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Abstract With the digital transformation, artificial intelligence (AI) applications are 
also finding their way into more and more areas of work and life. In particular, 
models learned from data are being used, which are mostly opaque black boxes. The 
fact that people can understand why an AI system behaves the way it does is 
necessary for various reasons: The model developers themselves must be able to 
assess properties of the learned models—in particular, possible biases due to 
overfitting to the data used for learning. For safety-critical applications, aspects of 
certification and testing are also becoming increasingly relevant. Domain experts— 
for example, in medical diagnostics or quality control in industrial production—must 
be able to comprehend, verify and, if necessary, correct system decisions. Con-
sumers should understand why a system—a smart home control, a driving 
assistance—behaves in a certain way and why they are recommended certain 
products, offered certain tariffs or denied certain offers. After a brief introduction 
to the topic of AI, the chapter gives an overview of methods of the so-called third 
wave of AI. Central to this are approaches of explainable AI (XAI), which are 
intended to make the decisions of AI systems comprehensible. The main approaches 
are characterized and shown for which objectives and applications they are suitable 
in each case. It is shown that in addition to the highly regarded methods for 
visualization, methods that allow system decisions to be described in a differentiated 
manner are also particularly important. It is also argued that, in addition to compre-
hensibility, interactivity and correctability of AI systems are necessary so that AI 
systems do not restrict human competences but support them in partnership. 
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1 Introduction 

Artificial intelligence (AI) is that field of research in computer science in which 
algorithms are developed to solve problems that humans are currently better at 
solving (definition according to Rich, 1983). AI is a research domain within com-
puter science. In general, AI approaches should only be applied for problems which 
cannot be solved with standard algorithms. While standard algorithms—at least in 
principle—guarantee correctness (an input results in the intended output) and com-
pleteness (for all possible inputs, an output can be computed), this does not in 
general hold for AI algorithms. For many safety-critical domains, AI algorithms 
are usually not an option. For instance, the controller of an airbag should react in the 
intended way in all situations. AI systems become necessary for one of the following 
two reasons: (1) A problem is too complex that a solution can be computed 
efficiently. That is, it would take an unacceptably long time to generate an output. 
In this case, heuristic algorithms (one of the core approaches of AI) are used to 
compute approximate solutions without a guarantee how near the produced solution 
is to a desired or optimal solution for a problem. (2) It is not possible to give a full 
explicit description of the problem, and consequently, it is not possible to even 
define an algorithm. In this case, the algorithm for processing inputs into outputs is 
approximated from data, that is, by machine learning. Between input and output, 
there is now not an explicit, inspectable program but a machine-learned model which 
has generalized over data. 

The field AI was given its name “artificial intelligence” in 1956 by computer 
science pioneer John McCarthy at Stanford University. The two main families of AI 
methods are knowledge-based methods and machine learning (see the most widely 
used textbook by Russell & Norvig, 2020). Both areas have been considered from 
the beginning. The first implementation of a machine learning program was a 
program to learn a strategy for the game of checkers and realized by Arthur Samuel 
in 1952. Early approaches also included the perceptron as a model of a single neuron 
and decision tree algorithms as an example for symbolic/interpretable machine 
learning (Rudin, 2019). 

The 1980s was the peak period for knowledge-based methods in the context of 
applications for expert systems. It was hoped that AI systems could relieve or 
support human experts in many areas—from medical diagnostics to the planning 
of production processes to the use of intelligent tutoring systems in teaching. In the 
context of research on knowledge-based systems, efficient algorithms for drawing 
conclusions emerged. Special AI programming languages such as the logic pro-
gramming language Prolog and specific hardware for more efficient processing, 
especially the Lisp machine, were developed. Research on machine learning still 
took place, but was dominated by the knowledge-based approaches. The heyday of 
expert systems accordingly has similarities to the current hype in machine learning. 
Again, one direction strongly dominates, and special program libraries are developed 
for deep neural networks as well as special hardware in the form of GPUs (graphics



