Skip to main content

Encoded Deep Vectors for Eukaryotic Exon Prediction

  • Conference paper
  • First Online:
Pattern Recognition and Machine Intelligence (PReMI 2023)

Abstract

In bioinformatics, identifying protein-coding regions in genomic sequences is a vital problem. The majority of methods used to locate protein-coding regions(exons) in genomic sequences rely on the 3-base periodicity signal. Additionally based on encoding also, many machine learning approaches have been devised for exon prediction. They transform a sequence of DNA into numerical values and use those values to predict protein-coding regions using a machine learning model. Encoding strategies, however, have a direct impact on the classifier’s capacity to extract coding information, and it is yet unclear how to select the best encoding scheme. In this article, we proposed a hybrid encoding scheme, where the DNA nucleotide sequences are encoded into multiple vectors that were fed as multi-dimensional input channels to the Convolutional neural network. The effectiveness of the proposed hybrid encoding scheme using a Convolutional neural network is compared with the existing methods from the literature. The presented approach performed better than the existing approaches on benchmark datasets of the eukaryotic organisms, H.sapiens, D.melanogaster, C.elegans, A.thaliana, Cow, and Rat.

Supported by organization x.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhtar, M., Epps, J., Ambikairajah, E.: On DNA numerical representations for period-3 based exon prediction. In: 2007 IEEE International Workshop on Genomic Signal Processing and Statistics, pp. 1–4. IEEE (2007)

    Google Scholar 

  2. Elliott, D., Ladomery, M.: Molecular Biology of RNA. Oxford University Press, Oxford (2017)

    Google Scholar 

  3. Farber, R., Lapedes, A., Sirotkin, K.: Determination of eukaryotic protein coding regions using neural networks and information theory. J. Mol. Biol. 226(2), 471–479 (1992)

    Article  Google Scholar 

  4. Gao, J., Qi, Y., Cao, Y., Tung, W.E.: Protein coding sequence identification by simultaneously characterizing the periodic and random features of DNA sequences. J. Biomed. Biotechnol. 2005(2), 139 (2005)

    Article  Google Scholar 

  5. Hatzigeorgiou, A., Mache, N., Reczko, M.: Functional site prediction on the dna sequence by artificial neural networks. In: Proceedings IEEE International Joint Symposia on Intelligence and Systems, pp. 12–17. IEEE (1996)

    Google Scholar 

  6. Hatzigeorgiou, A.G.: Translation initiation start prediction in human CDNAs with high accuracy. Bioinformatics 18(2), 343–350 (2002)

    Article  Google Scholar 

  7. Kotlar, D., Lavner, Y.: Gene prediction by spectral rotation measure: a new method for identifying protein-coding regions. Genome Res. 13(8), 1930–1937 (2003)

    Article  Google Scholar 

  8. Krogh, A., Mian, I.S., Haussler, D.: A hidden Markov model that finds genes in E. coli DNA. Nucleic Acids Res. 22(22), 4768–4778 (1994)

    Google Scholar 

  9. Saberkari, H., Shamsi, M., Sedaaghi, M., Golabi, F.: Prediction of protein coding regions in DNA sequences using signal processing methods. In: 2012 IEEE Symposium on Industrial Electronics and Applications, pp. 355–360. IEEE (2012)

    Google Scholar 

  10. Saxonov, S., Daizadeh, I., Fedorov, A., Gilbert, W.: EID: the exon-intron database an exhaustive database of protein-coding intron-containing genes. Nucleic Acids Res. 28(1), 185–190 (2000)

    Article  Google Scholar 

  11. Shepelev, V., Fedorov, A.: Advances in the exon-intron database (EID). Brief. Bioinform. 7(2), 178–185 (2006)

    Article  Google Scholar 

  12. Shuo, G., Yi-sheng, Z.: Prediction of protein coding regions by support vector machine. In: 2009 International Symposium on Intelligent Ubiquitous Computing and Education, pp. 185–188. IEEE (2009)

    Google Scholar 

  13. Singh, N., Nath, R., Singh, D.B.: Splice-site identification for exon prediction using bidirectional LSTM-RNN approach. Biochem. Biophys. Rep. 30, 101285 (2022)

    Google Scholar 

  14. Snyder, E.E., Stormo, G.D.: Identification of coding regions in genomic DNA sequences: an application of dynamic programming and neural networks. Nucleic Acids Res. 21(3), 607–613 (1993)

    Article  Google Scholar 

  15. Stoffer, D.S., Tyler, D.E., Wendt, D.A.: The spectral envelope and its applications. Stat. Sci. 15, 224–253 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tiwari, S., Ramachandran, S., Bhattacharya, A., Bhattacharya, S., Ramaswamy, R.: Prediction of probable genes by Fourier analysis of genomic sequences. Bioinformatics 13(3), 263–270 (1997)

    Article  Google Scholar 

  17. Voss, R.F.: Evolution of long-range fractal correlations and 1/f noise in DNA base sequences. Phys. Rev. Lett. 68(25), 3805 (1992)

    Article  Google Scholar 

  18. Wei, C., Zhang, J., Yuan, X., He, Z., Liu, G.: A deep learning framework with hybrid encoding for protein coding regions prediction in biological sequences. bioRxiv (2020)

    Google Scholar 

  19. Wei, C., Zhang, J., Yuan, X., He, Z., Liu, G., Wu, J.: NeuroTIS: enhancing the prediction of translation initiation sites in mRNA sequences via a hybrid dependency network and deep learning framework. Knowl.-Based Syst. 212, 106459 (2021)

    Article  Google Scholar 

  20. Yada, T., Hirosawa, M.: Detection of short protein coding regions within the cyanobacterium genome: application of the hidden Markov model. DNA Res. 3(6), 355–361 (1996)

    Article  Google Scholar 

  21. Yin, C., Yau, S.S.T.: Prediction of protein coding regions by the 3-base periodicity analysis of a DNA sequence. J. Theor. Biol. 247(4), 687–694 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yin, C., Yoo, D., Yau, S.S.T.: Tracking the 3-base periodicity of protein-coding regions by the nonlinear tracking-differentiator. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 2094–2097. IEEE (2006)

    Google Scholar 

  23. Yu, N., Yu, Z., Gu, F., Pan, Y.: Evaluating the impact of encoding schemes on deep auto-encoders for DNA annotation. In: Cai, Z., Daescu, O., Li, M. (eds.) ISBRA 2017. LNCS, vol. 10330, pp. 390–395. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59575-7_40

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar Vesapogu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vesapogu, P.K., Surampudi, B.R. (2023). Encoded Deep Vectors for Eukaryotic Exon Prediction. In: Maji, P., Huang, T., Pal, N.R., Chaudhury, S., De, R.K. (eds) Pattern Recognition and Machine Intelligence. PReMI 2023. Lecture Notes in Computer Science, vol 14301. Springer, Cham. https://doi.org/10.1007/978-3-031-45170-6_87

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45170-6_87

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45169-0

  • Online ISBN: 978-3-031-45170-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics