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Abstract. Students’ difficulties to learn concurrent programming are
well known amongst Computer Science instructors. While in the Inter-
national Computing Education community it is still up to debate the
extent to which such topic should be included in pre-university cur-
ricula, based on our country’s Ministerial guidelines for technical high
schools with a specialization in Computer Science, students are expected
to acquire key concurrent programming skills. With the aim of getting
insights about the nature of students’ difficulties, as well as to iden-
tify possible pedagogical approaches to be adopted by teachers, we have
undertaken an investigation on students’ perception, proficiency and self-
confidence when dealing with concurrency and synchronization tasks. We
then present the results of a preliminary study carried out by submit-
ting a survey in a couple of representative high schools of our area. The
survey includes subjective perception questions as well as small program
comprehension tasks addressing students’ understanding of thread syn-
chronization. Moreover, we also analyze students’ self-confidence in con-
nection with their actual performance in such tasks. A total of 68 high
school students were engaged in the survey. Our findings indicate that
students’ perception of self-confidence tends to weakly correlate to their
actual performance, although more in general they express a low self-
confidence level in relation to the topic. In particular, the results clearly
show that the concept of thread synchronization is especially difficult to
master for a large majority of them.

Keywords: Informatics education · Programming learning · High
school · Threads · Concurrent programming

1 Introduction

Over the last decades, in order to achieve ever increasingly powerful architec-
tures, the processor industry has shifted its manufactures towards multi–core
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and many–core designs. This trend has become so widely adopted that nowa-
days such hardware is employed not only for industrial and academic purposes
[8], but it is also readily available in desktop machines in school laboratories [2].
Alongside to the electronic improvements, to harness the computational power
of these machines it is necessary to design software solutions that exploit the
numerous cores with concurrent programs.

There is therefore the need for experienced programmers leveraging this
paradigm, as indicated, in particular, by the ACM/IEEE Task Force in the Com-
puter Science Curricula 2013 Report [12]. Academic institutions often introduce
concurrent programming in advanced dedicated courses or in conjunction with
related topics, e.g. [6,11,21], but less commonly in introductory programming
modules [3,13]. As a matter of fact, it is still up to debate when and how to
approach the subject, and even more open to debate is the feasibility to cover
concurrent programming in the high school curriculum [1,2,14,23]. Students’
difficulties to learn concurrent programming are indeed well known among both
high school teachers and university instructors, and are also confirmed by a
handful of empirical investigations, such as [2,10,14].

According to the Italian Ministerial guidelines, the students opting for a
technical specialization in Computer Science are expected to develop parallel
and concurrent programming skills by the end of their fourth high school year
(grade 12).1 Unfortunately, however, there is a lack of empirical evidence to
set realistic curricular goals. As pointed out by Bro -danac et al. in a recent
paper, “[i]n the case of teaching parallel programming before university level,
the research appears to be scarce” [2, p. 2].

Within the outlined framework, this work is meant as an initial, exploratory
investigation on students’ proficiency and self-confidence when dealing with con-
currency and synchronization tasks. More specifically, we are trying to find at
least some preliminary answers to the following research questions:

Q1. To what extent are students at ease with some basic concepts of concurrent
programming?

Q2. To what extent does students’ perception of self-confidence correlate with
their actual performance in simple concurrent programming tasks?

Q3. What are their major difficulties when learning concurrent programming?

In order to address the above questions, we have administered a survey
including subjective perception questions as well as four program comprehension
tasks involving basic aspects of thread synchronization. A total of 68 students
attending the last year (grade 13) in representative high schools of our area were
engaged in the survey. The students were introduced to concurrent programming
in the previous school year, by different teachers who may have used diversified
approaches.

The paper is organized as follows. In Sect. 2 we summarize the background of
this work. Section 3 is about the survey structure and the rationale underlying
its design. The main findings of our exploratory investigation are then outlined

1 https://www.gazzettaufficiale.it/eli/gu/2012/03/30/76/so/60/sg/pdf.

https://www.gazzettaufficiale.it/eli/gu/2012/03/30/76/so/60/sg/pdf
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in Sect. 4 and discussed in Sect. 5. Finally, in Sect. 6 we draw some conclusions
and mention possible future developments of the present work.