processing units) allowing to multiply matrices particularly efficiently with multi-
plication of matrices of real numbers as core operation for neural networks. 
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The high hopes placed in expert systems could ultimately only be partially 
fulfilled, especially due to the so-called knowledge engineering bottleneck—the 
realization that human knowledge is only partly explicitly available and can be 
formally represented. Large areas of human knowledge, especially perceptual 
knowledge and highly automated action routines, are implicit and cannot be captured 
or can only be captured inadequately with knowledge acquisition methods. The 
phenomenon is also called Polanyi’s paradox: How can we humans know more than 
what we can talk about? 

Impressive successes in the application of deep neural networks have heralded a 
new peak phase in AI since around 2010—this time with a focus on machine 
learning. The main reason for the new great interest in AI is that for the first time, 
it was possible to learn almost directly from different types of data, such as images or 
texts, without complex pre-processing (end-to-end learning). Most machine learning 
approaches, including classical neural networks as developed since the late 1980s, 
expect data in the form of feature vectors as input. Many data are available in tabular 
form anyway—for example, customer data or patient data. However, if you want to 
learn from image data such as photos of objects or even X-ray images, for example, 
you first have to extract features such as textures or color distributions from the 
available image data for the classical machine learning approaches. Just as for the 
knowledge-based approaches of AI, perceptual tasks also posed a challenge for 
machine learning. 

In 2012, a deep neural network—a convolutional neural network (CNN) called 
AlexNet—won the ImageNet Challenge for the first time (Krizhevsky et al., 2012). 
In the challenge, images from 1000 categories, for example, animal species, vehicle 
types and buildings, are to be classified. Several million images are available for this 
purpose, for which the objects depicted are annotated by hand. Unlike earlier 
machine learning approaches, AlexNet could learn directly from the images. Com-
parable developments exist for natural language processing, such as machine trans-
lation (DeepL) or text generation (GPT-3). Again, however, expectations of what 
these novel AI methods can do are overblown. Polanyi’s revenge (Kambhampati, 
2021) has swung the pendulum from a near-exclusive focus on AI methods for 
explicit knowledge to a sole focus on AI methods for tacit knowledge. For any given 
problem, learning from lots of data is seen as the only meaningful approach. Existing 
knowledge, including carefully acquired knowledge about causal relationships, is 
thrown overboard to learn things imperfectly from data for which explicit knowledge 
is available. At the same time, traceability and control are abandoned, since deep 
neural networks calculate inputs in a complex mathematical way and are thus black 
boxes.
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2 Problems with Data-Intensive Machine Learning: 
Unfairness, Biases and Missing Robustness 

Even though data-intensive machine learning with the new generation of deep neural 
networks opens up new possibilities for various application areas, it also brings new 
problems. The requirements for quantity and quality of data are extremely high. The 
ImageNet already mentioned consists of 14 million images and 20,000 categories. It 
is often overlooked that the effort of capturing knowledge and formalizing it for 
processing by AI methods does not disappear with machine learning, but is deferred 
to the correct annotation of training data. Clickworkers have to manually annotate 
each example with the correct category—or even mark objects in images. The more 
complex the architecture of a neural network, the more data is needed to train it. If 
too little data is available, it is duplicated (augmented). Images, for example, are 
changed in their color values. In complex application areas where it is unclear which 
complex combination of information is responsible for a certain category, this can 
lead to unwanted biases. For example, when diagnosing tumors from tissue sections, 
the tissue is often colored. A model that decides whether a tumor is present, and if so 
which category, could be misled by training data with different staining than the 
original. 

