the time evolution of atomic process in plasma is a good 
example, while we can enumerate the following physical phenomena, where differ-
ent rate equations with corresponding reaction cross sections control the phenomena, 
while they are the same or similar form mathematically. 

5.11 Rate Equations 247

Different rate equation manages the phenomena in chemical reactions, nuclear 
reactions, spread of infectious diseases, and so on. It is known that the big bang 
produces the light elements up to He and Li during the first several minutes as shown 
in Fig. 5.21. This is called the big bang nuclear-synthesis. Since the Universe starts 
from a point by phase transition of vacuum state and extremely high-energy Uni-
verse starts to expand and cooled rapidly. Then, the density also decreased rapidly, 
the rate equation to the nuclear fusion processes of all elements provides the time 
evolution given in Fig. 5.21. The heavier elements than He and Li are produced 
mainly inside stars using long time. Relating to the hydrodynamic instabilities to be 
studied in Vol. 3, the supernova explosions are known to be the place where heavy 
elements such as irons are produced in extremely high-temperature and density 
conditions. 

It is useful to obtain the feeling about the difference of chemical, atomic, and 
nuclear reactions. It is clear that each of three becomes important at the difference 
temperature. Chemical reaction is via bonding of different molecules whose binding 
energy is roughly 0.1–1 eV. Considering the effect of the contribution of tail 
component shown in Fig. 5.19, most of chemical reactions become dominant around 
the temperature of T = 0.01–0.1 eV, namely room temperature to thousands of 
degrees. The atomic reactions studied in details above are characterized by the 
electron binding energy in ion. Of course, it depends on ionization stage and

Fig. 5.21 Time evolution of the big-bang nucleosynthesis



Z-number of an ion, while the binding energy is in the range of 10 eV–1 keV. 
Therefore, when the plasma temperature is approaching to the binding energy, many 
atomic reactions take place.
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Nuclear reaction is evaluated by the binding energy of nucleus. It is roughly about 
1 MeV. Therefore, the temperature approaches to 10–100 eV, the nuclear reactions 
should be considered. Of course, whether such reactions may be dominant or not is 
strongly depends on the density. Since the reaction cross section is the orders of the 
size of molecule for chemical, atom for atomic, and nucleus for nuclear reactions. It 
is useful to have idea about how large their sizes. Molecule is about 10 Å (10-7 cm), 
atom 1 Å (10-8 cm), and nucleus 1 fm (10-13 cm). It is clear that the reaction cross 
section proportional to the square of radius is very small for the nuclear reaction and 
extremely-high density or extremely long time is required for substantial reaction. 
Such nuclear reaction is usually possible only in stars with high-density-high-
temperature. 

Three coupled nonlinear rate equations known as the Lorentz equation is famous 
to give chaotic variation of three quantities as a function of time with selection of 
coefficients of the rates in the equation. Rate equation is rather simple compared to, 
for example, hydrodynamic equations described in the previous chapter. The chaos 
and stochasticity in the Lorentz equation is interesting subject, while let us study the 
rate equations of atomic process by assuming that there are no chaotic phenomena. 

In order to analyze the process of plasma formation from gas, it is necessary to 
solve the temporal evolution of excitation and ionization of gas atoms by free 
electrons and radiation. Then, the de-excitation and recombination are also treated 
self-consistently. The equation governing the temporal evolution is called rate 
equation for atomic processes. In general, we have to consider many atomic 
processes as schematically shown in Fig. 5.22. Consider here only the atomic 
process due to particles, while the atomic processes induced by external photons 
are neglected. This assumption is acceptable for most of plasmas in laboratory, 
namely optically thin plasma. It is also good approximation of plasmas in space 
whose density is low enough. 

Consider an ion. Let the ionization degree be ζ and the quantum state of the bound 
electrons be m. The rate equation for the number of the ions in that state (Nζ 

m) is  
given as the sum of seven elementary processes in the form including only the 
electron collision process as follows 

dNζ 
m 

dt 
= -A1 þ A2 ð5:171Þ 

A1 = 
n>m 

νbb m,n þ 
k<m 

νbb m,k þ 
j 

νbf m,j Nζ 
m ð5:172Þ 

A2 = 
n>m 

νbb n,mN
ζ 
n þ 

k<m 

νbb k,mN
ζ 
k þ 

j 

νfb j,mN
ζþ1 
j þ 

j 

νbf j,mN
ζ- 1 
j ð5:173Þ
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Fig. 5.22 Basic atomic processes to be solved in rate equation in laser plasma, where only single 
electron excitation is included for a simple atomic model with each configuration depending only on 
the principal quantum number, n. Reprint from Ref. [5] with kind permission from Springer Science 
+ Business Media 

Fig. 5.23 Atomic processes 
to m; going-out (5.3) and 
coming-in (4, 5, 6, 7) to the 
quantum sate m of an ion 
with charge state ζ 

Here, A1 is a homogeneous term, showing the transitions indicated as 1, 2, and 
3 schematically shown in Fig. 5.23. In other words, it is a term by which an ion 
transits from the state of Nζ 

m to another state by collision excitation, de-excitation, 
and impact ionization. In contrast, A2 in (5.173) shows the elementary processes 
4, 5, 6, and 7 of Chap. 5.9 and are shown in Fig. 5.23. This shows a term in which the
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state of ions changes to Nζ 
m due to de-excitation, excitation, recombination, and 

ionization. 
Since the term due to radiation is not considered here, RHS of (5.171) is easy to 

understand by comparing with Fig. 5.23. While it will be explained later about the 
case with the effect by photons, it is useful to study the property of the solutions of 
(5.171). In such a case, the ionization state should be in the detail balance at the 
stationary state in (5.171) and the solution becomes the same as Saha solution (5.14). 

How to solve the time evolution of ionization with (5.171). Given all eigen-state 
data of the bound states, (5.171) looks like a homogeneous coupled equation to the 
variables Nζ 

m. If so, it is easy to solve (5.171) by obtaining the eigen-values of the 
determinant for the matrix. However, (5.171) is not a linear equation to Nζ 

m. The rate 
coefficients are functions of the free electron density ne, and it is given so that the 
charge neutrality is satisfied. Therefore, it is necessary to solve (5.171) numerically 
with the iteration method. 

5.11.1 Corona Equilibrium (CE) 

The Saha equilibrium is relatively easier to calculate the charge distribution of ions 
by using some atomic structure model for partially ionized atoms. The LTE assump-
tion is, however, applicable to the limited cases such as the inside of the sun or low 
temperature plasmas. In general, plasmas in laboratory and observed plasma in the 
universe are rather of thermodynamically non-equilibrium (non-LTE) in many 
cases. However, solving the rate equation including all atomic processes requires a 
special computation technique and super-computing. Historically, non-LTE steady 
state models have been proposed. Typical examples of corona equilibrium (CE) 
model and collisional radiative equilibrium (CRE) model being used widely are 
explained below. 

The corona equilibrium (CE) model stems from the corona plasma of the sun, far 
extended plasma from the surface of the Sun as shown in white in Fig. 5.24 [14]. The 
CE model can be applied to the plasma characterized by extremely low density, 
optically thin, and high temperature. It is assumed that all bound states are in the 
ground states. This is because the lifetimes of the excited states are relatively short 
compared to the time scale of the collisional excitation. Therefore, the bound states 
of partially ionized atoms have only one quantum state for each. The photo-effects 
are all neglected. 

In the CE model, it is enough to solve a steady state by leaving only the three 
terms in the rate Eq. (5.171). Then, (5.171, 5.172, and 5.173) are approximated as 

dNζ 
0 

dt 
= -C1 þ C2 ð5:174Þ
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Fig. 5.24 Large scale 
corona over the surface of 
the Sun [14]. (NASA) 

C1 = νbf C N
ζ 
0 ð5:175Þ 

C2 = νfb R N
ζþ1 
0 þ νbf C N

ζ- 1 
0 ð5:176Þ 

Here, C1 is the electron impact ionization, the first term of C2 is the radiative 
recombination, and the second term is the electron impact ionization. The impact 
ionization coefficient is proportional to the electron density, and the radiative 
recombination coefficient is also proportional to the electron density. Therefore, 
the equilibrium solution of Eq. (5.174) is a function only of temperature and does not 
depend on the density. If the plasma is low density and high temperature, the 
ionization state becomes corona equilibrium (CE). 

For example, in the universe, the interstellar plasma can be described by CE 
plasma, and the magnetically confined plasmas can be also modeled with CR 
plasma. Even in laser plasma, the corona equilibrium will be seen when the expan-
sion plasma becomes sufficiently low density. Figure 5.25 shows the temperature 
dependence of the charge distribution of aluminum in the corona equilibrium (CE). 
The density is 1018 cm-3 , four order of less than LTE case in Fig. 5.1. It can be seen 
less ionization in CE compared to LTE. 

It is important to know that observing the line emission from CE plasma can be 
used to identify the plasma temperature as follows. Consider the line of hydrogen 
2p-1s transition. Since the ground state of hydrogen atom is N0 = N1s in (5.174).



Using the electron collision excitation coefficient (5.134), the intensity of the Lyman 
α line of 2p-1s transition is found to be proportional to the excitation rate to 2p as 
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Fig. 5.25 Temperature dependence of the charge distribution of aluminum plasma in the corona 
equilibrium (CE). The density is 1018 cm-3 
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Fig. 5.26 Charge distribution of the corona equilibrium of iron (Fe), the most abundant metal 
element in the universe. Reprint from Ref. [15] with kind permission from Cambridge University 
Press 

dN2p 

dt 
= νbb 1s,2pN1s 

coll 
ð5:177Þ 

The amount of Lyman α radiation emitted from the unit area in unit time can be 
known by identifying the product of the density and depth by another method. Then, 
(5.177) is the relation to measure the plasma temperature.
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Figure 5.26 shows the corona equilibrium of iron (Fe), the most abundant metal 
element in the universe [15]. The temperature of the photosphere of the sun is 
6000 K (about 0.6 eV), but the temperature of the corona plasma outside is as 
high as 1 keV evaluated with CE model. It corresponds to the temperature at the right 
end of the horizontal axis in Fig. 5.26. There is no conclusion on why the corona 
plasma, which is downstream of the plasma flow from the sun, has a higher 
temperature than the upstream by three orders of magnitude. For example, some 
theory suggests many micro-magnetic reconnections are taken place in the corona 
and the energy of the magnetic field is converted to the thermal energy of the plasma. 

5.11.2 Collisional Radiative Model (CRM) 

Time development of ion charge and atomic structure distribution in plasma has 
been studied by solving the rate equations without the radiation field. Adding the 
radiative decay terms in (5.171, 5.172, and 5.173), the time evolution of dynamic 
plasma can be solved, for example, by coupling with hydrodynamic code. Such 
atomic process is called collisional radiative model (CRM). This code can be 
extended to study the radiation effect on the atomic process by coupling with 
radiation transport with detail photons spectrum. Most of the study can be done by 
including radiative recombination and photo-ionized plasma has been studied [16]. 

In the case of long-time evolution of plasma like those in Universe and magnetic 
confinement, stationary state assumption is valid. Such model of CRM is called 
collisional radiative equilibrium (CRE). The CRE connects continuously between 
LTE and CE plasma atomic state. As shown in Fig. 5.27 [16], CRE model tends to 
Saha equilibrium at the high-density limit and CE at the low density and high 
temperature limit. Since the CRE model without radiation pumping is a function 
of temperature and density, it is widely used for laser plasmas and radiation-
hydrodynamic computations for optically-thin condition. In the CRE model without 
radiation, the following assumptions are adopted. 

1. Since the radiation intensity is weak enough compared to the Planck radiation, the 
excitation and ionization due to radiative process are neglected. 

2. Including all except for the above two, the stationary solutions of (5.171) are 
solved as functions of given temperature and density. 

In the plasma where the time scale of the rate coefficients of all atomic processes is 
sufficiently faster than the time scale of the change of plasma, for example, the time 
scale of fluid plasma change, quasi-steady state is satisfied. Then, CRE becomes the 
solution of the rate equation. So, the comparison of the time scale is important. The 
temporal evolution of the ionization or recombination becomes important as follows. 

Ionizing Plasma When the interstellar gas is abruptly heated by a shock wave such 
as a blast wave of a supernova explosion, it takes time for the heated plasma to reach 
the equilibrium. Meanwhile, ionization progresses gradually. It is referred to as



ionizing plasma. It is considered that ionization progresses due to the collisions of 
free electrons, so unless the product of density and time (nt) is not less than a certain 
value, it does not settle to the equilibrium state. In the interstellar space, the density is 
extremely low, so that the equilibrium time will be tens of thousands of years. 
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Fig. 5.27 Comparison of three steady state equilibrium atomic process models. The CRE connects 
continuously to the LTE and CE in the low density and high-density limits. Reprint from Ref. [5] 
with kind permission from Springer Science + Business Media 

Recombining Plasma When high temperature plasma is suddenly cooled, such as 
by expanding into a vacuum like solar wind from the corona plasma and laser 
produced plasma, recombination progresses slowly far from thermal equilibrium 
or corona equilibrium. Since the probability of transition to the quantum state of the 
outer shell having a high energy level is high in collisional recombination, the 
distribution of the bound electrons of the ion may be larger in the upper level. 
This is called the negative temperature state, and in such a plasma, as explained in 
the following section, maser or laser amplification by induced emission becomes 
possible. 

It is important to note that for the purpose to couple with radiation hydrodynamic 
code, it is better to solve the rate equations with less atomic states. If the average 
charge state is well predicted with such a simple model, it is better to install such a 
model in the integrated code to solve time dependent ionization. It is, however, 
important to compare radiation emission spectra with many experiments, it is



ð

required to know the detail atomic data as seen in Fig. 5.7. It is clever way if it is 
possible to reproduce the detail energy levels and the other radiation transport related 
data from the simple atomic model. Such research has been done, for example, based 
on simple screened hydrogen model [17]. It has been developed to be able to study 
spectroscopic data with laser-plasma experiments. 
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5.12 Masers and Lasers 

5.12.1 Principle of Laser and Maser 

The principle of laser and maser using different energy transitions of atoms in solids 
and gases is based on the rate equation of the atomic and molecular states of matters. 
For simplicity, consider a system of atomic bound states consisting of four levels as 
shown in Fig. 5.28. The Level 1 is the ground state and Level 4 is assumed to have 
many levels like conduction band in solid. Such a system is called a four-level 
system, and electrons move between levels. Assume that the Level 4 to Level 3 is a 
non-radiative transition, that is, thermal relaxation occurs due to the influence of, for 
example the phonons or surrounding electrons. Then the rate equation for such four 
levels is 

dN1 

dt 
= - ν14N1 þ ν21 þ A21 þ S21ð ÞN2 ð5:178Þ 

dN3 

dt 
= ν23N2 - ν32 þ A32ð ÞN3 þ S43N4 ð5:179Þ 

dN4 

dt 
= ν14N1 - ν41 þ A41 þ S43ð ÞN4 ð5:180Þ 
N2 =N- N1 þ N3 þ N4ð Þ 5:181Þ 

Here, νmn is the transition probability from state m to state n. In the solid laser, a 
strong light source from the outside excites from the Levels 1 to 4 in Fig. 5.28. In the 
above equations, the coefficient of photo-excitation by external light is set in the rate 
coefficient ν14, Amn is the spontaneous decay coefficient, and Smn represents the 
relaxation rate by interaction with the degree of freedom in the solid such as lattice 
vibration. (5.181) is the conservation equation of the number of electrons. 

Steady state (d/dt = 0) should be realized if the strong light source for laser 
excitation is continuously irradiated to this atomic system. When the third and fourth 
terms on RHS of (5.179) are large, and if the first and fourth terms are balanced in 
(5.180), the following equation is obtained.
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Level 4, E4, N4 

Level 3, E3, N3 

Level 2, E2, N2 

Level 1 (ground state), E1, N1 

Ra (fast, radiationless transition) 

P (pump 
transition) 

Rb (fast, radiationless transition) 

L (slow, laser transition) 

Fig. 5.28 Schematics of excitation by external photon for laser emission in a typical four-
level atom 

dN3 

dt 
= ν14N1 -A32N3 ð5:182Þ 

In the steady state, 

N3 

N1 
= 

ν14 
A32 

ð5:183Þ 

If there is no pumping light source and the material is in thermal equilibrium, the 
following relation should be satisfied. 

N3 

N1 
= 

g3 
g1 

exp -
ΔE31 

T
ð5:184Þ 

However, if the photo-excitation by the external source is strong and the spontane-
ous emission coefficient is relatively small, the following relation may be satisfied. 

N3 

N1 

g1 
g3 

> 1 ð5:185Þ 

In other words, a “negative temperature” state of temperature T < 0 is realized by 
the definition of (5.184). This is called “population inversion“. This also indicates 
that the population inversion is also realized between the Levels 3 and 2 in Fig. 5.28. 
When passing light with the energy of hν = ΔE32, the light is amplified due to the 
stimulated emission. In addition, the light is amplified to keep coherency (same 
phase) in the amplification process. In gas media, electron beam may be also used to



generate a population inversion via the electron collisional excitation. For example, 
this method is adopted for a carbon dioxide (CO2) gas laser with a wavelength of 
10.6 μm which is widely used for industrial purpose. The energy levels of the 
vibration of the carbon dioxide molecule are used for laser emission. 
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5.12.2 Masers and Lasers in Universe 

C. Towns, an awardee of the Nobel Prize in Physics in 1964 for the invention of the 
principle of laser and maser, has moved to the field of radio astronomy in 1967, and 
in 1968 his group discovered the maser emission of water molecules coming from 
Orion constellation [18]. Strong infrared emission from stars creates the population 
inversion in the rotational levels of the water molecules around young-age stars and 
high intensity radio waves are generated via induced emission. The maser is coherent 
emission of microwave due to excited molecule. H2O (water) maser and SiO masers 
are typical examples. The former mainly stems from the star-birth region, while the 
latter is from star-death region. 

In 1992 water molecule maser from the Active Galaxy M 106 (NGC 4258) was 
observed [19]. This observation concluded from the spatial distribution of maser 
source that there is a black hole with a mass of 36 million times the solar mass at the 
center. The maser source molecules are excited by the light emitted by plasma falling 
into the black hole, and the population inversion is maintained. The maser’s energy 
is likely to reach 210 times the total energy emitting from the sun’s surface. The 
spatial variation of the Doppler shift of the maser light was identified to be Kepler 
motion with which the mass of super-massive Black Hole was inferred. 

It is also reported that strong ultra-violet laser is observed by Hubble Space 
Telescope (HST), and it can be interpreted theoretically due to the population 
inversion of a four-level atom of Fe II [20]. The observed line was 250 nm, in the 
UV spectrum of gas closed to the η-Carina, the most active and luminous star in the 
Galaxy. It is inferred that accidental wavelength coincidence between a strong line of 
the most abundant elements (H, He) and Fe II absorption line makes the photo-
excitation possible. The image of laser emission from the gas pumped by the 
η-Carina is shown in Fig. 5.29. 

Note that the induced emission in Universe is not the same as lasers and masers in 
laboratory. The induced emission in Universe is so-called amplified spontaneous 
emission (ASE) of radiation. In lasers in laboratory is designed so that a seed light 
pass through the media with population inversion and the emission is controlled. 

It is impressive to copy the words by Towns in [18]. “Both masers and lasers have 
been in the universe for billions of years. I didn’t have to invent them. As is clear 
from this example, there must be many more and more secrets hidden in the 
universe.”
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Fig. 5.29 The image of 
laser emission by amplified 
spontaneous emission from 
the gas pumped by extreme 
photons in the η-Carina. 
(NASA) 

5.13 Photo-ionized Plasma 

Photo-ionized plasmas in Universe emits non-thermal spectra being observed by 
telescopes for wide range of photon-energy. Especially line emissions from relatively 
cold objects in space are mainly due to photo-ionization by hot compact objects in the 
vicinity of line-emitting large objects. Therefore, study of photo-ionized plasma and 
spectrum from such a plasma is important to study the compact object such as black-
holes, neutron-stars, white dwarfs, etc. In this section, the observation of photo-
ionized plasmas in Universe is briefly introduced and x-ray photo-ionized plasma 
experiments in laboratory as model experiment for space is also reviewed. 

5.13.1 Planetary Nebula 

In the space, the planetary nebulae (PN) are observed, many of which newly found 
by Hubble Space Telescope (HST). The image of NGC7009 is shown in Fig. 5.30. 
The colorful images of the planetary nebulae are not powered by the ultraviolet lights 
from the central white dwarf. It excites and ionized the surrounding gas to keep the 
emission. It emits intrinsic emission lines in the process of recombination and 
de-excitation to the ground state. They are emission nebula consisting of an 
expanding, glowing shell of ionized gas ejected from red giant stars late in their 
lives. The term “planetary nebula” is a misnomer because they are unrelated to 
planets or exoplanets. The term originates from the planet-like round shape of these 
nebulae observed by astronomers through early telescopes. Though the modern 
interpretation is different, the old term is still used. 

All planetary nebulae form at the end of the life of a star of intermediate mass, 
about 1–8 solar masses. It is expected that the Sun will form a planetary nebula at the



end of its life cycle [20]. They are a relatively short-lived phenomenon, lasting 
perhaps a few tens of thousands of years, compared to considerably longer phases 
of stellar evolution. Once all of the red giant’s atmosphere has been dissipated, 
energetic ultraviolet radiation from the exposed hot luminous core, called a planetary 
nebula nucleus ionizes the ejected material. Absorbed ultraviolet light then energizes 
the shell of nebulous gas around the central star, causing it to appear as a brightly 
colorful planetary nebula. 
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Fig. 5.30 Emission image and spectra of a planetary nebula NGC7009, a photo-excited plasma in 
Universe [21]. (NASA) 

It is noted that many forbidden line emissions are observed, because the density is 
very low and almost no collisional de-excitations are taken place. As the result, the 
long life-time metastable states decay via higher order effect in (5.67). The lines 
indicated with the brackets like [Ne III] in Fig. 5.30 are the forbidden lines within the 
dipole transitions. X-ray lines from planetary nebulae are observed [21]. 

5.13.2 XFEL and Inner-Shell Ionization 

X-ray free-electron lasers (XFELs) have been used to develop new science with 
coherent hard x-rays. After accelerating electron beams relativistic, coherent x-rays 
are generated and amplified in passing through a magnetic undulator device. For



example, European-XFEL [22] has output of 3–25 keV with focused intensity of 
1017–18 W/cm2 for 2–100 fs pulse. It is 3 mJ at 5 keV with 1010 photons/pulse. Such 
x-ray is strong enough to study the inner-shell ionization process of high-Z atoms. 
When the ionization potential is lower than the XFEL energy, the inner-shell 
ionization is dominant in the atomic process. 
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Fig. 5.31 Diagrams of X-ray-induced physical processes treated by XATOM. P photoionization, A 
Auger (Coster–Kronig) decay, F fluorescence, SO shake-off, S Rayleigh and Compton X-ray 
scattering, RS resonant elastic X-ray scattering. Reprint from Ref. [23] with kind permission 
from Springer Science + Business Media 

As we see in Fig. 5.12, 1s electron in K-shell is dominantly ionized, while 2s and 
2p electrons are dominantly ionized if the ionization potential of K-shell is larger than 
the x-ray energy. When a vacancy is produced in such an inner shell, it is known that 
the subsequent process is Auger decay or fluorescence process. The atomic process 
induced by such inner-shell ionization is schematically shown in Fig. 5.31 [23]. In 
order to analyze experimental results, all rate coefficients are calculated by devel-
oping XATOM code, the details of the code are given in [23]. In obtaining the orbital 
wave functions, Hartree-Fock-Slater method is used in the code. 

In particular, XATOM is designed for describing complex interactions between 
atoms and intense XFEL pulses. During the XFEL–atom interaction, if single-
photon absorption is saturated, multiphoton absorption occurs via a sequence of 
single-photon ionization and accompanying relaxation processes like fluorescence 
and Auger decay. The X-ray multiphoton absorption usually yields highly charged 
states, involving a variety of different multiple-hole states. XATOM calculates 
atomic data – orbitals and orbital energies, and cross sections and rates for X-ray-



induced processes – for all individual electronic configurations, including multiple-
hole states, of arbitrary atomic species. More detail description of the theory of 
atomic photo-effect is given in [24]. 
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Since the x-ray intensity is high, deep inner-shell multiphoton ionization has been 
observed experimentally [25]. In the experiment XFEL-SACLA was used to irradi-
ate neutral xenon (Xe) gas to measure the multiply ionized Xe ions. At highest 
charged ions of Xe26+ have been observed. The ionization process was theoretically 
studied to obtain a model shown in Fig. 5.32. It is one typical pathway yielding 
Xe24+ [25]. The plot illustrates that the total energy of the system varies in the course 
of the ionization steps. After L-shell photoionization (blue arrows), the energetically 
excited core-hole state relaxes via a series of Auger and Coster-Kronig decays (green 
arrows), and/or fluorescence (yellow arrows). Note that another photoionization 
occurs before the atom fully relaxes to the ground configuration. We find it useful 
to view the multiphoton multiple ionization dynamics occurring in a single atom in 
terms of quantum evaporation of electrons: x rays heat up the atomic system to 
highly excited states, and then the system relaxes primarily by emitting electrons 
with characteristic energies. The excess energy is shared among the electrons via 
electron-electron collisions, resulting in the ejection of 24 electrons in total. For each 
photoionization. Note that this multi-photon process is not the nonlinear process 
discussed in Vol 1 regarding multi-photon ionization by intense lasers, but liner 
process sequence in one pulse. 

The population inversion and subsequent x-ray laser phenomenon have been 
demonstrating with the inner-shell photo-ionization by XFEL-LCLS at SLAC 
[26]. There have been a lot of studies on x-ray lasers in laboratory with use of

Fig. 5.32 An exemplary pathway of multiphoton multiple ionization of Xe at 5.5 keV. The black 
solid line with dots indicates the ground-configuration energy for given charge states, and the 
energy of neutral Xe is set to zero. Reprint with permission from Ref. [25]. Copyright 1998 by 
American Physical Society



plasma as briefly shown below. XFEL made it possible to pump new atomic X-ray 
lasers with ultrashort pulse duration, extreme spectral brightness and full temporal 
coherence. X-ray laser in keV energy regime based on atomic population inversion 
and driven by rapid K-shell photo-ionization are demonstrated using pulses from an 
XFEL through the physical process shown in Fig. 5.33 [26]. A population inversion 
of the Kα transition is experimentally demonstrated in singly ionized neon at x-ray 
energy of 849 eV. Strong amplified spontaneous emission is observed from the end 
of the excited plasma. This resulted in femtosecond-duration, high-intensity X-ray 
pulses of much shorter wavelength and greater brilliance than achieved with previ-
ous atomic X-ray lasers.
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Fig. 5.33 Level scheme. Population inversion of the 1s 1 2s 2 2p6 -to-1s 2 2s 2 2p5 transition is 
created by K-shell photo-ionization of neutral neon. The Auger decay time of the inverted state 
(2.4 fs) dominates the kinetics of the system in the small-signal-gain regime. The lower lasing state 
is depleted by K-shell photo-ionization. Reprint from Ref. [26] with kind permission from Springer 
Nature Publ. 

It is useful to briefly describe about x-ray laser research before the XFEL era. 
X-ray spectroscopy is one of the most powerful diagnostics in laser plasma from the 
beginning of research. H. Griem gave a review on diagnostics and modeling of dense 
plasma, emphasizing density and temperature measurements [27]. Most of the x-ray 
laser pumping has been studied for the case of collisional excitation scheme in laser 
produced plasma, while the energy conversion efficiency was very low in UV range, 
say ~60 eV. 

Since the XFEL x-ray source is mono-energetics and photo-ionization plays 
essential role to generate free electrons from target atoms, it is not appropriate to 
assume the free electrons have Maxwell distribution during the short time of x-ray 
pulse. Time-dependent calculations of electron energy distribution functions (EEDF) 
in the presence of intense XFEL radiation have been studied computationally by 
solving Boltzmann equation of free electrons. The code is coupled with atomic codes 
for photo-ionization and related atomic processes. The condition of simulation is that 
argon gas of atomic number density 1.6 × 1019 cm-3 is irradiated by a pulse duration 
of 40 fs, intensity 2 × 1017 W/cm2 XFEL with x-ray photon energy of 1.07 keV. In 
Fig. 5.34, the time evolution of the free electron distribution functions is shown from 
1  fs  to  40  fs  [28].



5.13 Photo-ionized Plasma 263

Fig. 5.34 Time evolution of free electron distribution in argon gas of atomic number density 
1.6 × 1019 cm-3 irradiated by a pulse duration of 40 fs, intensity 2 × 1017 W/cm2 XFEL with x-ray 
photon energy of 1.07 keV. Time evolution is shown from 1 fs to 40 fs. The distribution function is 
far from Maxwellian. Reprint from Ref. [28] with permission from Institute of Physics Publ 

At 1 ps, the peak of EEDF is located at the excess energy of K-shell ionization of 
neutral atom around 200 eV. Then, the peak around 700–900 eV is due to electrons 
ejected by Auger process. As time increases and the ionization potential increases in 
ionized argon, the photo-ionized electrons appear in the energy spectrum lower than 
200 eV. In Fig. 5.35 long time evolution after x-ray irradiation is shown [28]. It is 
clear that it takes about 2 ps so that the free electron is thermalized to be Maxwellian. 
Simulation was also carried out for the case of irradiation of black-body radiation of 
the radiation temperature Tr = 100 ~ 300 eV [29]. FEDF is relatively smooth 
compared to the XFEL irradiation case. 

5.13.3 Photo-ionization in X-Ray Binary 

It is very challenging to study photo-ionized plasma, because it is hard to produce 
black-body radiation with radiation temperature more than 100 eV in laboratory to 
ionize very abundant atom such as Si, Fe, etc. with atomic numbers more than 10. 
However, such bright radiation sources in x-ray regime have been observed in 
Universe with x-ray satellites such as ASCA, Suzaku (Japan), Chandra (US), 
Newton (EU). In studying compact objects such as black-holes, neutron stars, and



white dwarfs, binary system made of such a compact star and a normal star emits 
strong x-rays with witch the property of compact objects can be studied with use of 
x-ray spectra etc. I order to analyze the observed x-ray spectrum, modeling of photo-
ionized plasma is essential. Such simulation codes should be verified and validated 
via comparison with appropriate experiment in laboratory. Here, the topics of photo-
ionized plasma in Universe and related laboratory experiments are reviewed. 
Always, the computational modeling is discussed by comparing to both of the 
observational and experimental data. 
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Fig. 5.35 Long time evolution of electron distribution function after Fig. 5.34 by XFEL irradiation. 
It is clear that it takes about 2 ps so that the free electron is thermalized to be Maxwellian. Reprint 
from Ref. [28] with permission from Institute of Physics Publ 

The photo excitation and ionization processes become important in a variety of 
astrophysical phenomena. A familiar photo-ionized plasma is clearly observed by 
telescope as the edge of neutral hydrogen in clouds with Ha line emissions. For 
example, Eagle Nebula boundary observed is the surface where the photo-
ionization by UV radiation generated by massive stars nearby. The UV light ionizes 
molecular cloud to ionize neutral hydrogen atoms to be proton, HII. This region is 
called HII region [30]. HII region is related to the birth of many stars in the 
molecular clouds. 

On the other hand, photo-ionization of so-called metal in universe, where metal 
means higher Z atoms than most abundant H and He. Since high-Z ions emits x-ray 
line emissions, they are good targets to be observed to study the physics of very 
energetic radiation source. Cygnus X-1 and Cygnus X3 are well known x-ray binary



ð

[31]. They are located around 7.4 kpc (20 k light years), however emitting very 
luminous x-rays. The schematic of such a binary system is shown in Fig. 5.36. The 
companion star is a massive normal star with very high-mass stellar wind to donate 
the matter to the compact object. Since the matter has angular momentum to form the 
accretion disc around the compact object. Since the compact object like black-hole 
absorb the mass via strong gravitation, the matter of accretion disc is continuously 
falls into the black hole. During the process losing the angular momentum, the 
excess energy heats the matter and the matter near the compact object becomes 
extremely high temperature plasma emitting almost Planckian radiation. The radia-
tion temperature becomes almost 1 keV and the radiation photo-ionized the accreting 
plasma and the surface of the companion star whose radius is much larger than the 
compact one. In case of Cygnus X3, the binary system is rotating around the center 
of mass with 4.8 h period. 
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Fig. 5.36 A schematic of x-ray binary system consisting of a compact object and a main sequence 
star. (Image by NASA) 

How the plasma is strongly affected by photo-ionization in atomic process is 
measured with the photo-ionization parameter ξ defined by 

ξ= 
L 

neR2 erg=cm=s½ } 5:186Þ 

where L is the total luminosity of the compact object and R is the radius of the most 
x-ray emitting plasma region of the accretion disk by photo-ionization. The ne is the



s

5

electron density to measure the photo-recombination. This (5.186) is a rough 
estimation of the ratio of the photo-ionization rate to the photo-recombination rate, 
namely. 
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R= 
σpinpc 
σprnev 

/ Ip 
ne 

ð5:187Þ 

In (5.187), the photo-ionization and photo-recombination cross sections are of 
course dependent on each transition, while neglecting this difference. In addition, 
the photo-ionization also depends on the photon spectrum np(ν). After neglecting 
such dependencies, roughly speaking the radiation intensity divided by the electron 
density would be a good measure of the effect of photo-ionization in plasma. Note 
that our photo-ionization plasma can be realized when the condition ξ >> 1 i  
satisfied in the unit of (5.186). 

In a detail analysis of the spectra from Cygnus X-3 has been done [32]. In order to 
analyze the data, the ionization parameter should be identified. The XSTAR code for 
photoionization equilibrium model with a 1.72 keV Planck radiation temperature 
illumination spectrum is used. In the XSTAR code, atomic process is coupled with 
energy balance relation to determine electron temperature consistently. Note that 
XSTAR code is well developed but is zero-dimensional model, no spatial structure, 
and radiation transport is not included in the code. This becomes important in 
laboratory experiments as mentioned below. In Fig. 5.37, the charge state
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Fig. 5.37 Charge distribution of silicon atom as a function of the ionization parameter ξ. Reprinted 
with permission from Ref. [32]. Copyright by American Astronomical Society



10
distribution as a function of the ionization parameter ξ is plotted. It is seen that 
around ξ = 102 the abundance of He-like silicon has the peak. The bright emission of 
He-like silicon Kα line suggests the ionization parameter ξ ~ 102 for Cygnus 3 binary 
system. It is also concluded that the density must be higher than 1012 cm-3 in the 
region responsible for most of the emission.
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The electron temperature obtained from the energy balance relation is also 
calculated. It is about 20 eV at ξ ~102 . This is lowest estimation of the temperature 
of photo-ionized plasma, because the plasma is assumed to be optically thin and the 
emitted radiation due to photo-recombination and photo de-excitation are assumed 
all escape from the system. This may be due to the fact that the specification of the 
spatial profile of the binary plasma system is very tuff. 

In Fig. 5.38, the observed line emissions from H-like and He-like silicon ions 
(Si XIV and Si XIII) are shown. The brightest line near 2 keV is from Kα line of 
H-like silicon. The line-like peaks from He-like silicon are also observed near 
1.85 keV. In photo-ionized plasma, it is usual to observe three lines around 
1.83–1.88 keV [33]. They are evaluated to be by the resonance (r), inter-combination 
(i), and forbidden (f) lines as indicated in Fig. 5.38. In Fig. 5.39, such three different
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Fig. 5.38 The observed line emissions from H-like and He-like silicon ions (Si XIV and Si XIII) . 
The brightest line near 2 keV is from Kα line of H-like silicon. The line-like peaks from He-like 
silicon are also observed near 1.85 keV. The resonance (r), inter-combination (i), and forbidden 
(f) lines are speculated. Reprinted with permission from Ref. [32]. Copyright by American 
Astronomical Society



line transitions are shown for helium-like ions, where w, (x,y), and z correspond to 
the resonance, inter-combination, and forbidden transitions [34]. The forbidden lines 
are possibly observed from plasma in low density as we saw in the planetary nebulae 
in Fig. 5.30.
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Fig. 5.39 The three different line transitions in Fig. 5.38 are shown for helium-like ions, where w, 
(x,y), and z correspond to the resonance (r), inter-combination (i), and forbidden (f) transitions [34]. 
Credit: D. Porquet, et al., A&A,376, 1113, 2001, reproduced with permission © ESO 

In Fig. 5.38, the model calculation with only the photo-ionized plasma at rest 
gives the blue spectrum, being very different intensity profile near all lines. The red 
spectrum, on the other hand, is given by taking account additionally the wind plasma 
component from the surface of the companion normal star [32]. It is complicated to 
explain the physical reason and recommended to refer the paper by Kallman et al. 
Even in such a case, we have to consider many atomic processes as schematically 
shown in Fig. 5.22. 

Active Galactic Nuclei (AGN) [31] extremely far from our Galaxy are strong 
X-ray source in the deep sky, and about 70% of x-ray observed from far from our 
Galaxy are inferred from many AGNs. The physical process of x-ray generation is 
the same as x-ray binary in our Galaxy, namely from accretion disk. However, the 
accreting matter is absorbed by a huge black-hole with mass of 106 –1010 solar mass. 
Some of them also observed as maser source as described previously. The x-ray 
spectra from AGNs have been observed and studied for example in [35]. Theoretical 
models are fitted to the observed optical/UV spectra and the maximum accretion disk 
temperature was always about 2 eV. However, the observed x-ray spectrum has a



power law in high-energy region because of the non-thermal process in complicated 
geometry near the center of the massive black-hole and accretion disk. So, effective 
ionization parameter to silicon is relatively high. 
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A possibility of x-ray laser emission from such Planckian radiation pumping was 
studied theoretically by us [36]. We have asked ourselves whether x-ray lasers can 
exist in Astrophysical objects. As a model, we used the 1s2p 1 P1 populations in 
He-like ions, which are generated by K-shell photo-ionization of Li-like ions as 
typically observed in X-ray binaries as mentioned above. Although we have fixed to 
Planckian radiation source, it is concluded that it is difficult to produce population 
inversion for this transition. If the low energy part of Planckian radiation is absorbed 
in the atmosphere of a companion star, it may be possible to produce such population 
inversion inside the star near the surface. We are required to study more about the 
condition of x-ray binary or other candidates where such a condition is realized. 

5.13.4 Photo-ionized Plasmas in Laboratory 

The photo-ionized plasmas are model experiment of x-ray binary system, while there 
are several differences due to limit of laboratory plasma. One is time dependence of 
atomic state, second is expanding flow of plasma, the third is optical depth especially 
of line radiation transport. Of course, the radiation source such as more than 1 keV 
radiation temperature is not possible in laboratory so far. However, photo-ionized 
plasma itself is an interesting problem from view point of atomic process, opacity, 
line profile modeling, radiation transfer, and so on. 

The photo-ionized plasma has been studied for looking for better coupling with 
the absorbing plasma in hohlraum targets, where laser energy is converted to 
radiation energy to be absorbed by fusion pellet in the hohlraum. In the National 
Ignition Facility (NIF) ignition campaign, almost Planckian radiation with radiation 
temperature Tr = 250–300 eV has been used for implosions under the absorption of 
laser energy of 0.8 ~ 1.1 M Joule [37]. The radiation continues for about 5 ns and it is 
expected that the photo-ionized plasma is almost in steady-state. Z-pinch machine is 
demonstrated to be an intense x-ray sources and proposed to be also applicable to 
study the physics of photo-ionized plasma in Universe [38] 

Preliminary design and experiments of photo-ionized plasma were reported for 
the cases with Z-pinch [39] and laser induced gold cavity [40] radiations. The 
radiation temperature is in the rage of 80 ~ 200 eV. The absorption and emission 
spectroscopy of such photo-ionized plasma have been studied. In addition, scalabil-
ity to very low-density plasma in Universe was also discussed. Application of such 
photo-ionized experiments to astrophysics has been discussed internationally [41] 
and The Z Astrophysical Plasma Properties (ZAPP) collaboration has been initiated 
for applying the Z-pinch for a variety of astrophysical model experiments [42]. 

Precise experimental result is first reported for Z-pinch photo-ionization plasma, 
where the Z-pinch radiation spectrum was observed and the radiation temperature 
was measured to be 165 eV [43]. Charge distribution of photo-ionized iron plasma



observed in the experiment is compared with three different atomic process codes 
including photo-ionization. Two of them are standard codes to analyze the photo-
ionization plasma emission spectrum compared to X-ray satellite data, while the 
third one is FLYCHK mentioned in [17]. It is noted that the absorption spectra have 
been compared to the detail line profiles predicted with HULLAC code. And the 
resultant charge distribution was compared to three codes. It is found that the 
averaged charge is <Z > =16 and three codes well fit to the experimental data 
[43]. In Fig. 5.40, the charge distributions are shown for the case assuming a constant 
temperature of iron plasma [17, 43]. The left is without external radiation source, 
while the right is with external radiation heating, where the temperature is the plasma 
temperature. It is clear that charge distribution is insensitive to the iron plasma 
temperature for more than 150 eV in this experimental condition. 
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Fig. 5.40 Charge distribution calculated for photo-ionization experiment with Z-machine. The left 
is without radiation and the right is with external radiation heating, where the temperature is the 
plasma temperature. It is clear that charge distribution is insensitive to the iron plasma temperature 
for more than 150 eV in this experimental condition. Reprint with permission from Ref. [17]. 
Copyright 1998 by American Physical Society. Reprint from Ref. [43] with kind permission from 
Springer Science + Business Media 

It is speculated that compared to AGN x-ray flux, the x-ray flux for contributing 
silicon photo-ionization is almost the same as that obtained by Z-pinch x-ray with 
Tr = 165 eV [44]. The absorption spectra and emission spectra have been analyzed 
with two different codes. For the condition measured in Z-pinch experiment, both 
codes result over ionization of Si+9 and Si+8 the absorption spectrum show almost 
the L-shell electrons are already photo-ionized and only two electrons remain. In the 
computational model, the inner-shell ionization from M-shell and subsequent Auger 
process may be overestimated. It is suggested that so-called resonant Auger destruc-
tion (RAD) are over-estimated in the codes [44]. 

In order to relate such laboratory experiment to the binary system observation, 
higher radiation has been generated by use of radiation from an imploded spherical 
target. By use of Gekko-XII laser system, twelve beams irradiate a target to generate 
almost 0.5 keV radiation temperature. Total energy of 4 kJ with pulse duration of 
1.2 ns at green light (0.53 μm) are impinged on a plastic target with the diameter 
505 μm and thickness 6.4 μm  [33]. Although the pulse duration of the radiation is



160 ps, it is enough time to generate He-like silicon with the density ne = 1020 cm-3 

located near the imploded core. Observation data from Cygnus X3 and Vela-X1are 
compared to the experimental data for the line emissions from He-like silicon 
[33]. The line inferred as the forbidden transitions only expected in low density 
astrophysical plasma [32] is also observed. However, time dependent simulation for 
the experiment cannot reproduce this hump in spectrum as shown in Fig. 5.41 
[45]. On the other hand, this hump is generated in computation in [46, 47], although 
strength of three humps are not reproduced. It is still an open question. 
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Fig. 5.41 Comparison of experimental spectrum and time-dependent numerical spectrum for 
photo-ionization experiment. The time dependent simulation for the experiment cannot reproduce 
this hump given in the experimental spectrum. Reprinted with permission from Ref. [45]. Copyright 
by American Astronomical Society 

The inter-combination line (1s2 1  S-1s2p 3 P and 1s2 1  S-1s2p 3 P) is strengthened by 
satellite lines from the Li-like species which has similar energies. Namely, 1s2 3p-
1s2p3p transition has energy around 1.855 keV. So-called satellite lines of 
Li-like ions. 

Mancini et al. [48] has carried out sophisticated computer simulation with 
Boltzmann code for free electrons used in [29]. The Boltzmann code is coupled 
with radiation hydrodynamic code. It is shown that photo-excitation is very



important to control radiation cooling rate and the evaluated electron temperature is 
found to be lower than predicted by CLOUDY and XSTAR codes. In addition, high-
energy tail component generated by photo-ionization affects the population of 
excited state enhancing the radiation cooling rate. 
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Appendix-B: Thermal Equilibrium Statistical Mechanics 

Plasma consists of a large number of particles. Even with a super-computer, it is not 
possible to follow the motions of all particles in systems in laboratory or in space. 
We need to use statistical mechanics to describe any macroscopic dynamics of such 
plasmas. Here, the minimum knowledge of the statistical mechanics is reviewed on 
the topics that will be required to study plasma physics in the present book. 

B-1 Boltzmann Distribution 

Assume that many particles exist in an isolated system. Consider that the number of 
the particles N is sufficiently large, while exchanging energy and momentum inside 
the system. In the system, each particle energy is quantized and each energy state is 
symbolically indicated as a k-state. Assume that n1 particles in state 1, n2 in state 2, ni 
in state i and all the particles are somewhere in a certain energy state. Then, the 
probability for the system takes the combination of P (n1, n2,,,, ni,,,,) in each energy 
state is 

P n1, n2,⋯, ni,⋯ð Þ= p n1ð Þp n2ð Þ⋯p nið Þ⋯ ðB1:1Þ 

Here, p (ni) is the number of combinations where ni particles exist in i state. That is, 
p (ni) obviously 

p nið Þ=Cni 
n = 

n! 
ni! n- nið Þ! ðB1:2Þ 

Calculating p (ni) from 1 to subsequent number, and using the fact that the second 
term of the denominator cancels with the numerator of the next number, the 
probability is obtained as follows. 

P n1, n2,⋯, ni,⋯ð Þ=A 
n! 
ni!