2 Background

At least anecdotally, students’ difficulties with concurrent programming are
acknowledged by technical high school Computer Science teachers, as well as
by lecturer at the undergraduate and graduate levels. Nevertheless, this sub-
ject has hardly been given significant attention in the context of introductory
programming. For instance, in their systematic study [17] reviewing over 700
research papers published between 2003 and 2018, Luxton-Reilly and colleagues
mention only two contributions addressing parallel or concurrent programming.

In the following two subsections we will mention a selection of works specifi-
cally focused on the topic, respectively at the tertiary and secondary instruction
levels, whereas for a broader literature analysis the reader is referred to the
recent review discussed in Bro -danac et al.’s paper [2]. We will then conclude
this background section with a couple of notes about the Ministerial guidelines
that apply to our school system.

2.1 Parallel and Concurrent Programming at the University Levels

A range of works on the learning of concurrent programming at the undergradu-
ate or graduate levels examine students’ performance, their common difficulties,
their understanding of and misconceptions on the subject. For instance, Choi and
Lewis [5] analyze and classify the pitfalls in a collection of simple multi-threaded
programs written by students in order to improve instruction and develop learn-
ing aids. While focusing on thread-safe Java classes, Fekete [7] identifies suitable
learning outcomes and discusses related pedagogical difficulties, also proposing
examples that could help students avoid common misconceptions. Lönnberg &
Berglund [16] investigate the defects of concurrent programs produced by stu-
dents from a program development perspective.

A recurrent theme at the undergraduate level is whether these topics should
be taught in a dedicated course [16,21], split into multiple units [11,13], or
covered in an introductory programming course [3,13]. In this respect, Zhu et
al. [25] argue that the conceptual shift from sequential programming to con-
current and parallel programming is notoriously difficult to make. The authors
present their results of using the educational game Parallel, focusing on the
learners’ self-efficacy and how they learn concurrency concepts, and show that
undergraduates’ self-efficacy correlates with the time students spend in multi-
threaded problem-solving. Formerly, Bruce et al. [3] had suggested making use
of graphics and animations in order to facilitate student learning through visual
feedback.

No matter how challenging the subject is, Gardner argues that, in light of the
current developments of multi-core architectures, refraining “from teaching par-
allel programming to CS undergraduates is a kind of educational malpractice,”
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since computer technology cannot be expected “to turn back to the old, com-
fortable path of ever-increasing uniprocessor clock speeds [...]. To be prepared
for careers in this emerging environment, our students need to be furnished with
the knowledge and practice of parallel programming” [9, p. 3:6]. And Rivoire [21]
reported that upper-level undergraduates were indeed interested in and satisfied
with the contents of an introductory course on multi-core programming models.
However, according to Ko et al.’s teaching experiences in multiple courses [13],
1st and 2nd year students can recognize parallelism in programming tasks and
are generally aware of synchronization issues (although would prefer to app-
roach this subject in later years). In addition, Conte et al. [6] claim that the
achievements in parallel programming of novices without previous exposure to
computing concepts appear to be comparable to those of more advanced stu-
dents.

2.2 Parallel and Concurrent Programming in High School

Although concurrent programming has usually been considered exceedingly chal-
lenging in a pre-tertiary context, sporadic attempts to introduce this topic in
high school date back to the mid ’90s. According to Rifkin, for instance, “it is
never too early to teach so-called ‘hard’ concepts” such as basic principles of
parallel algorithms and software engineering, providing the ideas are presented
“in a manner that is simple, fun and suited to the audience” [20, p. 26].