Supervised machine learning approaches, and this includes many deep neural 
network approaches, require a sample of training data that is as representative as 
possible for the problem and that is annotated with the correct output—this is called 
ground truth labelling. Especially in medicine, but also in other application areas, it 
is often not clear what the correct decision is for a given datum. For example, it could 
be that one medical expert decides on tumor class pT3 for the same image of a tissue 
section, while another decides on pT4. If certain types of data are missing from the 
training set (sampling bias) and data are not correctly annotated, this has a direct 
impact on the quality of the learned model (see Bruckert et al., 2020). In addition, 
models generated from data can typically only generalize for similar data that lie 
within the distribution of the data in the training set, but not for data that lie outside 
the distribution. If one has trained a model that can distinguish car types and it later 
receives a washing machine as input, it will classify it in terms of similarity to the car 
types it has learned. A human being, on the other hand, would say, that’s something 
completely different from what I’ve seen so far, I can’t say anything about that. 
Learned models do not have this kind of meta-cognition by default. A knowledge-
based AI system, on the other hand, would not process an input outside the domain 
under consideration. So the quality of learned models depends heavily on the 
selection and quality of the data it has been trained with. 

But even if the data are collected representatively and annotated correctly, 
undesirable effects can occur. Unfairness in reality is represented in the data. If 
there are significantly fewer women working in IT than men in a company and one 
naively simply trains a model for application selection with the existing data, the 
result is that a female applicant is no longer considered for a position in IT at all, as 
happened with Amazon’s recruiting tool in 2018 (Dastin, 2018). If one is aware of



such unfair distributions in the data in advance, this can be taken into account 
through appropriate methods in the learning process. In general, however, unfair 
models cannot be ruled out completely. 
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Both human and machine learning are inference from a sample of data or 
experience to a population. Such inductive inferences can never be completely 
correct. Human concept acquisition is generally very robust. For example, we 
have no trouble distinguishing cats from other animals, even with very different 
types of cats, lighting or backgrounds. In other areas, people tend to overgeneralize 
and form stereotypes and prejudices. Prejudices related to gender or ethnicity cannot 
be eliminated, but they can be recognized and also corrected. But with both human 
and machine learning, it is true that mistakes can be made. With machine-learned 
models, one estimates what the error rate will be for unseen data. A predictive 
accuracy of 99% does not sound bad, but it means that the model will make an error 
every hundredth case. If you use a search engine to look for pictures of cats, it 
doesn’t matter if every 100th picture shows something different. Here, the advan-
tages of automated image retrieval outweigh the disadvantages. You look at the 
pictures and choose a suitable one. In contrast, if, in a medical diagnosis, a disease 
were mistakenly diagnosed or—even worse—overlooked in every 100th case, that 
would be intolerable. Similarly, it is certainly undesirable that every 100th person is 
wrongly denied a loan or an insurance rate is set too high for no reason. 

In order to be able to recognize and correct such undesirable model decisions, it 
can be very helpful to comprehend which information of the input data has been 
taken into account by which the model came to its decision. However, many 
machine learning approaches, especially deep neural networks, construct 
non-transparent models that are black boxes even for the model developers 
themselves. 

3 Explainable Artificial Intelligence: Comprehensibility 
of Machine-Learned Models 

The growing interest in the use of data-intensive AI methods impacted more and 
more application areas since around 2015. It quickly became clear that an exclusive 
focus on black-box machine learning approaches is often neither possible nor 
desirable. Possible applications are limited by the data quantity and quality require-
ments discussed above, but especially by the high effort required to annotate the 
training data. In addition, it has been realized that—especially in safety-critical areas 
such as medicine—systems where it is not possible to understand the basis on which 
they arrive at a decision or a recommendation for action are not acceptable. In areas 
that have a direct impact on consumers—from personalized advertising to lending— 
the right to transparency was also soon demanded (Goodman & Flaxman, 2017). 

