
Reshaping Unplugged Computer Science
Workshops for Primary School Education

Martina Landman(B) , Sophie Rain , Laura Kovács ,
and Gerald Futschek

TU Wien, Vienna, Austria
{martina.landman,sophie.rain,laura.kovacs,

gerald.futschek}@tuwien.ac.at

Abstract. Through meticulous analysis and adaptation, we reshaped
unplugged computer science activities to align with the developmental
needs and capabilities of primary school children. Our approach focuses
on distilling the essence of computer science topics while tailoring their
content and delivery methods to suit the younger audience. We describe
our efforts and report on our experiences implementing our framework
for eight primary school classes, turning our unplugged computer science
workshops for secondary school classes into an educational playground
for 192 primary school children. Our work contributes to the general soci-
etal mission of supporting more and more children to become interested
in STEM, ensuring that our technological future is as diverse as possible.

Keywords: Primary Education · CS Unplugged · Girls Empowerment

1 Introduction

In today’s highly autonomous world, Computer Science (CS) has become a sub-
ject everyone should learn about. Within the work presented in this paper, we
advocate that computer science should be accessible to everyone, starting with
our society’s youngest generation. We therefore designed an unplugged CS work-
shop framework to ease the integration of CS topics within primary school edu-
cation. We focus on adjusting a set of CS unplugged activities [1] adapted by
us, initially designed for an informal learning environment of a 90 min workshop
targeting early secondary school students, into engaging activities suitable for
primary school students.

With the aim of reshaping unplugged CS activities, we carefully selected three
CS topics, forming the backbone of our unplugged CS workshops for primary
schools. Through the engaging scenarios of (Task 1) sorting, (Task 2) searching,
and (Task 3) planning, we provide young children the opportunity to explore and
experiment with various CS concepts playfully. This way, we empower primary
school children to create their own solutions (i.e. algorithms) without compro-
mising the conveyed CS content. In particular, we address (Task 1) the role of
fast-moving (secret) data points within sorting algorithms; (Task 2) the concept
c© The Author(s) 2023
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023, LNCS 14296, pp. 139–151, 2023.
https://doi.org/10.1007/978-3-031-44900-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44900-0_11&domain=pdf
http://orcid.org/0000-0002-0274-4172
http://orcid.org/0000-0002-8940-4989
http://orcid.org/0000-0002-8299-2714
http://orcid.org/0000-0001-7255-2531
https://doi.org/10.1007/978-3-031-44900-0_11


140 M. Landman et al.

of divide and conquer algorithms during searching/playing cards; and (Task 3)
the need for optimal planning while solving path-finding puzzles, allowing us to
ultimately expose children to basic ideas of programming (algorithms, program-
ming languages).

To make our workshop tasks as accessible as possible, especially for first-
graders, our CS activities are developed without requiring reading or writing
skills (Sect. 4). Further, we carefully integrated age-appropriate content with
CS tasks (Sect. 5) and paid special attention to the children’s social-emotional
development during our unplugged CS tasks (Sect. 6).

We performed eight iterations of our unplugged CS workshops for primary
schools. In each such iteration, one primary school class of 22–27 students (ages
8–9) visited our workshop at our institute, as this gives the children the oppor-
tunity to experience a scientific institution. In total, 192 primary school children
have participated in our CS workshops so far (Sect. 6). Based on our empirical
evaluation and the teachers’/students’ feedback, we conclude that reshaping CS
workshop tasks for primary schools is a worthy and successful effort, which we
aim to further strengthen at TU Wien.

2 Background and Related Work

2.1 In-House Outreach Programmes

At TU Wien, we have already conducted outreach programmes for teaching CS
concepts to secondary school students. Within this existing framework, we offer
(i) online programming courses to ease individual learning; (ii) in-class program-
ming courses at interested schools, and (iii) “unplugged” CS workshops at our
university. Each event from (i)-(iii) is conducted by the authors, based on our
experience as university students/assistants/professors. The work described in
this paper carefully reshapes item (iii) and proposes “unplugged” CS workshops
as a supplementary educational programme for primary schools.

2.2 Related Approaches and Initiatives

A recent report by the Brookings Institution [9] points out the need for com-
puting education “early on”, that is, as early as primary and secondary schools,
and identifies the key challenges for doing so. In her blog, Sue Sentance [7] high-
lights the main lessons learned from [9], importantly to “start early” with CS
education. While [9] finds that there is a worldwide interest in the early promo-
tion of CS programmes, it also stresses the need to catch up with up-to-date CS
developments and improve the overall integration of CS in various curricula.