Much work on the teaching and learning of concurrent programming in the
upper secondary school has been done by the Israeli CS Education community.
In particular, in the context of a high school unit in concurrent and distributed
computing, Ben-Ari & Kolikant [1] explored the evolution of students’ concep-
tions and attitudes, and found that they were eventually able to develop parallel
algorithms and to prove their correctness. Although the involved students ini-
tially felt extremely challenged, they then came to appreciate the relevance of
the topic and its contribution to improving their cognitive skills. Later, Kolikant
observed that, although high school students are able to gain a “rich” under-
standing of various synchronization tasks, quite often their successful solutions
to synchronization problems are achieved by a pattern-based approach “exempt-
ing them from dealing with the dynamics of the synchronization mechanisms,”
so that the underlying “concepts become inert” [14, p. 243].

Also in Tobert et al.’s view [23] there is ample evidence that parallel algo-
rithmic thinking and multi-threading can be taught—and should be broadly
covered in CS education—as early as high school. Moreover, Bro -danac et al. [2]
have recently conducted an investigation in 3 Croatian high schools where paral-
lel programming was included in the informatics curriculum. They report getting
positive feedback from students as to the interest and usefulness of the learnt
content, even though it was perceived as more difficult compared to the other
topics. The authors conclude that parallel programming, including synchroniza-
tion issues, can be taught in a high school context at least as an optional subject.
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2.3 High School Ministerial Guidelines in Italy

We conclude the background section by briefly summarizing the implications
of the Ministerial guidelines framing our Country’s secondary school system.
Rather than prescribing a detailed syllabus, such recommendations are meant
to be a reference for the teaching of each covered subject. In the case of tech-
nical high schools with specialization in Computer Science, the guidelines are
articulated in terms of knowledge, skills and competencies to be achieved in the
second biennium (grades 11 and 12) and in the last year (grade 13).

Fig. 1. Structure of the survey. More details in Appendix: Survey Questions

As to the second biennium, in terms of knowledge students are expected
to learn the components of operating systems, including techniques and tech-
nologies for concurrent programming and for the synchronized access to shared
resources; in terms of skills, they should eventually be able to design and develop
applications that interact with the operating system, using whenever appropri-
ate concurrent programming strategies. In their last high school year, students
should acquire knowledge on methods and technologies for network program-
ming, as well as on protocols and communication languages of the application
layer; in terms of skills, they are trained to develop applications that leverage
network communication, such as client-server applications through simple com-
munications protocols.

Within this framework, while teachers still have the freedom to personalize
the course organization, concurrent programming is nonetheless considered an
essential part of the high school curricula in Computer Science.
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3 Instrument

In this section we outline the survey structure and the rationale underlying its
design. The general organization, summarized in Fig. 1, is partly drawn from a
similar instrument developed and used by the authors to get insight about the
learning of other programming concepts [22]. Overall, it includes 24 items, 11
of which are based on 4 small tasks—7 program comprehension questions and 4
evaluations of self-confidence on the provided answers in a 4-grade Likert scale.
The full survey is reported in the Appendix: Survey Questions.

The questions addressing the learning of concurrency concepts elaborate
on Choi and Lewis’ [5] “catalog” of errors that students typically make when
approaching multi-thread programs, particularly in connection with data race
conditions, deadlocks and other synchronization issues. To accommodate for the
common practice in the involved high schools, the code is Java-like. The first two
tasks draw inspiration from programs proposed by Meyer at al. in “Concurrent
Programming with Java Threads”,2 and are intended to test students’ ability to
anticipate the outcomes of concurrent threads. The other two tasks elaborate on
Fekete’s work [7]: the third task is meant to see if students are able to identify,
among 5 options, both (equivalent) appropriate code fragments to deal with a
shared resource; the fourth one requires to recognize deadlock-prone code and
figure out suitable corrections.