In spring 2017, DARPA (Defense Advanced Research Projects Agency, USA) 
launched the Explainable Artificial Intelligence (XAI) program. The aim of the



program is to develop methods that (a) lead to machine-learned models that are more 
comprehensible than black-box models but at the same time retain a high degree of 
predictive accuracy and (b) enable users to understand this emerging generation of 
partnered AI systems, to trust the decisions appropriately and to interact effectively 
with the systems (Gunning & Aha, 2019). Using the classification of a cat by a neural 
network as an example, it was shown that an explanation of the model decision can 
include both verbalizable features such as “has fur, whiskers and claws” and 
prototypical images of typical visual features such as the shape of the ears (see 
https://twitter.com/darpa/status/843067035366187008, 18.3.2017). However, the 
term explainable led to misunderstandings outside of the research community, as 
it rather suggests that the workings of AI systems are explained in a way that is 
understandable to laypersons. However, XAI means to provide methods which allow 
to make the decision-making process of an AI system, specifically a machine-learned 
model, more transparent. In parallel, terms such as “comprehensible machine learn-
ing” (Schmid, 2018) or interpretable machine learning (Doshi-Velez & Kim, 2017) 
were proposed. In the meantime, the term explanatory machine learning is also 
frequently used (Teso & Kersting, 2019; Ai et al., 2021). Furthermore, transparency 
is now usually understood more generally than explainability: it refers to the 
principle that it should be made clear when a recommendation or decision is based 
on the use of AI methods or if an interaction is not with a human but with an AI 
system such as a chatbot. 
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In the meantime, a standardization of terminology has developed: After the initial 
focus on explainability for deep neural networks, the relevance of methods for 
generating explanations, in short XAI methods, is now seen for all types of AI 
systems. On the one hand, explanation methods are being developed for various 
black-box approaches to machine learning (this includes methods such as support 
vector machines or k-nearest neighbor approaches; see, e.g. Kersting et al. (2019) for 
a general introduction). On the other hand, explanatory methods are also being 
developed for knowledge-based AI systems as well as for white-box machine 
learning approaches. For these systems, it is in principle comprehensible how a 
decision is reached. But—comparable to large software systems—the models are 
often too complex to see through the entire process of information processing. In 
addition, the models are stored in special representation formalisms that enable 
processing by computer programs and must be suitably translated into comprehen-
sible explanations. Recently, it has been established to refer to white-box machine 
learning approaches, such as decision tree methods, as interpretable machine learn-
ing (Rudin, 2019). 

In the meantime, a wide range of XAI methods exists that are suitable for different 
target groups and different information needs. There are numerous methods that 
show the relevance of specific information from the input for the current decision. 
This can be features, words or parts of images. For example, the LIME approach 
(Ribeiro et al., 2016) shows which groups of pixels must be present for a classifi-
cation decision—for example, that eye and ear are relevant for whether the model 
recognizes a cat. LIME is a so-called model-agnostic explanation approach: to 
generate an explanation, the learned model is not interfered with; instead, the input

https://twitter.com/darpa/status/843067035366187008


data is manipulated, and the resulting model decision is considered. An approach 
that was developed specifically for image classification with (deep) neural networks 
is LRP (layer-wise relevance propagation; Bach et al., 2015). Here, those image 
points are highlighted that had a particularly strong influence on the output of the 
network. In contrast to LIME, LRP is model-specific, which means that the method 
must be integrated directly into the learning algorithm. Highlighting the information 
that is particularly relevant to a learned model is especially useful for model 
developers to check whether the model has generalized meaningfully. During 
learning, it can happen that the model uses irrelevant information for prediction 
that correlates with the class to be predicted. In other words, the model adapts too 
much to the training data (overfitting), which can lead to problems with the predic-
tion for data that has never been seen before. This is also referred to as “right for the 
wrong reasons” or “Kluge Hans” predictors. For example, it could be that by chance 
a part of the photos showing horses is given with a source reference (e.g. a website). 
The learning algorithm can then use this simpler information to correctly indicate 
when a horse is seen for the available data. However, highlighting the pixels used 
can show that this output is based on the source cue (Lapuschkin et al., 2019). 
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For domain experts and also for end users, highlighting only relevant information 
is usually not very helpful. For example, visual highlighting can show that a certain 
tumor is actually visible on a tissue section. However, in order to understand why the 
model has decided on tumor class pT3 and not on pT4, much more complex 
information is required that can be better expressed in language. This includes spatial 
relations, such as the position of the tumor relative to other tissue types, or the 
concrete expression of individual features, such as the diameter of the tumor 
(Bruckert et al. 2020; Schmid, 2021). Such explanations can be generated, for 
example, combining black-box machine learning approaches and interpretable 
approaches (Rabold et al., 2020a). 