ðB1:3Þ 

Here, Π means to take the product for all i. In (B1.3), A is a normalization constant.
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Let’s find the distribution when the combination of the arrangement of the 
number of particles in each energy state is the maximum. For that purpose, we use 
the following Stirling formula. 

ln n!ð Þ≈ 
n 

0 
ln xð Þdx ðB1:4Þ 

Then, we write ni the number of i states where P in (B1.1) is the maximum value. 
Carrying out the Taylor expansion around the number of particles in each state with 
the maximum probability, and using (B1.2) and (B1.3), we obtain 

ln P n1, n2,⋯, ni,⋯ð Þ= ln P n1, n2,⋯, ni,⋯ð Þ-
i 
ln nið Þδni ðB1:5Þ 

Here, δni with the energy Ei is the deviation from the maximum probability and they 
have to satisfy the following constraint conditions. 

i 
δni = 0,

i 
Eiδni = 0 ðB1:6Þ 

(B1.6) are the condition of particle number and energy conservations, respectively. 
The first term on RHS of (B1.5) is a constant value. 
Also, around the maximum probability the first derivative needs to disappear. 

With combination of the restrictive condition (B1.6), the following relation should 
be satisfied. 

i 
ln nið Þ- ln C þ Ei 

T 
δni = 0 ðB1:7Þ 

where C and T are constants to be determined for convenience later. In the vicinity of 
the maximum probability, (B1.7) requires that the inside of the parentheses be 
balanced, so the following relational expression is obtained 

ni =Cexp -
Ei 

T
ðB1:8Þ 

Here, C is determined so that the number of all particles is N. T is the temperature of 
the system, multiplied by the Boltzmann constant and is a unit of energy. (B1.8) 
shows just the Boltzmann distribution. Any particles that weakly interact in a 
system should be Boltzmann distribution in the thermal equilibrium. 

It was assumed above that each energy state has one particle at most, but it is easy 
to extend the case where the energy state is degenerate or even continuous. If the 
eigen-state “i” is degenerate with gi, the distribution function is modified as 

ni =Cgi exp -
Ei 

T
ðB1:9Þ
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Maxwell Distribution 

Maxwell derived the velocity distribution of gas system by assuming that there must 
be a steady state velocity distribution for many particles in gas (1860). Using the 
Boltzmann distribution given in (B1.9), it is easy to derive Maxwell distribution for 
freely moving particles in gas and plasma. Note that the number of states changes 
depending on how to define the freedom, say one, two, or three-dimension in space. 
Maxwell distribution is that for freely moving particles system of Boltzmann 
distribution, so it is also called Maxwell-Boltzmann distribution. 

For the sake of simplicity, assume that plasma particles only move in the x 
direction in one dimension. Let’s assume that the plasma is trapped in the potential 
of length L which correspond the size of box containing the particles. Then, the 
energy state of the free particle is discretized, and the wave function of electron or 
ion must satisfy the following condition. 

ψ = sin 
pxL 
ħ 

, 
pxL 
ħ 

= πk k : integerð Þ B1:10Þ 

It is clear that the number of states of one-dimensional free particles is equally 
spaced in the velocity (momentum) space. Therefore, the number of states is 
constant. From this fact, the velocity distribution function of the plasma particles 
with free thermal motion is given by (B1.8). 

f vxð Þ=Cexp -
mvx 2 

2T
ðB1:11Þ 

Using the relation of integration; 

1

-1 
e- αx2 dx= 

π 
α 

1=2 
ðB1:12Þ 

The velocity distribution function of free particles in one-dimensional space is 

f vxð Þ= 
m 
2πT 

1=2 
exp -

mvx 2 

2T
ðB1:13Þ 

This is a Gaussian distribution, and its dispersion shows thermal spread. 
In three dimensions, the upper one-dimensional distribution is used also in the y 

and z directions, and it is obtained by taking three products. However, note that in 
that case, it is the probability of finding particles in the volume of the velocity space 
dvxdvydvz. Since it can be considered that there is no anisotropy of the distribution 
function in the thermal equilibrium state, the distribution function is spherically 
symmetric in the velocity space. It should be only a function of the absolute value of 
the velocity
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v2 = vx 
2 þ vy 2 þ vx 2 ðB1:14Þ 

Then, we can write a three-dimensional velocity distribution as a function of v. Note 
that the number of states increases with v. That is, using the spherical coordinates of 
the velocity space 

g vð Þ= 4πv2 dv ðB1:15Þ 

Using (B1.9), the velocity distribution function is obtained as 

f vð Þ= 4π 
m 
2πT 

3=2 
v2 exp -

mv2 

2T
ðB1:16Þ 

Here, the normalization constant is obtained with the following relation 

1 

0 
x2 e- αx2 dx= 

π1=2 

4α3=2
ðB1:17Þ 

Since the relation 1/2mv2 = ε is satisfied, the distribution function for the kinetic 
energy ε is also derived from (B1.16). The change of variables must be done in the 
integral system of the distribution. That is 

mvdv= dε→ dv= 
1 

2m
p dε 

ε
p ðB1:18Þ 

By rewriting (B1.16) with use of (B1.18), the energy distribution function is 
obtained as a function of kinetic energy. 

f εð Þ= 
2 

π
p 

T3=2 
ε

p 
exp -

ε 
T

ðB1:19Þ 

Note that, as is well known, the number of states increases proportionally to ε
p 

for 
free electrons in plasma or solid. 

B-2 Bose-Einstein Distribution and Planck Distribution 

Particles with spin integer or zero are allowed to stay as many as in one quantum 
state. The distribution function at this time can be easily obtained as follows. (B1.9) 
is the probability that particles of quantum state i exist. It is enough to add the 
probability that particles 1, 2, and 3, exits at the same energy state. By use of the 
probability
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xi = exp 
μ-Ei 

T
ðB2:1Þ 

The probability in this case is 

p xið Þ= xi þ xi 2 þ xi 3 þ : . . . . . .  
= 

xi 
1- xi 

= 
1 

1- exp 
Ei - μ 
T 

ðB2:2Þ 

Here, μ can be regarded as a normalized constant determined from particle density. 

Planck Distribution 

The energy distribution of the radiation field in thermal equilibrium with the 
substance at the temperature T is Planck distribution. Photon is a Bose particle of 
spin 1. The number density of photons of energy hν can be described as follows with 
use of (B2.2). 

ρ νð Þ= 
8π 
c3 

ν2 
1 

e 
hν 
T - 1 

= 
8π 
c3 

ν2e
- hν 
T 

1- e
- hν 
T 

ðB2:3Þ 

In order to derive (B2.3), we first need to calculate the number of states of photons 
with energy hν.. Let us assume that the radiation field is in thermal equilibrium in a 
square cavity of its length L. The photons, which are electromagnetic waves, are 
quantized so that the electric field has a node at the boundary. Then the wavenumber 
of allowed photon is calculated simply 

kx = 
πn 
L 
, n= 0, 1, 2,⋯ ðB2:4Þ 

The wavenumbers should be quantized. By applying this relation also in the y and z 
directions, we can see that the number of state is a function of only the absolute value 
k of the wavenumber. Calculating the volume of photons (k, k + dk) in k space and 
set it as g (k)dk, we obtain 

g kð  Þdk= 
1 
V 

L 
π 

3 

× 
π 
2 
k2 dk= 

k2 dk 
2π2

ðB2:5Þ 

where V is the volume of system and V = L3 . Furthermore, since electromagnetic 
waves are transverse waves and the degree of freedom of polarization direction is 
2 which should be multiplied to (B2.5). Using the frequency ν of photons instead of 
wavenumber,
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k = 
2πν 
c

ðB2:6Þ 

Then, (B2.5) becomes 

g νð Þdν= 
8πν2dν 

c3
ðB2:7Þ 

There was a classical theory of Rayleigh-Jeans until Planck distribution was found. 
They considered the photons in the cavity as having an energy of T as an average per 
photon from the energy equilibrium distribution and the energy distribution of 
photons was considered to be the value multiplied by T to (B2.7). However, it is 
obvious that it diverges in the area of large ν. 

The probability of having energy Ei is 

Pi = 
e

-Ei 
kBT 

ie
-Ei 
kBT 

ðB2:8Þ 

In the classical image, the photon field has not been determined that the state of ν has 
the energy of hν, and the photon field is quantized in the harmonic oscillator field of 
the classical frequency ν. Then, the energy level is shown with integer n, 

Ei = n þ 1 
2 

hν ðB2:9Þ 

where we neglect the contribution from n = 0, since it is the energy determined by 
the uncertainty principle and cannot be observed. Among the small set of this 
frequency ν, the probability is found to be 

Pn = 
e-

hν 
kBT 

n 

1 
n= 1 e

- hν 
kBT 

n = e-
hν 
kBT 

n 
1- e-

hν 
kBT ðB2:10Þ 

And the average energy of photons of frequency ν is 

ε= 
1 
n= 1 

Pnnhν= 
hν 

e 
hν 
kBT - 1 

ðB2:11Þ 

By multiplying (B2.11) with (B2.7), the photon number density between frequencies 
(ν,ν + dν) is obtained to be 

ρ νð  Þdν= 
8π 
c3 

ν2 
1 

e 
hν 
T - 1 

dν ðB2:12Þ 

(B2.12) is the Planck radiation distribution.
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Fig. B.1 Bose-Einstein, (gold) Boltzmann, (red) and Fermi-Dirac (blue) distributions (μ = 0) 

B-3 Fermi-Dirac Distribution 

Only one particle can exist in the same quantum state for spin-half particles; they are 
for example, electrons, protons, and neutrons. It is due to Pauli’s exclusion principle. 
Even in plasma, the density becomes high enough, such as inside the white dwarf, 
the free electrons degenerate. The electrons in accelerating fuel should be controlled 
degenerate in laser fusion. In such degenerate plasma, free electrons have average 
energy of Fermi energy although the temperature is relatively low. Let’s obtain such 
Fermi-Dirac distribution in a simple way. 

The idea is the same as in the case of the Bose-Einstein distribution, but in the 
state of energy Ei only one electron can exist. Since the probability that n particles 
exist is proportional to xi 

n , the probability of existence in the quantum state |ii is 
obtained as follows using (B2.1) where the probability in the case of no particle and 
one particle at the state should be denominator 

p xið Þ= 
xi 

1þ xi ðB3:1Þ 

(B3.1) can be rewritten to the Fermi-Dirac distribution



Appendix-B: Thermal Equilibrium Statistical Mechanics 279

p Eið Þ= 
1 

1þ exp Ei - μ 
T 

ðB3:2Þ 

The three distribution functions are plotted for μ = 0 in Fig. B.1. 

Fermi Energy 

Inside metals free electrons are running around even at a relatively low temperature. 
Fermi particles such as electrons with T = 0 and density n are distributed in the form 
of a step function in Fig. B.1. The maximum energy is called Fermi energy EF. 
Derive the Fermi energy EF. 

Apply the calculation of photons (B2.5) to electrons waves, assume T = 0, and 
the wavenumber space is filled up to kF. Since the degree of freedom of the electron’s 
spin is 2, the number of electrons of the Fermi sphere is 

n= 2 
kF 

0 
g kð Þdk = 

1 
3π2 

k3 F ðB3:3Þ 

Using this kF, Fermi energy is 

Fig. B.2 Observation image of an old galaxy and several white dwarfs are seen in the stretched 
view (in all circles). Image by HST, NASA
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EF = 
ħkFð Þ2 
2m 

= 
ħ2 

2m 
3π2 n 

2=3 

EF = 3:3 × 10- 15 n cm- 3 2=3 
eV½ }  

ðB3:4Þ 

The average energy of Fermi particles is calculated as 

EFh i= 
2 

kF 

0 

ħ2 

2m k
2 g kð Þdk 

n 
= 

3 
5 
EF ðB3:5Þ 

The typical values of Fermi energy are as follows. 

1. Metal: The number density of metal free electrons is given with n = 1022 to 23 

[cm-3 ] in the solid state. (B3.4) gives 

EF = 2 ~ 10 eV ðB3:6Þ 

2. White dwarf: A white dwarf is a star with about solar mass and sustained by 
balance between the degenerate pressure of electrons and self-gravity. The 
electrons are almost completely degenerate. It is a compact star of the size of 
the Earth. It has been observed in an old galaxy as shown in Fig. B.2. Several 
white dwarfs are shown in a stretched view on the right and they are encircled by 
white circles. Since a solar mass is in the radius of the Earth, a typical electron 
density is n = 1030 [cm-3 ] (about ρ = 106 [g/cm3 ]). Fermi energy at such a high 
density is 

EF ≈ 3× 105 eV = 0:3 MeV ðB3:7Þ 

3. Nucleus: The inverse of the volume of a proton is n = 1037 [cm-3 ], and the size 
of the nucleus is decided by balancing of the degenerate pressure of the nucleon 
and the strong force There. Therefore, using this density and the mass of pro-
tons, Fermi energy is 

EF ≈ 3× 107 eV = 30 MeV ðB3:8Þ 

4. Neutron star: A neutron star is a compact star left at the center, when a massive 
star gravitationally collapses and type II supernova explosion occurs. It is a 
compact object whose radius is about 10 km and mass is about the solar mass. A 
typical density is 2 × 1014 g/cm3 , namely the size of cubic sugar is about the total 
weight of 7 billion people in the world. This number density is n = 1038 [cm-3 ], 
and its Fermi energy is
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EF ≈ 1 × 109 eV = 1GeV ðB3:9Þ 

Consider the case of a binary star where a white dwarf forms a binary star with the 
main sequence star. The mass of the white dwarfs increases with time due to mass 
accretion from the surface of the companion star. As already seen above, Fermi energy 
(B3.7) is about the rest mass energy of an electron; therefore, it is necessary to consider 
the relativistic effect as the white dwarf mass increases. The gravitational force can be 
supported by non-relativistic electron degeneration pressure. However, it is necessary 
to consider the fact that the pressure is the momentum flux density per unit area 

PF = npv ðB3:10Þ 

where p is the average momentum of electrons, v is the average velocity of electron. 
In non-relativistic cases 

p= 2mEF , v= p=m 

PF α n5=3
ðB3:11Þ 
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Fig. B.3 The radius of white dwarfs with different mass. Non-relativistic case gives physical 
solutions, while relativistic Fermi pressure cannot sustain the gravity for the case with more than 
Chandrasekhar mass
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And the density-dependency is strong. This 5/3 power law prevents the collapse 
due to self-gravity. However, as the mass increases in time, the density further 
increases and the electrons become relativistic degenerate. In this case, since the 
speed of the particle flux is limited by the speed of light, the pressure dependence on 
the density is weakened. In other words, the star becomes “soft” at the dense central 
region, since the relativistic Fermi pressure is 

p= 2mEF , v= c 

PF α n4=3
ðB3:12Þ 

It is found that the hydrostatic solution of a white dwarf is not obtained in the 
relativistic region where the pressure depends on the power of 4/3 of density. 
Namely, gravitational collapse should be taken place near the central point as mass 
increases. 

When the gravitational collapse happens near the center of the star, the main 
component of the star, carbon and oxygen, starts thermonuclear reaction. The 
produced thermal energy explodes the white dwarf. Such phenomenon is the Type 
Ia supernova explosion. The explosion is believed to occur when the mass exceeds 
the critical mass (this is called Chandrasekhar critical mass, 1.26 times the solar 
mass with a simple calculation, which is estimated to be about 1.44 times recently). 
In Fig. B.3, the radius of a white dwarf obtained with the equation of state with no 
relativistic effect and relativistic effect is plotted as a function of the total mass of the 
white dwarf. It is clear that taking account of the relativistic effect, there is no steady 
state solution of such white dwarf. Therefore, it is considered that the mass at the 
time of explosion is constant and the luminosity from Type Ia supernovae is also 
equal. Due to such reason, it can be used as the standard light source of the universe. 
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Chapter 6 
Non-local Transport of Electrons in Plasmas 

Abstract Since plasma is high temperature and the charge particles are running with 
high temperature, for example, at 1 keV, about the velocity of 109 (electron) and 
2 × 107 (ion) [cm/s]. Since Coulomb mean-free-path is proportional to (velocity)4 , 
higher velocity component transfers its energy over a long distance without Cou-
lomb collision. This is usually called as “non-local transport” and the traditional 
diffusion model in neutral gas cannot be applicable. In laser plasma, the locally 
heated electron thermal energy is transported into cold over-dense region 
non-locally. The best way to solve such problem is to solve Fokker-Planck equation, 
while it is time consuming and some theoretical models have been proposed and 
studied over the last four decades. The physics of such models are explained here 
and most recent model SNB is shown and compared to experiments. The difficulty 
of transport of charges particles such as electrons is how to include the effect of 
electrostatic field and magnetic field self-consistently. 

6.1 Spitzer-Harm Diffusion Model 

6.1.1 Model Equation for Diffusion 

Consider a simple equation describing time evolution of temperature. Assume that 
the particles carry the energy of plasma proportional to the temperature T. The 
plasma particles, mainly electrons, are assumed to be in random walk over every 
time interval Δt. The probability of the displacement during the time interval Δx is  
given as the probability density W(Δx, Δt). Then, the time evolution of the distri-
bution of the temperature T is governed by 

T x, tð Þ= 
1

-1 
W Δx,Δtð ÞT x-Δx, t-Δtð Þd Δxð Þ ð6:1Þ 

Note that for simplicity Δt is assumed constant. 
Under the condition that the spatial variation of T is gentle enough, (6.1) can be 

approximated with Taylor expansion to reduce to the form. 
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T x-Δx, t-Δtð Þ= T x, tð Þ-Δx 
∂T 
∂x 

þ 1 
2 

Δxð Þ2 ∂
2 T 

∂x2 
þ ⋯ ð6:2Þ 

In (6.1), the probability function W(Δx, Δt) is normalized, 

1

-1 
W Δx,Δtð Þd Δxð Þ= 1 ð6:3Þ 

It is also reasonable to assume that W(Δx, Δt) is an even function of Δx. 
Inserting (6.2) to (6.1), the following diffusion equation is obtained. 

∂ 
∂t 

T = 
∂ 
∂x 

χ 
∂ 
∂x 

T , 

χ = 
1 

2Δt 

1

-1 
W Δxð Þ  Δxð Þ2 d Δxð Þ  

χ = 
1 
2 
vΔx ) χ ≈ 

Δxð Þ2 
Δt 

ð6:4Þ 

where < >  represents the ensemble average and we assumed that the space integral 
of T should be conserved. 

1

-1 
T x, tð Þdx=Q : const: ð6:5Þ 

This diffusion approximation is valid only when the following condition is satisfied. 

Δx 
T 

∂T 
∂x 

≡ Δx 
LT 

< < 1 ð6:6Þ 

where LT is the scale length of the gradient of T. 
Let us consider that (6.4) is the energy diffusion by electron motion in plasma, the 

heat flux by the electron thermal motion should be in the form. 

qe = 
3 
2 
neχ Teð Þ∇Te ≈ neveλe∇Te = qFS 

λe 
LT 

ð6:7Þ 

where ve = (Te/m)1/2 , λe is the electron average mean-free-path, and qFS is the free 
streaming heat flux defined by 

qFS = neveTe ð6:8Þ
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The free-streaming heat flux is the maximum of the heat flux by all electron of 
Maxwell distribution in one–direction. If we integrate the heat flux it is 0.6 times the 
free streaming flux. 

In a historical paper by Spitzer-Harm [1], the mathematical formula of the 
electron heat conduction in fully ionized plasma was derived by starting with 
Fokker-Planck equation as we see soon. Its mathematical form is derived from the 
above simple model. Since the mean-free-path has the following relation, 

λe / T
2 
e 

ne 
ð6:9Þ 

The Spitzer-Harm heat flux qSH is given from (6.4). 

qe ≡ qSH = - κ0T
5=2 
e ∇Te ð6:10Þ 

where κ0 is a constant. This heat flux is already shown in (2.109). The heat flux of 
(6.10) has been widely used to describe the electron energy transport. 

6.1.2 Flux Limit 

In the early time 1970s of laser plasma research, it was found that the flux (6.7) is  
limited by the maximum much less than (6.8) and so-called flux limiter is proposed 
an ad hock method to be installed in simulation codes [2]. The flux-limiter was 
widely used in hydrodynamic simulations, because the temperature of the laser 
heated region becomes low without the flux-limiter to give higher absorption rate 
of laser via classical absorption as suggested in Chap. 2 in Volume 1. In the case 
where the flux-limiter is adopted in the simulation code, the heat flux propagating to 
higher density region is limited and the electron temperature in the absorption region 
becomes higher, consequently the absorption rate is suppressed. 

In laser produced plasmas, for example, it has been well recognized that a simple 
diffusive expression of electron transport given in (2.109) cannot be applicable. The 
phenomenon has been called flux-limit. In physics integrated computer simulation 
based on hydrodynamic description the flux-limiter f was artificially installed in 
order to avoid higher absorption rate and hydrodynamic efficiency. 

qL = f qFS, ð6:11Þ 

where f was evaluated to be 0.03–0.1 according to the difference of experiments. In 
hydrodynamic simulations, the following hear flus was modeled.
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Fig. 6.1 Bremsstrahlung 
x-ray emission spectrum 
obtained in a laser produced 
plasma experiment (solid 
circles). The time integrated 
spectrum has been 
compared to hydrodynamic 
simulation results with 
different flux limiters. 
Spitzer-Harm diffusion 
model ( f = 1) is far from 
the experimental spectrum, 
while with smaller flux 
limiter the data can be 
explained computationally. 
Strong flux limitation was 
suggested in the early time 
from such comparison. 
Reprint with permission 
from Ref. [2]. Copyright 
1998 by American Physical 
Society 

qeff = min qFL, qSHð Þ 6:12Þ 

or 

qeff = 
qSH . qL 
qSH þ qL , ð6:13Þ 

Then, the heat flow is small enough the Spitzer-Harm diffusion formula is used, but 
it is designed to limited by the limited flux. 

In Fig. 6.1, calculated Bremsstrahlung emission spectrum Iν versus photon energy 
hν for different value of the flux limiter f is compared to the experimental data (solid 
circles). It is clear that simulation without the flux limiter results very low temper-
ature in the Bremsstrahlung emission, while as the flux limiter increase hard x-ray 
emission reproduced as shown in Fig. 6.1. It is too early to conclude that in the 
experiment the flux is limited as f = 0.01–0.03. Such comparison of simulation to a 
variety of experimental results, however, had required to improve the mathematical 
model of the diffusion by electron heat conduction in high-intensity laser plasma 
interacting plasmas. 

6.1.3 Mathematical Derivation of Spitzer-Harm Diffusion 

In order to know the reason for the flux limit and the limiting condition of the validity 
of the diffusion approximation (6.10), let us repeat the mathematical process for 
deriving the diffusion model for the electron heat conduction.
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Mathematical derivation of Spitzer’s heat flux can be done by starting with the 
following kinetic equation of Vlasov equation with Krook collision operator. 

∂ 
∂t 

f þ v . ∇f -
e 
m 
E . ∂ 

∂v 
f = - νc f - f Mð Þ 6:14Þ 

where E is electrostatic field generated by charge separation due to electron motion 
by heat flux and fM is local Maxwell distribution. The collision frequency νc is due to 
electron-ion and electron-electron collisions to be fixed so that they are derived by 
Fokker-Planck equation as a function of velocity as shown later. 

In solving (6.14), space dependence is assumed one-dimensional in the 
x-direction and the velocity distribution function is assumed to consist of two 
terms; the isotropic component and the small anisotropic component. 

f x, v, μð Þ= f 0 x, vð Þ þ  μf 1 x, vð Þ ð6:15Þ 
μ= cosθv ð6:16Þ 

where f0 and f1 are functions of only the absolute value of the velocity in v-space. 
The angle dependence of the velocity space is assumed only by θv, velocity angle 
along the x-direction as shown in Fig. 6.2. Inserting (6.15) to (6.14) yields 

∂ 
∂x 

vμ f 0 þ μf 1ð Þ½ ]- e 
m 
E 

∂ 
∂v 

μ f 0 þ μf 1ð Þ½ ]  

þ e 
m 
E 
1- μ2 

v 
f 1 = -

v 
λc 

f 0 - f M þ μf 1ð Þ  
ð6:17Þ 

where λc = v/νc is an effective mean free path for electrons with the velocity v. 

Fig. 6.2 Schematics of 
electron velocity 
distribution function to be 
modeled for Fokker-Planck 
equation, where 
non-uniformity of 
temperature is assumed to be 
in the x-direction and the 
velocity distribution is 
axially symmetric along the 
x-velocity axis. Space 
one-dimension and velocity 
space two-dimension are 
assumed
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Taking the moment of velocity angle 1
- 1dμ of (6.17), the first order distribution 

function is obtained as 

f 1 = - λc 
∂ 
∂x

-
e 
m 
E 
v 
∂ 
∂v 

f M 

= -
λc 
Te 

eE þ 1 
2 

mv2 

Te
- 3 

∂Te 

∂x 
f M 

ð6:18Þ 

where f0 is assumed to be a local Maxwellian fM and the density is assumed to be 
uniform. 

The electron current density is defined as 

je = - e vxf d
3 v= -

4πe 
3 

1 

0 
v3 f 1dv ð6:19Þ 

Inserting (6.18) into (6.19), the current density is obtained in the form. 

je = σE- β 
dTe 

dx
ð6:20Þ 

where σ is the electron conductivity and β is the coefficient of thermal current. 
Note that the coefficients σ and β are functions of the temperature. Once there is a 
current flow in one-dimensional system, charge separation takes place. It is better to 
assume that this charge separation is induces the return current to keep the current 
neutral condition. Requiring the current neutral condition, the electric field is given 
in the form. 

E= 
β 
σ 
dTe 

dx
ð6:21Þ 

The electron heat flux is calculated as follows. 

qe = 
m 
2 

v2 vxf d
3 v= 

4πm 
6 

1 

0 
v5 f 1dv ð6:22Þ 

Inserting (6.18) into (6.22) and eliminating E with (6.21), the heat flux (6.22) can be 
obtained in the form. 

qe = γje -Ke 
dTe 

dx
ð6:23Þ 

where γ is a constant and Ke is the electron heat conduction coefficient. Requiring 
the current neutral condition, the electron heat flux is given in the form: 

qe = -Ke∇Te ð6:24Þ
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In the precise calculation including electron and ion contribution to the effective 
mean-free path in (6.18), the heat flux derived by Spitzer-Harm has the following 
form [3]. 

qSH = -
128 Z þ 0:24ð Þ  
3π Z þ 4:2ð Þ  λSHneve∇Te ð6:25Þ 

where λSH is the Spitzer-Harm mean free path, 

λSH = 
3 

4 2π
p 

Z 

1 
neb

2 
0lnΛ

ð6:26Þ 

where the Coulomb impact radius defined in Chap. 2 in Volume 1 is given as b0 
satisfying the relation. 

e2 

4πε0b0 
=mv2 e = Te ð6:27Þ 

In (6.25), the Z is the charge state for partially ionized plasma and the Z-dependence 
of the coefficient stems from the different ratio between the electron and ion 
contribution to Coulomb scattering. It is useful to express the form (6.25) as  

qSH = - a0 
λSH 
LT 

qFS ð6:28Þ 

where a0 is the coefficient in (6.25) and qFS is called free-streaming flux defined as 

qFS = neTeve ð6:29Þ 

This free-streaming energy flux is frequently used as normalization value for elec-
tron heat flux. This is almost the maximum flux by the half of Maxwell distribution. 
So, any model for heat flux cannot be larger than qFS. This indicates that the mean-
free-path should be much shorter than the temperature gradient scale LT defined in 
(6.6). 

It is useful to note that the maximum electron heat flux is in general much smaller 
than the free-streaming flux for example as seen in Fig. 6.1. This is because the 
strong heat flux induces the electrostatic field inhibiting the large heat flow goes to 
one direction. The charge separation is very important to reduce the heat flux 
compared to the free-streaming value. This is not the case for charge neutral particles 
like photons as will be explained later in this Chapter. In the case of photon emission, 
it is easily seen near the plasma boundary that almost all photons flow freely in one 
direction.
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6.1.4 Breakdown of Diffusion Approximation 

We have to be careful that Spitzer-Harm diffusion formula of the electron heat flux 
derived in (6.24) has been obtained in (6.18) with the assumption that 

f 0 ≫ f 1j j ð6:30Þ 

Inserting (6.21) into (6.18) it is possible directly evaluate the condition (6.30) for f0 
being Maxwellian. 

f 1 
f M 

= 
λc veð Þ  
LT 

v 
ve 

4 
v 

2
p 

ve 

2

- 4 ð6:31Þ 

where LT is the gradient scale defined in (6.6). 
It is clear that the distribution function becomes negative for the case of |f1/f0| > 1. 

The velocity dependent heat flux v5 f1 in (6.22) is found to have its maximum at 
v = 3.4ve. Since the heat flux is the integral of large power of the velocity, the 
maximum heat flux is mainly due to the electrons with the velocity more than the 
thermal velocity. The effective mean free path of such electrons is (3.4)4 ~ 102 time 
longer than the SH mean free path in (6.26). Inserting v = 3.4ve to (6.31), it is found 
that the perturbation of the distribution become larger than the Maxwell distribution 
|f1/f0| > 1 at the value of the mean free path. 

λc veð Þ  
LT 

ffi 4× 10- 3 ð6:32Þ 

This means that the SH heat conduction model cannot be applicable for the 
temerature gradient shorter than that in (6.32). This is usual case of laser produced 
plasma, where laser heating energy is carried by heated electrons from near the 
cut-off density to the solid density surface. It is essential to model the heat flux in 
another way. 

6.2 Vlasov-Fokker-Planck Equation 

6.2.1 Boltzmann Equation 

Boltzmann equation is a kinetic equation of particles under collisional process. It is 
well known that in case of highly ionized plasma Coulomb collision between ions 
and electrons can be approximated by Fokker-Planck differential form. It is better, 
however, to start from Boltzmann equation to show what approximation are used to



derive Fokker-Planck equation to study the electron energy transport in laser pro-
duced plasma. See Appendix-C. 
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Boltzmann equation is non-linear integral-differential equation and time-
consuming computation is required to solve numerically. Boltzmann equation for 
Coulomb collision system in plasma is formally given to be: 

∂f 
∂t 

þ v . ∂f 
∂r

-
e 
m 
E . ∂ 

∂v 
f = 

df 
dt coll 

= 
df 
dt 

ei 

þ df 
dt ee 

ð6:33Þ 

In RHS in (6.33), the collision terms of electrons with ions and with electrons are 
shown in the first and second terms, respectively. 

Derive the collision term with assumption that only binary collision is enough to 
derive the collision term. Then, assume that binary collision changes the velocities of 
two particles before and after the collision. Consider the collision term of the 
electron distribution function with velocity v changes its velocity to v’ by the 
collision of electron or ion with velocity vs changing it to vs’ after the collision. In 
what follows the subscribe “s” represents the both cases of collision with ion and 
electron. 

v, vsf g→ v0, v0 s ð6:34Þ 

The differential cross section of such binary collision σs(Ω) is given as the function 
of the relative orientation of the vectors v-vs and v′-vs′, the unit vector of which is 
defined as Ω. Of course, the functional form, σs depends on the collision opponent is 
an electron or an ion. Then, it is easy to understand that the collision term is given in 
the form. 

df 
dt coll 

= 
s= i,e 

dΩ dvsσs Ωð Þ v- vsj j  f 0f 0 s - f f s ð6:35Þ 

In (6.35), 

f ≡ f r, v, tð  Þ, f 0 ≡ f r, v0, tð Þ  
f s ≡ f s r, vs, tð Þ, f s 

0 ≡ f s r, v0 s, t
ð6:36Þ 

The collision term (6.33) gives the change of the distribution function f after the 
collision with another or same particle with distribution fs at the point r and time 
t. The term f’ fs’ represents the gain to v from v’ due to the collision with vs’. On the 
other hand, the term f  fs represents the loss from v from v’ after the collision with a 
particle with the velocity vs. Integrating by vs provides all contribution from the 
particle in plasma at (r,t) position by the other electrons and ions. Since the integrand 
should be the collision frequency, it is proportional to σs(Ω)|v - vs|. The scattering 
cross section is given by Rutherford scattering formula.
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6.2.2 Taylor Expansion of Collision Term 

In the Coulomb scattering, the velocity change |Δv| by one binary collision is 
sufficiently smaller than the velocity |v|. In such case, Boltzmann equation of 
(6.33) can be expanded with the small velocity change. When the probability density 
of the small change of Δv due to the scattering of the distribution of v is W(v, Δv), 
the following relation holds 

f v, r, t þ Δtð Þ= f v-Δv, r, tð ÞW v-Δv,Δvð Þd Δvð Þ ð6:37Þ 

It is important to note the physical difference of (6.1) and (6.33). In case of random 
walk in real space (6.1), the mean random step <Δx> can be easily break the 
condition for approximation (6.6) and the breakdown of the diffusion approximation 
appears as in Spitzer-Harm model. However, the random scattering in the velocity 
space is always valid as long as Coulomb scattering is considered. So, it is expected 
that Taylor expansion of (6.37) is applicable even to the case with steep temperature 
gradients. This is because the velocity change in most of Coulomb scattering is due 
to small angle scattering. 

In what follows, only the change of distribution function of electrons by the small 
angle scattering is formulated for simplicity. Assuming small angle scattering and 
considering that the distribution function change with short time interval Δt, (6.37) 
reduces to the Taylor expansion form to Δt and Δv in the form. 

f v, r, t þ Δtð Þ  = f v, r, tð ÞW v,Δvð Þ-Δv . ∂ 
∂v 

f v, r, tð ÞW v,Δvð Þ½  

þ 1 
2 

i k 

ΔviΔvk 
∂2 

∂vi∂vk 
f v, r, tð ÞW v,Δvð Þ½ d Δvð Þ  

ð6:38Þ 

From (6.38) the collision term in a differential form to Coulomb interacting system is 
obtained. 

df 
dt 

coll 

= 
∂ 
∂vi 

Δvi 
Δt 

f v, r, tð Þ  þ 1 
2 i k 

∂2 

∂vi∂vk 

ΔviΔvk 
Δt 

f v, r, tð Þ  ð6:39Þ 

where <  >  represents the ensemble average of the terms. In case of one-dimension 
in the real space, the velocity space can be approximated axial symmetric with the 
axis of the inhomogeneous direction as shown in Fig. 6.2. The velocity space is 
two-dimensional in the cylindrical coordinate system (vr, θv). The characteristics of 
Fokker-Planck equation are as follows:
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1. The distribution function never becomes negative, 
2. The equation satisfies the conservation of particle, momentum, and energy 

locally. 
3. It satisfies Boltzmann’s H-theorem. Even starting from any distribution function, 

the final distribution function becomes Maxwellian in LTE condition. 

6.2.3 Derivation of Fokker-Planck (FP) Equation 

What Fokker-Planck (FP) equation says is that any random force in Brownian 
motion reduces to the combination of the friction term and diffusion term. 

After a long algebra shown in [4, 5], FP equation is found to have the following 
form. 

∂ 
∂t 

f 
coll 

= -Γ 
∂ 
∂vk 

∂H 
∂vk 

f þ 1 
2 
Γ 

∂2 

∂vk∂vj 

∂2 G 
∂vk∂vj 

f ð6:40Þ 

where G is derived from Rutherford scattering cross section and H and G are given as 

Γ = 
Z2e4 

4πε2 0m
2 
lnΛ ð6:41Þ 

H vð Þ= Z2 
s 

mþ ms 

ms 

f s vsð Þ  
v- vsj j dvs ð6:42Þ 

G vð Þ= Z2 
s f s vsð Þ  v- vsj jdvs ð6:43Þ 

It is noted that the definition H and G are called the Rosenbluth potentials [6]. 
It is known that the first term of RHS in (6.40) is the dynamical friction and the 

second one is the diffusion term in the velocity space. The Fokker-Planck equation 
assumes only the scattering by the binary Coulomb collision, therefore, in the system 
of two kind of particles like fully-ionized ions and electrons, we have to solve the 
equation for electron distribution function changing in time by scattering due to 
electron-electron (e-e), electron-ion (e-i). It is noted that in the case of e-e scattering, 
(6.40) is a nonlinear equation to the distribution function. 

6.2.4 Linearized FP Model 

It is time consuming to solve exactly (6.40) at each time step in FP computer 
simulation. It is better to consider some approximation to make numerical method



much easier in solving (6.40). For the present problem of electron heat transport, the 
following two assumptions can be adopted. 
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1. In the collision with the ions, it is assumed that mi > >  me and energy transfer 
between electron and ions is neglected. This means the ions are regarded to be 
particles at rest. Then, the ion collision contributes to only the momentum change 
and no energy change of scattered electrons. 

2. The nonlinear term in calculation of H and G in (6.42) and (6.43) are assumed by 
replacing fs is local Maxwell distribution. In addition, |v- vs|is replaced with v in 
the both definitions. This is valid because the electron heat transport is sensitive to 
the collision of large v component by the electron with lower energy. 

The 1st and 2nd derivatives in velocity space (6.40) can be separated to the changes 
in the absolute value of v (energy) and the scattering to perpendicular direction 
without changing energy. The former is only due to electron-electron scattering and 
the latter is due to both. It is possible to separate them into two parts as shown below. 

The scattering term can be given as 

df 
dt ei,ee 

= 
s= i,e 

∂ 
∂v⊥ 

Ds 
∂ 

∂v⊥ 
f ð6:44Þ 

df 
dt ee 

= 
∂ 
∂vk 

Fef þ De 
∂ 
∂vk 

f ð6:45Þ 

In what follows, the distribution function is assume to be cylindrically symmetric in 
the velocity space along the x-direction, where the plasma parameters change in 
space locally in the x-direction. 

By use of Taylor expansion with care of the fact that hear flux is due to high 
velocity component, while the collisions are mainly with electrons with relatively 
low velocity, the following approximated linear form of Fokker-Planck equation is 
obtained 
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∂v

þ ∂ 
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ð6:46Þ 

The angle of the velocity space is replaced with a definition 

μ= cos θ ð6:47Þ 

It is noted that the following formula was used in (6.46).
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∂ 
∂vx 

= μ 
∂ 
∂v 

þ 1- μ2 v- 1 ∂ 
∂μ

ð6:48Þ 

In the RHS of (6.46), the first term is the effective mean free path by scattering. 

λS vð Þ= 
m2v4 

4πne Z þ 1ð Þe4 lnΛ ð6:49Þ 

This is due to the scattering of electrons by ions and background electrons. The 
second term is due to the frictional force among electrons. 

λf vð Þ= 
m2v4 

4πnee4 lnΛ 
= Z þ 1ð ÞλS vð Þ½ ] 6:50Þ 

It is mathematically clear that the 1st term in RHS of (6.46) is diffusion in angular 
space without energy change, while the 2nd term is the change in v-space with 
change of energy. It is noted that the RHS of (6.46) disappears when the electron 
distribution function is a Maxwellian distribution with thermal velocity ve. The 
second term in (6.46) is derived by assuming that the counter electrons are in local 
Maxwellian. 

In order to check the validity of several heat conduction models, it has been done 
to solve directly the FP equation numerically as reference case. The property that the 
Legendre functions is the eigen function of 1st term of RHS of (6.46) has been well 
used. The distribution function is expanded by Legendre polynomial as follows: 

f = 
N 

n= 0 
f n x, v, tð ÞPn μð Þ ð6:51Þ 

Inserting (6.51) into (6.46) and using the following mathematical formula to Legen-
dre function. 

μPn = 
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2nþ 1 n þ 1ð ÞPnþ1 þ nPnþ1½ ]  

μ2 - 1 
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Pn = n μPn -Pn- 1ð Þ  
∂ 
∂μ 

1- μ2 
∂ 
∂μ 

Pn = - n nþ 1ð ÞPn 

ð6:52Þ 

It is possible to make (6.46) as functions only proportional to Legendre function 
regarding the terms including μ. Comparing the term proportional to the same order 
of Legendre functions, the following coupled equations are obtained.
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ð6:53Þ 

This can be numerically solved by coupling with Poisson equation. 

ε0 
dE 
dx 

= 4πene f d3 v- 1 ð6:54Þ 

FP equation shown in (6.53) looks like linear coupled equations for fn (n = 0 ~  nmax), 
where nmax is the maximum number of n to be solved. However, the electrostatic 
field generated by the electron heat flux is given by the sum of all Legendre 
component fn, consequently for example some iterative process is required to obtain 
at each time step consistently. In addition, very fast oscillation by plasma waves is 
also generated by charge separation. In order to weaken such oscillation effect, some 
idea is required in numerically solving (6.53) and (6.54). 

FP Eq. (6.53) has been solved numerically with numerically reducing the plasma 
oscillation frequency [7]. The plasma is initially uniform in density and temperature. 
The temperature in the region around the one boundary is quickly heated to 4 times, 
and the time progress of heat flux and temperature have been calculated. The 
Legendre components up to n = 8 have been solved in (6.53). In addition, Poisson 
equation is solved with an artificial fraction r = .0011 as a factor in RHS in (6.54). 
Plots of temperature <v2 > and heat flux <v2 vx> as function s of space x at three 
different times are shown in Fig. 6.3. It is seen that the heat flux is maximum near the 
heated region and the heat flux propagates from the left to the right in time. 

In Fig. 6.4, the calculated heat flux is plotted at two typical time with symbols 
(x) and (o) as functions of the local temperature gradient length L (=LT) normalized 
by the local mean free path λ. The hear flux Q by FP calculation is normalized by the 
local free streaming flux Qf = qFS defined by (6.8) in the vertical axis. In Fig. 6.4, the 
solid line is the relation of heat flux by SH model (6.24). It is found that the heat flux 
is saturated around 0.1 qFL for λ/LT < 0.01 in the FP calculation. In the next paper by 
Bell, he has carried out FP simulation for the density and temperature profile more 
realistic to the laser ablation plasma. He found the flux limitation of about f = 0.03 
for λ/LT < 0.01 [8]. 

It is noted that the flux limit factor in Fig. 6.1 seems to be f = 0.02–0.01 for the 
best fit to the experiment, but the flux limiter is an ad hoc parameter and a different 
limiter may happen depending on the plasma parameters. These fact means SH 
diffusion model is not acceptable even in a simple model for the sharp temperature 
gradient satisfying λ/LT < 0.01, and it is required to derive another heat flux model 
easily installable into hydrodynamic simulation code. This will be discussed soon.
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Fig. 6.3 Time evolution of an effective temperature hv2i and heat flux hv2 vxi obtained by a model 
simulation for Fokker-Planck equation of electron in constant density. At the left boundary, the 
effective temperature is kept four times of that at the right boundary. The heat wave propagates from 
the left to right. Reprint with permission from Ref. [7]. Copyright 1998 by American Physical 
Society 

Fig. 6.4 The heat flux of Fokker-Planck simulation normalized with the free streaming flux is 
plotted at two different times as a function of measured temperature gradient length divided by the 
local electron mean-free-path. The solid line is the relation of Spitzer-Harm (SH) diffusion. The 
simulation data are higher than SH flux near the front of the heat flux, while it is automatically 
limited around f=0.1 to change to the reduced flux in the higher temperature region. This indicate 
that the local assumption of heat flux defined with the first derivative to space x is not valid. Reprint 
with permission from Ref. [7]. Copyright 1998 by American Physical Society
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Fig. 6.5 The double functions in Fig. 6.4 stems from the non-Maxwell distribution of f0(v). The 
distribution functions obtained by solving FP equation in more relativistic density and temperature 
profiles are shown. (a) and (b) are the distribution functions at the laser heated low density region 
and the heat wave front in the high-density region, near the ablation front, respectively. Reprint with 
permission from Ref. [9]. Copyright 1998 by American Physical Society 

Not only the limitation of the electron heat flux, but also the hysteresis of the heat 
flux is also seen in Fig. 6.4. Especially, the heat flux is enhanced than SH flux at the 
heat front region, right region in Fig. 6.3. Enhanced heat flux is due to the high-
energy component coming into the cold region from the hotter region, because the 
mean free path with velocity v is proportional to v4 and high-energy components 
freely penetrate in the front region. Such component contributes the preheating of 
cold region. It is very important if the absorbed laser energy is carried by heat flux, 
while the high-density and cold region has to be controlled to as cold as possible. 

The hysteresis property stems from the non-Maxwell distribution of f0(v). The 
distribution functions obtained by solving FP equation in more relativistic density 
and temperature profiles are shown in Fig. 6.5 [9]. Figures (a) and (b) are the 
distribution functions at the laser heated low density region and the heat wave 
front in the high-density region, near the ablation front, respectively. The distribution 
function near the heating region has less high-energy component than the local 
Maxwell distribution, therefore the heat flux is reduced than SH model. On the 
other hand, near the heat front with enhanced high-energy component is produced by 
electrons coming from the heated region without enough scattering. This enhances 
the heat flux than SH model in the cold region. This is called preheating. 

Since FP simulation is time consuming calculation and is not realistic to couple it 
with hydrodynamic codes. There have been proposed better modeling reproducing 
almost FP result with simple mathematical models. In what follows, such better 
models to provide the typical properties of the flux limitation and preheating are 
reviewed. As summary, the following two characters should be noted.
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1. Heat flux is limited in laser, hearting region because of the violation of SH model 
(flux limitation) 

2. Heat flux is higher than SH flux near the heat front region (nonlocal transport) 

6.2.5 Flux Limit Properties 

Before going to the advanced models for the electron heat flux in laser produced 
plasma, consider the difference of the heat fluxes mentioned so far from the FP 
simulation result. The reduction of heat conductivity in FP simulation has been 
studied by assuming sinusoidal temperature perturbation [10]. In this case, the heat 
diffusion with SH heat flux is solved numerically to compare to FP simulation result. 

3 
2 
n 
∂T 
∂t 

= -
∂ 
∂x 

qSH , qSH = - κSH 
∂ 
∂x 

T ð6:55Þ 

The initial condition is 

T 0, xð Þ= T0 þ δT 0ð Þ exp ikxð Þ ð6:56Þ 

From the time progress of heat conduction, it is clear that the relation 

δT tð Þ /  exp - γtð Þ ð6:57Þ 

is observed. The decay rate is directly related to the heat conduction coefficients for 
SH model and can be derived for FP simulation as follows. 

γSH = 2k2 κSH=3n, γFP = 2k2 κFP=3n ð6:58Þ 

Then, it is possible to define the following normalized value for measuring the flux 
reduction in FP simulation. 