In addition to coding and programming initiatives1, there are creative
approaches to teaching CS without a computer, most notably CS Unplugged
[1], Abenteuer Informatik [5] and Bebras Challenge2. Our own outreach pro-
grams are mainly based on tasks inspired by the former two programs. We also
1 e.g. https://code.org/.
2 e.g. https://bebras.org/.

https://code.org/
https://bebras.org/


Reshaping Unplugged Computer Science Workshops 141

extend these initiatives with further ideas, such as including tasks involving sim-
ple robotics. In particular, we use Ozobots3 as our main robotics device because
of their ability to be programmed through colour codes. Ozobots are thus imme-
diately accessible to students of all ages and allow their programming via “paper
and pencil”, which fits nicely with our unplugged CS activities.

It has been proposed that curricula and long-term initiatives are most effec-
tive when adhering to the concept of a spiral curriculum [3]. Extending and
revising our CS tasks to younger students, as proposed within our current paper,
should thereby ideally offer an iteration of our existing program for a younger
age group, allowing them to be exposed repeatedly to the same core ideas, each
time in a format that is most appropriate for their respective age and stage.
Two of the most significant advantages of such an approach are increased reten-
tion through repetition, as well as the possibility to continually increase task
complexity and therefore reach technical depth.

Instructional design models support structured and traceable developments
of teaching materials and tasks. Among others, the ADDIE model [2] implements
such a structured process within 5 main phases “analysis”, “design”, “develop-
ment”, “implementation” and “evaluation”.

To ensure high-quality (unplugged) CS workshops, design-based research
(DBR) [6] can be used, characterized by the cyclical repetition of a learning
intervention to improve it. The Action Research Model [8], consisting again of
cyclical, repetitive phases in which the teacher herself reflects on and evalu-
ates her action, is particularly suitable. There are different interpretations of
the phases, such as “plan”, “act”, “observe” and “reflect” [4], which provide a
framework for collecting data from one’s own experience of delivering a learning
intervention and building on this to improve.

3 Methodology

In this section we present the workflow for reshaping our existing unplugged CS
workshop for secondary schools, allowing us to introduce unplugged CS work-
shops for primary school children (ages 6–10, school grades 1–4). Within this
workflow, we systematically answer the following research question:

RQ: How can secondary school tasks be simplified in an informal learning
setting (workshop) to be used in primary school level?

We address this RQ by analyzing the difficulties and needs of the target group;
revising and designing new learning tasks; and evaluating and improving our
learning tasks based on first-hand experience collected within eight workshops
implementation of RQ, allowing us to attract 192 primary school children (ages
8–9). Doing so, we rely upon the ADDIE instructional design model [2]. We
restructure learning materials from secondary schools and integrate our solutions

3 e.g. https://ozobot.com/.

https://ozobot.com/


142 M. Landman et al.

to the RQ within the five main ADDIE phases, as summarized in Fig. 1 and
discussed next.

Fig. 1. Summary of the main steps within each ADDIE phase of our approach.

Analysis. Through close observation of the previous practical implementation
of our CS tasks for secondary school classes, we identified learning difficulties.
We analyzed these challenges by focusing on our new target group of primary
school children (Sect. 4).

Design. We identified and revised CS tasks to be presented in our unplugged
CS workshops. Each CS task is motivated and related towards complementing
primary school education with CS topics. Since we aim for a diverse environ-
ment, we considered the findings of [10] in the design of our CS tasks. For
example, as [10] argues that girls are more interested in a problem framed about
humans/animals instead of using objects, whereas boys are indifferent to such
problem-framing choices. We therefore designed our CS tasks using visual mate-
rial involving animals, thus favouring girls-friendly content while not harming
boys’ perceptions (Sect. 5). The conveyed CS topics within our workshops are
abstracted on a high level to make the concepts accessible to primary school
children.

Development. We formalized the learning objectives for each CS task and cre-
ated a prototype of each CS unplugged task. We make this prototype accessible
also to future workshop leaders (Sect. 5).

Implementation. We instruct team members and university students to serve
as workshop leaders and promote the workshops to schools.



Reshaping Unplugged Computer Science Workshops 143

Evaluation. After each workshop, we conduct a joint group reflection inspired
by the reflection phase of action research (Sect. 6). This information is used to
continuously improve our CS tasks and our unplugged CS workshop setting.

4 Task Analysis and Evolution

We now detail the evolution of our tasks, originally introduced for secondary
schools and reshaped for primary schools (see Sect. 5). We provide the rationale
for our changes while relying on the ADDIE model [2].

Within our first ADDIE phase of “Analysis”, the following three main points
have been considered: analyzing the characteristics of our target group, formal-
izing our learning objectives, and identifying required resources for implemen-
tation. With the aim of reshaping existing unplugged CS workshops from the
secondary level to the primary school level, we set the following aspects.

Overall Goal. We offer unplugged CS workshops, with each workshop instance
taking place at our university for a duration of two hours. Our overall goal is
for young children in primary schools to learn core computer science concepts.
Looking through the possible tasks and concepts of our existing unplugged CS
workshops for secondary schools, we decided on choosing the following three
workshop tasks for primary schools: (Task 1) using sorting networks; (Task 2)
sort and search via the CS principle of Divide and Conquer concept; and (Task 3)
planning via solving puzzles based on computational thinking and experimenting
using Ozobots. We believe these tasks can be made age-appropriate, realistic,
and playful (see Sect. 5), sparkling genuine interest in computer science at a very
young age. We also paid special attention to making these tasks as diverse as
possible, in particular friendly to young girls.

Target Audience Characteristics. Our workshops target primary school chil-
dren of any age without any prior knowledge. We therefore provide easy-to-adjust
workshop tasks, for example, by using small number ranges of 1–9 for first grade
children vs larger number ranges of 1–100 for third graders in Task 1. Simi-
larly, we initially use card stacks of 4 × 10 cards in Task 2, instead of starting
immediately with all 4 × 4 × 10 cards. Whereas in Task 3, we reduced the pos-
sibilities of different paths in the map added additional tiles for path planning
and introduced a “cheat” sheet that children could use to identify colour codes.

Similarly, reading comprehension should not be a hard requirement in our
primary school workshops. We used visual material, such as different-sized ani-
mals for sorting in Task 1 instead. To make our tasks more playful for primary
school children, we use secret messages and UV light-pens in Task 1 and obstacles
as animals/ponds/forests in Task 3.

Finally, instead of using written instructions (as is the case for secondary
schools), we verbally explain our workshop tasks to primary school children,
using simple, age-appropriate terms.

Resources. To run our workshops at TU Wien, skilled workshop leaders are
needed. Therefore, we dedicated ourselves to training computer science under-
graduate/graduate students, helping us as workshop leaders. This way the school



144 M. Landman et al.

teachers could focus on the children’s social-emotional well-being. We also imple-
mented adequate framework conditions for our workshops, including reserving
suitable rooms; establishing and maintaining contact with school classes; and
organizing task-specific material and equipment.

5 Task Design and Development

Within the design of our CS workshops and their respective tasks, we placed
special emphasis on creating a suitable learning environment for young chil-
dren, where the framework focuses on embedding the learning content within
an age-appropriate scene. It is essential to assist children in adjusting to their
new surroundings; we therefore relate our university setting to the daily school
life scenario of students, while drawing similarities between primary school and
university activities.

For each CS task, we considered the following design process. First, we (M)
motivate the task by explaining why the task is relevant to daily life. Second,
we let children (E) experiment with the task, develop different solutions, and
implement their own strategies (i.e. algorithms). Finally, we (R) relate the task
to CS topics by providing them answers on how such CS topics (and solutions)
are used on a daily basis. In conclusion of this design process, we developed an
effective task prototype and set the learning outcomes of our workshop tasks.

5.1 Task 1 – Sorting Network

(M) Motivate. This task is inspired by the unplugged CS task of sorting net-
works4, enabling children to sort items by following a small number of instruc-
tions. We motivate the use of sorting networks, and in general sorting, with
real-life sorting scenarios of clothes (by size), videos (by length), and groceries
(by price).

(E) Experiment. We use two large sorting networks taped to the floor, sup-
porting six children to sort items according to some predefined property. Six
children start sorting by one child standing in one of the starting nodes (repre-
sented as squares) and randomly choosing, for example, one number card from
a collection (numbers 1–1005). The chosen cards are unsorted, with the cards
becoming sorted upon the children finish traversing the sorting network and
arriving on the other side of the room in correctly sorted order in the designated
boxes on the floor.