For the solutions of each of the four tasks, the students were also asked to indi-
cate their perceived level of self-confidence in a Likert scale ranging from 1 (not
confident at all) to 4 (fully confident). We included these items because of the
potential pedagogical implications pointed out, e.g., in [18,19], as well as in order
to assess the extent to which students’ subjective perception of difficulty corre-
lates with their actual performance on a task. The concluding survey sections
concern potential graphical/visual tools that could help understand concurrent
programming and possible additional suggestions to improve the instructional
practice. A particular interest in graphical/visual tools is motivated by recent
research findings suggesting that students of STEM domains are more likely to
exhibit a visual-spatial cognitive style [24].

4 Results

Data Collection

The survey was administered to 68 fifth-year students (grade 13: age range 18–19;
60 boys and 8 girls) attending a CS curriculum in two technical high schools in
the North-East of Italy. The students, who were taught concurrent programming
in the previous school year, engaged in the task in a controlled situation, under
the supervision of their teachers. They were expected to complete the survey

2 Course material available at the link https://se.inf.ethz.ch/courses/2011a spring/
soft arch/lectures/old/13 softarch self study threads.pdf.

https://se.inf.ethz.ch/courses/2011a_spring/soft_arch/lectures/old/13_softarch_self_study_threads.pdf
https://se.inf.ethz.ch/courses/2011a_spring/soft_arch/lectures/old/13_softarch_self_study_threads.pdf
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within an hour. The answers to the survey were registered only anonymously,
and then could not be used for formative or summative assessment.3

General Thread-Related Concepts

Here we summarize the results of survey Sect. 2 (see Fig. 1). To begin with,
more than two thirds of the students find thread programming difficult (57%) or
very difficult (12%) and report to be unsatisfied (54%) or completely unsatisfied
(13%) with their performance in thread-related tasks. Conversely, most of them
consider the time spent to deal with the subject (67%) as well as the proposed
programming tasks (63%) to be both adequate to the purpose.

At a finer level of granularity, the bar chart in Fig. 2 shows students’ perceived
difficulty for diverse thread-related concepts. As can be seen, synchronization

Fig. 2. Students’ difficulties with a range of thread-related concepts.

and dealing with thread states are regarded as difficult to learn by 77% and 74%
of them, respectively, whereas several aspects in connection with the organization
of the classes implementing threads seem less critical. Although to a lesser degree,
the answers to the following question, using a similar Likert scale and concern-
ing a range of specific technical program tools, essentially confirm this picture:
looking at the hardest side, the Java keyword synchronized turns out to be
difficult for about 40% students and the methods wait and notify/notifyAll,
governing the thread state, for roughly one third of them. The last question of
survey Sect. 2 focuses on managing shared resources. All such related aspects are
perceived as difficult by a significant percentage of students, ranging from about
30% (reading/writing operations) to about 60% (synchronization operations).

3 In particular, since no personal information was shared with any third party, the
Italian research policies do not require the approval by an ethics commission.
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Program Comprehension Tasks

In summary, the first task presented a very simple class aimed at synchronizing
the access to a shared resource, based on availability of data. Four temporal
sequences of methods invocations by two concurrent threads were then presented,
with a request to identify the resulting outcomes (questions a–d). The second,
more complex task was about an instance of the producer-consumer scheme;
again, students were asked to identify the correct output. In the third task, the
(two) sound implementations of a straightforward synchronization scheme were
to be recognized among five options. Finally, the last problem asked to choose
a suitable strategy, informally described in words, to fix a given deadlock-prone
code. (The full text of these tasks can be found in the appendix.)

In Fig. 3a are reported the percentages of (fully) correct answers to the seven
questions asked for tasks 1–4. As we can see, only the solution of subtasks 1a
and 1b are correct for a large majority of students; in all the other cases, less
than half of them was successful, with the worst performances taking place for
the apparently easy subtasks 1c and 1d. Figure 3b depicts the overall distribu-
tion of self-confidence levels between correct and incorrect answers. In this case,
since there was one such Likert evaluation for each task, the solution of task 1 is
considered correct when all four related answers are correct. Besides evidencing
that less than one third of the students are more confident than not about their
answers, what once again confirms their difficulties with concurrent program-
ming, the diagram clearly shows that students’ self-confidence in the provided
solutions is only weakly connected with their actual achievements.

Fig. 3. Students’ performance in the proposed tasks and perceived self-confidence in
connection with their correct and incorrect answers.
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We also tried to look in more depth at the relationships between quality of
students’ answers and perceived levels of self-confidence. To this aim, we scored
the performance on task 1 in terms of number of correct solutions to questions
a–d, and the performances on the other tasks by distinguishing three quality
levels: 1 (= severely incorrect), 2 (= incorrect) and 4 (= correct) for tasks 2
and 4; 1 (= incorrect), 3 (= partly correct) and 4 (= fully correct) for task 3.
The correlations and the corresponding statistical significance are summarized
in Table 1, which should be self-explanatory.

Table 1. Correlation between students’ performance in the tasks and their perception
of self-confidence in the provided answers (in a Likert scale 1–4); the correlation cannot
be taken as statistically significant if p-value > 0.05.

Task correlation p-value

Task 1 (number of correct answers to questions a–d) 0.278 0.0215

Task 2 (4 = correct, 2 = incorrect, 1 = severely incorrect) 0.440 < 0.0002

Task 3 (4 = correct, 3 = partly correct, 1 = incorrect) 0.150 0.2234

Task 4 (4 = correct, 2 = incorrect, 1 = severely incorrect) 0.017 0.8917

Task 1–4 (average score vs. average self-confidence level) 0.365 0.0022

Possible Learning Aids and Additional Suggestions

The last section of multiple-choice questions focused on possible graphical/vi-
sual learning aids. 59% students reported having thought about using graphical
diagrams, and as many as 88% believe that a graphical representation could be
effective to improve their understanding of concurrent programming. However,
fewer students have a clear idea about which type of tool would be best suited
to deal with thread-related concepts. After all, the most effective tools that may
perhaps be used are not widely known in school contexts: in particular, several
students did not know about Petri nets (74%), Wait-for/Holt graphs (51%), or
finite-state automata (50%). Thus, the tools considered most useful for under-
standing were flow-charts (51% of positive ratings) and block diagrams (43%),
even though they are not the best suited to the purpose.

The final open answer was answered by 45 students and 12 of them suggested
to introduce examples of increasing difficulty more gradually (e.g. “exercises and
examples of more gradual difficulty”). Other recurrent proposals include the use
of concrete, real-world examples (6 – e.g. “examples and exercises drawn from
the real world [...]”); the use of graphical/animation aids (6 – e.g. “make more
use of graphical representations [...]”); a deeper theoretical discussion.

5 Discussion

First of all, we discuss the research questions raised in the introduction.
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Q1 – To what extent are students at ease with some basic concepts of concur-
rent programming? All findings summarized in the previous section—answers
to subjective perception questions, actual performance in the proposed tasks
and self-confidence in the provided solutions—consistently indicate that concur-
rent programming is a rather challenging subject for high school students. This
is not surprising, in that it corroborates what other educators have observed,
by analysing both learners’ performance (more often at the tertiary instruction
level, e.g. [5,23]) as well as their subjective perception. In the latter respect,
in particular, Bro -danac and colleagues [2] report that concurrent programming
is perceived by the high school students involved in their investigation as more
difficult than several other programming topics.

Q2 – To what extent does students’ perception of self-confidence correlate with
their actual performance in simple concurrent programming tasks? To the best of
our knowledge, this kind of analysis does not appear in previous studies specif-
ically addressed to concurrency. The statistics listed in Table 1 indicate that,
overall, students’ self-confidence in the provided solutions tends to only roughly
correlate to their actual performance in the tasks at hand—and, more in gen-
eral, they express a low self-confidence level in relation to the considered subject.
The discrepancy between self-confidence and performance is especially marked
relative to the first task, where higher levels of self-confidence align with wrong
answers for subtasks 1c and 1d—so suggesting some lack of awareness about
their difficulties, even for a simple problem.