κFP 
κSH 

ð6:59Þ 

The simulation result is plotted with solid circles in Fig. 6.6 [10]. In Fig. 6.6, the 
solid curve is a fitting curve and the relation is 

κFP 
κSH 

= 
1 

1þ 30kλeð Þ4=3
ð6:60Þ 

Further study showed that the FP simulation result can also fit with the following 
simpler formula [3].
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Fig. 6.6 Wavenumber 
dependence of an effective 
thermal conductivity 
obtained with Fokker-
Planck (FP) simulation 
normalized by the thermal 
conductivity used in SH heat 
diffusion model. FP 
simulation has been done to 
the sinusoidal temperature 
variation as initial condition 
characterized with the 
wavenumber k. It is clearly 
seen that the flux is limited 
for steeper temperature 
gradient case. Reprint with 
permission from Ref. [10]. 
Copyright 1998 by 
American Physical Society 

κFP 
κSH 

= 
1 

1þ 60kλe ð6:61Þ 

For long wavelength perturbation, the heat conductivity is well modeled with SH 
model, but the conductivity is strongly reduced at short wavelength perturbation. It is 
informative to compare this relation (6.61) to the case of flux limited heat flux easily 
calculated to be 

κFL 
κSH 

= 
1 

1þ f - 1 kλe 
ð6:62Þ 

It should be noted that the flux limiter f = 1/60 (=0.017) well reproduces the FP 
result. This value of f is consistent to the comparison with the experiment shown in 
Fig. 6.1. 

6.3 Flux-Limit and Nonlocal Models 

6.3.1 LMV Nonlocal Model 

In an early time, Luciani, Mora, and Virmont (LMV) proposed the following model 
expression for nonlocal transport [11]. Stationary state is assumed for the heat flux. 

qe xð  Þ= 
1

-1 
qe xþ Δxð ÞW Δx, xð  Þd Δxð  Þ ð6:63Þ
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The LMV nonlocal heat flux is given in the form after replacing the variable 
x’ = x +  Δx and approximating the heat flux in the integral with SH formula (6.10). 

qLMV xð Þ= 
1

-1 
qSH x

0ð ÞW x0, xð Þd x0ð Þ ð6:64Þ 

where the propagator (kernel) of the heat flux is defined [11]. 

W x, x0ð Þ= 
1 

2λ x0ð Þ  exp -
x 

x ′ 

ne x00ð Þ  
ne x0ð Þ  

dx00 

λ x0ð Þ ð6:65Þ 

The effective mean free path in the propagator is defined as 

λ= a λsλfð Þ1=2 
v= ve 

, a= 32 ð6:66Þ 

where λs and λf are velocity-averaged mean free paths calculated by scattering and 
friction given in (6.49) and (6.50), respectively. The coefficient “a” in (6.66) is the 
adjustable parameter and derived by comparison with FP simulations. 

6.3.2 Probability Density of Diffusion 

In order to investigate the physical property of the propagator of the heat flux model 
in (6.64), let us Fourier transform of the LMV heat flux qLMV in a uniform density 
and constant mean-free-path. 

qLMV xð Þ= 
1

-1 
W Δxð ÞqSH xþ Δxð Þd Δxð Þ ð6:67Þ 

where we assume for simplicity, 

W Δxð Þ= 
1 
2λ 

exp -
Δx 
λ

ð6:68Þ 

Fourier transformation of the propagator is defined as 

Ψ kð  Þ= 
1

-1 
W xð Þe- ikx dx ð6:69Þ 

Carrying out the Fourier transformation of (6.1), we can use of the convolution 
integral in Fourier transformation.
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G kð ÞH kð Þ= 
1 

2π
p 

1

-1 

1

-1 
g x- yð Þh yð Þdy e- ikx dx ð6:70Þ 

By use of the convolution relation, (6.67) can be easily transformed to Fourier 
relation. 

QLMV kð Þ=Ψ kð ÞQSH kð Þ ð6:71Þ 

where the Fourier function is defined as 

QLMV kð Þ= 
1

-1 
qLMV xð Þe- ikx dx ð6:72Þ 

The Fourier function of the propagator is the same as the heat conductivity ratio and 
the case of LMV model can be obtained as 

κLMV 

κSH 
≡ Ψ kð Þ= 

1 

1þ kλð Þ2 ð6:73Þ 

where the following relation has been used. 

Ψ kð Þ= 
1 
2λ 

1

-1 
e- xj j=λ- ikx dx= 

1 
2 

1 
1 þ ikλ -

1
- 1þ ikλ ð6:74Þ 

Although the physical meaning of the LMV model is easily understand and reason-
able to be used. However, the flux limit spectrum (means k-dependence) is different 
from FP calculation shown in (6.61). This is speculated that even with LMV model, 
the big difference of the mean-free-path on the velocity is not modeled. It suggests 
that it is better to develop the model for multi-group electron transport, where the 
heat flux is defined for each velocity component. 

In Fig. 6.7 [3], the normalized Fourier functions of the heat conductivity are 
compared for LMV model and FP result. The LMV model reduces faster than FP 
result for l/LT gets to large, too much heat flux is obtained. The other curve AWBS 
model is from [12] which has improved the LMV model, consequently better 
modeling. 

We have investigated how to improve SH heat conduction model to allow the flux 
limitation as suggested in experiment and FP simulation. However, even if the flux 
limitation is reproduced, the electron kinetic effect is also very important to provide 
the preheating effect. This should be also modeled in an appropriate conduction 
formula. For this purpose, we need a model allowing the difference of mean free path 
for difference of velocity of electrons. Let us see more modernized model for heat 
conduction by electrons.



6.4 Comparison with an Experiment 305

Fig. 6.7 Two different 
non-local heat flux models 
are compared to FP 
simulation result shown in 
Fig. 6.6. The integration 
form of heat flux LMV in 
(6.64) also reproduces the 
flux limitation property, 
while a difference is seen in 
the figure. AWBS model 
looks well reproduce FP 
simulation result. Reprint 
with permission from 
Ref. [11]. Copyright 1998 
by American Physical 
Society 

6.4 Comparison with an Experiment 

The nonlocal transport model and Fokker-Planck calculations have been compared 
to measured temperature profiles of electron temperature in laser heated nitrogen gas 
jet plasma [13]. Gas jet is irradiated with 1ω laser and the heat wave region are 
irradiated with a short pulse 2ω laser at the same time to measure Thomson scattering 
and Rayleigh scattering spectra of 2ω lights. The probe beam moves to cover the 
space of about 2 mm in front of the laser heating plasma region. Simply saying, the 
principle of Thomson scattering is as follows. The probe beam is scattered by the ion 
acoustic waves in the plasma and the probe beam is scattered with frequency shift 
which is the function of the dispersion relation of the ion acoustic wave. Since the 
ion acoustic wave has its phase velocity proportional to the square root of the 
electron temperature, the spatial profile of the electron temperature is inferred from 
the spatial profile of the phase shift [13]. 

In Fig. 6.8, the experimental data of electron temperature is compared for 
t = 0.3 ns and 1.5 ns. The heating laser has a Gaussian shape with 1.4 ns half 
width and intensity of 1.5 × 1014 W/cm2 . So, t = 0.3 ns is at the beginning and 
t = 1.5 ns is almost at the peak intensity. The typical electron density measured by 
Rayleigh scattering is 1019 cm-3 . When the laser intensity is week as t = 0.3 ns, the 
experimental data with error bars are well reproduced with LASNEX and it is almost 
independent of the flux limiter. At t = 1.5 ns, on the other hand, the experimental 
data differ substantially from LASNEX results with the flux limiter 0.05 and 1.0. 
Fokker-Planck simulation of 2D SPARK is used to compared to obtain a good 
agreement with the experimental data. This suggest that LASNEX code does not 
provide the heat flux penetrating to the deeper region and the flux limit f = 0.05 too 
much prevents the heat loss from the heating region.
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Fig. 6.8 Experimental data 
of electron temperature 
profiles at two different 
times (0.3 ns and 1.5 ns). 
The data are shown with 
solid squares with error bars. 
The temperature profile near 
the peak of laser pulse 
(t = 1.5ns) is compared to 
the flux limited diffusion 
model with f = 1 and 0.05 
shown with red and black 
lines, respectively. The 
Fokker-Planck simulation 
result is plotted with the 
dashed black line. HSR 
model can also reproduced 
the data well. Reprint with 
permission from Ref. [14]. 
Copyright 1998 by 
American Physical Society 

In order to validate a nonlocal model discussed previously with such comparison, 
the same type of form (6.64) has been calculated. It is called “hot spot relaxation 
(HSR)” model [14]. In HSR, the kernel W(x’, x) is modified from (6.65) so that 
Fourier spectrum of K/KSH is designed to be 

K 
KSH 

= 
1 

1þ akλeð Þ0:9 , λe = Z 
p 

λei, kλei ≤ 1 ð6:75Þ 

where a = 10(Z + 5)/(Z + 12). HSR roughly reproduce Fourier spectrum of FP 
simulation result shown in Fig. 6.6. 

6.5 Multi-group (SNB) Model 

The kernel (6.68) is physically well understood and it may give a good model for a 
single electron group. As we see, it can give the flux-limit property, although slightly 
different from FP numerical result. It is reasonable to extend it to the case of multi-
group electrons, where electron velocity distribution is divided to N group and the 
propagator is defined as function of the velocity. Then, the preheating by long mean-
free-path electrons can be included in the model as well as the flux-limiting property. 
There have been proposed several methods for such modeling, however, the



difference is mathematical method. Therefore, the idea on how to extend it to the 
multi-group case is explained for so-called SNB model by Schurtz, Nicolai, and 
Busquet [15]. 
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Before explaining the derivation of SNB model, it is useful to see the comparison 
of SNB model to FP and SH results. In Ref. [16], the models are compared to the 
situation relating to the laser plasma. In Fig. 6.9, “Heat bath problem” is shown at 
t = 80 ps after starting with the red curve of the temperature. The black is FP and 
blue is SNB result. It is well seen that the preheating is well given as that by FP 
calculation. The heat flux at this point at 10 ps is plotted in Fig. 6.10. The black is 
SH, red is FP and blue is SNB models, respectively. This result explains the flux 
limit and preheating well. The peak flux is limited compared to the SH model and the 
pre-heating in the region for x > 500 μm is reasonably predicted by SNB model. 

Fig. 6.9 Model simulation 
of VFP and SNB model 
starting from the initial 
temperature distribution 
plotted with red line. It is 
shown that SNB model 
reproduces well the VFP 
simulation. Reprint with 
permission from Ref. [17]. 
Copyright 1998 by 
American Institute of 
Physics 

Fig. 6.10 Heat flux 
distribution at the same time 
as in Fig. 6.9. The red line is 
from K2 code of VFP 
simulation and the blue line 
is SNB, which reproduces 
well the VFP result. The 
black line is from SH heat 
diffusion model. It is clear 
that SH overestimates the 
heat flux and does not show 
the preheating compared to 
VFP, while SNB well 
reproduces these two 
effects. Reprint with 
permission from Ref. [17]. 
Copyright 1998 by 
American Institute of 
Physics
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Fig. 6.11 The velocity 
dependence of v5 f1 at the 
point of x=500mm at the 
time of previous two figures. 
Near this point the 
preheating by higher 
velocity electrons becomes 
important in K2 (VFP) 
simulation and SNB model 
can well reproduce such 
preheating as shown with 
the blue line. Reprint with 
permission from Ref. [17]. 
Copyright 1998 by 
American Institute of 
Physics 

The velocity dependence of heat flux is compared in Fig. 6.11 for SH (black), FP 
(red), and SNB (blue) models at the heat front x = 500 μm at 10 ps. The f1 of SH is 
calculated with (6.31) and the sign change around v = 0.05c, and this is less 
evaluation of the preheating by high-energy electrons from the high-temperature 
region. FP shows enhanced component of heat flux by higher energy electrons, and 
this is well reproduced by SNB model. 

In SNB model, the electron heat flux is given as the sum of all velocity groups, 
consequently the property of long mean free path of high energy electrons are well 
reproduced. Let us consider the physics of SNB model. Note that SNB model is now 
used widely in modern hydrodynamic simulations. 

6.5.1 Derivation of SNB Model 

The basic equations for deriving SNB model is the same as (6.17) except for the 
collision operator. Assuming scattering frequency without energy change νei and 
electron-electron thermalize frequency νee, the 0th and 1st moment equation to the 
angle μ are derived as follows [17, 18]. 

v 
3 

∂ 
∂x 

f 1 -
eE 
3mv2 

∂ 
∂v 

v2 f 1 = - 2νee f 0 - f M 
0 ð6:76Þ 

v 
∂ 
∂x 

f 0 -
eE 
m 

∂ 
∂v 

f 0 = - νeif 1 ð6:77Þ 

Different from SH derivation, SNB model assumes the following form to the 
electron distribution function. 

f 0 = f M 
0 þ δf 0 

f 1 = f M 
1 þ δf 1 

ð6:78Þ
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The SH has assumed δf0 = 0 and δf1 = 0. In order to include the flux limit and 
non-local preheating effects, SNB model derives new equations to obtain the 
perturbations for δf0 and δf1 with reasonable assumption. Since the f1 

M in (6.78) is  
defined by (6.18), a relation to δf0 and δf1 from (6.77) is derived to be. 

v 
∂ 
∂x 

δf 0 -
eE 
m 

∂ 
∂v 

δf 0 = - νeiδf 1 ð6:79Þ 

where E is given by the SH relation (6.21) and by including the density gradient it is 
give as 

E = 
Te 

ne 
∂ne 
∂x 

þ γ ∂Te 

∂x
ð6:80Þ 

where the coefficient g is a function of the ion charge Z in the form [15]. 

γ = 1þ 3 Z þ 0:477ð Þ  
2 Z þ 2:15ð Þ ð6:81Þ 

The Z-dependence is derived due to the change of ration between ion and electrons 
in the scattering coefficient νei in (6.77). 

Define the two mean-free paths for an electron with velocity v in the form. 

λee = 
v 
νee 

, λei = 
v 
νei 

ð6:82Þ 

SNB strategy is to delete the velocity derivative term with an intuitive way. It is clear 
that the second term at LHS in (6.79) is the acceleration or deceleration by electric 
field. The high energy electrons are decelerated by the ambipolar electric field E and 
the return current electrons are accelerated. Since the dynamics of the high-energy 
electrons is important in the transport modeling, the second term works as an 
deceleration and it can be modeled as the increase of the collision frequency as [15]. 

1 

λ Eð Þ  
ei 

= 
1 
λei 

þ eE 
1=2mv2

ð6:83Þ 

Note that (6.83) is not appropriate if the E-field dominantly accelerate electron. In 
SNB model, the deceleration of high-energy component limiting the heat flux is 
mainly taken account with (6.83). Equation (6.79) is reduced to the following form. 

λ Eð Þ  
ei 

∂ 
∂x 

δf 0 þ δf 1 = 0 ð6:84Þ 

In SH derivation, only the relation (6.77) is used to derive the f1 as in (6.18). 
However, we have to solve (6.76) at the same time as the second relation for δf0
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and δf1. In addition, as is explained later, the return current effect is neglected in the 
formulation and (6.76) is modified to the following relation; 

δf 0 þ λee 
6 

∂ 
∂x 

δf 1 = -
λee 
6 

∂ 
∂x 

gM 
1 ð6:85Þ 

The function gM 
1 is a modified form of f M 

1 to be explained later. Inserting (6.84) into 
(6.85), it is easy to obtain δf0 and δf1 numerically. 

In order to know qualitative property of the solutions, discuss about the case with 
constant mean free paths in space. Then, (6.85) is written in a form; 

∂2 

∂x2 
δf 0 -

1 
λ2 

δf 0 = S x, vð Þ  

S v, xð Þ= - λ Eð Þ  
ei 

∂ 
∂x 

gM 
1 

λ= 
λeeλ 

Eð Þ  
ei 

6 

ð6:86Þ 

where the source term S is a function of x for a given velocity v in the form and we 
introduced an effective mean free path λ(v). It is easy to formally solve (6.86) in the 
form. 

δf 0 x, vð Þ= 
λ vð Þ  
2 

1

-1 
S x0, vð Þ exp -

x- x0j j  
λ vð Þ  dx0 ð6:87Þ 

Let us consider how flux limit and nonlocal preheat are modeled in this SNB 
transport model. As seen in Fig. 6.6, the flux limit appears when the mean free 
path becomes long to approach the temperature gradient scale, namely λ/LT becomes 
of the order of unity. Let us assume that this condition means the first term becomes 
larger than the second term in LHS of (6.86). In such condition, we can obtain the 
following approximate relation from (6.85). 

δf 1 ≈ - gM 
1 ð6:88Þ 

As the result, f1 → 0 to result a strong flux limitation from (6.78). 
On the other hand, the opposite condition λ/LT >>1 is satisfied especially for the 

high energy component of electrons. Such component has long mean free path in 
(6.86) and the hear flux from the heating region propagates to the heat front region.
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6.5.2 Multi-group Heat Flux 

In SNB model, the heat flux is defined as a sum of multi-group heat fluxes. Let us see 
the definition of the heat flux by the velocity component (vg-1, vg), where g is an 
integer of each group of velocity. Each group g also corresponds to the normalized 
energy group βg, where β = mv2 /Te. 

Since the effect of electric field to prevent the heat flux is taken into account as 
(6.83), the electric field in (6.18) is neglected and the form (6.30) is more simplified 
as 

f M 
1 = 

λc β= 1ð Þ  
LT 

β2 β- 4ð Þf M 
0 ð6:89Þ 

→ gM 
1 = 

λc β = 1ð Þ  
LT 

β2 f M 
0 ð6:90Þ 

In SNB model, the total heat flux qSNB e is given as the sum of N groups due to gM 
1 and 

δf1 

qSNB e = 
N 

i= 1 

Qi 
1 þ Qi 

2 ð6:91Þ 

where 

Qi 
1 = 

2πm 
3 

vi 

vi- 1 

gM 
1 v

5 dv ð6:92Þ 

Qi 
2 = 

2πm 
3 

vi 

vi- 1 

δf 1v
5 dv ð6:93Þ 

Note that the first term is written also as 

Qi 
1 = qSH e 

1 
24 

βi 

βi- 1 

β4 e- β dβ ) Qi 
1 = qSH e ð6:94Þ 

The total flux is given by Spitzer-Harm heat flux (6.25) and 1/24 is the normalization 
factor. By replacing f M 

1 with gM 
1 , the total heat flux is the same as Spitzer-Harm one, 

while the maximum in the integral of (6.94) becomes β = 4. This means the mean 
free path of electrons carrying the maximum heat is λ = 32λe, the recommended 
value for the LMV model [11]. 

It should be noted that Qi 
2 modify the heat flux due to the electron components 

with long mean free path as can be guess from the propagator form. This term 
reduces the heat flux as flux limiter and provides heat flux by electrons of long mean 
free path, namely pre-heating is given by this new term.
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Fig. 6.12 Flux limitation 
property is compared among 
three models and VFP 
simulation with KIPP code. 
This is the same plot as 
Fig. 6.6, but for more 
realistic temperature profile. 
All three models show good 
agreement as VFP 
simulation result. The heat 
flux is limited dramatically 
for the case where the 
temperature gradient scale 
LT approached to ten times 
the electron scattering mean-
free-path. Reprint with 
permission from Ref. [19]. 
Copyright 1998 by 
American Institute of 
Physics 

Fourier spectrum of the transport propagator shown in Fig. 6.7 is calculated for 
SNB model and other models. They are compared in Fig. 6.12 to the other numerical 
models [18]. The results of VFP code KIPP is shown. Compared to the VFP result, 
the simple SNB model is found to reproduce the result well. The other data are 
explained in [18]. Considering the computation time, the SNB is very convenient, 
especially modeling the effect of flux limit and preheating in hydrodynamic simu-
lation code. Note that r = 2 is a coefficient of modeling electron-electron collision 
which is approximated with a simple form in (6.76). It is reported that using BGK 
collision operator with r = 2 gives a good agreement with VFP calculation. 

The multi-group diffusion model “SNB model” is widely used in several ICF 
codes such as Lawrence Livermore National Laboratory’s HYDRA, CELIA 
laboratory’s CHIC, CEA’s FCI2, DUED (U. Rome), and the University of Rochester 
Laboratory for Laser Energetics’ LILAC and DRACO [18]. It is also applicable to 
multi-dimensional space codes with magnetic fields [19]. 

Transport codes are compared in the background hydrodynamics obtained with 
HYDRA code. Gadolinium hohlraum containing a typical helium gas is heated by 
laser and the density and temperature profile at t = 20 ns are used as the initial 
condition of each code. After 5 ps run of simulation codes, the heat flux profiles are 
plotted in Fig. 6.13 [18]. In Fig. 6.13, “Local” is the heat flux calculated with 
Braginskii formula, which is equivalent to Spitzer-Harm heat flux. Two models of 
SNB are shown. It is clear that the SNB model provides well the property of flux 
limitation near the heating region and preheating character near the heat front as 
predicted by VFP simulation code IMPACT.
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Fig. 6.13 Heat flux distribution near the ablation front of high-Z material. VFP simulation result is 
shown with green line. It is typical that the maximum of heat flux is limited and the preheating tail is 
given. The SH extremely over-estimates the heat flux as shown in the dashed line. The model SNB 
with multi-group is more reasonable and the flux limitation and preheating are well modeled. 
Reprint with permission from Ref. [19]. Copyright 1998 by American Institute of Physics 

6.6 Comparison of SNB Model to Two Different 
Experiments 

By use of Thomson scattering diagnostics, electron distribution functions are measured 
in a model experiment of aluminum plasma ablating into the vacuum. An aluminum 
foil is irradiated with six beams 3ω laser with 2 ns pulse width and for the diagnostic 
probe 2ω laser is used [20]. The five points of ablating plasma are measured for 
Thomson scattering. In the present case, the scattered spectral shape is used to 
determine the electron distribution function at each point. The measured electron 
temperature and density are 1 ~ 1.3 keV and 0.5 ~ 1x1020 cm-3 , respectively  
Speculated density scale lengths are in the range λei/LT= 1.4 × 10-2 ~ 7  × 10-3 . 

In the analysis of Thomson scattering data, the following spectral density function 
S(k,ω) of electron plasma contribution is used at high frequency region, where the 
ion contribution can be neglected. Note that the previous experiment in Chap. 6.4 
has used only the ion acoustic wave contribution in low frequency region, and 
therefore only the information of electron temperature is inferred from Thomson 
data. The spectral density function by electron plasma is given as [21].
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S k,ωð Þ= 
2π 
k 

f e ω=kð Þ  
E k,ωð Þj j2 ð6:95Þ 

where fe(ω/k) is the one-dimensional electron distribution function and E(k,ω) is the 
dielectric constant of electron plasma wave. 

The Thomson scattering is dominated by the contribution of the plasma waves 
satisfying the dispersion relation (resonance condition), 

E k,ωð Þ= 0 ) ω kð Þ= ±ωL kð Þ þ iγL kð Þ ð6:96Þ 

The electron plasma wave is called Langmuir wave with the frequency ωL(k). In 
general, the resonance solution is complex as in (6.96) and the imaginary part γL(k) 
is due to wave damping by Landau damping process. It is well known that the 
Landau damping is proportional to a velocity derivative at the resonance speed, 
γL(k)/ ∂fe/∂v at v = ωL/k. By use of these theoretical relations and compare them to 
Thomson scattering spectra, it is possible to obtain the local electron distribution 
function in non-Maxwell form. This data also provides the electron density and 
temperature values at the scattered five points in the experiment. 

In Fig. 6.14, the resultant heat flux obtained by the Thomson scattering data 
(TS) is shown with red circles (The detail of TS principle will be discussed in 
Chap. 9). Spitzer-Harm heat flux is also shown with use of the temperature distri-
bution at the five points as (SH) with blue triangles. In order to check the validity of 
the nonlocal transport model SNB described in the previous section, a multi-group 
simulation code has been used for the density and temperature profiles obtained in 
the experiment. The SNB result is shown with black diamonds. The authors insists 
that SNB nonlocal transport model cannot reproduce the experimental data and it is 
about the halfway between SH and the experimental heat flux. I think this conclud-
ing remark is too strict for evaluating a robust nonlocal transport model such as SNB. 
As we have studied in the previous section, SNB guarantees the preheating and flux 
limit physics, while it is not so strict theoretical model to compare the form of 
distribution functions. 

Fig. 6.14 The heat flux 
observed experimentally is 
compared to those from SH 
diffusion and SNB transport 
models. Reprint with 
permission from Ref. [21]. 
Copyright 1998 by 
American Physical Society
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Fig. 6.15 Comparison of 
the velocity dependent heat 
flux at the point in the 
experiment. Three curves 
are from FP calculation 
(dashed red curve), Spitzer-
Harm (solid blue curve), and 
SNB (dotted black curve). 
Reprint with permission 
from ref. [21]. Copyright 
1998 by American Physical 
Society 

It is also informative to show Fig. 6.15 [20]. The velocity dependent heat flux 
(6.22) is plotted for one point (1200 μm). Three curves are from FP calculation 
(dashed red curve), Spitzer-Harm (solid blue curve), and SNB (dotted black curve). 
It is not so meaningful to compare the distribution function of heat flux. Since the 
introduction of the function gM 

1 instead of Spitzer-Harm f M 
1 in (5.15) has no 

mathematical base and just to avoid too much negative component. So, in general 
there may be other ways to replace f M 

1 to a convenient way for modeling nonlocal 
transport. The reason why gM 

1 is introduced is that it guarantees the preheating effect 
and the property of flux limit robustly. 

It is difficult to say, therefore, that there is not seen an improvement of heat flux in 
SNB model because it is almost the same as SH, but different from FP result. The 
validity of SNB should be checked under the condition that the heat flux is strongly 
inhibited like the flux limit and in the opposite case that the high energy electrons 
penetrate into cold plasma region. In addition, it is noted that SNB requires to be 
adjusted about the collisional modeling. 

The preheating has been studied in relatively higher density plasma comparing to 
the experimental data of plastic form plasma with the density near 0.1 g/cm3 and 
temperature near 30 eV [22]. As a tool to study such high-density plasma, so-called 
warm dense matter (WDM), the authors used X-ray Thomson scattering diagnostic 
to obtain the electron temperature, density, and ionization state by comparing x-ray 
spectrum with theoretical one, by varying the plasma parameters. The target is made 
of plastic, gold, aluminum and plastic form layers to observe the preheating effect in 
the plastic form layer. 

In the experiment, preheating of the expanding form plasma was observed and a 
variety of simulations have been carried out to find the physical source to give 
preheating to the form region over the high-density plasma region. Even with detail 
opacity and radiation transport, it was not possible to obtain enough preheating 
energy flux to the form region. It was finally concluded that about 10% of the free 
streaming heat flux from the shocked high-density region transfers large amount of 
heat to preheat the preheat region more than 30 eV as shown in Fig. 6.16 [22]. It is



surprising to know that the temperature of preheating region is higher than the 
upstreaming region of the heat flux. It is unphysical in the local thermodynamic 
equilibrium (LTE) thermodynamics. There should be some unknown physics at the 
shock front, where the temperature decreases from the front to the rear of the shock 
front, this means an entropy of plasma decreases by the shock wave. It is not clear 
why such result is obtained in a nonlocal simulation, while one thing to be clarify is 
that the contribution of electrostatic field at the shock surface. 
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Fig. 6.16 A multi-layered target is heated by laser to find the preheating in the rear side of the 
target. The enhanced temperature has been measured as preheat in CH foam region in the 
experiment and computationally reproduced by including non-local transport model. Reprint with 
permission from Ref. [22]. Copyright 1998 by American Physical Society 

As explained in modeling nonlocal transport, it is hard to model the effect of 
electrostatic field even n one-dimensional system. In SNB model, the electric field is 
included into an effective mean free path as shown in (6.83) and the electric field is 
evaluated from the neutral current condition (6.21). Note that there is no density 
gradient dependence and the force to electrons -eE is the direction of – dTe/dx. 
However, the electrostatic field at the shock front is in general given by the 
Boltzmann relation; 

ne xð Þ= n0 exp e 
ϕ xð Þ  
Te 

) eϕ01 = Te ln 
n0 
n1 

ð6:97Þ 

The potential jump at the shock front is more than Te (~20–30 eV) and most of the 
electrons with energy more than eϕ01 are reflected back at the shock front. The 
evaluation of E field in any non-local transport is difficult issue.
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Appendix-C. Fokker-Planck Equation 

Vlasov equation is a powerful equation in studying waves, transport, turbulence, and 
so on from view point of wave-particle interaction and non-Maxwellian plasmas. As 
mentioned already, Vlasov equation is applicable only for collisionless physics in 
plasmas. However, collisional effect cannot be neglected in some non-LTE plasmas, 
especially plasma with strong heat flow and inhomogeneity of physical quantities. 
Principally, of course, it is required to solve Boltzmann equation of (C.1) with 
appropriate collision cross section. It is, however, not so easy to solve such 
differential-integral equation directly. Such collision effect in plasmas is the same 
as random walk or thermal noise widely seen in the nature. It is easy to use Fokker-
Planck equation used widely in non-equilibrium statistical mechanics. 

Langevin to Fokker-Planck Equation 

In order to clarify the intuitive image of the readers to Fokker-Planck equation, it is 
better to start with a simple one-dimensional Langevin equation for a Brownian 
motion in spatially uniform medium. 

m 
dV tð Þ  
dt 

= - νf mV tð Þ þ mR tð Þ ðC:1Þ 

Here the 1st term in RHS is the frictional force and the 2nd term is a random force。 
Such equation is called stochastic differential equation. The governing equation to 
the velocity distribution function P(v,t) defined as ensemble average probability 
distribution in velocity space is given as follows as will be explained from now. 

The ensemble average of any physical quantity of function V is defined by 

A Vð Þh i= 
1

-1 
A vð ÞP v, tð Þdv ðC:2Þ 

The random force R(t) in (C.1) is Markovian process with Gaussian probability to 
given as 

R tð Þh i= 0, R tð ÞR t0ð Þh i=Dδ t- t0ð Þ ðC:3Þ 

and the following relation is satisfied. 

ΔW = 
tþΔt 

t 
R  tð  Þdt ðC:4Þ
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ΔWh i= 0 ðC:5Þ 
ΔW2 =DΔt ðC:6Þ 

Expanding A(V) with Taylor series in velocity, the following relation is obtained 

A V  t þ Δtð Þð Þ=A V  tð Þð Þ þ  dA 
dV V =V tð Þ  

ΔV tð Þ þ  1 
2 
d2 A 
dV2 

V =V tð Þ  
ΔV tð Þ2 þ ⋯ ðC:7Þ 

Taking the ensemble average of (C.7) yields the following form 

A V  t  þ Δtð Þð Þh i= A V  tð Þð Þh i þ  dA 
dV V =V tð Þ  

ΔV tð Þ  þ 1 
2 

⨯ d2 A 
dV2 

V =V tð Þ  
ΔV tð Þ2 þ ⋯ ðC:8Þ 

Taking finite difference of (C.1) and inserting ΔV(t) in (C.8) and keeping the term 
proportional only to the 1st order of Δt, the following equation can be derived 
finally. 

d 
dt 

A V  tð Þð Þh i= - νf V tð Þ  dA 
dV 

þ D 
2 

d2 A 
dV2 ðC:9Þ 

It is noted that the second term of RHS of (C.9) is remains as the 1st order because of 
(C.6). 

Return to the definition (C.2), (C.9) can be changed to the equation to probability 
function P(v,t) as follows. The LHS of (C.9) is  

d 
dt 

A V  tð Þð Þh i= 
1

-1 
A vð Þ∂P v, tð Þ  

∂t 
dv ðC:10Þ 

The 1st term of RHS of (C.9) is

- νf V tð Þ  dA 
dV 

= - νf 
1

-1 
v 
dA 
dv 

P v, tð Þdv= νf 
1

-1 
A vð Þ  ∂ 

∂v 
vP v, tð Þf gdv ðC:11Þ 

Where partial integral is used with the assumption that P(1, t) = P(-1, t) = 0. 

d2 A 
dV2 = 

1

-1 

d2 A vð Þ  
dv2 

P v, tð Þdv= 
1

-1 
A vð Þ∂

2 P v, tð Þ  
∂v2 

dv ðC:12Þ 

The 2nd term of RHS is modified by using the partial difference two times. As the 
result, (C.9) should be satisfied for any function A(v) only when the condition:
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∂P v, tð Þ  
∂t 

= νf 
∂ 
∂v 

vP v, tð Þ½ ] þ  D 
2 

∂2 P v, tð Þ  
∂v2

ðC:13Þ 

is satisfied. (C.6) is Fokker-Planck equation. 
It should be noted that solving Fokker-Planck equation is exactly the same as 

calculating an ensemble average for many test particles motioned by Langevin 
Eq. (C.1). As a simple examples, Fokker-Planck equation is used to study any 
Brownian motion, white noise in electric circuit, polymer dynamics, etc. 

It is useful think about the case of stationary state of (C.13). Then, RHS of (C.13) 
should vanish and the following relation should be satisfied after integrating it: 

dP vð  Þ  
dv 

= -
2νf 
D 

vP vð Þ ðC:14Þ 

This can be easily solved to give 

P vð Þ= exp -
νf 
D 
v2 ðC:15Þ 

This is the velocity distribution in the equilibrium state and should be Maxwellian 
distribution, namely the diffusion coefficient in velocity space given in (C.13) 
should satisfy the following condition. 

D 
2 
= 

T 
m 
νf ðC:16Þ 

It is very interesting to compare the diffusion coefficient in velocity space (C.16) and 
that in real space (5.71) which is called Einstein relation. Note that dependence on 
the collision frequency is opposite. In a very collisional system, the diffusion in 
velocity space is fast and get to be equilibrium soon, while in the real space it is very 
slow to diffuse. 

In plasmas, collision frequency is a strong function of the particle velocity and in 
non-LTE plasmas the distribution function is not isotropic in 3-dimensional velocity 
space. It is, therefore, difficult to directly use Fokker-Planck equation of (C.13). It is 
now easier, however, to extend the above mathematical derivation from Langevin 
equation to Fokker-Planck equation. Then, it is clear that the following Fokker-
Planck equation can be obtained in 3-diemnsional space of velocity. 

∂P v, tð  Þ  
∂t 

= 
∂ 
∂vi 

Δvi 
Δt 

P v, tð Þ  þ 1 
2 

∂2 

∂vi∂vj 

ΔviΔvj 
Δt 

P v, tð Þ ðC:17Þ 

This expression is easily understood that RHS of (C.17) is an extension to 3 dimen-
sion of Taylor expansion and the form is derived with the same manner as (C.8), 
(C.9), and (C.10).



ð

320 6 Non-local Transport of Electrons in Plasmas

What Fokker-Planck equation says is that any random force in Brownian motion 
reduces to the combination of the friction term and diffusion term. 

It is noted that the probability function P(v,t) in (C.17) is the ensemble averaged 
velocity distribution function in velocity space and it is exactly the same as the 
velocity distribution function at each real space point as long as the collision is taken 
place at a point and no change in r after each binary collision. 

After a long algebra shown in [5], new functions and constant are introduced 

Γ = 
Z2e4 

4πε2 0m
2 
lnΛ ðC:18Þ 

H vð Þ= Z2 
s 

m þ ms 

ms 

f s vsð Þ  
g 

dvs ðC:19Þ 

G vð Þ= Z2 
s gfs vsð Þdvs ðC:20Þ 

Here g is a function of v and vs and given in [5]. It is noted that the definition (C.19) 
and (C.20) are called the Rosenbluth potentials. It is well known that the Fokker-
Planck equation is reduced to the following form. 

∂ 
∂t 

f 
coll 

= -Γ 
∂ 
∂vk 

∂H 
∂vk 

f þ 1 
2 
Γ 

∂2 

∂vk∂vj 

∂2 G 
∂vk∂vj 

f ðC:21Þ 

It is known that the first term of RHS in (C.21) is the dynamical friction and the 
second one is the diffusion term. The Fokker-Planck equation assumes only the 
scattering by the binary Coulomb collision, therefore, in the system of two kind of 
particles like fully-ionized ions and electrons, we have to solve the equation for 
electron distribution function changing in time by scattering electron-electron(e-e), 
electron-ion(e-i) and for ion distribution by ion-electron(i-e), ion-ion(i-i). It is noted 
that in the case of e-e and i-i scattering, (C.7) is a nonlinear equations to the 
distribution function. 

In order to see what happens to a test particle injected from the boundary due to 
the Coulomb collision in a uniform plasmas, assume the distribution function of the 
particle is a delta function. 

f v, tð Þ= δ v- u tð Þf g C:22Þ 

Inserting (C.22) to (C.21) and taking the v moment of (C.21) lead the following 
simple form. 

∂u tð Þ  
∂t 

=Γ 
∂H uð  Þ  
∂u 

= - νf uð  Þu ðC:23Þ



Appendix-C. Fokker-Planck Equation 321

The term with G vanish in partial integral process. Equation (C.23) clearly shows 
that the term H gives the drag force and the frictional coefficient νf is calculated. 
Fokker-Planck equation is more precise equations for the ion stopping discussed in 
Sect. 4.8. In ion stopping simulation, however, the ionization process should be also 
included in RHS of (C.21). 

Fokker-Planck Equation in Maxwellian Scatterers 

It is useful to show the explicit form of Fokker-Planck equation of (C.21) in the case 
of the distribution of the scatterers is Maxwellian with temperature Ts and mass ms. 

f s vsð Þ= f M vsð Þ= ns 
a3 s 
πð Þ3=2 

exp - a2 s v
2 
s ðC:24Þ 

a2 s = 
ms 

2Ts 
ðC:25Þ 

Here ns are the number density of the scatterers. 

x= asv ðC:26Þ 
1

-1 
e- y2 

y- xj j d
3 y= 

π3=2 

x 
erf xð Þ ðC:27Þ 

The Rosenbluth potentials is given in the flowing form by use of the spherical 
symmetry in velocity space. 

erf xð Þ= 
2 
π

p 
x 

0 

e- y2 dy, 

erf xð Þ= 1 x→1ð Þ, erf xð Þ= 
2 
π

p x x→ 0ð Þ  
ðC:28Þ 

Here erf(x) is an error function defined as 

H vð Þ= Z2 
s 

m þ ms 

ms 
asnsπ

3=2 erf xð Þ  
x

ðC:29Þ 

The G defined in (C.20) reduces 

G  vð  Þ= 
Z2 
s ns 
2as 

d 
dx 

erf xð  Þ þ  1 
x
þ 2x erf xð  Þ ðC:30Þ
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It should be noted that since the Maxwell distribution is isotropic in velocity space 
and depend only on the absolute value of the velocity, H and G reduce to functions 
only on v as shown in (C.29) and (C.30). 

If the distribution function of the scatterers is isotropic in the velocity space, 
H and G can be given only functions of v. Therefore, the following convenient 
relations can be obtained. 

∂H 
∂vk 

= 
∂v 
∂vk 

∂H 
∂v 

= 
dH 
dv 

∂v 
∂vk 

ðC:31Þ 

and 

∂2 G 
∂vk∂vj 

= 
∂2 G 
∂v2 

= 
d2 G 
dv2

ðC:32Þ 

The v derivative of H and G in (C.31) and (C.32) can be obtained explicitly as 

d 
dx 

erf xð Þ  
x 

= -
1 
x2 

erf xð Þ þ  2 
π

p 
x 
e- x2 = 2ψ xð Þ ðC:33Þ 

d2 

dx2 
derf xð Þ  

dx 
þ 1 

x
þ 2x erf xð Þ  = 

2 
x3 

erf xð Þ- 2x 
π

p e- x2 = 
4 
x 
ψ xð Þ  ðC:34Þ 

Here Ψ(x) is defined as 

ψ xð Þ= 
1 
2x2 

erf xð Þ- 2x 
π

p e- x2 ðC:35Þ 
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Chapter 7 
Opacity and Radiation Transport 

Abstract When an intense laser is irradiated on medium and high Z materials, large 
amount of energy is converted to x-rays and transported as radiation in plasmas. The 
same kind of transport equation as the electrons should be solved for the radiation 
energy spectrum. The tuff issue for the case of non-local electron transport modeling 
was the inclusion of the effect of electric and magnetic fields. Instead, the photons 
can be assumed to travel with straight path, while the problem is physical modeling 
of opacity, especially when the plasma is partially ionized and line radiation trans-
port is important. So, the modeling of spectral opacity and emissivity of partially 
ionized plasma becomes challenging. It has been studied for a long time in astro-
physics regarding the evolution of stars etc. More challenging point in laser plasma 
is caused by the fact that the plasma is small but high-density, so that the laser plasma 
is optically thick in some case. With intense lasers, spectral opacity has been studied 
experimentally and opacity codes have been improved. Finally, neutrino transport in 
gravitationally-collapsing supernovae is also explained as a topic that the hydrody-
namic instability is strongly affected by local and non-local transport by neutrino. 

7.1 Radiation Transport 

When an intense laser is irradiated on medium or high Z solid targets, substantial 
amount of absorbed plasma energy is converted to the energy of radiation. In 
general, the energy rage of such photons is up keV, since the plasma temperature 
becomes from eV to keV. The fraction of radiation increases as the increase of 
Z-number of the target material. Even for plastic targets, about 10% of the absorbed 
energy escaped from the plasma into vacuum as radiation. So, modeling radiation 
emission, absorption, and transport in laser plasma is very important for time 
evolution of hydrodynamics. 

Let us see how radiation is important in laser-produced plasma. The bremsstrah-
lung emission from free electrons with ionization degree Z is given in (5.163). 
Evaluate the cooling time [s] of the plasma roughly as follows. 
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1 
τc 

~ J 
neTe 

~ 10- 7 Z2 ni 
1 
TeV 

p ð7:1Þ 

where the ion density ni in cm
-3 and electron temperature TeV in eV unit. Inserting a 

typical values of laser plasma and targets, the local radiation cooling time by 
Bremsstrahlung emission is given as 

τc ~ 10- 12 1 
Z2 

ni 
1020 cm- 3

- 1 
Te 

100eV 
s½ ] ð7:2Þ 

This is very short time scale compared to that of hydrodynamics for laser produced 
plasma and indicates that the radiation transport should be modeled in hydrodynamic 
codes to evaluate the radiation cooling and heating in (2.108). In addition, radiation 
absorption and transport are found to be important in analyzing laser produce plasma 
dynamics. 

Note that (7.1) is the cooling time of plasma due to Coulomb interaction of 
electrons with ions for the case where there is no absorption of radiation in the 
plasma. It is clear that even hydrogen plasma the cooling time is very short compared 
to the laser pulse of ns if a solid hydrogen is heated by laser. It is, then, important to 
solve radiation transport equation in plasma with appropriate opacity and emissivity 
as a function of radiation frequency. The opacity and emissivity by free electrons are 
already given in Chap. 5.10. We have to model the opacity and emissivity due to 
electron transition between bound states and bound and free states. For this purpose, 
atomic model is required as described in Chap. 5. 

Let us consider a modeling of radiation transport with assumption that the spectral 
opacity and emissivity are given. The basic equation for the radiation transport is 
almost the same as Fokker-Planck equation except for several difference. It is given 
as a kinetic equation for radiation energy flux vector I ν of frequency ν. 

1 
c 

∂ 
∂t 

Iν t, r,Ωð Þ þ  Ω . ∇Iν t, r,Ωð Þ= ην t, rð Þ- χν t, rð ÞIν t, r,Ωð Þ  7:3Þ 

In (7.3), Ω is a direction of radiation propagation, and ην and χν are spectral 
emissivity and opacity, respectively. In (7.3), it is also assumed that the photons 
propagate straight with the speed of light c and the effect of refraction is neglected, 
because the photon energy carrying most of energy is in the rage of 100 eV and the 
cut-off frequency of the photon is higher than the maximum electron density. 

Note that it is very hard to solve (7.3) directly, because Iν is a function of t, r, and 
Ω, totally 6 dimensions. In addition, multi-group transport for photon energy should 
be solved. In what follows, consider the case of one-dimension in real space. And, let 
us assume that the photon angle distribution along the direction of non-uniformity is 
only a function of θ same as in Fig. 6.2. Then, in case of plane geometry (7.3) 
reduces to
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1 
c 

∂ 
∂t 

Iν þ μ ∂ 
∂x 

Iν = ην - χν Iν ð7:4Þ 

It is as follows in spherically symmetric geometry. 

1 
c 

∂ 
∂t 

Iν þ μ ∂ 
∂r 

Iν þ 1- μ2ð Þ  
r 

∂ 
∂μ 

Iν = ην - χν Iν ð7:5Þ 

Let us assume that the radiation field is always in steady state for time-varying 
opacity and emissivity and time derivatives in (7.4) and (7.5) can be neglected. 
With a typical size of the laser plasma as L, the transit time of photons in plasma is 
Δt = L/c and it is about 3 ps for L = 100 μm. It is a good approximation to neglect 
this time scale in the plasma produced by ns pulse lasers. Then, (7.4) is rewritten in 
the form. 

d 
dτν 

Iν þ Iν = Sν ð7:6Þ 

where τν is optical depth and defined as 

dτν = 
χν 

μ 
dx= χν dl ð7:7Þ 

where dl is a path length of photon propagation. In (7.6), Sn is called source 
function defined as 

Sν = ην =χν ð7:8Þ 

It should be noted that the source function is Planck distribution if the plasma matter 
is in LTE condition, because Iν in (7.3) should be Planck distribution at steady state 
and in uniform matter in LTE. In laser plasma, however, atomic state is not in LTE in 
general as discussed in Chap. 5. 

It is easy to integrate (7.7) to obtain the solution for the case with a plane 
geometry with a finite plasma from x = 0 to x  = d. 