For traversing the sorting network, the children initialize the sorting process
by moving from their initial position along lines, arriving at the first node of the
network, which is represented as an ellipse on the floor where two children fit in.

4 https://www.csunplugged.org/en/topics/sorting-networks/reinforcing-numeracy-
through-a-sorting-network-junior/.

5 For younger children, we use numbers 1–9 or simple geometric figures (e.g. triangles)
of different sizes.

https://www.csunplugged.org/en/topics/sorting-networks/reinforcing-numeracy-through-a-sorting-network-junior/ 
https://www.csunplugged.org/en/topics/sorting-networks/reinforcing-numeracy-through-a-sorting-network-junior/ 


Reshaping Unplugged Computer Science Workshops 145

Within the ellipse node, decisions between two children are made by comparing
the values of the property of interest: for example, when using number cards, the
child with the smaller (resp. bigger) number moves along a red (resp. blue) line
into the next ellipse node. Such decisions between pairs of children are repeated
until each child reaches their (final) spot, resulting in a sequence of sorted num-
bers. In such a sorting process, children thus implement four instructions (start,
initialize, decide&repeat, stop) within the sorting network; moreover, children
are encouraged to experiment with “runs” of the sorting network, trying to
become faster while correctly executing the sorting instructions.

We further experiment with sorting secret cards, each card hides a secret key
that is only visible when a UV light shines on the cards. Here, we used animals
in different sizes on each card. The children sort secret cards as before, yet, to
make “decisions” in the black ellipse nodes, the children need to wait for a UV
light pen to process and compare the secret keys. While experimenting with this,
children realize that more UV light pens significantly speed up the sorting process
by parallelizing sorting instead of waiting for one single central pen (processor).

(R) Relate. Children are introduced to sorting networks and algorithms,
enabling them to sort items parallel, similarly to sorting engines on the web
operate. Within this process, children learn about (fast) algorithms, allowing
our workshop task to explain foundation concepts from the CS areas of Algo-
rithms and Data Structures, as well as Parallel Computing.

Learning Outcomes. As the underlying CS concepts of this task are par-
allelization and rigorous algorithmic execution, we set the following learning
objectives, as learners can:

– understand that the more people make comparison decisions simultaneously,
the faster the sorting network/algorithm will (correctly) terminate;

– solve the algorithmic aspect of sorting networks by following the given instruc-
tions on traversing sorting networks.

5.2 Task 2 – Divide and Conquer

(M) Motivate. During this task, we motivate the CS principle of Divide and
Conquer by instrumenting children to playfully develop their own set of instruc-
tions that yield sorting algorithms for a shuffled stack of cards. We exemplify
the need for such sorting algorithms for finding items in large collections, such
as identifying that a particular book with 2–3 characteristics is missing in large
library collections.

(E) Experiment. We split children into groups of five–seven participants, urg-
ing collaborative teamwork. We use Ligretto cards6 as task workhorses since
these cards exhibit easily visible, three different properties: each card has one of
four colours on the card back and a number between 1–10 on its front side. A
full set of Ligretto cards thus consists of 4 × 4 × 10 = 160 cards.

6 https://www.schmidtspiele.de/detail/product/ligretto-blue.html.

https://www.schmidtspiele.de/detail/product/ligretto-blue.html


146 M. Landman et al.

Each group of children receives only one shuffled stack of Ligretto cards7,
with one side of the cards being of the same (front) colour. The task is to
sort these cards based on (back) colour and numbers as quickly as possible.
After visually illustrating the desired sorting outcome (e.g. red cards from 1–
10, followed by blue cards from 1–10, etc.), we give no further instructions on
how sorting should be achieved; yet, if children struggle with structuring their
ideas, further hints may be given by workshop leaders. We encourage children
to discuss their ideas together and have everyone’s role determined before the
sorting process starts. After the groups complete sorting their shuffled stack of
cards, each group’s solution is discussed, with the ultimate goal that groups learn
from other groups’ solutions. Within this discussion, we highlight the key steps
children used in their solutions: e.g. divided the big stack of cards into smaller
ones, sort the smaller stacks, and then merge sorted card stacks; in other words,
children intuitively implemented the CS principle of Divide and Conquer.