Q3 – What are their major difficulties when learning concurrent programming?
As pointed out in Sect. 4, dealing with synchronization and with thread state
transitions (via wait/notify operations) represent major challenges. Such diffi-
culties emerge both from students’ perception and from their performance in
synchronization tasks. Once again, this confirms previous results that synchro-
nization mechanisms are common sources of students’ mistakes, see e.g. [5,7].
In connection with synchronization tasks, it may also be worth observing that
students’ performance in subtasks 1c and 1d is significantly worse than that in
task 2 (see Fig. 3), although the program in the latter case is far more com-
plex. A conceivable explanation of a similar phenomenon is that envisaged by
Kolikant [14] and mentioned in Sect. 2: a successful solution for task 2 may be
achieved by analogy with a stereotypical producer-consumer pattern, without
being concerned with the details of the underlying mechanisms.

Limitations. The present study has been conceived with an exploratory charac-
ter, in order to gather preliminary insight into a range of aspects in connection
with the learning of concurrent programming in the context of our school system.
Of course, each such aspect would be worth a specific, more focused investiga-
tion, possibly involving larger student samples in a wider geographic area.

Implications for Educators. Mastery of basic concepts of concurrent program-
ming is a cognitively demanding endeavor that, in order to nurture meaning-
ful learning, requires much pedagogical effort and time spent on the subject.



An Exploratory Investigation on High-School Students’ 103

As also pointed out by multiple students, teachers should be particularly care-
ful to choose an appropriate set of examples of gradually increasing complex-
ity. An additional issue worth being considered is the use of graphical/visual
aids, especially to support the integration of spatial abilities into the learning
process [4,24]. A range of existing tools has been reviewed, e.g., by Libert &
Vanhoof [15]. Finally, the low correlation between self-confidence and perfor-
mance suggests that more attention needs to be paid to students’ metacognitive
skills [18], possibly by offering them “opportunities for empirical validation of
their knowledge” and explicit instruction in this respect [19, p. 148].

6 Conclusions

In this paper we have presented the results of an exploratory investigation, car-
ried out via a survey, addressing high school students’ perception, proficiency
and self-confidence when dealing with concurrent programming tasks. While the
main implications of our findings are discussed in the previous section, appro-
priate decisions about the potential role of this subject in a high school context,
and specifically in our school system, are bound to find a reasonable trade-off
between two opposite poles: on the one hand, the relevance of the topic from
a professional perspectives [9]; on the other, the high cognitive challenge [2] in
light of learners’ maturity and teaching time available to develop the subject.

Future Perspectives. Besides designing and planning more focused investigations
to overcome the limitations mentioned above, a shorter-term goal could be to
administer the current version of the survey in other technical high schools fol-
lowing heterogeneous approaches to the teaching of concurrent programming,
with the aim of assessing the extent to which different instructional approaches
influence students’ perceptions and/or achievements. Further research could be
devised in order to evaluate and compare the effectiveness of different graphi-
cal/visual tools to improve the understanding of thread-related concepts.

Appendix: Survey Questions

An easier-to-read version of the survey questions is also available online at the
link:
http://nid.dimi.uniud.it/additional material/thread survey/thread survey.pdf

Approach to threads

– In general, how would you rate the difficulty of the thread topic?
4–grade Likert scale (1 = Not difficult – 4 = Very difficult)

– How would you rate your performance when managing threaded applications?
4–grade Likert scale (1 = Not satisfied – 4 = Very satisfied)

http://nid.dimi.uniud.it/additional_material/thread_survey/thread_survey.pdf
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– In your opinion, is it adequate the amount of time that the teacher spends to
introduce the thread topic?
4–grade Likert scale (1 = Not adequate – 4 = Definitely adequate)

– In your opinion, are the examples and exercises that the teacher proposes to
introduce the thread topic adequate?
4–grade Likert scale (1 = Not adequate – 4 = Definitely adequate)

– Rate the level of difficulty you typically encounter when dealing with the fol-
lowing thread issues. (Mark only one option per row)
Options: not known, usually simple, reasonably simple, difficult, very diffi-
cult.
Topics: Class definition, Object shared between threads, Distinguishing share-
able vs. non–shareable data, Thread “Run” method definition, Starting a
thread, Closing a thread, Choice of class methods, Identification of shared
class methods, Understand thread life cycle, Dealing with thread state, Syn-
chronization (in general).