Iν xð Þ= e- τν xð Þ  Iν 0,μð Þ þ 
x 

0 

eτν Sν xð Þdτν for μ> 0 

= e- τ0 ν xð Þ  Iν d,μð Þ þ 
d 

x 

eτ
0 
νSν xð Þdτ

0 
ν for μ< 0 

ð7:9Þ 

where τν and τ0 ν are optical depths integrated as follows.
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τν = 
1 
μ 

x 

0 
χν dx, τ0 ν = 

1 
μj j  

d 

x 
χν dx ð7:10Þ 

It is straightforward to extend the above calculation in solving the case of spherical 
geometry (7.5). Introducing the impact parameter “b” like Coulomb collision in 
spherical potential, it is easy to formulate the solution. 

It is useful to show the angle distribution of radiation flux for the case when an 
intense laser is irradiated on a gold foil [1]. Based on average ion model to be shown 
in Chap. 8 spectral emissivity and opacity of gold plasma is calculated with 
collisional radiative equilibrium assumption for 100 energy group up to 3 keV. 
The plane target is divided to 120 groups. In Fig. 7.1, a typical angular distribution of 
spectral integrated radiation flux is shown for four different target positions with 
normalized intensity at each position. The positions are shown with Lagrangian 
mesh points. The point i = 120 is the ablating plasma front. Since the optical depth is 
large in (7.10) for oblique direction μ → 0, the radiation flux is larger. 

i=20 

X-axis X-axis 

i=80 

µ=0 µ=0 

µ=1 µ=1 

i=100 

X-axis X-axis 

i=120 

µ=0 
µ=0 

µ=1 µ=1 

Fig. 7.1 Angular distribution of radiation intensity in gold plasma produced by irradiation 
of intense laser in plane geometry. The “i” is the mesh number of Lagrangian hydrodynamic 
simulation
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At i = 100 and 80, the radiation is generated inside the heating region and 
propagates to the rear direction. The radiation generated laser irradiation is pene-
trated into deep region with a peaking to the normal direction, since the radiation 
going to the oblique direction is absorbed by the plasma. As the result, near the rear 
of the gold target i = 20, radiation flux remains around the normal direction. 

Different from the electron transport, there is no angle scattering to make the 
distribution function relatively uniform. It is known that Thomson scattering makes 
the photon angular distribution uniform, while as is estimated in Vol. 1, it is almost 
negligibly small compared to the absorption. It is also known that photons are 
scattered by Compton scattering, while it becomes effective for the photon with 
energy comparable to mc2 and it can be neglected. Of course, the emission term in 
(7.3) is uniform over the angle and it is expected that the photon distribution is rather 
uniform over angle for optically thick plasma, τν ≫ 1. 

It is useful to compare the difference of transport kinetic between electrons and 
radiations. 

1. The propagation velocity is different in electrons (v), while it is the same in 
radiation (c). 

2. The electron orbit is modified by electric field (E), while radiation propagates 
straight. 

3. Electron collision term is a smooth function of electron energy, while the opacity 
and emissivity vary over orders of magnitude by bound-bound transition effect. 

4. Nonlocal transport of electrons approximately adopts Maxwell distribution as 
local function, while it is meaningless to assume Planck radiation in laser plasma, 
because the photon filed is far from LTE even the matter is near LTE. 

5. The calculation of spectral opacity and emissivity is very hard and we need to use 
an approximated atomic model so that it is simple but appropriate to the problem. 

7.2 Multi-group Diffusion Model for Radiation Transport 

It is also fine to expand the angular distribution by Legendre function as in the case 
of electron transport. It is, however, noted that due to the lucky property of the 
collision operator we could eliminate the derivative to μ with use of the relation 
(6.52) and this is the reason why Legendre expansion is used for angular distribution. 
In the case of radiation, the angular distribution will be considered later after the 
formulation of angle moments. We derive the equations to the spectral radiation 
energy density Eν and radiation flux density Fν as follows. Integrating (7.3) with the 
angle dΩ, we can obtain the equation for radiation energy density; 

∂ 
∂t 

Eν þ ∇Fν = 4πην - cχν Eν ð7:11Þ 

where Eν and Fν are defined as
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Eν = 
1 
c 4π 

Iν dΩ ð7:12Þ 

Fν = 
4π 
Iν ΩdΩ ð7:13Þ 

where dΩ = 2πsinθdθ = 2πdμ. We need the equation to Fν and it is derived by 
integrating (7.3) after scalar product with Ω. 

1 
c2 

∂ 
∂t 

Fν þ ∇Pν = - χν Fν ð7:14Þ 

where we have new function Pν defined as 

Pν = 
1 
c 

Ω⨂ΩIν dΩ ð7:15Þ 

This corresponds to radiation pressure tensor. In (7.14) the i-th component is 

∇Pνð Þi = 
∂ 
∂xk 

Pν 
ki, Pν 

ki = 
1 
c 

ΩkΩiI
ν dΩ ð7:16Þ 

Here, let us introduce angular distribution of radiation intensity. For simplicity, 
consider the plasma is plane geometry and system is one dimension in x-direction 
in space. The angular distribution is only the function of θ and assume to be given as 
ψν (θ, x). The local radiation intensity is given as 

Iν t, x,Ωð Þ= Iν 0 t, xð Þψν θ, xð Þ ð7:17Þ 

where ψν (θ, x) is normalized as 

4π 
ψν 

θ,xð ÞdΩ= 4π, 
1

- 1 
ψν dμ= 2 ð7:18Þ 

Then, we obtain the following relation 

Eν = 
4π 
c 
Iν 0, Fν = 

c 
2 
Eν 

1

- 1 
ψν μdμ ð7:19Þ 

The radiation pressure is given as 

Pν = 
Pν 0 0  
0 Pν 0 
0 0 Pν 

þ 1 
2 

0 0 0  
0 Eν - 3Pν 0 
0 0 Eν - 3Pν 

ð7:20Þ 

where the scalar pressure Pν is related to the energy density in the form.



7.2 Multi-group Diffusion Model for Radiation Transport 331

Pν = 
1 
2 
Eν 

1

- 1 
μ2 ψν dμ ð7:21Þ 

Note that for isotropic distribution (ψν = 1), the relation Pν = 1/3Eν is satisfied and 
the pressure becomes scalar in (7.20). 

Consider a simple case of one-dimensional plane geometry in real space x. Then, 
all variables become scalar and the following two equations should be solved self-
consistently for each group of radiation energy hν. 

∂ 
∂t 

Eν þ ∂ 
∂x 

Fν = 4πην - cχν Eν ð7:22Þ 

1 
c2 

∂ 
∂t 

Fν þ ∂ 
∂x 

Pν = -
χν 

c 
Fν ð7:23Þ 

To solve (7.3) as precise as possible in general, we need to solve angular distribution 
with many freedoms, while we have remained only two lowest moment to μ (μ0 and 
μ1 ) as shown above. Historically, there have been a variety of trial on how to truncate 
the higher moment with a proper physical model. 

If we have a certain relation between the second moment Pν and Eν and Fν , it  is  
possible to truncate the higher moment equations. For example, (7.21) has a form. 

Pν = f ν Eν ð7:24Þ 

where the coefficient f ν is defined as 

f ν = 
1 
2 

1

- 1 
μ2 ψν dμ ð7:25Þ 

It is clear that the following relations should be satisfied at two extreme situations. 

f ν = 1=3 ψν = 1 
1 ψν = 2δ μ- 1ð Þ ð7:26Þ 

In the diffusion limit as the case of Spitzer-Harm in the electron transport, the 
angular distribution for all frequency is approximated near unity, namely, ψν ≈ 1. 
Then, the time derivative to Fν in (7.13) is neglected and f ν = 1/3 is used to obtain 
the relation. 

Fν = -
c 
3χν 

∂ 
∂x 

Eν ð7:27Þ 

Inserting (7.27) into (7.22), a diffusion type transport equation is obtained. 
In the case of further ideal case such as optically thick plasmas, for example, the 

plasma inside the Sun, the radiation energy distribution is near Planckian. In such a 
case, solving (7.11) and (7.14) is relatively easy and they are altered to Planck



averaged equation with diffusion term for the radiation temperature Tr [2]. Then, the 
radiation transport is coupled to hydrodynamic equations relatively easily. 
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As seen in the electron transport, the diffusion approximation is valid only for the 
case where a typical scale of change Lν of each frequency is much longer than the 
mean free path lν = 1/χν in (7.27). Eddington has introduced so-called Eddington 
coefficient to limit the flux of diffusion with the form. 

Fν = 
Rν 

1þ Rν cE
ν ð7:28Þ 

Rν = 
lν 

3 
1 
Eν 

∂ 
∂x 

Eν ð7:29Þ 

where the sign of Fν is of course the negative gradient direction of Eν . Note that 
(7.28) is the same property as the flux limited diffusion of electron transport 7.53). 

In laser-produced plasmas, it is not realistic in most of cases to assume the plasma 
is optically thick to all frequency and the radiation energy distribution is far from the 
Planckian distribution. Therefore, depending on a problem, we have to decide 
energy grouping and use or produce the spectral opacity and emissivity based on a 
certain atomic model and ionization model. This is a tuff job as partially discussed in 
Chap. 5 and will be discussed later about opacity calculation. 

Modeling the coefficient f ν was initially done by Eddington and his model is 
called Eddington factor. Now, it is widely used an improved Eddington factor 
based on maximum entropy method [3]. Defining R1 as 

R1 = 
Fν 

cEν ð7:30Þ 

Then, a computer fitted functional form of Eddington factor is shown in the for [3]. 

f ν = 
1 
3
þ 0, :01932R1 þ 0:2694R2 

1 

1- 0:5953R1 þ 0:02625R2 
1 

ð7:31Þ 

It is clear that this Edington factor smoothly change from 1/3 (R1 = 0) to 1 for 
(R1 = 1). Since (7.31) varied as a function of R1, it is also called a variable 
Edington factor and widely used in radiation transport simulations. 

It is important to note how the Edington factor is calculated in multi-dimensional 
space. In Fig. 7.2, a simple example is shown in (x, y) two-dimensional space. In the 
original paper by Minerbo [3], the formulation is for general case to be used for 
three-dimensional case and it is derived that the Edington factor becomes the 
following matrix form for each frequency ν. 

f = 
1 
2 

1-
m2 

m1 
I þ 1 

2 
3 
m2 

m1
- 1 

F⨂F 

Fj  j2 , ð7:32Þ



m1 and m2 are given in (2.10) in [ ]. Note that f is in general a matrix, the first term in 3
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Fig. 7.2 A computational 
grid in two-dimensional 
space and a local heat flux 
vector of the spectral 
radiation energy. The 
numbers identify each zone 
in the simulation meshes 

RHS in (7.32) is a diagonal term and the second term is a matrix. In Fig. 7.2, for 
two-dimension, the radiation energy in the numerical discrete zone 1 diffuses to the 
region 2 and 4 with the matrix in (7.24) with the matrix Edington factor in (7.32). 
Then, the energy diffuses to the zone 3 from zones 2 and 4. With such two-step 
diffusion, the energy in zone 1 is transferred to the zone 3 as we expected. For only 
the case of one-dimension (7.32) tends to a scalar as in (7.31). 

7.3 Modeling Spectral Opacity and Emissivity 

Radiation transport kinetics is relatively simple compared to the electron transport, 
because the photon velocity is the speed of light, its orbit is strait, and we can neglect 
the change of the photon energy by Compton scattering etc. in laser plasmas. 
However, another difficulty appears in calculating the spectral opacity and emissiv-
ity, ην and χν . In the case of fully ionized plasma, both are continuous spectra and are 
given as Bremsstrahlung process shown in Chap. 5. 

So, studying radiation phenomena in magnetic confinement fusion plasma, the 
fuel hydrogens can be assumed to be fully ionized and total emissivity provides the 
radiation loss from core plasma. This is also the case of very early universe where the 
space is full of only hydrogen and helium and the ionization and recombination is 
easy to be studied. It is known that after the recombination at about 400,000 years 
after the Big Bang, the photons decoupled with the atoms and its Planckian distri-
bution is now observed as Cosmic Microwave Background (CMB) of T = 3  K.  
However, it is known that re-ionization occurs by ultra-violet photons generated by 
the first-generation stars after the gravitational attraction. The radiation from each
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star perturbs the clouds to trigger the formation of new stars. In Fig. 7.3, numerical 
results at 50 million years on the multiple supernova explosions in a forming galaxy 
are shown, where (a) the density and (c) temperature distributions are shown over the 
space of 200 kpc (~0.6 million light years) [4]. Such simulation demands precise 
treatment of radiation kinetics over full angle and directions. 
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Fig. 7.3 Numerical simulation of radiation transport and star formation in a forming galaxy. 
Reprinted with permission from Ref. [4]. Copyright by American Astronomical Society 

In solving photo-ionization process, the opacity and emissivity due to the electron 
transition between bound state to free state should be modeled in the opacity and 
emissivity. Both spectral properties are reflection of the cross sections discussed 
in Chap. 5.7. They are continuous spectrum with the edges by the ionization 
potential. Inclusion of spectral opacity and emissivity of bound-bound transitions 
is in general hard task. Since the laser can be irradiated any material, especially solid 
targets with relatively mid-Z to high-Z atoms. Even with intense lasers, they cannot 
be fully ionized abruptly and radiation transport in partially ionized plasma becomes 
important as energy transport non-locally. 

In Fig. 7.4, emission spectrum is shown for carbon plasma at a temperature of 
50 eV and density of 4.3 × 10-3 g/cm3 [5]. The locations of 1s ionization thresholds 
of C III, C IV, and C V are indicated by arrows. It is clear that three different codes 
give almost the same spectra, while the line emissivity spectra are different. Fig. 7.4 
suggests that the emitted line radiations are absorbed in plasma even relatively small 
plasma. If such line transport becomes important in a given plasma, we are 
demanded to model such line radiation with a reasonable model to grasp the essence 
of the physics. 

As shown in Fig. 7.4, the ionization energies of 1s in different charge states make 
the emission edges at different energies of photons. Before calculating the spectral 
emissivity and opacity, we have to calculate the atomic data of all ionization states.



As shown in Chap. 5.3, there are several precise models to obtain the atomic data for 
any configurations. Ab initio calculation requires to obtain the distribution of atomic 
configurations for all charge states. It is clear to carry out such calculation itself very 
hard task. So, depending on the physics we want to study, some simplification is 
always recommended. 
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Fig. 7.4 Emission spectra from three different codes are shown for carbon plasma at a temperature 
of 50 eV and density of 4.3 × 10-3 g/cm3 . Reprint with permission from Ref. [5]. Copyright 1998 
by American Physical Society 

Assume that we are able to calculate the data base of all configurations of all 
charge state atoms. Then, we can use Saha equation in Sect. 5.2 to obtain the 
distribution of all configurations of ions in LTE plasma. In Fig. 7.5, the distribution 
of Si charge states is shown for the cases of temperatures of 100, 50, and 25 eV for 
silicon dioxide (triangles) and pure silicon (squares) [6]. The density of the plasma is 
45 mg cm-3 . The ion charge state is calculated with Saha equation and the atomic 
states of partially ionized silicon ions are modeled with the detail level accounting 
(DLA) where the energy levels are calculated with Hartree-Hock method for many 
possible configurations as the data base for Saha equation. In Fig. 7.5, it is seen that 
about 4 ~ 5 different charge states coexist in a state. Most of they are expected to be 
at the ground state configurations, while the contribution by excited ions cannot be 
neglected. 

In order to see how detail configuration should be included in calculating opacity 
from such plasma, the opacity spectrum is calculated by including the following 
configurations to each charge state ion.
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Fig. 7.5 The distribution of Si charge states is shown for the cases of temperatures of 100, 50, and 
25 eV for silicon dioxide (triangles) and pure silicon (squares). Reprinted with permission from 
Ref. [6]. Copyright by American Astronomical Society 

1s2 2lm , 1s2 2lm- 1 n0l0, 1s1 2lmþ1 , 1s1 2lm n0l0, 

where n′ < 8, l′ < n′ in the DLA calculation. In Fig. 7.6, the resultant opacity 
spectrum is plotted by varying the maximum of n’. The solid, dashed, dotted, and 
dash-dotted lines represent models with maximum principal quantum numbers of 
8, 6, 4, and 2, respectively. All four models were calculated with the same temper-
ature (56 eV) and density (10 mg/cm3 ). The only difference is the number of levels 
used in each model. From this figure, it is clear that the absorption features become 
deeper with the inclusion of more levels. However, the absorption changes slightly 
with increase of n’. For example, in the calculations shown in Fig. 7.6 about 70% of 
the absorption is attributed to the level n’ = 2, and 20% is due to the levels with n 
′ = 3–6. The contributions to the absorption from levels n′ = 7 and n′ = 8 are only 
about 10%, and the contribution from level n′ = 8 is even less than 5%. 

In order to understand which transitions are contributing each spiky spectrum of 
opacity, consider the calculated transmission spectra of the silicon plasma under almost 
the same temperature and density as in Fig. 7.6 [7]. In Fig. 7.7, the spectra are shown for 
the higher photon energy so that the transition is simpler to be explained. The ionization 
state (Z*) distribution is like that for 50 eV in Fig. 7.5, andmost abundant ions are Z*= 6 
to 10, corresponding to O, N, C, B, and Be-like silicon, respectively. The transmission 
(opacity) spectrum due to each charge state silicon is shown in Fig. 7.7. The spectrum of 
“All ions” is the sum of all from each charge state ions, where the solid line is the 
theoretical and dotted line is the experimental data [7].
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Fig. 7.6 The resultant 
opacity spectrum with DLA 
calculation is plotted by 
varying the maximum of n’. 
The solid, dashed, dotted, 
and dash-dotted lines 
represent models with 
maximum principal 
quantum numbers of 8, 6, 
4, and 2, respectively. All 
four models were calculated 
with the same temperature 
(56 eV) and density 
(10 mg/cm3 ). Reprint with 
permission from Ref. [7]. 
Copyright 1998 by 
American Institute of 
Physics 

It is informative to know which transitions of ion configurations contribute to 
each of sharp opacity spectrum. It is seen that the Be, B, and C-like ions make two 
absorption peaks. It is found that the lower energy part is due to the inner-shell 
transition in n = 2, while the higher energy is the transition to higher n shell. For 
example, the dashed line of B-like is the result when the maximum configuration is 
n = 2 in DLA calculation. Let us see the transitions in B-like ion. The inner shell 
transition is from the ground state to the following transitions. 

1s2 2s2 2p1 → 1s2 2s1 2p2 → 1s2 2p3 

On the other hand, the higher energy peak in C-like ion is given by the transition. 

1s2 2s2 2p1 nl→ 1s2 2s1 2p2 nl→ 1s2 2p3 nl 

where n ≥ 3 and l < n. Such an electron in (n, l ) is called a satellite electron which 
contribute to a small modification of absorption spectrum from the above transition, 
consequently such transition energy is almost the same position as the lower one of 
B-like as in Fig. 7.7. 

In calculating Figs. 7.6 and 7.7, LTE has been assumed to a uniform plasma 
heated by thermal radiation generated in a gold cavity heated by intense laser 
[6]. However, it is not in general to be valid to use LTE assumption, especially 
laser ablating plasma from medium and high Z targets. Then, some non-LTE 
distribution should be calculated for charge state distribution of plasma in calculat-
ing emissivity and opacity. A better model is collisional radiative equilibrium 
(CRE) model for the case of relatively small plasma characterized by the radiation 
field is much less compared to Planck radiation. Most of the opacity and emissivity 
of high-temperature laser plasma and other laboratory plasma probably calculated 
with charge distribution with CRE model.
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Fig. 7.7 Transmission 
spectra due to different 
configuration of partially 
ionized ions. The solid lines 
are theoretical and the dotted 
line is experimental. Reprint 
with permission from 
Ref. [7]. Copyright 1998 by 
American Institute of 
Physics 

In dense plasmas produced by intense lasers, we can expect the line broadening 
[8]. the melting of nearby lines to make a kind of band structure. Then, spectral 
opacity looks easier to model in computer simulation of radiation transport. In 
Fig. 7.8, the emissivity of carbon plasma with T = 100 eV at five different densities 
is plotted [5]. It is clear that the lines become broader due to mainly Stark 
broadening effect. It is seen nearby lines melt to finally becomes broad spectrum 
seen for the density 22.4 g/cm3 . Note that the disappearance of the lines near the 
ionization edge, say near 500 eV as the density increases is due to the pressure 
ionization effect to be discussed in Chap. 8. 

It is useful to see how bound-bound transition opacity is important in plasma even 
with small number of high-Z atoms. This is the case of the opacity inside the Sun. 
The sound velocity distribution of the plasma in the Sun has been studied precisely 
with the helioseismology and its theoretical study requires opacity and self-
consistent equation of state [9]. For example, around the boundary of convection 
and radiation zones roughly characterized with T = 193 eV and ne = 1023 cm-3 , the 
opacity of partially ionized iron is plotted in Fig. 7.9 [10]. It is clear that photo-
excitation (red) by bound-bound transition is dominant over 600–1000 eV where the 
radiation intensity is near peak hν = 2.8 T ~ 600 eV. In addition, it has fine structure 
spectra. The photo-ionization (green) by bound-free transition also contributes 
substantially. The inverse-Bremsstrahlung (blue) by free-free transition is relatively



small. In general, we can neglect the effect of scattering (pink) in non-relativistic 
plasmas. 
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Fig. 7.8 Emission spectrum of carbon plasma at T-100 eV with five different densities are plotted. 
Reprint with permission from Ref. [5]. Copyright 1998 by American Physical Society 

7.4 Opacity Experiments 

Using intense laser or laser-produced or pulse-power produced thermal radiation, 
spectral transmission opacity experiment has been carried out and compared the 
data to computational results [11]. This is a clear validate and verification research 
on complicated opacity of high density and high temperature plasmas. Opacity 
experiment is important not only for radiation transport in laser produced plasma 
but also for a variety of topics in astrophysics, especially stellar evolutions [9]. Let us 
briefly see the present status of the opacity experiment and the code comparison. 

The stellar interior is characterized with high-density and high-temperature and it 
is well known that the radiation transport is important to transfer the nuclear fusion 
energy near the center of a star toward the surface, such as the Sun. The structure of 
stars strongly depends on the atomic state of the plasma inside the stars. Historically, 
the opacity has been calculated theoretically, especially using computers. After the 
progress of intense laser and Z-pinch facilities, a variety of spectroscopic opacity



experiments have been performed [12, 13]. Inside of stars, heavy elements like iron 
are of very small fraction, while it contributes the opacity significantly. 
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Fig. 7.9 The opacity of the plasma of the Sun around the boundary of convection and radiation 
zones roughly characterized with T = 193 eV and ne = 1023 cm-3 [10] 

Iron contributes significantly to solar opacity; the relatively large number of 
bound electrons makes iron more susceptible to model uncertainty of the standard 
solar model. It is found that opacity model predictions were lower than the opacity 
data when the temperatures and densities were increased to solar interior values [13]. 

Precise experiments with Z-facility have been done for Cr, Fe, and Ni to consider 
the atomic physics causing the lower opacity in Fe plasma [14]. In Fig. 7.10, the 
experiment setup is shown in (a). Almost Planck radiation of 350 eV radiation 
temperature is generated by Z-pinch (radiation source) and is irradiated to a plane 
target with aa half-site opacity sample covered by Be and CH optically thin solids 
shown in (b). The radiation spectra transmitted through both layers measured by 
crystal spectrometers are compared to obtain the transmission spectrum to reduce to 
the spectral opacity. In the experiments, the temperature and electron density 
measurements result the sample plasma being 180 eV and 3 × 1022 cm-3 . In (c), 
dominant electron configurations of Cr, Fe, and Ni at achieved conditions are shown. 
Vacancies in the shells are indicated by open circles. 

In Fig. 7.11, the experimental opacity is compared to the calculation with OP opacity 
code. The OP opacity model is widely available and extensively used for solar or stellar 
models [14]. Comparisons between OP and the measured opacities provide essential 
clues for model refinements. It is clear in Fig. 7.11 that Cr and Ni opacities are well



modeled, while a large discrepancy is seen for Fe. It is about a factor two near 7–8 A  
region. As seen in Fig. 7.11 (c), Fe ion has open-shell and it is expected there are many 
lines absorption by the term splitting, which is probably not well included in OP code. 
The difference of the line positions and line shapes is studied in [14]. It is reported that the 
other modern atomic codes can improve such discrepancy. 
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Fig. 7.10 The experimental set up to measure the opacity of chromium, iron, and nickel. Reprint 
with permission from Ref. [14]. Copyright 1998 by American Physical Society 

The discrepancy of Fe opacity is very critical especially for astrophysics, because 
iron is rich abundance in the universe. The higher-than-predicted iron opacity data 
account for about half the increase needed to resolve the standard solar model 
discrepancy. This question is critical because, if the data are correct, our understand-
ing of photon absorption in high-density matter must be revised. This would have 
far-reaching consequences for astrophysics and terrestrial science. 

For example, a widely used method to estimate stellar ages depends on opacity, 
and opacity revisions will therefore lead to substantial changes in the age estimates. 
Furthermore, if solar composition, opacity, and helioseismology inferences are 
found to be consistent, the soundness of the standard solar model will be 
reinforced, but the composition and opacity used to model other Sun-like stars 
must be revised. On the other hand, if observations and solar model inputs cannot 
be reconciled, possible modifications to the solar model itself would be necessary. A



new theory, for example, has been proposed to explain the enhanced opacity by 
taking account of two-photon absorption effect [15]. 
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Fig. 7.11 Comparisons between OP opacity code and the measured opacities of three plasma 
samples. Reprint with permission from Ref. [14]. Copyright 1998 by American Physical Society 

Of course, the opacity is one of the most important elements to model stellar 
evolution. The consensus model for a classical nova invokes a binary star system, with 
accretion from a main-sequence star or evolved giant onto a white dwarf (WD) due to 
Roche lobe overflow. As hydrogen-rich material is transferred to the WD through an 
accretion disk, the temperature at the base of the accreted envelope rises until it reaches 
~2 × 107 K, at which point the accreted fuel undergoes fusion via the CNO cycle. A 
convective zone is born and grows until an optically thickwind is launched, giving rise to 
the observed classical nova. The launching of the optically thick wind is primarily due to 
the presence of the iron opacity bump. Accurate opacity of iron is essential to compare 
observation light cure to a theoretical model [16]. 

7.5 Radiation Hydrodynamics 

The hydrodynamic description of the system consisting of huge number of particles 
is widely used in many cases from design of air-conditioning to astrophysics, even 
in cosmology. In laser produced plasmas, they are described in general with 
two-temperature, one-fluid model as shown in Chap. 2.6. For the fluids being in



LTE with the density ρ, velocity u, and internal energies of the ion fluid εi and 
electron fluid εe, (2.105, 2.106, 2.107, and 2.108) should be solved in time and 
space, where the energy flows to the ion and electrons local fluids are given. 
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It is convenient to show (7.22) and (7.23) in Lagrangian frame moving with the 
plasma fluid. By use of (2.105) and (2.106), it is easy to show the equations of 
radiation in the fluid frame, 

ρ 
d 
dt 

Eν 

ρ 
þ ∇ Fν - uEνð Þ= 4πην - cχν Eν ð7:33Þ 

ρ 
c 

d 
dt 

Fν 

ρ 
þ∇ cPν -

u 
c
⨂Fν = - χν Fν ð7:34Þ 

Note that the right-hand-sides in (7.33) and  (7.34) are contribution via the coupling 
with the plasma fluid and they will couple with the equations of energy and 
momentum of plasma fluid, respectively. 

From (2.105), (2.106) and (7.34), the following equation of fluid motion is 
obtained. 

∂ 
∂t 

ρuð Þ þ  ∇ ρu⨂uþ Pð Þ= Sm r ð7:35Þ 

where Sm r is the momentum change of the fluid due to the absorption of radiation 
added to (2.106) as the coupling term in (7.34). The form of Sm r is derived from 7.34) 
as 

Sm r = 
1 
c 

1 

0 

χν Fν dν ð7:36Þ 

Note that no momentum change appears due to the radiation emission, because it is 
assumed to be isotropic. The energy conservation relation to the electron fluid is also 
obtained after simple mathematics and it is found to be 

∂ 
∂t 

ρεe þ 1 
2 
ρu2 þ∇ ρu εe þ P 

ρ 
þ 1 
2 
u2 = Sε r ð7:37Þ 

where Sε r is the cooling and heating terms due to the radiation. The form of Sε r is 
given from (7.33) as  

Sε r = 

1 

0 

cχν Eν - 4πηνð Þdν ð7:38Þ
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When the fluid and radiation are treated as one system, the total momentum and 
energy conservation relations are obtained from (7.34) and  (7.35), and (7.33) and 
(7.37) as follows, respectively. 

∂ 
∂t 

ρuþ F
R 

c2 
þ∇ ρu⨂u þ P þ PR = 0 ð7:39Þ 

∂ 
∂t 

ρεe þ 1 
2 
ρu2 þ ER þ ∇ ρu εe þ P 

ρ 
þ 1 
2 
u2 þ FR þ qe = 0 ð7:40Þ 

where ER , FR , and  PR are spectrum integrated total values of Eν , Fν , and Pν , 
respectively. For simplicity, the last two terms in RHS in (2.108) are neglected in 
(7.40). The electron heat flux qe has been discussed in Chap. 6 and the nonlocal and 
multigroup flux of SNB given in (6.91) is recommended to be used to evaluate the 
electron hear flux in a better way, not like Spitzer-Harm diffusion shown in (2.109). 

Let us evaluate how important the four radiation terms in (7.39) and (7.40) in the 
case of laser-produced plasmas. In evaluating each radiation term, it is assumed that 
the radiation heat flux is important to affect the hydrodynamic energy flux and the 
following rough relation is applied. 

FR ~ O uPð Þ, ER ~ O F
R 

c 
, Pr ~ O ER , ð7:41Þ 

where “O” means the order of magnitude. Compare the radiation term to the fluid 
term in each parenthesis. 

FR 

c2ρu 
~ O u

2 

c2 
, 

PR 

P 
~ O u 

c 
, 

ER 

ρεe 
~ O 

u 
c

ð7:42Þ 

As far as the plasma is non-relativistic fluid, all radiation terms except the radiation 
heat flux in the energy flux density in (7.40) can be neglected in general. 

It is interesting to note the case where the plasma fluid is not non-relativistic while 
another radiation term(s) become important. For example, inside stars the radiation 
mean free path is very short and the radiation is almost Planckian distribution. Since 
the radiation pressure and energy density is proportional to T4 while the those of 
plasma particles are in proportion to T, there is critical temperature to a given density 
that the radiation pressure is comparable to the pressure by the matter. In such a case, 
we have to keep all radiation terms in radiation hydrodynamic equations. The reason 
why the above order estimate was wrong inside the stars is as follows. Inside the 
stars, almost hydrostatic force balance is a good assumption and the assumption 
FR ~O(uP)  in  (7.41) is not established. The order estimate in such a case is all O(1) in 
(7.42). Finally noted that the electron heat transport can be neglected in general



inside stars and it is easy to show because the scale of temperature change is much 
longer than the charged particle means free paths. 
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7.5.1 Radiation Pressure 

In the case of direct laser irradiation to relatively low Z target, the radiation field is 
far from LTE and the radiation pressure can be neglected. In the case of high-Z target 
irradiation or radiation confinement by the hohlraum cavity target, it is not so clear if 
this condition is valid. Evaluate the relation between pressures by matter and 
radiation within the assumption that radiation temperature is equal to that of the 
matter. Radiation energy flux SP and radiation pressure PP are given as 

SP = σT4 = 1:× 105 T4 
eV W=cm2 

PP = 
4 
3c 

σT4 = 4:6× 10- 6 T4 
eV J=cm3

ð7:43Þ 

As already evaluated, about 300 eV Planck radiation gives the flux of 1015 W/cm2 . 
Then, the radiation pressure PP is about 0.7 Mbar, which is much less than the 
material pressure as seen in Chap. 3. 

It is of course, radiation pressure becomes larger than the plasma pressure for 
extremely high temperature or low density. Simple evaluation for the balance is 

2neT = 
4 
3c 

σT4 ð7:44Þ 

For the temperature higher as shown in the relation 

TeV > 3:8× 10- 5 n1=3 e , ð7:45Þ 

the Planck radiation pressure is higher than the plasma pressure and radiation 
hydrodynamics is governed not only the radiation energy flux, but also by the 
radiation pressure to the matters. 

In the evolution of stars, there are cases where high temperature Planck radiation 
propagates to the surface and the atmospheric matters are blown off as stellar wind. 
This depends on the metallicity of the star and the mass of the stars. It is useful to 
note that fate of stars as functions of their initial mass and metallicity. Heger et al. has 
carried out comprehensive and systematic radiation hydrodynamic simulations 
including the nuclear reactions [17]. In the abstract, the authors wrote as 

How massive stars die—what sort of explosion and remnant each produces—depends 
chiefly on the masses of their helium cores and hydrogen envelopes at death. For single 
stars, stellar winds are the only means of mass loss, and these are a function of the metallicity 
of the star. We discuss how metallicity, and a simplified prescription for its effect on mass 
loss, affects the evolution and final fate of massive stars. We map, as a function of mass and



ð Þ

346 7 Opacity and Radiation Transport

metallicity, where black holes and neutron stars are likely to form and where different types 
of supernovae are produced. Integrating over an initial mass function, we derive the relative 
populations as a function of metallicity. 

One result is shown in Fig. 7.12, where the horizontal axis is the initial mass of single 
star divided by the mass of the sun and the vertical axis is the metallicity [17]. The 
metallicity means how much elements heavier than hydrogen and helium exists. The 
“metal free” is just after the big bang and the gas is made of only hydrogen and 
helium, while “abundant solar” is the metal distribution inside the sun. It can be 
regarded the metallicity means the time evolution of Universe. In Fig. 7.12 the final 
fate of the stars is shown. The starts with mass more than about ten finally explode as 
supernova type II (core collapse type). Note that the green line shows the boundary 
where the hydrogen envelope is blowen off by the strong radiation from the inside, 
radiation pressure and momentum deposition by Thomson scattering. This is the 
reason why there is the maximum of the mass of stars about 40 observed in our 
galaxy as seen in Fig. 7.12 as the green boundary. 

The radiation pressure and energy transport are critical physics to control the time 
evolution of brightness of novae [18]. Because an abrupt ignition of nuclear fusion 
happens on the surface of white dwarfs due to the increase of temperature by 
accretion, the surface gas is pushed by the radiation and it is observed that the object 
suddenly starts to increase the light and finally decays. This is called “nova light 
curve” and its observation data is analyzed with radiation hydrodynamic 
simulation code. 

7.6 Neutrino Transport in Core-Collapse Supernovae 

The kinetics of neutrino transport in core-collapse supernova explosion is the most 
challenging subject as radiation transport numeric. Neutrino propagates at the speed 
of light as x-rays in plasma, however, the opacity is simpler than the case of photons. 
The structure of basic equation is the same as (7.3) and the cross section of the matter 
interaction σν(εν) is relatively simple as given to be 

σν ενð Þ ~  G0 
F 

2 
ε2 ν 

G0 
F = 

GF 

k c 3 
= 5:3 × 10- 44 cm2 =MeV ð7:46Þ 

where GF is Fermi constant. Since the supernova explosion, the most energetic 
neutrino has the energy of about 10 MeV and the typical absorption cross section 
σν~5 × 10

-42 cm2 . This extremely small value is due to that fact that the weak 
interaction force acts by exchange of heavy W and Z-bosons. Before going to 
discuss the role of neutrino heating, let us estimate the stopping length of neutrino. 
The column density of neutrino stopping (ρl)ν is roughly evaluated to be



m
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Fig. 7.12 The metallicity dependence of the evolution of stars. The horizontal axis is the initial 
mass of single star divided by the mass of the sun and the vertical axis is the metallicity. Reprinted 
with permission from Ref. [17]. Copyright by American Astronomical Society 

ρlð Þν ~ p 

σν 
~ 4 × 1018 g=cm2 ð7:47Þ 

As we see below, the size of collapsing core is about 100 km, consequently the 
matter density is of the order of 1010 g/cm3 . It is clear that the earth is transparent 
to neutrino, because the column density of the earth is about 6000 km × 5.5 g/cm3 

~4 × 108 [g/cm2 ]. 
It is well-known that the total energy of the neutrino produced by the core-

collapse is 1053 erg, about 5% of Mc2 = 1.8 × 1054 erg (M: solar mass). Then, 
only 1% of neutrino energy is absorbed in the core to energize the shock propagation 
toward the massive star surface. Therefore, it requires very precise analysis of 
neutrino transport. 

Just before the observation of SN1987A, core-collapse supernova explosion has 
been simulated by Wilson and discussed with Bethe [19]. They obtained the flow 
diagram in 1-D spherical geometry as shown in Fig. 7.13. The time is second and 
radius cm units. The iron core of about 1000 km collapses at t = 0 due to the iron 
dissociation to 13 alpha particles. This nuclear process energy absorption and the 
pressure drops abruptly to form a proto-neutron star (PNS) of about 10 km. In



Fig. 7.13, the solid lines are flow line indicating time evolution of Lagrangian 
numerical meshes; the lower dashed curve is the radius of neutrino sphere and the 
upper one is the out-going shock wave. In the simulation, around 0.48 [s] the quasi-
vacuum region starts to expand due to the neutrino heating and it is concluded that 
the shock wave keeps to propagate outward also with neutrino heating. However, it 
is clear that the quasi-vacuum region accelerates the falling matter outward against 
the strong gravity is only possible in the constrain of one-dimensional assumption. It 
is unstable to hydrodynamic instability. 
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Fig. 7.13 The flow diagram in radius r and time is plotted for gravitational collapsing supernova 
explosion. The solid lines are flow line indicating time evolution of Lagrangian numerical meshes; 
the lower dashed curve is the radius of neutrino sphere and the upper one is the out-going shock 
wave. Reprinted with permission from Ref. [17]. Copyright by American Astronomical Society 

Two years later from the paper of Ref. [19], SN1987A explosion was observed。 
The light of the explosion was a physical event for 400 years as a supernova visible 
to the naked eye. After intensive research on the physics of SN1987A, precise 
simulations have clarified that two additional physics are critical to modeling 
supernova explosion. One is the weakening of the shock wave via the iron dissoci-
ation at the shock front. Modern simulation has concluded that core-collapse super-
nova never explodes within one-dimensional geometry; this is due to the fact that the 
shock wave is weakened by the endothermic effect by the dissociation of falling iron 
and disappears. The other is the reheating of the core and falling matter via multi-
dimensional material mixing is essential to enhance the heating rate by neutrino. 
Therefore, detail neutrino transport kinetics is required to be simulated in multi-
dimensional hydrodynamics. 

Typical difficulty of the neutrino transport is schematically shown in Fig. 7.14. 
Neutrino is generated in proto-neutron-star, where the neutrino is optically thick to
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diffuse out from the surface and small fraction of energy of about 1% of the total 
energy is absorbed by the matter to keep and revival the shock wave to propagate 
outward. The shock wave is important to disassemble the heavy elements toward the 
space and only the neutron star remains. The kinetics to continue from optically thick 
to thin region is challenging subject. 
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Fig. 7.14 Local to 
non-local transport model is 
essential to study the 
explosion simulation of 
gravitationally collapsing 
supernova explosion 
[Courtesy of K. Sumiyoshi] 

The basic equation of neutrino transport is the same as (7.3) with scattering term 
on RHS. Therefore, the same modeling as in Chap. 7.2 is shown, for example, in 
[20]. In [20], three different Edington factors are compared, including (7.32) b  
Minerbo. The transport kinetics of such discrete ordinate method is compared to that 
with Monte-Carlo method and it is concluded that a good agreement has been 
obtained in 1-D and 2-D background hydrodynamic structures. Up to now, it is 
almost concluded that 1-D never explodes and some of 2-D and 3-D simulations 
gives explosion, but it is not always. 

In order to try to solve Boltzmann equation as precise as possible and carry out 
simulation with the world-class supercomputer, numerical scheme to solve directly 
the Boltzmann equation to the neutrino energy distribution function in 3-D geometry 
in space and neutrino angle has been developed and tested in given static fluid 
structures [21]. The simulation code has been up-graded to run in the K-computer for 
carrying out self-consistent 3-D radiation hydrodynamic simulation of core-collapse 
supernova explosion [22]. 

One case of core-collapse supernova 3-D simulation has been carried out and 
reported in [22]. The snap shot of t = 10 ms after the collapse is plotted in Fig. 7.15 
[22]. The physical quantities in the iso-surfaces of cut away above the equatorial 
plane in 3-D are shown. The left is contours of entropy (~ temperature) and the 
arrows with color are average velocities. The orange sphere region is shock heated



one and the color boundary is the position of shock wave. Note that fluid explosion 
velocity reaches almost 10% of the speed of light. The right figure shows a neutrino 
density contours overlapped with the velocity vectors of local neutrino averaged 
over the angle; namely, the total neutrino flux velocity of hF/Ei. It is clear that this 
value ranges from 0 to c place to place. This simulation is not enough to identify the 
explosion scenario in three-dimensional with precise solver of Boltzmann equation 
to neutrino. It is expected to clarify the physical condition under which the core-
collapse supernova explodes or not by use of the next generation supercomputers. 
The readers interested in such challenging physics due to neutrino and hydrody-
namics can know more in [23] and  [24]. 
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Fig. 7.15 Sophisticated neutrino transport is coupled with three-dimensional hydrodynamic sim-
ulation to clarify the physics of supernova explosion. Reprinted with permission from Ref. [22]. 
Copyright by American Astronomical Society 
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Chapter 8 
Theoretical Model of Dense Plasmas 

Abstract In the dawn of quantum mechanics, scientists had challenged to formulate 
the equation of many-electron system, such as atom and solid matter, just after the 
success of Schrodinger equation to explain a hydrogen atom. It is found, however, 
that a system of multi-electron requires the self-consistent treatment of exchange 
interaction stemming from Pauli exclusive principle. 

In 1930s, Hartree and Fock has derived the equation with use of Slater determi-
nant. It is called Hartree-Fock (HF) equation. This is the equation for many-electron 
system and if we can solve it, almost exact solution is obtained. However, it was 
difficult to solve it analytically and numerically. Scientists proposed a variety of 
approximate theoretical models to solve such many-electron system. 

Slater has proposed screened-hydrogenic model (SHM) in 1930. Thomas and 
Fermi have proposed a statistical model, now called Thomas-Fermi (TF) model. 
These two models have been widely used, modified, extended, and applied to many 
purposes even now. Their physical image is very simple and useful as comprehen-
sive understanding of the physics. The examples of applications to the equation of 
state (EOS) for shock compression (shock Hugoniot) are explained here. Such 
models can be used to single atom (ion) or statistically averaged ion, so-called 
average ion model (AIM). 

Even with the atomic data are supplied, the ionization potential depression (IPD) 
is essential to solve Saha equation of ionization population, especially at high-
density plasma. Thanks to a rapid progress of computer capability, even HF equation 
can be solved numerically in some cases. It is very hard to solve, for example, the 
band structure of condensed matters. Kohn-Sham proposed density-functional the-
ory (DFT) in 1960s. DFT solves one-electron Schrodinger equation for all electrons 
in the self-consistent potential. It is proved that the self-consistent potential is 
formulated as a function of only the density profile. 
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8.1 Introduction 

We have studied that the ablation pressure in the rage of 1–100 Mbar can be 
generated in solid matters, when an intense laser irradiates them. As we will see 
below, the solid matters are easily compressed and ionization, and the Coulomb 
interaction energy becomes comparable to the thermal energy of charged particles. If 
a matter is compressed by keeping low temperature, Fermi degeneracy of free 
electrons becomes dominant in its pressure. In modern physics of laser produced 
plasma to be generated from solids, the physics of condensed matters should be 
studied inter-disciplinary. How to extend the theory and computational methods in 
the condensed matter physics to the case with finite temperature becomes a chal-
lenging subject. 

Let us briefly summarized the matter state from solid in room temperature to 
extremely high-density state. In laser plasmas, special wards, warm-dense-matter 
(WDM) and high-energy-density plasma (HEDP) are widely used to show such 
high-pressure matter states. It is noted that such states are also called as non-ideal 
plasma. The physics of plasma at high-density has been studied for a long time in 
astrophysics relating to the plasma state inside stars and interior of planets, especially 
giant planets such as Jupiter. Roughly speaking, it is better to relate WDM to the 
giant planets and HEDP to the star interior. So, this chapter is strongly related to the 
evolution of objects in the space and astrophysics. It is noted that HEDP has 
relatively long history, while WDM became popular in the last two decades. 

Physical properties under high-pressure have been also studied as subject of the 
condensed matter physics from the beginning of quantum mechanism. Most popular 
topic is insulator-metal-transition (IMT) of hydrogen. The IMT was predicted 
theoretically by Wigner and Huntington in 1935 [1]. Hydrogen is the simplest atom 
and there have been a lot of theory and computation on IMT. Recently, thanks to the 
progress of high-pressure technology, it has become a hot topic to demonstrate IMT 
experimentally. In what follows, the readers must be careful about the definition of 
IMT, because the high-pressure physics (HPP) community tries to demonstrate 
IMT by keeping the temperature low as the room temperature. Using laser-driven 
shock waves, the pressure increase also accompanies, in general, the increase of 
temperature. Any matter can be conductor at high-pressure with high-temperature, 
because of thermal excitation to produce many free electrons, resulting high-
conductivity. This is called plasma phase transition. 

Since the quantum physics of many-body problem becomes essential to study 
such high-density plasmas, we need to have basic knowledge of quantum mechanics 
of many-electron system. In Chap. 5, single atom or ion with multi-electrons has 
been studied quantum mechanically. In the present chapter, not only modeling single 
ion but also many-ion system coupled with quantum mechanical wave functions of 
many electrons are required to be studied. 