A second round of card sorting is started, without changing groups, but only
shuffling cards. The revised sorting solutions are again discussed, again focus-
ing on whether sorting performances have improved compared to the previous
round. In case of significant improvements, e.g. sorting times fit within a short
time window (1–2 min), another round of card sorting is initiated with increased
difficulty: a second set of 4 × 10 shuffled cards of another front-side colour are
additionally used, asking children to sort based on two colours and numbers 1–
10. Children are likely to adapt their previous solutions to fit the new challenge.
Nevertheless, Divide and Conquer remained the crux of their solutions.

Finally, we also initiate a card sorting process where workshop leaders silently
remove one card from a complete stack. When asking children to sort the shuffled
stack of cards, children identify in a relatively short amount of time that one
card is missing and precisely characterize the colour and number of the missing
card. However, again, all this while playfully executing their own solutions based
on Divide and Conquer.

(R) Relate. When sorting large data sets or searching for an item in a big
database (i.e. Ligretto cards), children naturally work collaboratively in order to
find their fastest solutions: divide a given problem into subproblems and merge
the sorted subproblems into the sorted version of the given problem. Such a
structured approach is the basis of Divide and Conquer, and hence children
are naturally introduced to key concepts within the CS areas of Distributed
Computing and Resource Optimization.

Learning Outcomes. While parallelization is a practical application of Divide
and Conquer, its key benefit comes from dividing an intractable problem into
more manageable parts. The learning outcomes of this task are therefore that
learners can:

– identify/recognize subtasks;
– divide a task into subtasks and distribute the solving workload among group

participants;
7 we only use 4 × 10 cards per group initially.



Reshaping Unplugged Computer Science Workshops 147

– describe a (Divide and Conquer) strategy to sort a shuffled stack of cards.

5.3 Task 3 – Planning in Puzzle Solving

(M) Motivate. During this task, children create (optimal) paths within a (geo-
graphic) map given limited resources. We motivate the need for planning via
route finding from school to home, or in general for other routes, frequently used
by automotive navigation systems. To showcase the impact of human/children
intelligence vs computer intelligence, students also discover how to steer a small
line-follower robot using colour codes within the path created by the children.

(E) Experiment. We split the whole group into groups of three–five partic-
ipants. Each group receives an A2 sheet with a printed tile grid, as shown in
Fig. 2(a). Each printed tile is either empty, contains a picture of an object, or
has a partial path, i.e. a black line drawn from one side to another. The pictures
used within the tile include a school, a house (home), and the obstacles of a
forest, a pond, and a tiger. Children are further given a limited set of additional
path tiles with either a straight or a curved path. Each group starts with finding
a path from the school to the house while avoiding the a priori given obstacles.
The children may use only the given set of straight/curved path tiles, as shown
in Fig. 2(b). Once the students have found a suitable path, they are given an
Ozobot placed at the school. This Ozobot will follow the developed path. Hence,
children already know what the Ozobot should do: do exactly what the children’s
solutions tell them to do and thus reach the house (home).

In a further step, a new tile grid with intersections is introduced. When
encountering an intersection, an Ozobot may randomly choose which direction
to take. To have full control over the Ozobot, children are encouraged to instru-
ment the Ozobot by laying down a colour code (over the path) right before
the intersection, determining the specific direction to be taken. In other words,
children “program” the Ozobot to follow their chosen path.

Once the children find solutions, the workshop instructors visualize possible
solutions with live coding using the block-programming language “Scratch”8.
Children are thus introduced to the art of programming only after they know
what a computer scientist should do: understand and create a path-finding solu-
tion (algorithm) just like the children did.

(R) Relate. When planning a path from home to school, children ensure that
their solutions are safe, e.g. obey a priori given rules and omit forbidden/unsecure
items in their planned trajectory. As such, the children are playfully introduced
to the CS areas of Formal Methods and Computer Security, and in general to
Artificial Intelligence.

Learning Outcomes. This task corresponds to solving a logical puzzle: find-
ing a way through a maze/map with a limited range of tiles. The possibilities
are limited and only a few ways are possible, thus connecting naturally to back-
tracking concepts. This task also conveys elementary knowledge about computer
8 https://scratch.mit.edu/.

https://scratch.mit.edu/


148 M. Landman et al.

Fig. 2. (a) Finding a path from school to home, (b) using predefined tiles.

commands and languages that computer systems and machines can understand.
We identified the following learning outcomes as learners can:

– plan a route given additional constraints;
– describe different possible solutions by using less/more constraints;
– understand that computer programs/machines need commands in a specific

programming language (e.g. colour codes for Ozobots).