For consumers, simple explanations such as those familiar from recommendation 
systems are often relevant (Tintarev & Masthoff, 2012). For example, if a certain 
product is recommended in an online shop, one can ask on what data basis this 
recommendation was made. Typically, one is then shown previous purchases that 
have been compared with the purchase profiles of other people for a similarity 
comparison. When it comes to making transparent how algorithms (with and without 
AI components) at banks, insurance companies or other companies come to certain 
decisions, such as the rejection of a loan or the amount of an insurance premium, 
counterfactual explanations are particularly helpful (Wachter et al., 2017)—for 
example: “You did not get the loan because your annual income is €45,000. If 
your annual income was €55,000, you would have received the loan”. Such expla-
nations give the relevant information to customers while avoiding the need for 
companies to reveal their algorithms. In case a model decision has been based on 
erroneous assumptions about a customer, it should be possible for the customer to 
complain and ask for a correction (actionability). 

Prototypical as well as contrastive examples provide another possibility for 
explanations. Such examples offer experts in particular the opportunity to better 
understand how the model is structured. The XAI methods considered so far explain



how a specific decision was reached (local explanation). Specially selected examples 
can (1) show which data a model evaluates to be particularly typical for a certain 
class—a prototypical representant with respect to the decision region the model 
induced for this class; instead of identifying a prototypical example, a synthetic 
representant for a concept might be constructed, as it is usually proposed in psy-
chology and philosophy; (2) examples which are situated near to the decision 
boundary for a class help to get insights in the discriminative features of the 
model. This can be a borderline case for the considered class or a near-miss example 
(Rabold et al., 2022), that is, an example similar to objects of the considered class but 
being classified as a member of a different class (see Fig. 1). 
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Fig. 1 Explaining image classifications by example. On the left side are house cats, and on the right 
side are small wild cats. For the house cat, the grey sitting cat might be the prototype for the class. 
The cat in the dandelion field is a near-miss example for the class house cat—a cat very similar to 
house cat examples but classified (correctly) as a small wild cat. Alternatively to the cat domain, one 
can think of images indicative for two tumor classes II and III or images for defect or acceptable 
parts in industrial quality control 

Another type of explanation tries to explain the entire model—so-called global 
explanations. While a local explanation supports understanding why a specific 
example is classified as belonging to a certain class (e.g. Why do you classify this 
image as indicating tumor class II?), a global explanation supports understanding of 
what constitutes a class given a specific model (e.g. What features are in general 
relevant to decide that an image is indicating tumor class II?). An explanation by



prototype can be seen as a special instance of a global explanation. Another 
possibility is to learn symbolic rules as a surrogate model. Such rules can be based 
on identifying concepts and their relations. For instance, a model classifying faces 
should take into account the presence of eyes, nose and mouth as concepts together 
with their spatial relations (e.g. that the nose is above the mouth; Rabold et al., 
2020b). 
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Explanatory AI thus consists of a growing set of different methods, each fitting 
different information goals. Theoretical and empirical analyses of the properties and 
effects of explanations from psychology are increasingly being incorporated into 
research on XAI (Miller, 2019). XAI methods are an important contribution to the 
comprehensibility of AI systems, especially machine learning. However, in the 
respective application context, especially in the professional environment, it must 
be carefully checked that explanations are actually used to control system decisions 
and thus not blind but justified trust in an AI system can develop (Thaler & Schmid, 
2021). The danger is that the mere existence of the possibility of an explanation leads 
to system decisions being adopted without reflection (Lee & See, 2004). 