In Fig. 8.1, progress of supercomputer is shown. It is surprising to know that its 
computational speed has increased 10,000,000 times in the last 25 years. In the early time 
to study the many-body problem, it was hard to do it even with such supercomputer,



while now it is already the time to challenge a big computing of many-body problems. 
Before such supercomputing, however, it is important to obtain the sense of physics with 
simpler models. In the present Chapter, mainly single ion models developed in early 
stage of quantummechanics are explained. Then, it is explained how to solve “ab-initio” 
models of the real high-density plasma system. 
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Fig. 8.1 Progress of supercomputer performance (Flops). The orange dots are the performance of 
the world-top computer the green dots are the sum of top 500 computers. Even the computer of 
No. 500 shows the performance of blue dots. Over the 25 years from 1995, the seven order of 
advancement has been achieved. The advancement of the computational speed also has changed the 
methods to study the plasmas. [From data in www.top500/] 

8.2 Variety of Physical States of Dense Plasmas 

8.2.1 Molecule and Solid 

In the book by Kittel [2], the table of bulk modulus is given for many solid states. 
The bulk modulus B is the pressure defined at solid density and room temperature as 

B= ρ 
∂P 
∂ρ

ð8:1Þ

https://www.top500/
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The bulk modulus indicates how high pressure is necessary to compress the solid 
material to increase its density two times. For example, H (0.002), C (4.43), Al 
(0.722), Fe (1.68), and Au (1.73), where the numbers are the bulk modulus in 
Mbar unit. 

With the bulk modulus data of the solid matters, intense laser can be used to 
perform experiments to study the physical properties of matters at densities higher 
than solids. In addition to the laser ablation pressure, such high-pressure physics has 
been also promoted with use of static pressure to generated in a tiny area by 
diamond anvil cell (DAC), which is shown later in this chapter. This is comple-
mentary to the laser ablation pressure method because DAC can increase the 
pressure to about one Mbar keeping the temperature as low as enough to avoid 
temperature effect on the physical property of matter. It is noted that a single shock 
compression by the ablation pressure increases both of density and temperature. To 
study almost adiabatic compression, it is required to use a shaped pulse with 
continuous increase of the laser intensity as discussed in Chap. 4, which is the 
same technology required for the high-gain target implosion for laser implosion. 

Let us consider a molecular bonding solid the simplest of which is the hydrogen 
solid at low temperature. A hydrogen molecule is formed by covalent bonding and 
the bonding force is due to the exchange interaction energy same as the para-
helium electron configuration shown in Chap. 5. At room temperature, the hydrogen 
molecule is in gas state. The potential energy of the center of mass of two hydrogen 
atoms is given in Fig. 8.2 as a function of the distance of two hydrogen nuclei. In 
Fig. 8.2, two potential profiles are plotted for UA with the case of two electrons with 
the same spins and for US of the case with opposite spins. US and UA represent 
symmetric and anti-symmetric bonding, respectively. Two electron spins are the 
same as para-helium and ortho-helium configurations as studied in Chap. 5.

Fig. 8.2 A famous 
hydrogen molecule eigen-
energy as the function of the 
molecular nuclei distance 
(r). Depending upon the 
combination of both spins, 
symmetric state Us with 
opposite spins becomes 
bound state, while anti-
symmetric case UA with the 
same spins is not bound 
state because of the Pauli 
exclusive principle



Exchange interaction is negative only for the case with the opposite spin pair, 
therefore, the molecule bonding is possible only for the opposite spin pair. Such 
covalent bonding force is strong and the dissociation energy is 4.52 eV. It suggests 
that high-temperature is demand to dissociate the molecule thermally.
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This potential energy U(r) at T = 0 is the total energy of the hydrogen molecule, 
and the force F(r) to compress of the system is given as 

F = -
∂U 
∂r

ð8:2Þ 

Note that the force vanishes at the equilibrium radius of the bottom of the potential as 
indicated at r = r0 (state 3) in Fig. 8.2, and it is attractive for the larger distance, the 
states 1 and 2, and repulsive at shorter distance state 4 in Fig. 8.2. This force can be 
converted to the pressure for the solid with many molecules. If the average volume of 
one molecule is give as V, U is nothing without the internal energy of the average 
molecule of the thermodynamic system. By use of the relation of thermodynamics, 
we obtain the pressure P and the force of the molecule surface in the forms 

dU = -PdV ⟹ P= 
∂U 
∂V 

⟹ 4πr2 P=F ð8:3Þ 

This pressure is called elastic pressure and cold pressure. 
The potential energy of the molecular bonding has been modeled with Lenard-

Jones potential. 

U rð Þ= 4ε 
σ 
r 

12
-

σ 
r 

6 
ð8:4Þ 

Then, the minimum energy is -ε at r = 21/6 σ. 

8.2.2 High-Pressure Cold Matters 

Let us call the high-pressure state of condensed matter at room temperature or less as 
high-pressure cold condense matter or simply high-pressure cold matter (HPCM) 
in this Chapter. In Fig. 8.3, a conceptual diagram of the change of states and physical 
phenomena are shown. Decreasing the temperature of hydrogen gas, hydrogen liquid 
and solid is formed at very low temperature 14 K. The binding between the 
molecules is not covalent bonding, but the dipole-diploe interaction schematically 
shown in Fig. 8.4. The electron cloud in each molecule shifts so that each molecule 
has dipole moment of charge. This bonding is week compared to the covalent 
bonding. Such force is called Van der Waals force and it is also modeled with 
Lenard-Jones potential force in (8.4) with appropriate parameters ε and σ.
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Fig. 8.3 Schematic diagram of temperature and density showing the phase transitions in the 
different regions produced by intense laser irradiation on solid materials. The ablating plasma 
with green color finally becomes ideal plasma expanding to the vacuum. The shock compression of 
solid change the state of matter to strongly coupled plasma as shown in red. In HPP, metallic 
hydrogen has been studied by applying high-pressure without increase of temperature. This study is 
shown with blue lines and the point is compression without heating 

Fig. 8.4 Schematics of solid or liquid hydrogen bonding. The electron cloud in hydrogen molecule 
shifts from the center symmetry induces the dipole field to attract the other molecules via dipole 
interaction. In low temperature limit, they can stay as solid via this van der Waals force 

8.2.3 Pressure Ionization 

Using the DAC, the matter state changes as the light bule marks in Fig. 8.3, where 
the temperature is kept low enough. Initially, the solid hydrogen is insulator because 
all electrons are bounded in their parent molecules. In the word of the band theory of 
the solid-state physics, the electrons are all in the valence band and cannot move 
nonlocally. The insulator has a large band gap, and the Fermi energy is in the 
forbidden region as shown in Fig. 8.5. With increase of the density of the solid 
hydrogen, so-call pressure ionization mechanism becomes important. The pressure 
ionization makes the ionization potential depressed, and the matter state alters to 
semiconductor and conductor as schematically shown in Fig. 8.5.
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Fig. 8.5 A picture showing the difference of three state of normal solid matters. In the band theory, 
the system has valence band and conduction band. Many materials in solid state are classified to 
three, metal, semiconductor, and insulator. Metal has free electrons in the conduction band. The 
conduction and valence bands are separated by a gup, while it is called the semiconductor if the 
band gap is smaller than 3.2 eV. For the case with more wide energy gap and no electrons in the 
conduction band, it is insulator 

Fig. 8.6 If any atom is isolated and no effects by free electrons and nearby atoms, the energy levels 
of all bound electrons are affected only by the Coulomb forces by the nucleus and the other bound 
electrons. In solid materials and dense plasmas, the free electrons running in the atom shields the 
Coulomb field also the potential of the surrounding ions decrease the ionization potential. This is 
called pressure ionization and ionization potential lowering 

Let us explain the mechanism of the pressure ionization for a simple case 
regarding one atom in high-density after the dissociation of molecular state. As 
shown on the left in Fig. 8.6, the isolated atom in neutral state has bound electrons in 
the grand state. The potential field can confine all bound electrons. However, with 
the increase of the density, the Coulomb field by nearby nuclei works to weaken the 
force by the central nucleus and the overlapping of the Coulomb field changes the 
free state energy lower than the isolated case. In addition, the free electron density at 
the atomic shells becomes high to shield the nuclear Coulomb potential.
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As the result, the energy levels of the upper state electrons shift, and it also be 
broadened by the nearby nuclei and free electron fields. Many-body problem should 
be solved for a system made of N nuclei with N×Z electrons. Of course, it is possible 
to extend Hartree-Fock method explained in Chap. 5.3 to many-atom system 
formally. However, it is almost impossible to solve such many-body problem staring 
from total Hamiltonian to obtain the total wave function of electrons for a given 
positioning of all nuclei. Some challenge for solving approximated wave functions 
in each five-atom system has been carried out, where so called discreate-variational 
Xα method is used to obtain total electron wave function as shown later. 

Several methods have been developed to find approximated electron quantum 
states. There are two broad classes of methods, wavefunction-based and density-
based and each of these classes are further subdivided into different approaches. 
These two methods are. 

1. Wavefunction-based methods: An explicit form for the wavefunction is written 
down and observables are calculated using this wavefunction. Examples are 
Hartree-Fock method and para-potential method as already shown in Chap. 5. 
More simplified para-potential method, screened-hydrogenic model (SHM) will 
be explained soon below. In laser produced plasmas, SHM has been widely used 
to make data base of thermodynamic quantities in wide range of density and 
temperature by including the pressure ionization effect. This idea was initially 
proposed by Slater in 1930. 

2. Density-based methods: The focus is shifted from the wavefunction to the 
electronic density. The wavefunction is not written explicitly. Examples are 
Thomas-Fermi approximation and density-functional theory (DFT). In laser 
produced dense plasma, computer simulation based on the density functional 
theory has been used by coupling with molecular dynamic simulation for ion 
motion. Such simulation is called Ab initio simulation. 

The high-pressure physics experiment with use of DAC can keep the temperature 
low enough to study the physics of condense matter at higher density than solid. The 
long-standing challenge is the demonstration of metallic hydrogen experimentally. 
Recent apparent progress on this topic is given later. In addition, finding of super-
conductivity in hydrogen under extremely high pressure is also reported. 

The insulator metal transition of hydrogen is also very important in planet 
science. It is expected that the inside of giant planets such as the Jupiter and Saturn 
are made of hydrogen in metallic state. Like the dynamo-effect inside our Earth, a 
strong magnetic field can be generated by the dynamo motion in the Jupiter. 
Magnetic field on the Earth stems from the convective motion of melted iron inside. 
Since the hydrogen metal may have higher conductivity than the melted iron, 
roughly speaking, stronger magnetic field may be expected for the Jupiter case. 
About 20 times stronger magnetic field has been observed near the surface of the 
Jupiter, and it is predicted with the high-conducting metal of hydrogen inside the 
Jupiter. So, the high-pressure physics is important to study the physics of interior of 
giant planets, many of which have been found as outer-solar planets recently.
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8.2.4 Warm Dense Matter 

In Fig. 8.7, shown is the density and temperature diagram in logarithmic scale of the 
regions of warm dense matters (WDM) and high energy-density plasma (HED). 
Note that there is no common clear definition of both states of WDM and HEDP. In 
addition, it is also difficult to clearly define the deference of matter and plasma. 
Roughly speaking, the physics of high-energy density is relatively simpler than the 
physics of warm dense matter, because almost no idealistic theory is applicable to 
describe the physical property of the warm dense matter. Since the temperature is 
higher in HEDP compared to the WDM, HEDP is strongly related to the physics of 
the evolution of stars as shown in Fig. 8.7, where the evolutional paths of the Sun 
and a star with 60 times solar mass are plotted. In contrast, the WDM can be said to 
be the physics of the evolution of planets, especially giant planets as shown in 
Fig. 8.7, where the giant planet such as Jupiter and brown dwarf are plotted. The 
central core of laser fusion implosion is located above the center of the Sun. 

The physics of warm dense matter is a frontier between condensed matter and 
plasma physics. Here the density goes around the solid density and the temperature 
varies from 0.1 to 100 eV. In this regime, matter is mostly degenerate, strongly 
coupled, and non-ideal. WDM is an interdisciplinary research field bridging

Fig. 8.7 Density and temperature diagram in logarithmic scale of the region of HED (high-energy-
density) and WDM (warm dense matter), while this zoning is very ambiguous and no clear 
boundary in general. Reprinted with permission from Ref. [1]. Copyright by National Academies 
Press



high-pressure physics community and laser-plasma community, where the former 
has grown from the condense matter physics historically. From the theory point of 
view, one must deal with ab initio calculations such as quantum molecular 
dynamics (QMD) which work well at low temperatures (T < 1 eV) and density 
functional theory for electrons.
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Fig. 8.8 Any materials in the state of insulator at cold temperature can show the property of 
conductor by the increase of the high-energy tail of Fermi distribution of electrons. Such change to 
metal from insulator by heating is called plasma phase transition 

Different from T = 0 case, the system of many particles is not in the grand state 
quantum mechanically. Atoms are ionized not only by the pressure ionization, but 
also by the thermal ionization as shown in Fig. 8.8. Free electrons are not completely 
degenerated and thermal excitation produces the free electrons in conduction band. 
In such case with thermal excitation of the system, the electron quantum system is 
calculated by assuming the nuclei are fixed in time. This is called the Born-
Oppenheimer approximation. Another way of stating this approximation is that 
the time scale of the motion of electrons is much shorter than the nuclei and thus the 
response time of the electrons to any change in the positions of the nuclei is 
considered immediate, namely quasi-steady-state response of electrons can be 
assumed. The motion of all nuclei is treated as classical Coulomb interaction system 
given by the electron charge distribution. This simulation is QMD. 

8.2.5 High-Energy Density Plasma 

When matters are compressed to the direction of the red marks in Fig. 8.3, the 
electron degeneracy is important even if the thermal energy of electrons are a few or 
several times larger than the Fermi energy. The main fusion fuel of DT should be 
compressed under its temperature as low as possible for the high gain fusion energy 
production to be discussed in Vol. 3. Such partially degenerate high-density matter is



also a target of our research. More high-density characterizing the inside of compact 
objects in Universe, then, strongly coupled plasma (SCP) should be studied. In 
SCP, the ion-ion Coulomb charge interaction becomes important with relatively 
uniform electron density background. 
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While there is no definitive threshold of being in the high-energy density regime, 
perhaps a rough measure would be material at pressures of around one megabar, 
which is a quantity whose units are energy per unit volume ~1 Mbar (105 J/cm3 ). For 
example, material at a density of 0.01 g/cm3 and heated to 100 eV is at 1 Mbar. A 
temperature of 100 eV corresponds to about 107 J/g for hydrogen. 

Roughly speaking, most of the theoretical models and numerical methods used 
for describing WDM can be extended to HEDP. It can be said that HEDP is simpler 
than WDM from theoretical modeling point of view. Special case of HEDP is, for 
example, the matter at the center of white dwarfs. Electrons are almost completely 
degenerate and the ions are moving like inside the sea of electrons. Such case is 
modeled by one-component plasma (OCP) and the ion-ion Coulomb correlation is 
studied in the uniform electron density. 

8.2.6 Ion Sphere and Average Ion Models 

The concept of ion sphere model has been widely used to describe the atomic state 
and thermo-dynamic property of the WDM and HEDP. In this model, the ion sphere 
radius R is defined by a simple relation. 

4 
3 
πR3 ni = 1 ð8:5Þ 

Assume that this ion sphere shown in Fig. 8.9 is not a real ion, but this sphere 
represents the statistically averaged ion sphere. Therefore, it gives any physical 
properties of the statistical averaged ions. When the physical properties stemming 
from the statistical distribution around this averaged state, it is required to do 
additional study. For example, line broadening is obtained only when the statistical 
distribution of ion-ion distance fluctuation is given. It is noted that many physical 
properties such as equation of state is approximated with the ion sphere model as 
shown below. 

Such kind of modeling is called average-ion-model (AIM) in plasma. It is also 
called average-atom model (AAM). The combination of AIM and SHM have been 
intensively used to make data base for radiation hydrodynamic codes for laser-
produced plasmas. Assuming that the ion sphere is a micro-thermodynamic system 
of plasma, it is possible to obtain the thermodynamic property, pressure, and internal 
energy as functions of density and temperature. 

To provide an easy image of AIM in statistical physics, it is a good example to 
compared to the fluid modeling of the plasma. The plasma is defined with velocity 
distribution function and the best way to study the physics of plasma is to start with



Vlasov equation. However, most of plasma can be described with fluid approxima-
tion. The fluid approximation is a mathematical model to reduce the freedom of 
statistical system. So, the reader not familiar with such atomic physics can regard 
that AIM is a kind of fluid model in plasma kinetic theory. 
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Fig. 8.9 A cartoon of the 
ion sphere model and its 
radius. Simplest modeling 
of atoms in high density is to 
treat an average atom with 
radius R as isolated atomic 
system 

In the case of local thermodynamic equilibrium (LTE), it is possible to obtain the 
Helmholtz free energy F for given (V, T), where the volume V is regarded as the 
volume of the ion sphere defined in (8.5). 

ε=F þ TS ð8:6Þ 

S= -
∂F 
∂T

ð8:7Þ 

P= -
∂F 
∂V

ð8:8Þ 

It is in general possible to separate F into three components, 

F =Fc Vð Þ þ  Fe V ,Tð Þ þ  Fi V , Tð Þ ð8:9Þ 

This free energy F should be the same as F in (8.2) at T  = 0. Therefore, Fc(V ) is  
determined by the molecular bonding and Coulomb repulsion or any bonding at 
T = 0 as in Fig. 8.2. 

Once the free electrons appear as metallic state shown in Fig. 8.5 due to the 
pressure ionization by compression, the free electrons contribute to the free energy to 
give Fermi pressure. As we discuss later, Coulomb interaction energy becomes 
important in some case of WDM, the Coulomb interaction energy with the nearby 
ions should also be included in Fc(V ). How to model Fe(V,T ) and Fi(V, T ) are the 
main subject of the equation of states in WDM as will be seen later.



8.2 Variety of Physical States of Dense Plasmas 365

Historically, the quantum state of high-density matters has been studied by two 
different approaches. In the band theory, appearance of forbidden zone of a free 
electron in solid is clear, for example, by solving one-dimensional Schrodinger 
equation of an electron in a periodic potential. One example of simple theory is 
Kronig-Penny model. The other approach is mostly based on the ion sphere model. 
As already mentioned, there are two ways to study; namely, one is electron density-
based theoretical method and the other is wave-function based method. They have 
been developed to obtain the free energy by electrons Fc and Fe in (8.9) 

In the present Chapter, Thomas-Fermi theory is explained at first as the simplest 
theory for the density-based method. How sophisticated theory can be commonly 
used to study WDM and HEDP depends on the progress of experimental facility and 
diagnostics as well as computer technology. Precision diagnostics and well-defined 
laser experiments have recently demanded so-called ab-initio simulation as precise 
as possible to solve many-body system realized in experiments. Ab initio calcula-
tions are computations of electronic orbitals with no other hypotheses than Coulomb 
interactions between all electrons and nuclei with electrons obeying Fermi statistics 
with the Pauli exclusion principle. 

Computer simulation of molecular dynamics (MD) is used for dense plasma 
instead of particle-in-cell (PIC) simulation in relatively low density high-
temperature plasma. MD is originally used to solve the ion dynamics with effective 
potential such as Lenard-Jones potential in (8.3). Most popular example is dynamic 
simulation of protein folding in water molecule heat bath. On the other hand, the 
electron distribution in condense matters has been studied with density functional 
theory (DFT) for given positioning of all nuclei. The rapid progress of computing 
shown in Fig. 8.1 has made it possible to combine MD and DFT to know time 
evolution of WDM, where MD is replaced with ab-initio QMD. 

The second method, wavefunction-based model, can give us more detail infor-
mation of the electron quantum state. However, as already mentioned in Chap. 5, 
Hartree-Fock method can be formulated, while it is almost impossible to solve it in 
many-body problem. Wave-function based method results, for example, the property 
due to the quantum shell structure of bond electrons. In Fig. 8.10, the ionization 
energy needed to reach charge state Z from charge state Z-1 of a copper ion is 
plotted, where the color-coding indicates the valence electron shell of state Z-1. 
K, L, M, and N shells represent the quantum sates with the principal quantum 
number n = 1, 2, 3, and 4, respectively. The jump of the values in Fig. 8.10 is due to 
the shell structure of the wave functions. The Thomas-Fermi model cannot repro-
duce such shell-dependent property. 

In the ion-sphere model, if we can have self-consistent spherical potential 
V(r) in the ion sphere (r < R), it is easy to solve one-electron Schrodinger equation.

-
ħ2 

2m
∇2 þ V  rð  Þ  ψ i =Eiψ i ð8:10Þ
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Fig. 8.10 The ionization 
energy needed to change the 
charge state Z from the 
charge state Z-1 of a copper 
atom. The color-coding 
indicates the valence 
electron shell of state 
Z-1. K, L, M, and N shells 
represent the quantum sates 
with the principal quantum 
number n = 1, 2, 3, and 
4, respectively 

where ψ i and Ei are the electron wave function and eigen-energy for a quantum state 
“i”, respectively. It is easy to solve (8.10) numerically for a given consistent potential 
V(r), while to find the V(r) is a tuff job. Note that V(r) should consist of 

V rð Þ=V ie þ Vee þ Vex ð8:11Þ 

where Vie is Coulomb interaction energy with nuclear charge, Vee is the electron-
electron Coulomb interaction energy, and Vex is the exchange interaction energy. 
The Hartree-Fock method is solved iteratively to obtain the total wave function in 
Slater matrix and all interaction energies are included consistently. However, new 
theoretical model is required for each of three potentials in (8.11) once Schrodinger 
equation is reduced to one electron equation. 

In the present Chapter, we look back the para-potential method to give a consis-
tent potential screened by many electrons in an atom. Based on the fundamental 
property of hydrogen atom, the method to fit the binding energy of each electron in 
multi-electron ion-sphere is explained. This is called screened hydrogen model 
(SHM) and has been widely used to obtain the thermodynamic property in laser-
plasma. 

It is noted that AIM gives only the physical quantity averaged over many 
statistical configurations is obtained. However, it is shown that how we can obtain 
the statistical spread of each configuration, such as charge distribution and energy 
shift of line emission due to the difference of the number of electrons in the same 
shell, is obtained by use of SHM in laser plasma as to be explained. 

8.2.7 Band and Band Gap 

It is better to see why bands and band gaps appear in dense-matters as quantum 
effect. The electrons in an atom occupy atomic orbitals, each with its own individual 
energy level. When two or more atoms combine to form a molecule, their atomic



orbitals overlap. In Fig. 8.11, the energy states of electrons are shown as the s-state 
and p-state when the interatomic distance is large, that is, the atom is an isolated 
atom. In the case of hydrogen molecule in Fig. 8.2, it is shown that the s-state 
becomes to have two energy levels because of the Pauli’s exclusion principle as US 

and UA. In a molecule, Pauli’s exclusion principle states that no two electrons can 
have the same quantum number. Therefore, when two identical atoms combine to 
form a diatomic molecule, each atomic orbital splits into two molecular orbitals with 
different energies. 
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This means once the overlapping of two electron wave functions takes place at a 
certain interatomic distance in Fig. 8.11, the separation of the energy level of the 
s-state appears as well as the p-state. The electrons in the previous atomic orbitals 
can occupy the new orbital structure without having the same energy. Similarly, 
when N identical atoms are assembled to form solid, such as crystal lattice, the 
electron orbitals overlap over many nuclei. Due to the Pauli exclusion principle, the 
wave functions of two electrons cannot overlap with the same quantum number, so 
the atomic orbitals are split into N individual orbitals, each with different energy. 
This is indicated on the left in Fig. 8.11, where the band in high-density with the 
interatomic distance “a” is made of many of different energy levels. 

Because the number of atoms in a macroscopic solid is so large (N~1022 ), the 
number of orbitals is also very large, and therefore the energies are very closely 
spaced. The energy of the adjacent levels is on the order of 10-22 eV. Since the 
energies of adjacent levels are very close, they can be considered as a continuum, or 
energy band. The formation of such bands is mostly a feature of the outermost 
electrons (valence electrons) of the atom, which are involved in chemical bonding

Fig. 8.11 On the right, the energy level structure change by the decrease of the interatomic distance 
is plotted. For the case where the atomic distance is large, the atom is isolated and fine discrete 
energy levels are defined. As the distance decreases, the many electrons from the surrounding atoms 
makes different eigen energy state like the case of hydrogen molecule in Fig. 8.2. At the solid 
density (radius a) or higher density, the band structure is formed. Since the band structure is formed 
by many electrons in the dense state, there are roughly the number of eigen states by all electrons 
1022 cm-3 in unit volume in solid as shown at the left



and electrical conduction. Since the inner electron orbitals do not overlap as much, 
their bands are very narrow.
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The band gap is the energy range that remains uncovered by any of the energy 
bands due to their finite width. The width of a band depends on the degree of overlap 
of the atomic orbitals from which the band originates. The width of two adjacent 
bands is insufficient to cover the full energy range. For example, the bands associ-
ated with core orbitals (such as 1s electrons) are very narrow due to the small overlap 
of adjacent atoms. As a result, the band gap between the core bands tends to be large. 
In the higher bands, the bands become progressively wider at higher energies due to 
the overlap of relatively large orbitals, and the band gap disappears at higher 
energies. 

8.3 Screened Hydrogen Models 

The wave quantum mechanics is found to give the precise quantum state of hydrogen 
atom thanks to the discovery of Schrodinger equation in 1926. Then, many peoples 
tried to extend one-electron Schrodinger equation to atoms with multi-electrons, 
including partially ionized atoms. In 1927, the next year, Hartree introduced 
so-called Hartree method to solve N-electron wave function in an atom. In 1930, 
Slater and Fock independently pointed out Hartree method did not satisfy the 
principle of anti-symmetry of the wave function required by the Pauli exclusive 
principle for Fermion electrons. In 1935, Hartree reformulated the method more 
suitable. Now, Hartree-Fock method with the wave function of the determinant of 
Slater matrix is widely used as very precise basic equation for multi-electron system. 

Even with Hartree-Fock equation proposed in 1930s, it is almost impossible to 
solve it analytically and very time-consuming calculation was demanded to apply 
even atoms with a small number of electrons. Historically, the birth and rapid 
progress of computational capability has been required to solve Hartree-Fock equa-
tion. Therefore, a variety of models have been proposed in the early time by 
neglecting some physics elements due to multi-electron effect. By focusing on the 
Coulomb shielding effect in the multi-electrons bounded in an atom or ion, Slater 
proposed a method to obtain the eigen energy of multi-electron atom. This is the 
basic idea of the Screened Hydrogen Model (SHM) described in this section. Note 
that this model is still used widely after the improvement of the screening constants. 

The historical development of the SHM is reviewed briefly by Smithwick in 
[3]. Let me borrow his sentence. The SHM is an alternative and simple approach that 
uses the one-electron wavefunctions of the hydrogen atom for each electron of a 
multi-electron atom by substituting an effective nuclear charge Zi for the value of 
Z. Agreement with experimental energies can be obtained by varying Zi with 
screening parameters. The SHM provides a starting point for semi-empirical calcu-
lations involving complex atomic or molecular systems.
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The SHM was first used in 1930 by Slater who approximated the energies of 
electrons in 1s and 2s/2p orbitals as Ei = Zið Þ2 1 

2n2 in atomic units. Z1s (for ni = 1) 
equals Z – 0.30 when two 1s electrons were present and both Z2s and Z2p (with 
ni = 2) equals Z – 1.70-0.35 (N2S + N2P – 1) when two 1s electrons were present. 
The Slater 1 s wave function was the same as the hydrogen 1 s wave function with 
Z1S substituted for Z. The Slater 2s and 2p wave functions both had the same value 
of Z2S = Z2P substituted for Z and the same radial part of the hydrogen-like 2p wave 
function but with 2s or 2p angular parts. Numerous molecular orbital calculations 
were based on Slater wave functions. Layzer and Kregar each calculated screening 
parameters and electron energies with series functions in powers of Z. 

The calculation of the properties of dense plasmas at high temperatures is an 
important application of the SHM that involves the determination of the energies of 
atoms and ions across the periodic table. The Dirac equation is an alternative form of 
the SHM that includes relativistic corrections for each electron. A closer agreement 
between experimental and calculated electron energies is expected to lead to 
improved predictions of plasma properties. 

It is in general hard to solve ab-initio model such as Hartree-Fock equation in 
high-density plasma because it is not clear how to model the pressure ionization in 
Hartree-Fock method. If we have appropriate radial potential V(r) for modeling the 
ion sphere in any density and we can obtain reasonable wave functions to calculate 
not only the thermodynamic functions, the free energy F(ρ,T), but also oscillator 
strengths of line radiations etc. Then, it is convenient for installing equation of state 
and opacity in simulation codes. Note that equation of state can be modeled with 
statistically averaged atomic state, while the opacity, especially line radiation opac-
ity, calculation needs the variance distribution from the average atom state. 

Here, only the average ion model (AIM) is discussed to obtain the equation of 
state such as pressure and internal energy in dense plasma. They are used in 
modeling in hydrodynamic simulation for laser produced plasma. This AIM is a 
robust model to obtain the eigen energy of any ionization state of any atom, based on 
the quantum theory of hydrogen atom. The energy is given by taking account of the 
Coulomb charge screening in multi-electron bound atom or ion. 

8.3.1 Screened Hydrogen Model (SHM) 

By using SHM improved by More [4], the energy of an electron in an eigen state n 
(the principal quantum number) is given to be 

En = - IH 
Zn 

n 

2 

þ E0 
n ð8:12Þ 

Where IH is the Rydberg constant (13.6 eV). In (8.12), Zn is the effective nuclear 
charge seen by the electron in the state n and E0 

n is the screening effect by the
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electrons outside the orbit of the electron in the state n. In (8.12), the Zn and E0 
n are 

given to be 

Zn = Z-
m< n 

σn,mPm -
1 
2 
σn,nPn ð8:13Þ 

E0 
n = 

1 
2 
e2 

rn 
σn,nPn þ 

m> n 

e2 

rm 
σm,nPm ð8:14Þ 

where σnm is the screening constants proposed by More so that the ionization 
potentials of a variety of atoms are well reproduced compared to those obtained by 
solving Hartree-Fock Slater equation [5]. In (8.13) and (8.14), Z is the ion nuclear 
charge and Pn (Pm) is the number of electrons in the eigen-state n (m). In (8.14), 
rn (rm) is the effective orbit radius of the electron with the quantum number n (m) and 
defined as 

rn = aB 
n2 

Zn 
ð8:15Þ 

where aB is the Bohr radius. 
The well-known relations of the hydrogen-like ions are explicitly used to obtain 

the energy En. The relation of SHM has an advantage for the consistency condition; 

∂ 
∂Pn 

Eion =En ð8:16Þ 

where Eion is the total energy of the bound electrons in the ion and is defined as 

Eion = -
n 

IH 
Zn 

n 

2 

ð8:17Þ 

Since the electron-electron interaction energy should not be doubly counted, the 
following relation is required in the model. 

Eion ≠ 
n 

En ð8:18Þ 

It is convenient to use another expression of E0 
n and Zn in (8.13) and (8.14). 

Zn = Z-
m≤ n 

σAM 
nm Pm ð8:19Þ 

E0 
n = 

m> n 

σAM 
nm Pm ð8:20Þ
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Table 8.1 Screening constants σAM 
nm defined in (8.21) as a table of matrix [n, m]. The number 1–10 

is this table shows “n”. This means the screening effect to an electron in the n-sate by the m-state 
electron is large for n > m, while it is relatively small for n < m as easily understood from the spread 
of wave functions 

n= 

0.3125 0.9380 0.9840 0.9954 0.9970 0.9970 0.9990 0.9990 0.9999 0.9999 

0.2345 0.6038 0.9040 0.9722 0.9979 0.9880 0.9900 0.9990 0.9999 0.9999 

0.1093 0.4018 0.6800 0.9155 0.9796 0.9820 0.9860 0.9900 0.9920 0.9999 

0.0622 0.2430 0.5150 0.7100 0.9200 0.9600 0.9750 0.9830 0.9860 0.9900 

0.0399 0.1597 0.3527 0.5888 0.7320 0.8300 0.9000 0.9500 0.9700 0.9800 

0.0277 0.1098 0.2455 0.4267 0.5764 0.7248 0.8300 0.9000 0.9500 0.9700 

0.0204 0.0808 0.1811 0.3184 0.4592 0.6098 0.7374 0.8300 0.9000 0.9500 

0.0156 0.0624 0.1392 0.2457 0.3711 0.5062 0.6355 0.7441 0.8300 0.9000 

0.0123 0.0493 0.1102 0.1948 0.2994 0.4222 0.5444 0.6558 0.7553 0.8300 

0.0100 0.0400 0.0900 0.1584 0.2450 0.3492 0.4655 0.5760 0.6723 0.7612 

where σAM 
nm is the screening constant introduced in [6]. There is a simple relation with 

Kronecker δ. 

σAM 
mn = σmn 1-

1 
2 
δmn ð8:21Þ 

The matrix table of σAM 
mn is given in Table 8.1 [6]. 

It is important to know that the above formulation to obtain the well-
approximated energy of bound electrons can be used to any given configuration 
with integer n. Then, we can use the SHM for detailed configuration accounting 
(DCA) for all possible configurations. If we can model the transition cross sections 
of electron collision and photon processes as described in Chap. 5, even the photo-
ionizing non-LTE plasma atomic process can be studied reasonably by solving the 
rate equations of all possible detail configurations within SHM as shown, for 
example, in [7]. 

8.3.2 Average Ion of SHM 

In the case of the average atom model, the above relations to SHM are extended by 
assuming that the number of electrons in the n-shell is not the real number but the 
statistically averaged non-integer number. Of course, the relation Pn/gn ≤ 1 should 
be satisfied, where gn is the number of states of the eigen state n. 

Assume the local thermodynamic equilibrium (LTE) condition. The electrons 
in an averaged ion are separated to the bound electrons and free electrons. The 
energy distribution of the bound electrons is assumed to be governed by Fermi-Dirac 
distribution.



þ ð Þ
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Pn = gn 1þ exp En þ ΔU- μ 
Te

- 1 

ð8:22Þ 

where μ is the chemical potential and ΔU is the energy shift due to the continuum 
lowering as schematically shown in Fig. 8.6. To derive the continuum lowering has 
been performed relating to the ion state inside stars in astrophysics. Recently, it has 
become possible to clarify the continuum lowering experimentally to verify such 
theories. Here, we adopt the continuum lowering expression in high-density limit of 
Steward-Pyatt model [8]. 

ΔUSP ≈ 
3 
2 

Z*e2 

4πε0R0 
ð8:23Þ 

Note that More details are given in the next section. 
We also assume that the free electrons are also in LTE, therefore, the number of 

free electrons per an ion is given to be 

Z* = 
1 

2π2ni 

2mTe 

ħ2 

3=2 

I1=2 μ=Teð Þ ð8:24Þ 

I1=2 xð Þ= 
1 

0 

y1=2 

1 exp x- y 
dy ð8:25Þ 

The chemical potential μ is determined so that the charge neutrality condition is 
satisfied. 

Z = Z* þ 
n 
Pn ð8:26Þ 

Assuming a certain value of the maximum of n (nmax) and using (8.12) and (8.26), 
we can obtain the statistically averaged population Pn for given density and 
temperature. 

It is not trivial to model an appropriate value of nmax. The maximum value is not 
given as a discreate value because we are dealing with statistically averaged atomic 
condition and some physical model of pressure ionization sis required for modeling 
of this problem. A model of the pressure ionization to SHM has been studied in [9], 
where it is modeled by decreasing the number of states in the upper bound levels. 

gn = 
2n2 

1þ a rn R0 

b ð8:27Þ 

The fitting constants a and b have been chosen as a = 3 and b = 4 to correspond to 
Thomas-Fermi result [10]. In (8.23), the pressure ionization is determined by the



electron orbit radius divided by the ion spere radius. It is intuitively reasonable that 
the bound state disappears abruptly for the electron orbit overlaps the orbits of 
nearby bound electrons. 
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Fig. 8.12 (a) The charge state of aluminum as a function of temperature and density calculated by 
SHM for AIM. In high-temperature and low density, the ionization is due to thermal effect and shell 
structure is clearly seen. In the low temperature and high density, the pressure ionization increases 
the number of free electrons [6]. (b) The ionization potential of an isolated aluminum atom 
calculated with SHM (black dots). For comparison, the same data are also shown with precise 
method, Hartree-Fock calculation (triangles). Reprinted with permission from Ref. [6]. Copyright 
1998 by Oxford University Press 

In Fig. 8.12a, the charge Z* as function of density and temperature is plotted for 
the case of aluminum (Z = 13) at high density plasma state [6, 9]. The shell structure 
is obtained for thermal ionization and pressure ionization is clear with increase of 
density. Note that the change of Pn, - En, and Zn due to the temperature increase at 
density 0.1 g/cm3 in Fig. 8.12a is shown in [10] as well as the case of gold, where 
nmax= 5 and 10 are assumed for aluminum and gold, respectively. 

In Fig. 8.12b, the ionization potential energy is also plotted without the pressure 
ionization effect, namely for an isolated aluminum atom. Energy jump due to shell 
structure of K-shell and L-shell is well reproduced by SHM (black dots) same as the 
result of Hartree-Fock calculation (triangles) [10]. 

8.3.3 Screened Hydrogen Model with (n, ℓ) 

The SHM has been extended to include angular momentum dependence in AIM. It is 
well-known that the degeneracy of the angular momentum quantum number ℓ at 
each principal quantum state n is accidental in case of hydrogen or hydrogen-like 
atom, where the potential is exactly proportional to 1/r. In the case of multi-electron



ð

bound atom, binding energy of each ℓ -state in the same n-shell has different values 
and no degeneracy appears. So, depending on how precise atomic model is required, 
inclusion of n and ℓ in SHM is natural. 
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A self-consistent model based on a nonrelativistic screened-hydrogenic model 
(SHM) with ℓ-splitting has been developed to calculate the equation of state (EOS) 
of matter in local thermodynamic equilibrium [11]. This model takes account of 
the quantum subshell effect to go beyond the simple semiclassical and statistical 
Thomas-Fermi approach to obtain the electronic properties. The whole model is fast, 
robust, and reasonably accurate over a wide range of temperatures and densities. 
New screening constants are given in [11, 12]. In this case, the total energy of bound 
electrons is given in the same form as (8.17) 

Eion = - IH 
k 

Zk 

nk 

2 

ð8:28Þ 

where k = {n, ℓ} and the energy sprit by ℓ is included in Zk in the form same as 
(8.13). 

Zk = Z-
j 

σj,k 1-
δjk 
Dk 

Pj ð8:29Þ 

where j also represents the configuration j = {n, ℓ} and the energy split by ℓ comes 
from the ℓ dependence of the set of the screening constant (σj, k) and the integer 
degeneracy of subshell k as follows. 

D0 
k = 2 2ℓk þ 1ð Þ 8:30Þ 

The screening constant (σj, k) are calculated by fitting over a large data basis 
containing nonrelativistic ionization potentials and excitation energies calculated 
using the Superstructure code and the multi-configuration Dirac–Fock code 
[12]. Note that additional assumption is also adopted in [11]. 

In [11], the fractional occupation number (Pk) is not given by Fermi-Dirac 
distribution, but it is calculated so that the electric Helmholtz free energy per average 
ion of the plasma (Fe) becomes minimum at fixed density and electron temperature. 

Fe =Fbound þ Ffree þ Fion- sphere ð8:31Þ 

In (8.31), Fbound is free energy of the average ion subsystem in the bound state given 
by SHM, Ffree is the free energy of homogeneous free electron gas, and Fion - sphere 

is the contribution by the continuum lowering. 
The free energy of the bound electrons is given with Eion in (8.28)  as
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Fbound =Eion - TSbound ð8:32Þ 

According to Boltzmann law on the entropy, Sbound is the sum of all bound state as 

Sbound = - kB 
k 

Pkln 
Pk 

Dk 
þ Dk -Pkð Þ ln Dk -Pk 

Dk 
ð8:33Þ 

where the decrease of the number of states by pressure ionization effect given in 
(8.23) is also modeled and Dk is reduced from D0 

k in (8.30). 
It is too much to repeat the description in [11] and let us see the resultant shock 

Hugoniot relation with EOS derived by this SHM. The density jump of a single 
shock wave is plotted in Fig. 8.13 and compared to the present SHM, QEOS, and 
experimental data [11]. The QEOS is an EOS model widely used in laser plasma 
study [13] and the electron EOS is based on Thomas-Fermi model described in the 
next section. The QEOS is given by separating the total free energy as in (8.9) and 
the cold and ion components are given with so-called Cowan model. 

In Fig. 8.13, EOS consisting of SHM for electron component and Cowan model 
for ion is shown as SHM-QEOS and the cases of three different coefficients of the 
ionization potential lowering given in (8.20) with different constants are plotted
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Fig. 8.13 Shock Hugoniot data of aluminum from an experiment (*) and the present SHM with 
different coefficients and the original QEOS data. Reprint from Ref. [11]. Copyright 2012, with 
permission from Elsevier



[11]. It is clear that all provides almost the same Hugoniot curve and the scattered 
experimental data are well explained. Just a qualitative difference is that QEOS does 
not give the shell effect of electron orbits, while the SHM predicts the effect.
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Fig. 8.14 The maximum compression rate as a function of different atomic elements (nuclear 
charge). As seen in Fig. 8.13, all solids have the maximum compression rate characterized by the 
atomic shell structure. The present SHM results are compared to other theoretical data. Reprint from 
Ref. [11]. Copyright 2012, with permission from Elsevier 

The effect of shell in atom is emphasized or clearly observed in Fig. 8.14, where 
the maximum compression ratio is plotted for all atomic number Z [11]. All curves 
are theoretical prediction and the simple current SHM can reproduce the prediction 
with more complicated calculation by Johnson and Pain. 

Let us consider that physics giving the oscillating structure in Figs. 8.13 and 8.14. 
In the case where the ionization happens in the shock surface region, a part of shock 
compression energy is used for ionization. This is regarded that the freedom of the 
thermodynamic system increased. As shown in Chap. 3, the density ration of strong 
shock wave is a function of the freedom of the gas, and the increase of the number of 
freedom N results the increase of compression ratio. The increase of the density ratio 
more than four (=2.712 × 4 = 10.8 g/cm3 ) in Fig. 8.14 is due to this ionization effect. 
In the limit of the strong shock wave, the ratio reduced to the value of four, because 
the ionization energy is relatively small compared to the shock pressure work. 

The periodic structure seen in Fig. 8.14 is also due to the ionization energy loss in 
the compression. The first peak is for Na (Z = 11), K (=19), and so on. They are 
transition metal with one electron in the outer shell. In the case when the shock is 
strong to ionized this electron, the high-density compression is observed.
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8.4 Thomas Fermi Model for an Ion Sphere 

To consider the physical property of compressed matters, a variety of theoretical 
models have been proposed to calculate the statistically averaged density distribution 
as consistently as possible. One of the convenient ways to calculate the electron 
density distribution for a system with a nucleus at the center and the surrounding 
electrons is Thomas-Fermi (TF) model as studied in early time of modern physics 
[14]. The TF model is still widely applied in many quantum systems, even to a 
hydrogen atom since it is very easy to solve numerically and provides approximate 
electron density profile in a compressed atom. 

Although it is easy to solve computationally at the present, it is interesting to 
know that R. Feynman wrote how to do numerical calculation before the computer 
was invented [15]. About forty wives of scientists gather in a classroom and follow 
Feynman’s instructions to turn the hand-cranked calculators, dividing the work 
among them and producing numerical values. He writes the results on the black-
board as the wives obtained in the numerical calculations. Although the TF model is 
not so complicated as seen below, it was difficult to solve without such human power 
before the computer era. 

The basic equation to be solved is Poisson equation to the potential ϕ(r), 

ε0 
1 
r2 

d 
dr 

r2 
d 
dr 

ϕ = - Zeδ rð Þ- ene rð Þ ð8:34Þ 

where ne(r) is the radial distribution of electron density around the nucleus with 
charge Z. It is assumed that the electron density is given by Fermi-Dirac statistics. 

ne rð Þ= 
2 
ħ3 

f FD r, pð Þd3 p= 
8π 
ħ3 

1 

0 
p2 f FD r, pð Þdp ð8:35Þ 

where fFD(r, p) is the Fermi-Dirac distribution. 

f FD r, pð Þ= 
1 

1þ exp p2=2m- eϕ- μ 
T 

ð8:36Þ 

It is clear that above equations are enough to determine the density profile ne(r),once 
the charge neutral sphere radius R0 is given and the chemical potential is determined 
so that the charge neutrality is satisfied in the ion sphere. In the limit (μ → -1), the 
electron density (8.35) tends to the Boltzmann distribution for a given electric 
potential ϕ. Due to this reason, the TF model is an extension of classical Debye-
Hueckel model to Fermion gas. Boltzmann distribution cannot be used in the case of 
high-density plasma, and the simple Debye shielding model should be replaced by 
TF model.
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8.4.1 Screened Electron Density Distribution 

Introducing x and y defined as 

x= 
p2 

2mT 
, y= 

eϕ þ μ 
T

ð8:37Þ 

The electron density (8.35) is given in more simple form: 

ne rð Þ= 
1 
2π2 

2m 
ħ2 

3=2 1 

0 

x1=2 

1 þ exp x- yð Þ dx ð8:38Þ 

It is more convenient to solve (8.34) with assumption that the radial function of 
potential is given like 

ϕ rð Þ= 
Ze 

4πε0r 
Y rð Þ ð8:39Þ 

Then, (8.34) can be reduced to the second order differential equation to Y(r). 
In high-density plasmas, the ion-ion Coulomb coupling is strong and it is good 

approximation to introduce the ion sphere defined in (8.5) and set the boundary 
R = R0 here. It is also assumed that the same amount of charge is filled by electrons 
to make charge neutral in the ion sphere. Then, the problem to solve (8.34) becomes 
an eigen-value problem to the boundary conditions: 

Y 0ð Þ= 1, ð8:40Þ 
d 
dr 

ϕ r=R0ð Þ= 0 ð8:41Þ 

Since we assumed the form (8.39), the first term on RHS in (8.34) disappears. After 
rewriting (8.34) to the equation to Y(r), we obtain a second order nonlinear differ-
ential equation to Y(r). It is recommended to solve the equation to Y(r) by integrating 
from both boundaries. Such numerical method is called shooting method and the 
eigen value μ starting with a trial value at the beginning should be converged to the 
value so that both solutions integrated from the center r = 0 and from the boundary 
r = R0 continuously match at a given fixed matching point. 