6 Task Implementation and Evaluation

For the implementation, the executing student employees were well-instructed.
There were written instructions, a clear distribution of tasks, and a joint prelim-
inary discussion. It was clearly defined in advance who is responsible for which
activities during the workshop, how the tasks work, and which things they must
pay special attention to when working with children.

In the final “Evaluation” phase of the ADDIE model, we conducted an action
research-inspired approach through eight pilot runs of our unplugged CS work-
shops for primary schools with reflection sessions after each run. Altogether,
we reached 192 primary school students. Each workshop instance was evalu-
ated through the cyclical phases of “plan”, “act”, “observe”, and “reflect” [4],
allowing us to revise further and improve workshop materials and the overall
workshop process, as detailed below.

Evaluation of Task 1 – Sorting Network. Based on the evaluation of our
CS workshops so far, we made changes in Task 1 targeting the followings:



Reshaping Unplugged Computer Science Workshops 149

• Social-emotional well-being: As there are only 6 input nodes in the sorting
network , only 6 students can experiment per network. Since class sizes may
vary, with our original setup (using two sorted networks) not all students
got to experiment the same number of times. Originally, only three runs
of the sorting network were planned (first run with numbers, second run
with invisible animal images and one UV Light “comparator”, third run with
three “comparators”). This initial plan resulted in having a few children that
experimented with sorting networks only once, while other children twice. Due
to the children’s emotional reactions, we extended Task 1 with a further run
with numbers so that each child tries out our sorting network at least twice.
Empty inputs nodes/squares are filled with teachers/volunteering children.

• Visual perception error: One observed difficulty students had was reading
similar numbers (e.g. 6 and 9). In the joint reflection sessions of our work-
shops, this topic came up several times and we kept sorting out numbers that
could be misunderstood; for example, eliminating 6, 9, 66, and 99.

• Instructional error: We observed that children might tend to go in the wrong
direction of the sorting network: though the instruction is “follow the blue
line if you have the bigger number/animal”, there is also a blue line leading
back to the start . In particular, we observed chaotic behaviour when the
starting phase of sorting was overcrowded. In our workshop reflection rounds,
we agreed to pay more attention to the fact that the children go to the starting
squares; we also included this as a (start) instruction for our task.

Evaluation of Task 2 – Divide and Conquer. Similarly to the reflection
rounds and observations made withing Task 1, the following changes have been
made on Task 2 to address:

• Instructional error: We spend more time explaining the task while providing
an a priori fixed set of hints on-demand.

• Social-emotional well-being: We playfully motivate competitive efforts while
measuring the times children spent on sorting cards, emphasizing that groups
do not compete against each other but essentially only improve their own
times (due to different solutions they use).

Evaluation of Task 3 – Planning in Puzzle Solving. Similarly to Tasks 1–2,
the following changes on Task 3 have been implemented to prevent:

• Procedural errors: We actively interact with children and provide hints for
using the tiles/planning the path.

• Conceptual misunderstandings: Our Ozobots need to read (i.e. drive over) a
colour code for one specific direction (left/right/straight). The tiles indicate
such directions by arrows next to the colour code. For example, a tile with a
blue-black-red sticker is the command “go straight ahead”; yet, if the Ozobot
reads this code backward, it chooses a random direction. As the sequence
of colors in our tiles are not very self-explanatory, we allocate extra time so
children experiment more with coloured tiles.



150 M. Landman et al.

7 Conclusions

We showed how to reshape unplugged CS tasks from secondary to primary
schools, providing an age-appropriate and diverse CS workshop environment. We
rely on the design-based research approach advocated by the ADDIE structured
workflow model and continuously adjust our learning framework by reflecting on
our CS workshop experiences and performances.

Through our unplugged CS workshops reshaped for primary schools, we moti-
vate and relate CS topics from and to daily life and encourage children to exper-
iment with their own solutions. Based on our task evaluation so far, we believe
that unplugged CS activities can (and should) nicely complement primary school
education. We aim for further developments of our CS task by exploring the par-
ticipant’s background and adjusting workshop instructions/algorithmic solving
challenges accordingly.