4 Third-Wave AI Methods: Hybrid, Comprehensible 
and Correctable 

Explainable AI methods are also referred to as the third wave of AI—after the first 
wave of knowledge-based approaches (describe), followed by data-intensive 
machine learning (categorize), which is to be replaced by approaches that adapt to 
the interests of the users depending on the context (explain). It is increasingly argued 
that the methods required for the third wave must not only address the generation of 
explanations, but that machine learning should allow interaction, especially correc-
tions of the model (Teso & Kersting, 2019; Müller et al., 2022). Furthermore, it is 
seen that a combination of knowledge-based approaches and machine learning can 
lead to more data-efficient and robust models (see Fig. 2). This direction of research 
is referred to as hybrid AI or neurosymbolic AI (De Raedt et al., 2020). 

The combination of explanatory and interactive (human-in-the-loop) machine 
learning is a useful approach to counteract the problems with the quantity and 
quality of data discussed above. For example, experts can simply accept a system 
decision that they can directly understand, question a system decision more closely 
by requesting one or more explanations from the system as to how the decision was 
reached and, in the third step, also correct this decision. While most work on 
interactive machine learning only allows the correction of the output, there are 
now first approaches that additionally allow the correction of the explanations. 
This allows the adaptation of the model to be controlled in a targeted manner 
(Schmid, 2021). Interaction thus allows targeted human knowledge to be introduced 
into the learning process (see Fig. 3). Corrections are also possible when knowledge 
cannot be made completely explicit. For example, an expert can often recognize



whether a diagnosis is acceptable or not and possibly also identify faulty assump-
tions in its justification. At the same time, it can be assumed that the possibility of 
correction leads to a stronger sense of control and self-efficacy and thus there is less 
danger of blindly adopting system decisions. 

160 U. Schmid

Fig. 2 Combining knowledge-based and data-driven AI: What we already know we do not need to 
learn (over and over) again 

Fig. 3 Human-in-the-loop machine learning: Making use of explicit knowledge and of corrections 
to guide model generation and adaptation 

Finally, there is a growing realization that purely data-driven machine learning is 
often not very efficient. While people use knowledge and skills they have already 
acquired and can thus learn increasingly complex things, machine learning involves 
learning everything from scratch over and over again. If prior knowledge could be 
incorporated into the learning process, data could be saved, which in turn could lead 
to less effort for annotation as well as savings in energy for storage and processing.



In addition, existing knowledge can be used specifically to guide the learning 
process. Models that take existing knowledge into account are less prone to 
unwanted biases and more robust with respect to data that lie outside the data 
distribution in the training. 
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Deep neural networks have brought the research field of artificial intelligence 
back into the public eye after many years. Increasing digitalization and global 
networking make it possible to learn from large amounts of data. For a responsible 
use of AI methods, the new research topics of explainable, interactive and hybrid AI 
provide the opportunity for AI systems to emerge in partnership, which do not curtail 
human competences but expand and promote them. 

5 Conclusions 

Explainability, the combination of data-driven and knowledge-based AI, and inter-
active approaches to machine learning have been introduced as relevant ingredients 
for trustworthy AI systems. However, one has to be careful that the presentation of 
an explanation does not result in unjustified trust. It is not guaranteed that an 
explanation is faithful to the model. That is, an explanation might be not correlated 
to the way in which a model did process the data. Similar effects can be observed in 
human explanations—one might give a reason to justify one’s behavior which is not 
the true one. If a person is giving a wrong reason by design, the person is not truthful. 
However, often we have no full access to the motives underlying a specific behavior 
and come up with an explanation we find plausible. Furthermore, explanations as an 
additional source of information might result in cognitive overload (Ai et al., 2021). 
Therefore, explanations should only be given when a specific information need 
exists. 