In Fig. 8.15, the electron radial density profile obtained by the TF model is shown 
for an isolated neutral argon atom, where R0 is infinity. The resultant radial density 
distribution is compared to that obtained by the Hartree method described in 
Chap. 5. It is noted that the Hartree method solves Schrodinger equation to all 
wave functions for the bounded N electrons by including the Coulomb interaction. 
Although the exchange interaction is not included in this Hartree method, it is much 
better calculation than TF model. It is seen in Fig. 8.15 that electron density 
distribution obtained by such simple TF model is good enough in this case compared 
to that obtained by the Hartree method. Big difference is that the Hartree method can



include the effect of shell structure by filling states with different principal quantum 
numbers. TF cannot reproduce such quantum shell effect. 
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Fig. 8.15 The electron density radial distribution of isolated neutral argon atom obtained by 
Thomas-Fermi model and more precise Hartree method. Since the Hartree method solve the 
wave functions and the shell structures are seen 

In the present TF model in high density and/or high temperature, it may be 
possible to divide the electrons into the bound and free components. There are two 
ways for the definition of the fraction of free electron component in the ion sphere as 
follows. 

f free = 
4π 
Z 

R0 

0 
ne 

p2 

2m
- eϕ rð Þ≥ 0 r2 dr ð8:42Þ 

f free = 
4π 
3Z 

R3 
0ne R0ð Þ ð8:43Þ 

The first one (8.42) is the case regarding the electrons with positive energy are the 
free electron, while the second one (8.43) simply regards the free electron density is 
equal to the density at the boundary of the ion sphere. 

8.4.2 Fitting Formula of TF Results 

Many scientists have developed approximate fitting formulae for the numerical 
result of Thomas-Fermi model. One of the best is the formula derived by R. M. 
More [4] to be shown here. This can be applied any materials with different atomic 
and charge numbers. As mentioned by More, Thomas-Fermi equation has a kind of 
self-similarity to the hydrogen case (Z = 1 and A = 1). It is well-know that Thomas-
Fermi data such as electron pressures Pe, and internal energy εe of plasma with Z and 
A can be reproduced once we have the data of the hydrogen case. At first, the plasma



density and electron temperature should be converted to the equivalent physical 
quantities for the hydrogen plasma. 
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ρ1 = 
ρ 
AZ 

, T1 = 
T 

Z4=3
ð8:44Þ 

More has shown that the charge state of any material at any density and temperature 
obtained with the numerical result of TF model can be reproduced by the following 
fitting formula. 

Z* ρ,Tð Þ= Z 
x 

1þ x þ 1þ 2xp ð8:45Þ 

where x is a function of (ρ1, T1) [4]. 
Inserting this x into (8.45), the effective charge predicted by TF model is very 

precisely given. The resultant of effective ionization charge for Z = 1 and A = 1 is  
shown in Fig. 8.16. The density and temperature correspond to ρ1 and T1 and it is 
easy to obtain the charge state with the relation (8.44) for any elements. 

It is clearly seen in Fig. 8.16 that for a given density and/or temperature, the 
ionization increases with the temperature and/or density, respectively. The former 
tendency is thermal ionization and common even in low density plasma, while the
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Fig. 8.16 Thomas-Fermi model has self-similarity solution, and all data of different Z number can 
be produced with use of the solution for hydrogen. Figure shows the ionization charge as a function 
of density and temperature by use of the fitting formula (8.45)



latter is typical for the high-density plasma. Since the number of states for the bound 
state decreases with the increase of density, many electrons must be in the free state. 
This indicate that Fermi energy of the electrons increases with the density and the 
plasma becomes Fermi degenerate state. So, in the dense plasma with low temper-
ature and high density, Fermi degeneracy of electrons becomes important.
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8.4.3 Property of Thomas-Fermi Results 

The effective charge Z* increases with the increase of density even at T = 0. Such 
ionization is called pressure ionization, because high density means the distance of 
nearby two ions makes a joint potential as schematically shown with the solid line in 
Fig. 8.17, and the ionization potential depression (IPD) (lowering) (χ) due to the 
overlapping of Coulomb potential allows the bound electrons in the higher-energy 
levels to be free. The pressure ionization is due to the depression of the ionization 
energy level by overlapping the potential of the nearby ions. 

This has a very important information, since the depression of the ionization 
energy level means most of the upper-bounded discreet energy states with a large 
principal number should be eliminated in the partition function of (5.5). In solving 
the Saha equation of (5.14), most difficult point is the evaluation of the function of 
uζ and uζ + 1. These values change dramatically depending on how the maximum 
quantum state can be regarded to be the bound states, since the number of states 
dramatically increases in the upper state as a single atom. 

However, the physics image will change in the case of finite temperature, where 
the ions are moving due to thermal motion. In such case, it is better to obtain the 
probability for the nearest neighbor two ions. This is a problem of statistical physics, 
and it is informative to see the case of Debye potential for the ideal plasma. The

Fig. 8.17 The image of 
pressure ionization is shown 
by overlapping the potential 
profile of two isolated ions 
(dotted lines) and the 
potential by summing both 
(solid lines). The decrease of 
interatomic distance by 
imposed high pressure 
depresses the ionization 
energy level as the solid line



probability of another ion comes to the radius r of the central ion is given by the 
following Boltzmann distribution
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f rð Þ= e-
Ze 
T ϕ rð Þ  = exp -

Z2e2 

4πε0Tr 
e- kDr ð8:46Þ 

Let us introduce the two dimensionless values. 

Γii = 
Z2e2 

4πε0TR0 
ð8:47Þ 

x= 
r 
R0 

ð8:48Þ 

where Γii is called ion-ion coupling parameter and R0 is the ion-sphere radius. 
Then, (8.46) is rewritten as, 

f xð Þ= exp -
Γii 

x 
e-

R0 
λD 
x ð8:49Þ 

The condition of the ideal plasma requires the parameter Γii is much smaller than 
unity. It is useful to see the radial structure of this probability. It is clear from (8.49) 
that f(x) tends to zero near r = 0 and two ions repel each other via Coulomb repulsive 
force. At far distant point f(x) = 1 and this function is monotonically increase with 
the radius. It is very reasonable and coincides with our intuitive image. 

Most of bound electrons with orbit radius more than R0 as an isolated atom will be 
continuum in such many-body system. In case of hydrogen, the average orbit rnof a 
s-state wave function is given in (5.26). 

rn = aB 
n2 

Z
ð8:50Þ 

It is easy to calculate the critical ion density whose orbit radius of the principal 
quantum state n satisfies the condition. 

4π 
3 
r3 nni = 1 → ni = 3× 1022 

Z3 

n6 
1=cm3 ð8:51Þ 

This approximately gives the critical principle number for pressure ionization. It is 
written also for hydrogen as 

ρn = 0:05 
1 
n6

g=cm3 ð8:52Þ 

At high-density plasma, such lowering is very essential.



8.5 Density Functional Theory for Multi-electron Interacting System 383

At the same time, the number of states of free electrons is also decreases as 
increase of density. It is useful to know that the number of free electron states per 
unit volume is given to be 

N Eð Þ= 2 
E 

0 
g kð Þdk= 

1 
3π 

2m 
ħ2 

3=2 

E3=2 ð8:53Þ 

where N(E) is the number of states of free electron to the energy of E. It should be 
noted that the energy obtained by setting N = Zni is Fermi energy. The number of 
free electron states per ion is also decrease in proportion to the inverse of ion density 
for a given energy E. This means that increase of density, the pressure ionization 
decreases the number of bound electrons, while the number of states of free electrons 
also decreases with the increase of density. Then, the required pressure of compres-
sion will increase due to Fermi degeneracy of free electrons. 

It is noted that TF model would be good enough for many problems even for 
contemporary subjects. The potential profile obtained by TF model can be used for 
an approximate potential for one electron Schrodinger equation. If you calculate the 
electron energy-states in the TF potential, it approximately reproduces the electron 
shell-structure (1s, 2s, 2p, 3s, 3p but then 4s comes before 3d. . .) of the periodic table 
of Mendeleev chart. It also correctly predicts how that structure is changed for high-
charge ions. 

TF is simple because it is one equation for all the electrons. The more accurate 
methods (Hartree or Hartree-Fock) have a separate differential equation for each 
electron, so it is 26 equations for Fe. Actually, of course, only 13 because the two 
spins (up and down spin) have almost the same potential, same equation. 

Historically, the TF model has been extended to include another physical effect as 
shown in Chap. 6 in Ref. [16]. For example, the extension to molecules such as a 
hydrogen bonding shown in Fig. 8.2. The attractive force by the exchange interac-
tion has been included as Thomas-Fermi-Dirac model, where the exchange potential 
is modeled as a function of local density. The density divergence near the central 
nuclear charge has been eliminated by Thomas-Fermi-Dirac-Weizsacker model. 
These models have been developed before commonly use of the computer, but it 
is informative to know how quantum mechanical equation should be simplified by 
use of such models. As the progress of computing, the following direct calculation of 
multi-electron and many-body system has become more popular. 

8.5 Density Functional Theory for Multi-electron 
Interacting System 

We have studied the structure of atoms by assuming the ion sphere model. The 
electron density distribution or the wave function of each electron have been solved 
based on simple models derived from quantum mechanics. In the case of high-



density plasma, it is essential to consider the statistical properties of many electrons 
whose wavefunctions spread over many nuclei. The nuclei also move slowly by the 
Coulomb force due to neighboring ions and surrounding electrons. It is natural to 
study such system with many charged particles by solving so-called “ab-initio” 
problem. The ab-initio calculation means to solve the many-body problem quantum-
mechanically as exact as possible by starting from multi-electron Schrodinger or 
Dirac equations, for example, the Hartree-Fock (HF) equation mentioned in 
Chap. 5 gives us the exact solution of the grand state of the many-electron system 
[16, 17]. To solve HF equation directly, however, faces numerical difficulty even 
with the supercomputer, and the density functional theory (DFT) based on the HF 
theory is widely used for the ab-initio calculation. 
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The rapid progress of supercomputer has made it possible to solve such compli-
cated problem in a reasonable CPU time. As shown in Fig. 8.1, it is surprising to 
know the progress of CPU time, for example, from the fastest supercomputer in the 
world Earth simulator in 2002 to now Fugaku in 2020 [18]. Their speeds are 
respectively 40 TF and 400 PF, namely 10,000 times progress in CPU over the last 
18 years in Japan (the world). Computer scientists are always demanded to challenge 
new and more ab-initio methods according to the progress of computer capability. 

Note, however, that if we would like to solve the N electron system with M 
classical nuclei like fixed points in space, Schrodinger equation for N electron 
system becomes a problem to solve it in 3N space dimension in three-dimensional 
real space, for example, in HF theory. Of course, challenges to solve HF equation by 
integrating over 3N space by use of Monte Carlo method has been carried out like a 
quantum Monte Carlo (QMC) [19]. 

More flexible numerical method, on the other hand, has been widely used mainly 
in the solid-state physics. In this method, Schrodinger equation for N electrons is 
independently solved as one-electron problem in an effective potential given as a 
function of the local electron density. This is called density functional theory 
(DFT), which results from the work of Hohenberg, Kohn and Sham [16]. This 
method has been applied also to atoms and molecules. In laser-produced warm dense 
plasmas, DFT has been extended to the system with finite temperature, for example, 
as reviewed in [20]. 

The simulation codes of DFT have been developed with different numerical 
schemes. They have been compared as code-comparison for the case of solids at 
T = 0 in [21]. It is surprising to know that many codes gave almost the same results 
with good accuracy. Here, after a brief explanation of the Hartree-Fock theory, the 
basic equation of DFT is derived for the case of finite temperature. 

8.5.1 Hartree-Fock Theory of Multi-electron System 

In Sect. 5.3, how to study the quantum state of single atom with multi electrons has 
been discussed. In the case of Helium atom, anti-symmetry of the total electron wave 
function is required to provide not only Coulomb interaction but also the exchange



interaction between two electrons. When a system has Nn nuclei and N electrons, the 
total Hamiltonian of the system is given in the form for Born-Oppenheimer 
approximation, where nuclei are fixed. 
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HH = 
N 

i= 1 

HH,i ð8:54Þ 

where HH, i is one-electron Hamiltonian indicated with “i” for the case when the 
wave functions of the other electrons are given. 

HH,i = -
ħ2 

2m 
∇ið Þ2 - e2 

4πε0 

Nn 

k = 1 

Zk 

ri -Rkj j þ e
2 

4πε0 

N 

j≠ i 

1 
ri - rj 

ψ j 
2 ð8:55Þ 

Assume the total wave function Ψ is given as the product of single electron, namely, 
Ψ has the form. 

ΨH r1, r2, . . . :rNð Þ=ψ1 r1ð Þψ2 r2ð Þ⋯⋯ψN rNð Þ ð8:56Þ 

This assumption is called the Hartree approximation. Note that the subscripts of 
the wave functions are independent number of the subscripts of the positions. The 
Schrodinger equation for ψ i(ri) is shown as 

HH,iψ i rið Þ= εiψ i rið Þ  for i= 1, . . .N ð8:57Þ 

where εi is the eigen value of the i-th electron and Coulomb interaction energy with 
the other electrons is consistently included. Since (8.57) is a nonlinear equation and 
is required to be solved iteratively by a numerical method so that the numerical 
solution is self-consistent. The solution of (8.57) has no exchange interaction 
between the electrons. The formulation should take account of the property of 
Fermion of the electron. 

It is known that the total wave function of the Fermion gas should be anti-
symmetry. Namely, the exchange of two electrons in the system should change the 
sign of the total wave function. A simple form of (8.56) is not acceptable as Fermion 
gas. The anti-symmetric total wave function is given by the following Slater 
determinant. It also should include the freedom of the electron spin, up or down 
(denoted with “s”). For simplicity, the coordinate including the spin (r, s) is shown 
as x in what follows. 

ΨHF x1, x2, . . . :xNð Þ= 
1 

N!
p 

ψ1 x1ð  Þ  ⋯ ψN x1ð  Þ  
⋮ ⋱ ⋮  

ψ1 xNð  Þ  ⋯ ψN xNð  Þ  
ð8:58Þ
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This is called Hartree-Fock approximation. Then, the Schrodinger equation for the 
i-th electron is given as the same form, but the Hamiltonian becomes differential and 
integral operator F [16]. 

EHF = ΨHF jHjΨHFh i= 
N 

i= 1 

Hi þ 1 
2 

N 

i= 1 

N 

j= 1 

Jij -Kij ð8:59Þ 

where Hi, Jij, and Kij are defined as 

Hi = ψ* 
i xð Þ -

ħ2 

2m
∇2 -

e2 

4πε0 

Nn 

k = 1 

Zk 

r-Rkj j  ψ i xð Þdx ð8:60Þ 

Jij = 
e2 

4πε0 
ψ i x1ð Þj j2 1 

r1 - r2 
ψ j x2ð Þ  2 

dx1dx2 ð8:61Þ 

Kij = 
e2 

4πε0 
ψ* 
i x1ð Þψ j x1ð Þ  1 

r1 - r2 
ψ* 
j x2ð Þψ i x2ð Þdx1dx ð8:62Þ 

Note that all integrals result real values and Jij ≥ Kij ≥ 0. The Jij is Coulomb integral 
representing the Coulomb repulsive force between all two electrons in the system. 
On the other hand, the Kij is the exchange integral and stems from the force due to 
the exclusive principle of Fermion particles. The exchange energy is purely quantum 
mechanical one and it appears because we have adopted the total wave function in 
the form Slater determinant to guarantee its anti-symmetry. It is important to note the 
fact that both energies look unphysical interaction for the case of j = i, while this 
unphysical case is excluded for the total energy in (8.59) since 

Jii =Kii ð8:63Þ 

We adopt (8.63) for extending to the density functional formulation to be 
discussed soon. 

Same as the Hartree approximation, we must adopt the wave functions ψ i(r) 
orthogonal, and then the following N coupled Schrodinger equation is obtained for 
the i-th single wave function.

F xð  Þψ i xð Þ= 
N 

j= 1 

εijψ j xð Þ ð8:64Þ 

where F is Hartree-Fock Hamiltonian. 

F xð  Þ= -
ħ2 

2m
∇2 -

e2 

4πε0 

Nn 

k = 1 

Zk 

r-Rkj  j þ g xð  Þ ð8:65Þ



In (8.64), εij is the eigen-value derived in matrix. (8.64) is called Hartree-Fock 
equation.
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On the right-hand side of (8.65), the first term the kinetic energy, the second term 
is Coulomb interaction with all nuclei, and the third term is integral operator due to 
the Coulomb and exchange interaction of the i-th electron with all other electrons in 
the system. It is given in the form. 

g xð Þ= j xð Þ- k xð Þ ð8:66Þ 

where the Coulomb coupling operator and exchange interaction operator are given to 
be 

j xð Þψ i xð Þ= 
e2 

4πε0 

N 

j= 1 

ψ j x
0ð Þ  2 1 

r- r0j jψ i xð Þdx0 ð8:67Þ 

k xð Þψ i xð Þ= 
e2 

4πε0 

N 

j= 1 

ψ* 
j x

0ð Þψ i x
0ð Þ  1 

r- r0j jψ j xð Þdx0 ð8:68Þ 

A new eigen value εi defined as follows is obtained by integrating (8.65) after the 
product with ψ* 

i . 

εi ≡ εii = ψ ijF jψ i =Hi þ 
N 

j= 1 

Jij -Kij ð8:69Þ 

Then, the total energy is given as 

EHF = 
N 

i= 1 

εi -Vee ð8:70Þ 

Vee = 
1 
2 

N 

i, j= 1 

Jij -Kij ð8:71Þ 

It is easily verified that the total wave function given in Slater determinant results the 
following form for two location probability after integration by x3, ⋯xn space. 

n x1, x2ð Þ= 
1 

N N - 1ð Þ  
N 

k, l 
ψ k x1ð Þj j2 ψ l x2ð Þj j2 -ψ* 

k x1ð Þψ k x2ð Þψ* 
l x2ð Þψ l x1ð Þ  ð8:72Þ 

The probability of two electrons at the same place and with the same spin x1 = x2 
becomes null.
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8.5.2 Kohn-Sham Density Functional Theory (DFT) 

Kohn-Sham theory provides the exact solution for the grand state of the system 
with many electrons and many nuclei by solving the following eigen-value problem 
of each electron. Then, the exchange effect due to the spin is modeled in the effective 
potential as a function of density. It starts to solve the single electron Schrodinger 
equation with the effective Hamiltonian derived by Kohn-Sham, HKS(r). 

HKS rð Þφi rð Þ= εiφi rð Þ ð8:73Þ 

where Kohn-Sham Hamiltonian is given in the form 

HKS rð Þ= -
ħ2 

2m
∇2 þ VKS rð Þ ð8:74Þ 

On RHS in (8.74), the first term is the kinetic energy of electron and the second term 
is the effective potential which is only the function of the electron density defined by 

n rð Þ= 
N 

i= 1 

φi rð Þj j2 ð8:75Þ 

It is assumed that KS potential is given as a function of density 

VKS rð Þ= f n  rð Þ½ ] ð8:76Þ 

It is important to note that the effective potential (Kohn-Sham) potential VKS(r) is  
common to all N electrons, so the eigen-energy εi and eigen-function φi(r) can be 
obtained by solving (8.73) as a single electron system. The orthogonality of all wave 
functions is certified. In solid-state physics, it is enough to obtain the N electron 
configuration after solving (8.73) for N wave functions from the lowest energy state. 
However, in the case of dense plasmas, it is required to solve many wave functions 
including excited states because of thermal excitation of electrons. 

For the case where the computational system is assumed to have Nn nuclei and N 
electrons, the KS potential is given in the form: 

VKS rð Þ=Vne rð Þ þ  VH rð Þ þ  Vxc rð Þ ð8:77Þ 

where Vne(r) is Coulomb potential to the i-th electron by the nuclei and given as 

Vne rð  Þ= -
e2 

4πε0 

Nn 

j= 1 

Zj 

r-Rj 
ð8:78Þ
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where Zjand Rj are the nuclear charge and position of the j-th nucleus. The second 
term on RHS in (8.77) is the Hartree potential by all electron at the point r. 

VH rð Þ= 
e2 

4πε0 
d3 r0 

n rð Þ  
r- r0j j ð8:79Þ 

The third term in (8.77) stands for the potential giving the force stemming from the 
exchange and correlation (xc) energy among N electrons. In DFT, both energies 
are represented with Exc as a function of only the electron density n(r). Then, Vxc(r) 
in (8.77) is defined by the functional derivative. 

Vxc = 
δExc 

δn rð Þ ð8:80Þ 

It is better to say that if the exchange-correlation (xc) energy Exc is derived as a 
function of the local density exactly, Kohn-Sham density functional theory is exact. 
This exchange-correlation energy Exc is not only these two energies, but it represents 
all energy left in (8.77) stemming from multi-electron system. It is hard job to 
correctly formulate the xc energy, and it is usually defined approximately. 

In solving DFT with computers, many numerical schemes have been developed. 
This is reported as code comparison in [21]. Typical numerical issue in calculating 
all wave functions with (8.73) appear from the fact that some electron wave function 
changes smoothly far from any nuclei, while it changes rapidly near a nucleus due to 
the deep Coulomb potential. 

8.5.3 Density Functional Theory for Finite Temperature 
System 

The Kohn-Sham theory has been applied to the case of solids, where total electrons 
are in the ground state. In the case of finite electron temperature (T ≠ 0), we must 
extend the Kohn-Sham theory so that the electrons are excited thermally to have a 
finite probability at the higher energy levels. Then, it is reasonable to assume that the 
electron energy distribution is given by Fermi-Dirac distribution fFD. 

f FD εið Þ= 
1 

exp εi - μð Þ=T½ ] ð8:81Þ 

where μ is the chemical potential. With the factor two of spin freedom, the electron 
density is given as 

n rð  Þ= 2 
N 

i= 1 

f FD εið  Þ φi rð  Þj  j2 ð8:82Þ
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The unknown chemical potential μ is determined to satisfy the electron number 
conservation relation: 

N= 2 
N 

i= 1 

f FD εið Þ ð8:83Þ 

After solving the above relations with one-electron Schrodinger Eq. (8.73) itera-
tively, the self-consistent density and each eigen-energy give the total energy of the 
electrons E in the system. 

E= 
N 

i= 1 

f FD εið Þεi - 1 
2 

e2 

4πε0 
d3 r d3 r0 

n rð Þn r0ð Þ  
r- r0j j  þ Exc

- d3 rVxc rð Þn rð Þ ð8:84Þ 

where the first term is the sum of eigen energies of N electrons as single electron. 
Since this term double counts the Coulomb interaction energy among multi-
electrons, the second term is needed in (8.84). 

In (8.84), the total exchange energy for each electron is defined by the following 
integral. 

Exc = d3 rεxc rð Þn rð Þ ð8:85Þ 

It is very hard subject to derive the local exchange-correlation energy εxc(r) as  a  
function of the local density n(r) [22]. In the form (8.84), the xc energy is also double 
counted and the fourth term is required. 

In the actual computation, the coupled equations are solved iteratively so that the 
numerical result becomes self-consistent. 

In [20], density functional theory with molecular dynamics (DFT-MD) has 
been developed to solve the problem including the ion motion. New formulation of 
the xc energy for finite-temperature hydrogen has been derived and its effect has 
been discussed in WDM. Using the Kohn-Sham approach, the xc energy of the 
system, εxc(r), is replaced by the xc free energy fxc(r) within the local density 
approximation (LDA) based on parametrized path integral Monte Carlo data for 
the uniform electron gas (UDG) at warm dense matter conditions [20]. 

In the UDG, Slater has derived the following simplest form of the xc energy as a 
function of density for solids [16]: 

εxc rð  Þ= an1=3 , a= -
3 
4 

3 
π 

1=3 

ð8:86Þ
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Fig. 8.18 The density surface distribution for given density in three different stage in laser 
compression of solid aluminum. The simulation is carried out with time-dependent density func-
tional theory (TDDFT). Reprinted by permission from Macmillan Publisher Ltd: ref. [23], Copy-
right 1993 

This simplest form has been used for many cases. The intensive works have focused 
on the improvement of the density functional form of the xc energy as general form 
for the grand state in solids. In the case of WDM system with finite temperature, the 
research to formulate the xc energy is still challenging subject [22]. 

In Fig. 8.18, three snap shots of time-dependent density functional theory simu-
lations of the formation of WDM are shown This is the result of TDDFM based on 
DFT-MD to the following experiment [23]. 

Two 4.5 J laser beams were used to irradiate 50-μm-thick Al foils (initial density 
of ρ = 2.7 g/cm3 ) coated with 2-μm-thick perylene. The laser beams were absorbed 
by the perylene, heating the material, and two counter-propagating multi-Mbar 
shock waves were launched into the solid aluminum by ablation pressure. Within 
0.5 ns, the laser power rose to a power that was constant over time, with an intensity 
of 35 TWcm-2 . Each laser operated at 527 nm and was spatially smoothed over a 
focal spot of 60 μm to launch strong shocks. 

The left is solid state, the middle is melting phase, and the right is WDM state. In 
the figure, the ions (blue) abandon their lattice positions. Although core electrons 
(grey) remain mostly unchanged, the delocalized conduction electrons (represented 
by orange iso-surfaces) are disturbed from the very regular structure in the lattice. 

8.5.4 Time Dependent DFT 

Numerical method, of course, changes in solving the time dependent DFT 
(TDDFT). The basic equation to be solved is now the following time-dependent 
Schrodinger equation.
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i 
∂ 
∂t 

φi r, tð Þ=HKS r, tð Þφi r, tð Þ ð8:87Þ 

The Kohn-Sham Hamiltonian is given with the same form (8.74) as functions of the 
time-dependent density n(r, t). The density is defined by (8.82). If we use the finite 
dereference method to the time integration, the iteration should be carried out to keep 
the consistency of Kohn-Sham theory at each time step. 

At first, consider that case of very fast phenomena seen when an ultra-short laser 
pulse irradiate gas with atom or molecule. Even in such a case of single atom or 
molecule, DFT is useful to obtain the spectrum of higher-harmonic generation 
(HHG) due to nonlinear oscillation of electrons in the gas. In Chap. 2 (Volume-1), 
the multi-photon ionization process has been discussed. When an intense laser is 
irradiated with the intensity less than dominant ionization process, the bound 
electrons oscillate in the potential by nuclei and this un-harmonic oscillation causes 
the emission of many harmonic radiations. 

As shown in [24], the time dependent potential by the laser electric field VL(r, t) is  
given under the dipole approximation. 

VKS rð Þ )  VKS r, tð Þ þ  VL r, tð Þ ð8:88Þ 

where 

VL =E0f tð Þ sin ωtð Þr ∙α ð8:89Þ 

where the peek electric field is E0 and the structure of laser envelope is f0 and α is the 
unit vector showing the laser polarization. Note that (8.87) is applicable only in the 
non-relativistic case. In the ultra-intense and relativistic laser case, Schrodinger 
equation should be replaced by Dirac equation and the potential VL should include 
the force by magnetic field of laser. 

It is useful to see TDDFT simulation applied for the HHG from the He atom as 
shown in Fig. 8.19 [24]. Note that the solid line is obtained from the simulation and 
the squares represent experimental data. It is concluded that even atomic or molec-
ular gas system, DFT results reasonable HHG spectrum being able to explain the 
corresponding experiment. 

More complicated case where laser is irradiated to solid and other has been 
carried out. The time-dependent simulation code is now available as an open source 
(name SALMON) in our community [25]. 

8.5.5 Quantum Molecular Dynamics (QMD) 

To study a long-time evolution of WDM, it is necessary to solve the motion of nuclei 
consistently. It is reasonable to assume that since the mobility of electrons is much



ð

larger than that of nuclei, DFT is applicable to given positions of nuclei at each time 
step. The motion of a nucleus k is governed by the following equation of motion. 
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Fig. 8.19 The higher-harmonic generation (HHG) is clearly seen by the post process of the dipole 
moment spectral analysis with total wave functions obtained from TDDFT. Reprinted with permis-
sion from Ref. [24]. Copyright by Annual Review Journal 

Mk 
d 
dt 
vk = -∇k Ee Rkð Þ þ V Rkð Þ½ ] 8:90Þ 

where Mk, vk, and Rk are the mass, velocity, and position of a nucleus k. Ee(Rk) is the 
total electron energy at the point Rk calculated by DFT for electron system. In 
addition, the nucleus k is affected the Coulomb force by the other nuclei whose 
potential energy is given as 

V Rkð Þ= 
e2 

4πε0 

Nn 

j= 1 

ZkZj 

Rk -Rj 
ð8:91Þ 

Since the force to nuclei is given at each time step by quantum mechanical method 
DFT, it is QMD and different from the classical molecular dynamics (MD) where 
usually the force is given by Lenard-Johns type potential shown in (8.4). 

In Fig. 8.19, three snap shots of time dependent DFT simulation are already 
shown [23]. This is the case of DFT-QMD simulation. Do not confuse that TDDFT 
for (8.87) is the time-dependent simulation of electron dynamics for fixed nuclei and 
the time step is very short, while the DFT-QMD is the time evolution of ion motions 
with time step much longer than the previous case. It is, of course, easy to extend 
TDDFT to follow the motion of nuclei, but the problem is the time-consuming 
computation time.
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Chapter 9 
Physical of Warm Dense Matters 

Abstract Continuous progress of compute capability, DFT has been used to study 
complicated physics of warm-dense matter (WDM) to compared to a variety of 
experimental results in laboratories obtained by compression and heating of solids 
with intense lasers. The phase transition of insulator-metal of hydrogen is now hot 
topics in high-pressure physics (HPP). Advancement of laser technology and diag-
nostics have made such challenging subjects as precision science. 

In twenty-first century, x-ray free electron laser (XFEL) facilities have been 
constructed as users’ facility. XFEL is new method to precision diagnostics of dense 
matters via x-ray Thomson scattering (XRTS). For bridging the experiment and theory 
to analyze XRTS data, Chihara formulated scattering spectra by decomposing three 
dynamical structure factors (DSF). Now, time-dependent DFT (TDDFT) is also solved 
with supercomputer to apply laser-matter interaction in quantum world. 

In this chapter, whole stories and models are explained and some examples are 
explained regarding the application to analyze experimental data obtained with 
intense lasers and XFEL. 

9.1 Shock Dynamic Compression and Equation of State 

A static compression method to study the thermodynamic property of compressed 
matters was explained in Chap. 8, where a study of the metallic hydrogen with a 
diamond anvil cell (DAC) is described. Such static mechanical compression of 
matters is useful tool for study of the properties of matters at low temperature, and 
such study is called high-pressure physics. The extremely high pressure up to 
5 Mbar is achieved at the present day. Since the property of metal is defined at the 
temperature of the null Kelvin, DAC would be a good device to study such high-
pressure physics for the condensed matter physics. 

As the readers see here, on the other hand, it is possible to compress matters to 
pressure higher than the static methods with DAC by use of intense lasers. The 
ablation pressure loaded on solid sample surface generates shocks during the time 
comparable to the laser pulse duration, namely order of 10-9 s (~ns). Although it is
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very short time, the time need to change from the initial state to the shocked state is 
shorter than the laser pulse and thermodynamic equilibrium relation can be used in 
general even in the case where phase transition happens at the shock front.
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The achievable pressure depends on the laser intensity and its wavelength as 
shown in Chap. 3. Most of the recent experiments use the intensity less than several 
1014 W/cm2 and laser wavelength of 0.35 μm, and the experimental range covers the 
pressure up to 100 Mbar. In general, the physical quantities of equation of state are 
derived using Ranking-Hugoniot (RH) relation. The curve obtained from the RH 
relation is called the Hugoniot curve as shown in Chap. 3. This topic is well 
described in the textbook by Zel’dovich and Raizer [1]. The experiments to obtain 
the Hugoniot curve of a variety of solid materials at extremely high pressure have 
been done with high-explosive or nuclear underground test. The theory and exper-
iment before the 1960s are well described in Chapter XI-2 in the book [1]. 

In general, the pressure of matters is divided into three components as Helmholtz 
free energies in (8.9). 

P V , Tð Þ=Pc Vð Þ þ  Pi V ,Tð Þ þ  Pe V ,Tð Þ ð9:1Þ 

where V = 1/ρ is the specific volume. In what follows, we use both of V and the 
mass density ρ for convenience. The Pc(V) is the cold pressure of matters at 
temperature equal to zero. This pressure is the target in the study by use of DAC. 
In the shock compression, the temperature also increases as the density, and the 
Hugoniot curve also depends on the thermal pressure by the motion of nuclei, 
namely ions Pi(V,T), and the contribution by thermal electrons Pe(V,T). The ion 
pressure includes the contribution by phonons and ion thermal motion. The Debye 
theory is famous at low temperature condensed matters [2]. 

It is better to see one example for the case of a solid at the initial state. In the book 
[1], the case of solid lead is shown, and its data are shown in Table 9.1. The solid 
lead is compressed by the pressure up to 4 Mbar and its density increases to 2.2 times 
the solid density. It is clear in Table 9.1 that even with heating by a shock wave up to 
about 2.3 eV, the cold pressure is predominant in (9.1), while the internal energy 
looks distributed almost equally to the three components; namely, equal energy 
partition. Mostly the compressed state is kept by the cold pressure in (9.1), conse-
quently, to know Pc(V) is very important. 

Table 9.1 Parameter behind a strong shock wave in lead. Pressure, energy, and temperatures are in 
the units of Mbar, eV, and eV, respectively. Reprinted with permission from ref. [1]. Copyright by 
Cambridge University Press 

ρ/ρ0 c Pi Pe Pc/P ε - ε0 εc T 

1.3 0.25 0.21 0.03 0.0005 0.84 0.25 0.15 0.09 

1.5 0.65 0.51 0.14 0.0063 0.78 0.96 0.47 0.30 

1.7 1.33 0.95 0.34 0.038 0.71 2.42 0.96 0.74 

1.9 2.25 1.56 0.56 0.127 0.69 4.71 1.63 1.29 

2.1 3.36 2.33 0.73 0.290 0.69 7.75 2.48 1.92 

2.2 4.01 2.77 0.93 0.415 0.69 9.65 2.97 2.28
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Progress of technology of pressure-drivers and diagnostics has led the experi-
ments to a laboratory scale and precise data are now available experimentally. The 
diagnostics is essential ingredient for such research, but we don’t describe the details 
of the diagnostics and limit in this book only to explain its physical principle. 

9.1.1 Theoretical Base for Shock Equation of State 

Assume that the physical quantities in front of a shock, ρ0, P0 and ε0 are known in 
(3.10, 3.11, and  3.12). Introducing the shock velocity, Us, and compressed matter 
velocity, Up, which is equal to the piston velocity in the laboratory frame, we can 
replace u0 and u1 with them. 

Us = u0, Up = u0 - u1 ð9:2Þ 

If we can obtain these velocities experimentally, we can solve (3.10, 3.11, and 3.12) 
to obtain the physical quantities in the shock compressed region, 

ρ1 = ρ0 
Us 

Us -Up 

P1 =P0 þ ρ0UsUp 

ε1 = ε0 þ 1 
2 

P1 -P0ð Þ  1 
ρ0

-
1 
ρ1 

ð9:3Þ 

With given values of Us and Up for single-shock dynamics, the thermodynamic state 
after the shock passage are given by (9.3). This curve of density vs pressure is called 
the Hugoniot curve. 

In general, for the case of high-pressure applied to the solid or liquid samples, it is 
possible to neglect the initial values of P0 and ε0 in (9.3) and we obtain 

P= ρ0U
2 
p 1-

V 
V0 

ε= 
1 
2 
PV0 1-

V 
V0 

ð9:4Þ 

where the suffix “1” is omitted for simplicity. The cold components must be given by 
the integral: 

εc = -
V 

V0 

PcdV ð9:5Þ
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Fig. 9.1 Pressure-Volume 
(P-V) diagram with 
adiabatic relation Pc and 
Hugoniot relation PH, when 
the initial volume V0c is 
compressed to the volume 
V. Since the shock wave 
accompanies the increase of 
entropy by altering flow 
kinetic energy to the thermal 
energy at the shock front, 
the compressed matter has 
extra internal energy O-A-B 
compared to that for the case 
of adiabatic compression. 
Reprinted with permission 
from ref. [1]. Copyright by 
Cambridge University Press 

Plotting the Hugoniot cure for P (=PH) and the cold curve Pc as functions of the 
specific volume V with use of (9.4) in Fig. 9.1, it is clear graphically that 

1. The increase of the internal energy by shock is given by the area of the triangle of 
O-A-C from (9.4). 

2. The energy increase of the cold component is given by the area of O-B-C shaded 
by the horizontal lines as defined in (9.5). 

3. The increase of the thermal energy by shock is the area of O-A-B shaded by the 
vertical lines. 

Let us evaluate the energy given to the kinetic flow energy K in the shocked region. 
K is easily obtained from (9.2) and  (9.4) that 

K = 
1 
2 
U2 

p = 
1 
2 
PV0 1-

V 
V0 

) K = ε ð9:6Þ 

It is surprising that the shock wave gives equally its energy to internal and kinetic 
energies regardless the strength of shock wave. The total energy given to the 
compressed materials is 

E= εþ K =P V0 -Vð Þ 9:7Þ 

It is informative to confirm whether E is the mechanical work done by the piston, 
W. The mechanical work W done by the piston per unit time is 

dW 
dt 

=PUp =P V0 -Vð ÞJ0 ð9:8Þ 

where J0 is the mass increase in the shocked region per unit time,
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J0 = ρ0u0 ð9:9Þ 

Therefore, the energy given to the unit mass by the shock wave, E, is the same as the 
mechanical power given to the unit mass. 

If we can obtain many Hugoniot curves starting from different initial conditions, 
say different initial densities or initial pressures, we can obtain the thermodynamic 
quantities ε(P,V) in a wide range as a table or fitting formula. Then, we can solve the 
hydrodynamic energy equation by altering LHS of (2.22) to the form. 

dε 
dt 

= 
∂ε 
∂P V 

dP 
dt 

þ ∂ε 
∂V P 

dV 
dt

ð9:10Þ 

However, still the temperature is unknown. Recently, the temperature is also mea-
sured experimentally by measuring the radiation emission from the shocked region. 
It is simple that the compressed matters are optically thick and the radiation emission 
is assumed to be Planck radiation and the observed photons in appropriate energy is 
used to obtain the temperature T(V,P). 

Even if the temperature data are also obtained, the thermodynamic consistency 
should be checked. If not, there should be some miss assumption mentioned already. 
In the early time of research, the temperature was not be able to be detected, but we 
have to derive the temperature T(P, V) in order to determine the equation of state. In 
such case, we can obtain the temperature from P and ε data as follows. 

Start with the first law of thermodynamics. 

dε= TdS-PdV ð9:11Þ 

Assume that the internal energy ε is obtained as a function of density and pressure 
from experimental Hugoniot data, the following relation should be satisfied in LTE. 

dε= 
∂ε 
∂V P 

dV þ ∂ε 
∂P V 

dP ð9:12Þ 

Eliminating (9.11) with (9.12) to obtain the following relation to T, 

TdS= Pþ ∂ε 
∂V P 

dV þ ∂ε 
∂P V 

dP ð9:13Þ 

Equation (9.13) can be modified by dividing it with dS as 

T = Pþ ∂ε 
∂V P 

∂V 
∂S P 

þ ∂ε 
∂P V 

∂P 
∂S V 

ð9:14Þ 

This can be also written with use of Maxwell relation [2].
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T = Pþ ∂ε 
∂V P 

∂T 
∂P S

-
∂ε 
∂P V 

∂T 
∂V S 

ð9:15Þ 

In order to solve (9.14) or (9.15) to obtain T(V,P), we need to know the entropy 
S=S(V,P). This can be done from (9.11) with dS = 0 for a constant Si. 

ε V , Sið Þ= - P V , Sið ÞdV ð9:16Þ 

Solving (9.16) as implicit unknown for Si, we obtain the so-called iso-entropy 
(adiabatic) curve. Once the iso-entropy relation is also obtained, the temperature is 
given from (9.11) in the form 

T = 
∂ε 
∂S V 

ð9:17Þ 

Then, we have obtained all thermodynamic quantities. It is better to check the 
thermodynamic consistency (2.37) is satisfied and how much the error bar is. It is 
noted that in the case where phase transitions happen, be careful to the fact that some 
derivatives may diverge. For example, the volume change under a constant pressure 
in the 1st order phase transition. 

9.1.2 Shock EOS Experiments 

Let us see a modern method of diagnostics widely used in laser shock experiments. 
The measurement of a shock wave and piston velocities are carried out with use of 
the Doppler shift of the irradiating laser for diagnostic purpose. In Fig. 9.2a,  
schematics of a typical shock experiment with intense laser is shown, where 
Omega EP laser stands for laser irradiation from the left [3]. The sample of 
compression experiment is shown as TATB and the other target materials are for 
clear imaging of shock propagation in the target. 

By measuring the Doppler shift of the reflected laser of diagnostic for VISAR, the 
piston velocity is observed. Shock velocity is observed by measuring the time 
interval of Dt between the shock arrival and exist in the TATB layer as shown in 
Fig. 9.2b. At the same time, measuring the self-emission spectrum from the shock 
region, the temperature is inferred. 

It is noted that the materials are optically thin for the laser for the diagnostic 
coming from the left in Fig. 9.2, but optically thick to the spectrum in the self-
emission of the shocked material. In case of hydrogen sample, the diagnostic laser is 
chosen to be visible light and the emission is chosen ultra-violet. Shock Hugoniot 
experiment for metal materials, we can extend the above method, too. The details of



the diagnostic system called VISAR and VOP is well explained in a review 
paper [4]. 
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Fig. 9.2 (a) A typical target structure set-up of EOS experiment with intense lasers. The right (b) is  
data of VISAR showing the timing of shock passage [3]. Reprint with permission from ref. [3]. 
Copyright 1998 by American Institute of Physics 

Modern shock experiments are done with gas gun, Z-pinch or laser facilities 
[5]. In the case of Z-pinch and some case of lasers, soft x-ray source generated by 
such drivers has been used, since the radiation is smooth flux to the ablator of targets 
to generate planer shocks. By use of such shock Hugoniot experiments, the pressure 
and density curves are obtained experimentally as already shown in Fig. 8.13. 

9.1.3 Shock Experimental Results 

Even if the band gap of compressed matters is wide enough in the shock experiments 
as indicating the gap of insulator in Fig. 8.8, they can show the properties of metal, 
namely insulator-metal transition (IMT) is observed in shock experiments. It is 
easy to understand the physics, because the band gap disappears by the shock 
compression as shown in Fig. 8.5. This is purely insulator-metal transition to be 
discussed later. At the same time, however, the Fermi-Dirac distribution of the 
electrons expands the electron distribution to higher energy levels and some fraction 
of electrons can freely run in the conduction band, when the matter is heated by the 
shock wave to the temperature where the thermal energy is comparable or larger than 
the band gap energy.
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Experimental result of the insulator-to-metal transition of fluid molecular hydro-
gen was initially reported by the experiment with gas gun [6]. High shock pressures 
are generated by impact of a hypervelocity impactor accelerated by a gas gun onto 
the front surface of aluminum sample holder. The experiment is designed so that a 
shock wave reverberating hold between Al2O3 anvils to compress liquid H2 or D2 to 
pressures of 0.93–1.8 Mbar. Thanks to the multi-shock compression, the temperature 
is kept at a few 0.1 eV, roughly 10 times lower than a single shock case at the same 
pressure. In this experiment, electric conductivities are measured. It is measured that 
the resistivity decreases almost 4 orders of magnitude from 0.9 to 1.4 Mbar and then 
plateaus to 1.8 Mbar. 

This pressure 1.4 Mbar for insulator-to-metal transition is very low compared to 
the static experiment result 5 Mbar by another static method. Shock compression is 
also used to clarify the critical pressure to change the insulator to metal in fluid 
deuterium at relatively low temperature. The experimental data are plotted in Fig. 9.3 
in Ref. [7] to  find the phase transition boundary curve, where the black solid line 
inferred by experimental data is the plasma phase transition. It is easily understood 
such phase transition from the images combined both of Figs. 8.5 and 8.8. The 
boundary with the black open circles means the points where the band gap becomes 
about 2 eV, almost semiconductor. 

There have been published many experimental data for many materials. In 
Fig. 9.3, many of experimental Hugoniot data of deuterium are compared to calcu-
lated curves [8]. This is the present status of shock compression experiments, where 
still error bars are not so small and several different theoretical models of equation of 
state (EOS) look relatively well explain the experimental data. 

Fig. 9.3 Many 
experimental data of solid 
deuterium Hugoniot curves 
compared to a variety of 
theoretical curves. Reprint 
with permission from ref. 
[8]. Copyright 1998 by 
American Physical Society
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Fig. 9.4 The Hugoniot data 
of hydrogen/deuterium with 
different initial condition, 
where the initial density is 
altered by use of DAC. 
Reprint with permission 
from ref. [9]. Copyright 
1998 by American Institute 
of Physics 

It was already mentioned that to obtain the dense matter EOS in a wide range, we 
must get experimental data by changing the initial condition of density and/or 
pressure. Using the shock wave transmitting from the quartz reference plate, the 
Hugoniot curves of the different initial density and pressure can be obtained 
[9]. Since we know the details of the shock Hugoniot of quartz, the shock com-
pressed state of the fluid hydrogen is evaluated with the initial parameters of shock 
experiment. In Fig. 9.4, the experimental data are plotted for hydrogen and deute-
rium for four different initial pressures (density), 1 kbar (0.029 mol/cm3 ), 3 kbar 
(0.044 mol/cm3 ), 7 kbar (0.061 mol/cm3 ), and 15 kbar (0.079 mol/cm3 ) [9]. The 
corresponding solid lines are theoretical ones from density-functional-theory with 
molecular dynamics (DFT-MD) methods. It is seen that small change of the initial 
pressure and density alters the Hugoniot curve substantially. 