Acknowledgements. We thank Philipp Prinzinger for his prior initiatives related
to our work. We are grateful for the support we received from Anja Petković Komel,
Katalin Fazekas, Lukas Lehner, and Svetlana Unkovic (TU Wien). Moreover, we thank
our volunteering workshop holders from the eduLAB service unit and the FORSYTE
research unit of the TU Wien. We finally acknowledge partial funding from the ERC
CoG ARTIST 101002685, the Let’s Empower Austria - LEA project 1IP-0006, the TU
Wien SecInt Doctoral College, and the FWF SFB project SpyCoDe F8504.

Appendix

Sorting Network

Fig. 3. Sorting network used in task 1 with input/output (orange/green squares) from
the CS unplugged task



Reshaping Unplugged Computer Science Workshops 151

References

1. Bell, T., Witten, I., Fellows, M.: CS Unplugged: an enrichment and extension
programme for primary-aged students (2015). https://www.csunplugged.org/

2. Branch, R.M.: Instructional Design: The ADDIE Approach, 1st edn. Springer,
Boston (2009). https://doi.org/10.1007/978-0-387-09506-6

3. Bruner, J.S.: The Process of Education. Harvard University Press, Cambridge
(2009)

4. Dickens, L., Watkins, K.: Action research: rethinking lewin. Manag. Learn. 30(2),
127–140 (1999). https://doi.org/10.1177/1350507699302002

5. Gallenbacher, J.: Abenteuer Informatik (2008). https://www.abenteuer-
informatik.de/

6. Easterday, M.W., Lewis, D.R., Gerber, E.M.: Design-based research process:
problems, phases, and applications. In: Proceedings of International Confer-
ence of the Learning Sciences, ICLS 1(January), pp. 317–324 (2014). https://
www.scholars.northwestern.edu/en/publications/design-based-research-process-
problems-phases-and-applications

7. Sentance, S.: Computer science education is a global challenge (2021). https://
www.raspberrypi.org/blog/brookings-report-global-computer-science-education-
policy/

8. Stephen, M.: Corey: action research in education. J. Educ. Res. 47(5), 375–380
(1954). https://doi.org/10.1080/00220671.1954.10882121

9. Vegas, E., Hansen, M., Fowler, B.: Building skills for life: How to expand
and improve computer science education around the world. Brookings
(2021). https://www.brookings.edu/essay/building-skills-for-life-how-to-expand-
and-improve-computer-science-education-around-the-world/

10. Vorvoreanu, M., Zhang, L., Huang, Y.H., Hilderbrand, C., Steine-Hanson, Z., Bur-
nett, M.: From gender biases to gender-inclusive design: an empirical investigation.
In: Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems. CHI 2019, New York, NY, USA, pp. 1–14. Association for Computing
Machinery (2019). https://doi.org/10.1145/3290605.3300283

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://www.csunplugged.org/
https://doi.org/10.1007/978-0-387-09506-6
https://doi.org/10.1177/1350507699302002
https://www.abenteuer-informatik.de/
https://www.abenteuer-informatik.de/
https://www.scholars.northwestern.edu/en/publications/design-based-research-process-problems-phases-and-applications
https://www.scholars.northwestern.edu/en/publications/design-based-research-process-problems-phases-and-applications
https://www.scholars.northwestern.edu/en/publications/design-based-research-process-problems-phases-and-applications
https://www.raspberrypi.org/blog/brookings-report-global-computer-science-education-policy/
https://www.raspberrypi.org/blog/brookings-report-global-computer-science-education-policy/
https://www.raspberrypi.org/blog/brookings-report-global-computer-science-education-policy/
https://doi.org/10.1080/00220671.1954.10882121
https://www.brookings.edu/essay/building-skills-for-life-how-to-expand-and-improve-computer-science-education-around-the-world/
https://www.brookings.edu/essay/building-skills-for-life-how-to-expand-and-improve-computer-science-education-around-the-world/
https://doi.org/10.1145/3290605.3300283
http://creativecommons.org/licenses/by/4.0/

	Reshaping Unplugged Computer Science Workshops for Primary School Education
	1 Introduction
	2 Background and Related Work
	2.1 In-House Outreach Programmes
	2.2 Related Approaches and Initiatives

	3 Methodology
	4 Task Analysis and Evolution
	5 Task Design and Development
	5.1 Task 1 – Sorting Network
	5.2 Task 2 – Divide and Conquer
	5.3 Task 3 – Planning in Puzzle Solving

	6 Task Implementation and Evaluation
	7 Conclusions
	References