In the ethics guideline for trustworthy AI of the European Commission a 
non-exhaustive list of requirements for trustworthy AI is given, among them data 
quality (governance), inclusiveness (design for all), human oversight, fairness 
(non-discrimination), human autonomy, privacy, robustness, safety and transpar-
ency. The topics discussed in this chapter can contribute to realize these require-
ments: Explainability contributes to human oversight and transparency. Hybrid 
systems contribute to robustness and safety. Interactive machine learning contributes 
to human oversight and human autonomy. 

The recent developments in the domain of generative AI systems such as large 
language models or dialog systems such as ChatGPT bring new challenges with 
respect to trustworthiness. When an output, for instance, an answer to a question, is 
generated, one might be interested in several aspects to evaluate the trustworthiness 
of the output: (1) Are statements concerning factual knowledge correct or is the 
system hallucinating? (2) Has the presented output originally been obtained from 
sources with copyright? (3) What are the original sources for the information given? 
(4) Why was a specific information included in the output and another omitted? 
Current XAI methods are not suited to explain the output of generative AI models.



First, ideas on how to provide explainability are currently being explored, and 
hopefully, we will see results in the near future. 
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Discussion Questions for Students and Their Teachers 
1. If a domain expert, for instance, in medical diagnosis, wants to understand why a 

machine-learned model classified an image as indicative for a specific tumor 
class, which type of explanation would you think to be most helpful? If a person 
is wondering why an insurance company demands a rather high monthly amount 
for health insurance, which type of explanation do you think to be most helpful? 

2. Do you think that for AI applications to be ethical, it is necessary that it provides 
explanations? Do you think explanations are sufficient for trustworthiness of an 
AI system? 

3. Discuss reasons why combining machine learning with knowledge-based 
approaches allows to perform machine learning from smaller data sets and yields 
more robust models. 

4. Do you see problems which can arise from interactive/human-in-the-loop 
machine learning? 

5. Is it possible to provide explainability and trustworthiness for the new generation 
of generative AI models (such as ChatGPT)? 

Learning Resources for Students 
1. A comprehensive and recent survey of XAI methods is given in 

Schwalbe, G. and Finzel, B. (2023). A comprehensive taxonomy for 
explainable artificial intelligence: a systematic survey of surveys on methods 
and concepts. Data Mining and Knowledge Discovery. https://doi.org/10.1007/ 
s10618-022-00867-8. 

2. An introduction to hybrid/neurosymbolic AI is presented by 
Garcez, A. D. A. and Lamb, L. C. (2023). Neurosymbolic AI: The 3rd wave. 

Artificial Intelligence Review, 56(11), 12387–12406. 
3. Requirements for designing interactive AI systems are presented in 

Amershi, S., Weld, D., Vorvoreanu, M., Fourney, A., Nushi, B., Collisson, P., 
and Horvitz, E. (2019). Guidelines for human-AI interaction. In Proceedings of 
the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1–13). 

4. A discussion of trustworthy AI from a human-computer interaction perspective is 
Shneiderman, B. (2020). Human-centered artificial intelligence: Reliable, safe 

& trustworthy. International Journal of Human–Computer Interaction, 36(6), 
495–504. 

5. A highly readable book about shortcomings of purely data-driven approaches is 
Marcus, G. and Davis, E. (2019). Rebooting AI: Building artificial intelligence 

we can trust. Vintage. 
6. The ethics guidelines for trustworthy AI of the European Commission can be 

found at 
https:/ /digital-strategy.ec.europa.eu/en/library/ethics-guidelines-

trustworthy-ai.

https://doi.org/10.1007/s10618-022-00867-8
https://doi.org/10.1007/s10618-022-00867-8
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
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