9.2 Equation of State of Hydrogen at High Pressure 

The compressible fluid dynamics becomes important to study and apply the dynam-
ics of plasmas produced by intense lasers, because the energy flux (W/cm2 )  i  
extremely high on the surface of the matters irradiated by such lasers and the 
pressure over 1 Mbar (100 GPa) is easily generated as shown in Chap. 3. Any 
solid matters are highly compressed and heated under one million atmosphere 
pressure. To know the dynamics of such plasmas, realistic equation of state 
(EOS) should be prepared before any hydrodynamic analysis.
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Fig. 9.5 The image of 
structure of the diamond 
anvil cell (DAC). A small 
sample is compressed by the 
force on the both diamonds 

Here, a brief review of the equation of state (EOS) for the liquid or solid hydrogen 
is given since most of the important physics are included in the case of hydrogen. 
Such high-pressure properties of the matters have been studied in the community of 
high-pressure physics for a long time and the standard technique to produce high-
pressure has been done with Diamond Anvil Cell (DAC) method. 

The DAC uses two diamonds as shown in Fig. 9.5 to apply high pressure to a 
small sample sandwiched by two diamonds with help of mechanical pressure to them 
[10]. With advancement of technology, the maximum pressure approached to about 
5 Mbar (500 Gpa). It is noted that DAC can compress matters while keeping the 
sample temperature low enough. So, it cannot be used to obtain experimental data 
for the wide range of matter temperature at high-pressure. Note that the laser shock 
wave method has appeared as an alternative way to study the high-pressure physics 
in higher pressure region. 

The physics of molecular bonding of the hydrogen gas was explained already. It 
is well known that the hydrogen becomes molecular solid at extremely low temper-
ature. The phase diagram of hydrogen at high pressure is shown in Fig. 9.6 
[11]. Compared to Figs. 9.4 and 9.6 is more precisely in high-pressure and 
low-temperature region, based on the recent theoretical results reported in 
[12]. Hydrogen has four different solid states at very low temperature. At the 
atmospheric pressure it is normal molecular solid (Solid I), but it changes the lattice 
structure at high pressure to Solid I, II, and III [13]. The physics in such low 
temperature region is out of the present textbook and the readers can obtain the 
image of the lattice structures drawn in [13]. 

Insulator to metal transition of hydrogen at high pressure is very fundamental in 
the condense matter physics. Over 80 years ago Wigner and Huntington predicted 
that if solid molecule hydrogen was sufficiently compressed in the T = 0 K limit, the



molecules would dissociate to form atomic metal hydrogen (MH) [14]. In this 
famous old paper, the authors calculated the electron wave functions with Slater 
matrix in so-called Wigner-Sitz cell. It is concluded that the total electron state 
become in free state to form metallic hydrogen at pressure of 0.25 Mbar (25 Gpa). 
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Fig. 9.6 Phase diagram of hydrogen at high pressure and relatively low temperature. The melting 
boundary is shown with red curve, and the boundary of plasma phase transition is shown with blue 
curve. The critical point is the triple-phase point. It is predicted that the solid metallic hydrogen 
appears at high-pressure under very low temperature as shown with red dot line. Reprinted with 
permission from ref. [11]. Copyright by PNAS 

9.2.1 Insulator Metal Transition 

Before talking about the insulator-metal transition (IMT) at high-pressure, let us 
remember the definition of materials. The solid materials are classified as metals, 
semiconductors, and insulators at T = 0 K based on the band gap theory as



schematically shown in Fig. 9.4. The bands in quantum energy levels are classified 
as valence and conduction bands. Electrons in the valence band cannot move and all 
electrons in the insulators are in the valence band. On the other hand, electrons in the 
conduction band can easily move in the materials and the metals have enough 
electrons in the conduction band. The semiconductors are in the middle. If the 
insulators have energy gap over which electrons easily jump up to the conduction 
band with absorption of photon energy of the ultra-violet component of wavelength 
400 nm (~3.2 eV), the materials are defined as semiconductors. 
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In the case of insulators, electrons are filled in the density of state below Fermi-
energy as explained in Fig. 8.5, and the band gap is wide not allowing electrons in 
the conduction band. It is, however, noted that the band gap is a function of the 
average atomic distance of the matters, and it changes as the matters are compressed 
as shown in Fig. 8.11. In the metals, enough electrons are in the energy level higher 
than the Fermi energy level, which is the zero energy in the case of an atomic energy. 
When a condensed matter is compressed and the energy levels of the bands change 
so that the electrons located in the valence band becomes free, the compressed 
matters show the properties of metals thanks to such free electrons. This is a rough 
explanation of the IM transition of hydrogen at high pressure for the temperature 
T = 0 case. 

As increase of the pressure of hydrogen sample, the semiconductor state appears 
where external ultra-violet photons are absorbed at the sample surface. Then, after 
the metal transitions the photons are reflected almost completely by the free electron 
plasma current near the surface. These two phenomena are regarded the evidence of 
IM transition at high-pressure. This transition is shown above 4 Mbar in Fig. 9.6. 

It is also suggested from Fig. 9.6 that at high pressure lower than the critical value 
of the MI transition, substantial free electrons in the conduction band can be supplied 
if the temperature of the matters are increased by kBT > ΔE, where ΔE is the energy 
of the gap. Such transition from insulator to metal at relatively high temperature in 
the compressed matter is studied by Zel’dovich and Landau [15]. Such phase 
transition is plotted with blue line as plasma phase transition in Fig. 9.6. In this 
case, the hydrogen phase changes from the solid to liquid insulator and then to 
metallic liquid as shown in Fig. 9.6. 

9.2.2 Computational Studies 

There are many computational methods to obtain the band structures and electron 
density structures in high-pressure regime based on quantum many-body problem. 
Simply saying, it is numerical modeling to solve many electrons Hartree-Fock 
equation in many nuclei, say more than 1020 electrons should be solved consistently 
as shown in Chap. 8.5. It is impossible even with supercomputers in near future. 

One trial for the compressed matters in an early time has been done with so-called 
discrete-variational Xα method (DX- Xα)  [16]. They considered clusters with a 
crystal structure of neon. Solving many wave functions for one set of nucleus and



electrons with appropriate boundary conditions and they are used for the base 
functions for variational methods for total wave functions of all electrons in the 
cluster. Numerical atomic basis orbits are solutions of the one-electron wave equa-
tion containing the spherically symmetric potential 
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Fig. 9.7 Computational 
result of eigen-energies of 
totally 13 neon nuclei are 
compressed with 10 × 13 
(=130) electrons. Total 
wave functions have 
130 energy levels. At far 
interatomic distance, the 
energy levels of each 
isolated atom is obtained, 
while as decrease of the 
distance, they are separated 
and makes band structure 
[16]. Reprint with 
permission from ref. [16]. 
Copyright 1998 by 
American Physical Society 

V rð Þ=VC þ Vex þ VW ð9:18Þ 

Here VC is the Coulomb potential due to the nucleus and direct part of the inter-
electronic interaction. Vex is the Slater exchange potential, which is of local assump-
tion and proportional to the (density)1/3 as shown in (15.4.33). VW is a model 
potential of the wall corresponding to the ion sphere. 

In Fig. 9.7, the energy levels of all electrons in 13 neon nuclei are plotted as 
functions of interatomic distance normalized by Bohr radius. All electrons energy 
levels tend to those of a single atom for the case where the atomic distance is large. 
With decrease of the distance the ground state energy decreases thanks to the 
potential of the neighbor nucleon, but the energy levels of the states whose wave 
functions are wider and affected by the other electrons are spread as already pointed 
out schematically in Fig. 8.11. It is noted that most of the electrons at the upper 
energy levels are free electrons and they are jumping around the cluster. They can be 
regarded as free electrons and the energy levels of the free state are speculated going 
down in Fig. 9.7 as the density increases. There are finite number of eigen states in 
Fig. 9.7, because of finite number of the base functions in the computation.
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Fig. 9.8 The phase transition is clearly observed computationally. The radial distribution function 
is the radial distribution of probability of the surrounding nuclei. From orange to blue lines, the 
increase of the density changes the probability dramatically. Reprint with permission from ref. [18]. 
Copyright 1998 by American Physical Society 

More precise calculations have been done with ab initio molecular dynamics 
(MD), quantum Monte Carlo (QMC) and density functional theory (DFT). 
Computations have been done for hydrogen at pressure up to several Mbar and 
temperature above the melting line up to 1500–2000 K. The first-order phase 
transition in liquid hydrogen, between a low conductivity molecular state and a 
high conductivity atomic state has been observed. The phase transition is character-
ized by the abrupt change of electric conductivity and the radial distribution 
function, which are derived consistently from the computational results [42, 43]. 

In Fig. 9.8, it is very clear that the phase transition dramatically happens at the 
density around 1.03 g/cm3 as the proton-proton radial distribution function (pair-
correlation function) g(r) in blue changes to that in red [18]. In the computation, the 
density is changed with a constant temperature 700 K, isotherm. It is seen in Fig. 9.8 
that the pair function before the phase transition behaves like a lattice, while once the 
phase transition happens the ordered structure disappears, and protons are located 
randomly in such metallic state. 

In Fig. 9.9, the resultant electric conductivities are shown for the case of four 
different temperatures [19] and three temperatures [17]. The abrupt increase of the 
conductivity is seen at high pressure and such phase transitions happen at lower 
pressure at higher temperature. These transitions correspond to the plasma phase 
transition in Fig. 9.6. Such insulator-metal transition can be experimentally observed 
by detecting abrupt change of reflectivity of probing laser light from the pressured 
sample.
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Fig. 9.9 Pressure dependence of electric conductivity at given temperatures. The phase transition is 
clearly observed. Reprint with permission from ref. [18]. Copyright 1998 by American Physical 
Society 

9.2.3 Experimental Evidence of Insulator Metal Transition 

As mentioned before, the hydrogen metal state appears at more pressure than that at 
which the band structure becomes of semiconductor. With optical measurement of 
solid hydrogen at T = 100 K under the pressure of 300, 306, 311, and 316 GPa with 
DAC, the transmission spectra show photon absorption edge and its photon energy 
decreases as the pressure increases [20]. Since the photons of visible light are 
completely absorbed by the hydrogen, it is called black hydrogen. In this experi-
ment, the technical maximum pressure was 320 Gpa, but the data extrapolate to the 
higher pressure, consequently indicating the prediction that the metal hydrogen 
should be observed at about 450 GPa when the gap closes. 

It is reported that the Wigner-Huntington insulator-metal transition predicted in 
1935 was experimentally observed with the diamond anvil cell (DAC) [21]. Produc-
tion of the metallic hydrogen has been a great challenge to condense matter physics 
and applications. At a pressure of 495 GPa hydrogen is found to become metallic with 
reflectivity as high as 91%. This critical pressure is about 10 times higher than the 
value predicted by Wigner-Huntington about 80 years ago, while it was near the value 
predicted by the extrapolation of the photon absorption edge mentioned above 
at15 years ago. Comparison with a theoretical model on reflectance inferred the 
plasma frequency of about 33 eV at T = 5.5 K, which corresponds to the free electron 
density of 7 ~ 9 × 1023 cm-3 . This number is consistent with the value of estimated 
atom number density. This accomplishment is regarded to the production of Wigner-
Huntington transition to the atomic metallic hydrogen in the laboratory [21].
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9.3 Radial Distribution Function and Strongly Coupled 
Plasma 

9.3.1 Interaction Energy in Ideal Plasma 

As explained in Chap. 2 in Volume 1, the Debye shielding is given for the ideal 
plasma in the form. 

ρ rð Þ= -
1 
4π 

k2 D 
q 
r 
exp - kDrð Þ ð9:19Þ 

where q= Ze or =-e for the central charge of ion or electron, respectively. Then the 
Coulomb interaction energy of such Debye shielded charged particle can be obtained 
as 

ρ rð Þ  q 
4πε0r 

dr= -
q2kD 
4πε0 

ð9:20Þ 

Summing up two cases of an ion at the center and the electron at the center, and 
dividing by two for avoiding double counting, the following total energy density of 
plasma particles is obtained 

Etot =Ekin þ Eint = 
3 
2 

ni þ neð ÞT -
1 
8π 

k3 DT ð9:21Þ 

The Coulomb interaction due to Debye potential is attractive force for both of ion 
and electron because the interaction energy of the second term of RHS in (9.21) is  
negative. 

The ratio of the interaction energy to thermal energy is a dimensionless parameter 
proportional to the plasma Λ defined as 

Λ= 4πnλ3 D ð9:22Þ 

where n = ni = ne is assumed for simplicity and λD is the Debye length. The Λ is 
roughly equal to the number of particles in the Debye sphere, which is required to be 
much larger than unity for the ideal plasma. For hydrogen plasma the energy ration is 

Ekin 

Eint 
= 24πnλ3 D = 3Λ ð9:23Þ 

The plasma Λ is nothing without the ration of both energies and it approaches the 
unity as the increase of the interaction energy. It is noted that as Coulomb logarithm 
approaches unity, the collisional coefficients based on Debye shielding model



becomes not applicable and some new theory is required. The plasma Λ is also 
related to the ion-ion coupling parameter Γii defined in the form: 
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Γii = 33
p 

Λ- 2=3 ð9:24Þ 

It is important to study the physical properties of such strongly coupled plasma to 
study the physics near the centers of stars and giant planets. Even in the industrial 
application of plasma or planet formation with accretion disk in Universe, for 
example, so-called dust plasma plays important role in the evolution of system. In 
case of such dusty plasma, the coupling parameter Γii approaches to unity even 
though the plasma number density is very low compared to the solid density. The 
dusty plasma is made of many giant particles whose charge is thousands of the 
elementary charge, namely an effective Z of each cluster of particles is very large. In 
such case, plasma becomes strongly coupled even if the density is not so high. 

In addition, it is useful to enumerate the reason why Debye shielding model is 
violated near the Coulomb logarithm near unity: 

1. The interaction energy of the order of kinetic energy means T ≈ eϕ in Deby 
theory and Taylor expansion cannot be used in this case. 

2. In such condition, the number of charged particles in Debye sphere with radius λD 
is only a few particles and the statistical assumption like Boltzmann distribution 
cannot be used in deriving (9.19). 

In such strongly coupled plasma, Rutherford scattering, and Debye shielding cannot 
be used to obtain the transport coefficients due to Coulomb scattering in plasma. 

9.3.2 Strongly Coupled Plasmas 

The radial probability function of neighboring ions has been given statistically in 
(9.19). As we see above, however, it is not a good approximation with Debye 
shielding, and we must ask more precise study. In case of high-density and relatively 
low temperature plasma, the electron Fermi energy is high and spatially uniform 
density distribution of electron can be a good assumption. Such plasma is called one 
component plasma (OCP) and its ion radial distribution function and related 
physics have been studied, for example, by S. Ichimaru [22]. 

In Fig. 9.10, the radial distribution function g(r) calculated by Monte Carlo 
method is shown for different ion coupling parameter Γii from 0.1 to 140 [23]. For 
the case of a small Γii showing week coupling, the distribution is like that suggested 
by (9.19). With the increase of the ion coupling parameter, the probability inside the 
ion sphere is going to vanish and large coupling makes the function overshoot 
outside the ion sphere radius. In this case the neighbor ions can frequently 
approached around the sphere the radius of which is the value of the peak in 
Fig. 9.11. It is known that at the coupling parameter around 178, the liquid-solid
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Fig. 9.10 Radial 
distribution function of 
one-component plasmas 
with different ion-ion 
coupling parameters. The 
radius is normalized by the 
average ion distance. 
Reprint with permission 
from ref. [23]. Copyright 
1998 by American Physical 
Society 

Fig. 9.11 Image of a snap shot of the most probable ion configurations suggested by an example of 
radial distribution function. Reprint from ref. [23] with kind permission from Springer Science + 
Business Media



phase transition is observed in such OCP. This phase transition is called glass phase 
transition because the ions make lattice structure in a short distance, but it like an 
amorphous and no crystal structure is observed over a long distance.
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Such strongly coupled plasma has been studied to know the physics inside of 
white dwarfs, giant planets, and so on. To know the ion distribution, for example, 
inside of the white dwarfs, where electron strongly degenerates and OCP is good 
approximation. The precise radial distribution function is very interesting to know 
the fusion reaction due to the overlapping of two ions wave functions at an extremely 
high density such as the center of white dwarf characterized by the density 
109 g/cm3 . In addition, the surface of neutron stars is also in such strongly coupled 
plasma state. 

The classical statistical Monte Carlo is applicable to ion-ion coupling, but it is 
doubtful to apply to the centered ion and electrons interaction. This is because 
electrons must be treated quantum mechanically. One possibility is to use the 
density-functional method explained in Chap. 8.4. To know the physics simpler, 
however, the electron density profile obtained after solving Thomas-Fermi model is 
widely used for the electron radial distribution function around the centered ion. 
Therefore, using the electron density profile or electrostatic potential around the 
central ion, the transport coefficients can be calculated by use of the effective 
Coulomb logarithm explained later in this chapter. 

9.4 Quantum Scattering of Electrons in Coulomb Field 

In high density near the solid density, the scattering analysis should be done 
quantum mechanically. For example, the de Broglie wavelength of electron with 
kinetic energy equal to that of the 1s state of Hydrogen atom is about Bohr radius 
0.5Å. This is the same order of the average ion distance near solid density. If the 
charge density distribution statistically averaged around each ion can be obtained by 
some method, the differential cross section of Coulomb scattering can be calculated 
based on Schrodinger equation for one particle as shown in Chap. 5. It is noted that 
the following non-relativistic derivation can extend to the relativistic case in 
replacing the wavenumber of electron wave function with the momentum vector 
for relativistic collision. 

As was discussed in Chap. 5, Born approximation is the basic method on such 
scattering problem. Born approximation is widely used, not only atomic physics, but 
also nuclear physics to study charge distribution inside nucleus, including quarks. In 
nuclear physics, relativistic scattering should be considered because injected elec-
tron energy is in the rage of 100 MeV, but here the impinging electron energy is in 
the rage of 1–100 eV and non-relativistic treatment is enough. 

When the density distribution screening the central charge q is assumed to be 
given as a function of the radial coordinate r, the potential V(r) can be obtained by 
solving the Poisson equation.
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ε0∇2 V rð Þ= - qδ rð Þ- ρsc rð Þ ð9:25Þ 

For a given potential and no change of the charge around the point charge, one 
electron Schrodinger equation reduces to a simple equation for scattering problem:

-
ħ2 

2m
∇2 þ V rð Þ-E ψ rð Þ= 0 ð9:26Þ 

This can be written in the form 

∇2 þ k2 0 ψ = 
2m 
ħ2 

Vψ ð9:27Þ 

Where k0 is the wavenumber of the incident electron wave defined to be 

k2 0 = 
2mE 
ħ2

ð9:28Þ 

9.4.1 Born Approximation 

Here the scattering is elastic one and no energy change happens, namely the energy 
E in (9.26) should be kept constant. The homogeneous solution of (9.27) for V = 0 is  
the plane wave being incident to the target and its solution is 

ψ =ψ0 = exp ik0 . rð Þ ð9:29Þ 

In solving (9.27) mathematically to obtain a formal solution, it is very useful to know 
that LHS of (9.27) is  Helmholtz equation. Using Green function to the Helmholtz 
homogeneous term, (9.27) can be given in the following integral equation form. 

ψ rð  Þ=ψ0 rð Þ- 2m 
ħ2 

eik0 r- r0j j  

4π r- r0j jV r
0ð Þψ r0ð Þdr0 ð9:30Þ 

where ψ0(r) is the general solution of the homogeneous equation of (9.27)  i  
neglecting RHS and homogeneous solution is the incident wave (9.29). Of course, 
(9.30) is not the final solution of (9.27), but it should be noted that (9.30) gives us the 
exact solution when the interaction potential V(r) is given. It is possible to solve 
(9.30) with use of computer, then the well-known iteration method will be used 
starting from an appropriate initial solution. It is reasonable to start with solution 
obtained by Born approximation which will be described below. The solution of 
Born approximation is good enough in many cases as will be explained later.



j j .j j

ð

9.4 Quantum Scattering of Electrons in Coulomb Field 417

In calculation of the scattering by the central charge, we would like to know the 
wave function after the scattering. This means the coordinate r in (9.30) can be 
assumed to be very far from the central region where the potential V(r) is large 
enough and cannot be neglected in the integral (9.30). Namely, if r > >  r’ then the 
following approximation can be used. 

r- r0j j≈ r- r0ð Þ2 = r2 - 2r . r0 þ r02 ≈ r- r . r0=r 
1 

r- r0 
≈ 1 

r 1- r r0=r2 
≈ 1 

r 
1þ r . r

0 

r2 
≈ 1 

r
ð9:31Þ 

This is the first order expansion to the small value r’/r. In the solution the scattered 
direction is r/r and its wave number is equal to k0 because of elastic scattering, we  
can introduce the scattered wavenumber k1 as follows. 

k1 = k0 
r 
r

ð9:32Þ 

It is noted that the first order term of (9.31) is important in the exponential term but 
can be neglected in the denominator of the integral. Inserting (9.31) in the exponen-
tial term in (9.30) and using the scattered wave momentum (9.32), (9.31) is written to 
be 

ψ rð Þ→ eik0.r þ e
ik0r 

r 
f θð Þ  r →1ð Þ 9:33Þ 

f θð Þ= -
m 

2πħ2 
e- ik1.r0V r0ð Þψ r0ð Þdr0 ð9:34Þ 

θ= 
1 
k2 0 

k0 . k1 ð9:35Þ 

In many cases, we assume that the potential in (9.34) is spherically symmetric 
[V(r) = V(r)] and the scattering is axially symmetric and scattering angle depends 
only the angle θ made by the incident direction and scattered direction as defined in 
(9.35). It is informative to rewrite (9.34) in the following form for the amplitude of 
scattered wave, 

f θð Þ= -
m 

2πħ2 
ϕjV ψj 

ϕ rð Þ= eik1.r 
ð9:36Þ 

where ϕ(r) is the plane wave of the incident electron wave function. 
The Born approximation can be used if the scattered wave component of the 

second term of (9.33) is much smaller than the incident component of the first term 
of (9.33). Then, the perturbation theory can be used to assume that the wave function



in the second term of (9.33) can be replaced with that shown in (9.29). The following 
relation is obtained 
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f θð Þ= -
m 

2πħ2 
eiq.r0V r0ð Þdr0 ð9:37Þ 

Where the following the wave vector made of the incident and scattered wave 
vectors is introduced. 

q= k0 - k1 ð9:38Þ 

Its absolute value is easily calculated with use of (9.32) as follows. 

q= k0 - k1j j= k2 0 þ k2 1 - 2k0k1 cos θ 

= k0 2 1- cos 2θð Þ  = 2k0 sin θ=2ð Þ  
ð9:39Þ 

It should be noted that (9.37) is proportional to the Fourier transformation of the 
scattering potential V(r) with respect to the wave vector defined in (9.38). For the 
spherically symmetric potential, (9.37) can be written 

f θð Þ= -
m 

ħ2 

1 

0 
r02 dr0 

π 

0 
sin θ0dθ0 exp iqr0 cos θ0ð ÞV r0ð Þ ð9:40Þ 

After integration to the angle, (9.40) become the following simple form 

f θð Þ= -
2m 
ħ2 q 

1 

0 
r0V r0ð Þ sin qr0ð Þdr0 ð9:41Þ 

where q is given in (9.39). 

9.4.2 Differential Cross Section 

As is defined in (9.33) the function f(θ) is clear to provide the differential scattering 
cross section in the form. 

dσ 
dΩ 

= f θð  Þj j2 ð9:42Þ 

Let us calculate the scattering cross section for the case of the Debye potential given 
in (5.7). Inserting (5.7) to V in (9.41) and using the formula
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1 

0 
exp - axð Þ sin bxð Þdx= 

b 

a2 þ b2 ð9:43Þ 

(9.41) reduces to the following form. 

f θð Þ= -
meQ 

2πε0ħ
2 

1 
q2 þ kD 2

ð9:44Þ 

Since q is given in (9.39), the following differential scattering cross section is 
obtained for the Debye potential 

dσ 
dΩ 

= f θð Þj j2 = 
Ze2 

4πε0E0 

2 
1 

4sin 2 θ=2ð Þ þ  kD=k0ð Þ2 
2 ð9:45Þ 

In deriving (9.45), the charge of the central scatter is assumed Q = Ze and the 
following relation is used 

E0 = 
ħ2 k0 

2 

2m
ð9:46Þ 

where E0 is the kinetic energy of the incident electron. In the limit of Rutherford 
scattering, Debye screening is not considered, namely kD ! 0. In this limit, the 
well-known differential cross section is obtained. 

dσ 
dΩ 

= 
Ze2 

8πε0E0 

2 
1 

sin 4 θ=2ð Þ  = 
b0 

2 

1- cos 2θð Þ2 ð9:47Þ 

Here the impact parameter b0 is used. The Rutherford scattering differential cross 
section is exactly reproduced using Quantum mechanical Born approximation 
derived in (9.47). 

Then, the total cross section of the scattering by Rutherford formula is calculated 
by changing as x = 1 - cos θ and the total cross section by Coulomb scattering is 
given to be 

σC = 
dσ 
dΩ 

1- cos θð ÞdΩ= 2πb0 
2 

1 

xmin 

1 
x 
dx ð9:48Þ 

In (9.48), the term in the second eq. 1- cos θ is a weight factor to the contribution of 
the cross section since the scattering with the angle of θ can change the initial 
momentum to the fraction of 1 - cos θ. Thanks to this contribution, a simple 
integration shown in the last term in (9.48) is obtained.
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σC = 2πb0 
2 ln 1=xminð Þ ð9:49Þ 

To avoid infinity by accumulation of small angle scattering in Rutherford model, the 
minimum angle scattering is introduced, namely 

xmin = θmin 
2 =2 ð9:50Þ 

How to evaluate the minimum angle in the present model is same as the minimum 
impact factor introduced in previous section. The Debye shielding is very important 
for converging the integral. A simple evaluation of the minimum angle should be 
given by the following evaluation 

θmin ≈ 
Ze2 

4πε0λ2 D 

λD 
v 

mv
ð9:51Þ 

Where the scattering to the electron by the central charge is calculated up to the 
radius of Debye length. Taking an average energy of the plasma electron as mv2 ≈ T, 
(9.51) can be approximated as 

θmin ≈ 
1 

4πnλ3 D 
= 

1 
Λ

ð9:52Þ 

Where Coulomb log defined in (9.22) is used. Finally, the total cross section of 
electrons scattering by Coulomb field in plasma is obtained as 

σC = 4πb0 
2 ln Λð Þ ð9:53Þ 

The simply evaluated cross section in Volume 1 is obtained after more precise 
calculation starting from Rutherford differential cross section given in (9.47). 

Finally, note that with use of computer, it is possible to solve the exact solution of 
(9.25) and  (9.27) for the case of thermodynamic equilibrium condition, for example, 
assuming Fermi-Dirac distribution. This is the next step after the above Born 
approximation and the incident wave is also modified by the Coulomb potential of 
the ventral charge. This is called distorted wave method. 

9.4.3 Density Distribution and Form Factor 

From (9.41) the differential scattering cross section can be obtained provided that the 
potential structure by the screening charge distribution is given. Mathematically 
more convenient if (9.41) is an integration of the density profile instead of the 
potential obtained solving Poisson equation. By use of Green function theorem,



ð

this purpose has been accomplished. The Green theorem to volume integral with 
Laplacian operator is given 
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V 
dV A∇2 B-B∇2 A = 

S 
dS . A∇B-B∇Að Þ 9:54Þ 

Where A and B are arbitrary functions defined in space. If the volume is taken so that 
the integrand of RHS sufficiently disappears on the integral surface, RHS vanishes in 
the surface integration. When any combination of two scalar functions A and B 
satisfies this condition, LHS of (9.54) always vanishes for the infinite volume 
integral, namely 

V 
dVA∇2 B= 

V 
dVB∇2 A ð9:55Þ 

By use of (9.55) to the integral (9.37), the following relation is obtained. 

eiq.r V rð Þdr= -
1 
q2 

eiq.r∇2 V rð Þdr ð9:56Þ 

Then, (9.56) and Poisson equation 

∇2 V rð Þ  
e 

= -
1 
ε0 

ρ rð Þ ð9:57Þ 

gives the following surprising relation to the integrand of (9.37) 

eiq.r V rð Þdr= 
e 

ε0q2 
eiq.r ρ rð Þdr ð9:58Þ 

f θð Þ= -
m 

2πħ2 
e 

ε0q2 
eiq.r ρ rð Þdr ð9:59Þ 

It is easily found that the integration of (9.58) is Fourier transformation of the charge 
density distribution around the scattering center charge. 

Let us examine how the differential scattering cross section defined by (9.42) and 
(9.37) is conveniently reduces to Rutherford scattering case with use of (9.53). 
Inserting the charge density as Zeδ(r) in (9.59) the following relation is obtained. 

f θð  Þ2 = 
Ze2m 

2πħ2 ε0 

2 
1 
q4

ð9:60Þ 

It is easily seen that using (9.39), (9.60) reproduced Rutherford scattering given in 
(9.47).
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9.4.4 Form Factor and Nucleus Charge Experiment 

Introducing the concept of form factor of electron scattering by the screened 
Coulomb field around the nucleus with charge Ze, (9.59) gives the following 
definition to the differential scattering cross section 

dσ 
dΩ 

= 
dσ 
dΩ Rutherford 

F qð Þj j2 ð9:61Þ 

Where F(q) is called form factor defined as 

F qð Þ= eiq.r ρN rð Þdr ð9:62Þ 

F(q) has been widely used to study the charge distribution of nucleus in nuclear 
physics experiment. The density distribution in (9.62) is normalized one so that its 
volume integral becomes equal to unity. 

ρN rð Þ= 
1 
Ze 

ρ rð Þ ð9:63Þ 

It should be noted that the form factor. 
If mono-energetic electron beam is available and strongly coupled plasma can be 

kept for a long time, experimental data of the scattering can be used to obtain the 
density distribution around the central charge. Through such experiment the angular 
distribution of the differential scattering cross section is obtained and the experi-
mental data of angular distribution of scattering is compared with that given in 
(9.61). Then, the form factor obtained experimentally can be used to determined 
statistically averaged radial density distribution through the inverse-Fourier 
transform 

ρN rð Þ= 
1 

2πð Þ3 e- iq.r F qð Þdq ð9:64Þ 

Once the density distribution is obtained, the effective Coulomb collision cross 
section will be used to calculate the revised transport coefficients in wide range of 
plasma parameter. However, it has not been done in plasma, because it is difficult to 
maintain such plasma for a long time so that enough scattering data are available. 

In the beginning of nuclear physics, Rutherford used alpha particles to study 
inside the atom and he found vary rare scattering of large angle from a foil target. He 
derived the Rutherford scattering differential cross section shown in (9.47) and 
concluded that the radial spread of the nucleus is smaller than 10-12 cm. However, 
proton or such alpha particles are not convenient to study the charge distribution of 
nucleus, because they interact with nuclear force, and they also have inner structures.



Electron is more convenient because it has no internal structure and Coulomb 
interaction is most dominant compared to another forces. 
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The study of charge distribution of nucleus with form factor has been done with 
500 MeV electron beam accelerated by LINAC in Stanford University in the early 
1950s. In the case of nuclear physics scattering, beam electrons are highly relativ-
istic, and we must follow this case. 

Example of form factor F(q) obtained in early experiments are plotted in Fig. 9.12 
where electron beam of energy from 150 to 300 MeV was impinged and solid circles 
are experimental data for three different nuclei. Note that the axis of q is given in the 
unit of momentum with relation p = ħq and the momentum is given in the unit of 
(energy)/c. In this case, instead of Rutherford scattering, Mott scattering formula is 
used. In Mott formula additional physics due to spin and magnetic interaction is 
added to Rutherford formula. 

For convenience to the readers, the density distribution and its form factor is 
shown in Fig. 9.13 for several different density distributions. 

Is it possible to do the same kind of experiment for the ions in plasma? Can we, 
however, obtain the form factor to infer the electron density distribution around

Fig. 9.12 The form factor 
F(q) obtained in early 
experiments. The electron 
beam of energy from 50 to 
300 MeV was impinged and 
solid circles are 
experimental data for three 
different nuclei



an ion? It is possible of atoms at a fixed position, namely solid-state matters, 
molecules, etc. It is difficult to apply it for experiment in the case of plasmas in 
which the ions are moving with thermal velocity. In the future, however, very short 
pulse electron beam and its diagnostic technique are developed, the form factor of 
the screened ions can be experimentally studied.
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Fig. 9.13 The charge 
distributions of nuclei 
obtained with the 
experimental data of form 
factors 

It is useful to note that the density distribution of very small scale of plasmas is 
now experimentally studied with x-ray pulse from XFEL, which is called Small-
Angle X-Ray Scattering (SAXS) [24]. The principle and mathematics are the same 
as described above. The difference is that X-ray beam is used instead of the electron 
wave packets and the charge distribution is replaced by the x-ray refraction index 
determined by the electron density distribution. 

SAXS has been developed as a particularly suitable technique to characterize 
structure and form factors of colloidal systems in solution and therefore to probe 
nanometer-scale structure. The combination of microfluidics and SAXS provides a 
powerful tool to investigate phase transitions at different molecular levels and 
relevant timescales. This method can be a new one to study the density structure 
of dense plasmas produced by ultra-intense lasers. 

9.5 Coulomb Log Λ in Dense Quantum Plasmas 

We should think about the minimum angle of scattering to avoid divergence in 
(9.42). It is also important to discuss about why we need to exclude the contribution 
from large angle scattering more than θ = 90 degree to total scattering cross section 
in (9.48). In a large angle scattering, it is not appropriate to use classical mechanics, 
because the kinetic energy of impact electron is less than the Coulomb interaction 
energy. Born approximation of quantum scattering is not applicable either. There-
fore, the integral equation of (9.30) should be solved directly. Of course, such 
calculation has been carried out using computer, however, it is easily understood 
that this contribution is negligible as far as the plasma is ideal Λ >> 1. This is the 
reason way there is also limitation of analysis based on Rutherford formula.
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Such quantum deflection contribution has been studied, and the following mod-
ified formula is proposed [25] 

ln Λð Þ= 
1 
2 
ln 1þ bmax 

bmin 

2 

= 
1 
2 
ln 1þ λ2 D 

b2 0 þ λ2 dB 
ð9:65Þ 

where electron de-Broglie wavelength 

λdB = 
ħ 

mT
p ð9:66Þ 

has been introduced to take account of quantum deflection near head-on collision. 
The modified form in (9.65) is reasonable because it guarantees a positive value of 
the Coulomb log for a strongly coupled plasmas. In addition, the quantum diffraction 
effect is modeled in the last term in (9.65). 

The better fitting formula for the Debye length including the quantum diffraction 
effect is also obtained by solving Schrodinger equation directly. The modified Debye 
length is given in (9.65) with the form 

λD → λD exp 
1:65- 0:4lnΛ 

lnΛð Þ0:65 þ 1 ð9:67Þ 

where lnΛ evaluated in (9.65) is installed in (9.67). The Debye length re-calculated 
in (9.67) is used to obtain the fitting formula to the Coulomb logarithm. 

This modified Coulomb logarithm has been compared to another theoretical and 
computational results in Fig. 9.14 [25]. In Fig. 9.14, the fitting formula of (9.65) and 
(9.67) is plotted with the line (T-M) for the classical case, where de Broglie 
correction is neglected to compare with the more precise computation of molecular 
dynamics (MD). The diamond symbols are MD results and the red line is the fitted 
curve to the MD result. It is seen that the good agreement is obtained with MD 
results. The blue and orange dashed curves are the theoretical results based on 
perturbation methods 50]. 

In the MD simulation, quantum effect is not included. The green lines are two 
theory cases with the de Broglie cut included. Then, the denominator in (9.65) will  
be increased and the value of Coulomb log decreased as shown in Fig. 9.14. It  is  
noted that the horizontal axis is the coupling parameter defined to be 

g= b0=λD: ð9:68Þ 

In Fig. 9.14, MD simulation has been carried out with the parameters in the gray 
region in the upper figure, from weekly coupled plasma g = 0.003 to strongly 
coupled plasma with g = 20, where the other formulae are calculated with fixed 
temperature of T = 500 eV. More details are given in the reference.
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Fig. 9.14 The effective Coulomb log derived by taking account of strongly coupled quantum effect 
at high-density plasma. Reprint from ref. [25]. Copyright 2012, with permission from Elsevier 

It is important to note that in the region of large g, Coulomb log approaches zero 
and it means that running electrons are almost not scattered by the ion charges to 
provide high conductivity. This is a general property of the dense Quantum plasmas. 
In such a case, dominant conduction is attributed to the electrons with Fermi energy. 
The conductivity, for example, the inside of white dwarfs is very high due to the 
above reason. 

9.6 Density Fluctuation and Dynamic Structure Factor 

So far, most of the plasmas have been assumed to have constant density in space. If 
the electron density is completely uniform as well as the charge is also smeared out 
uniformly, any photons are not scattered from such mathematically idealized



plasmas. The ion individuality and electron density fluctuation are subject to Thom-
son scattering and incident electromagnetic waves are scattered, when the cut-off 
frequency of plasma is lower than the incident electromagnetic wave frequency 
ωcr < ω, where ω is the incident wave frequency and ωcr is the cut-off (critical) 
frequency of the plasma with free electron density ne. The cut-off electron density 
ncr is given as 
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ncr = 
ε0m 
e2 

ω2 , ncr = 1027 ħωkeVð Þ2 1=cm3 ð9:69Þ 

Note that the cut-off density of x-rays is higher than most of electron density of 
solids. 

In measuring the plasma density and temperature, optical diagnostics have been 
used with use of scattered spectra of laser probe from a local point of plasma. This is 
common methods used for a variety of plasmas. Depending on the density of plasma, 
infrared to X-ray coherent light sources are used in laser plasmas. 

In this book, it is not mentioned in detail about the optical probe of plasma for 
relatively low-density plasma such as ablating plasma generated by intense lasers. 
Since the optical probe measurement, the plasma density should be lower than the 
cut-off density of plasmas. In addition, the photon number of the optical probe 
should be large enough so that clear signal of the scattered photons is detected. 

For the case of measuring the high-energy density plasmas and warm-dense 
matters, the optical method demands higher-cut-off density probe. If the matter is 
at rest such as solid, molecule and so on, then x-rays from synchrotron radiation 
source (SRS) has been widely used to study the electron density distribution due to 
the Thomson scattering, the physics of which has been shown in Volume 1. The 
principle is simple. The electrons irradiated by the optical probe oscillate by the 
electric field of x-rays and emit the electromagnetic waves with the same frequency. 
Since the brightness of the synchrotron radiation is relatively low as shown in 
Fig. 9.15 [26] a long-time exposure is required. 

Since the electron density distribution fluctuates in HEDP or WDM with thermal 
velocity and phase velocity of collective motion, on the other hand, brighter x-ray 
source with short pulse is required for diagnostics of them. As shown in Fig. 9.15, 
the relatively large facilities of x-ray free-electron lasers (XFEL) have been 
constructed in US (LCLS: https://lcls.slac.stanford.edu/), Japan (SACLA: http:// 
xfel.riken.jp/), Europe (European XFEL: xfel.eu). XFELs are also characterized by 
high-repetition rate pulses, typically 10 HZ. In addition, each pulse consists of many 
ultra-short pulses. It is 2–100 fs in European XFEL with about 1010 photons in 
25 keV x-ray operation and 1012 photons for 5 keV. 

The ultra-short pulse allows to take snap shots of the scattered x-ray signal in 
high-density plasma with finite temperature. Not only the snap shots, but the 
frequency of the plasma waves is also high enough to obtain the oscillation frequen-
cies of such collective modes in dense plasmas. As shown in Chap. 2, the electron 
plasma wave and ion acoustic wave are typical collective modes in plasmas without 
external magnetic field. The scattered x-ray spectra can be related to the plasma

https://lcls.slac.stanford.edu/
http://xfel.riken.jp/
http://xfel.riken.jp/


parameters of density and temperature via comparing to the wave theory of plasmas. 
Note that the damping process and non-Maxwellian effects also affect the profile of 
the scattered x-ray spectra, and the kinetic theory of plasma waves and Landau 
damping to be described in Volume 4 should be applied to the theoretical study. 
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Fig. 9.15 Brightness of photon sources as a function of photon energy (eV). The synchrotron 
radiation source has been used widely as x-ray source like shown as Spring-8 etc., while XFEL 
source is monoenergetic and brighter x-ray source such as LCLS etc. Reprint with permission from 
ref. [26]. Copyright 1998 by American Physical Society 

9.6.1 X-Ray Scattering Diagnostics 

In Fig. 9.16, a typical configuration of WDM experiment is shown [27]. The drive 
laser is irradiated on the target to compress and heat the target material, where the



laser intensity profile is shown in the inset figure as two step intensity for 
pre-compression and main compression. Then, a LCLS XFEL is injected to the 
compressed WDM. The x-ray diffraction (XRD) and forward x-ray Thomson 
scattering (FXRTS) and backward one (BXRTS) were measured. 
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Fig. 9.16 A typical configuration of WDM experiment. The drive laser is irradiated on the thin foil 
target to compress and heat the target material. The laser intensity profile is shown in the inset figure 
as two step intensity for pre-compression and main compression. Then, a LCLS XFEL is injected to 
the compressed WDM. Reprinted by permission from Macmillan Publisher Ltd: ref. [27], copyright 
1993 

In any plasmas, Thomson scattering is induced by two different processes. They 
are called non-collective scattering and collective scattering. Thomson scattering 
in linear and nonlinear cases discussed in Volume 1 corresponds to the 
non-collective scattering. The scattering of light due to a single electron has been 
considered. When XFEL is irradiated to a test sample matter, the non-collective 
scattering is observed as total sum of the scattered x-ray from all electrons in XFEL 
interacting region. 

Since strongly coupled plasmas such as WDM, ion-ion pair corelates via Cou-
lomb force and the pair correlation function as shown in Fig. 9.11, has a character-
istic distance as the case for the coupling parameter larger than unity. This means 
that each scattered x-ray with phase information from each electron cloud overlaps 
on the imaging plate. This interference makes the image to reflect the information of 
ion-ion pair correlation. This is the case of non-collective scattering used for XRD 
imaging. 

This is the case of conventional XRD method been used historically to study the 
atomic structure of crystal and so on. With use of XFEL, coherent and bright x-ray 
beam can be used to apply the conventional XRD with higher resolution. In addition, 
the pulse duration of XFEL is very short enough to obtain the pair correlation



function even for plasmas such as WDM where ion thermal velocity is small enough 
to obtain a snap shot with XFEL pulse. 
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It has been studied in Volume 1 that an incident laser interacts with waves in 
plasmas to make the plasma waves unstable and the frequency-shifted scattered light 
is produced. This is called parametric instability due to non-liner ponderomotive 
force of intense lasers in plasmas. For example, laser is scattered by electron plasma 
wave, it is called as stimulated Raman scattering. Note that Raman has found the 
scattering for the case without instability, and it is called Raman scattering. 

The same physical phenomenon as Raman scattering is now clearly observed in 
high-density plasma thanks to bright-coherent XFEL source. The scattering of 
incident x-ray with the plasma wave due to plasma collective physics corresponds 
to the collective scattering. In plasma without external magnetic field, electron 
plasma wave sand ion acoustic waves are spontaneously induced by thermal fluctu-
ation and decay due to Coulomb collision and Landau damping. The dispersion 
relations of the waves and the damping rates are functions of plasma temperature and 
density if assuming Maxwell distribution functions. With such scattering spectra, 
plasma density and temperature can be measured for WDM. 

As will be clear with plasma kinetic theory in Volume 3, the plasma waves have 
relatively long-life time when their wavelength is longer than the Debye length. 

kλDe < 1 ð9:70Þ 

For separating which the non-collective or collective Thomson scattering is domi-
nant from plasma scattering, the nondimensional parameter α is introduced [28, 29]. 

α= 
1 

kλDe 
ð9:71Þ 

The collective scattering can be used for high-energy x-ray beam α > 1. Note that 
XFEL wavenumber k in (9.71) should be replaced by the wavenumber of the plasma 
waves scattering x-rays. It is approximately acceptable because of the following 
consideration. 

As has been shown in Fig. 9.17 (also see Fig. 4.6 in Volume 1), three waves have 
to satisfy the matching condition. 

ω0 =ωs þ ω k0 = ks þ k ð9:72Þ 

where (ω0, k0), (ωs, ks), and (ω, k) represent the incident, scattered and plasma 
waves, respectively. 

In the case without extra explanation, it is assumed that the vectors k0 and ks have 
finite angle and the wavenumber of the plasma waves also has roughly the same 
absolute values as k0 and ks. 

It is informative to calculate Debye length of plasma λDe and the wavelength of 
x-ray from XFEL, λX.



ð
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Fig. 9.17 Schematics of the incident (X Rays, k0), and the scattering (Detector, ks) and the plasma 
mode (k) satisfying (9.72). The scattered lights are blue shift and red sifts by the electron thermal 
motions. Reprint with permission from ref. [29]. Copyright 1998 by American Physical Society 

λDe = 0:74 
TeV 

n20 

1 
2 

nm½ ]  

λX = 1:2 ħωð ÞkeV - 1 
nm½ ]  

ð9:73Þ 

where n20 is the electron density in unit of 10
20 cm-3 . 

9.6.2 Dynamical Structure Factor (DSF) 

So far, the physical reason for Thomson scattering has been explained. It is better to 
explain the theory of the Thomson scattering from plasma with use of dynamical 
structure factor (DSF) S(k,ω). The definition of DSF is given as 

S k,ωð Þ= 
1 

2πV 

1

-1 
dt ρk t

0 þ tð Þρ- k t
0ð Þh i exp iωtð Þ ð9:74Þ 

Where Fourier decomposed density fluctuation ρk(t) is defined to be, 

ρk tð Þ= 

1

-1 
dr n r, tð Þ- n0½ ] exp - ik ∙ rð Þ 9:75Þ 

The electron density perturbation at a given time n(r, t) - n0 consists of thermal 
noise and the enhanced fluctuation by the resonance in plasma, namely electron and 
ion waves. The DSF sheds light on the oscillation frequency of the waves in plasma. 
Namely, DSF S(k,ω) has all information of the density fluctuation in the plasma.



j j ð Þ
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In addition, the structure factor (SF) S(k) is defined with DSF as follows. 