– Rate the level of difficulty you encounter when using the following methods
for managing the state of a thread. (Mark only one option per row)
Options: not known, usually simple, reasonably simple, difficult, very diffi-
cult.
Methods: start, stop, sleep, suspend, wait, yield, join, resume, notify, noti-
fyAll, synchronized.

– Rate the level of difficulty you encounter when dealing with conditions
between threads. (Mark only one option per row)
Options: not known, usually simple, reasonably simple, difficult, very diffi-
cult.
Operations: Read a shared resource, Write or modify a shared resource, Acci-
dental resource sharing, Early release of a resource, Multiple Locks for the
same resource, Missed protection of a shared resource, Synchronization of
shared resources, Synchronization of methods that manage shared resources,
Wait without wake–up notification (Notify).

Tasks
The code fragments formalized in Java for Task 1.a–d refer to the Counter class
defined as follows:
public class Counter {

private int count = -1; // a negative value of count is interpreted as ‘‘undefined’’

public synchronized int getCount() {

while ( count < 0 ) {

try {

wait();

} catch ( Exception e ) {}

}

return count;

}

public synchronized void setCounter( int initValue ) {

if ( initValue >= 0 ) {



An Exploratory Investigation on High-School Students’ 105

count = initValue;

notify();

}

}

public synchronized void increment() {

while ( count < 0 ) {

try {

wait();

} catch ( Exception e ) {}

}

count = count + 1;

}

} // Counter

Task 1.a Analyze the execution of the following code snippets (Fig. 4) for two
separate threads, Thread-1 and Thread-2, operating on a shared instance x of
the Counter class introduced above. The operations of each of the two threads
are represented along opposite sides of the vertical axis, according to the time
order (from top to bottom) in which the methods invoked in the instructions
are executed; furthermore, no operations on x or i have been omitted in the
reported flows. What are the output values printed during the execution of
Thread-1? Mark only one option.
Options: i = 1, count = 1; i = 1, count = 5; i = 5, count = 5; i = 6, count =
6; The result cannot be predicted because there are several possibilities.

Task 1.b Analyze the execution of the following code snippets (Fig. 5) for two
separate threads, Thread-1 and Thread-2, operating on a shared instance x of
the Counter class introduced above. The operations of each of the two threads
are represented as described in question Task 1.a. What are the output values
printed during the execution of Thread-1? Mark only one option.
Options: i = 1, count = 1; i = 1, count = 5; i = 5, count = 5; i = 5, count =
6; The result cannot be predicted because there are several possibilities.

Fig. 4. Task 1.a. Fig. 5. Task 1.b

Task 1.c Analyze the execution of the following code snippets (Fig. 6) for two
separate threads, Thread-1 and Thread-2, operating on a shared instance x of
the Counter class introduced above. The operations of each of the two threads
are represented as described in question Task 1.a. What are the output values
printed during the execution of Thread-1? Mark only one option.
Options: i = 0, count = 0; i = 5, count = 0; i = 6, count = 0; i = 6, count =
6; The result cannot be predicted because there are several possibilities.

Task 1.d Analyze the execution of the following code snippets (Fig. 7) for two
separate threads, Thread-1 and Thread-2, operating on a shared instance x of
the Counter class introduced above. The operations of each of the two threads
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are represented as described in question Task 1.a. What are the output values
printed during the execution of Thread-1? Mark only one option.
Options: i = 0, count = 0; i = 5, count = 6; i = 6, count = 6; i = −1, count
= 6; The result cannot be predicted because there are several possibilities.