S kð Þ= 
1 
N 

ρk tð Þj j2 = 

1

-1 
S k,ωð Þdω ð9:76Þ 

This SF is related to the pair (radial) distribution function g(r) given in Fig. 9.10. 

g rð Þ= 1þ 1 
n 

1

-1 

dk 

2πð Þ3 S kð Þ- 1½ ] exp ik ∙ rð Þ ð9:77Þ 

Note that the position r is a vector in g(r), while the electron cloud is spherically 
symmetric around the nucleolus, consequently g(r) is only a function of radius. 

The differential scattering cross section defined as fraction of the scattered x-ray 
to the angle θ between the incident and scattered X-rays per solid angle Ω and the 
frequency interval Δω of ω = ωi - ωs is given in the form [29, 30]. 

∂2 σ 
∂ω∂Ω 

= σT 
ωs 

ω0 

1 
2 

1 þ cos 2 θ S k,ωð Þ ð9:78Þ 

k= k0 - ks = 2ω0 sin θ=2 =c 

This indicates that we can evaluate the plasma parameters from Thomson scattering 
spectrum, if we have the theory relating to the DSF S(k,ω) as a function of the 
plasma parameters such as temperature and density. Note that if the data quality is 
very fine, electron distribution function can be determined from the scattered 
spectrum within some assumption. 

In general, DSF consist of three terms, namely

1. Peaked density profile by bound electros and free electrons forming Debye 
shielding around each nucleus. They move with ion motion, but the ion thermal 
velocity is very small so that Doppler shift by the ion motion can be neglected. 
The form factor of the bound and Debye shielding electron distribution and the 
ion-ion pair correlation function determines the structure factor and it can be 
regarded as elastic scattering (ω = 0). Let us write this component as the elastic 
component, Selas(k). 

2. The longitudinal collective motions in plasma have the density structure 
according to the dispersion relation of the plasma waves. They are the electron 
plasma wave and ion acoustic wave as discussed in Chap. 2. Including the case of 
WDM, the dispersion relation with strongly coupling and quantum effects are 
used for the electron plasma wave [20, Chap. 2 in Ref. 18]. Since they have the 
frequencies of electron and ion plasma frequencies, the frequency shifts are 
observed. They are collective mode and in-elastic scattering. Let us write this 
as the collective component, Scollec(k,ω).



ð Þ ð Þ þ ð Þ½ ] ð Þ ð Þ
ð Þ ð Þ ð Þ

ð Þ

It is shown by J. Chihara that the total DSF can be written in the form [31, 32].
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3. Another inelastic component in DSF is related to the photoionization of x-ray by a 
bound electron, the physics of which has been discussed in Chap. 5. In the present 
case, the process is not absorption of x-ray photon by a bound electron, but the 
process is inelastic photo absorption by the bound electron. Let us write it as 
Sbe(k,ω). 

S k,ωð Þ= Selas kð Þ þ  Scollec k,ωð Þ þ  Sbe k,ωð Þ ð9:79Þ 
Selas k,ω = f k q k  2 Sii k 9:80 

Scollec k,ω = Zf S
0 
ee k,ω 9:81 

Sbe k,ωð Þ= Zb dω0Sce k,ω-ω0ð ÞSs k,ω0ð Þ ð9:82Þ 

where f(k) and q(k) are the form factor of bound electrons and Debye shielding free 
electrons, and Sii(k) is the ion-ion pair correlation function. Zf and Zb are the numbers 
of free and bound electrons in the statistically averaged ion. The real spectra of 
S0 ee k,ω by one free electron is discussed soon. 

9.6.3 Elastic Scattering (X-Ray Diffraction: XRD) 

In 1914, von Laue observed these diffraction patterns by irradiating metal with 
X-rays. Braggs and his son also developed his X-ray crystallography in 1915. 
Each person’s achievements have come to fruition in each year as the Nobel Prize 
in Physics. 

With the advent of X-ray scattering technology in recent years, it has become 
possible to measure the physical characteristics of high-density plasma and use it for 
research on high-energy density physics. 

When the parameter α in (9.71) is small enough by inserting the parameters in 
(9.73), Coherent-XRD image can be obtained to provide the ion-ion pair correlation. 
In Fig. 9.16, the image on XRD is the scattered x-ray intensity image in 
two-dimensional plate (say, x and y). Since the electrons are located randomly and 
the scattered x-ray is a snapshot for a few femto-second, the scattering image is like 
the scattered electron de-Broglie wave image discussed previously. This is the 
non-collective Thomson scattering method. 

The x-ray is an electromagnetic wave and its propagation and scatter in electron 
density are given by the following equation from Maxwell equations. 

c2∇2 E þ ω2 -ω2 
pe E= 0 ð9:83Þ 

where the electron plasma frequency is only a function of the electron density:
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ω2 
pe / ne r, tð Þ ð9:84Þ 

Comparing (9.83) with Schrodinger equation for quantum electron scattering (9.26), 
the mathematics of electron scattering in each potential field can be directly applied 
to the analysis of coherent XRD image. In the case of x-ray scattering by the electron 
cloud around a central ion, the potential in (9.26) is replaced as 

V rð Þ  ⟺ - ne rð Þ ð9:85Þ 

In the case of x-ray scattering, Coulomb potential by the central ion should be 
neglected, namely, it is enough to neglect the term due to Rutherford scattering in 
(9.61). It is noted that in WDM many electrons are still in bound state in each ion, 
but the bound electrons also contribute to Thomson scattering with the incident 
frequency as far as the absolute value of binding energy is smaller than the x-ray 
photon energy. 

Therefore, the forma factor F(q) is used to obtain the electron density profile. The 
foam factor is also used in identifying a single gold nano-scale particles of size from 
10 nm to 80 nm in water solution. The conventional small-angle x-ray scattering 
(SAXS) has been used to reproduce the electron density profile in the gold by 
reproducing with the resultant form factor [33]. SAXS is now widely used to 
measure a time evolution of clumpy density structure in WDM, for example, the 
growth of ripple amplitude of a surface unstable to Rayleigh-Taylor instability [24]. 

As a typical experiment, liquid iron scattering measurement with XRD is 
explained. In this study, the experiment measured the density of liquid iron at 
pressures up to 116 GPa and 4350 K via static compression using a laser-heated 
diamond-anvil cell (LH-DAC) [34]. 

In studying the physics of planets’ inside, it is required to know the physical 
property of main component of dense metallic cores of planets. This is not only true 
for Earth, but also for Mercury and Mars, which are expected to have partially 
molten cores. Density (ρ) and longitudinal sound velocity (VP) are the primary 
observables of Earth’s liquid outer core. 

Therefore, laboratory measurements of these properties at high pressure are of 
great importance to understand Earth’s and other planets’ core composition and 
behavior. While determination of density for crystalline materials under high pres-
sure and temperature (P-T) is relatively straight-forward by in situ x-ray diffraction. 

The density of liquid iron has been determined via static compression experi-
ments following an innovative analysis of diffuse scattering from liquid [34]. The 
longitudinal sound velocity was also obtained to 45 GPa and 2700 K based on 
inelastic x-ray scattering measurements. Combining these results with previous 
shock-wave data, we determine a thermal equation of state for liquid iron. 

In Fig. 9.18, ion-ion pair correlation function is obtained as the radial distribution 
function [34]. The scattered intensity in the x-y plane at the rear of the liquid iron is 
shown in Fig. 9.18a, where the scattered angle is used to obtain the scattered 
wavenumber Q (nm-1 ). By assuming the spherically symmetric electron cloud



distribution around each ion core, the date (a) can be transformed to the radial 
distribution function shown in Chap. 9.3. 
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Fig. 9.18 (a); Scattered wavenumber dependence of form factors by elastic scattering of XRD for 
iron at high pressures produced by DAC. (b); The form factor is inverse-transformed with Fourier 
method to convert the radial distribution functions. The reduce of the first peak of the radial 
distribution give the density compressed with high pressure. Reprint with permission from ref. 
[34]. Copyright 1998 by American Physical Society] 

In Fig. 9.18b, the radial distribution function (ion-ion correlation function) g(r) 
is shown. It is clearly seen the over-shooting oscillation profile is seen indicating that 
the liquid iron is strongly coupled plasma as shown in Fig. 9.10. Note that low 
frequency density perturbation due to acoustic wave in the ion liquid has also 
observed in the spectrum of the scattered x-ray with angle Q = 3 [nm-1 ]. 

9.6.4 Collective Thomson Scattering 

It is complicated calculation is required to understand the physics behind Thomson 
scattered x-ray spectra from WDM where plasma waves are excited and damping. 
The detail derivation of general relativistic case has been given in the book [28] or a  
review paper [29]. Here, we try to explain the basic physics affecting the scattered 
spectra from WDM with a finite temperature. 

Recall the simple formula of Thomson scattering by an electron oscillating 
without initial velocity. Thomson scattering cross section σT defined as 

σT = 
8π 
3 
r2 e , re = 

e2 

4πε0mc2
ð9:86Þ 

where re is the electron classical radius and they are given as 

σT = 67 fm2 , re = 2:8 fm½ ]: ð9:87Þ
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The scattered power by a single electron to the angle θ made by the incident and 
scattered directions is given as 

dPs 

IidωdΩ = 
3 

16π 
σT cos

2 θδ ω-ωið Þ 9:88Þ 

Note that the scattering cross section is independent of incident electromagnetic 
wave frequency. In (9.88), Ii, ωi, and Ps are incident intensity and frequency and 
scattered power. To observe bright scattering photons, total large number of elec-
trons and bright light source are key technology. 

From an electron located at r = rj(t) is oscillated by the incident XFEL with its 
acceleration αj in the form, where we assume the XFEL is linearly polarized in the 
vector Ei direction. 

αj = -
e 
m 
Ei sin ωt- k ∙ rj tð Þ ð9:89Þ 

So, the angle θ in (9.89) is the angle of the vector Ei and the vector R- rj(t), where R 
is a fixed point of the diagnostic window at a far from the plasma. Since the angle θ is 
also the electron position dependent and write as θj below. 

In the case of incoherent light source, (9.89) can be applicable by taking the 
summation to all electrons. For the coherent photon source, the interferometry of the 
scattered photons from different electrons become important and it has an essential 
information for Thomson scattering diagnostic. For this purpose, it is necessary to 
obtain the retarded electric and magnetic fields at the observation point R as sum of 
all electrons at r = rj(t). 

Such complicated calculation is shown in [28]. Here we limit the description 
qualitatively and show the formula of the scattered spectrum. It is easy to know that 
the delta-function of (9.89) becomes Gaussian spectrum because the thermal motion 
of electrons leads to Doppler shift of the scattered spectrum. This means the spread 
of the scattered spectrum has the information of electron temperature. In addition, 
propagating waves inside the plasma gives the shift of the scatted spectrum as shown 
in (9.72). 

In WDM, plasma waves are spontaneously indued and decay due to damping. 
A simple damping oscillation model is 

d2 

dt2 
X þ γ d 

dt 
X þ ω2 

0X = 0 ð9:90Þ 

Then, an approximate solution is 

X tð  Þ  /  exp i ω-ω0ð Þt- γt½ ] 9:91Þ 

Laplace transformation gives the Lorentzian spectrum.
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X ωð Þ  / γ 

ω-ω0ð Þ2 þ γ2 ð9:92Þ 

It is natural to assume that there will be two peaks with shifts from the incident 
frequency at ω = ωi ± ωP. The wave number kP is uniquely determined by the 
relation (9.72). These two peaks are easily understood from the following mathe-
matics of the trigonometric formula. As already derived in (4.6.5) in Volume 1, the 
source term to generate scattering electromagnetic waves in plasma is given as 

ω2 
s - c2 k2 s -ω2 

pe Es = -ω2 
pecosθδnPEi ð9:93Þ 

where the suffix “i, s, p” represents the physical quantities shown in (9.72). 
Use (9.72) so that incident and scattered electromagnetic field satisfies the 

dispersion relation, LHS in (9.93) vanishing, the following relation is obtained to 
RHS with the sinusoidal plasma wave and incident wave. 

δnPEi / sin ωit- ki ∙ rð Þ sin ωPt- kp ∙ r 
/ sin ωi -ωPð Þt- ki - kp ∙ r 

þ sin ωi þ ωPð Þt- ki þ kp ∙ r ð9:94Þ 

Under the matching condition of (9.72), the first term in RHS of (9.94) becomes the 
source to generate the scattering electromagnetic wave resonantly, because the 
dispersion relation in LHS in (9.93) is satisfied. This low frequency component is 
called Stokes line in the cases of Raman scattering. 

On the other hand, the second term in (9.94) generates higher frequency compo-
nent of the scattered electromagnetic wave. As will see below, this component can be 
observed for the case with high temperature plasma. It is called anti-Stokes line in 
the Raman scattering. 

For the case where the plasma wave is the electron plasma wave (Bohm-Gross 
wave) given in (11.7.17), it is possible to measure the electron density. In addition, 
the spread of the scattered light is related to the damping process shown in 
(9.92); consequently, it is also possible to determine the thermal spread of the 
electron distribution function or electron temperature, because the damping by the 
electron Landau damping or Coulomb collision damping is a function of electron 
temperature. 

To predict the scattered wave intensity, it is necessary to know the electron 
density fluctuation symbolically written as δnP in (9.93). The density fluctuation in 
plasma is determined by the balance between the thermal excitation of the fluctuation 
and the dissipation process. It is well known that the fluctuation-dissipation theory 
provides the fluctuation spectrum. 

Dynamic structure factor (DSF) of the collective modes in plasma Scollec(k,ω)  is  
related to the plasma dielectric function ε(k,ω) by use of the fluctuation-dissipation 
theory [28].
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Scollec k,ωð Þ= 
E0ħk2 

πe2 
1 

1- exp ħω=Teð Þ  Im 
1 

E k,ωð Þ ð9:95Þ 

E k,ω : longitudinal plasma dielectric function 

For example, when a simple fluid model with a constant dissipation rate γ is used to 
derive the dielectric function of plasma wave as derived in Chap. 2, the dielectric 
function of a plasma E(k,ω) is easily obtained by regarding X in (9.90) as electro-
static field. 

E k,ωð Þ= 1-
ω2 
pe 

ω2 - i 
γ 
ω 

The imaginary part of E(k,ω) has the Lorentzian form (9.92). Weaker the damping, 
stronger the peak intensity of scattering, and the width of the DSF of such collective 
scattering becomes wide as the damping increases. 

In addition, the detail balance relation for ħω ≫ Te yields the following relation 

Scollec - k, -ωð Þ= exp - ħω=Teð ÞScollec k,ωð Þ ð9:96Þ 

This relation says that the up-shift scattering is much weaker than the lower-shift 
scattering. On the other hand, in the ideal plasma α ≫ 1, the plasma temperature is 
much higher than the photon energy ħω ≪ Te, the up-shift component in (9.94) is  
almost the same as the down-shift component. 

Scollec - k, -ωð Þ= Scollec k,ωð Þ ð9:97Þ 

This is the case of the optical diagnostics of laser produced plasmas and magnetically 
confined plasmas, and the in-elastic scattering by the collective plasma wave modes 
in (9.94) appears in both sides of the original photon energy as we see later. 

9.6.5 Plasma Diagnostics with Optical Thomson Scattering 

Optical probe for measuring the plasma parameters of laser produced plasma in 
ablating region, relatively lower density than the solid, has been used for diagnostics. 
For example, the higher-harmonic laser is used for such diagnostic to study the plasma 
generate by more powerful fundamental frequency lasers [Chap. 5 in Ref. 53]. 

In this case, the laser produced plasma is lower density and higher temperature 
compared to WDM and the condition α ≫ 1 is satisfied. Therefore, the atomic and 
Debye electron cloud is too small to scatter the optical probe and the most of the 
scattering is due to the collective-inelastic scattering, the second term in RHS in 
(9.94).
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In Fig. 9.19, typical spectra of the collective DSF are shown [35]. In Fig. 9.19, the 
three density cases are plotted with different temperature and different incident 
photon energy.

Case (a) The incident probe is laser with its wavelength λ = 532nm (ħω = 2.3eV), 
the plasma density is 1019 cm-3 . This is a typical case of diagnosing 
laser-produced ablation plasma with the second harmonic light probe. 
The frequency is normalized by the plasma frequency ωpl. In this case, 
ħωpl = 0.117eV. The colors of lines correspond to different plasma 
temperatures. Te = 200, 600, and 3000 eV for black (a1), red (a2), 
and blue (a3), respectively. Both side intensities are the same, because 
ħω/Te≪1. The width of the both spectra become wider as increase of 
temperature, because the damping of the plasma wave becomes higher 
due to Landau damping. 

Case (b) This figure is the case with TS light source is λ=4.13 nm (ħω = 30eV), 
so-called EUV light source. In this case, ħωpl = 1.17eV. The colors of 
lines correspond to different plasma temperatures. Te = 0.8, 2.0, 
and 8.0eV for black (c1), red (c2), and blue (c3), respectively. The 

Fig. 9.19 Theoretical 
spectra of DSF, S0 ee, for the 
collective scattering by the 
electron plasma wave. 
Figure (a) is the case of 
ablating plasma with 
relatively low density and 
optical Thomson scattering. 
With the increase of the 
electron temperature 
increases from a1 to a3, the 
damping effect is enhanced 
to make the structure broad. 
Figure (b) is the scattering 
of EUV light from higher 
density plasma. The 
asymmetry of the structure 
appears reflecting the 
relation (9.96). Figure (c) is  
x-ray scattering near solid 
density. Note that the 
amplitude decreases from 
(a) to  (c) drastically. Reprint 
with permission from ref. 
[35]. Copyright 1998 by 
American Physical Society



asymmetry of Stokes and anti-Stokes lines appears in the case of 
(c1) with ħω/Te=2. Although the anti-Stokes line increases as the 
temperature increases, the scattered spectra become broader due to the 
increase of Landau damping effect. In addition, the coupling parameter Γ 
is almost unity in these three cases, therefore the fluctuation amplitude 
per one free electron S0 ee k,ωð Þ  in (9.81) is relatively small compared to 
the case a). Note that the spread of a3 and c3 looks same in the 
normalized frequency means the damping in c3 is about ten time larger 
than a3.
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Case (c) For the case of x-ray probe with λ=0.26 nm (ħω=4.77 keV), the even the 
high-density plasma is transparent to the x-ray, since the cut-off density 
of 1023 cm-3 is ħωpl = 11.7eV, much lower than the x-ray photon 
energy. The colors of lines correspond to different plasma 
temperatures. Te = 0.5, 3.0, and 13.0eV for black (e1), red (e2), and 
blue (e3), respectively. In most of the case, ħω/Te > 1 and the anti-Stokes 
lines disappears. In such WDM situation, the Fermi energy contributes to 
the plasma wave dispersion relation and the peak of the resonance is 
shifted near ω ≈ 2ωpl. In addition, the fluctuation amplitude per one free 
electron S0 ee k,ωð Þ  in (9.81) becomes smaller compared to the above two 
cases. This means extremely bright x-ray source such as XFEL is 
dispensable for such weak signal measurement. 

With increase of coupling parameters from the top to bottom in Fig. 9.19, the 
intensity of DSF per one free electron becomes weaker since the collective motion of 
free electrons are prohibited by Coulomb interactions in strongly coupled plasma. 

9.6.6 WDM Experiment with XRTS Diagnostics 

As the integrated experiments, all three contributions in (9.79) are identified to be 
used to measure the temperature, density, and ionization degree. Let us see two 
examples of laser shocked WDM experiments for the case of strongly coupled 
plasma in the region of α < 1. In such case with x-ray source, the wavelength of 
x-ray is shorter than the Debye length and the x-ray is refracted by the Debye 
shielding electron cloud. So, the elastic scattering by the atomic and Debye cloud 
foam factors in (9.80) becomes important. 

Before the completion of XFEL facilities, laser-generated hard x-ray line emis-
sions have been applied to the x-ray Thomson scattering diagnostics of dense 
plasmas. Here, one example using NIF laser is reported with 1.1 MJ hohlraum 
implosion of a spherical CH solid with 1.15 mm radius [36]. The line x-rays are 
produced by another laser beams irradiating on zinc solid and the helium-like ions of 
Zn emitting 9.0 keV photon energy is used for TS x-ray scattering source.
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The x-ray spectrum from XRTS data have been fitted with theory of DSF 
explained above. The best fit of the WDM scattering zone averaged temperature 
and charge state of carbon ions are concluded that [36]. 

Th i= 86± 20eV , ZCh i= 4:92± 0:15, 

while an integrated radiation-hydrodynamic code HYDRA results 

Th i= 109eV , ZCh i= 4:40, 

In the analysis of XRTS spectrum, it is shown that the fraction of the elastic 
scattering to the total one is 0.24, while this ratio from HYDRA simulation is 
0.35. Such a difference suggested some improvement of the ionization model in 
HYDRA compared to XRTS data, because the collective scattering is proportional to 
the number of free electrons. 

The HYDRA simulations have been carried out with two different ionization 
lowering models. One is Thomas-Fermi model and the other is Stewart-Pyatt mode. 
How to theoretically model the ionization potential lowering will be discussed next 
section and it is concluded that both models cannot well predict the pressure 
ionization of WDM [36]. It is insisted that XRTS can be a precise diagnostics of 
modeling high-pressure effects in WDM. 

Along with such experiments, XFELs are now widely used to study the plasma 
properties in WDM compressed by intense lasers. In Fig. 9.20, x-ray spectrum of 
incident XFEL with photon energy of 8 keV scattered from WDM is shown 
[37]. The target is a solid aluminum foil and the scattered spectrum before the 
compression, aluminum solid state, is shown with bule line. The elastic scatter 
component around 8 keV and a peak at lower energy is observed. 

Aluminum at room temperature (blue line) is metal and three electrons from each 
atom are not in the bound state. It is a kind of plasma with free electrons with the 
Fermi energy. The plasma wave in such quantum plasma provides the peak of the 
collective mode on the left as seen in Fig. 9.20. This is due to the collective 
contribution to DSF shown in (9.81). 

The experimental result obtained by Thomson scattering from the laser-
compressed aluminum WDM is shown with gray spiky line “single shot signal”. 
With use of theoretical models of DSF in (9.79), it is concluded that the shift of the 
peak by the plasma wave is due to the density compression of 2.3 times the solid 
density, and a factor 2.8 over the cold scattering peak at energy 8 keV is due to the 
heating to 1.75 eV. Of course. Thomson scattering spectra are a function of scattered 
angle from the incident X-ray direction. Fig. 9.20 is obtained at the angle of 
13 degree from XFEL incident direction, corresponding to FXRTS in Fig. 9.16. In  
the present WDM, the ionization energy of the bound electrons is higher than the 
plasma temperature. The ionization is not affected by laser compression and Zf = 3 
does not change by the shock wave. 

In Fig. 9.20, the collective (inelastic) scattering component spectrum is shown 
with three humps with green, red, and purple colors. As shown in the box in the



figure, the difference among three is the difference of assumed electron temperature, 
Te = 1.75–0.5 eV, 1.75 eV, and 1.75 + 0.5 eV, respectively. The increase of the 
electron temperature leads to the enhancement by the plasma wave damping by 
Landau damping, causing the decreases of the peak amplitude. Note that the peak of 
the spectrum hump of the collective mode is very sensitive to the electron 
temperature. 
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Fig. 9.20 XRTS spectra from aluminum foil before compression (blue) and after compression 
(red). The profile of the low energy hump by the collective scattering by plasma wave changes as 
green and pink by changing the electron temperature slightly. The shift of this peak position gives 
the compressed density. Reprinted by permission from Macmillan Publisher Ltd: ref. [37], copy-
right 1993 

In Ref. [38], sensitivity to the theoretical model to the elastic scattering in (9.80) is  
discussed in detail. In the elastic component in (9.80), the atomic form factor f(k) 
does not change after the shock compression, while it is pointed out that the Debye 
screening form factor q(k) is very sensitive to the temperature. Taking account of the 
Debye shielding effect of each atom, the increase of the scattered x-ray peak at 8 keV 
is evaluated due to the increase of the temperature to 1.75 eV. Of course, note that the 
increase or decrease of the elastic scattering component is a function of the scattering 
angle and the above statement is not universal. 

Throughout the Thomson scattering, the decomposition of DSF shown in (9.79) 
proposed by J. Chihara has been used as a standard model. The Chihara formula has



been compared to the DSF spectra directly obtained from the time-dependent 
density-functional-theory (TD-DFT) [39]. It is informative to cite this conclusion 
and copy it here. 
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The authors presented a method for the direct calculation of the DSF for warm 
dense matter, independent of Chihara decomposition, by applying real-time TDDFT 
to configuration drawn from thermal Mermin DFT-MD calculations. Comparison of 
the result s with state-of-the-art models applied within the Chihara picture illustrates 
some subtle differences between the two, though it generally supports the use of the 
Chihara formalism as an inexpensive alternative to the very detailed and computa-
tionally intensive TDDFT calculations. 

9.7 Ionization Potential Depression (Continuum Lowering) 

It has been clear that the ionization degree is very sensitive in Thomson scattering 
spectra. In high-density plasmas, the pressure ionization and resultant ionization 
potential lowering is important physics to determine the ionization degree, and 
transport phenomena stemming from mainly the free electrons. As mentioned in 
Saha LTE ionization model, the ionization potential lowering is essential to deter-
mine the number of free electrons. 

The evaluation of the lowering of ionization potential which is also called ioniza-
tion potential depression (IPD) and continuum lowering has been studied from the 
beginning of modern plasma physics in application to statistical mechanics [40] and  
astrophysics [41]. Let us cite them as “EK” and “SP” theoretical models simply below. 
More than last 50 years, SP model has been widely used to study dense plasmas. In the 
first experiment possible to study with XFEL, however, demonstrated that EK theo-
retical model well explain solid density plasma experiment [42]. 

In this experiment, the x-ray photon absorption edge by the bound-free photo-
absorption has been measured from WDM irradiated by XFEL. However, more 
precise atomic model with detail configuration has been studied about the energy 
state of K-shell electrons [43]. This pointed out the change of K-shell electron energy 
as the ionization proceeds and the above conclusion has not been confirmed. With 
more detail atomic code, the experimental data of [42] has been analyzed again to 
clarify the improvement of the atomic model [44]. 

Let us see the basic theory of IPD and discuss the experimental data with XFEL. 

9.7.1 Theoretical Models 

In SP model, they proposed to use Thomas-Fermi model to the spherically symmet-
ric potential around the centered ion as explained previously to be used as statisti-
cally averaged potential. Different from the ion-sphere model, the boundary should 
be taken to the infinite radius and the effect of neighboring ions is also included to



the Thomas Fermi model. The electrons in bound state and free states are assumed to 
be in Fermi-Dirac distribution and ions are classical as given in Boltzmann 
distribution. 
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Then, SP has modified the Poisson equation mathematically to the following form 
with changing variables as 

y= 
eϕ 
T 

, x= 
r 
λD 

ð9:98Þ 

where the Debye length is contributed by both of electrons and ions, while it is 
assumed that both have the same temperature T. Then, the Poisson equation with 
replacement of electron density with Fermi-Dirac distribution can be reduced to the 
following form. 

1 
x 

d2 

dx2 
xyð Þ= 

1 
Z þ 1 

F y- αð Þ  
F - αð Þ - exp - Zyð Þ ð9:99Þ 

where 

α= 
μ 
T

ð9:100Þ 

and F is so-called Fermi-Dirac integral defined to be 

F ηð Þ= 
1 

0 

t1=2 

et- η þ 1 
dt ð9:101Þ 

Finally, (9.99) should be solved to satisfy the following two boundary conditions. 

y 1ð Þ= 0, xy→ 
Ze2 

4πε0ð λDTÞ x→ 0ð Þ ð9:102Þ 

The normalized chemical potential α is an eigen value obtained so that the solution 
should satisfy the boundary conditions (9.102). 

In SP paper, they have solved (9.99) numerically for wide range of density and 
temperature. At the same time, SP also obtained approximate solutions in the inner 
and outer region and tried to match the both functions to obtain the depressed 
ionization energy. Then, SP modified the function so that it can well reproduce the 
numerical results. The resultant formula of IPD by SP can be given in the following 
form. 

ΔUSP = 
3 
2 

Ze2 

4πε0a 
1þ X3 2=3 -X2 ð9:103Þ 

where a is the ion sphere radius and X and a are both defined to be



ð

s
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X = 
λD 
a 
, 

4π 
3 
a3 ni = 1 ð9:104Þ 

It is useful to know the physical image of (9.103). The ionization potential depres-
sion compared to the case of isolated ion is given with (9.103) and its high 
temperature limit, X > >  1, 

ΔUSP ≈ 
Ze2 

4πε0a 
1 
X 
= 

Ze2 

4πε0 
1 
λD 

ð9:105Þ 

In such ideal plasma, the potential is shielded by the Debye shielding effect. This 
potential can be Taylor expanded near the centered ion (r < <  λD) as  

UDH ≈ 
Ze2 

4πε0r 
1-

r 
λD 

a< < r < < λDð Þ 9:106Þ 

The second term is the depressed ionization potential and is the same as that by SP. 
In the opposite limit for strongly coupled plasma with X < <  1, (9.103) i  

reduced to 

ΔUSP ≈ 
3 
2 

Ze2 

4πε0a
ð9:107Þ 

This limiting case is also easily understood as follows. In strongly coupled plasma, 
the ion-sphere model is good image, and we assume the situation that the electron 
density is very high because of Fermi energy and the charge neutrality within the ion 
sphere (IS) is reasonable. Then, the potential inside the sphere can be expressed as 

UIS = 
Ze2 

4πε0r
- f rð Þ= 0 at r = a ð9:108Þ 

Where the function f(r) is the potential contribution by electron density. This gives 
us the ionization potential depression f(a), which is the same as (9.107) except the 
factor 3/2. 

The second formula, although their work was earlier historically by Ecker and 
Kroll [40], is given in the following form: 

ΔUEK = 
Ze2 

4πε0 
g ð9:109Þ 

g= 
1=λD for ni < ncr= 1þZð  Þ  
1=a×C 1þZð  Þ1=3 for ni > ncr= 1þZð  Þ
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ncr = 
3 
4π 

T 
Z2e2 

3 

In (9.109), C is originally a function of density and temperature, but C = 1 is found 
to give a good agreement with recent experimental data. 

9.7.2 Experimental Evidence of IPD 

There have been a lot of experimental study on the theory of IPD, but it was very 
difficult to measure IPD directly, especially in dense plasma. The first IPD experi-
ments have carried out with XFEL laser at SLAC, Stanford Univ. [45]. In these 
experiments, a monochromatic x-ray pulse of well-defined photon energy is focused 
to spots of ~10 μm2 on thin foils of various materials. Typical intensities achieved 
are on the order of 1017 Wcm-2 , sufficient to heat the irradiated regions to temper-
atures exceeding 100 eV on femtosecond timescales, and to drive resonant and 
non-linear atomic processes. The intense x-ray pulse can drive x-ray photoionization 
of inner-shell electrons, provided the photon energy is higher than the shell’s 
ionization edge, and bound-bound transitions leading to excited atomic configura-
tions, if the resonance energies are within the bandwidth of the x-ray pulse. Recom-
bination into the core holes created by this interaction produces strong x-ray 
emission that has been spectrally resolved to identify ionization edges 

In Fig. 9.21, in the vertical axis, the emitted photon intensity spectrum from 
heated aluminum plasma is plotted as a function of the photon energy between 
1470 eV to 1670 eV [44]. The image is obtained after many shots of XFEL by 
changing the photon energy of XFEL pulses. The data are shown for the irradiation 
of XFEL with photon energy from 1470 eV to 1800 eV, which is shown in the 
horizontal axis. The strong intensities of about eight lines are clearly seen with the 
threshold FEL photon energy increasing from low energy to higher energy. These 
lines are identified due to the electron transition 2p-1s of partially ionized aluminum 
atom. The FEL photons are predominantly absorbed by K-shell electrons as 
explained in Chap. 5, if the FEL photon energy is higher than the threshold energy 
of bound-free transition as shown in Fig. 9.21 for the case of iron. 

Just after a hole is generated in the K-shell, another electron fulfills the hole to 
emit the line radiation. One possible process is radiative transition of bound electron 
from L-shell to K-shell and this line emissions are observed and shown in Fig. 9.21. 
The energy gap between L-shell and K-shell changes as ionization stage changes in 
the aluminum atom. As the ionization stage change from Al-IV stage to Al-XI, its 
gap increases as shown by the line positions in the horizontal axis of Fig. 9.21. 
Therefore, the threshold XFEL energy gives us the information of energy depth of 
K-shell electron measured from the real free energy state which is determined by 
plasma effect.
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Fig. 9.21 Varying the 
photon energy of XFEL, the 
x-ray emission spectra have 
been measured to evaluate 
the ionization potential 
depression (IPD). The 
experimental data are 
compared to simulation with 
two different ionization 
potential depression 
theoretical models. 
Reprinted by permission 
from Macmillan Publisher 
Ltd: ref. [44], copyright 
1993 

The integrated emission intensity is plotted in the above in Fig. 9.21, and 
compered to computational results with two different ionization potential depression 
models. It is found that both theoretical models well reproduce the present experi-
mental result [44]. 

In Ref. [46], another analysis of the possibility is reported to obtain highly precise 
measurements of the ionization potential depression (IPD) in dense plasmas with 
spectrally resolved x-ray scattering. In this method, the advantage is that the electron 
temperature and the free electron density are simultaneously determined. So, more 
precise study is expected. A proof-of-principle experiment at the LCLS probing 
isochorically heated carbon samples, demonstrates the capabilities of this method 
and motivates future experiments at x-ray free electron laser facilities. 

In Fig. 9.22, the experimental data of XRTS spectrum are shown with blue dots. 
The spectrum is analyzed theoretically with Chihara decomposition formula. A 
model fit to the scattering spectrum using the Chihara decomposition and assuming 
local thermal equilibrium provides a stable fit giving Te = 21.7 eV, Z = 1.71, and an 
IPD of 24 eV. The model fit total spectrum is plotted in red in Fig. 9.22 showing a 
good agreement with the XRTS data. It is mentioned that looking at the absolute



value of the IPD obtained from the fit (24 eV) is in very good agreement with the 
Stewart–Pyatt prediction for the best fit plasma parameters (25.3 eV) and does not 
agree with modified Ecker–Kroell (47.7 eV). It is noted that before such XFEL 
facility, there was no way to check the theoretical model with precise experimental 
way, while XFEL has made such comparison possible to motivate better modeling of 
the ionization potential depression (IPD). 
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Fig. 9.22 The ionization 
potential depression is 
determined experimentally 
from XFEL Thomson 
scattering measurement. 
Reprint from ref. [46] with 
permission from Institute 
of Physics, (Courtesy of 
D. Kraus) 
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Detail level accounting (DLA), 335 
Detonation, 116 
Diamond anvil cell (DAC), 356, 397 
Differential cross section, 419 
Dipole approximation, 217 
Dipole transition matrix, 218 
Dispersion measure, 85 
Dispersion relation, 19 
Dissipative blast wave, 182 
Doppler broadening, 237 
Dyadic product, 25 
Dynamical structure factor (DSF), 431 

E 
Eagle nebulae, 264 
Earthquake, 32 
Eddington coefficient, 332 
Einstein’s A and B coefficients, 221 
Ejecta, 186 
Elastic pressure, 357 
Elastic scattering, 232, 236, 417 
Electric conductivity, 410 
Electric quadrupole transition, 217 
Electromagnetic waves, 20, 83 
Electron conductivity, 290 
Electron impact ionization, excitation, 236 
Electron plasma waves, 54 
Electron spin, 207 

Enthalpy, 25 
Entropy, 28 
Equation of continuity, 21, 44 
Equation of energy, 26 
Equation of motion, 16, 20 
Equation of state (EOS), 26, 112, 401 
Euler equation, 3, 22 
Exchange and correlation (xc) energy, 389 
Exchange interaction, 356 
Exclusive principle, 207 

F 
Faraday rotation, 90 
Fast mode, 80 
Fast radio burst (FRB), 86 
Fermi energy, 383 
Fermi-Dirac distribution, 278 
Fermi pressure, 29 
Fermi’s golden rule, 221 
Fire ball, 179 
First law of thermodynamics, 21 
Fluctuation dissipation theory, 437 
Fluid assumption, 20, 50 
Fluid model, 1 
Fluid model of plasma, 4 
Flux-limit, 287 
Fokker-Planck equation, 293, 317 
Fokker-Planck simulation, 109, 299 
Forbidden line, 259 
Form factor, 422 
Fourier-Laplace method, 60 
Free-streaming heat flux, 287 
Friedrichs diagram, 80 

G 
Gamov peak, 238 
Gas jet, 143 
Gaunt factor, 223 
Gauss theorem, 22 
Green function, 416 
Guderley, 156 

H 
Hall effect, 63 
Hartree-Fock (HF) method, 210, 360 
Hartree method, 210, 368, 378 
Hartree potential, 389 
Heat conduction, 120 
Helium atom, 208 
Helium-like, 207
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Helmholtz equation, 416 
Helmholtz free energy, 27, 199 
High-energy-density plasma (HEDP), 354 
Higher-harmonic generation (HHG), 392 
High-pressure physics (HPP), 354, 397 
HII region, 264 
History of fluid dynamics, 3 
Hollow shell, 152–155 
Homogeneous adiabatic flow, 165 
HSR model, 306 
Hugoniot curve, 105, 398 
HULLAC, 210 
Hydrodynamic efficiency, 131 
Hydrogen atom, 201 

I 
Ideal MHD, 19, 67 
ILESTA, 135, 152 
Implosion dynamics, 135 
Imprint, 5 
Incompressible, 32, 44 
Inertial term, 55 
Inner-shell ionization, 260 
Insulator-metal transition (IMT), 403 
Inverse-Bremsstrahlung, 237, 245 
Inverse cascade, 48 
Ion acoustic velocity, 56 
Ion acoustic wave, 55 
Ion configuration, 337 
Ion-ion coupling parameter, 382, 413 
Ionization energy, 201 
Ionization plasma, 266 
Ionization potential depression (IPD), 381, 443 
Ionization potential lowering, 206 
Ion sphere, 363 
Isobaric implosion, 159 
Isochoric implosion, 163 
Isothermal, 123 

K 
Karman vortex, 39 
Kidder, 165 
Kidder’s implosion, 168 
Kohn-Sham theory, 388 
Kramers formula, 223 
Krook collision operator, 73, 289 

L 
Laboratory astrophysics, 7 
Lagrange derivative, 23 

Lagrange equation, 3, 77 
Landau damping, 96, 314 
Landau-Darrius instability, 117 
Larmor emission, 92 
Larson-Penston solution, 193 
Laser, 255 
Laser blast wave, 179 
Laser-fusion scenarios, 5, 6 
Laser induced shock, 176 
Laser in Universe, 257 
LASNEX, 305 
Laval nozzle, 142 
Legendre expansion, 297 
Lenard-Jones potential, 357 
Lift force, 46 
LMV nonlocal heat flux, 303 
Lotz formula, 240 
LS-coupling, 212 
LTE, 250 
L-wave, 89 

M 
M51, 49 
Mach number, 107 
MagLIF, 72 
Magnetic dipolar transition, 217 
Magnetic dynamo effect, 70 
Magnetic field in ISM, 186 
Magnetic pressure, 68 
Magnetic Reynolds number, 66 
Magnetic tensor, 69 
Magneto-hydrodynamics, 62 
Magneto-rotational instability (MRI), 82 
Magnet sonic wave, 75 
Many-electron atom, 13 
Maser, 255 
Mass ablation rate, 129 
Mass conservation, 21 
Mass density flux, 21 
Matching condition, 430 
Maxwell equation, 53 
Maxwellian distribution, 2, 273 
Mean-free-path, 40 
Metal hydrogen (MH), 407 
Meta-material, 34 
MHD equation, 62 
MHD waves, 74 
Molecular bonding, 357 
Molecular dynamic simulation (MD), 365 
Multi-group diffusion, 329–333 
Multi-group hear flux, 311 
Multi-photon ionization, 392
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N 
Natural width, 237 
Navier-Stokes (NS) equation, 4, 36, 102 
Negative temperature, 254, 256 
N-electron atom, 214 
Nernst effect, 74 
Neutrino transport, 346 
Non-ideal fluid, 35–44 
Nonlinear heat diffusion, 25 
Non-LTE, 250 

O 
Ohmic law, 19 
One-component plasma (OCP), 363 
One fluid model, 18 
Opacity, 325 
Opacity and emissivity, 333 
Opacity experiments, 339 
OPAL, 210 
Optical depth, 230, 327 
Optically thin plasma, 230 
Ortho-helium, 208 
Oscillator strength, 221 

P 
Pair distribution function, 432 
Para-helium, 208 
Para-potential method, 210 
Parker’s solution, 143 
Partition function, 199 
Phase shift, 235 
Photo de-excitation, 224 
Photo-excitation, 224 
Photo-ionization, 225, 230 
Photo-ionization parameter, 265 
Photo-recombination, 242 
Physics-integrated code, 9 
Planetary nebulae (PN), 258 
Planck distribution, 275 
Plasma β, 68  
Plasma dielectric function, 437 
Plasma frequency, 54 
Plasma oscillation, 54 
Plasma phase transition, 354 
Poisson curve, 105 
Polarization spectroscopy, 239 
Polytropic process, 30 
Population inversion, 256 
Potential flow, 45 
Preheating, 300 
Pressure ionization, 338, 358, 443 

Probability function, 286 
Propagator, 303 
Proto-neutron star (PNS), 347 

Q 
Quantum molecular dynamics (QMD), 362 
Quantum Monte Carlo (QMC), 384 

R 
Radial distribution function, 410 
Radial wave function, 204 
Radiation cooling effect, 180 
Radiation-hydrodynamics, 7, 12, 345 
Radiative ionization precursor, 183 
Radiation pressure, 345 
Radiation transport, 315, 326 
Raman scattering, 430 
Ramsauer effect, 235 
Ranking-Hugoniot relation, 103 
Rarefaction wave, 120 
Rate coefficient, 238 
Rate equation, 198, 247 
Rayleigh-Taylor instability, 6 
Recombining plasma, 254 
Relaxation time, 17, 51 
Resistive MHD, 73–74 
Reynolds number, 37 
Rocket model, 129 
Rosenbluth potentials, 295 
Russell-Saunders coupling, 212 
Rutherford scattering, 235, 413 
R-wave, 88, 89 
Rydberg, 227 

S 
Saddle point, 108, 160, 163 
Saha equation, 335, 381 
Saha equilibrium, 199 
Scattered wave, 417 
Schrodinger equation, 198 
Screened hydrogenic model (SHM), 360, 368 

with l-splitting, 374 
Screening parameter, 211 
Seismic wave, 33 
Selection rule, 218 
Self-magnetic field, 45 
Self-similar solution, 41, 120, 156 
Shell thinning, 184 
Shock EOS experiment, 402–403 
Shock front structure, 102
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Shock tube, 125 
Shock wave heating, 102 
Shock wave ionization, 107 
Shock waves, 99, 391 
Similarity valuable, 176 
Simple wave, 101 
Singlet, 208 
Slater matrix, 198 
Slow mode, 80 
Small-angle x-ray-scattering (SAXS), 424 
SN1006, 185 
SNB model, 307 
Snow plow, 189 
Solar wind, 143 
Sound velocity, 31 
Sound wave, 30 
Source function, 327 
SPARK code, 305 
Specific heat ratio, 27 
Specific volume, 21, 105 
Spherical harmonics, 222 
Spherical implosion, 155 
Spin function, 204 
Spin-orbit interaction, 212 
Spitzer-Harm heat flux, 287 
Spontaneous emission, 219 
Stagnation, 5, 135, 150, 166 
Standard solar model, 341 
Star formation, 334 
Stark broadening, 237, 338 
Stellar wind, 143 
Steward-Pyatt model, 372 
Stokes and anti-Stokes lines, 440 
Strongly-coupled plasma (SCP), 363, 413 
Strong shock, 149 
Structure factor (SF), 432 
Sum rule, 221 
Supercomputer, 354 
Supernova Ia, 117 
Supernova remnant (SNR), 92, 185 

T 
Tailored pulse, 155 
Taylor-Couette flow, 82 
Taylor-Sedov solution, 176 
Temperature relaxation, 51 
Term splitting, 212 
Thermal conduction, 40, 56 
Thermal current, 290 

Thermodynamic consistency, 28 
Thermodynamic relation, 27 
Thomas-Fermi model (TF), 377, 380 
Thomson scattering (TS), 313, 427 
Three-body problem, 236 
Tokamak, 71 
Tornado, 48 
Torsional Alfven wave, 80 
Total derivative, 22 
Transition probability, 216 
Triplets, 208 
Turbulent mixing, 6 
Two fluid model, 53 
Tycho SNR, 193 
Typhoon, 48 

V 
Variable Eddington factor, 332 
Verification and validation (V&V), 9, 136, 166 
Viscosity, 33 
Vishiniac instability, 180 
Vlasov-Fokker-Planck equation, 292–302 
Vortex equation, 48 
Vorticity, 44, 49 

W 
Warm dense matter (WDM), 354, 361 
Wave propagation, 40 
Weak interaction, 346 
White dwarf (WD), 117, 279 
Wigner-Sitz cell, 407 

X 
XFEL, 109 
X-ray back-lighting, 137 
X-ray binary, 264 
X-ray diffraction (XRD), 429 
X-ray free electron laser (XFEL), 259, 427 
XSTAR, 266 

Y 
Yukawa term, 210 

Z 
Zel’dovich number, 114 
Z-pinch, 71
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