Fig. 6. Task 1.c Fig. 7. Task 1.d

Task 1: self-confidence level With regard to the previous questions (Task
1.a–d), rate your degree of confidence in the correctness of the solutions you
have chosen on a scale from 1 to 4.
4–grade Likert scale (1 = Not confident at all – 4 = Fully confident)

Task 2: Consider the classes defined below (Fig. 8) and assume to start the pro-
gram through the main method of the Task2 class. Which of the proposed
sequences will be printed at the end of the execution? Mark only one option.
Options: P3P7P5; P3PP7PP5P; PP3P5P7; PP3PP7PP5; PPP375; PPPP
PP375; The program hangs in a deadlock; The result cannot be predicted
because there are several possibilities.

Task 2: self-confidence level With regard to the previous question (Task 2),
rate your degree of confidence in the correctness of the solution you have
chosen on a scale from 1 to 4.
4–grade Likert scale (1 = Not confident at all – 4 = Fully confident)

Task 3: Within a class describing the implementation of a shared resource,
which of the following methods’ definitions (Fig. 9) can help to avoid conflicts
in the management of the resource itself?

Fig. 8. Task 2 Fig. 9. Task 3. Equivalence: Select all appli-
cable items.
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Task 3: self-confidence level With regard to the previous question (Task 3),
rate your degree of confidence in the correctness of the solution you have
chosen on a scale from 1 to 4.
4–grade Likert scale (1 = Not confident at all – 4 = Fully confident)

Task 4: Consider an instance of the Bouncer class defined below. The synchro-
nization modes of the from1to2 and from2to1 methods can lead to deadlock
situations.
Which of the following workarounds will fix the code to prevent the occurrence
of a deadlock (while still ensuring proper synchronization)?
Mark only one option.: delete all synchronized; eliminate nested synchronized;
drop synchronized by either method; drop the outer synchronized from one
of the methods and the nested one from the other; transform nested synchro-
nized into sequenced synchronized (one after the other rather than one within
the other); reverse seq1 and seq2 in all synchronized constructs; none of the
previous solutions.

public class Bouncer {

private Vector<Integer> seq1;

private Vector<Integer> seq2;

public Bouncer( Vector<Integer> seq1, Vector<Integer> seq2 ) {

this.seq1 = seq1;

this.seq2 = seq2;

}

public void from1to2() {

synchronized ( seq1 ) {

if ( seq1.size() == 0 ) {

try {

seq1.wait();

} catch ( Exception e ) {}

}

int item = seq1.elementAt(0);

seq1.removeElementAt(0);

synchronized ( seq2 ) {

seq2.add( item );

seq2.notify();

}

}

}

public void from2to1() {

synchronized ( seq2 ) {

if ( seq2.size() == 0 ) {

try {

seq2.wait();

} catch ( Exception e ) {}

}

int item = seq2.elementAt(0);

seq2.removeElementAt(0);

synchronized ( seq1 ) {

seq1.add( item );

seq1.notify();

}

}

}

} // Bouncer

Task 4: self-confidence level With regard to the previous question (Task 4),
rate your degree of confidence in the correctness of the solution you have
chosen on a scale from 1 to 4.–grade Likert scale (1 = Not confident at all –
4 = Fully confident)
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Possible help tools

– Have you ever thought about a graphical representation of thread working
principles, in order to ease its understanding? –grade Likert scale (1 = Never
– 4 = Often)

– Do you think a graphical representation of how threads work could be effective
in improving your understanding? –grade Likert scale (1=Not effective – 4 =
Very effective)

– How would you rate the following graphing tools in the context of threads?
(Mark only one option per row) : I don’t know this type of representation,
not very useful, partially useful, quite useful, very helpful.: flow–charts, Petri
nets, finite state automata, Cartesian diagrams as a function of time, Unified
Modeling Language (UML), Holt graphs, block diagrams.

Final open question

– What would you suggest to make the lessons on threads more interesting and
clearer? (Open answer)
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